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Load Forecasting
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Abstract: Accurate load forecasting is critical for electricity production, transmission, and maintenance. Deep

learning (DL) model has replaced other classical models as the most popular prediction models. However, the

deep prediction model requires users to provide a large amount of private electricity consumption data, which has

potential privacy risks. Edge nodes can federally train a global model through aggregation using federated learning

(FL). As a novel distributed machine learning (ML) technique, it only exchanges model parameters without sharing

raw data. However, existing forecasting methods based on FL still face challenges from data heterogeneity and

privacy disclosure. Accordingly, we propose a user-level load forecasting system based on personalized federated

learning (PFL) to address these issues. The obtained personalized model outperforms the global model on local

data. Further, we introduce a novel differential privacy (DP) algorithm in the proposed system to provide an additional

privacy guarantee. Based on the principle of generative adversarial network (GAN), the algorithm achieves the

balance between privacy and prediction accuracy throughout the game. We perform simulation experiments on the

real-world dataset and the experimental results show that the proposed system can comply with the requirement for

accuracy and privacy in real load forecasting scenarios.
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1 Introduction

Electric power cannot be stored as a special commodity.
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For this reason, it is crucial to the power system’s
stability that ensures the balance of power supply and
demand. With timely and accurate load forecasting
results, power producers can effectively manage the
production, transmission, and distribution of electricity.

Power load forecasting has been a concern by
researchers because of its importance in the power
grid. At the beginning of the research, both time series
analysis and regression analysis methods[1] were used
for power load forecasting. However, these classical
methods have limited ability to deal with problems and
are inadequate in nonlinear data. In the 21st century,
machine learning (ML) and deep learning (DL) have
been employed in many fields of intelligent computing
with good performance[2]. In general, ML-based
prediction methods require a great deal of experience to
cultivate prediction models. Moreover, ML also faces
many challenges in feature selection, time series issues,
and sample complexity[3]. The smart grid (SG)[4] is an
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integration of smart technology and traditional power
grid that can achieve the goals of economy, reliability,
efficiency, and security. During the construction of
the SG, a lot of advanced metering infrastructures
(AMIs) have been arranged to effectively manage energy
usage while obtaining massive power consumption
data. Big data and artificial intelligence’s emergence
have increased interest in DL-based load forecasting
techniques[5–7]. Compared with ML method, data-driven
DL models no longer rely on expert experience for
feature selection and have a stronger adaptive ability
and better prediction performance. Owing to the good
performance of recurrent neural networks (RNN) on
time series data, almost all scholars in the world are
working on solving load forecasting problems with
RNN and its variants. A model forecasting household
load based on deep RNN (DRNN) is proposed[5],
which overcomes the problem of over-fitting existing
in traditional DL approaches. Kong et al.[6] proposed a
long short-term memory (LSTM) approach to tackle the
issue of short-term load forecasting. Further, Alhussein
et al.[7] suggested a hybrid model called CNN-LSTM,
which utilizes the advantages of convolutional neural
networks (CNN) in feature extraction and LSTM in
the sequence data processing. The framework they
developed performed significantly better than competing
techniques when tested on real datasets. However, some
security and privacy issues have hindered subsequent
research and the application of load forecasting models.

Unreasonable and insecure use of data is identified as
a major challenge. Smart meters, the centerpiece of AMI,
record residential energy consumption and regularly
upload these data to energy providers. The powerful
predictive potential contained in smart meter data
makes it sensitive to personal privacy data. Therefore,
consumers generally oppose installing smart meters due
to data privacy and security concerns[8]. Referring to
the relevant provision in the general data protection
regulation (GDPR), the collection or storage of customer
electricity usage data is also severely restricted by data
minimization principles and consent principles. On
the other hand, with SG progressing rapidly, the scale
of data collected into smart meters is increasing at
an unprecedented rate. Traditional centralized model
training is limited by communication and computing
power, which makes it difficult to collect and store
massive data[4]. Furthermore, when AMI is used to
transmit user electricity data, these user data will also
be exposed to the risk of data theft[9], data tampering[10],

and false data injection[11].
To overcome these issues, federated learning (FL)

provides a new solution for SG with distributed edge
nodes. In FL[12], the shared global model is trained by
the participating devices’ federation, which is hosted by
the central server. This approach enables edge nodes to
cooperate in training models locally without sharing
raw training data. Local model parameters, instead
of training data, are uploaded to the central server
to update the global model. Despite FL’s obvious
privacy advantages, recent research has indicated that FL
underperforms in some areas, such as adversaries still
being able to roughly infer sensitive information based
on shared parameters throughout the training process[13],
and global models of FL training perform poorly for
specific users[14]. Given all this, when deploying FL in
practice, the resulting system must not only be accurate,
but also meet some practical constraints regarding
privacy, robustness, and personalization[12].

