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ABSTRACT

Graph contrastive learning has emerged as a powerful unsuper-
vised graph representation learning tool. The key to the success
of graph contrastive learning is to acquire high-quality positive
and negative samples as contrasting pairs to learn the underly-
ing structural semantics of the input graph. Recent works usually
sample negative samples from the same training batch with the
positive samples or from an external irrelevant graph. However, a
significant limitation lies in such strategies: the unavoidable prob-
lem of sampling false negative samples. In this paper, we propose
a novel method to utilize Counterfactual mechanism to generate
artificial hard negative samples for Graph Contrastive learning,
namely CGC. We utilize a counterfactual mechanism to produce
hard negative samples, ensuring that the generated samples are
similar but have labels that differ from the positive sample. The
proposed method achieves satisfying results on several datasets. It
outperforms some traditional unsupervised graph learning methods
and some SOTA graph contrastive learning methods. We also con-
ducted some supplementary experiments to illustrate the proposed
method, including the performances of CGC with different hard
negative samples and evaluations for hard negative samples gener-
ated with different similarity measurements. The implementation
code is available online to ease reproducibility?.

“Both authors contributed equally to this research.
t Corresponding author.
https://www.dropbox.com/sh/kyf8p9unkhn0r99/A ABd33jFBfjGYIkvIigWpuNwYa?dl=0
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1 INTRODUCTION

Graph contrastive learning (GCL) [6, 18, 23, 25, 32, 33, 35] has
emerged as a powerful learning paradigm for unsupervised graph
representation learning. Inspired by the widely adopted contrastive
learning framework in computer vision (CV) [7, 29] and natural
language processing (NLP) [4], GCL leverages the advanced repre-
sentation learning capabilities of graph neural networks (GNNs)
[5, 8,9, 31] and tries to distil high-quality representative graph
embeddings of an input graph via comparing the differences and
similarities among augmented graphs (i.e., positive and negative
samples) derived from the original input.

The key to a successful GCL method is to derive high-quality
contrasting samples from the original input graph. To date, vari-
ous kinds of methods to generate positive samples are proposed,
for example, graph augmentations-based approaches [33, 35] and
multi-view sample generation [6, 32], which have been becom-
ing dominant and achieved satisfying performance. Despite this
progress, especially in manipulating positive pairs, far less atten-
tion has been given to obtaining negative samples [19]. Compared
to positive samples in contrastive learning, negative sampling is
more challenging and non-trivial[19]. Existing methods of negative
sample acquisition mainly follow traditional sampling techniques,
which may encounter the deficiency caused by unnoticeable false
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negative samples [30]. For instance, GraphCL [33] samples other
graphs as the negative samples from the same training batch where
the target graph comes from. Such an approach does not guaran-
tee that the sampled negative graphs are true. GCC [18] samples
negative graphs from an external graph based on the assumption
that common graph structural patterns are universal and transfer-
able across different networks. However, this assumption neither
has any theoretical guarantee nor has been validated by empirical
study[18]. To alleviate the impact caused by false-negative sam-
ples, debiasing treatment has been introduced to current graph
contrastive learning methods [30, 34]. The idea of these debiased
graph contrastive learning methods is to estimate the probability
of whether a negative sample is false. Based on this, some negative
samples with low confidence will be discarded or treated with lower
weights in the contrastive learning phase. Nevertheless, a typical
major limitation of both GCL and the debiasing-based variants is
still evident - most of these sampling strategies are stochastic and
random. In other words, current methods do not guarantee the
quality of the sampled negative pairs.

To address the previously mentioned problems, we first name the
high-quality negative samples as hard negative samples and give
corresponding definitions. According to [19], a hard negative sam-
ple is a data instance whose label differs from that of the target data,
and its embedding is similar to that of the target data. Considering
the limitations of sampling-based strategies discussed previously,
we argue that a strictly constrained generative process must be
imposed to guarantee the quality of the negative samples (a.k.a.
generating hard negative samples). Inspired by counterfactual rea-
soning [11], a fundamental reasoning pattern of human beings,
which helps people to reason out what minor behaviour changes
may result in considerable differences in the final event outcome.
We intuitively came up with the idea that the hard negative sample
generation should apply minor changes to the target graph and
finally can obtain a perturbed graph whose label is strictly different
from the original graph.

