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A B S T R A C T   

Ocean wave energy stands as a crucial component in the quest for sustainable and renewable energy sources, 
essential in the global effort to mitigate climate change. However, a significant challenge in this field is opti-
mizing the efficiency of Wave Energy Converters (WECs) on a regional scale, particularly Oscillating Surge Wave 
Energy Converters (OSWECs). This challenge stems from the complex, nonlinear interactions between ocean 
waves and these devices, necessitating precise tuning of Power Take-Off (PTO) system settings and optimal 
placement for the highest possible performance and stability. To address this challenge, our study introduces the 
Hill Climb - Explorative Grey Wolf Optimizer (HC-EGWO), a novel algorithm combining local search and swarm- 
based global optimization strategies. This hybrid approach effectively balances exploration and exploitation in 
the solution space, leading to more optimal PTO settings for OSWECs. Alongside this algorithmic development, 
we conduct a thorough feasibility analysis based on the constraints of the flap’s maximum angular motion. This 
ensures the optimized OSWEC operates within safe and efficient limits. In a comparative analysis with the Ge-
netic Algorithm (GA), the Particle Swarm Optimization (PSO), the artificial Gorilla Troops Optimizer (GTO), and 
different implementations of the GWO, our results show an improvement in power output, with the HC-EGWO 
method achieving up to a 3.31% increase over other variations of the GWO and 45% increase compared to all the 
methods. The findings of this study not only demonstrate the effectiveness of the HC-EGWO method but also 
provide strategic insights for the deployment of OSWECs in areas like the South Caspian Sea, where unique 
environmental factors imply careful consideration in the site selection process.   

1. Introduction 

The importance of ocean renewable energy cannot be overstated, as 
it offers a promising means to diversify the global energy portfolio, 
reduce dependence on fossil fuels, and mitigate the impacts of climate 
change [1]. Due to the vastness and untapped potential of the world’s 
oceans, harnessing their power for sustainable electricity generation is 
critical for meeting the rising energy demands of an ever-growing global 
population. Even statistical approaches have been devised to predict the 
wave power of the ocean [2]. Furthermore, ocean energy resources such 
as tidal, wave, and Ocean Thermal Energy Conversion (OTEC) exhibit 

lower variability and higher predictability compared to other renewable 
sources like wind and solar [3]. However, the ocean wave energy sector 
has witnessed the most substantial advancements in recent years, with 
numerous ocean Wave Energy Converters (WECs) under development 
and testing [4,5]. These devices capture and transform kinetic and po-
tential energy present in ocean waves into electricity [6]. 

There are several methods for WEC classification. The first one is 
based on location. The WEC can be located at the shoreline or offshore. 
Offshore devices can harvest greater amounts of energy. The following 
criterion is how the device operates; it can be divided into submerged 
pressure differential, oscillating water column (OWC) [7,8], 
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overtopping device, or oscillating surge wave energy converter [9], 
which is the most popular one [10]. There are also other types of con-
verters like point absorbers [11], Buoy-Rope-Drum (BRD) WEC [12], 
and a piezoelectric wave energy harvester [13]. In this research, an 
offshore OSWEC device is investigated. 

The vigorous surge motion, cost-effective installation, and minimal 
environmental impact have made OSWECs a preferable choice[14]. 
Numerous studies have investigated the potential of Oscillating Surge 
Wave Energy Converters (OSWECs) as a viable wave energy conversion 
technology; for instance, Ghasemipour et al. inspected nearshore regions 
of the southern coast of Iran for the feasibility of such devices [15]. 
Folley et al. have studied the effects of water depth [16] and device 
width [17] on the performance of OSWECs. The effects of the device’s 
flap’s width [18], length [19], orientation [20], shape, weight, and 
thickness [21] on the converter’s performance have also been studied. 
It’s been shown that the increase in the OSWEC’s PTO has positive ef-
fects on power and flap’s motion amplitude up to a certain point [22]. 
The wave characteristics like frequency [17] and period [23] can also 
influence the OSWEC’s performance. Moreover, Lin et al. showed that, 
on average, the viscous loss of the fluid decreases the capture factor by 
20% [24]. 

Almost all the numerical simulations in recent years have been based 
on Computational Fluid Dynamics (CFD). On one end of the spectrum of 
these methods is the Linear Potential Flow theory models [25], which 
are fast but not very accurate. On the other hand, some studies [26,27] 
have used Reynolds Averaged Navier–Stokes Equations (RANS) CFD 
solvers for WEC analysis and simulation, which are computationally 
complex and slow but offer higher fidelity [28]. OpenFOAM, an open- 
source CFD software, has also been used to analyze the effectiveness 
of energy-maximizing control systems and the Numerical Wave Tanks 
(NWTs) for WECs [29,30]. MATLAB is another software that has been 
utilized in this field [31]. 

Recently, the WEC-Sim module [32], designed for MATLAB and LPF- 
based, has been extensively used for WEC simulations [33]. Different 
types of converters like point absorbers [34], OSWECs [35–37], FOS-
WECs [38–40], and even novel WEC types [41] have been inspected 
using WEC-Sim. WEC-Sim is an open-source simulation tool designed for 
WEC numerical simulations [32]. Much research has been utilizing 
WEC-Sim to investigate OSWEC performance, which encompasses a 
variety of objectives, for instance, minimizing cost [35], reducing the 
hydrodynamic loads [42], lowering the applied loads to the support 
structure of the device [36], and mitigating the horizontal motion of the 
OSWEC’s platform which in turn reduces costs [40]. 

One of the important aspects of WEC performance improvement is 
the PTO optimization [43]. In the early studies, the predominant focus 
of numerical studies was on linear PTOs. For instance, Sheng et al. have 
optimized two models of linear PTOs for a Wave-Activated Bodies WEC 
[44] and an OWC [45]. However, researchers have since shown interest 
in the performance analysis of WECs with a Hydraulic PTO [46,47] or a 
mechanical one [48]. A variety of optimization studies have also been 
used in this field. In [49], an improved version of the differential evo-
lution (DE) algorithm was used for a WEC array, simultaneously 
achieving more precise convergence and speed. Gomes et al. [50] did a 
hull optimization of a floating OWC using DE and COBYLA, a direct 
search method, to achieve maximum power output. The Genetic Algo-
rithm (GA) has been used widely in the field of wave energy generation; 
for instance, in [51], it has been used for shape optimization of a planar 
pressure differential WEC, and in [52,53], the WEC array configuration 
was optimized as well. 

In [54], multiple meta-heuristic optimization algorithms, like GA or 
Particle Swarm Optimization (PSO), were used for the geometry opti-
mization of WECs. The PSO has also been used for the optimization of 
WEC systems [55,56]. Furthermore, Neshat et al. devised the improved 
Moth-Flame Optimizer (MFO) to optimize the geometry and the PTO 
settings of a generic multi-mode WEC [57]. In [58], the geometry of the 
wells turbine was improved using an automated optimization technique. 

Moreover, other meta-heuristic approaches, like the Mulit-Verse Opti-
mizer (MVO) [59], and the Grey Wolf Optimizer (GWO) [6] has been 
utilized for optimization in the field of other sources of renewable en-
ergy as well [60]. Additionally, artificial intelligence methods have been 
extensively used in this field as well [61,62]. 

In another study [63], the authors devised an innovative hybrid 
approach mixing specific fast local search (details can be found in[64]), 
numerical and evolutionary optimization for a WEC array, enabling 
them to achieve better solutions faster. In [65], an HPTO of a point 
absorber was optimized using ten different optimization algorithms. 
Results showed that a modified combination of Genetic, Surrogate, and 
fminsearch algorithms outperform others. 

Different studies have investigated the potential of wave energy 
harvesting in the Caspian Sea. Kamranzad et al. [66] found this sea a 
good location for wave energy exploitation due to its stability in mean 
wave power during different years. Alamian et al. [67] identified the 
point absorber device to be the most suitable WEC in this area based on 
wave and coastal parameters. Amirnia et al. [68] reported a 7.3% loss in 
exploitable wave energy due to uncertainty considerations. 

Multiple studies have found the Mazandaran shore the most suitable 
location for wave energy harvesting [69], these studies have used 
different softwares like WEC-Sim [70] and MIKE [71]. Finally, a recent 
study [72] introduced a centipede WEC and analyzed its performance 
using Simcenter Amesim software based on the hydraulic PTO param-
eters in a wave tank. 

