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Abstract: Interactions between drugs can occur when two or more drugs are used for the same patient.
This may result in changes in the drug’s pharmacological activity, some of which are beneficial and
some of which are harmful. Thus, identifying possible drug–drug interactions (DDIs) has always
been a crucial research topic in the field of clinical pharmacology. As clinical trials are time-consuming
and expensive, current approaches for predicting DDIs are mainly based on knowledge mining from
the literature using computational methods. However, since the literature contain a large amount of
unrelated information, the task of identifying drug interactions with high confidence has become
challenging. Thus, here, we present a novel graph-convolutional-network-based method called
DDINN to detect potential DDIs. Combining cBiLSTM, graph convolutional networks and weight-
rebalanced dependency matrix, DDINN is able to extract both contexture and syntactic information
efficiently from the extensive biomedical literature. At last, we compare our DDINN with some other
state-of-the-art models, and it is proved that our work is more effective. In addition, the ablation
experiments demonstrate the advantages of DDINN’s optimization techniques as well.

Keywords: knowledge mining; drug–drug interaction; graph convolutional network; self-attention;
deep learning

1. Introduction

When treating patients with drugs, doctors often use multiple drugs at the same time
because the effectiveness of one drug is limited. Particularly in the case of severe and chronic
diseases, many different drugs have to be used at the same time to treat lesions, relieve
pain, prevent complications or are used for other medical reasons. As drugs are taken
together, complex biochemical reactions may take place in vivo, resulting in unpredictable
results, which are called drug–drug interactions (DDIs) [1]. In terms of their side effects,
DDIs can be basically divided into two types: beneficial and adverse [2]. A beneficial
drug interaction can improve patient outcomes, whereas adverse drug interactions can
pose serious threats to patients’ health, reducing the effectiveness of drugs, prolonging
the course of disease, and even putting patients’ lives at risk. Therefore, the identification
of possible DDIs has always been a crucial research topic in clinical pharmacology [3].
A number of databases were constructed by researchers in order to document the DDIs
found, such as DrugBank [4], DDInter [5], TwoSides [6] and SFINX [7].

The traditional method of obtaining DDIs involves the use of clinical trials, and
these are time-consuming, expensive, and often have serious ethical implications [8]. In
spite of the fact that in vivo trials remain the most accurate method for identifying DDIs,
the disadvantages described above severely limit the pace at which DDIs can be identified.
In recent years, many biomedical research papers have been published at high frequencies,
which led researchers to study how meaningful information can be extracted from these
papers. Clearly, manually curation is not feasible, so machine learning or other knowledge-
mining-based methods must be employed [9]. The two examples in Figure 1 illustrates
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DDI extraction from drug-related text sentences, for example, the published literature or
drug descriptions. For sentence S1, the DDI type of Fluoxetine and Phenelzine is “Advice”
(see Section 3.1 for a description of the specific DDI types). For sentence S2, the DDI type
of PGF2alpha and Oxytocin is “Effect”. Although these automated prediction methods
may output false-positive and true-negative DDI predictions, they nevertheless became
a mainstream approach for the DDI prediction task due to their efficacy. If it is necessary,
researchers may then validate these high-confidence DDIs produced by automated DDI
prediction methods clinically [10].

Fluoxetine should not be administered to patients receiving phenelzine�

Fluoxetine Phenelzine
Advice

Both PGF2alpha and Oxytocin induced dopamine release in the 
nucleus accumbens�

PGF2alpha 
Effect

Oxytocin 

S1:

S2:

DDI 1:

DDI 2:

Figure 1. Two examples illustrating DDI extraction from drug-related text sentences.

Initially, there are mainly two kinds of traditional machine learning methods for auto-
matically extracting DDI: pattern-based and feature-based ones. In pattern-based methods,
experts with extensive domain knowledge are required to propose some recognizable
patterns based on their own experiences [10]. Later, a number of feature-based methods
are proposed, among which the best-performing ones are based on support vector ma-
chine (SVM), for example, FBK-irst [11] and NIL_UCM [12]. In general, machine learning
methods that are based on features have experienced great success and are more portable
than those that rely on patterns [13]. There is, however, an inherent disadvantage to these
methods, which is that they heavily rely on tedious feature engineering and redundant
feature selection, and defining the feature set in a supervised manner will also limit the
identification of other valuable patterns. Moreover, as these methods are based on tradi-
tional machine learning models and are not capable of extracting deep features from input
data, they will become much less effective when dealing with large data sets [14].

