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When a plant is introduced to a new ecosystem it may escape from some
of its coevolved herbivores. Reduced herbivore damage, and the ability of
introduced plants to allocate resources from defence to growth and repro-
duction can increase the success of introduced species. This mechanism is
known as enemy release and is known to occur in some species and situ-
ations, but not in others. Understanding the conditions under which
enemy release is most likely to occur is important, as this will help us to
identify which species and habitats may be most at risk of invasion. We com-
pared in situ measurements of herbivory on 16 plant species at 12 locations
within their native European and introduced Australian ranges to quantify
their level of enemy release and understand the relationship between
enemy release and time, space and climate. Overall, plants experienced
approximately seven times more herbivore damage in their native range
than in their introduced range. We found no evidence that enemy release
was related to time since introduction, introduced range size, temperature,
precipitation, humidity or elevation. From here, we can explore whether
traits, such as leaf defences or phylogenetic relatedness to neighbouring
plants, are stronger indicators of enemy release across species.
1. Introduction
Herbivores are the bane of almost any plant’s existence and can severely limit indi-
vidual fitness and population growth [1–5]. In most natural ecosystems, plants
and their herbivores have co-evolved over millions of years, with plants gaining
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protective traits to reduce damage, and herbivores adapting
to overcome plant defences [6–8]. As such, interactions between
plants and herbivores can become unique to the ecosystems
they naturally inhabit [9]. So, when a plant is introduced to a
new ecosystem it may be freed from the constraints of the
herbivores that once restricted it in its native range [10]. This
mechanism is referred to as enemy release [10–13].

Escaping from the enemies (e.g. herbivores and/or patho-
gens) that co-evolved with a plant species in its native range
can be a major contributor to a species’ success in an intro-
duced range, as they may allocate resources to growth and
reproduction instead of repair and defence [10]. However,
studies suggest that only about half of introduced species
actually experience enemy release [10,12,14–17]. Most of our
understanding of enemy release tends to focus on case
studies of one or a small number of species, with relatively
few examples of field comparisons across multiple species
and locations [18–20]. The limited taxonomic scope of most
previous studies means that we have no empirical evidence
about the spatial, temporal and climatic circumstances that
might allow us to predict whether a particular introduced
plant species is likely to experience enemy release. Our
study addresses this knowledge gap using a biogeographic
approach to quantify the factors contributing to successful
enemy release in a broad range of plant species in multiple,
diverse locations within their native and introduced ranges.

We first ask whether the amount of herbivore damage
our study species receive differs between their native and
introduced ranges. Answering this question allows us to under-
stand which plants are experiencing enemy release and the
magnitude to which they are affected, allowing us to explore
further questions on the factors contributing to enemy release.
We hypothesize that plants in the introduced range will
suffer less herbivore damage overall, as they are more likely
to have escaped their enemies according to the enemy release
hypothesis [10,11].

We then test a range of hypotheses that aim to better predict
when and where enemy release is most likely to occur.

Our first prediction is that the magnitude of enemy release
plant species experiencewill decreasewith time since introduc-
tion. Native herbivores, especially those with specialized
interactions, usually prefer to feed from the native plants
they have co-evolved with, and can struggle to tolerate the
defensive mechanisms employed by invasives [21,22]. Yet
as time passes, some introduced species may eventually
accumulate ‘enemies’ as herbivores switch feeding between
native and introduced hosts, as shown by Rodríguez et al.
[21] in a case study of Acacia dealbata and Carpobrotus edulis
invasions on the Iberian peninsula. However, a study, spanning
35 species, showed no effect of time since introduction in
relation to a plant’s degree of herbivory [23]. A meta-analysis
found that enemy release is higher in species that were
introduced more recently (less than 50 years ago) and lower
in plants that had established earlier (50–200 years ago), with
herbivory levels similar to conspecifics in their native
range [14]. Our study extends and complements these previous
findings and is the first to account for variation in enemy
release across multiple species and sites within the native
and introduced ranges.