Extensive studies have been conducted to identify the optimal loca-
tion for wave energy projects. Iuppa et al. [73] found the best location 
for a wave energy device by analyzing the wave and wind propagation 
data based on the energy potential and coast proximity of the potential 
locations. In [74], a more comprehensive study was done by factoring in 
environmental (designated marine protected areas) and socio- 
economical (traditional fishing zones) as well. Ergul et al. [75] sug-
gested a two-step multi-criteria decision-making (MCDM) that first 
found the best location and then the most suitable WEC for achieving 
maximum power output. 

Kamranzad et al. [76] developed a Multi-Criteria Approach (MCA) to 
find the best combinations of location/WEC. Then in [77], they modified 
their method to take into account the wave climate in a 55-year period in 
China. There has been a MATLAB-based application specifically to es-
timate the wave energy of a marine area in Spain [78]. Xu et al. [79] 
proposed a new ”top-down” method involving device-agnostic perfor-
mance constraints and economical factors to find the best location for 
WEC installation on the West Coast of Vancouver Island. Wang et al. 
[80] introduced a novel MCDM approach that combines seven methods, 
including Data Envelopment Analysis (DEA) approach, Fuzzy Best- 
Worst Method (Fuzzy BWM), etc., to create an integration framework 
to find the best locations for wave energy harvesting in Australia. 

This study proposes a fast and effective hybrid optimization method 
for maximizing the power absorption of an OSWEC based on the hind-
cast wave data from nine zones in the Caspian Sea, each has 9–12 data 
points. The significant contributions of this work are as follows:  

• Proposing a novel optimizer to maximize the power absorption of an 
OSWEC, the Hill Climb-Explorative Gray Wolf Optimizer (HC- 
EGWO) methodology combines a local search method with a global 
optimizer to balance exploration and exploitation rates for improved 
solution quality.  

• Developing a technical feasibility landscape analysis utilizing the 
Wave Energy Converter Simulator (WEC-Sim) numerical model to 
account for the maximum feasible angular motion of the flap, 
ensuring optimized OSWEC operation within safety and efficiency 
limits.  

• Insights for selecting optimal offshore sites, optimizing power 
output, and promoting the adoption of ocean renewable energy 
sources. 
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• Achieving a significant increase in power output (up to 58%) 
compared to other methods demonstrates the effectiveness of the 
proposed HC-EGWO optimization approach.  

• Gaining valuable knowledge for deploying OSWECs in the South 
Caspian Sea, considering its unique environmental conditions and 
energy potential. 

This study is organized as follows. Section 2 presents the data 
collection, WEC’s feasibility, and other preliminary analyses. Section 3 
goes over the multiple modifications of GWO and proposes a new 
optimization algorithm. The following section provides the benchmark 
functions used to evaluate the new algorithm’s performance. Section 5 
presents the problem formulation information. Finally, Section 6 pro-
vides the results of the study. 

2. Case study landscape analysis 

In this study, we selected potential wave energy conversion sites in 
the Caspian Sea by analyzing wave height and period data. Our 
approach is grounded in a comprehensive review of existing literature to 
identify and benchmark against similar works, ensuring our research is 
both novel and relevant. We then focus on the power take-off optimi-
zation of flap-based wave energy converters tailored for the identified 
hotspots to maximize power production. Recognizing the importance of 
empirical validation, we outline a future direction for integrating field 
trials, which are crucial for comparing numerical predictions with real- 
world data. 

2.1. The Caspian Sea 

The Caspian Sea is between Iran to the south, Russia to the north, 

Russia and Azerbaijan to the west, and Turkmenistan and Kazakhstan to 
the east. This body of water is often categorized either as the largest lake 
in the world or the most miniature sea on Earth, and it holds the 
distinction of being the largest landlocked body of water. It spans 
approximately 1030–1200 km in length and 196–435 km in width. The 
surface of the Caspian Sea lies around 28 meters below sea level. The 
northern part of the sea is notably shallow, with only a negligible 
portion of seawater present in the northern quarter and an average 
depth of less than 5 meters [81]. Hence, investigating the southern 
shores becomes more significant for wave analysis. Due to its status as 
one of Asia’s most crucial energy sources, the Caspian Sea has always 
attracted considerable attention from the industry. The expansion of its 
southern coast also presents significant potential for harnessing wave 
energy [70]. 

Various analyses have been conducted to forecast waves in the 
southern areas of the Caspian Sea, considering the prevailing direction 
of the dominant sea waves. Fig. 1 displays the projected values of 50- 
year dominant waves in the southern regions, utilizing the Gumble 
distribution [82]. Given the wave heights depicted in Fig. 1, it becomes 
crucial to identify a point with maximum wave energy that also offers 
convenient beach access. Therefore, comprehensive research is needed 
to analyze wave data in the southern Caspian Sea, aiming to identify this 
point and establish a general criterion for comparing energy levels 
among different points using parameters such as wave height and wave 
period. 

2.2. Data collection 

To investigate the southern coasts of the Caspian Sea, the initial step 
involved analyzing the data obtained from the Iranian National Institute 
for Oceanography and Atmospheric Science (INIO). Specifically, the 

Fig. 1. Projection of 50-year wave height (m) spatial variation in the southern coasts of the Caspian Sea [82,81].  
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applied data from the Iranian Seas Wave Modeling (ISWM) and the 
Iranian Wave Atlas (IWA) models were examined. These datasets 
covered the entire Caspian Sea over a five-year period, from January 
2006 to December 2010, with 1-h time intervals. With reference to 
relevant literature and local assessments, nine ports were selected on the 
southern coasts of the Caspian Sea. A designated area of 0.2 longitude 
and latitude was considered around these ports, and locations with 
available data within this area were extracted. In total, 105 data points 
from the southern coast area of the Caspian Sea were identified, and 
their specifications are detailed in Fig. 2 and Fig. 3. 

2.3. Preliminary analysis 

In order to understand the waves in the Caspian Sea, the data from 

nine selected ports were visualized. This was done by plotting wave rose 
diagrams (Fig. 4) and wave scatter diagrams (Fig. 5)) to visualize the 
distribution of wave directions and to identify the prevailing wave 
patterns in the region. The variations in wave height and wave period 
across different locations in the study area were unveiled by analyzing 
the wave scatter diagrams. As seen in Fig. 4, the waves have a relatively 
small magnitude and are mainly to the north, which is logical because 
these ports are in the southern part of the Caspian Sea. Moreover, from 
the scatter wave diagram in Fig. 5, the waves comparably have low 
heights and low periods, and the most prevalent waves have a height of 
20 cm and a period of 3 s. 

A power matrix was also made specifically for the Caspian Sea, 
shown in Fig. 6. This matrix comprehensively assessed the wave energy 
potential in these regions. It takes into account important factors such as 

Fig. 2. A representation of the surveyed areas along the southeastern coast of the Caspian Sea, including Torkaman, Amirabad, Babolsar, Mahmoud-Abad, and 
Nowshahr Port. 

Fig. 3. A representation of the surveyed areas along the southeastern coast of the Caspian Sea, including Ramsar, Kiashahr, Anzali Port, and Astara Port.  
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wave height and wave period to estimate the energy conversion capa-
bilities of OSWECs in these areas. As shown in Fig. 6, increasing either 
the height or the period of the wave can lead to higher absorbed energy. 

Collectively, the insights gained from the wave rose diagrams, wave 
scatter diagrams, and power matrix contribute to our understanding of 
the spatial distribution of wave energy in the Caspian Sea. 

2.4. WEC’s feasibility 

Analysis of OSWEC’s flap interaction with the wave under linear 
water wave theory assumptions requires the flap’s excursions to be 
adequately small. The reason is that the flap’s rotation should be small 
enough so that the correct and non-linear form of the hydrostatic stiff-
ness, which is (Kpsinθ), can be replaced by (Kp) [83]. Several studies 
[84,23,85,22] assumed the maximum angular motion of the flap to be 
30 ◦) [84]. In addition, this limitation helps the device to avoid damages, 
particularly in extreme sea states [85]. In Fig. 7, the feasible area of the 
damping and stiffness of the PTO are presented. First, the literature for 
the range of viable damping and stiffness values for the PTO was 
reviewed, the result of which is shown by the orange color. Next, based 
on the OSWEC’s flap oscillation limitation, the feasible values of KPTO 
and CPTO were finalized, and the red area was omitted. Finally, the 
remaining area, shown by the color green, represents the applicable 
range of these two critical parameters. 