Deep learning can solve the above problems well, and it has been applied widely and
successfully in a variety of other fields as well, such as in the field of computer vision,
natural language processing (NLP) and speech recognition [15,16]. Deep learning methods
based on graph structure have been proposed and successfully applied to the DDI predic-
tion task [17,18]. The first wave of popular deep-learning-based DDI detection methods
rely primarily on sequence-based networks, for example, the convolutional network (CNN)
and recurrent neural networks (RNNs) [19]. In most cases, these methods can achieve
better results than methods based on traditional machine learning models. However, the
main drawback of this approach is that they cannot handle long or complex sentences
in the literature’s text or other information sources, mainly because of the inherent char-
acteristics of CNN or RNN. The researchers then proposed dependency-based methods,
which can be used to extract corpora that contain multiple long and complex sentences,
incorporating structural information into a neural architecture for DDI prediction. As
many DDI extraction corpora contain a large number of long sentences (≥150 words) [20],
dependency-based methods obviously have advantages over sequence-based ones. In
regard to all these methods, there are still some challenges to overcome: (1) These methods
only use the literature’s text as input data and lack relevance to other information extraction
sources; (2) due to the difficulty of parallelizing existing dependencies-based methods,
such as tree-LSTM, they are often inefficient and have a disappointing runtime perfor-
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mance; (3) as their network is essentially linear, most of these methods are only capable
of predicting the interaction of one pair of drugs at a time, which severely limits their
practical usage.

In order to resolve the issues outlined above, we propose DDINN (DDI Neural Net-
work) for the DDI prediction task, which is a novel graph-convolutional-network-based
method featured by the self-attention mechanism for pruning. Our method utilizes contex-
tual features of sentences as vertices and syntactic features as edges to construct a graph,
which will be fed to GCN layers sequentially. DDINN can capture more neighborhood in-
formation of the graph more effectively by stacking the convolution layer. In particular, we
rebalance the weights of each edge via a self-attention mechanism. Thus, DDINN is able to
exploit both the context and structure of the input sentence to the maximum extent possible.
Our final step was to train and evaluate the DINN model on the dominant DDI extraction
dataset from SemEval-2013 Task 9 of the DDIExtraction 2013 dataset [21]. Validation exper-
iments and ablation study show the effectiveness of DDINN and its superiority compared
to other similar methods. Performance assessments are also conducted on the DDINN
model’s components to show the improvement compared with other traditional methods.

To summarize, we can state the following as our main contribution:

• DDINN: Combining graph convolutional networks with recurrent networks, we pro-
pose a novel deep learning method, DDINN, that can effectively utilize the contextual
and syntactic information of input literature text at the same time.

• Weight-rebalanced dependency matrix: On the basis of dependency-aware embedding
representation and self-attention-based pruning strategy, we propose a method for
rebalancing the weights of all edges in the dependency matrix for GCN.

• Extensive experiments: The experimental results show that our model can pre-
dict DDI with the best F-score and has a better performance in comparison with
state-of-the-art models.

Following is the outline of the remainder of this paper. In Section 2, we review the char-
acteristics of existing DDI extraction approaches and briefly summarize the improvements
made in the DDINN method proposed here to overcome their shortcomings. Section 3
describes the implementation specifics of DDINN in detail. Then, the experiments and
analysis of their results are presented in Sections 4 and 5. As a final point, in Section 6, our
conclusions regarding the entire work of DDINN is presented.

2. Related Works

Currently, there are three main types of DDI extraction methods: feature-based, kernel-
based, and deep learning neural-network-based methods. The representative methods
below will serve as the baseline for further experimental validation.

2.1. Feature-Based Methods

Feature-based methods aim to find a way to distinctively represent data characteristics
using some feature representation techniques, which are called feature engineering. This
process involves transforming the original data into feature vectors that can better express
the essence of the problem. Then, classifiers are trained based on various linguistic features
extracted from the data. For example, UTurku [22] uses dependency graph features to
mine entity associations and it achieved an F-value of 59.4% in the DDIExtraction 2013
competition. WBI-DDI [23] proposes a two-stage method that first classifies the results
using multiple methods including APG (all path graph), Moara, SL (shallow linguistic),
and TEES (urku event extraction system) separately, and then it votes on these classification
results to obtain the best classification result, which achieved an F-value of 60.9%. FBK-
irst [11] constructs a combined kernel classifier by combining the feature kernel, shallow
linguistic kernel and closure tree kernel for binary classification, deleting negative examples
and then constructing a combined kernel classifier to achieve multi-classification, which
scored 65.1% in the DDIExtraction 2013 competition F-value.
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2.2. Kernel-Based Methods