To this end, we propose generating two types of hard negative
samples via perturbations to the original input graph: proximity
perturbed graphs and feature-masked graphs. It is worth noting
that these two types of generation processes will be adaptively
conducted and constrained by sophisticating similarity-aware loss
functions. However, this process is still challenging and non-trivial.
We believe there are two significant challenges. First, in graph per-
turbation and feature masking, how to measure a generated sample
is hard? To solve the problem, we first design two indication ma-
trices demonstrating the changes made to the graph structure and
feature space. Then, different matrix norms are applied to indication
matrices to reflect how much perturbation has been made. We will
minimise the calculated matrix norms such that the perturbation
applied to the original graph to generate negative samples is as
minor as possible. In this case, the generated samples would be
similar to the original graph in proximity and feature space. By
adopting matrix norms, we can quantify the perturbation and en-
sure that the generated samples are hard ones. After formulating a
constraint that forces the generated samples to be hard to distin-
guish from the target in proximity and feature space, the second
challenge is how to make sure the generated hard samples have dif-
ferent labels from the target. That is to say, how can we ensure the
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Figure 1: An illustrative example about a counterfactual ex-
planation. Someone wants to apply for a loan, but the appli-
cation is rejected after a risk assessment from the financial
institution. Many factors are related to the final decision,
such as the applicant’s age, income, and number of credit
cards. The minimum change the applicant needs to make
to get the loan is earning an extra $1,000 per month or can-
celling two credit cards.

generated hard samples are true negative? We first feed the target
graph and the generated samples into a graph classifier to achieve
that. The classifier will then output the probability distributions of
the classes to which the target graph and the generated samples
belong. Following the counterfactual mechanism, an objective mea-
suring the differences between the classifier’s outputs for the target
graph and that for the generated samples is applied and minimised.
Specifically, the similarities between the predicted probability dis-
tributions are minimised via monitoring the KL divergence. With
the two objectives described above, we can generate high-quality
hard negative samples with proper and reasonable constraints.
We propose a counterfactual-inspired generative method for
graph contrastive learning to obtain hard negative samples. It ex-
plicitly introduces constraints to ensure the generated negative
samples are true and hard, eliminating the random factors in cur-
rent negative sample acquiring methods in GCL methods. Further-
more, once the generation procedure is finished, we do not need
further steps (e.g., debiasing) to process the acquired samples. The
contributions of our work are summarized as follows:

e We propose a novel adaptively graph perturbation method,
CGC, to produce high-quality hard negative samples for the
GCL process.

e We innovatively introduce the counterfactual mechanism
into the GCL domain, leveraging its advantages to make
the generated negative samples be hard and true. Due to
the successful application of the counterfactual mechanism
in our work, there is potential feasibility of conducting the
counterfactual reasoning to explain GCL models.

e We conducted extensive experiments to demonstrate the pro-
posed method’s effectiveness and properties, which achieved
state-of-the-art performances compared to several classic
graph embedding methods and some novel GCL methods.
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Figure 2: The overview of CGC. We first conduct counterfactual hard negative sample generation to acquire a proximity-
perturbed and feature-masked sample. Then, the target and the two generated hard negative samples will be fed into the graph

contrastive learning module to learn graph embeddings.

2 RELATED WORK

This section briefly introduces the backgrounds and research progress
in two highly related areas, including counterfactual reasoning
mechanisms and graph contrastive learning.

2.1 Counterfactual Reasoning Mechanism

Counterfactual reasoning is a basic way of reasoning that helps
people understand their behaviours and the world’s rules [11]. The
definition of counterfactual reasoning is given by [17] stating that
counterfactual is a probabilistic answer to a ‘what would have hap-
pened if” question. Many illustrative examples are provided in [28]
to help understand the ideas behind counterfactual. For instance,
as shown in Figure 1. Counterfactual is a kind of thinking mecha-
nism to discover the facts that contradict existing facts and could
potentially alter the outcomes of a decision-making process. There
are some restrictions on counterfactuals. First, many factors could
potentially affect the final results. However, counterfactuals must
apply as small as possible changes to achieve such a goal. Second,
counterfactuals must be feasible and reasonable. In Figure 1, the
financial institution would release the loan without hesitation if
the applicator earns an extra one million dollars per month. Never-
theless, the applicator cannot have such a high salary quickly. So,
earning an extra one million dollars per month is not a counterfac-
tual. A classical counterfactual method is heuristic counterfactual
generation [27], shown in Algorithm 1, where