2.5. Preliminary sensitivity analysis 

In order to investigate the impact of critical parameters on the per-
formance of an oscillating wave energy converter, a sensitivity analysis 
was conducted. Wave height (H), wave period (T), PTO’s damping (C), 
and stiffness (K) were analyzed regarding the power output of the system 
through six plots in Fig. 8. By examining the plots, valuable insights 
were obtained regarding the optimal values for these parameters and 
their combinations for maximizing power generation. 

Fig. 8-(a) represents the effect of H and T in optimizing the generated 
power of the OSWEC. The plot reveals that a combination of high wave 
height and wave period leads to the best power outputs. However, it is 
noteworthy that extreme values of T can decrease the power. Fig. 8-(b) 
illustrates the influence of K and H on the converter’s power generation. 
As can be seen, both high and low levels of PTO stiffness can result in 
passable power outputs. However, the highest power is achieved when K 
is moderate. Fig. 8-(c) depicts the relation between C and H and the 
device’s generated power. High wave heights and low values of PTO 
damping correspond to favourable power outputs and improved 
performance. 

Fig. 8-(d) shows the effects of K and T variation on power. Accord-
ingly, the wave periods within the range of approximately 6 to 9 s yield 
pleasing power outputs. Furthermore, the power improves significantly 
as the PTO stiffness approaches its medium values. Fig. 8-(e) showcases 
the influence of C and T. Similar to the previous plot, wave periods 
ranging from approximately 6 to 9 s produce the most favourable power 
outputs—additionally, the performance improves as the PTO damping 

Fig. 4. the wave rose diagram for the nine analyzed sea ports reveals relatively small wave magnitudes that predominantly originate from the north. This observation 
aligns with expectations since these ports are located in the southern region of the Caspian Sea. 
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decreases. Finally, in Fig. 8-(f), the PTO parameters regarding their ef-
fect on the power output have been investigated. According to the plot, 
almost always lower values C result in better power, and a K value 

between 10 and 70 MNm/rad leads to the best performance. Overall, the 
parameter’s effects can be explained relatively simply. In summary, 
higher H and lower C lead to the best power outputs. Furthermore, 

Fig. 5. The wave scatter diagram of the nine studied ports.  

Fig. 6. The power matrix of the southern coasts of the Caspian Sea.  
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moderate values of T and K lead to the best performance. Overall, it can 
be seen that the problem at hand is a multimodal optimization problem 
and has multiple optima. 

Next, the effects of the PTO parameters on the PTO power were 
further inspected in Fig. 9. The black parts show the unfeasible areas 
calculated in previous sections. Similar to the power output, low values 
of C and moderate K values bring about the highest PTO forces. It is 
worth noting that in the OSWEC, the power output is calculated by 
multiplying PTO force by the flap’s velocity [23]. 

3. Optimization approach 

3.1. Genetic algorithm 

Genetic Algorithm (GA) is based on the theory of evolution. In this 

method, each chromosome represents a solution. In each iteration, high- 
performing chromosomes reproduce to obtain better chromosomes in 
the next generation. GA does this by utilizing a few mechanisms: se-
lection, crossover, mutation, and elitism. These operations have to be 
fine-tuned in order to get the best results [86]. 

Selecting the chromosomes with the highest fitness values to be the 
parents of the next generation is called selection. There are different 
ways to achieve this, all of which include giving more probability of 
selection to the individuals with the highest fitness and then using a 
random selection. In this paper, a roulette wheel method was used for 
selection. Next is crossover, which is the random pairing of chromo-
somes chosen in the selection stage to create children for the next gen-
eration. This is done by randomly exchanging some genomes (each gene 
represents a variable) of the chromosomes [86]. 

There is another mechanism called mutation, which helps diversify 

Fig. 7. The feasible area of the PTO damping and stiffness used in this study.  

Fig. 8. Sensitivity analysis plots for the key parameters of the OSWEC (Wave height, wave period, PTO damping, and PTO stiffness).  
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the population. In it, some genes in chromosomes are changed 
randomly. Mutation ensures more exploration and prevents premature 
convergence. Finally, elitism preserves the best chromosomes from 
change and moves them to the next generation [86]. 

3.2. The particle swarm optimizer (PSO) 

Particle swarm optimization (PSO) algorithm is a stochastic opti-
mization technique that imitates the social behaviour of different ani-
mals, birds, and fishes. These animals cooperate in a social manner to 
find prey, and each member modifies its path based on its and the 
swarm’s experiences. Each search agent tries to find the best solution 
based on 3 factors: its velocity, personal best solution, and the global 
best solution [87]. Here are the brief formulation of this algorithm: 

vk+1i = ωvki +C1⋅rand⋅(gk − xki )+C2⋅rand⋅(pk − xki ) (1)  

xk+1i = xki + vk+1i (2)  

in which, vki and xki are the velocity and position of particle k, vk+1i and 
xk+1i are the velocity and position of particle k + 1, ω,C1, and C2 are the 
control parameters, the gk and pk are the global and personal best, and 
rand is a random number between 0 and 1. The GA [88] and the PSO 
[89] are of the most popular optimization algorithms that have been 
used in the field of renewable energy [90] 

3.3. The artificial Gorilla Troops Optimizer (GTO) 

The artificial Gorilla Troops Optimizer (GTO) is a new metaheuristic 
algorithm inspired by the social intelligence of gorilla troops in nature. 
In this algorithm, 5 different strategies are used to mathematically 
present the social behaviors of gorillas via optimization mechanisms, 
namely exploration and exploitation. Three of these tactics are for 
exploration: migration to unidentified places, moving to other gorillas, 
and migration to identified places. On the contrary, two strategies are 
used for exploitation, which are following the silverback and competi-
tion for adult females. The silverback gorillas act as the leaders of the 
group; they make decisions and guide the other gorillas, but as they age, 
they are replaced with younger gorillas. An extensive formulation and 
benchmarking of this algorithm is presented in [91]. 

3.4. The standard GWO 

The Grey Wolf Optimizer (GWO) is a bio-inspired algorithm based on 
a grey wolf breed’s leadership hierarchy and hunting behaviour. Mir-
jalili et al. [92] simplified their hunting mechanism and introduced four 
types of wolves, the alpha (α), the beta (β), the delta (δ), which are, 
respectively, the best solutions of the algorithms (have the best knowl-
edge about the location of the optimum) and the omegas (ω) which 
comprise the rest of the pack and follow the three aforementioned 
wolves to get closer to the prey. 

We can show the encircling of the prey process mathematically using 
the following equations: 

D→=

⃒
⃒
⃒C
→
. Xp
̅→
(

t
)
− X→

(
t
)⃒
⃒
⃒ (3)  

X→
(

t+ 1
)
= Xp
̅→
(

t
)
− A→.D→ (4)  

in which t is the current iteration, X→ indicates the position of a grey wolf, 
Xp
̅→ is the position of the prey, and A→ and C→ are coefficient vectors. 

The A→ and C→ vectors are determined as follows: 

A→= 2 a→.r1
→− a→ (5)  

C→= 2.r2
→ (6)  

in which a→ linearly decreases from 2 to 0, and r1
→ and r2

→ are random 
numbers between 0 and 1. 

As stated, the ω wolves update their positions based on the three best 
search agents (α,β, and δ wolves). They follow these equations: 

Dα
̅→

=

⃒
⃒
⃒ C1
̅→

. Xα
̅→

− X→
⃒
⃒
⃒ (7)  

Dβ
̅→

=

⃒
⃒
⃒ C2
̅→

. Xβ
̅→

− X→
⃒
⃒
⃒ (8)  

Dδ
̅→

=

⃒
⃒
⃒ C3
̅→

. Xδ
̅→

− X→
⃒
⃒
⃒ (9)  

X1
̅→

= Xα
̅→

− A1
̅→

.
(

Dα
̅→
)

(10)  

Fig. 9. Sensitivity analysis result of the effects of PTO parameters on the PTO force. Unfeasible values, shown in black, are excluded from the analysis.  
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X2
̅→

= Xβ
̅→

− A2
̅→

.
(

Dβ
̅→
)

(11)  

X3
̅→

= Xδ
̅→

− A3
̅→

.
(

Dδ
̅→
)

(12)  

X→
(

t+ 1

)

=
X1
̅→
(

t
)
+ X2
̅→
(

t
)
+ X3
̅→
(

t
)

3
(13) 

This was a simple overview of GWO’s origin and mechanism. 

