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Abstract: This paper addresses the global surge in heart disease prevalence and its impact on public
health, stressing the need for accurate predictive models. The timely identification of individuals at
risk of developing cardiovascular ailments is paramount for implementing preventive measures and
timely interventions. The World Health Organization (WHO) reports that cardiovascular diseases,
responsible for an alarming 17.9 million annual fatalities, constitute a significant 31% of the global
mortality rate. The intricate clinical landscape, characterized by inherent variability and a complex
interplay of factors, poses challenges for accurately diagnosing the severity of cardiac conditions and
predicting their progression. Consequently, early identification emerges as a pivotal factor in the
successful treatment of heart-related ailments. This research presents a comprehensive framework
for the prediction of cardiovascular diseases, leveraging advanced boosting techniques and machine
learning methodologies, including Cat boost, Random Forest, Gradient boosting, Light GBM, and
Ada boost. Focusing on “Early Heart Disease Prediction using Boosting Techniques”, this paper aims
to contribute to the development of robust models capable of reliably forecasting cardiovascular
health risks. Model performance is rigorously assessed using a substantial dataset on heart illnesses
from the UCI machine learning library. With 26 feature-based numerical and categorical variables,
this dataset encompasses 8763 samples collected globally. The empirical findings highlight AdaBoost
as the preeminent performer, achieving a notable accuracy of 95% and excelling in metrics such
as negative predicted value (0.83), false positive rate (0.04), false negative rate (0.04), and false
development rate (0.01). These results underscore AdaBoost’s superiority in predictive accuracy and
overall performance compared to alternative algorithms, contributing valuable insights to the field of
cardiovascular health prediction.

Keywords: heart disease; diagnosis; machine learning; boosting; ensemble learning; comparative
framework

1. Introduction

With 17.9 million deaths per year, cardiovascular disease (CVD) is the leading cause of
mortality worldwide [1]. CVD is a broad term that refers to any illness of the cardiovascular
system. According to the World Health Organization (WHO), heart disease accounts for
80% of these fatalities [2]. Furthermore, socioeconomic factors such as jobs and money
have an influence on the death rate via the impact on risk factors connected to lifestyle
before and after cardiac disease [3]. The best way to decrease these deaths is to detect them
immediately. The ability to predict the existence of HD is critical for administering the
necessary therapy on time. The incidence of HD is predicted to quadruple by the year
2020, and it is expected that in 2050, one person will develop the disease every 30 s [4]. The
symptoms and occurrence of heart disease vary according to the lifestyle of humans. It
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generally comprises pain in the chest, jaw ache, neck pain, back pain, belly issues, fingers
and shoulder pains and significant shortness of breath [5]. The various types of heart
disease are shown in Table ?? below [6].

Table 1. Various types of popular heart disease.

S. No Heart Disease Description

01 Coronary artery
disease

Damage to the heart’s major arteries. These include:

• Atherosclerosis: the constriction of blood arteries as a result of
fat deposition

• Primarily cholesterol and arteriosclerosis: the hardening of
blood arteries

• Caused by calcium and cholesterol deposits

02 Hypertension The condition in which there is an excessive force of blood against
the arterial walls is characterized as being hypertensive.

03 Cardiac Arrest
A state in which the cessation of cardiac contractions, respiratory
movements, and loss of consciousness occur is commonly referred
to as cardiac arrest.

04 Arrhythmias
An irregular rhythm of the heart, known as bradycardia, which
manifests as a decreased heart rate, and tachycardia, which
presents as an increased heart rate, are both observed phenomena.

05 Peripheral AD The narrowing of arteries, resulting in a constriction of blood flow,
is classified as a condition known as arteriosclerosis.