At present, the privacy and personalization of FL
have been studied. The central server of traditional FL
is a vulnerable point, so the decentralized FL method
based on blockchain[15] is an effective approach to
defend against single-point failures and relieve the over-
dependence on the central server. Furthermore, there are
some privacy-preserving techniques[16] commonly used
in FL, such as differential privacy (DP), homomorphic
encryption (HE), and secure multi-party computing
(SMC). But most of these approaches are server or
global model enhancements, and very few work on user-
level applications. Some existing efforts, such as the
customizable reliable differential privacy (CRDP)[17],
take into account user-level privacy concerns, but they
are far from being deployed due to added noise and
reduced accuracy. In addition, using FL to train
neural networks typically runs into problems with
not-independent-and-identically-distributed (non-IID)
data[14]. The shared global model created by aggregating
these various model updates has the potential to slow
convergence and cannot be personalized for specific
clients.

Based on the challenges discussed above, the key
contributions of this article can be categorized as follows.

(1) We propose a user-level load forecasting system
based on personalized federated learning (PFL), which
can get the global model and personalized model for each
client. The personalized model has a better performance
than the global model on users’ private data, and
the global model can play an active role in regional
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electricity prediction.
(2) We utilize a novel generative adversarial network

(GAN) based DP algorithm (GAN-DP) to protect privacy
in our system. The algorithm adds adjustable noise to
the local model parameters to meet DP requirements
and achieves a tradeoff between privacy protection and
prediction accuracy based on GAN theory.

(3) We have conducted extensive experiments on
real-world datasets. We evaluate the experimental
performance of the personalized model and privacy
protection of the load forecasting system. The final
results demonstrate that the system performs better than
the baseline model, and the application prospect is
preliminarily demonstrated.

The remainder of this article is organized as
follows. We provide a brief summary of related work in
Section 2. Section 3 presents the theoretical approach
to our work. We then describe in detail the overall
architecture of our load forecasting system and discuss
the feasibility of the proposal in Section 4. Next, We
provide an evaluation of the performance of our proposal
in Section 5. Finally, Section 6 summarizes the entire
paper’s work.

2 Related Work

2.1 AMI architecture

AMI has always been regarded as an important part of
SG, which records customer purchases and transmits
these data back to the AMI host system for monitoring
and billing. Here, we provide a brief overview of the
data transmission procedure in the SG’s AMI framework.
Figure 1 depicts the AMI architecture, which can be
divided into user side, wide area network, and utility
side[18]. On the traditional user side, smart meters are the
core equipment. Smart meters are mainly responsible

Fig. 1 AMI architecture.

for collecting and transmitting customer consumption
data within a specific time interval. For the past few
years, the growth of Internet of things (IoT) devices, such
as smart homes, smartphones, and personal computers,
has also broadened the functional extension of the user
side, making it possible to realize more operations
on user electricity consumption data. The wide area
network is mainly responsible for the implementation
of bidirectional communication between the utility
system and the customer domain. On the utility side,
a centralized meter data management system (MDMS)
surrounded by master operations and management
services acts as the control center for the AMI to manage,
store, and analyze customer consumption data.

The main participants on the user side are consumers
with smart meters installed in their homes, who can
use home IoT devices to train local models and upload
parameters to the central server. We combine smart
meters with these IoT devices as an edge node that
has data collection and some data processing capability.
AMI’s distributed network architecture and the hardware
capabilities of edge nodes make it possible to deploy FL.

