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Abstract: In real-world scenarios, images may be affected by additional noise during compression and
transmission, which interferes with postprocessing such as image segmentation and feature extraction.
Image noise can also be induced by environmental variables and imperfections in the imaging
equipment. Robust principal component analysis (RPCA), one of the traditional approaches for
denoising images, suffers from a failure to efficiently use the background’s low-rank prior information,
which lowers its effectiveness under complex noise backgrounds. In this paper, we propose a robust
PCA method based on a nonconvex low-rank approximation and total variational regularization
(TV) to model the image denoising problem in order to improve the denoising performance. Firstly,
we use a nonconvex γ-norm to address the issue that the traditional nuclear norm penalizes large
singular values excessively. The rank approximation is more accurate than the nuclear norm thanks
to the elimination of matrix elements with substantial approximation errors to reduce the sparsity
error. The method’s robustness is improved by utilizing the low sensitivity of the γ-norm to outliers.
Secondly, we use the l1-norm to increase the sparsity of the foreground noise. The TV norm is used to
improve the smoothness of the graph structure in accordance with the sparsity of the image in the
gradient domain. The denoising effectiveness of the model is increased by employing the alternating
direction multiplier strategy to locate the global optimal solution. It is important to note that our
method does not require any labeled images, and its unsupervised denoising principle enables
the generalization of the method to different scenarios for application. Our method can perform
denoising experiments on images with different types of noise. Extensive experiments show that our
method can fully preserve the edge structure information of the image, preserve important features
of the image, and maintain excellent visual effects in terms of brightness smoothing.

Keywords: image denoising; nonconvex low-rank approximation; total variational regularization;
robust principal component analysis

1. Introduction

Due to the transmission channel’s limitations, it is easy to introduce noise during the
process of image shooting, which has a significant negative impact on the image’s visual
effect. Noise introduces random or stochastic variations into the images, which may blur,
distort, or even hide useful information [1]. Moreover, the effect of noise removal is also
directly related to the subsequent processing of the image, such as image segmentation,
object recognition, and edge extraction. Therefore, the topic of image denoising is of great
significance in scientific research, the engineering field, and medical clinical diagnosis [2].

As the name suggests, image denoising aims to preserve as much of the original
information in the image as possible while minimizing noise. Over the past decades,
many efficient denoising methods have emerged. Spatial domain denoising methods [3]
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directly act on the source image and include classical filtering methods such as mean
filtering [4], median filtering [5], and Wiener filtering [6]. While these methods are easy
to implement, they are less adaptable and stable, and the denoised images are not sharp
enough. Transform domain denoising methods [7] can effectively avoid image distortion
by transforming the image into the frequency domain for processing, including Fourier
transform [8], discrete cosine transform [9], and wavelet transform [10], but such methods
usually have a high complexity and uncertainty. Moreover, deep-learning-based denoising
methods enhance the denoising effect to some extent due to their strong feature representa-
tion capabilities, but they face higher training-set requirements and more time-consuming
computational cost [11].

Robust principal component analysis (RPCA) is a typical representative matrix decom-
position method that decomposes a matrix into two matrices, namely a low-rank matrix
and a sparse matrix [12]. This idea can effectively avoid complex computational procedures
and enhance the robustness of the processing process. It has a wide range of applications
in image processing, machine learning, earth science, and medicine [13]. For example,
Bayati [14] proposed an adaptive weighted rank reduction (AWRR) method and applied
it to synthetic and real seismic data to test its efficiency; Wang et al. [15] used a weighted
Schatten p-norm minimization to denoise impulse noise in medical clinical images; Xiu et al.
proposed a new Laplacian regularized RPCA framework, where the “robust” aspect came
from the introduction of a sparse term [16] and a novel process monitoring approach using
the structured joint sparse canonical correlation analysis (SJSCCA) [17]; Javed et al. [18]
proposed a spatiotemporal structured sparse RPCA method for moving-object detection,
which imposed spatial and temporal regularization on the sparse component in the form
of graph Laplacians; Liu et al. [19] proposed a method that used manifold constraints to
maintain the local geometric structure and introduced nonconvex joint sparsity to capture
the global progressive sparse structure. Among these methods and other RPCA image
processing methods that have not been mentioned, we find that most of them are optimized
on the basis of the original RPCA algorithm, namely, the optimization of the sparse matrix.
Most rank function methods for approximating low-rank matrices still use the standard
nuclear norm for approximation. Of course, there are some improvements to the nuclear
norm, such as the weighted nuclear norm [20], the singular value threshold [21], and the
truncated nuclear norm [22]. However, the nuclear norm can overpenalize large singular
values of the matrix during the computation, resulting in the nuclear norm minimization
problem not obtaining an optimal solution, which greatly affects the performance of the
associated method. Recent literature [23,24] has shown that nonconvex functions provide
a better estimation accuracy and variable selection consistency and can provide more
accurate rank approximations than the nuclear norm, avoiding its singular value penalty
problem. Some specific works have been proposed by a number of scholars. For example,
Sun et al. [25] proposed a nonconvex formula consisting of the upper-bound trace norm
and the l1-norm, which further restored the low rank of the data matrix; Xiang et al. [26]
extended a nonconvex paradigm to a sparse group feature selection and proposed an
efficient algorithm for large-scale problems. Nonetheless, these nonconvex models require
further optimization in terms of efficiency, robustness, and low-rank recovery accuracy.

In image denoising problems, an image can be viewed as a matrix where the low-
rank part represents the structure and texture information, and the sparse part represents
the noise information in the image. Therefore, it is feasible to apply the RPCA model to
the domain of image denoising. However, RPCA methods based on nonconvex function
approximations are less applicable to the domain of image denoising. To address the
efficiency and robustness issues of previous nonconvex models, more efficient image
denoising schemes have been devised. We design an unsupervised image denoising method
based on the nonconvex γ-norm and RPCA. Firstly, the γ-norm overcomes the shortcomings
of the nuclear norm overestimation and pays more attention to the singular values in the
matrix. Compared to other convex functions, the low-rank matrix approximation performs
better. Secondly, the γ-norm has a strong robustness because it is less sensitive to outliers.
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In practical applications, there are often some outliers in the matrix, and the γ-norm can deal
with these outliers more robustly. Finally, the γ-norm can be processed by using various
optimization algorithms, such as the proximal gradient descent [27], the iterative threshold
shrinkage algorithm [28], and the augmented Lagrange multiplier algorithm [29]. These
algorithms improve the convergence properties and denoising effectiveness of the overall
denoising model. In other aspects, to address the structural smoothness of the images and
further improve the denoising performance, we introduce the TV regularization and l1-
norm, respectively. We use the augmented Lagrangian multiplier method [29] to construct
Lagrangian functions to solve the final mathematical model, transform the constrained
problem into an unconstrained problem, and find the global optimal solution by alternating
the updates of variables. The contributions of this work are summarized as follows:

1. We design an unsupervised image denoising method based on nonconvex γ-norm
and RPCA. To the best of our knowledge, this should be the first application of the
nonconvex γ-norm to image denoising. The use of the γ-norm avoids the problem
of overpunishing large singular values by the nuclear norm and provides a high
robustness and rank approximation. Combined with the associated solution algorithm,
the overall model is highly efficient and converges fast, which facilitates the overall
denoising model in quickly discarding matrix elements with large approximation
errors and providing a high estimation accuracy.