3.5. Modified GWO (mGWO) 

Mittal et al. [93] believed that the linear equation of the a does not 
provide a good balance between exploration and exploitation, so they 
tried this nonlinear equation: 

a→ = 2
(

1 −
t2

T2

)

(14)  

in which t represents the current iteration, and T is the total number of 
iterations. This equation resulted in 70% exploration and 30% exploi-
tation of the total iterations. 

3.6. Exploration-enhanced GWO (EEGWO) 

Since in GWO, all the search agents gravitate toward the three best 
solutions, this algorithm can be susceptible to premature convergence. 
Therefore, Long et al. [94] modified the position-updating equation 
inspired by the PSO algorithm to emphasize more on the exploration: 

X→
(

t+ 1

)

= b1.r3.
X1
̅→
(

t
)
+ X2
̅→
(

t
)
+ X3
̅→
(

t
)

3
+ b2.r4.

(

X′→
− X→

)

(15)  

where X′→ is another randomly selected search agent from the population, 
r3 and r4 are random numbers in [0,1], and b1, b2 ∈ (0,1] indicate con-
stant coefficients to balance the exploration/exploitation (in the 
mentioned study the selected values are b1 = 0.1 and b2 = 0.9). 

They also proposed a new formula for the control parameter a→: 

a→ = ainitial −

(

ainitial − afinal

)

.

(
T − t

T

)μ

(16)  

where μ is the nonlinear modulation index (μ = 1.5 in the aforemen-
tioned study), and ainitial and afinal are 2 and 0, respectively. 

3.7. Improved GWO (IGWO) 

In order to address the challenges associated with the conventional 
Maximum Power Point Tracking (MPPT) techniques, which is the power 
maximization of the PV system [95], and improving their efficiency in 
finding the global maximum power point, Ma et al. [96] utilized the 
fitness value of the search agents for their position-updating mechanism 
as follow: 

X→

⎛

⎜
⎜
⎜
⎜
⎝

t+ 1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fα. X1
̅→

f
+

fβ. X2
̅→

f
+

fδ. X3
̅→

f
, fi⩽favg

X1
̅→

+ X2
̅→

+ X3
̅→

3
, fi > favg

(17)  

f = fα + fβ + fδ (18)  

where fα,fβ, and fδ are fitness values of α,β, and δ, respectively. favg is the 
average of these 3 fitness values, and fi is the fitness value of grey wolf 
individuals. 

The authors modified the a→ formula as well: 

a→ = amin +

(

amax − amin

)

.
(

1 −
t
T

)2
(19)  

where amin and amax are 0 and 2, respectively. 

3.8. Efficient and robust GWO (ERGWO) 

With the intention of tackling large-scale numerical optimization 
problems, Long et al. performed another study to enhance the perfor-
mance of the GWO [97]. Following the footsteps of the previous studies, 
they changed both the position-updating equation and the a→ equation. 
The first change can be seen below, where they used a proportional 
weighting method similar to [96]: 

w1 =

⃒
⃒
⃒ X1
̅→
⃒
⃒
⃒

⃒
⃒
⃒ X1
̅→
⃒
⃒
⃒+

⃒
⃒
⃒ X2
̅→
⃒
⃒
⃒+

⃒
⃒
⃒ X3
̅→
⃒
⃒
⃒

(20)  

w2 =

⃒
⃒
⃒ X2
̅→
⃒
⃒
⃒

⃒
⃒
⃒ X1
̅→
⃒
⃒
⃒+

⃒
⃒
⃒ X2
̅→
⃒
⃒
⃒+

⃒
⃒
⃒ X3
̅→
⃒
⃒
⃒

(21)  

w3 =

⃒
⃒
⃒ X3
̅→
⃒
⃒
⃒

⃒
⃒
⃒ X1
̅→
⃒
⃒
⃒+

⃒
⃒
⃒ X2
̅→
⃒
⃒
⃒+

⃒
⃒
⃒ X3
̅→
⃒
⃒
⃒

(22)  

X→
(

t+ 1

)

=
1

w1 + w2 + w3
.
w1. X1
̅→

+ w2. X2
̅→

+ w3. X3
̅→

3
(23)  

where w1,w2, and w3 are the learning rate of ω wolves from α,β, and δ 
wolves, respectively. The a→ changes following this formula: 

a→ = ainitial −
(
ainitial − afinal

)
.μ− t (24)  

where ainitial and afinal are 2 and 0, respectively. μ ∈ [1.0001,1.005] is the 
nonlinear modulation index (in the mentioned study μ = 1.001). 

3.9. Hill-climbing exploraitive GWO (HC-EGWO) 

The Gray Wolf Optimizer (GWO), although remarkable in its per-
formance for solving diverse optimization problems [92], is not without 
its shortcomings. Primarily, it is prone to premature convergence to-
wards local optima in the search space, specifically during complex, 
high-dimensional problems [98]. This challenge arises due to the 
declining exploration rate (parameter a→) in the original GWO algo-
rithm, which transitions from 2 to 0 linearly. While this allows the al-
gorithm to either explore or exploit optimal solutions when a→ is above 
1, it leads to exploitation when a→ is below 1, thereby accelerating 
convergence towards local optima. 

In addressing this limitation, we propose the Explorative Gray Wolf 
Optimizer (EGWO), a novel enhancement to the original GWO that 
amplifies the exploration rate by modifying the parameter a→. In EGWO, 
a→ is altered as per the equations: 

R =

(
T − t
T − 1

)

, (25)  

a→ = 2⋅
(

1 −
(

e(tR − TR)
))

(26)  

where t is the current iteration, and T is the maximum number of iter-
ations. This modification empowers the algorithm to delay the conver-
gence process and explore the search space more thoroughly, reducing 
the chance of being trapped in local optima. Furthermore, to fortify the 
global search capabilities of EGWO, we propose a robust hybrid algo-
rithm that incorporates a Random-restart hill-climbing local search, 
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dubbed HC-EGWO. Fig. 10 shows the evolution of a→ throughout the 
iterations for each of the six optimization approaches. Also, the Explo-
ration Ratio (ER) is presented for each method; this value shows how 
much of the search process is allocated to potential exploration in GWO. 
By comparing the values, it is clear that HC-EGWO has the best ER value 
and the most potential to search the unexplored areas of the search space 
thoroughly. 

In this hybrid scheme, EGWO operates on a superior level to create a 
global track and procure an array of suitable solutions. When the EGWO 
encounters stagnation or converges prematurely towards a local opti-
mum, the hill-climbing algorithm initiates a local search around the best 
solution found by the upper level (EGWO). It does so by creating a 
comprehensive neighbourhood search, thereby preparing to escape such 
unfavourable scenarios. 

The performance threshold is computed as follows: 

ΔBestTHD =

∑M

k=1

(

BestTHDk − BestTHDk− 1

)

M
(27)  

where BestTHD is the optimal solution found per generation, and M is tied 
to the range of iterations to determine the average EGWO performance. 
When the solution offered by the local search outperforms the initial 
one, EGWO’s global best is updated. 

The HC-EGWO algorithm iteratively executes the hill-climbing pro-
cess whenever the EGWO performance dips, each time establishing an 
initial condition to facilitate escape from undesirable circumstances. The 
search step size is decremented linearly as follows to achieve a fine 
balance between exploration and exploitation: 

St = St −
( t

T
St

)
+ 1 (28)  

Here, t and T denote the current and maximum iteration numbers, 
respectively, while St represents the neighborhood search’s step size. 

Algorithm 1 illustrates the detailed steps of the proposed optimiza-
tion method (HC-EGWO). The initial solution encompasses wave height 
(H), wave period (T), PTO stiffness coefficient (K), and PTO damping 
coefficient (C). 

One of the crucial parameters in the local search algorithm is g, 
which signifies the precision of the neighborhood search surrounding 
the globally optimal solution proposed by EGWO. A smaller step size for 
HC slows down the convergence speed. However, a larger step size 
bolsters the exploration capability, possibly at the expense of the 
exploitation capability, leading to the possibility of skipping over 
globally optimal or high-potential solution surfaces. For each decision 
variable, the neighborhood search evaluates two distinct direct searches, 
either incremental or decremental. After evaluating the generated so-
lutions, the optimal candidate is chosen to iterate the search algorithm. 
It should be noted that the HC algorithm should not be employed during 
the initial iteration of the optimization process due to the pronounced 
tendency for converging to local optima. Moreover, for optimizing large- 
scale problems, HC may not be a suitable choice. 