2.2 FL and some challenges

FL is the latest advancement in distributed ML without
sharing clients’ private data. While user data are kept
locally to protect them from eavesdropping by hidden
adversaries, FL also faces some challenges, such as
data security issues, disclosure of private information,
and poor model performance due to non-IID. Here, we
provide a quick summary of the advances in FL’s privacy,
personalization, and the present work on load forecasting
using FL.

Privacy research in FL. Researchers have proposed
several compelling solutions[19–21] to solve the issue of
privacy leakage during FL and applied them to real-
world scenarios. The existing privacy protection methods
are mainly developed from three basic technologies:
SMC, HE, and DP. SMC[19] is the algorithmic protocol
for privacy computing based on cryptography, which
can be regarded as the comprehensive application of
a variety of cryptography basic tools. HE[20] is a
ciphertext computing solution that does not require
decryption of the ciphertext. It allows addition and
multiplication of the ciphertext but encrypts only a single
bit. Although these two can achieve high privacy and
accurate calculation results, they also have relatively
high requirements for computing and communication
capacity. DP[21] defines a strict privacy protection model,



424 Big Data Mining and Analytics, December 2023, 6(4): 421–432

which adds a certain distribution of random noise to the
dataset to be processed and then obtains a new disturbed
dataset to achieve the purpose of data privacy protection.
At the same time, DP provides a strict mathematical
proof and quantitative evaluation for privacy protection
level. Compared with the former two, DP occupies
less computing power and can obtain similar privacy
performance, which better matches the hardware basis
of edge nodes in AMI. However, the problem of data
utility reduction caused by adding noise needs to be
solved.

Personalization in FL. Existing FL research focuses
on training a single global model that can only gain the
common characteristics of clients involved in training,
and it may perform poorly on specific users. To
overcome these problems, PFL intends to provide
personalized models for each client in the federation.
Significant research is ongoing in this PFL’s direction.
Li and Wang[22] proposed FedMD, which enables clients
to train independent models using their local data based
on transfer learning. Each client first performs transfer
learning by training the model on a common dataset
and then fine-tuning on local data before the FL training
phase. Wang et al.[23] proposed a PFL framework called
FAVOR, which chooses a portion of clients involved
in training for each round to reduce the deviation
brought by non-IID data. Arivazhagan et al.[24] devised a
basic+personalization layer for deep feedforward neural
networks. The base layer is shared with the central server,
and the personalization layer remains private on the
client side for local training.

FL-based load forecasting. At present, there are
many load forecasting works based on FL, and
some progress has been made in different research
directions. Venkataramanan et al.[25] applied FL to
predict distributed energy resources and achieve good
forecasting performance in actual grid services such as
load swings and load curtailments. The private property
of electricity consumption data also attracts people’s
attention to its data security and privacy protection.
Qureshi et al.[26] demonstrated the feasibility of using
poison attack to attack the FL-based load forecasting
system. Therefore, Sun et al.[27] proposed an FL model
based on improved DP algorithm to enhance the privacy
protection performance of the load forecasting system.
Meanwhile, during the study, the researchers realized
that the diversity of load data distribution and load
patterns might affect the accuracy of a single global
model created by FL. To solve this problem, Gholizadeh

and Musilek[28] proposed a new consumer clustering
technique using FL, which can better reflect consumers’
consumption patterns. Wang et al.[29] went a step further
and proposed a personalized federated method for user
load forecasting. Specifically, a group of consumers first
jointly train the prediction model on a shared smart
meter data pool, and then each consumer personalizes the
federated prediction model based on their data. All the
above studies only strengthen a single attribute but do not
comprehensively consider the privacy, personalization,
and other issues in the actual load forecasting scenario,
and ignore the interaction of these attributes.

2.3 Brief introduction of GAN

As a powerful DL method, GAN has been widely used
in various unstructured data fields, including image
learning, data processing, and text mining[30–32]. GAN
can generate fake data samples that approximate the real
data without depending on any data distribution. The
structure of GAN mainly consists of two parts: generator
and discriminator. The basic idea is that the generator
generates fake data samples as realistically as possible by
learning real data samples, and the discriminator is used
to judge whether the generated samples are different
from the real samples. If the discriminator identifies
the generated false data as true, it will be retained.
The misjudgment of generated samples indicates the
consistency of generated samples and real samples in
feature space in a way. The proposal of GAN breaks
through the problems existing in the previous generative
model and improves the generalization ability of the
model.