Subsequently, we ask whether the degree to which species
experience enemy release is negatively correlated with their
introduced range size. According to the species–area relation-
ship, larger areas can foster a greater diversity of organisms
in comparison to smaller fragments and studies have shown
that arthropod diversity is best predicted by the range size of
host plants [12,24]. However, no studies have previously
tested whether a relationship between range size and enemy
release exists. As plant species with smaller range sizes are
less likely to encounter and accumulate a diversity of herbi-
vores than those with larger range sizes, we predict that
species with smaller introduced range sizes are more likely to
experience stronger enemy release.

Finally, we ask whether enemy release is correlated with
the climate or elevation of the introduced sites they occupy.
As ectotherms, invertebrate herbivores’ metabolism and rate
of consumption are regulated by their external environment,
and rise with increasing temperature [25–27]. Patterns with
water availability are less clear, with some evidence that
leaf damage increases with precipitation [28,29], but other
evidence that relative humidity is negatively correlated with
herbivory [30]. The negative relationship with relative humid-
ity could be explained by humidity’s inversely proportional
relationship to temperature, as air becomes drier as tempera-
ture increases, which, in turn, increases the rate of herbivory.
Invertebrate presence and leaf damage are also lower at
higher altitudes, possibly due to lower temperatures and
resource availability [31,32]. We therefore hypothesize that
enemy release will be negatively correlated with temperature
and precipitation, and positively correlated with humidity
and elevation.

In summary, we predict:

1. Overall, plants will experience more herbivore damage in
their native range than in their introduced range.

2. Enemy release will decrease with time since introduction.
3. Enemy release will decrease with the size of the invaded

range.
4. Enemy release will decrease with increasing temperature

and precipitation.
5. Enemy release will increase with humidity and elevation.

2. Material and methods
(a) Data collection
To determine whether introduced vascular plant species are
experiencing enemy release in Australia, we measured leaf
damage at 5 sites in the native range and 7 sites in the introduced
range of 16 plant species (figure 1).We incorporated data from eco-
logically diverse locations (i.e. the dry, warm mountainous region
of northern Madrid to the cool, damp meadows of the English
midlands) within each range, to better reflect the variation in her-
bivory that plants can receive across different habitats/
populations. We confirmed each species’ status as either native
to Europe, or introduced to Australia, from the literature.

We chose our target species based on three main criteria
whereby each species must:

1) Have a widespread presence in both Europe (as a native
plant) and southeastern Australia (as an introduced plant).

2) Not actively be managed by biocontrol agents in Australia
(because biocontrol agents work by countering enemy release).

This yielded a list of over 25 plant species eligible for inclusion
in our study. However, despite our best efforts in the field, some
species could not be located and measured at least once in the
native range and once in the introduced range. Our third criteria
was thus that species were measured in at least one site across
both ranges (native and introduced). Our final dataset includes
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Figure 1. Maps of sampling sites in (a,c) Europe (native range) and (b,d ) Australia (introduced range). Sites in Europe include Madrid (Spain), Montpellier (France),
Salzburg (Austria), Northampton (United Kingdom) and Tartu (Estonia). Sites in Australia include Hobart (Tasmania), Melbourne (Victoria), Cooma (New South
Wales), Canberra (Australian Capital Territory), Robertson (New South Wales), Sydney (New South Wales) and Brisbane (Queensland). Maps are shaded according
to (a,b) mean temperature of the warmest quarter and (c,d ) total precipitation of the warmest quarter from WorldClim version 2.1 climate data for 1970–2000 [33].
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measurements from 16 herbaceous plant species (15 eudicots and 1
monocot) belonging to 14 families and 11 orders (electronic sup-
plementary material, appendix S1). Of these species, six
(Convolvulus arvensis,Hypericum perforatum, Leucanthemum vulgare,
Parietaria judaica, Rumex acetosella andVerbascum thapsus) are listed
as invasive by Weeds Australia (https://weeds.org.au/).