2. The denoising effect is facilitated by combining the l1-norm and a TV norm regulariza-
tion. The l1-norm can effectively enhance the sparsity of the noise, while the TV norm
can exploit the sparsity of the image in the gradient domain to further enhance the
smoothness of the image while preserving the edge information of the denoised image.

3. Our method does not require any labeled images for training, and its unsupervised
denoising principle makes it easy to generalize to different scenarios for application.
Extensive experiments show that the proposed method can preserve the image’s edge
structure information, preserve important features of the image, and maintain excel-
lent visual effects in brightness smoothing under different scenes and different levels
of noise.

In the remainder of this paper, we present the related work in Section 2. In Section 3,
we introduce our proposed method. Section 4 presents an experimental evaluation of our
method for image denoising. Finally, the conclusion is drawn in Section 5.

2. Related Work
2.1. Image Denoising Literature Review

We divided the literature on image denoising into three types: traditional denoising,
deep learning denoising, and RPCA denoising. Traditional denoising methods include
spatial domain denoising methods [1] and transform domain denoising methods [7], which
mostly appear in the early stages. For example, Donoho and John Stone [30] proposed
a wavelet threshold denoising method; Huang et al. proposed that the median filtering
method was the most widely used method [31]; Saito et al. [32] designed and used the
LMMSE filter to improve the denoising effect by restoring image texture; and the an-
tileakage least-squares spectral analysis proposed by Ghaderpour [33] used the Fourier
transform and least squares spectral analysis to process noise in seismic data. However,
traditional denoising methods often face issues such as a high complexity and poor robust-
ness. Deep learning denoising methods have been proposed in recent years. For instance,
Chen et al. [34] used a GAN to model the noise information extracted from real noisy im-
ages and completed denoising under the constraint of a correlation loss; Valsesia et al. [35]
designed a denoising method based on graphical convolution by introducing an edge
attention mechanism and using a convolution operator. Deep learning denoising mod-
els typically face high computational costs and a large quantity of labeled data, whose
unexplained nature makes denoising models less adaptable. RPCA achieves denoising
with a new idea. In recent years, there have been a relatively large number of denoising
works on RPCA. For example, Wang et al. [36] proposed an improved RPCA method using
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a penalty function. This method replaced the nuclear norm and L1-norm in the original
RPCA with regularized and weighted versions of the penalty function, respectively, and
built an improved model for medical image denoising. However, its convergence rate
was slow and time-consuming, and the maximum effect of the low-rank recovery could
not be brought into play. Peng et al. [37] proposed a nonconvex, local, low-rank, and
sparse separation denoising method for hyperspectral images. This method focused on
simultaneously developing a more accurate approximations to both rank- and columnwise
sparsity for the low-rank and sparse components, respectively, and proved its effectiveness
in denoising HSIs. Nonetheless, since hyperspectral images consist of many channels,
this method is not suitable for grayscale images. Liu et al. [38] proposed a new denoising
method based on nonlocal weighted robust principal component analysis (RPCA). They
used the local similarity to build the objective function of RPCA and solved the problem
by using an iterative log-thresholding algorithm to achieve the denoising function. This
approach used the kernel norm and thus overpenalized large singular values, resulting in
an increased error, which in turn led to poor image denoising. Moreover, the compressed
sensing method is the inspiration for the RPCA method, which has also been studied in
the domain of image denoising. For example, Mahdaoui et al. [39] proposed a compressed
sensing method combining total variation regularization and the nonlocal self-similarity
constraint for image denoising. This approach addressed the problem that reconstruction
techniques often fail to preserve the texture of the image and significantly improved the
denoising performance. In addition, several scholars have proposed methods that combine
multimodal image fusion with sparse representation denoising. For instance, Qi et al. [40]
proposed a novel multimodality image simultaneous denoising and fusion method. This
method decomposed the noisy source image into cartoon and texture components and used
the cartoon texture decomposition to separate the noise from the original image information.
A sparse representation (SR) model based on a Gaussian scale mixture was proposed for
the denoising and fusion of texture components. Although this method obtained better or
comparable performance in computation costs compared with existing SR-based methods,
it was still time-consuming due to numerous matrix computations in sparse coding and
dictionary learning. After reviewing the above literature, our proposed denoising method
effectively improves the robustness and estimation accuracy of the model by introducing
a nonconvex γ-norm and TV norm, provides a more accurate rank approximation, and
avoids the singular value penalty problem. Moreover, the proposed model not only im-
proves image denoising and enhances image smoothness but also preserves important
features of the image while removing image noise.

2.2. Robust Principal Component Analysis (RPCA)

RPCA is arguably the most widely used modification of the procedure of PCA with
an improved robustness especially for a gross corruption scenario. The RPCA model
decomposes the corrupted observation data matrix D into the low-rank matrix L and the
l0-norm of sparse matrix S. The mathematical expression is as follows.

min
L,S

rank(L) + λ‖S‖0 s.t. D = L + S (1)

where L is a low-rank matrix; S denotes the sparse matrix; λ denotes a regular factor that
balances low rank and sparsity; ‖ · ‖0 is the l0-norm of the matrix; the rank (L) is the rank
of the matrix L. It is truly challenging to tackle the NP-hard task of minimizing the matrix
rank function and the l0-norm because of the matrix’s highly nonconvex and nonlinear
characteristics. Wright et al. [41] conducted the convex relaxation to facilitate problem (1)
as follows

min
L,S
‖L‖∗ + λ‖S‖1 s.t. D = L + S (2)

where ‖L‖∗ = ∑i σi(L) is the nuclear norm, which is represented by the sum of the singular
values in matrix L. σi(L) is the singular value of matrix L. ‖ · ‖1 is the l1-norm of the matrix.
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2.3. Nonconvex γ-Norm

Kang et al. [42] presented a nonconvex γ-norm that can be used as a tighter approxi-
mation to the rank of a matrix than the nuclear norm, resolving the issue with the imbalance
penalty of different singular values in the convex nuclear norm. Although this technique is
frequently used in target identification and image recognition, there has not been any more
in-depth research suggested for image denoising. Furthermore, the theoretical convergence
study demonstrates that the iterative optimization technique based on the nonconvex
γ-norm converges to at least one stationary point, and the calculation of the γ-norm is
rather straightforward. This indirectly infers that the γ-norm is more stable and succinct
than other nonconvex norms when used to constrain the low-rank properties of images.
Assuming that L is a matrix, the γ-norm of a matrix L is:

‖L‖γ = ∑
i

(1 + γ)σi(L)
γ + σi(L)

, γ > 0 (3)

where
lim
γ→0
‖L‖γ = rank(L), lim

γ→∞
‖L‖γ = ‖L‖∗

and this is the same as the true rank of σi(L), i = 1, · · · , min(m, n). In addition, ‖L‖γ is
unitarily invariant. ‖L‖γ = ‖ULV‖γ for any orthonormal U ∈ Rm×m and V ∈ Rn×n.