3 Methodology

Here, we introduce the methodologies to build the
user-level load forecasting system. The methodologies
adopted in our work include multi-task FL and a GAN-
based DP algorithm.

3.1 Multi-task FL through personalization

FL allows multiple clients to collaboratively train a
global model. In general, the global objective is to
address

min
!
f .!/ D

NX
kD1

pkFk.!/ (1)

where N is the number of devices and Fk.!/ is the local
objective for device k. In FedAvg setting, pk is a non-

negative weight value, we can set pk D
nk

n
,
NX
kD1

pk D
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1, where nk samples available at each device k, and

n D

NX
kD1

nk is the total number of data points.

However, in fact, local data xk on different devices
present different distributions Dk , i.e., Fk.!/ WD

Exk�Dk
Œfk .!I xk/�, and the global model trained

by FL has poor performance for these clients. To
solve the data heterogeneity, it is essential to get a
personalized model fvkgk2ŒN � for each client. Here we
utilize Ditto[33], a multi-task FL framework, to customize
the personalization model. The bi-level optimization
problem between the global objective and the local
objective can be formulated as

min
vk

hk.vkI!
�/ WD Fk.vk/C

�

2
kvk � !

�
k
2;

s.t. !� 2 arg min
!

f .!/ (2)

where the hyperparameter � adjusts the interpolation
between global and local models. In particular, we note
that the global model can be gotten with �!C1, and
Ditto will be much closer to training the local models as
�! 0.

As mentioned above, we jointly train the global model
!� and personalized models fvkgk2ŒN � in an alternate
manner in Ditto. For client k 2 St , St is the number of
equipments involved in training in this iteration. With
their private data, each client involved in the training
will train a local model at t iteration.

!tC1
k
 !t � �grFk.!

t
k/ (3)

In the parameter update section, personalized model
parameters vtC1

k
are updated in parallel via the global-

regularized approach.
vtC1
k
D vtk � �l

�
rFk

�
vtk
�
C �

�
vtk � w

t
��

(4)

where �g and �l correspond to different learning rates
when updating the global model and the personalized
model, respectively. At the same phase, here we use
FedAvg (or other optimization strategies) for the global
model parameters !tC1 update.

wtC1  wt C
1

jSt j

X
k2St

�
!tC1
k
� !tk

�
(5)

This iterative process is repeated until convergence or
a preset value of training rounds is reached, and we end
up with the global models !� and personalized models
fvkgk2ŒN � for each client.

3.2 GAN-DP modeling for PFL

Using DP algorithm in FL is an effective way to obtain

a strong privacy guarantee. However, DP’s sacrifice
of accuracy hinders its entry into practical application
scenarios. Here we adopt GAN-DP[34], a modified GAN
model, in the above FL setting, which improves the
load forecasting accuracy while complying with the DP
requirements.

As shown in Fig. 2, GAN-DP contains a generator,
a discriminator, and the DP identifier (DPI) whose
structure is similar to the discriminator. In our system,
the local parameters are obtained through local training
by the client. Then, the local model parameters are
fed into the generator, and the generator produces
a group of synthesized parameters. The generated
synthesized parameters are then treated as inputs to the
discriminators and the DPI. If the synthesized parameter
satisfies the requirements of the two perceptrons, the
parameter is taken as the output result and goes to
the next step. Table 1 provides brief instructions for
notations in this chapter.

Generator: Utilizing the original local model
parameters, the generator produces synthesized
parameters and submits them to the discriminator for
identification. The Ndi

noise samples fy1; y2; : : : ; yng
from pg .y/ are inputted and updated by

Fig. 2 GAN-DP. “A” and “R” indicate acceptance and
rejection, respectively.