06 Ischemia Restricted blood supply to heart muscles.

As a result, it has become critical for the precise and accurate prognosis of heart-
related disorders. Many academics from all around the world began researching the
prediction of cardiac problems by analyzing enormous databases for this purpose [7].
Various deep learning approaches have the capability of working on enormous datasets
and drawing relevant results [8]. Deep learning models are based on numerous algorithms,
and so these algorithms have become significant for properly predicting the presence or
absence of cardiac ailments. Different researchers all over the world have worked on heart
disease prediction using various techniques of machine learning, deep learning, and fuzzy
logic [9,10], but still there are some shortcomings, which are given below:

• Almost all the research work with the target of predicting heart disease using techniques
of machine learning, deep learning, and fuzzy logic [11] have been carried out using vari-
ous parameters, but still, there is inadequate parameter tuning and parameter evaluation.

• Lack of use of different discretization techniques, multiple classifiers, techniques of
voting, and other decision tree algorithms (Gini index, Gini ratio).

• The technical issues with regard to overfitting.
• Selection and usage of proper tools, proper pre-processing of datasets, and the use of ad-

vanced machine learning algorithms to reduce time complexity should be incorporated.

1.1. Socio-Economic Impact of Heart Diseases

In practically all Western nations, socioeconomic disparities in the frequency and
occurrence of CVD fatalities have been documented [1]. When compared to other countries
in the same region, India has a much greater prevalence of heart disease. A prevalence rate
of 11% is concerning [2] despite the fact that India has a very large population. This is due
to the fact that India has a very high population density. The prevalence rate sheds light on
emerging patterns of sickness occurrence. It is estimated that cardiovascular disease, stroke,
and diabetes cost 1% of world GDP, which is equivalent to USD 236.6 billion, between
the years 2005 and 2015 [3]. It was projected in the year 2000 that adult Indians had lost
a total of 9.2 billion years of productive life, which contributed to the overall economic
loss. According to research conducted in 2015, the average lifespan of an Indian man is
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estimated to be 67.3 years, whilst the average lifespan of an Indian woman is estimated
to be 69.9 years [4]. It was projected in the year 2000 that adult Indians had lost a total of
9.2 billion years of productive life, which contributed to the overall economic loss. As a
result, India contributes to the growing population of people who are affected by heart
disease as a result of the increased number of elderly people who are prone to developing
the condition. An essential medications list (EML) is a project that the World Health
Organization (WHO) is working on to enhance healthcare systems in countries with low
and intermediate incomes.

Age, modifications in lifestyle and diet, and rapidly expanding social issues, such as
hospitalization, all have an influence on the likelihood of acquiring heart-related disorders
and the advancement of preexisting conditions. Research indicates that heart disease
is responsible for 80% of fatalities and 85% of disabilities in countries with poor and
intermediate incomes [5]. The forecasts of total deaths attributable to cardiovascular
disease that are shown in Table ?? include the period between the years 2000 and 2030. The
treatment of expensive illnesses like heart disease takes up a significant portion of a family’s
total income and may be rather pricey. As a result, hospitalization is often necessary since
the patients need extensive therapy for their condition.

Table 2. Estimation of total deaths attributable to cardiovascular disease between the years 2000
and 2030.

Country 2020 2030

Quantitative
measure of
morality.

Estimated
annualized

rate per
100,000.

Quantitative
measure of
mortality.

Estimated
annualized

rate per
100,000.

India 72,221,165 3172 16,937,070 2570

Brazil 104,840 2021 16,141,620 1857

China 5,656,890 1395 10,350,030 1653

1.2. Literature Review

Numerous studies have been conducted using machine learning, deep learning, fuzzy
logic, and data mining tools and methodologies to predict cardiac disease. Researchers
have employed a variety of datasets, algorithms, and procedures [7]; the findings they
have seen thus far and future work will be used to determine the most effective techniques
for diagnosing cardiovascular disease. The literature review has been divided into three
categories on the basis of techniques including deep learning, machine learning, and
ensemble learning.