2.4. TV Norm

The total variation (TV) model first proposed by Rudin et al. measures the structural
variations in the gradient domain and serves as a good sparsity regularization for image
denoising [43]. This technique can keep the edge information and improve the smoothness
of the denoised image. Additionally, it can save significant image information in addi-
tion to producing pleasing visual effects, which plays a constructive role in some areas.
For instance, in the medical field, reducing noise from clinical computed tomography
pictures while maintaining their fundamental diagnostic information is very beneficial in
identifying the condition. Previous research suggested that the anisotropic TV methods
could produce better denoising results than the isotropic TV method. The anisotropic TV is
defined as follows:

‖L‖TV =
m−1

∑
i=1

n−1

∑
j=1

{∣∣Li,j − Li+1,j
∣∣+ ∣∣Li,j − Li,j+1

∣∣}
+

m−1

∑
i=1
|Li,n − Li+1,n|+

n−1

∑
j=1

∣∣Lm,j − Lm,j+1
∣∣ (4)

where Li,j is a pixel of the matrix L.

2.5. l1-Norm

The l1-norm assumes that the parameters obey the Laplace distribution and are not
completely differentiable. Its regularized output is sparse, which can generate a sparse
model. The l2-norm assumes that the parameters conform to the Gaussian distribution and
are completely differentiable, which can prevent the model from overfitting. The l1-norm
has a strong stability and is not sensitive to outliers, so its robustness is better than that of
the l2-norm. Moreover, the l2-norm squares the error, and the error of the model is much
larger than with the l1-norm. More importantly, this approach constrains the matrix S using
the l1-norm rather than the l2-norm because the l1-norm may better ensure that the defined
optimization problem can find a unique solution. The l1-norm of a matrix S with elements
skj is given by the maximum value of the column sum.
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‖S‖1 = max

(
m

∑
k=1

∣∣∣skj

∣∣∣) (5)

3. Proposed Method

The system framework of the proposed method is presented in Figure 1. As discussed,
the RPCA model based on nonconvex γ-norm can improve the approximation accuracy of
the rank function, and the TV regularization can solve the smoothing problem of the image’s
structure edge information. This section introduces our proposed RPCA model based on
the nonconvex γ-norm and anisotropic total variation technique. The mathematical model
of the method is as follows:

min
L,S
‖L‖γ + λ‖S‖1 + τ‖L‖TV s.t. D = L + S (6)

where D is the data matrix of the observed image; L is the low-rank matrix; S is the
sparse matrix; ‖L‖γ is the γ-norm of the matrix L; ‖S‖1 represents the l1-norm of sparse
matrix S; ‖L‖TV represents the TV regularization of matrix L; τ is a trade-off parameter for
controlling the TV norm; λ is also a trade-off parameter; and λ = 1/

√
max(m, n). m and n

are the dimensions of the observed image matrix D.

Figure 1. Illustration of the proposed method.

Considering the nonconvex property of the γ-norm and the introduction of an anisotropic
TV regularization, the augmented Lagrange multiplier algorithm [29], also known as the alter-
nating direction method of multipliers (ADMM), is used to solve the optimization problem.
We first introduce a new auxiliary variable Z into Model (6):

min
L,S
‖L‖γ + λ‖S‖1 + τ‖Z‖TV s.t. D = L + S, Z = L (7)

By adding the Lagrange multiplier and a positive punishment scalar, Formula (7) can
be further derived as the following augmented Lagrange function:

h(L, S, Z, Λ1, Λ2) =arg min
L,S,Z

‖L‖γ + λ‖S‖1 + τ‖Z‖TV

+ 〈Λ1, D− L− S〉+ 〈Λ2, L− Z〉

+
µ

2

(
‖D− L− S‖2

F + ‖L− Z‖2
F

) (8)
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where µ > 0 represents a penalty parameter; τ > 0 represents a penalty parameter;
〈·, ·〉 represents the inner product of two matrices, while Λ1 and Λ2 represent Lagrange
multipliers; ‖ · ‖F is the Frobenius norm of a matrix.

The variable L, S, Z, Λ1, and Λ2 are updated under alternate iterations to improve the
solution accuracy. The optimization process is summarized in Algorithm 1. The flowchart
of the proposed method is presented in Figure 2.

Algorithm 1 Solving (7) by ADMM

Input: Observed data Y ∈ Rm×n and λ > 0
Initialization: compute L(0) = UΣVT and S(0), µ0 = 10−4, ρ > 1, µmax = 104, i = 0
While ‖D−L−S‖F

‖D‖F
> 10−8 and i < inneriter do

Li+1 = arg min
L
‖L‖γ + µi

∥∥∥∥∥L− 1
2

(
D + Zi − Si +

Λi
1

µi +
Λi

2
µi

)∥∥∥∥∥
2

F

;

Si+1 = arg min
S

λ‖S‖1 +
µi

2

∥∥∥∥∥S−
(

D− Li+1 +
Λi

1
µi

)∥∥∥∥∥
2

F

;

Zi+1 = arg min
Z

τ‖Z‖TV +
µi

2

∥∥∥∥∥Z−
(

Li+1 −
Λi

2
µi

)∥∥∥∥∥
2

F

;

Λi+1
1 = Λi

1 + µi
(

D− Li+1 − Si+1
)

;

Λi+1
2 = Λi

2 + µi
(

Li+1 − Zi+1
)

;

µi+1 = min
(

ρµi, µmax

)
;

i = i + 1;

end while
Output: Li, Si.

3.1. Updating L

To solve for variable L, we minimize over h(L, S, Z, Λ1, Λ2) with the remaining opti-
mization variables (S, Z, Λ1, Λ2) fixed:

Li+1 =arg min
L

h
(

L, Si, Zi, Λi
1, Λi

2

)
=arg min

L
‖L‖γ +

〈
Λi

1, D− L− Si
〉
+
〈

Λi
2, L− Zi

〉
+

µi

2

(∥∥∥D− L− Si
∥∥∥2

F
+
∥∥∥L− Zi

∥∥∥2

F

)

=arg min
L
‖L‖γ + µi

∥∥∥∥∥L− 1
2

(
D + Zi − Si +

Λi
1

µi +
Λi

2
µi

)∥∥∥∥∥
2

F

(9)

To solve (9), the following theorem is introduced.

Theorem 1. Let [42] A = UΣAV be the SVD of A ∈ Rm×n and ΣA = diag(σA). Let
F(X) = f ◦ σA be a unitarily invariant function and µ > 0. Then, an optimal solution to
the following problem

min
z

F(X) +
µ

2
‖X− A‖2

F (10)

is X∗ = UΣ∗XVT , where Σ∗X = diag(σ∗) and σ∗ = prox f ,µ(σA). Here, prox f ,µ(σA) is the
proximity operator of f with penalty µ, defined as



Appl. Sci. 2023, 13, 7184 8 of 26

prox f ,µ(σA) := arg min
σ>0

f (σ) +
µ

2
‖σ− σA‖2

2 (11)

Based on the theorem above, the optimal solution to (9) is

Li+1 = Udiag(σ∗)V (12)

where σ∗, the solution to (11), can be approximated by linearizing the concave term f (σ) iteratively.
Specifically, in the (k + 1) inner iteration, σ can be updated as follows:

σk+1 = arg min
σ>0

〈 δ f (σk)〉+ µi

2
‖σ− σA‖2

2 (13)

where

A =
1
2

(
D + Zi − Si +

Λi
1

µi +
Λi

2
µi

)
(14)

and δ f (σk) is the gradient of f at σk.