Table 1 Notations in GAN-DP.
Notation Explanation
di Training data
Ndi

Number of noise samples
pg Distribution of generator
ı .di / Data samples for training
E.�/ Mathematical expectation
pg .y/ Prior injected noise
G .yI �g/ Multilayer perceptron of generator
D .yI �d / Multilayer perceptron of discriminator
I .yI �i / Multilayer perceptron of DP identifier

S .DI I /
Combined structure of the discriminator and
DP identifier
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r�g

1

Ndi

NdiX
iD1

log .1 �D .G .yi /// (6)

Discriminator: After several iterations, if the
discriminator identifies the synthesized parameters
as the original model parameters, the final result
is obtained. Here we select Ndi

data samples fd1;
d2; : : : ; dNdi

g from ı.di /, and the gradient ascent of
discriminator in the update process can be formulated by

r�d

1

Ndi

NdiX
iD1

ŒlogD .di /C log .1 �D .G .yi ///� (7)

DP identifier: Since the DPI serves as a discriminator,
the discriminator and DPI interact with the generator
in parallel. Unlike the discriminator, DPI attempts
to confirm whether the synthesized model parameters
satisfy the DP requirements. The update procedure can
be expressed as

r�Ndi

1

Ndi

NdiX
iD1

�

ŒlogS .di j DI I /C log .1 � S .G .yi / j DI I //� (8)

In GAN-DP, there is a min-max game established
between the generator, discriminator, and DPI. Based on
the above formulas, this problem can be modeled as

min
G

max
S
Ex�ı.di / ŒlogS .di j DI I /�C

Ey�pg.y/ Œlog .1 � S .G .yi / j DI I //� (9)

In Formula (9), we use min
G

to reduce the likelihood

of discrimination and max
S

to increase the likelihood of

deception.
The PFL for heterogeneous residential load

forecasting is shown in Algorithm 1.

Algorithm 1:���������������Algorithm 1 PFL for heterogeneous residential load
forecasting

1 Parameters initialization;
2 for number of training iterations do
3 Server randomly selects a subset St of N devices;
4 Server sends !t to all chosen devices;
5 for chosen devices in parallel do
6 local model training using Formula (3);
7 synthesized local model parameters using Formula

(9);
8 personalized model parameters update using Eq. (4);
9 send global update;

10 end
11 Server aggregates using Formula (5);
12 end
13 return personalized models for each client; global model.

4 System Modelling

In this section, a user-level load forecasting system based
on PFL is introduced. Here we ignore the effect of
communication delay to simplify the system. Finally,
we discuss the feasibility of the system.

4.1 System architecture

Figure 3 depicts the overall system’s architecture in our
work. From Fig. 3, it is clear that the whole system
is made up mostly of two components: the central
server and the clients. In load forecasting scenarios,
the power company is the main body of the central
server, and it relies on the SG for power transmission
and management. Residential customers, defined as
clients here, have smart meters to measure electricity
consumption, train local models, and communicate
with the central server. Here we conclude the specific

Fig. 3 System architecture.
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procedures of the proposed system as follows.
Global model initialization: To begin training, each

client receives the initial weight values of the global
model from the central server. Here the weight values
are initialized by assigning random values.

Local model training: After the parameters are
updated with the downloaded weight values, the smart
meter trains a local model using the client’s local private
data.

Synthesizing local model parameters: The
generator of GAN-DP receives the trained local
model parameters and outputs a set of synthesized
parameters. The synthesized data are then injected
into the discriminator and the DPI to see if they meet
their requirements. Once the requirements are met, the
synthesized data are treated as local model parameters
to participate in subsequent steps.

Personalized model update: Here we follow
the Ditto setting to update the personalized model
parameters for each client.

Local model parameters upload: Each client
participating in the training uploads synthesized
parameters to the central server.

Global aggregation: New global model parameters
are produced via aggregating the model updates
uploaded in the central server.

Global model update: The global model performs
weight updates using the parameters generated from the
aggregator.

Model broadcast: The updated weights are
broadcasted back to the clients by the central server for
the next round of training.

This iteration continues until the respective models
(both global and personalized) converge.