The purpose of kernel-based methods is to find and learn the mutual relationships
in a set of data. Widely used kernel methods include support vector machines, Gaussian
processes, etc. Kernel-based methods are an effective way to solve nonlinear pattern
analysis problems. The core idea is as follows: First, the original data are embedded into a
suitable high-dimensional feature space by some nonlinear mapping; then, the patterns
are analyzed and processed in this new space using a generic linear learner. Feature-
and kernel-based DDI extraction can achieve better results than the rule-based extraction,
and these methods have been the mainstream method for DDI extraction for a long period
of time. The disadvantage is that they are time-consuming and laborious for performing
multiple complex feature extractions, so the extraction’s performance is bottlenecked and
cannot be improved significantly. In 2015, Kim et al. [13] constructed kernel functions by
employing a set of lexical and syntactic features based on a series of lexical and syntactic
features with an F-value of 67% in DDIExtraction 2013. In 2016, Zheng et al. [24] constructed
kernel functions for a graph kernel with an F-value of 68.4%. This method became the
best model among the current methods using feature-based and kernel functions. It is
similar to our approach in that semantic and syntactic information is integrated. However,
the performance of previous studies has not been satisfactory since they have only looked
at the shortest dependency path (SDP).

2.3. Neural-Network-Based Methods

Neural networks have an extremely strong feature representation capability. Thus,
deep learning methods have a significant advantage over other machine learning methods
in terms of accuracy and do not require a complex pre-processing process. In classification
tasks, neural networks can be treated as classifiers capable of automatically extracting
features. With the rapid development of deep learning, many neural-network-based DDI
extraction methods emerged in recent years and have excellent performances in DDI
extraction task over traditional feature- or kernel-based methods. The relationship between
drug entities can be extracted using neural networks in two basic ways: sequence-based
and dependency-based methods.

Different neural architectures, including CNNs and RNNs, are used in sequence-based
models. Quan et al. [25] proposed a multichannel convolutional neural network (MCCNN)
for automated biomedical relation extraction. As a result of MCCNN’s performance on the
DDIExtraction 2013 challenge dataset, MCCNN was reported to achieve an overall F-score
of 70.2% compared to the linear SVM-based standard system (e.g., 67.0%). Sun et al. [26]
proposed a recurrent hybrid convolutional neural network (RHCNN) for DDI extraction
from the biomedical literature in which semantic embeddings and position embeddings
are both used to represent the texts mentioning two drug entities. RHCNN is reported
to achieve DDI automatic extraction with a micro F-score of 75.48%. In addition to CNN-
based models, RNN-based ones have also been adopted for extracting DDI effectively. For
example, in GGNN [27], textual drug pairs are encoded with convolutional neural networks,
while molecule pairs are encoded with graph convolutional networks. DDI relations are
then extracted by concatenating the outputs of these two networks. Sahu et al. [28] present
three long short-term memory (LSTM) network models for mining DDI relation from
biomedical text, namely B-LSTM, AB-LSTM and Joint AB-LSTM. The experimental results
on the DDIExtraction2013 dataset show that the Joint AB-LSTM model produces reasonable
performances with an F-score of 69.39%.

Dependency-based neural network architectures are constructed using structural
information of a given sentence. It is common for the DDI extraction corpus (literature text
or drug description, etc.) to contain multiple long and complex sentences, and the longest
sentence may contain over 150 words, so using only sequence-based networks for extraction
is extremely challenging. It is therefore very helpful to introduce structural knowledge (such
as dependency trees) into the DDI extraction task. For example, Zhao et al. [29] present a
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syntax convolutional neural network (SCNN) for DDI extraction. In SCNN, a new syntax
word embedding method is proposed that incorporates syntactic sentence information.

2.4. Improvements Made by DDINN

In order to address the shortcomings of the approaches discussed above, we made
considerable improvements with respect to DDINN for the DDI extraction task:

1. To avoid the lack of representation depth caused by using traditional sequence-based
or dependency-based networks alone, DDINN combines the contextual features of
sentences and syntactic features together to construct a graph, which will be fed to
GCN layers sequentially. By stacking the convolution layer in GCN, DDINN is able to
capture more neighborhood information about the graph.

2. Traditional GCN model only allows edges between nodes with a weight of 0 or 1.
There are many complex interactions between drugs in the DDI extraction task that
cannot be adequately described in this manner. Thus, we propose a new method to
rebalance the weights of all edges in the dependency matrix of GCN based on the
dependency-aware embedding representation, so that the weights can take values
ranging from 0 to 1.

3. Full dependency trees are used to avoid losing key information during the extraction
of syntactic features. Specifically, we propose an attention-based pruning mecha-
nism to minimize the loss of important cues in the full dependency tree. Unlike the
rule-based or SDP-based pruning algorithms used in previous studies, this pruning
strategy can be used to achieve selective pruning with different weight ratios and to
reflect the different strengths of the relatedness between nodes.