Figure 2. The flowchart of the proposed method.
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3.2. Updating S

The variable S is updated while minimizing over h(L, S, Z, Λ1, Λ2) with variables
(L, Z, Λ1, Λ2) fixed:

Si+1 = arg min
S

h
(

Li+1, S, Zi, Λi
1, Λi

2

)
= arg min

S
λ‖S‖1 +

〈
Λi

1, D− Li+1 − S
〉
+

µ

2

∥∥∥D− Li+1 − S
∥∥∥2

F

= arg min
S

λ‖S‖1 +
µi

2

∥∥∥∥∥S−
(

D− Li+1 +
Λi

1
µi

)∥∥∥∥∥
2

F

(15)

where S is the matrix of the sparse foreground part. The foreground is equivalent to an l1
regularization. The solution is as follows:

Si+1 = T λ
2µi

[
D− Li+1 +

Λi
1

µi

]
(16)

and here, T λ
2µi

is the contraction operator which is defined as follows:

Tθ(x) = sgn(x) ·max(|x| − θ, 0) (17)

with the function sgn(·) returning the sign of the given operand.

3.3. Updating Z

Similarly, to solve for variable Z, we minimize over h(L, S, Z, Λ1, Λ2) with the remain-
ing optimization variables (L, S, Λ1, Λ2) fixed:

Zi+1 = arg min
Z

h
(

Li+1, Si+1, Z, Λi
1, Λi

2

)
= arg min

Z
τ‖Z‖TV +

〈
Λi

2, Li+1 − Z
〉
+

µ

2

∥∥∥Li+1 − Z
∥∥∥2

F

= arg min
Z

τ‖Z‖TV +
µi

2

∥∥∥∥∥Z−
(

Li+1 − Λi
2

µi

)∥∥∥∥∥
2

F

(18)

We define Q = Li+1 − Λi
2

µi and Q = [Q1, Q2, · · · , Qn] ∈ Rm×n where optimization (18)
can be rewritten as:

arg min
Zj

τ
∥∥Zj
∥∥

TV +
µ

2

∥∥Zj −Qj
∥∥2

F (19)

In this paper, we used the fast gradient-based algorithm introduced in [44] to solve (19).

3.4. Updating Λ1 and Λ2

Finally, the Lagrange multiplier matrices Λ1 and Λ2 are updated:

Λi+1
1 = Λi

1 + µi
(

D− Li+1 − Si+1
)

(20)

Λi+1
2 = Λi

2 + µi
(

Li+1 − Zi+1
)

(21)

4. Experimental Results and Analysis

In this section, we compare our proposed RPCA method based on a nonconvex
low-rank approximation and TV regularization with five state-of-the-art methods qualita-
tively and quantitatively, including the robust principal component analysis (RPCA) [45],
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nonconvex log total variation model (AMlogtv) [46], nonconvex rank RPCA (NonR-
PCA) [42], weighted nuclear norm minimization–robust principal component analysis
(WNNM−RPCA) [47], and total directional variation (TDV) [48]. We explore the denois-
ing effect of our method on three common noises (salt-and-pepper noise (impulse noise),
Poisson noise, and Gaussian noise). Additionally, we also perform facial image denoising
experiments in Section 4.3 to demonstrate that our method is capable of preserving impor-
tant image features while removing noise. An objective evaluation can avoid the uncertainty
of subjective vision. Therefore, we use the peak signal-to-noise ratio (PSNR) [49], Structure
similarity index measure (SSIM) [50], and feature similarity index measure (FSIM) [51]
to evaluate the image quality objectively. The PSNR refers to the ratio of the maximum
possible power of the maximum achievable signal strength to the destructive noise power
that impacts its representation accuracy. It is often used to evaluate the quality of a denoised
image compared to the original image. The SSIM is an index to measure the similarity of
two images, and its value is usually affected by the brightness, contrast, and structure of the
image. The FSIM is a quality assessment method based on the degree of feature similarity
between the ground truth and the denoised image created using the human visual system.
High values of the three metrics are desirable.

In order to verify the denoising effect of our method in different scenarios, in terms of
dataset selection, we used standard, authoritative, and widely used natural image, clinical
medical image, and facial image datasets for denoising experiments. The experiment used
eight standard grayscale images of 256 × 256 randomly chosen from the digital image
processing dataset, namely Butterfly, House, Peppers, Lena, Living Room, Bird, Camera,
and Starfish. The medical image denoising experiment was conducted by randomly
selecting eight 512 × 512 lung CT images from the LungCT-Diagnosis dataset (https:
//wiki.cancerimagingarchive.net, accessed on 26 May 2023). The data in LungCT-Diagnosis
are from the Moffitt Cancer Center. The dataset has a total of 61 patients, each patient
has a different number of 512 × 512 lung tumor images, and these images are diagnostic-
enhanced CT scan images. In addition, the images in the Extended Yale B dataset were used
in the facial image denoising experiment. The dataset has a total of 38 subjects; each subject
has 64 images with a size of 192 × 168, all taken under different lighting. Due to different
lighting conditions, the images of each object have different degrees of serious damage.

All the experiments in this paper were implemented in MATLAB 2018a. The host
processor was an Intel(R) Core (TM) i5-9400F CPU 2.90 GHz, and the operating system
was 64-bit. Furthermore, the method proposed in this paper was based on a matrix of
m× n, with the following parameter settings: µ = 1× 10−3, γ = 0.01, τ = 1× 10−5, and
λ = 1/

√
max(m, n).

4.1. Natural Image Denoising

The eight natural images we selected for testing are shown in Figure 3. We chose three
examples to demonstrate the denoising effect of the proposed method and five comparison
methods on three types of noise, as shown in Figures 4–6. In Figures 4–6, example ROIs of
size 30 × 30 pixels are taken (center) and enlarged (bottom right corner) for visualization,
and visible image quality upgrades after restoration are presented. Additionally, based
on these six methods, we compared the singular values between the original noise-free
image and the denoised image, as shown in Figures 4a, 5a and 6a. The results showed that,
compared with the five comparison methods, the singular value curve of our method was
closer to the original image curve, which indicated that the method obtained the singular
value closest to the original clean image.

https://wiki.cancerimagingarchive.net
https://wiki.cancerimagingarchive.net
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Figure 3. The eight test images: Butterfly, House, Peppers, Lena, Room, Bird, Camera, Starfish.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Denoising images of Butterfly by different methods (impulse noise). (a) singular value
comparison; (b) original clean image; (c) noisy image (impulse noise); (d) RPCA (PSNR = 32.52 dB,
SSIM = 0.9635, FSIM = 0.9802); (e) AMlogtv (PSNR = 20.87 dB, SSIM = 0.6670, FSIM = 0.9860);
(f) NonRPCA (PSNR = 33.86 dB, SSIM = 0.9318, FSIM = 0.9592); (g) WNNM−RPCA (PSNR = 30.95 dB,
SSIM = 0.7651, FSIM = 0.9015); (h) TDV (PSNR = 18.41 dB, SSIM = 0.6336, FSIM = 0.7521); (i) our
method (PSNR = 41.64 dB, SSIM = 0.9863, FSIM = 0.9911).