1.2.1. Machine Learning Techniques

The major goal of this study is to create a predictive model with a small chance
of success for people with heart disease. Weka was used for the experiment, and the
Cleave Land UCI dataset underwent the following processing steps during training: pre-
processing, classification, regression, clustering, association, and visualization. WEKA’s
Explorer mode is employed to try out classification tools. For the analysis, decision tree
classifiers, including J48, the Logistic Model Tree Algorithm, and Random Forest, were
used, along with 10-fold cross-validation and reduced error trimming. The j48 algorithm
with decreased error pruning has the highest accuracy overall. If alternative discretization
approaches, multiple classifiers, voting strategies, and additional decision tree algorithms
(Gain ratio, Gini index) were used, the accuracy might be increased [8]. Taylan et al.
proposed the prediction of heart disease using Naïve Bayes and k-means clustering. K-
means clustering has been used to improve the efficiency of the desired output and is
used for the grouping of attributes, followed by the Naïve Bayes algorithm for prediction
of the disease. Naïve Bayes is mainly used when the inputs are generally high but it
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gives no absurdity when the inputs are low. Moreover, it answered complex queries with
respect to interpretation and accuracy [12]. Usama et al. [13] introduced a major purpose, to
automate a method for diagnosing heart disease using historical data and information. The
purpose was to discuss numerous knowledge abstraction methodologies leveraging data
mining techniques, as well as their advantages and disadvantages. Data mining makes
use of the Decision Tree algorithm, the Neural Network algorithm, and the Naïve Bayes
algorithm. By calculating Shannon entropy, the ID3 Algorithm builds trees of decisions.
Due to the constraints of building a short tree decision tree from set-off learning data, we
use Quinlan’s C4.5 and C5.O calculations to flow the data. Naïve Bayes surpasses the
aforementioned strategies since it is not dependent on any input attributes. Future studies
and the implementation of other ways to alleviate the problem of high overfitting are
possible. In the investigation in [14], the subject of restricting and summarizing the many
data mining approaches that are used in the field of medical prediction is investigated.
The dataset was analyzed using the Naïve Bayes, KNN, and Decision Tree algorithms,
which are all different supervised machine learning methods. The Tangra tool and 10-fold
cross-validation are used in this step, and afterwards, the findings are compared in order
to accomplish the categorization of the dataset. Thirteen different characteristics were
employed for the comparison and contrast. The accuracy of the Decision Tree is the highest
at 99.2%, followed by the accuracy of the Naïve Bayes method at 96.5% and the accuracy of
the classification using clustering at 8.83% [14].

The major goal of another study [15] was to create a prediction model for the detection
of heart disease using transthoracic echocardiography using data mining techniques. In
the research, 7339 cases were extracted and pre-processed using data gathered at PGI,
Chandigarh, between 2008 and 2011. Using the Weka 3.6.4 machine learning software,
three unique supervised machine learning techniques were applied to a model of a pre-
processed transthoracic echocardiography dataset. These methods are named J48 Classifier,
Naïve Bayes, and Multilayer Perceptron. The distribution frequency was used to check
for noise, inconsistency, and missing data, while box plots were used to locate outliers.
The effectiveness of the models was evaluated using standard metrics, including accuracy,
precision, recall, and F-measure. Random selection of training and test data samples was
performed using ten cross-validations. With a classification accuracy of 95.56%, the J48
classifier is the most successful at predicting heart disease based on the specified parameters.
To enhance classification accuracy and forecast particular kinds of heart disease, researchers
will need to conduct additional tests with a larger number of datasets in the future [15].
The research entailed predicting cardiovascular disease using a different method. In order
to forecast heart attacks successfully using data mining, the focus of this study is on the use
of a wide variety of approaches, as well as combinations of a large number of target criteria.

A number of supervised machine learning strategies, such as Naïve Bayes and Neural
Network, as well as a Weighted Association A Priori algorithm and a Decision algorithm,
have been utilized for the purpose of conducting an analysis of the dataset. These strategies
were used in order to accomplish this goal. For the purpose of another investigation [16],
the data mining program Weka, version 3.6.6, was used. All of the tools that were necessary
for the pre-processing of data, as well as classification, regression, clustering, association
rules, and visualization, are linked to Weka. The Decision Tree algorithm has outperformed
the others with an accuracy of 99.62% while using 15 criteria. In addition, the accuracy
of the Decision Tree and Bayesian Classification algorithms increases even further when
the genetic algorithm is used to minimize the actual data size in order to obtain the ideal
subset of characteristics that are required for predicting heart disease. This is because the
genetic algorithm is able to find the ideal subset of attributes that are necessary for making
the prediction. This helps to ensure that the Decision Tree and Bayesian Classification algo-
rithms produce the most accurate results possible. They used the Association Classification
approach in addition to the prior algorithm and the Mafia algorithm [16].