4.2 Feasibility discussion

Let us first discuss the feasibility of deploying the
proposed load forecasting system in the real world.
The computing and communication capabilities of user
devices are essential for deploying an FL framework. A
combination of smart meters and other smart devices
such as smartphones can serve as a node for FL needs.
In fact, it is feasible for smart meters to communicate
directly with the cloud using existing technology[35]. In
addition, we use Ditto for the personalized forecasting
model due to its various benefits. Compared with other
PFL, Ditto is smaller and more effective. And more
importantly, Ditto is especially helpful in real-world
scenarios when we must simultaneously consider several

constraints (accuracy, fairness, and robustness). Because
of its multi-task learning structure design, we can also
obtain the global model and the personalized model of
each user at the same time. The prediction accuracy of
the personalized model in user electricity data is better
than that of the global model. Although the global
model does not perform well for individual users, we find
that the global model can be used to forecast regional
load (details in Section 5), which broadens the original
capability. Our prediction system further improves the
prediction accuracy while preserving privacy via GAN-
DP. Here we only use the basic LSTM because the
prediction model is not our focus. We can introduce
the state-of-the-art LSTM model to further improve the
prediction accuracy in the future.

5 Performance Evaluation

This section describes the details of the dataset, the
simulation platform, and the parameters of the model
used in our work. After that, it presents and evaluates
the experimental results.

5.1 Data analysis and pre-processing

The dataset used in the experiments is the “HUE[36]: The
Hourly Usage of Energy Dataset for Buildings in British
Columbia” dataset. There are currently 22 households
in the dataset, most with a 3-year history of energy
consumption. To obtain as much data as possible for the
same period of electricity consumption, we limited the
period between “2015-08-21” and “2018-01-29”. Based
on this rule, houses with IDs 3–6, 8–14, and 18–20 were
selected for a total of 14 families.

After selecting the appropriate data, we need to
preprocess the data. In this paper, the missing value
of the dataset is processed according to the mean or
interpolation near the missing value, which is formally
described as

xi D

8̂̂<̂
:̂
xi�1CxiC1

2
; xi 2 Null; xi�1; xiC1 … NullI

0; xi 2 Null; xi�1 or xiC1 2 NullI

xi ; xi … Null
(10)

where xi represents the power consumption data over a
period.

Sequentially, we need to normalize the power
consumption data to smoothen the convergence. Here we
choose the max-min scaling method for normalization.

Finally, the processed data were partitioned into
training, validation, and testing datasets using a
0:6=0:2=0:2 split.



428 Big Data Mining and Analytics, December 2023, 6(4): 421–432

5.2 Simulation setting

The proposed system is implemented on a workstation
with an Intel(R) Xeon(R) W-2255 CPU, NVIDIA
GeForce RTX 3090 GPU (20 cores), and 32 GB RAM.
The case study is operated on FederatedScope[37], a
comprehensive FL platform developed by Alibaba
Group, with Python 3.9.

Since LSTM is convenient for sequence modeling
and has the ability of long-term memory, we use LSTM
as a prediction model in our system. To satisfy the
input requirements of the LSTM model, the time-series
sequences need to be processed by sliding windows.
Here we set the size of sliding windows t D 24 h: this
means that 24-h continuous electricity consumption data
are fed into the LSTM model and the model outputs the
predicted value of electricity consumption in the next
hour. The network applied in our system contains two
hidden LSTM layers and two fully connected layers.
Other hyperparameter settings of the experiment can be
shown in Table 2.

Mean square error (MSE) and root mean square error
(RMSE) are typical evaluation criteria in regression
problems, so we use MSE as the loss function and
RMSE as the evaluation criterion in our experiments.
The smaller the MSE and RMSE value, the better the
model performance.

MSE D

MX
iD1

.yi � Oyi /
2

M
(11)

RMSE D

vuuuut
MX
iD1

.yi � Oyi /
2

M
(12)

Table 2 Hyperparameter setting.
Hyperparameter Value

Number of epochs of training on clients 5
Total communication round 500
Fraction of clients participating 0.3

Model structure

LSTM layer with 128
hidden states
LSTM layer with 256
hidden states
Fully connected layers
with 64 neurons
Fully connected layers
with 32 neurons

Privacy budget " 2, 4, 6, 8, 10
Loss MSE
Batch size 128
Learning rate 0.0001

where yi is the actual energy consumption measurement,
Oyi is the predicted value, and M represents the total
number of predicted values.

5.3 Result analysis

To demonstrate the superiority of our suggested
approach, we contrast the prediction performance of
different models on this dataset. These models include
the traditional global model using FedAvg (Global),
PFL with Ditto framework only (PFL), PFL with DP
algorithm (PFL-DP), and our proposed system (PFL-
GANDP).