The majority of the images in Figures 4–6 show that, despite the method’s various
denoising impacts for different noises, our proposed method was still the best when
compared to the other five methods. For example, in the denoising results of impulse noise
(Figure 4), there are apparent unclear image texture phenomena in Figure 4d. Figure 4e not
only retains a lot of noise, but the image structure cannot be identified either. Figure 4f has
blurred edges and decreased brightness, while Figure 4g has a certain structural fidelity but
a lot of noise residues. Although the noise is removed in Figure 4h, the overall appearance
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is very blurred, and the image edge cannot be clearly identified. Conversely, Figure 4i not
only removes the noise completely but also further enhances the smoothness of the image
while preserving the detailed structure of the image. This is due to the positive and effective
use of our designed γ-norm and TV norm. In addition, our proposed method preserved
the contrast and brightness of the original image well. In the Poisson noise denoising
results (Figure 5), we can see that the enlarged parts of Figure 5d–g clearly show that these
comparison methods blurred the noise part but did not remove the blurred part, resulting
in a less clear image. The detail structure of Figure 5h is very blurred, and the overall clarity
of the picture is seriously reduced. Our denoising method (Figure 5i) is more visible to the
naked eye than other denoising methods and provides a smoother image. Although the
overall denoising results of our method and WNNM-RPCA for Gaussian noise (Figure 6)
did not differ significantly, it is nevertheless obvious from the details that our method
preserved the clearest image structure and performed the most complete denoising.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Denoising images of Starfish by different methods (Poisson noise). (a) Singular value
comparison; (b) original clean image; (c) noisy image (Poisson noise); (d) RPCA (PSNR = 27.11 dB,
SSIM = 0.9119, FSIM = 0.9561); (e) AMlogtv (PSNR = 25.65 dB, SSIM = 0.7654, FSIM = 0.9682);
(f) NonRPCA (PSNR = 28.45 dB, SSIM = 0.9086, FSIM = 0.9541); (g) WNNM−RPCA (PSNR = 28.83 dB,
SSIM = 0.9155, FSIM = 0.9582); (h) TDV (PSNR = 20.84 dB, SSIM = 0.5388, FSIM = 0.7005); (i) our
method (PSNR = 29.30 dB, SSIM = 0.9324, FSIM = 0.9690).
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We used the PSNR, SSIM, and FSIM as the objective indicators of image quality
evaluation, and the data results are shown in Tables 1–6. In order to show the denoising
performance of our method more intuitively, we drew histograms for the average of
evaluation indexes of eight natural images under different noises according to the six
methods, as shown in Figure 7. Our method achieved the best results in different noise
experiments as indicated by the data from the objective indicators. In the impulse denoising
experiment, our average PSNR was 23% higher than that of WNNM−RPCA, and the
average SSIM was even 31% higher than that of WNNM−RPCA. In the Poisson noise
denoising experiment, the average PSNR of our method was 11% higher than that of the
classical algorithm RPCA, and the average FSIM was 32% higher than the TDV. In studies
including Gaussian noise denoising, the average PSNR of our method was 51% better than
that of AMlogtv.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Denoising images of Lena by different methods (Gaussian noise). (a) Singular value
comparison; (b) original clean image; (c) noisy image (Gaussian noise); (d) RPCA (PSNR = 33.61 dB,
SSIM = 0.9416, FSIM = 0.9698); (e) AMlogtv (PSNR = 25.24 dB, SSIM = 0.7445, FSIM = 0.9847);
(f) NonRPCA (PSNR = 37.56 dB, SSIM = 0.9437, FSIM = 0.9712); (g) WNNM−RPCA (PSNR = 38.86 dB,
SSIM = 0.9539, FSIM = 0.9766); (h) TDV (PSNR = 23.03 dB, SSIM = 0.6737, FSIM = 0.7617); (i) our
method (PSNR = 42.37 dB, SSIM = 0.9795, FSIM = 0.9890).
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(a) (b) (c)

Figure 7. Histogram of evaluation indicators of natural images. (a) Average PSNR; (b) average SSIM;
(c) average FSIM.

Table 1. PSNR comparisons of RPCA, AMlogtv, NonRPCA, WNNM−RPCA, TDV, and the proposed
method for noise removal in natural test images (optimal value: red line; suboptimal value: cyan line).

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Impulse noise

Butterfly 32.5246 20.8745 33.8365 30.9500 18.4085 41.6482
House 32.5501 24.5450 35.0507 31.1299 24.3206 41.7090

Peppers 30.9569 22.1821 31.9384 26.9935 21.8727 34.1587
Lena 33.1704 22.6855 34.8620 30.4863 22.0347 41.1695
Room 33.3740 22.9321 35.3441 33.8834 21.4471 41.4602
Bird 30.4850 21.6382 30.4429 28.0903 20.8948 33.2591

Camera 30.8366 21.7976 30.7196 30.9059 21.2003 33.4341
Starfish 30.2611 21.9611 32.7050 31.8355 20.7648 33.7062
Average 31.7698 22.3270 33.1124 30.5343 21.3679 37.5681

Poisson noise

Butterfly 33.1761 25.2643 37.8854 37.5122 19.3446 41.8914
House 33.1059 30.1854 35.1456 34.7763 25.9563 37.3046

Peppers 31.8290 25.5136 32.0457 31.9485 23.3223 33.0805
Lena 34.3953 26.2260 35.4915 35.3024 23.0865 37.6541
Room 35.2429 25.7317 35.5204 35.2885 22.2211 37.6050
Bird 31.0893 26.0181 31.4407 31.3215 21.9071 34.0229

Camera 30.6940 25.4728 32.7069 32.5430 22.0588 33.8362
Starfish 27.1146 25.6538 28.4586 28.8304 20.8408 29.3038
Average 32.0808 26.2582 33.5868 33.4403 22.3421 35.5873

Gaussian noise

Butterfly 33.2683 23.6624 37.4013 38.9586 20.4690 42.1629
House 33.1171 28.5725 37.9599 38.4267 25.7665 42.1794

Peppers 31.0499 24.5416 33.4540 34.0774 23.0379 34.6498
Lena 33.6107 25.2392 37.5569 38.8699 23.0261 42.3696
Room 33.6502 25.0528 37.4442 37.9283 22.0668 42.1284
Bird 30.6875 24.7570 32.3656 33.0949 21.7068 33.6199

Camera 30.7358 24.6608 32.5424 32.5958 21.9053 33.6987
Starfish 30.7621 24.6617 32.8105 33.5210 20.7648 34.0942
Average 32.1102 25.1435 35.1919 35.9340 22.3429 38.1129

The Average values are in bold black.
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Table 2. SSIM comparisons of RPCA, AMlogtv, NonRPCA, WNNM−RPCA, TDV, and the proposed
method for noise removal in natural test images (optimal value: red line; suboptimal value: cyan line).

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Impulse noise

Butterfly 0.9635 0.6670 0.9318 0.7651 0.6336 0.9863
House 0.9455 0.6096 0.8849 0.6157 0.7367 0.9735

Peppers 0.9025 0.5965 0.8651 0.6368 0.6742 0.9220
Lena 0.9514 0.5835 0.9172 0.6705 0.6469 0.9783
Room 0.9694 0.5389 0.9442 0.7807 0.4661 0.9859
Bird 0.9086 0.5658 0.8395 0.6933 0.6691 0.9280

Camera 0.8935 0.5237 0.8128 0.7930 0.6357 0.9174
Starfish 0.9226 0.5696 0.9301 0.8667 0.5382 0.9403
Average 0.9321 0.5818 0.8907 0.7277 0.6251 0.9539

Poisson noise

Butterfly 0.9559 0.8563 0.9652 0.9600 0.6689 0.9902
House 0.9255 0.8427 0.9220 0.9104 0.7622 0.9764