Recently, Paladino et al. [17] proposed evaluating three AutoML tools (PyCaret, Au-
toGluon, and AutoKeras) on three datasets, comparing their performance with ten tradi-
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tionally developed ML models. Traditionally designed models achieved 55–60% accuracy,
while AutoML tools outperformed them. AutoGluon consistently achieved 78–86% ac-
curacy, making it the top tool. PyCaret’s performance varied (65–83%), and AutoKeras
showed fluctuating results (54–83%). AutoML tools simplify ML model creation, potentially
surpassing traditional methods.

1.2.2. Deep Learning Techniques

For the development of effective heart disease prediction [18], Multilayer Perceptron
with a back propagation neural network is employed. The dataset contains 303 records,
of which 40% is used for training the Multilayer Perceptron neural network, and the
remainder is used for testing using the backpropagation algorithm. The experiment was
conducted using Weka 3.6.11. Based on the actual desired output obtained from the
Learning algorithm, in each neuron, the backpropagation algorithm calculates the error
followed by the calculation of the output for each neuron, which in turn results in improved
weights during the whole processing. The whole system developed shows an accuracy of
100% [18]. The reference [19] provided a novel idea to recognize individuals with a heart
attack in color photos by identifying heart attack-related postures. Images of persons in
infarction-free conditions and those who may be experiencing one were combined to create
a dataset. Convolutional Neural Networks are used in the process of recognizing infarcts. A
total of 1520 photos—760 of class “Infarct” and 760 of class “No Infarct”—were included in
the first image data collection. These have been practised on a series of specifically created
photos that feature people acting out heart attacks. The classification of infarcts shows
encouraging results with 91.75% accuracy and 92.85% sensitivity.

Recently, Rani et al. [20] suggested a method, dubbed cardio help, that uses Convolu-
tional Neural Networks, a type of deep learning algorithm, to predict the likelihood that
a patient would have a cardiovascular illness (CNN). The suggested approach focused
on modelling temporal data while applying CNN for early-stage HF prediction. They
employed Convolutional Neural Networks and a cutting-edge dataset from the UCI library
to predict a potential cardiac ailment (CNN). Some heart test parameters, as well as typical
human behaviors, were included in the dataset. According to experimental findings, the
proposed method performed better than the current methods in terms of performance
evaluation measures. The proposed method’s attained accuracy is 97%. The application of
deep learning models was used to segment the left ventricle using magnetic resonance data.
The results were very close to the actual situation. They suggested a different approach for
automatically segmenting the left ventricle using magnetic resonance data and employed
a deep learning strategy together with a level-set method. UNET was recommended by
researchers [21] for segmenting biological images. To identify and differentiate boundaries
in UNET, classification was performed on each individual pixel. In order to improve
segmentation in medical imaging, the Fully Convolutional Network was modified and
utilized as the basic architecture for the U-Net design. A technique incorporating a deep
learning architecture has been proposed [22].