3. Materials and Methods
3.1. Problem Definition

Words in the literature’s text can be denoted as X = [x1, x2, · · · , xi, · · · , xn] ∈ Rd×n,
where n denotes the total number of words and xi ∈ Rd denotes the d-dimensional i-th
embedded token. Drugs described in this text can be denoted as D = {Dk | k ∈ [1, n]}.
The mapping relationship between words and drugs is already known, and it can be
represented as Rxd(xi, Dk), Rxd ⊂ {0, 1}. If Rxd(xi, Dk) = 0, it means that there is no
relationship between xi and Dk; otherwise, it shows a positive relationship.

All drug entities can be annotated with the following five drug–drug interaction
relationship types [21]:

1. Advice: Describes recommendations when two drugs are used together;
2. Mechanism: Describes the pharmacokinetic mechanisms of two drug entities;
3. Effect: The result of the interaction of two drugs is clearly stated;
4. Int: Indicates some relationship between the two drugs, but it does not define the

specific type of relationship.
5. Negative: Indicates that there is no interaction between the two drugs.

Thus, in the problem of DDI relation extraction, C represents the overall prediction
classes as follows.

C = {Advice, Mechanism, E f f ect, Int, Negative} (1)

Now, the problem of DDI predication can be defined as follows. Given X and the Rxd,
our DDINN method will predict drug relation set RD.

RD = {Rdd(Da, Db) | a ∈ [1, n], b ∈ [1, n], a 6= b}, (2)

Rdd(Da, Db) ∈ C (3)
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3.2. Overview of Architecture

The outline of the overall architecture of our novelly proposed DDINN model is
illustrated in Figure 2. Firstly, each word in the input literature text is transformed into
a token vector that consists of the embeddings of the word itself, its dependency, part
of speech, and distance in sentences. These embedding vectors are concurrently sent to
cBiLSTM and the weight-rebalanced dependency parser to extract the contextual and
syntactic features, respectively. Then, DDINN constructs a graph, which is fed to the GCN
layers, by converting contextual features into graph vertices and syntactic features into
graph edges. Consequently, the representations of drug pairs and sentences consisting
of other remaining words are obtained by masking the output of GCN layers. At the last
step, the PPI prediction classifier, which is the final output of DDINN, is generated by
concatenating the representations above sequentially and passing them to the softmax and
linear layers. Below, we will provide a detailed description of the process for building the
DDINN model.

Drug A should not withtaken concomitantly Drug B

Word Embeding

w1 w2 w4w3

h2

h2

h1

h1

h3

h3

h4

h4

Contextual Features Extraction

cBiLSTM

h1 h2 h3 h4

Contextual Features: H

w1 w2 w4w3

SBV
HEAD

WP

VOB

Dependency Parsing

Reblanced Dependency-aware 
Embeding

Syntactic Features Extraction

GCN

Softmax
Linear

PPI Prediction
Classifier

A
D
V
I
C
E

As Graph Edge Set

As Graph Vertex Set

Figure 2. Architecture overview of our proposed DDINN method.

3.3. Contextual Feature Representations

In our work, the contextual and syntactic representation of sentences is used to analyze
the literature’s text. The concept of a bag-of-words model is often used in traditional
sentiment analysis, where a document is viewed as a collection of terms or combinations
of short compound words regardless of grammatical and word order. As a result, when
processing sentences, word vectors are often used. It is very common for obtaining word
embeddings by pre-training, and the word representation obtained in this way is often
independent of the sentence’s context. However, due to polysemy, the word itself can have
different meanings in different contexts. Therefore, it is impossible to accurately describe
the contextual meaning of the word itself in a certain context only by using the word vector.
The use of context-sensitive vectors can enhance the representations of semantic relations
between sentences [30].
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Our solution to these issues involves the use of contextual bidirectional long short-term
memory recurrent neural networks (cBiLSTM). In cBiLSTM, the contextual information
extraction problem is viewed as a sequence classification problem, and a type of pooling
will be performed to obtain sentence-level polarity after using RNNs as discriminative
binary classifiers. There are two separate layers of LSTM in cBiLSTM. As for word token xi,
these two LSTM layers are responsible for capturing both forward and reverse contextual
information, respectively. By estimating the probability of a word based on its complete left
and right contexts, the networks process the bi-directional period adjacent to the position
of a word in the sentence. Therefore, the cBiLSTM is able to understand the contextual
meaning of words more effectively than traditional network models.

3.3.1. Word Embedding

The first step is the vectorization of words to obtain X. Considering that the word Ti
in it does not necessarily have a mapping relationship in X, in this case, this paper will use
a uniform distribution on interval [−0.5, 0.5] for its random initialization. Let x(Ti) denote
the vector of word Ti; this representation rule is described as follows:

x(Ti) =

{
xi, Ti ∈ X,

Uni f orm([−0.5, 0.5])d, Ti /∈ X.
(4)

3.3.2. Construct cBiLSTM

Later, word vector x will be processed by cBiLSTM, which will produce the forward
−→
hi and backward

←−
hi for word vector xi.