When choosing our study sites, we prioritized maximizing
the latitudinal range and landscape diversity in each range.
Target species presence was also factored into site choice as we
preferred to visit places that would increase our sampling poten-
tial. We used online databases such as the Global Biodiversity
Information Facility (gbif.org) and the Atlas of Living Australia
(ala.org.au) to assess target species presence prior to choosing
our site locations. Not all study species were present at each
site (i.e. city or region where sampling took place) (electronic
supplementary material, appendix S2).

At each site, we aimed to measure foliar herbivory on
10 leaves of at least 12 individuals per species. A random
number generator and compass were used to determine the
observer’s orientation, and we measured the first individual we
encountered in this direction. We repeated this process until 12
plants were measured. We distinguished individuals by ensuring
they were spaced at least 2 m apart, with clonally spreading
species requiring at least 5 m distance; however, most individuals
were spaced further than this. We began measuring from the first
fully expanded leaf on the highest branch and continued towards
the base of the stem. Where there were fewer than 10 leaves on a
branch, we continued to measure on the branch/es directly
below until 10 measurements were recorded. Where there were
fewer than 10 leaves per individual, we compensated by measur-
ing more individuals until we reached a similar number of
measured leaves. Species with compound leaves (e.g. Trifolium
repens and Lotus corniculatus) had their herbivory measured per
leaflet (10 leaflets of 12 individuals) in a clockwise direction
from the petiole. The herbivory examined in this study is ecto-
phagy and does not consider the identity of the herbivores or
their functional interactions.

Herbivory measurements were calculated as a percentage of
removed or damaged leaf tissue, including the lamina and petiole.
Types of herbivory we encountered include chewing, mining,
galling, skeletonizing and sucking. Visual estimates were used to
assess herbivory on a scale of 0–100%, by mentally dividing the
leaf into four equal quadrants and visualizing the damage all
together in one section [34]. We chose to estimate leaf damage
visually as it only takes approximately 10 s to measure each leaf,
allowing us to notably increase our sample size and perform all

https://weeds.org.au/
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observations in the field [35–37]. All visual estimates of herbivory
were conducted by the lead author (Z.A.X.) after being trained to
measure herbivory on leaf images with known damage. Assessor
accuracy was assessed twice in the field (once in Europe and
once in Australia) by visually estimating a subsample of leaves
and then digitally analysing their amount of leaf damage using
ImageJ. All visually assessed estimates were within 1% accuracy
of the digital measurements. Field observations took place in the
peak growing seasons of 2019, from May to July in Europe and
between September and November in Australia.

To assesswhether enemy release is related to plant species’ time
since introduction, we compiled data on species’ year of introduc-
tion to Australia from the literature. The literature reports initial
occurrences of species introductions (or estimates thereof) to the
continent of Australia but does not account for multiple introduc-
tions of a species to varying regions. However, as we are testing
this relationship on the macro-scale, coarser records are sufficient,
as any pattern arising from data with greater uncertainty would
only strengthen its support for a relationship. For each target
species, we searched two online databases, the Atlas of Living
Australia (ala.org.au) and the Web of Science, to determine the
year of their earliest known occurrence in Australia. For the Atlas
of Living Australia, we simply searched each species by scientific
name to access their earliest recorded occurrence in Australia. For
the Web of Science, we used keywords such as ‘year’, ‘introduc*’
and ‘Australia’ accompanied by scientific name. We calculated
time since introduction by subtracting species’ year of introduction
from the year herbivory observations took place (2019).