Algorithm 1. HillClimbingExplorativeGrayWolf Optimizer   
1: procedure HC-EGWO 
2: N = 30,D = 4 ▹Population size and dimension size 
3: S = {〈H1,T1,K1,D1〉,…, 〈HN,TN,KN,DN〉} ▹Initialize the population of 

wolves 
4: CheckiflbN

1 ⩽S⩽ubN
1 

5: Maxiter = 100 ▹Maximum number of iterations 
6: for iter = 1, ..,Maxiter do 
7: R = (Maxiter − iter)/(Maxiter − 1)
8: a→= 2⋅(1 − e(iterR − MaxR

iter)) ▹Calculate exploration rate a→ with the new 
formulation 

9: Sort the population S based on fitness and get the leading wolves α,β, and δ 
10: for i = 1, ..,N do 
11: for j = 1, ..,D do 

(continued on next column)  

(continued ) 

12: Calculate Aij and Cij for each of the leading wolves 
13: Update the position of the ith wolf in dimension j using the positions of α,

β, and δ 
14: end for 
15: end for 
16: Update the positions of α,β, and δ based on the updated population 
17: Bestiter = Max(S) ▹Get the best solution in this iteration 
18: ΔBest = Bestiter − Bestiter− 1 ▹Calculate the difference between the best 

solutions in the current and previous iterations 
19: if ΔBest < Th then ▹If the difference is less than a threshold Th, perform 

Hill Climbing 
20: Initialize the constraints lbd

1,ubd
1 

21: Sd
1 = (Mind

1 +Maxd
1)/g ▹Compute the step size, g is search resolution 

22: Sol1 = {〈H,T,K,D〉} ▹Initial solution 
23: (fitness1)=Eval(Sol1) ▹Evaluate the solution 24: for iter⩽Maxiter 

do 
25: Te = Soliter 
26: while t⩽len(Sol1) do 
27: Tet = Tet ± St ▹Neighborhood search 
28: (fitnessiter

t )=Eval(Tet)

29: t = t + 1 
30: end while 
31: 〈Maxfit , Indexmax〉=Max(fitness)
32: Soliter=Tet(Indexmax) ▹Select the best feasible solution and update 

the design 

33: St = St −

(
iter

Maxiter
St

)

+1 ▹St linearly reduced 

34: end for 
35: Bestiter = Soliter 36: end if 
37: end for 
38: return Bestiter ▹Return the best solution 
39: end procedure   

4. Problem formulation 

4.1. Optimization problem 

This study aims to maximize the power output of the OSWEC in the 
Caspian Sea climate by optimizing four decision variables: wave height, 
wave period, Power Take-Off damping (C), and Power Take-Off stiffness 
(K). The feasible ranges for C and K were determined through a 
comprehensive literature review and an initial sensitivity analysis. 
Additionally, wave data were gathered from the INIO. 

4.2. Algorithms initial parameters 

In this section, the initial parameters of the genetic algorithm and the 
grey wolf optimizer. In the case of the GA, due to the computationally 
expensive nature of our problem, only two parameters, the population 
size and the probability of crossover have been investigated, and other 
parameters have been chosen based on similar studies conducted in this 
field. The probability of mutation is set to 20% [99–101] and the elitism 
rate to 10% [99,102]. The crossover rate tested values were chosen from 
studies from Sharp et al. [99,103]. Finally the population sizes of 10 and 
20 were selected to evaluate the impact of this parameter. 

As for the GWO, the 3 population sizes (10, 20, and 30) were tested. 
In this study, six variants of the GWO have been studied, each one 
having a different mechanism for the control parameter a, taking 
different forms from linear to exponential. The effect of this parameter is 
visible in the performance of each one of these modifications. The tested 
initial parameters and their performance are given in Table 1. Based on 
the results, the initial values for starting these methods have been cho-
sen, which are presented in Table 2. 

4.3. The wave energy converter 

As stated before, the Oscillating Surge WEC was chosen for this study 
due to multiple reasons. The OSWEC is fixed to the ground, and it 
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features a hinged connection between its base and flap. This hinge 
constrains the flap’s movement, allowing it to pitch around the hinge 
point. The converter’s physical dimensions at scale are shown in Fig. 11. 
Moreover, the OSWEC’s flap has a mass of 127 tonnes, and its other 
properties are listed in Table 3. 

4.4. WEC-Sim 

WEC-Sim provides an open-source simulation tool for the commu-
nity. In order to determine the dynamic response of the WEC system, the 
equation of motion for the device about its center of gravity in the time 
domain has to be solved [33]: 

mẌ = Fexc

(
t
)
+Frad

(
t
)
+FPTO

(
t
)
+FB

(
t
)

(29)  

where m is the mass matrix of the WEC, Ẍ is the acceleration vector, 
Fexc(t) is the wave excitation vector, Frad(t) is the force and torque vector 
caused by wave radiation, FPTO(t) is the PTO force and torque vector, 
and FB(t) is the net buoyancy restoring force and torque vector. The 
Fexc(t) and Frad(t) are calculated using Boundary Element Method (BEM) 
solvers [104]. This module is developed on MATLAB/Simulink/Sim-
scape. Fig. 12 shows the Simulink models of the proposed OSWEC 

Table 1 
Effects of Initial Parameters of the GA and GWO algorithms on their 
performance.  

Method Population Size  

10 20 30 

GA Pcr 80 902.04 885.20 870.3 
95 917.00 868.40 861.2 

GWO 1311.95 1329.12 1326.61  

Table 2 
Initial Parameters chosen for all the algorithms used in this study.  

Method Settings 

GA Npop  = 10, Pm = 0.2, Pcr = 0.95, Er = 0.1 
PSO Npop  = 20, C1 = 2, C2 = 1.5, w = [0.2,0.9]
GTO Npop  = 20, p  = 0.03, β = 3, w  = 0.8 
GWO Npop  = 20  

Fig. 11. OSWEC’s full-scale detailed dimensions [.33].  

Table 3 
OSWEC’s Flap Mass Properties [33]  

Body Direction Center of Gravity 
(m) 

Ixx (kg. 
m2) 

Iyy (kg.m2) Izz (kg. 
m2)  

x 0 0 0 0 
Flap y 0 0 1,850,000 0  

z − 3.9 0 0 0  

Fig. 10. The evolution of a→ value during the optimization process for the six evaluated GWO methods in this study, and their Exploration Ratio (ER).  
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investigated in this paper [33]. Moreover, irregular waves are simulated 
as a superposition of regular waves [105]. 

In WEC-Sim, the PTO unit can be characterized by a linear spring- 
damper system, in which the PTO force is calculated by: 

FPTO = K⋅X +C⋅Ẋ (30)  

where K is the PTO stiffness coefficient, C is the PTO damping coeffi-
cient, and X and Ẋ are the relative motion and velocity between the flap 
and the base of the OSWEC. Since the studied device is fixed to the bed, X 
and Ẋ can be considered the flap’s motion and velocity. Next, the power 
output of the PTO can be obtained by the following [33]: 

PPTO = FPTO⋅Ẋ = K⋅X⋅Ẋ +C⋅Ẋ2 (31) 

In WEC-Sim, the regular wave excitation force after the ramp time 
(the necessary time for the system to stabilize from the starting stage of 
the simulation) is obtained from the: 

Fexc

(

t
)

= R

[
H
2

Fexc

(

ω, θ
)

eiωt
]

(32)  

where R denotes the real part of the term in bracket, H is the wave 
height, Fexc is the frequency dependent complex wave-excitation 
amplitude vector, and θ is the wave direction. The excitation force in 
irregular sea states can be calculated as follows: 

Fexc

(

t

)

= R

[
∑N

j=1
Fexc

(

ωj, θ

)

ei(ωt+ϕ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2S
(
ωj
)
dωj

√
]

(33)  

where N is the number of frequency bands that discretizes the wave 
spectrum, ϕ is the randomized phase angle, and S(ω) is the distribution 
of wave energy over a range of wave frequencies that are characterized 
by a Hs and Tp. 