−→
hi = LSTM(xi,

−−→
hi−1) (5)

←−
hi = LSTM(xi,

←−−
hi−1) (6)

Then, we can calculate the contextual feature, hi, of word vector xi by concatenating
−→
hi and

←−
hi as follows.

hi = [
−→
hn ;
←−
hi ] ∈ Rd (7)

At the final step of this section, all contextual information (denoted as H) of the
sentences will be fed to the later networks for parsing.

H = (h1, h2, · · · , hn) ∈ Rn∗d (8)

3.4. Syntactic Feature Representations

Dependent syntactic analyses aim to parse the text into a dependent syntactic tree.
This is performed by obtaining the dependencies and association paths between words.
Thus, the method gives the model a better understanding of natural language by extracting
text features based on sentence structure. In addition to contextual information, syntactic
information is also important. In fact, contextual and syntactic features complement each
other. Here, we adopt the graph convolutional network (GCN) [31,32] to extract syntactic
information. The syntactic structure of texts is more similar to that of graph data. For such
non-Euclidean spatial data, traditional deep learning models do not effectively exploit or
may even corrupt its intrinsic information. By extending convolution to graph-structured
data, GCN is proposed, which has the ability to model common graph data in reality,
and then it explores the complex relationships in it. In this paper, we use the full dependency
tree as the input of the graph convolutional network and introduce the attention mechanism
during the training process so as to selectively focus on the dependency substructure.
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3.4.1. Construct Dependency Matrix

Based on the dependency structure, we first generate the corresponding adjacency
matrix A ∈ Rn×n. Most traditional dependency-tree-based networks do not employ full
dependency trees to convey syntactic information from sentences. These methods often use
1 or 0 to encode syntactic dependencies between words, which indicate that the elements
in the adjacency matrix A take values of only 1 or 0. However, this approach ignores the
impact of different dependencies on the target task and introduces other redundant features.
As a result of such strategies, which are normally determined by rule-based preprocessing,
crucial information may also be lost [33,34].

To address the problems above, we introduce two more steps: a dependency-aware
embedding representation method based on dependency relations in the layers and self-
attention-based pruning. The dependency-aware embedding representation not only
focuses on the dependency correlations between words but also considers the depen-
dency tag types and the semantics of the words associated with the tags. The following
paragraphs provide the implementation details of the dependency-aware embedding
representation method.

For X, if there is a dependency relationship between word i and j and the dependency
type is ϕ, the corresponding dependency-type embedded vector is ℵϕ ∈ Rdφ×1, and
the dependency relationship between these two words can be embedded represented
as follows:

aij = Sigmod(Avg[xi, xj]×ωϕ × Nϕ + bϕ) (9)

where ωϕ and bϕ are trainable parameters, Avg denotes the average value function, Sigmod
denotes the activation function and ℵϕ is initialized before the model’s training and will be
updated during the training process. Thus, if words i and j have syntactic dependency, the
elements in matrix A can be represented as Aij = aij; otherwise, Aij = 0.

3.4.2. Self-Attention-Based Pruning

Then, in order to exploit syntactic dependencies more fully, self-attention-based prun-
ing is employed to assign weights to all edges in the dependency graph. By incorporating
the self-attention mechanism, we transform A into a soft adjacent matrix Â. Self-attention
has the advantage of noticing the relationship between different positions in a single se-
quence. Thus, the edge weights of all node pairs in the graph are reassigned regardless of
whether they are directly or indirectly connected. This is why we call output Â as a soft
adjacent matrix.

In the specific calculation process, we use query and key pairs of xi as self-attention
function parameters. By employing multi-head attention [35,36], we were able to capture a
different context from multiple perspectives. In particular, the soft adjacent matrix, Â, can
be calculated as follows:

Â = So f tmax
(

QWh
Q × (KWh

K)T
√

d

)
(10)

where So f tmax is the activation function and Q and K are the features of the previous con-
volutional layer h(l−1). Wh

Q ∈ Rd∗d and Wh
K ∈ Rd∗d are used for projection parameters,

where h denotes the h-th head in H, which is defined in Equation (8).

3.4.3. Construct GCN

Then, contextual information H, which is the output of Equation (8), and adjacency
matrix Â will be fed into the l-level GCN:

H(l) = Relu(D̂
− 1

2 ÂDD̂
− 1

2 H(l−1)W (l−1) + bl) (11)
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where Relu is the activation function, ÂD is the edge matrix of Â, D̂ denotes the degree
matrix of ÂD, H(l−1) denotes the node features of the (l − 1)-th level GCN (when l = 1,
H(l−1) = H) and W (l−1) denotes the weight matrix of the (l − 1)-th level GCN.