To understand whether enemy release is associated with
plant species’ introduced range size, we gathered range size
data from the Atlas of Living Australia’s spatial portal (spatial.a-
la.org.au; accessed 22 June 2021; electronic supplementary
material, appendix S3). We chose ‘area of occupancy’ as a
metric to assess our species’ geographical spread. We added
each species, separately, into the spatial portal (restricting records
to only those that were spatially valid and within Australia) and
used the ‘calculate AOO and EOO’ function (with a grid resol-
ution of 0.05 decimal degrees and alpha hull of 2) to attain the
area of occupancy (km2), which we hereby refer to as range
size for introduced populations.

To understand whether enemy release is associated with
climate and elevation we downloaded data from:
1. WorldClim v2.1 at 2.5 minute resolution [33] for mean annual
temperature, annual precipitation, mean temperature of the
warmest quarter and precipitation of the warmest quarter
in the native and introduced ranges, and elevation in the
native range only. Mean annual temperature and annual pre-
cipitation were chosen as they are meaningful predictors for
plant growth, insect activity and herbivore consumption
[38,39]. We also considered the mean temperature of the
warmest quarter and total precipitation of the warmest quar-
ter as this is widely regarded as the peak season for plant
growth and herbivore consumption [26,40].

2. The 3 s STRM Derived Digital Elevation Model (DEM) v1.0
[41] for elevation in the introduced range.

3. The Australian Bureau of Meteorology’s gridded dataset for
mean annual relative humidity at 15.00 at 0.1° resolution
(available from http://www.bom.gov.au/web01/ncc/www/
climatology/relative-humidity/rh15/rh15an.zip) for relative
humidity in the introduced range. We used relative humidity
at 15.00 instead of 21.00, as humidity is higher in the mornings
in most locations which is not representative of the humidity
experienced by plants/herbivores for most of the day (US
Department of Commerce).

4. New et al. [43] for relative humidity in the native range. These
values were averaged across 12 months and rasterized at a
resolution of 0.25°.
All values for abiotic variables were extracted from the afore-
mentioned datasets using the specific coordinates where each
species was located at each site, and running a nearest-neighbour
interpolation in QGIS v3.24 [44].

(b) Data analysis
All statistical analyses were performed in R version 4.2.0 [45].

To understand the direction and magnitude of enemy release,
we ran generalized linear mixed models using Template Model
Builder [46]. We used the amount of herbivory plants received as
our response variable, range (introduced or native) as our predic-
tor variable, and included random effects terms for site, species
and individual. As our data contained many zeros, we used the
Tweedie family with log-link function to fit our model. The coeffi-
cient for range represents the ratio of herbivory in the native to
herbivory in the introduced range, on a log scale (i.e. it represents
enemy release). Our data did not require any prior transformation
as they satisfied all model assumptions.

Next, we tested for an association between enemy release and
time since introduction by performing a linear model with the lm
function in base R [45]. Our response variable was enemy release
(using model coefficients for each species from our first herbivory
model, i.e. ln(mean herbivory in native range/mean herbivory in
introduced range)) and our predictor variablewas time since intro-
duction. We used the species’ coefficients from our first model as
they accounted for variance in herbivory between individual
plants and sites. Our model was weighted by the inverse standard
error of our original herbivory model coefficients. We used a simi-
lar weighted model to quantify the relationship between enemy
release and plants’ range size in Australia. Enemy release, using
previous model coefficients again, was our response variable
and log10-range size was our predictor variable.

After analysing the last two models, we decided to test
whether time since introduction influenced the amount of
area that species would end up occupying in their introduced
range. To do this, we ran a linear model with our predictor vari-
able as species’ time since introduction and response variable as
introduced range size using the lm function in base R [45].