distance in predictions
——
F&=y) +  dxx) L)
——
distance in instances

Lix,x",y',A) =

and x denotes the target instance, x” is counterfactual, y’ represents
the desired outcome, A is the term used to balance two distances, and
€ denotes tolerance for the distance. This equation is the objective
function of the heuristic counterfactual generation algorithm. It

maximises the distances in predictions and minimises the distance
between the original instance x and the counterfactual x’.

Algorithm 1 Heuristic counterfactual generation algorithm

sample a random instance as the initial x’
optimise L(x,x’,y’, A) with x
while |f(x') -y’| >edo

increase A by step-size a

optimise L(x,x’,y’, A) with new x’
end while
return x’

2.2 Graph Contrastive Learning

Recently, many researchers devoted themselves to constructing
proper positive pairs to conduct graph contrastive learning. There
are plenty of works describing how to generate high-quality posi-
tive pairs to conduct graph contrastive learning [6, 18, 23, 25, 32, 33],
and indeed, they have achieved promising performances. However,
works introducing how to obtain negative samples to facilitate
graph contrastive learning further are scarce in the current litera-
ture. Recent works usually adopted sampling strategies to acquire
negative samples. Specifically, in GraphCL [33], the authors pro-
posed to sample other graphs as the negative samples from the same
training batch in which the target graph is. However, under the
scenario of lacking label information, the sampled graphs may have
the same label as the target graph, resulting in sampling false nega-
tive graphs. Similarly, GCA and InfoGraph conducted contrastive
learning at the node level. They sampled negative nodes from the
neighbours of the target [23, 35]. Such a strategy would also meet
the false negative sample problem. Moreover, GCC was proposed to
sample negative graphs from an external dataset. Undoubtedly, the
external negative samples have different semantics or labels from
the target graph [18]. However, such a strategy was proposed based
on the hypothesis that representative graph structural patterns are



universal and transferable across networks [18]. This hypothesis
has not been verified that it holds among all graph datasets.

Sampling-based methods for hard negative sample generation
suffer from the false negative sample problem and attract the re-
searchers’ attention. Some recent works [30, 34] tried to address
such a problem by relieving the biases existing in the negative
graph sampling process. DGCL [30] found out the harder the nega-
tive sample is, the more likely a false negative sample is, and the
probability of being a false negative sample is related to the simi-
larity between the target and the sampled negative instances. The
strategy DGCL adopted is straightforward to understand, reducing
the weight of the negative samples that are likely to be false in the
contrastive training procedure. Such a method indeed relieved the
impact brought by the false negative samples. GDCL [34] utilised
graph clustering techniques to determine if a negative sample is
false before feeding it into the contrastive learning process. Graph
clustering is applied to the set containing the initial sampled neg-
ative instances and the target. The instances in the cluster where
the target is would be discarded because they are more likely to
have the same labels as the target.

Nevertheless, a typical major limitation of both GCL and the
debiasing-based variants is still evident - most of these sampling
strategies are stochastic and random. In other words, current meth-
ods do not guarantee the quality of the sampled negative pairs.

3 METHODOLOGY

This section will give a detailed illustration of the proposed method
and the training procedure. The overview of the proposed method
is illustrated in Figure 2.