Finally, in order to further enhance the generalization capability of the model, the out-
put of the GCN layers above will be processed by a pooling layer, dropout layer, and
Relu layer:

H∗ = ω× Relu(Dropout(Pooling(H(l)))) + b (12)

where H∗ is the final output of GCN, which holds the contextual and syntactic feature
information of text X at the same time.

3.5. Extract DDI
3.5.1. Extract Masked Representations

After completing the above steps, we have hidden representations of each word in the
input literature text, which can be simply denoted as wi for word i. The problem in this
step can be defined as follows: Within the input word representations [w1, · · · , wn], drug A
is mapped to wa, and drug B is mapped to wb; we want to extract the relationship between
drug A and B. In order to achieve this, we first calculate the masked representations of
drug A, drug B, and the sentence including other words (i.e., words except for wa and
wb), which are denoted as HM∗

A , HM∗
B , and HM∗

S , respectively. The calculation process is
as follows:

HM∗
S = MaxPooling(MaskS(H∗)) (13)

HM∗
A = MaxPooling(MaskA(H∗)) (14)

HM∗
B = MaxPooling(MaskB(H∗)) (15)

where H∗ is the output of Equation (12), MaxPooling denotes an activation function that
can transform n output vectors to only one vector, i.e., MaxPooling ∈ Rn×d → Rd. MaskA,
MaskB and MaskS denote functions that can select only representations for drug A, drug B
and sentences formed by the remaining words, respectively.

3.5.2. Construct DDI Classifier

Finally, we can predict the DDI by using a classifier. Firstly, we concatenate the masked
representations above and then feed them to a fully connected layer [37]. The final result of
this classifier is denoted as HFinal , which is calculated as follows:

HFinal = FC(Concat(HM∗
A , HM∗

B , HM∗
S )) (16)

where FC is the fully connected layer, and Concat is the function that concatenates all its
parameters. HFinal will then be fed into a linear layer and a softmax layer to output the
probability distribution for the DDI relationship between these drugs [38,39]:

P = So f tmax(Linear(HFinal)) (17)

4. Experiments
4.1. Dataset

In this paper, we evaluate DDINN on the DDIExtraction2013 dataset [20], which is
most widely used when comparing the performances of different DDI extraction algorithms.
Prior to 2011, there were relatively few studies related to the DDIExtraction task due to
the lack of standard datasets, and almost all of those studies were rule-based. These rules
have to be formulated by professionals, and the DDI extraction is achieved by matching
the DDI expressions in the sentences with the formulated rules. This approach is more
effective for composing simple sentences. However, for long and complex sentences,
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especially those with many subordinate clauses, the performance of this method is much
less effective. In 2011, the SemEval 2011 competition established the DDIExtraction subtask
and provided the standard DDIExtraction dataset for the first time. Subsequently, in 2013,
the SemEval 2013 competition supplemented and improved the dataset, which can be
referred to as DDIExtraction2013.

The text corpus of this dataset has two sources: (1) literature abstracts in the discipline
of drug interactions downloaded from the MedLine (https://medline.com/, accessed on
20 February 2022) medical literature retrieval system and (2) articles studying drug interac-
tions downloaded from the DrugBank (https://drugbank.com/, accessed on 23 February
2022) online database. A total of 18,491 pharmacological substances and 4999 drug–drug
interactions were manually annotated in this DDI corpus, which consists of 1017 documents
(784 paragraphs from DrugBank and 233 abstracts from MedLine). All documents contain
5806 sentences and 127,653 tokens. The details of the DDIExtraction2013 dataset are listed
in Table 1.

Table 1. The statistics information of DDIExtraction 2013 dataset.

Type Training Test Total

Advice 826 221 1047
Mechanism 1319 302 1621

Effect 1687 360 2047
Int 188 96 284

Negative 23,772 4737 28,509

4.2. Training

In the training process, cross entropy cost function and L2 regularization are used as
the optimization objective. The cross entropy is defined as follows:

li = − ln Yi
T Pi (18)

where Yi denotes the one-hot representation of the i-th instance label, and Pi is the model
output, which is defined in Equation (17). For a mini batchM = [X1, X2, · · · , XM], we
defined the optimization objective as follows:

J (θ) =
1
|M|

|M|

∑
i=1

li + λ‖θ‖2
2 (19)

where θ includes all the parameters in our model. At the final step, parameter θ in the
objective function, J (θ), is optimized with Nadam [40], which is an algorithm that performs
first-order gradient optimization on an efficient stochastic objective function.

The models are randomly initialized at the beginning, so if a higher learning rate is
selected at this point, the model may become unstable or oscillate, while a lower learning
rate will result in a slower convergence speed. The learning rate scheduler with exponential
decay [41] is used to control the dynamic change of the learning rate during the training
process (see Figure 3). It can slow down overfitting in the initial stages and maintain the
stability of the deep layer. Upon the completion of training, the model that can predict
interactions between two drugs is obtained.