Finally, we asked whether climatic conditions and elevation of
sites affect the magnitude of enemy release plants experience. We
did this by calculating a weighted average of herbivory for each
species at each site in the introduced and native ranges. First, we
calculated the arithmetic mean (after adding 0.005 to each observed
value to avoid zeros (as in [47])) of log-transformed herbivory for
each individual, per site. Next, we calculated site-level herbivore
damage for each species as the exponent of arithmeticmean herbiv-
ory across the individual plants at each site. We then performed
separate ANCOVAs using mean herbivory (per species per site)
as our response variable, an interaction term encompassing range
and an abiotic factor as our explanatory variable, and site and
species as random effects terms. To meet model assumptions, we
square-root transformed mean herbivory prior to analyses. For
these analyses, a significant interaction could indicate enemy
release as either decreasing (figure 2a) or increasingwith the abiotic
variable. A non-significant interaction indicates no relationship
between enemy release and the abiotic variable (figure 2b).
3. Results
After conducting fieldwork across twelve sites, six countries
and two continents, we had recorded 11 600 separate visual
estimations of herbivory (6142 in the native range and 5458
in the introduced range) for 16 plant species. Consistent
with the enemy release hypothesis, we found that overall,
our species experience greater herbivory in their native
range than in their introduced range (figure 3; p < 0.0001)

http://www.bom.gov.au/web01/ncc/www/climatology/relative-humidity/rh15/rh15an.zip
http://www.bom.gov.au/web01/ncc/www/climatology/relative-humidity/rh15/rh15an.zip
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with an effect size of 1.88 (95% confidence interval from 1.10
to 2.66). In biological terms, this means that plants in their
native range are suffering from 6.55 times more leaf
damage than conspecifics in their introduced range. Indivi-
dually, all 16 species tended towards greater herbivory in
the native range, with half being statistically significant
(95% confidence intervals did not overlap zero).

Contrary to our prediction, we found no evidence for a cor-
relation between species’ degree of enemy release and time since
introduction (figure 4a; p = 0.13, adjusted R2= 0.10, F1, 14 = 2.60).
There was no significant relationship between species’
degree of enemy release and the amount of introduced
area they currently occupy (figure 4b; p = 0.66, adjusted
R2 =−0.06, F1, 14 = 0.20).

Although it was not one of our initial hypotheses, we did
find a positive relationship between species’ range size
and time since introduction (figure 5; p = 0.01, adjusted
R2 = 0.32, F1, 14 = 7.91).

Counter to our predictions, we found no evidence for an
interaction between range and any abiotic variable, in relation
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to the amount of herbivory plants receive (i.e. plants experience
similar enemy release regardless of climate/elevation levels)
(table 1). That is, none of our abiotic variables helped to predict
when introduced species experience enemy release.
4. Discussion
We did not find that time, space or climate are related to
the magnitude of enemy release plants experience in their
introduced range (figure 4 and table 1). This null result is
important, as it suggests that enemy release, one of the
major factors underpinning the success of introduced species,
cannot be predicted by the abiotic factors of plants’ novel
environments. Our study did not encompass the full suite
of the world’s ecosystems but did include sites ranging in
mean annual temperature from 5.3°C to 20.4°C, in total
annual precipitation from 40.4 cm to 150 cm, and in elevation
from 2 m to 1353 m. Our findings suggest that biocontrol, the
flip-side of enemy release, should be equally likely to succeed
or fail independent from the ecosystems they inhabit.

Knowing the ecological context behind a species invasion is
a crucial step to implementing practices to hinder the spread of
introduced species [48]. In most cases, classic biological control
is employed to target problematic invasive specieswith the aim
to slow or decrease their population growth with minimal
impact on surrounding native species [49]. These reductions
in invasive populations can be achieved by releasing known
above- or below-ground herbivores, predators or pathogens,
that are native to the same areas as the invasive species, as con-
trolling agents [50]. There are many successful examples
of biocontrol around the world [51–53] and meta-analyses by
Stiling & Cornelissen [55] found that biocontrols can reduce
the biomass and reproductive output of weeds by over 80%.
But not all instances of biocontrol succeed. Failed attempts at
biologically controlling invasive plants have been recorded
globally [50,56]. Plant species that have been identified as
being released from their enemies should theoretically have