Peppers 0.8913 0.8196 0.8981 0.8910 0.7094 0.9310
Lena 0.9366 0.7906 0.9482 0.9420 0.6774 0.9857
Room 0.9578 0.6895 0.9646 0.9597 0.4969 0.9905
Bird 0.8936 0.8164 0.8997 0.8920 0.7045 0.9410

Camera 0.8784 0.7814 0.8803 0.8731 0.6741 0.9241
Starfish 0.9119 0.7654 0.9086 0.9155 0.5388 0.9324
Average 0.9188 0.7952 0.9233 0.6540 0.9180 0.9589

Gaussian noise

Butterfly 0.9581 0.8154 0.9589 0.9684 0.7226 0.9848
House 0.9339 0.8100 0.9256 0.9316 0.7593 0.9706

Peppers 0.8933 0.7645 0.8948 0.9107 0.7017 0.9258
Lena 0.9416 0.7445 0.9437 0.9539 0.6737 0.9795
Room 0.9598 0.6556 0.9618 0.9476 0.4881 0.9851
Bird 0.8912 0.7688 0.8906 0.9125 0.6947 0.9306

Camera 0.8812 0.7513 0.8744 0.8705 0.6626 0.9168
Starfish 0.9175 0.7217 0.9198 0.9321 0.5382 0.9421
Average 0.9220 0.7539 0.9212 0.9284 0.6551 0.9544

The Average values are in bold black.

Table 3. FSIM comparisons of RPCA, AMlogtv, NonRPCA, WNNM−RPCA, TDV, and the proposed
method for noise removal in natural test images (optimal value: red line; suboptimal value: cyan line).

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Impulse noise

Butterfly 0.9802 0.9860 0.9592 0.9015 0.7521 0.9911
House 0.9751 0.9725 0.9519 0.8593 0.7616 0.9880

Peppers 0.9551 0.9436 0.9374 0.8510 0.7726 0.9647
Lena 0.9768 0.9737 0.9596 0.8735 0.7423 0.9888
Room 0.9827 0.9717 0.9720 0.9307 0.5929 0.9925
Bird 0.9588 0.9526 0.9333 0.8878 0.7480 0.9666

Camera 0.9530 0.9579 0.9148 0.9165 0.7002 0.9594
Starfish 0.9558 0.9583 0.9638 0.9452 0.7004 0.9676
Average 0.9671 0.9645 0.9490 0.8956 0.7212 0.9773

Poisson noise

Butterfly 0.9755 0.9848 0.9804 0.9792 0.7675 0.9942
House 0.9667 0.9774 0.9655 0.9611 0.7848 0.9883

Peppers 0.9495 0.9415 0.9538 0.9513 0.7925 0.9697
Lena 0.9694 0.9843 0.9746 0.9718 0.7626 0.9929
Room 0.9782 0.9746 0.9824 0.9806 0.6177 0.9950
Bird 0.9547 0.9661 0.9576 0.9542 0.7619 0.9709

Camera 0.9496 0.9578 0.9502 0.9472 0.7118 0.9641
Starfish 0.9561 0.9682 0.9541 0.9582 0.7005 0.9690
Average 0.9624 0.9693 0.9648 0.9630 0.7374 0.9805
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Table 3. Cont.

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Gaussian noise

Butterfly 0.9744 0.9835 0.9762 0.9807 0.8007 0.9900
House 0.9690 0.9813 0.9664 0.9696 0.7821 0.9865

Peppers 0.9499 0.9590 0.9521 0.9586 0.7899 0.9663
Lena 0.9698 0.9847 0.9712 0.9766 0.7617 0.9890
Room 0.9788 0.9762 0.9800 0.9765 0.6106 0.9919
Bird 0.9527 0.9558 0.9523 0.9599 0.7583 0.9666

Camera 0.9452 0.9488 0.9429 0.9419 0.7083 0.9596
Starfish 0.9555 0.9592 0.9573 0.9633 0.7004 0.9687
Average 0.9619 0.9685 0.9623 0.9658 0.7390 0.9773

The Average values are in bold black.

4.2. Medical Image Denoising

In this section, we selected eight medical images from public datasets for testing, as
shown in Figure 8. We show the visual comparison results of three images in Figures 9–11.
Among them, Figures 9a, 10a, and 11a are the singular value distribution curves of the
denoised image and the original image of each comparison method. We learn that the
singular value of the denoised image obtained by the proposed method is closer to the real
ground value, which also proves that it has the advantage of suppressing the overpenalized
singular value of the classical competition method (RPCA) while maintaining a small
singular value.

By observing the denoising experiment findings, we discover that in the denoising re-
sults of impulse noise (Figure 9), the enlarged images of Figure 9d,h have clear artifacts and
little to no noise. In the enlarged image of Figure 9e, the noise is mixed with the structure
of the image itself, and the image and noise cannot be distinguished. Although there is not
any evident noise in the magnified version of Figure 9f, there is a small blurring of the edge
information of the lung tissue and some “oil painting” phenomenon. In Figure 9g, there
is a great deal of noise, which makes the image unrecognizable. The enlarged image of
Figure 9h is very blurred, and there is obvious noise in the image. Conversely, our method
(Figure 9i) has the best denoising effect. The image edge structure is highly clear and
noise-free, which is nearly identical to the original image. In the experiment of removing
Poisson noise, we find that although the denoising effects of these six algorithms are very
close, we can still find that Figure 10d,g are obviously darkened, and there are still some
impurities in the background of Figure 10f. Figure 10e,h blur the original details of the
image, but our method (Figure 10i) does not exhibit these phenomena. Furthermore, when
denoising the image containing Gaussian noise, it is obvious from the comparison result
diagram in Figure 11 that although the comparison method removes noise to a certain
extent, it does not smooth the image when saving the image detail information, leaving the
image with insufficient clarity. In conclusion, our approach had a good edge recovery effect,
entirely preserved lung parenchyma, and effectively reduced noise. It can be determined
that our denoising method was superior to other methods by a subjective visual evaluation.

The objective evaluation is shown in Tables 4–6 and Figure 12. It can be seen from
Figure 12 that our proposed method also achieved the best effect in medical image denoising.
Specifically, when denoising impulse noise, the average PSNR value of NonRPCA was
roughly 40% higher than that of the classical RPCA algorithm, and the average PSNR
value of our method was about 8% higher than that of NonRPCA. For Poisson noise,
the average PSNR of our method was 36% higher than the latest method, AMlogtv, and
the average SSIM was 31% higher than TDV, which also showed the effectiveness of our
method. Additionally, against the background of Gaussian noise, the average SSIM values
of all methods were low, which may be due to the characteristics of Gaussian noise itself,
causing the brightness, contrast, and image structure to affect the SSIM value. Moreover,
the average SSIM value of our proposed method was still higher than other methods.
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In summary, the objective evaluation results of images were essentially consistent with the
subjective analysis.