4.3. Experiment Setup

The DDINN is implemented with PyTorch (https://pytorch.org/, accessed on 10
January 2022) and open-sourced at Github (https://github.com/xingjianxu/DDINN, ac-
cessed on 10 January 2022). We use pre-trained word embeddings from GloVe [42] com-
bined with PMCVec [43,44], which is based on unlabeled biomedical texts from PubMed
(https://pubmed.ncbi.nlm.nih.gov/, accessed on 10 January 2022) and PubMed Central
(https://www.ncbi.nlm.nih.gov/pmc/, accessed on 10 January 2022). In order to obtain

https://medline.com/
https://drugbank.com/
https://pytorch.org/
https://github.com/xingjianxu/DDINN
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc/
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the dependency tree, dependency label, and POS tag of each word, we use the Stanford
Parser (https://nlp.stanford.edu/software/lex-parser.shtml, accessed on 10 January 2022).
All experiments are conducted with two RTX 3090 GPUs. The detailed parameters are
listed in Table 2.
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Figure 3. Learning rate exponential decay.

Table 2. The main hyperparameter settings used in DDINN implementations and evaluation experiments.

Module Parameter Value

Word embedding Size (per word) 200
Stanford Parser Word dimension 200

Dependency dimension 20
Distance embedding 20

cBiLSTM Dimension 400
Dropout 0.4

GCN Dimension 300
Layer 3

Attention Dimension 300
Dropout 0.2

Training Epoch 30
L2 regularization 5× 10−5

Batch 30
Maximum learning rate 0.005

4.4. Assessment Metrics

In order to evaluate the quality of prediction results, micro-precision, micro-recall,
and micro-F score are employed as assessment metrics, which are denoted as Pmicro, Rmicro,
and Fmicro, respectively. As described in Table 1, we can define the prediction classes. We
set D as

D = {Advice, Mechanism, E f f ect, Int, Negative} (20)

and these metrics above can be calculated as follows:

Pmicro =
TP

TP + FP
=

∑n
i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FPi
(21)

Rmicro =
TP

TP + FN
=

∑n
i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FNi
(22)

Fmicro =
2× Pmicro × Rmicro

Pmicro + Rmicro
(23)

https://nlp.stanford.edu/software/lex-parser.shtml
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where TPi denotes the true positives in the prediction class i ∈ D , FPi denotes the false
positives and FNi denotes the false negatives.

4.5. Baselines

The following two kinds of methods are selected as the baseline for evaluating the
performance of DDINN in this paper:

• Traditional statistical-model-based methods, including UTurku [22], FBK-irst [11] and
WBI-DDI [23]: Such kinds of methods mainly use features and kernel functions to
predict the DDI relationship.

• Deep learning neural-network-model-based methods, including MCCNN [25], Joint
AB-LSTM [28], GGNN [27], RHCNN [26] and GCNN [45]: The application of neural
networks significantly improved prediction performances compared to methods based
on traditional statistical models.

5. Results and Discussion
5.1. Performance Comparison

As shown in in Table 3, we compare the performance of our DDINN method to those
of the other eight baseline methods. For each method, the Fmicro score for four kinds of DDI
types and the overall precision, recall and Fmicro score are listed. The performance statistics
are obtained by conducting test experiments on the DDIExtraction2013 dataset, except for
UTurku, GGNN and GCNN, which are directly cited from their original papers. This is
because we cannot find available codes or runnable binaries for these methods, and they
all conducted the performance test on the DDIExtraction2013 dataset. The highest values
in each test are marked in bold, and the second best ones are marked underlined.

In comparison with all baseline methods, except for the PPI type of Int, DDINN
exhibited the highest performance scores. The main reason for this is that DDINN requires
a relatively large amount of training data, and training data with the Int PPI type only
rarely (1.68% in total training data) appears in the DDIExtraction2013 dataset (see Table 1).
The experimental results proved that the series of optimization used in DDINN finally
worked and successfully improved the quality of the results of the DDI prediction task.

The training process of this model on the DDIExtraction2013 dataset is shown in
Figure 4, which shows the changes in the precision, recall, and the Fmicro score values over
the epoch. From the figure, it can be seen that all these values improve faster in the early
stage of the training, and then they fluctuate continuously to find the local optimal value;
finally, they gradually converge to smooth values.
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Figure 4. Precision, recall, and Fmicro value on entire test dataset in the training process.

5.2. Error Analysis

Figure 5 shows the confusion matrix of the model in this paper. Each column of the
matrix represents an instance prediction of a class, while each row represents an actual
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instance of the class. The darker color in the figure indicates a larger proportion of error. To
clearly highlight the misclassification of the DDI predicted by our model, the values in the
confusion matrix are normalized.