Table 1. Model outputs showing no significant interaction ( p > 0.05) between any of our abiotic variables with native/introduced range.

abiotic variable in model
denominator degrees
of freedom F value

p-value of interaction between
range (native versus introduced)
and the abiotic variable

annual precipitation 16.51 1.10 0.31

mean annual temperature 13.35 0.04 0.84

precipitation of the warmest quarter 15.78 1.03 0.32

mean temperature of the warmest quarter 10.86 0.17 0.68

humidity 8.56 0.53 0.49

elevation 14.40 0.003 0.95
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the highest chance of successful management with biological
control, as enemy release likely contributes to their successful
invasion [57]. However, our study implies that biocontrol is
equally likely to be effective under a range of abiotic con-
ditions, and regardless of introduced species’ time since
introduction into a novel range or range size.

There ismuchmore variation in plants’ potential to encoun-
ter enemies in the introduced range than originally expected,
which might help to explain the lack of correlation between
enemy release and time since introduction and introduced
range size. For example, a plant that has recently established
in a highly disturbed area with a high diversity of other intro-
duced species may be more likely to encounter compatible
herbivores than plants that have established earlier in a more
stable habitat with fewer introduced species. Similarly,
a non-native species occupying a smaller area of space, with
more generalist herbivores, may experience greater herbivore
pressure than plants occupying a more expansive patch of
land that houses fewer generalist herbivores.

We did find a relationship between introduced species’
geographical spread and the amount of time they have had
to establish themselves in their new range (figure 5). This find-
ing corroborates many preceding studies in invasion ecology
that have also shown that distribution in the non-native
range is strongly correlated with time since introduction and
demonstrates that our sampling effort is rigorous enough to
detect this pattern [58–64]. Remarkably, some introduced
plants have been found to colonize local areas at rates of up
to 370 m per year and long distances at up to 167 km yr−1 [65].

The lackof a significant relationship between enemy release
and abiotic factors such as climate and elevation could arise
from herbivory not being explained by these variables (see
electronic supplementarymaterial, appendix S4). Some studies
have shown no significant relationship between herbivory and
temperature or precipitation [66,67], while others have found
that herbivory increases [38,68–70] or decreases with tempera-
ture or precipitation [71–73], and others have found mixed
results [74,75]. However, even where significant positive corre-
lations have been detected, they tend to have R2 values below
0.3 [39,76]. Empirical evidence for an effect of humidity and
elevation on herbivory is much scarcer, and available research
does not explore these relationships at global scales, or across
multiple species [30,31].

While we have collected data from a broad range of
species from varying locations in their native and introduced
ranges, we acknowledge that our study may be limited by the
fact it compares a minor subset of the world’s introduced
species, in one continent of their non-native range. Ultimately,
we present data from 5 sites in the native range and 7 sites
in the introduced range, for 16 species. While we selected
these study sites to maximize the range of climatic conditions
sampled, and our sample size was sufficient to detect
patterns in range size and time since introduction, it is poss-
ible that the lack of significant relationships between climate
variables and enemy release is partly attributable to our
sample size. Thus, our results should be considered as a
first step to eventually uncovering global trends in spatial,
temporal and climatic patterns of enemy release. We hope
that future studies will replicate ours using different species,
in different locations, to expand our knowledge of how this
invasion mechanism works in more extreme ecosystems
and other continents.

Our finding that enemy release is not directly related to
time since introduction, range size or climate is new and valu-
able information that may influence the trajectory of our use
of biocontrols, with the potential to prompt their implemen-
tation in new areas and on new target species. We hope this
study will trigger future research to explore more factors,
such as herbivore specialization or defensive traits, that
may affect species success in new ranges, so we may find
clearer answers relating to the spread of introduced plants.
If we are to conserve and protect Earth’s natural ecosystems,
of which almost all have been considered invaded by non-
native species, then enhancing our understanding of the
mechanisms affecting these invasions is critical [77].
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