Figure 8. The LungCT images used in our experiments. The image numbers are given from left to
right as 1 to 8.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Denoising images of LungCT image no. 1 by different methods (impulse noise). (a) Sin-
gular value comparison; (b) original clean image; (c) noisy image (impulse noise); (d) RPCA
(PSNR = 34.11 dB, SSIM = 0.8401, FSIM = 0.9904); (e) AMlogtv (PSNR = 20.81 dB, SSIM = 0.2979,
FSIM = 0.9630); (f) NonRPCA (PSNR = 39.39 dB, SSIM = 0.7965, FSIM = 0.9924); (g) WNNM−RPCA
(PSNR = 30.07 dB, SSIM = 0.7915, FSIM = 0.9761); (h) TDV (PSNR = 22.66 dB, SSIM = 0.2491,
FSIM = 0.8230); (i) our method (PSNR = 43.94 dB, SSIM = 0.8709, FSIM = 0.9968).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Denoising images of LungCT image no. 2 by different methods (Poisson noise). (a) Sin-
gular value comparison; (b) original clean image; (c) noisy image (Poisson noise); (d) RPCA
(PSNR = 25.99 dB, SSIM = 0.9620, FSIM = 0.9656); (e) AMlogtv (PSNR = 29.25 dB, SSIM = 0.8792,
FSIM = 0.9870); (f) NonRPCA (PSNR = 37.75 dB, SSIM = 0.9732, FSIM = 0.9918); (g) WNNM−RPCA
(PSNR = 31.22 dB, SSIM = 0.9776, FSIM = 0.9786); (h) TDV (PSNR = 23.51 dB, SSIM = 0.6897,
FSIM = 0.8187); (i) our method (PSNR = 41.38 dB, SSIM = 0.9895, FSIM = 0.9956).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Denoising images of LungCT image no. 3 by different methods (Gaussian noise). (a) Sin-
gular value comparison; (b) original clean image; (c) noisy image (Gaussian noise); (d) RPCA
(PSNR = 33.85 dB, SSIM = 0.6098, FSIM = 0.9916); (e) AMlogtv (PSNR = 25.68 dB, SSIM = 0.3639,
FSIM = 0.9968); (f) NonRPCA (PSNR = 34.89 dB, SSIM = 0.5844, FSIM = 0.9867); (g) WNNM−RPCA
(PSNR = 35.28 dB, SSIM = 0.5988, FSIM = 0.9890); (h) TDV (PSNR = 23.30 dB, SSIM = 0.2879,
FSIM = 0.8248); (i) our method (PSNR = 37.94 dB, SSIM = 0.6233, FSIM = 0.9980).
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(a) (b) (c)

Figure 12. Histogram of evaluation indicators of medical images. (a) Average PSNR; (b) average
SSIM; (c) average FSIM.

Table 4. PSNR comparisons of RPCA, AMlogtv, NonRPCA, WNNM−RPCA, TDV, and the proposed
method for noise removal in LungCT images (optimal value: red line; suboptimal value: cyan line).

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Impulse noise

1 34.1086 20.8109 39.3910 30.0661 22.6606 43.9398
2 29.7339 20.7488 39.8981 28.6808 22.5140 42.6776
3 27.5287 20.7872 36.5463 29.3167 22.3062 40.9121
4 34.5260 20.7857 41.9476 31.1892 22.3296 43.9249
5 22.7421 20.6817 36.5971 26.6155 22.6972 39.0744
6 21.6578 20.5327 36.2646 24.5502 23.0144 38.7777
7 21.5732 20.4626 33.8149 25.8391 23.0563 36.7197
8 20.8001 20.3707 32.7776 22.9537 22.9246 36.3267

Average 26.5838 20.6475 37.1546 27.4014 22.6878 40.2941

Poisson noise

1 25.3796 29.2750 37.8533 30.4089 23.4745 40.7487
2 25.9954 29.2576 37.7551 31.2219 23.5091 41.3824
3 32.0855 29.0463 40.0718 40.0718 23.8365 42.0702
4 27.2295 29.0262 39.0888 32.7282 24.2402 40.3903
5 24.7137 29.2884 35.0703 27.0225 23.7425 38.5899
6 25.3914 29.0887 36.5243 27.4036 22.3025 40.6466
7 28.2686 28.8807 29.3977 31.1992 27.3887 37.9662
8 26.2732 28.8691 33.4158 28.9564 27.4388 35.8507

Average 26.9171 29.0915 36.9186 30.9760 24.4916 39.7056

Gaussian noise

1 29.0228 25.7441 34.9713 32.3936 23.5661 37.0809
2 29.0297 25.7769 33.8007 33.1549 23.5022 37.4827
3 33.8497 25.6839 34.8873 35.2871 23.2967 37.9355
4 30.3547 25.6564 33.3377 31.6763 23.4633 35.8458
5 27.5425 25.7290 34.7948 30.7608 23.7899 36.1815
6 27.9469 25.5031 32.8209 28.5334 24.3505 35.7714
7 26.7573 25.4181 32.1886 27.2011 24.4782 34.9603
8 29.3714 25.3123 34.1811 28.4058 24.1735 36.1523

Average 29.2344 25.6030 33.8728 30.9266 23.8275 36.4263

The Average values are in bold black.
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Table 5. SSIM comparisons of RPCA, AMlogtv, NonRPCA, WNNM−RPCA, TDV, and the proposed
method for noise removal in LungCT images (optimal value: red line; suboptimal value: cyan line).

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Impulse noise

1 0.8401 0.2979 0.7965 0.7915 0.2491 0.8709
2 0.7893 0.3024 0.7830 0.7847 0.2533 0.8524
3 0.7605 0.3158 0.7402 0.7937 0.2670 0.8437
4 0.8474 0.3109 0.8179 0.7987 0.2618 0.8750
5 0.6546 0.2922 0.7103 0.7359 0.2513 0.7766
6 0.6337 0.2741 0.6918 0.7015 0.2475 0.7741
7 0.6276 0.2690 0.7090 0.7140 0.2481 0.7159
8 0.6285 0.2732 0.6860 0.6430 0.2437 0.7080

Average 0.7227 0.2919 0.7418 0.7453 0.2527 0.8020

Poisson noise

1 0.9589 0.8826 0.9740 0.9766 0.6923 0.9883
2 0.9620 0.8792 0.9732 0.9776 0.6897 0.9895
3 0.9816 0.8739 0.9847 0.9840 0.7149 0.9903
4 0.9654 0.8779 0.9794 0.9774 0.7430 0.9840
5 0.9479 0.8940 0.9539 0.9610 0.7055 0.9791
6 0.9573 0.9022 0.9628 0.9664 0.6900 0.9821
7 0.9682 0.9070 0.9658 0.9734 0.8766 0.9745
8 0.9600 0.9160 0.9509 0.9645 0.8944 0.9694

Average 0.9626 0.8916 0.9680 0.9726 0.7508 0.9821

Gaussian noise

1 0.5095 0.3330 0.5307 0.5627 0.2681 0.5862
2 0.5185 0.3425 0.5144 0.5737 0.2739 0.5981
3 0.6098 0.3639 0.5844 0.5988 0.2879 0.6233
4 0.5725 0.3535 0.5310 0.5790 0.2866 0.5832
5 0.5293 0.3287 0.5352 0.5428 0.2726 0.5680
6 0.4550 0.3071 0.4537 0.5142 0.2696 0.5432
7 0.4861 0.3042 0.4412 0.5022 0.2716 0.5115
8 0.4883 0.2991 0.4628 0.5005 0.2657 0.5224

Average 0.5211 0.3290 0.5067 0.5467 0.2745 0.5669

The Average values are in bold black.

Table 6. FSIM comparisons of RPCA, AMlogtv, NonRPCA, WNNM−RPCA, TDV, and the proposed
method for noise removal in LungCT images (optimal value: red line; suboptimal value: cyan line).