3.1 Problem Definition

Given a graph A = {V, E, X}, where V denotes all the nodes, &
represents all the edges, and X is the set consists of the features of
all nodes. If there are N nodes and the dimension of the feature is h,
then, X € RN*%_ Our method aims to derive some negative graphs
from the input graph based on counterfactual mechanisms, and a
toy example is shown in Figure 3. For simplicity’s sake, in this paper,
we consider the scenario where two kinds of hard negative graphs
are generated, the proximity perturbed graph A’ = {V, &', X} and
the feature masked graph A= {V, &, X }, such that

arg max sim(A, A’) + sim(A, A), )

&.X

arg max Dk, (p(A)|Ip(A")) + Dk (p(A)|Ip(A)), ()
&.X

where sim(x) denotes the metric to measure the similarity between
two items (e.g., graph adjacency matrices, feature matrices), Dk ()
is the KL-Divergence [10] function, which is used to measure the
similarity between two probability distributions, and p(*) denotes
predictor outputting the probabilities of classes to which the graph
belongs. The intuition behind the two formulas is to derive hard
negative graphs with different labels while forcing the derived
graphs to be as similar to the original graph as possible. In other
words, we want to achieve dramatic change at the semantics level
with minor perturbations at the graph’s essential elements. The
problem is formulated as an optimisation problem to maximise the
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similarities between the generated negative samples and the target
in proximity and feature and force them to have different labels.

3.2 Counterfactual Adaptive Perturbation

This paper discusses two adaptive perturbation matrices: the prox-
imity perturbation matrix and the feature masking matrix.
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Figure 3: An example of the graphs with proximity perturbed
and with features masked derived from an original graph.

3.2.1 Proximity Perturbation. Proximity perturbation aims to
change the graph structure to generate a contrasting sample. This
can help the model learn the critical structural information in the
original graph [33, 35]. First, let us focus on how to conduct adaptive
perturbation. To achieve the goal of adaptive perturbation, we need
a trainable matrix M, € RNXN , such that

Ag =Mg XA, (4)

where A € RVXN is the adjacency matrix of A, and A, denotes the
adjacency matrix of the proximity perturbed graph A’. Note that
we adopt matrix multiplication here instead of taking the Hadamard
product since it cannot add an edge to the adjacency matrix. More-
over, values of the entries of A, are in RNXN which conflict with
the definition domain of the adjacency matrix, {0, l}N XN VWe need
an extra step such that f : A, € RN*N — A’ € {0, 1}N*N_ We
use the following formula to conduct the mapping:

A, = I(sigmoid(Ag) > ), (5)

where () is the indicator function, and w is a threshold determin-
ing whether to set the entry as 1 or 0. Finally, we have the adjacency
matrix for the negative sample A’. Consequently, a perturbed set
&’ of edges is obtained. Though in this procedure, there is no mod-
ification made to nodes, we can adaptively discard some nodes by
deleting all the edges of the nodes, which will be isolated from the
generated graph after perturbation. In summary, we can utilise the
proximity perturbation matrix and procedure mentioned above to
simulate all the proximity perturbation methods in [33], including
edge dropping or adding and node dropping.

3.22 Feature Masking. Feature masking tries to mask the origi-
nal feature matrix to help the contrastive learning model obtain the
critical information in the features [33, 35], which would determine
the decisive factors in the feature domain. The whole procedure of
feature masking is similar to the proximity perturbation, but there
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Table 1: Statistics of four graph datasets.

Dataset Num. of Graphs Avg. Num. of Nodes Avg. Num. of Edges Node Attr. Dim. Num. of Classes
PROTEINS_full 1,113 39.06 72.82 29 2
FRANKENSTEIN 4,337 16.90 17.88 780 2
Synthie 400 95.00 172.93 15 4
ENZYMES 600 32.63 62.14 18 6

are some minor differences. First, same as the previous procedure,
we need to initialize a trainable matrix My, € RN Xh, which serves
as a mask matrix here. We have to make sure the definition domain
of it is {0, 1}N Xh_To achieve such a goal, we have

M; = I(sigmoid(Mp) > y), (6)

where y is a threshold determining whether to mask some feature
entries. To fulfil the feature masking procedure, we need to have
Hadamard element-wise product between M;) and X instead of
matrix multiplication in the previous perturbation procedure:

X =M, oX. @)

Once we finish the feature masking procedure, the values of the
masked features will be replaced with 0.

After the proximity perturbation and the feature masking, two
hard negative samples are acquired, which are A" = {V,&’, X}
and A = {V, &, X} respectively.

3.2.3 Perturbation Measurement. Once we obtained two per-
turbed graphs, the issue we have to deal with next is how to ensure
the generated graphs are hard negatives. As we mentioned pre-
viously, we leverage the counterfactual mechanism to solve this
problem because this method naturally meets the requirements of
hard negative sample generation. Both aim to output something
different at the semantic level but similar at the structural level. We
introduced two objectives in the Section. 3.1, and more details are
given in this section.