Table 3 shows the test losses of these benchmark
models on 14 customers power consumption data. Here
we adopt DP based on the Laplace mechanism and set
" D 6. The success of the personalization strategy in the
area of predicting user load is evident from Table 3. PFL
outperforms Global in predicting specific users. Due to
the addition of noise, the prediction performance of PFL,
PFL-GANDP, and PFL-DP showed a downward trend.
These variances can be visualized in the pictures shown
later.

5.3.1 Performance of personalized load forecasting
We compared the performance of these models using test
datasets for three randomly selected customers. Figure 4
illustrates forecasting results from the global model and
PFL-GANDP model of clients 1, 4, and 7. In contrast,
our proposed model’s prediction value is more in line
with the actual value. Although the global model does
not perform well for individual users, we find new
scenarios where the global model is applicable. We
integrate the data of these 14 customers into a regional

Table 3 Test loss (RMSE) for 14 customers using different
models.

House ID
RMSE

Global PFL PFL-DP PFL-GANDP
3 0:1991 0:1123 0:2388 0:2033

4 0:1406 0:0813 0:1930 0:1342

5 0:1465 0:0806 0:2251 0:1335

6 0:1046 0:0595 0:1774 0:1114

8 0:1532 0:0867 0:1832 0:1546

9 0:1192 0:0665 0:1875 0:1069

10 0:1338 0:0777 0:1788 0:1259

11 0:1345 0:0766 0:2042 0:1278

12 0:0926 0:0528 0:1583 0:1034

13 0:1466 0:0847 0:1890 0:1370

14 0:1077 0:0628 0:1443 0:1169

18 0:1821 0:1043 0:2679 0:1655

19 0:1593 0:0896 0:1997 0:1684

20 0:1410 0:0791 0:2312 0:1312
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(a) Client 1

(b) Client 4

(c) Client 7

Fig. 4 Forecasting results for electrical load using global
and our proposed model.

electricity consumption dataset by time and conduct
training on this dataset. And to our surprise, the global
model worked well on regional consumption data, and

the forecasting results are presented in Fig. 5. This means
that our system, which integrates global and personalized
models, can better serve load forecasting scenarios.

5.3.2 Comparison with a traditional DP strategy
Furthermore, we conducted additional experiments
to demonstrate our proposed system’s superiority in
privacy protection. In Fig. 6, we compare the prediction
performance of PFL-GANDP and PFL-DP for different
privacy budgets ". Horizontally, with the privacy budget
increases, the prediction accuracy of the two models
also improves. We know that the smaller the privacy
budget setting in DP, the larger the added noise, the better
the privacy protection, and the worse the prediction
accuracy. Through vertical comparison, under the same
privacy budget, our proposed system can achieve better
prediction performance than PFL-DP, which means
that GAN-DP can achieve a better trade-off between
privacy protection and prediction performance. Figure 7

Fig. 5 Forecasting results for electrical load on regional
consumption using global model.

Fig. 6 Comparison of privacy protection effect.
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Fig. 7 Forecasting performance on privacy protection
strategy.

provides a visual representation of the prediction
performance of these two models on the user dataset.
Note that all models can provide privacy protection by
deviating from the solid blue line (real data).

6 Conclusion

In this research, we propose a system for user-
level load forecasting based on PFL. We also find
that the global model obtained simultaneously can
effectively predict the regional electricity consumption
data, which broadens the application scenarios of
our load forecasting system. We further apply GAN-
DP to increase the system’s privacy protection while
minimizing the impact on prediction accuracy. The
results of our experiments showed that our system could
forecast user-level load information with accuracy and
privacy protection.

We intend to expand our current work in the
future according to the demands of the actual load
forecasting scenario. Considering that terminal devices
with different performances may not be able to
upload their local model parameters synchronously
in real scenarios, we will try to introduce the idea
of asynchronous FL to solve the latency problem. In
addition, the private nature of user electricity data
is attractive to malicious people, and the distributed
nature and data constraints of FL open up new failure
modes and attack surfaces for attackers. So we intend
to investigate the attack and defense strategies under
load forecasting to improve the robustness of the whole
system.
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