Table 3. Performance comparisons with other DDI prediction methods.

Method F-Score for Each DDI Type Overall
Advice Mechanism Effect Int Precision Recall F-Score

Traditional
models

UTurku 0.621 0.586 0.601 0.504 0.728 0.489 0.599
FBK-irst 0.695 0.671 0.626 0.554 0.651 0.651 0.658

WBI-DDI 0.627 0.611 0.608 0.510 0.650 0.563 0.606

Deep
learn-
ing
networks

MCCNN 0.785 0.719 0.683 0.510 0.759 0.652 0.702
Joint

AB-LSTM 0.796 0.761 0.674 0.461 0.733 0.698 0.715

GGNN 0.817 0.735 0.710 0.460 0.734 0.719 0.726
RHCNN 0.806 0.780 0.735 0.578 0.773 0.735 0.753
GCNN 0.834 1 0.798 0.759 0.514 0.800 0.738 0.769

DDINN
(ours) 0.863 2 0.820 0.772 0.566 0.822 0.761 0.816

1 The second best value of the column is marked by underline style. 2 The best value of the column is marked by
bold style.
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Figure 5. Confusion matrix with L1 normalization.

From Figure 5, we can see that there are two main types of classification errors for the
model: (1) the class of relations with the Int type is often incorrectly classified as the Advice
type; (2) the four positive classes of relations (Advice, Mechanism, Effect and Int) are often
incorrectly classified in the negative class.

For the first type of error, which is already briefly discussed in Section 5.1, the reason
is that the number of Int DDI type is too small, with only 96 instances in the training
set, and we observed in this paper that the instances of DDI type Int and Effect in the
dataset have similar semantics, resulting in the model’s inability in classifying these two
categories well. The second type of error is also mainly caused by the dataset, where the
number of negative categories in the dataset is 28,509, while the number of remaining
positive examples is only 4999, which inevitably allows a small number of DDI types to be
misclassified into the negative DDI type.

5.3. Ablation Study

Additional ablation experiments are conducted in order to evaluate the influence of
different modules or optimizations on DDI prediction. Firstly, the impact of contextual
representation methods has been investigated. The corresponding results are shown
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in Table 4, in which method “GCN only” refers to the model without any contextual
representation engagement, and the others are models using GRU, LSTM and cBiLSTM
to extract contextual representations, respectively. From Table 4, we can see that cBiLSTM
improves the F-score of the GCN-only model by 6.1%, and the cBiLSTM model is indeed
more suitable for DDI prediction tasks than some other RNN models.

Table 4. Ablation study on different contextual representation methods.

Method Precision Recall F-Score

GCN only 0.761 0.722 0.777
+GRU 0.784 0.735 0.783
+LSTM 0.796 0.741 0.803

+cBiLSTM 0.822 0.761 0.816

We also investigate the influence of the self-attention pooling strategy used in the
construction of the weight-rebalanced dependency matrix, and the results are listed in
Table 5. “Full tree” means the method without any pruning strategy. “LAC (k = n)” means
using the LCA strategy [46] to conduct the tree pruning, and the subtree only includes
tokens with the range of n words. From Table 5, we can see that the self-attention-based
pruning strategy improved the F-score by 5.4% compared with the full tree strategy. Self-
attention adds some complexity to the model, but it is worth it.

Table 5. Ablation study on different syntactic dependency extraction methods.

Method Precision Recall F-Score

Full tree 0.762 0.749 0.762
LCA (k = 0) 0.727 0.694 0.725
LCA (k = 1) 0.749 0.703 0.738
LCA (k = 2) 0.747 0.711 0.744
LCA (k = 3) 0.761 0.729 0.759

Self-attention 0.822 0.761 0.816

6. Conclusions

In this paper, we proposed a novel graph-convolutional-network-based method for
the knowledge mining of interactions between drugs from the extensive literature, which
is called DDINN. Our method makes full use of cBiLSTM to capture the contextual in-
formation of input sentences and target drug entities. Additionally, the self-attention
mechanism is used to maximize the acquisition of syntactic information related to the
DDI extraction task and discard irrelevant information. At last, the output of cBiLSTM
and weight-rebalanced dependency matrix will be fed into GCN layers to obtain the DDI
type classifier.

The evaluation experiments prove that the DDINN model in this paper achieved
higher performance results compared to other state-of-the-art DDI prediction methods
in the DDIExtraction2013 dataset. In future work, we will consider data augmentation
and other schemes to improve the performance of the DDINN relative to the imbalanced
dataset. Additionally, we hope to improve the interpretability [47,48] of deep learning
networks in DDINN, which will enhance its utility in the medical field.
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