First, we discuss maximising the similarity between the original
and the perturbed graphs. This objective function tries to ensure
the perturbation we made is as minor as possible. We utilise the
Frobenius norm of the difference between A and A,. The smaller
the Frobenius norm is, the more similar they are. The Frobenius
norm of the masking matrix can measure the similarity between
features. A relatively greater norm indicates that a small portion
of feature entries are masked. Therefore, the similarity between X
and X would be high. The objective is formulated as follows:

Ls =lA=Ayllr = lIM]lF. ®

Next, we must ensure the generated graphs are different from
the original graph at the semantic level. Here, we consider the
classification problem, where we minimize the similarity between
probability distributions of classes between the original and the
perturbed graphs. Therefore, we have

Le = -Dip(p(A), p(A")) = DgL(p(A), p(A)). )

So, the overall objective for counterfactual pre-training for hard
negative sample generation is

Lpre = Ls+ Le. (10)

3.3 Contrastive Learning Procedure

The counterfactual mechanism is adopted to generate hard negative
samples. After that, we need to conduct graph contrastive learning
between the original graph and the perturbed graphs. In this paper,
we follow a simple and widely-used graph contrastive learning
schema to conduct it, which is dictionary look-up method [18],
shown in Figure 2. Given an original input graph A, two negative
graphs A’ and A, and two graph encoders, gp(+) and g, (-), we
will have a sort of graph embeddings: q = g5(A), ky = ko =
gn(A), ki = gn(A’), and ky = g, (A). Specifically, the target
graph will be encoded by both graph encoders, and g, (-) will only
be used to encode the generated hard negative samples. Dictionary
look-up method here tries to look up a single key (denoted by
k) that q matches in K. Let q denotes the query key and K =
{ko, k1, k2} be the dictionary, we take InfoNCE in [24] to formulate
contrastive learning procedure. So, we have the objective for the
graph contrastive learning phase:

exp(sim(q, k+)/7)

VI exp(sim(q ke) /7).

(11)

Leontra = —log

where 7 is the temperature hyperparameter.

After finishing the two training phases, including counterfactual
mechanism-based hard negative samples generation and graph con-
trastive learning, we can obtain the trained embeddings of all nodes
and graphs. The graph embeddings will be fed into a downstream
prediction model to conduct graph classification tasks and evaluate
the trained embeddings’ quality.

4 EXPERIMENT

We conduct comparison experiments to show the superiority of the
proposed method. Supplementary experimental results are given
to analyze the properties of the proposed method. This section
discloses sufficient experimental settings and datasets for readers
to reproduce the experiments.

4.1 Datasets

To fully demonstrate the performances of the proposed method
compared to baselines, we choose several public and widely-used
datasets from TUDataset [13]. All the datasets are available on the
webpage?. Recall that the feature masking operation necessary for
our proposed method is a hard negative sample generation proce-
dure. Hence, the graph datasets we use must contain high-quality
node features. We select four datasets, which are PROTEINS_full
[3, 20], FRANKENSTEIN [16], Synthie [14], and ENZYMES [3, 20].
The detailed statistics of four datasets are shown in Table 1.

Zhttps://Is11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 2: Comparison experimental results. F1-micro and F1-macro scores (%) with standard deviations are listed above.

Dataset PROTEINS_full FRANKENSTEIN Synthie ENZYMES
Method F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro
RandomWalk - - 57.97(std 2.15) 57.45(std 1.92) 18.50(std 4.06) 16.86(std 3.58) - -

ShortestPath 70.88(std 4.91) 69.88(std 4.99) 62.39(std 1.95) 59.81(std 2.02) 50.75(std 9.69) 47.32(std 9.86) 27.83(std 6.37) 27.18(std 5.93)
GL 69.89(std 3.25)  68.57(std 3.43) 61.26(std 2.85)  53.94(std 2.46) | 52.50(std 10.49)  50.24(std 10.37) | 31.67(std 7.03)  30.02(std 7.13)