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Impulse noise

1 0.9904 0.9630 0.9924 0.9761 0.8230 0.9968
2 0.9761 0.9656 0.9928 0.9675 0.8219 0.9956
3 0.9645 0.9709 0.9880 0.9662 0.8086 0.9938
4 0.9907 0.9657 0.9952 0.9759 0.8328 0.9759
5 0.9392 0.9652 0.9850 0.9602 0.8573 0.9912
6 0.9243 0.9651 0.9827 0.9441 0.8681 0.9909
7 0.9159 0.9665 0.9816 0.9501 0.8771 0.9870
8 0.9057 0.9732 0.9831 0.9226 0.8658 0.9879

Average 0.9508 0.9669 0.9876 0.9578 0.8443 0.9925

Poisson noise

1 0.9619 0.9900 0.9919 0.9769 0.8163 0.9954
2 0.9656 0.9870 0.9918 0.9786 0.8187 0.9956
3 0.9917 0.9775 0.9938 0.9928 0.8221 0.9957
4 0.9756 0.9673 0.9939 0.9834 0.8533 0.9945
5 0.9490 0.9921 0.9899 0.9504 0.8443 0.9944
6 0.9570 0.9880 0.9905 0.9577 0.7483 0.9943
7 0.9846 0.9902 0.9898 0.9771 0.9213 0.9917
8 0.9782 0.9885 0.9844 0.9687 0.9231 0.9894

Average 0.9704 0.9851 0.9907 0.9732 0.8434 0.9938
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Table 6. Cont.

Noise Type Images RPCA AMlogtv NonRPCA WNNM−RPCA TDV Ours

Gaussian noise

1 0.9749 0.9944 0.9907 0.9907 0.8388 0.9949
2 0.9752 0.9961 0.9882 0.9821 0.8374 0.9965
3 0.9916 0.9968 0.9867 0.9890 0.8248 0.9980
4 0.9821 0.9770 0.9823 0.9760 0.8547 0.9960
5 0.9640 0.9902 0.9840 0.9701 0.8755 0.9909
6 0.9698 0.9873 0.9782 0.9601 0.8884 0.9890
7 0.9603 0.9848 0.9756 0.9478 0.8935 0.9853
8 0.9791 0.9915 0.9893 0.9625 0.8858 0.9926

Average 0.9746 0.9897 0.9844 0.9709 0.8623 0.9929

The Average values are in bold black.

4.3. Face Denoising with Illumination Variation

Face images of the same subject under different illumination conditions generally lie
in a low-dimensional subspace, while the outliers resulting from lighting variations can
be assumed to be sparse [52]. RPCA can therefore balance the uneven brightness of the
image surface and retain important facial features while removing noise. Moreover, given
enough facial images of the same person, it is possible to reconstruct real facial images. We
experimented with 64 images from the Extended Yale B database for each participant. All
images were converted to 32,256-dimensional column vectors, hence Y ∈ R32256×1 for each
subject. Since the images were well aligned, L should have a rank of one.

In order to demonstrate the effectiveness of the proposed method, we selected facial
images of three subjects from the Extended Yale B database and added different noises
to each subject to demonstrate the method’s performance, as shown in Figures 13–15. By
observing these three sets of photos, it can be shown that in comparison to the experimental
outcomes of the comparison methods, the proposed method could more effectively remove
the occlusion shadow of the image and keep the important features of the face image
on the basis of successfully removing the noise, thereby restoring the true face image.
The denoising results of RPCA and WNNM-RPCA were similar, and all of them eliminated
a significant amount of noise when removing impulse noise (Figure 13). However, the
brightness of the image surface was unbalanced, making it difficult to clearly distinguish
facial characteristics. The AMlogtv method could not remove noise in facial images.
The TDV method removed noise, but the shadow in the image was not removed, which
made the face difficult to identify. Although NonRPCA removed most of the shadows of
the face, the denoised image was not smooth enough to cause the detail structure to be
very blurred. Similarly, even when removing Poisson and Gaussian noise, respectively,
these comparison methods’ denoising effects remained poor. For instance, when removing
Poisson noise (Figure 14), WNNM-RPCA (Figure 14f) had the worst impact, not only
not entirely removing the noise but also leaving half of the facial image in the shadow.
Although NonRPCA (Figure 14e) preserved facial features well, it produced some artifacts
in the denoising process. When removing Gaussian noise (Figure 15), RPCA (Figure 15c)
and AMlogtv (Figure 15d) still had a small amount of noise, and the uneven brightness of
the image surface was not balanced, which blocked the facial features of the image. It can
be seen that the experimental effect of our method was the best.

4.4. Implementation Computational Cost

To verify the time cost performance of the proposed method, the starfish image with
impulse noise and a size of 256 × 256 was chosen as the test image.

As shown in Table 7, the running time of the proposed method was shorter compared
with that of NonRPCA and TDV. Although the running time of the proposed method was
longer compared with that of RPCA, AMlogtv, and WNNM-RPCA, the denoising effect
of the proposed method was significantly higher than that of the above three methods.
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The proposed method sacrificed a certain degree of computational cost and improved the
accuracy of image restoration.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 13. Denoising images of yaleB01 by different methods (impulse noise). (a) Original facial
image; (b) noisy image (impulse noise); (c) RPCA; (d) AMlogtv; (e) NonRPCA; (f) WNNM-RPCA;
(g) TDV; (h) our method.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 14. Denoising images of yaleB06 by different methods (Poisson noise). (a) Original facial
image; (b) noisy image (Poisson noise); (c) RPCA; (d) AMlogtv; (e) NonRPCA; (f) WNNM-RPCA;
(g) TDV; (h) our method.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 15. Denoising images of yaleB02 by different methods (Gaussian noise). (a) Original facial
image; (b) noisy image (Gaussian noise); (c) RPCA; (d) AMlogtv; (e) NonRPCA; (f) WNNM-RPCA;
(g) TDV; (h) our method.

Table 7. computational time for different methods.

Methods Processing time

RPCA 2.1188
AMlogtv 1.5780

NonRPCA 3.6567
WNNM-RPCA 2.3520

TDV 3.5570
Ours 3.4204

5. Conclusions

In this study, we proposed a low-rank matrix approximation method that combined the
nonconvex γ-norm, the l1-norm, and the anisotropic TV regularization to remove noise in
images. A denoising experiment on standard natural images, clinical medical images, and
facial images was carried out in this paper. The results showed that: (1) When compared
with five state-of-the-art methods (RPCA, AMlogtv, NonRPCA, WNNM-RPCA, and TDV),
our method was superior in terms of clarity, brightness, and detail characterization, and
its denoising results were more consistent with subjective vision. (2) In the objective
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analysis, the quantitative results based on PSNR, SSIM, and FSIM showed that our method
had higher scores, and the objective index was obviously improved compared with some
methods. In addition, in the experiment of removing facial image noise, our method could
highlight facial features more clearly, without artifacts, while removing noise. At the same
time, our method had a lower computational cost than NonRPCA and TDV. Although its
cost was higher than the other three methods, our denoising effect was better than theirs. To
summarize, the proposed RPCA framework based on a nonconvex low-rank approximation
and TV norm showed good performance in noise removal and in the retention of important
features of images, which provides a reference for the future application of nonconvex
functions in the field of image denoising. However, our method can only process grayscale
images at present, and it needs to be optimized in terms of computational cost. Therefore, in
the future, we will continue to investigate new iterative optimization methods for solving
nonconvex optimization problems, as well as extend our research to a tensor framework
for solving the problem of color image denoising in complex noise backgrounds.
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