The software uses the following equation to calculate the radiation 
terms, namely the added mass and the radiation-damping torques. This 
equation utilizes the convolution integral formulation based on the 
Cummins equation to take the fluid memory effect into consideration. In 
this equation, the first term is the added mass torque, and the second 
term is the radiation-damping torque: 

Frad

(

t
)

= − A∞Ẍ −

∫ t

0
Kr

(

t − τ
)

Ẋ
(

τ
)

dτ (34)  

where A∞ is the added mass matrix at an infinite frequency, and Kr is the 
radiation impulse response function, which is calculated by this equa-
tion: 

Krt =
2
π

∫ ∞

0
B
(

ω
)

cos
(

ωt
)

dω (35) 

Notably, the assumption is that there is no motion before t  = 0. The 
A∞ and B(ω) coefficients are calculated by the NEMOH, the BEM solver 
WEC-Sim uses. Finally, The buoyancy term FB depends on three factors: 
the hydrostatic stiffness coefficient and displacement and mass of the 
body. 

4.5. Optimization run details 

In order to optimize the performance of an OSWEC in the southern 
Caspian Sea, WEC-Sim was used to simulate the converter and HC- 
EGWO to optimize its power output. A simulation time of 400 s and a 
ramp time of 100 s were chosen, with time steps of 0.1 s. Furthermore, 
ten optimization runs using HC-EGWO were performed, each with 1000 
iterations and 20 search agents. Moreover, the Joint North Sea Wave 

Table 4 
The details of optimization parameters and other variables related to the wave 
power simulation applied.  

Abbreviation Full name Description 

H Height (m) Measure of the amplitude or 
intensity of a wave 

T Period (s) Time for completing one full 
cycle of wave 

K PTO Stiffness Coefficient 
(MNm/rad) 

Relationship between the 
deformation of a PTO system 
and the force it generates 

C PTO Damping Coefficient 
(MNsm/rad) 

Relationship between the PTO 
system’s velocity and the force it 
generates 

FlapEP maxFlapExcitationPitch Maximum Flap’s Excitation 
Force (kN) 

FlapRDP maxFlapRDPitch Maximum Flap’s Radiation 
Damping Force (kN) 

FlapAMP maxFlapAMPitch Maximum Flap’s Added Math 
Force (kN) 

FlapRP maxFlapRestoringPitch Maximum Flap’s Restoring 
Force (kN) 

ForceTPTOP maxForceTotalPTOPitch Maximum PTO’s Force (kN) 
meanFlapAVD meanFlapAngularVelocityD Average Flap’s Velocity 

(degree/s) 
maxFlapAVD maxFlapAngularVelocityD Maximum Flap’s Velocity 

(degree/s) 
FlapARD maxFlapAngularRotationD Maximum Flap’s Rotation 

(degree) 
Flapa flap’s acceleration (degree/s2) Affects the PTO system’s 

structural integrity & overall 
performance. 

Flapfam flap’s force added math (N)  
Flapfe flap’s excitation force (N) A function of the displacement, 

velocity and acceleration of PTO 
system 

Flapfr flap’s restoring force (N) Result of the buoyancy and 
gravity forces acting on the WEC 

Flapfrd flap’s radiation damping force 
(N) 

Due to the interaction between a 
WEC and the surrounding water 
waves 

Flapft flap’s total force (N) Sum of hydrodynamic forces, 
gravity forces, buoyancy forces, 
and other forces generated by 
the PTO system. 

Flapv flap’s velocity (degree/s) Rate of change of the flap angle, 
Flapx flap’s position (degree)  
PTOa PTO’s acceleration (degree/ 

s2) 
Alteration rate of its velocity 
over time 

PTOv PTO’s velocity (degree/s) Alteration rate of its position 
over time 

PTOf PTO’s force (N) Is transmitted from the WEC to 
the PTO system due to the 
motion of the waves 

PTOx PTO’s position (degree)   

Fig. 12. OSWEC’s Simulink model in WEC-Sim [.33].  
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Project (JONSWAP) was chosen as the wave spectrum representing the 
Caspian Sea’s wave states [106,107]. 

5. Results 

5.1. Algorithms performance in the defined problem 

Here, the proposed algorithm was compared to Genetic Algorithm, 
the PSO, the GTO, the conventional GWO, and its four variants that were 
introduced earlier. Each algorithm was run ten times with a population 
size of 20 and 1000 iterations to achieve maximum power output except 
the GA, which had the same number of evaluations but only a population 
size of 10. The GA result is scaled to be parallel to other methods in terms 
of the number of evaluations done at each point of the convergence 
curve. Table 5 shows the critical parameters of the OSWEC in the per-
formance of each algorithm. 

As can be seen in Table 5, all the algorithms, except the GA, have 
competitive performances; however, the proposed algorithm (HC- 
EGWO) yields better results than all of them. HC-EGWO can improve the 
power output by 0.08% up to 3.31% compared to the other GWO vari-
ants and 45% increase over the GA. Moreover, the EEGWO has the worst 
performance among the GWO modifications. The PSO and GTO methods 
both showed great performance but not enough to surpass the GWO. 

Next, the convergence curves for the nine inspected algorithms are 
presented in Fig. 13. 

Fig. 13 shows how competitive all methods were in this problem and 
how only the GA was unable to find high-performing solutions. In 
addition, all these algorithms were able to reach high amounts of 
average power output in under 50 iterations. 

5.2. Wave and PTO parameters optimization 

In this section, the results of the wave and PTO parameters optimi-
zation of the oscillating wave surge converter are presented. In order to 
get a better understanding of the effects of optimization on performance, 
the converter’s functioning and outputs in 3 scenarios are analyzed and 
compared. One of the cases is the scenario with the best-found solution 
by the HC-EGWO (Case C). Next, the case with the default WEC-Sim 
parameters was chosen to see how much improvement the input fine- 
tuning has achieved (Case A). However, since the default WEC-Sim 
case parameters were in the unfeasible area following the literature 
review this study performed at the research’s beginning, another sce-
nario was added for evaluation. It was observed that the PTO damping 
with a value of 0.012 MNsm/rad was in the unfeasible area, so based on 
the literature review and the initial sensitivity analysis, the minimum 
feasible value, which was 90 MNsm/rad, was chosen for the following 

Table 5 
The best solution of GA, PSO, GTO, original GWO, our proposed hybrid solution (last row), and other modifications in optimizing PTO coefficients and wave con-
ditions. Forces exerted on the flap and the averaged power output are also reported per case.   

H T K C FlapEP FlapRDP FlapAMP FlapRP ForceTPTOP FlapARD AvgPower 

GA 3.87 7.31 25.58 113.40 3487.3 1273.5 551.79 670.78 34960 19.88 917.006 
PSO 4.22 7.83 33.04 90.03 3451.8 1479.9 617.14 773.99 35028 22.94 1283.598 
GTO 4.22 7.82 47.92 82.08 3427.6 1562.7 678.92 836.87 37931 24.80 1319.498 
GWO 4.22 7.40 54.53 76.96 3688.8 1497.4 709.40 834.93 38289 24.74 1325.008 

mGWO 4.22 7.40 56.19 74.78 3712.6 1513.9 730.57 848.27 38942 25.14 1326.068 
EEGWO 4.22 7.69 51.62 80.92 4192.1 1640.3 753.18 908.92 41462 26.93 1290.216 
IGWO 4.22 7.43 54.41 75.77 3771.9 1550.6 742.19 855.93 39114 25.36 1329.108 

ERGWO 4.22 7.40 55.34 75.62 3684.2 1513.4 721.58 846.14 38352 25.07 1331.921 
HC-EGWO 4.22 7.39 54.46 75.58 3686.9 1512.5 722.27 842.49 38306 24.97 1332.955  

Fig. 13. The convergence curves for the average performance of GA, the conventional GWO, its four modifications, and the proposed algorithm in this study.  
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case, and the three other parameters stayed the same (Case B). 
Table 6 presents the inputs, forces, oscillation, and power of the 

system in the three analyzed cases in detail. First, the wave elevation 
during the simulation for the 3 cases is presented in Fig. 14 in order to 
analyze the other parameters more effectively. 

Next, the resulting oscillation details, PTO force, and power output 
will be inspected. As stated before, cases A and B have the same wave 
conditions. Hence, one wave elevation graph is plotted to represent the 
sea state in both cases in Fig. 14. According to this figure, in cases A and 
B, wave elevation relatively stays in the same range, and the amplitude 
does not change drastically at any point during the simulation. On the 
other hand, in case C, especially after the halfway mark, wave heights 
are greater and reach their maximum absolute value at around the 215-s 
mark. As previously mentioned, when using linear PTO for the OSWEC, 
WEC-Sim calculates the power output by multiplying the PTO force by 
the flap’s angular velocity. Both the flap’s motion and its angular ve-
locity positively dictate the device’s power output, which is this study’s 
main objective. 