WL 72.32(std 3.11) 71.36(std 3.41) - - - 37.83(std 4.95) 36.42(std 5.78)
sub2vec 70.17(std 2.06) 66.26(std 0.44) 54.97(std 1.80) 46.83(std 4.00) 29.75(std 4.67) 22.07(std 3.75) 19.67(std 3.64) 13.34(std 4.33)
graph2vec 68.65(std 3.45) 64.16(std 5.00) 61.70(std 3.04) 59.68(std 0.22) 54.25(std 0.62) 35.17(std 0.26) 25.67(std 4.84) 22.41(std 5.04)
InfoGraph 71.61(std 4.67) 70.48(std 5.06) 63.57(std 2.12) 62.95(std 2.20) 54.5(std 8.05) 54.17(std 7.87) 38.33(std 7.03) 37.07(std 6.89)

MVGRL 72.06(std 3.29)  69.53(std 3.61) 61.89(std 1.40)  59.65(std 1.50) | 62.00(std 9.07)  61.59(std 9.52) | 40.50(std 7.85) 38.7(std 9.12)
GraphCL 73.05(std 3.29) 71.04(std 3.35) 62.62(std 2.49) 61.89(std 2.57) 57.50(std 9.08) 55.87(std 8.87) 33.67(std 4.58) 33.46(std 4.96)
GCA 71.71(std 4.40) 69.59(std 4.44) 63.20(std 1.70) 62.17(std 1.57) 52.25(std 5.18) 43.27(std 9.85) 34.00(std 5.01) 33.62(std 5.01)
CGC ‘ 73.48(std 4.90) 70.03(std 5.75) ‘ 64.93(std 1.98)  63.25(std 2.04) ‘ 63.75(std 6.91)  63.23(std 6.71)  47.50(std 6.25)  46.99(std 6.30)

4.2 Baselines

To verify the effectiveness and superiority of the proposed frame-
work, we compare it with several unsupervised learning methods
in three categories: graph kernels, graph embedding methods, and
graph contrastive learning methods. For graph kernel methods,
we choose four different kernels, including RandomWalk Ker-
nel [26], ShortestPath Kernel [2], Graphlet Kernel [22], and
Weisfeiler-Lehman Kernel [21]. For graph embedding methods,
we select two methods, including sub2vec [1] and graph2vec [15].
Since the proposed method in this paper belongs to graph con-
trastive learning, it is important to compare our method to current
state-of-the-art graph contrastive learning methods. We choose
four impactful methods in the literature:

e InfoGraph [23] maximises the mutual information between
the graph-level representation and the representations of
substructures of different scales (e.g., nodes, edges, triangles)
to acquire comprehensive graph embeddings.

e MVGRL [6] utilises graph diffusion techniques to generate
multiple views to form contrasting pairs.

e GraphCL [33] adopts graph augmentations to obtain con-
trasting pairs and studies how to utilise these augmentations.

e GCA [35] is an updated version of GraphCL, which adap-
tively augment the graph with the centrality of nodes or
edges instead of augmenting uniformly.

4.3 Experimental Settings

For reproducibility, we introduce the detailed settings of the pro-
posed method. For PROTEINS_full, FRANKENSTEIN, and Synthie,
we take GCN [9] with three layers as the graph encoder. The learn-
ing rates for hard negative sample generation and contrastive learn-
ing are 0.0001. The training epochs for the two training stages are
80 and 30, respectively. For dataset ENZYMES, we adopt a 2-layer
GIN [31] as the graph encoder. The learning rates for hard neg-
ative sample generation and contrastive learning are 0.001. The
training epochs for both training stages are 100. The batch sizes
for all the experiments are set to 256, while 128 is also feasible
if GPU memory is limited for large graphs such as Synthie. The
threshold w and y mentioned previously are both 0.3. As to the
temperature hyperparameter for contrastive learning, it is set to 1
for all the experiments. We evaluate the proposed method via graph
classification under the linear evaluation protocol. Specifically, we
closely follow the evaluation protocol in InfoGraph and report the

mean 10-fold cross-validation F1-Micro and F1-macro scores with
standard deviation output by a linear SVM.

4.4 Comparison Experiment

The comparison experiment results for all baselines and our pro-
posed method on all four datasets are shown in Table 2. Generally,
the proposed method outperforms the best baselines on all the
datasets except PROTEINS_full. Though our method has a mean
F1-macro score lower than that of GraphCL, the gap between its
F1-macro score and ours is insignificant as the standard deviation
exists. We note that the proposed method significantly improves
the dataset Synthie and ENZYMES. According to Table 1, both of
these datasets have multiple classes, which are 4 and 6, respectively.
It indicates that the proposed method is superior in multiclass
graph classification tasks. Recall one of the training objectives of
hard negative samples generation, Equation (9), which minimises
the similarity between the probability distributions of which class
the original graph and hard negative samples are. If there were a
multiclass classification task, the Equation (9) would minimise the
similarity between two vectors (the vector refers to the probability
distribution in our context) with more dimensions. Comparing two
vectors with higher dimensionality could help the model to learn
more information. So, it is reasonable that the proposed method
has advantages on dataset Synthie and ENZYMES.

Graph kernel methods also achieve good performances compared
to novel neural network methods. Nevertheless, some of them spend
time on computing. Compared to our proposed method, they cannot
be accelerated by GPUs, which is unaffordable under some real-
world scenarios. Sub2Vec and Graph2Vec are two impactful graph
embedding methods, which both leverage the idea of Word2Vec
[12]. According to the experiment results, they cannot compete
with the graph contrastive learning method, which is a novel and
effective unsupervised graph learning paradigm nowadays.

Note that we selected four graph contrastive learning methods
as baselines. All of them are impactful methods in the graph con-
trastive learning domain. InfoGraph is one of the first methods
to introduce the idea of contrastive learning into the graph rep-
resentation learning area. It achieved promising performances on
several graph learning tasks. As shown in Table 2, it has satisfying
results on dataset PROTEINS_full and FRANKENSTEIN. However,
it may not be compatible with multiclass graph classification tasks,
as the proposed CGC significantly outperforms it. Conversely, MV-
GRL performs better on Synthie and ENZYMES than on the other
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Figure 4: Graph classification results of the proposed method with different hard negative samples.

two datasets with only two classes. GCA is an updated version of
GraphCL, and they share the same framework, but the improve-
ment achieved by GCA is not significant. It has minor improvement
on the dataset FRANKENSTEIN and ENZYMES. On dataset Syn-
thie, it even has much worse performances. GraphCL and GCA try
to conduct proper perturbations on the target to have positive or
negative samples to form contrasting pairs. Specifically, GraphCL
follows a random setting to perturb the graph, which cannot en-
sure the quality of the generated samples. GCA tries to adaptively
locate the essential elements in the graph and perturb such iden-
tified elements according to their centrality. However, elements
with high centrality are not always the critical factor determining
the labels or semantics of the graph. Compared to our counterfac-
tual hard negative samples generation method, these two methods
have limitations in contrasting pairs generation. We also note that
GraphCL and GCA are incompatible with multiclass graph classifi-
cation tasks. This is because the implementations of GraphCL and
GCA both take the implementation of InfoGraph as the backbone.
It is reasonable for them to have such a phenomenon.

4.5 Ablation Study

4.5.1 The impact on the graph contrastive learning with dif-
ferent types of generated hard negative samples. Recall that
we proposed to generate two different types of hard negative sam-
ples. In this section, we want to find out how much improvement
can be brought by different hard negative samples. We conducted
several experiments on the proposed method. We proceed with the
graph contrastive learning procedure under three scenarios, which
are 1) only to use the proximity perturbed graphs as a negative
sample, 2) only to use the feature-masked graphs as negative sam-
ples, and 3) utilizing both types of graphs as negative samples. The
results of the experiments are illustrated in Figure 4. Utilizing both
types of negative samples can achieve the best performances on
all the datasets except FRANKENSTEIN. To achieve better results,
utilising two hard negative samples can help the model capture
the key semantics in proximity and feature space simultaneously.
Moreover, we can form more contrasting pairs with more negative
samples. Hence, the model can receive sufficient self-supervised
signals to update parameters and perform better.