First, we compare the flap’s oscillation in cases A and B in Fig. 15. 
Since these two have the same wave characteristics but different PTO 
configurations, one can assign almost all the difference in oscillation to 

the PTO stiffness and damping. Both parameters are virtually trivial in 
case A and come into effect in case B. It can be seen that the PTO C and K 
in isolation dampen the flap’s oscillations, both the motion and the 
velocity. For case C, the flap’s fluctuation during the simulation almost 
mimics the shape of the wave elevation, which is predictable. But the 
maximum flap motion roughly occurs in t  = 125 s of case A. 

Next, in Fig. 16 the PTO force and power output for the 3 cases are 
presented. Note that for this purpose, the y-axis for the 3 cases is 
modified for more clear visualization. According to the y-axis, it can be 
said that roughly case B produces ten times more power the case A 
produces. And that case C generates 50 times more the case A. 

Since case C is the best-found solution and has more prominent and 
more significant values, it is inspected first. For case C, the PTO force is 
peaking during the 200 s and 250 s marks due to the substantial wave 
magnitude (see Fig. 14). This happens multiple times to a lesser extent at 
different times during the simulation (100–140 s, 155–165 s, 175–180 s, 
270–375 s). Similarly, it can be seen for case B that the highest power 
outputs occur when the PTO force is at max. But overall, the extent of the 
produced power is about five times smaller, which can be attributed to 
the PTO mechanical parameters. Finally, for case A, the default WEC- 
Sim case, considering the PTO stiffness coefficient is zero, and the 

Table 6 
The details of the 3 analyzed cases in this study  

Case A H T K C FlapEP FlapRDP FlapAMP 
2.5 8 0 0.012 1624 1778 691.7 

FlapRP ForceTPTOP meanFlapAVD maxFlapAVD FlapARD MaxPower AvgPower 
887.4 4.158 7.049 19.85 26.29 1.440 0.228         

Case B H T K C FlapEP FlapRDP FlapAMP 
2.5 8 0 90 1624 780.3 297.6 

FlapRP ForceTPTOP meanFlapAVD maxFlapAVD FlapARD MaxPower AvgPower 
360.6 13395 2.733 8.527 10.686 1993 287.7         

Case C H T K C FlapEP FlapRDP FlapAMP 
4.223 7.39 54.46 75.58 3687 1512 722 

FlapRP ForceTPTOP meanFlapAVD maxFlapAVD FlapARD MaxPower AvgPower 
842 38306 3.82 21.92 24.97 13393.98 1332.95  

Fig. 14. Wave elevation profile during the performance of the WEC for the 3 cases.  
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damping coefficient is very low, the generated power is almost between 
500 and 1000 times smaller than the best-found sample in case C. In the 
context of optimizing the power output of a WEC, parallel coordinate 
plots can be helpful in understanding the relationships between the 
optimization parameters (such as damping, stiffness, wave height, and 
period) and the resulting power output. For example, in Fig. 17, we can 
observe that increasing the damping and stiffness of the WEC leads to a 
decline in power output, while increasing the wave height leads to an 
upsurge in power output. 

Fig. 17 showcases the parallel plots for the two selected runs of the 
HC-EGWO in order to achieve the highest power output; this includes 

the best-found solution by all the ten optimization runs. Furthermore, by 
analyzing the lines corresponding to each parameter in this Figure, it can 
be achievable to identify the range of parameter values that lead to 
optimal power output; for instance, the optimal ranges of K and C are 
[50–65,70–80], respectively. Another significant observation from the 
parallel plots is that there are sharp, non-linear relationships between 
the optimization parameters and the power output of the WEC. 

Fig. 18 shows the parallel plots for the three scenarios studied in the 
result (See Section 5.2). These data are in real-time during the simula-
tion time. Next, all the y-axis, except for the power output, are sym-
metrical, showcasing the device’s oscillating nature and, therefore, its 

Fig. 15. Flap’s oscillations motion and velocity the 3 cases.  

Fig. 16. PTO force and power output for the 3 cases.  
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parameters. But when taking a closer look at case A (Fig. 18(a)), it is 
visible that the only parameters that have the simultaneous maximum as 
the power output (red lines) are the flap’s angular velocity and PTO 
force, this is consistent with equations for calculating the power output 
in WEC-Sim in earlier sections of the study. And also corresponds to the 
moderate values of the flap’s acceleration, restoring torque, excitation 
torque, and other hydrodynamic forces. Based on case C (Fig. 18(c)), it 
can be seen that low absolute values of excitation force correspond to 
low power. Since both these parameters positively correlate with wave 
height, that is consistent with the theory. Notably, not every hydrody-
namic force has the same trajectory as the power; for instance, the 
restoring force’s maximum absolute values coincide with the lowest 
power outputs. Since the flap’s restoring torque is dependent on the 
flap’s displacement only, we can see that the displacement alone can not 
lead to the best performance. The flap’s velocity can be considered a 
more critical and deciding factor. 

5.3. Sensitivity analysis 

Sensitivity analysis is a crucial mechanism in post-processing opti-
mization methods due to identifying the most significant factors 

affecting the efficiency of the optimized models [108]. Table 6-Case C 
reports the best configuration of decision variables (H, T, K, and C) and 
internal hydrodynamic parameters of the simulator proposed by the HC- 
EGWO. Meanwhile, the sensitivity analysis results can be seen in Fig. 19. 
The black lines show the unfeasible areas of the search space for K 
(Fig. 19C (Fig. 19 power output of the best-found solution discovered by 
sensitivity analysis was 1333.1 (kW). This negligible improvement can 
confirm that the proposed optimization method (HC-EGWO) is able to 
explore comprehensively the search space and converge to an appro-
priate solution. 

5.4. Regional site selection 

In the last segment, an operational site will be selected as the best 
location for the installation of the device. This is obtained by analyzing 
the best-found solution and finding the location from the 105 initial data 
points in the Caspian Sea that has the closest wave characteristic values, 
namely wave height and wave period, to the theoretic best location. The 
optimum values are H = 4.223 m and T = 7.39 s. Then, the best location 
was found using a Root Mean Square Error method (Fig. 20), and the 
RMSE values for all the data points were evaluated. In the end, a data 

Fig. 17. Two examples of the best-performed optimization method’s exploration through the decision variables (H, T, K, and C) with internal parameters of the 
simulator listed in Table 4, plus the average of total power output distribution visualized by a parallel coordinates plot. The dark red lines indicate the highest 
absorbed power output based on the configurations. (in the figures, the H, T, K, and C are the input parameters. FlapEP, FlapRD, and FlapAMP are, respectively, the 
excitation, radiation damping, and added mass torques, and the ForceTPTOP is the PTO force. The meanFlapAVD and maxFlapAVD are the average and maximum 
angular velocity of the flap, the FlapARD is the flap’s angular rotation of the flap, respectively, and the Power is the average power output .of the system.). 
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point belonging to the Kiashahr Port resulted in RMSE = 2.78, which 
was the minimum among the analyzed spots. The longitude and latitude 
of the best-found location are 37.6◦ N 50.1◦ E; this spot belongs to the 
Kiashahr Port. 

6. Conclusion 

This study focused on optimizing the Power Take-Off (PTO) pa-
rameters and site selection for an offshore Oscillating Surge Wave En-
ergy Converter (OSWEC) in the Caspian Sea. The optimization was 
performed using the novel Hill Climbing Explorative Grey Wolf Opti-

Fig. 18. Parallel interactions plot for the average of total power output distribution based on three scenarios described in the Result section. The technical details of 
the variables are listed in Table 4. 
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mizer (HC-EGWO), which showed strong performance across 16 
benchmark multimodal functions. When applied to the OSWEC case 
study, the HC-EGWO discovered a high-quality solution that increased 
the power output by approximately 3% compared to other GWO mod-
ifications and a substantial 45% increase over the genetic algorithm. 