On dataset FRANKENSTEIN, the experiment results are not
what we expected. The model trained only with the feature-masked

graphs achieved the best performance. There is a significant gap
between the performance of the model trained only with the prox-
imity perturbed graphs and the model trained only with the feature-
masked graphs. Such a gap makes the collaboration of two types of
negative samples unsatisfying, resulting in the worse performance
of the model trained with both types of generated negative samples.
Though the gap between the mean F1 scores of the model trained
only with the proximity perturbed graphs and the model trained
only with the feature-masked graphs on dataset ENZYMES is also
significant, we note there is a larger standard deviation in the exper-
imental results on the dataset ENZYMES. In this case, such a phe-
nomenon indicates that the differences between the performances
of the model trained only with the proximity perturbed graphs and
the model trained only with the feature-masked graphs on dataset
ENZYMES are not as significant as that on dataset FRANKEN-
STEIN. According to Table 1, graphs in dataset FRANKENSTEIN
have much fewer nodes and edges than the other three datasets, but
they have significantly larger node feature dimensionality. Mask-
ing features can bring more advantages to the model on dataset
FRANKENSTEIN since the feature matrices are more complicated
than the adjacency matrices. Such imbalance results in a consider-
able gap between the performances of the model trained only with
the proximity perturbed graphs and the model trained only with the
feature-masked graphs on dataset FRANKENSTEIN. We claim that
perturbation to the aspects containing more informative semantics
would bring more advantages to graph contrastive learning. Similar
phenomena appear in the rest datasets. For example, graphs in
dataset PROTEINS_full and Synthie have complicated adjacency
matrices with simple feature matrices. On these two datasets, the
model trained only with the feature-masked graphs outperforms
the model trained only with the proximity perturbed graphs.

4.5.2 How to measure the similarity in hard negative sam-
ples generation procedure? Ensuring the generated negative
samples have similar forms to the original input in proximity and
feature space is the key to making the negative samples be hard. A
proper similarity measurement is important to achieve such a goal.
In the methodology section, we introduced that we measure the
similarity between the original input and the generated negative
samples via calculating the norms of difference matrices ||A — A/
and M ; However, there are many different matrix norms. In this
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Figure 5: The performances of the proposed method on all
the datasets with hard negative samples, whose generation
procedure adopts different matrix norms to measure simi-
larity between the original input and the generated graphs.
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Table 3: Five types of matrix norms and their definitions,
where M* denotes the conjugate transpose of matrix M €
R™™M ) ax () is the function to have the largest eigenvalue
of some matrix, and tr(-) represents trace function.

Matrix Norm ‘ Definition ‘ Complexity
tnorm | [IMlly = maxi<jen X0 Imiy| | O(mn)
2-norm | [IMllz = \Amax (M*M) | om?)
inf norm ‘ [IM]]co = maxi<i<m Z;-’zl [mijl ‘ O(mn)

nuclear norm ‘ [IM|| = tr(\/MT_M) ‘ O(mn?)
Frorm | |IMllp = \[E 2] ImyP | O(mm)

section, we examine the performances of the model trained with
the negative samples in which different matrix norms were applied.
We consider five different matrix norms shown in Table 3, and the
experimental results are illustrated in Figure 5.

Following the proposed generation protocol, the cost of 2-norm
and nuclear norm is much larger than others due to their com-
putation complexity. Therefore, using these two matrix norms is
not practical. As to inf norm, its performances vary among all the
datasets. The performances are not stable. Hence, 1-norm and F-
norm are more suitable for the similarity measurement in our hard
negative samples generation protocol. Considering the simplicity
of 1-norm, in most cases, it is a better option since it can achieve
equivalent performances compared to F-norm.

5 CONCLUSION

In this paper, we proposed a novel method, named CGC, to generate
hard negative samples for graph contrastive learning. Compared
to current graph contrastive learning methods and some classical
graph kernel and graph embedding methods, it achieved state-of-
the-art performances in most cases. We studied the effectiveness of
the model trained with different types of generated hard negative
samples. We found that perturbation made on the more complicated
part of the graph data (e.g., node features or proximity) would bring
more advantages to graph contrastive learning. Furthermore, we
explore how to choose similarity measurement for hard negative
sample generation from a perspective of matrix norm. There will be
more methods to conduct such a task, and it would be interesting
future work to improve the proposed method in this paper.
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