The results provide valuable insights into the complex interplay 
between the converter’s mechanical design and the surrounding wave 
climate. Specifically, the initial sensitivity analysis revealed that wave 
height and PTO damping have the most substantial impact on the power 
output. Increasing the wave height boosts the absorbed power, while 
lower PTO damping is preferable. Meanwhile, moderate values of wave 
period and PTO stiffness lead to the highest outputs. There are also non- 
linear relationships and trade-offs between the parameters influencing 
the hydrodynamic forces acting on the device. Overall, the proposed 
HC-EGWO algorithm proved effective in handling this challenging 
multimodal optimization problem. The hybridization with local search 
prevented premature convergence and bolstered the exploration of the 
solution space. The outcomes showcase the method’s capabilities for 
optimizing offshore renewable energy systems where complex hydro-
dynamic interactions are involved. They provide a valuable starting 
point for devising control strategies that ensure OSWECs operate safely 
within extreme seas while maximizing power generation. Moreover, the 
results offer insights into deploying OSWECs in the unique conditions of 
the Caspian Sea. The landscape analysis of available wave data from the 
region informed the creation of feasible parameter bounds. And the site 
selection analysis pinpointed a location with strong energy potential 
based on the optimal wave height and period found by the HC-EGWO. 
Hence, the outcomes provide a launchpad for harnessing the vast un-
tapped wave resources of the Caspian basin. Looking forward, we 
emphasize the necessity of integrating field trials into our research to 
bridge the gap between numerical simulations and real-world 

applications. These empirical validations will not only corroborate our 
findings but also refine our optimization algorithms for enhanced effi-
ciency and applicability. Additionally, exploring the environmental 
impacts and economic viability of wave energy projects will be crucial in 
promoting sustainable and practical wave energy conversion solutions. 
Additionally, real-world PTO systems like hydraulic and direct-drive 
PTOs can be simulated to optimize their parameters. Finally, expand-
ing the optimization to more complex problems like WEC arrays and 
combining it with control strategy optimization represents promising 
research directions. 
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Appendix A. Benchmarking the proposed algorithm 

In this section, we evaluate the performance of the HC-EGWO algo-
rithm on a total of 16 benchmark functions and analyze the results. 

A.1. Benchmark functions 

These are classical benchmark functions that have been widely used 
by researchers in the field. These functions are well-established and are 
commonly used to evaluate the performance of optimization algorithms. 

Fig. 19. Sensitivity analysis of the best-found configuration using the proposed hybrid optimization method.  

Fig. 20. Categorization of the 105 data points based on the fitness of their wave significant height and peak period (using the RMSE method).  
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You can find a detailed list of these classical benchmark functions in 
Tables A.7 and A.8. The tables provide information such as the dimen-
sionality (Dim) of the function, the range of the function’s search space 
(Range), and the optimal value (fmin) of each function [92]. By 
benchmarking the HC-EGWO algorithm on these 16 functions, we can 
evaluate its performance and compare it to other optimization 
algorithms. 

All the benchmark functions employed in this study are aimed at 
minimizing a given objective. These functions can be classified either as 
multimodal or fixed-dimension multimodal. To assess the performance 
of the HC-EGWO, it was executed 30 times on each benchmark function. 
The results were then analyzed statistically, providing the average and 
standard deviation values. These statistical outcomes are presented in 
Tables A.9, which allow for comparing and evaluating the algorithm’s 
performance across the benchmark functions. To validate the results, the 
HC-EGWO algorithm is compared against the GA and other variations of 
the GWO algorithm, namely the conventional Grey Wolf Optimizer [92], 
the modified GWO [93], the Exploration-Enhanced GWO [94], the 
Improved GWO [96], and the Efficient and Robust GWO [97]. 

A.2. Benchmark functions results 

Based on the results of the landscape analysis, it has been revealed 
that the problem at hand exhibits a multimodal nature. Therefore, 
multimodal benchmark functions have been used to test the effective-
ness of HC-EGWO to optimize a wide range of complex problems. 

Furthermore, assessing the performance of HC-EGWO using multimodal 
benchmark functions can help in clarifying the generalization ability of 
the optimization method. The importance of generalization lies in its 
ability to prevent overfitting [109], a situation where an optimization 
algorithm excessively fine-tunes its parameters to match specific con-
ditions perfectly. Overfitting can result in subpar performance when the 
algorithm is applied to unfamiliar problem instances. By giving priority 
to generalization, optimization methods concentrate on capturing 
fundamental patterns and principles that can be transferred to new 
problem instances, resulting in solutions that are more dependable and 
efficient. 

These benchmark functions have multiple global and local optima, 
which increase by the number of dimensions. This characteristic makes 
them the perfect functions to test the exploration ability of an algorithm 
[92]. As shown in Table A.9, the HC-EGWO can provide very competi-
tive results (especially in fixed-dimension multimodal benchmark 
function). This algorithm reaches the best solutions in 7 test functions 
and the second-best answer in 2 functions in this category, which is the 
best performance among the analyzed methods. It is notable that in 
some functions, like F9 and F11, the difference in performance is very 
minuscule. 

Fig. A.21 shows a comparative plot of the five variants of GWO and 
the proposed GWO (HC-EGWO) performance over the 16 benchmarks. 
The performance average rank of each variant and the significant dif-
ferences using the Friedman test can confirm that HC-EGWO performed 
best in these 16 multi-modal optimization benchmarks. The average 

Table A.7 
Multis [92].  

Function Dim Range fmin 

F1(x) =
∑n

i=1( − xi⋅sin(
̅̅̅̅̅̅̅
|xi|

√
)) 30 [− 500, 500] − 418.9829x5 

F2(x) =
∑n

i=1(x2
i − 10⋅cos(2πxi) + 10) 30 [− 5.12, 

5.12] 
0 

F3
(
x
)
= − 20⋅exp

(

− 0.2⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1x2
i

n

√ )

− exp
(

1
n
∑n

i=1
cos(2πxi

))

+ 20 + e 
30 [− 32, 32] 0 

F4

(

x) =
1

4000
∑n

i=1
x2

i −
∏n

i=1cos
(

xi
̅̅
i

√

)

+ 1 
30 [− 600, 600] 0 

F5 =
π
n

(
10sin

(
πy1

))
+
∑n− 1

i=1 (yi − 1)2⋅
(

1+10sin2
(

πyi+1

))
+(yn − 1)2

+
∑n

i=1u(xi,10, 100,4
)

yi = 1+
xi + 1

4 
u
(
xi,a,k,m

)
=

⎧
⎨

⎩

k(xi − a)m xi > a
0 − a < xi < a
k( − xi − a)m xi < − a 

30 [− 100, 100] 0 

F6(x) = 0.1
(

sin2(3πx1) +
∑n

i=1

(
(xi − 1)2⋅

(
1 + sin2(3πxi + 1)

) )
+ (xn − 1)2 ( 1 + sin2(2πxn)

) )
+
∑n

i=1U(xi,5,100,4) 30 [− 50, 50] 0  

Table A.8 
Fixed-dimension Multimodal Benchmark Functions. [92].  

Function Dim Range fmin 

F7 =

(
1

500
+
∑25

j=1
1

j +
∑2

i=1(xi − aij)
6

)− 1 2 [− 65, 65] 1 

F8
(
x
)
=
∑11

i=1

(

ai −
x1(b2

i + x2bi)

b2
i + x3bi + x4

)2 4 [− 5, 5] 0.00030 

F9
(
x
)
= 4x2

1 − 2.1x4
1 +

1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 
2 [− 5, 5] − 1.0316 

F10
(
x
)
=

(

x2 −
5.1
4π2x2

1 +
5
πx1 − 6

)2
+ 10

(

1 −
1
8π

)

cos(x1
)
+ 10 

2 [− 5, 5] 0.398 

F11(x) =
(

1 + (x1 + x2 + 1)2
(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2)
2
)(

30 + (2x1 − 3x2)
2
(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
)

2 [− 2, 2] 3 

F12(x) = −
∑4

i=1

(

ciexp
(

−
∑3

j=1aij(xj − pij)
2
))

3 
[1,3] 

− 3.86 

F13(x) = −
∑4

i=1

(

ciexp
(

−
∑6

j=1aij(xj − pij)
2
))

6 [0, 1] − 3.32 

F14(x) = −
∑5

i=1

((
(X − ai)(X − ai)

T
+ ci

)− 1
)

4 [0, 10] − 10.1532 

F15(x) = −
∑7

i=1

((
(X − ai)(X − ai)

T
+ ci

)− 1
)

4 [0, 10] − 10.4028 

F16(x) = −
∑10

i=1

((
(X − ai)(X − ai)

T
+ ci

)− 1
)

4 [0, 10] 10.5363  
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rank is used to calculate the Friedman statistic, which is compared to the 
critical value to determine whether there are significant differences in 
performance. 
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[2] González-Ramírez Xiomara, Guzmán-Cabrera Rafael, Hernández-Robles Iván A, 
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