Another recent research [23] endeavour introduces a methodology utilizing a CNN
model that effectively combines the strengths inherent in both dense and residual blocks.
By capitalizing on the benefits of residual and dense connections, this model is able to
enhance the flow of information, propagate gradients more effectively, and facilitate the
reuse of features, ultimately resulting in improved performance. The proposed model was
composed of interleaved residual-dense blocks, with the option of incorporating pooling
layers for downsampling. Heartbeat classification into five distinct classes is accomplished
by utilizing a linear support vector machine (LSVM), which simplifies the feature learning
and representation derived from ECG signals. In order to address various issues such as
baseline drift, power line interference, and motion noise, the initially collected ECG data
are subjected to a denoising procedure. Subsequently, resampling techniques are employed
to mitigate the impact of class imbalance. The proposed method underwent rigorous
evaluation through extensive simulations conducted on well-established benchmarked
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datasets, with a wide array of performance measures being utilized. On average, the
proposed approach achieved an accuracy rate of 98.5%, a sensitivity rate of 97.6%, a
specificity rate of 96.8%, and an AUC (Area Under the Curve) value of 0.99. In [24], an
effective ML model was introduced for CKD prediction using pre-processing, feature
selection, hyperparameter optimization, and ML techniques. On the UCI CKD dataset,
the suggested model performed well with 100% accuracy. The study found that new
pre-processing methods, the Boruta feature selection, the k-nearest neighbors technique,
and grid-search cross-validation (CV) hyperparameter optimization improve early CKD
identification. In another work, a machine learning model [25] was offered to predict
cardiac disease using pre-processing, hyperparameter optimization, and ensemble learning
methods. Using three comparable Kaggle datasets, a complete dataset for model evaluation
was created. The strategy obtained 98.15% accuracy by using the additional tree classifier,
normalizing the data, grid search cross-validation (CV) for hyperparameter optimization,
and partitioning the dataset 80:20 for training and testing.

1.2.3. Ensemble Learning Techniques

Yang et al. [26] introduced a smote-XGboost-based approach to cardiovascular disease
prediction in this study. A method was presented for feature selection that takes advantage
of information gain; next, they used the hybrid Smote–Enn algorithm to handle imbalanced
datasets. Lastly, the model was trained using the processed HDD dataset. XGboost was
tested experimentally in comparison to five baseline algorithms. The results showed that
the proposed model does very well across all four assessment metrics, with a prediction
accuracy of 91.44%. Importantly, for the prediction of heart disease, they further quantify
the feature relevance of the chosen algorithm [26]. To enhance the effectiveness of machine
learning classifiers in predicting the risk of heart disease, the work used three attribute
evaluator approaches to choose key features from the Cleveland heart dataset. By using the
chi-squared attribute assessment approach, the SMO classifier accomplished an impressive
feat. Over time, they found that, by carefully selecting attributes and fine-tuning the
classifier’s hyperparameters, the prediction performance was much enhanced. The study
used a smaller dataset of 303 instances, three feature selection techniques, and ten machine
learning classifiers. However, the classifier’s performance is sufficient.

Numerous machine learning algorithms and feature selection approaches have a great
deal of untapped potential. Reddy et al. [27] aimed to merge datasets in the future to
increase the number of observations and run additional tests to enhance the classifier’s
predicting performance by choosing the right characteristics. The study created data mining
algorithms with an 81.82% accuracy. They employed C4.5, CART, and RIPPER for the
rule basis, compared the three fuzzy rule-based strategies in this research and deployed
their system on 411 datasets [21]. The major goal of the research was to use a real-world
dataset and several methods to categorize cardiac diseases. Predicting the existence of
cardiac disease was carried out using the k-mode clustering technique on a dataset of
patients. In order to prepare the dataset for analysis, the age attribute was converted to
years and then divided into 5-year intervals. Similarly, the diastolic and systolic blood
pressure values were divided into 10-interval bins. To account for the different features and
development of heart disease in men and women, the dataset was additionally divided
according to gender [28]. A recent study [29] compared some ensemble models, including
XGBoost, CatBoost, Random Forest, and Extra Tree, in terms of classifying heart disease,
and proposed that the best-performing model was Extra Tree with 97% accuracy.

1.3. Motivations and Challenges

The impetus behind conducting this research originates from the formidable global
health challenge posed by cardiovascular diseases. As the foremost cause of mortality
on a global scale, heart diseases necessitate innovative and precise predictive models for
early identification and intervention. Acknowledging the limitations inherent in traditional
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clinical methods, the study aims to navigate the intricacies and variability associated with
cardiovascular conditions.

The primary objective is to construct a resilient and all-encompassing framework
that leverages advanced machine learning techniques, explicitly focusing on boosting
ensemble algorithms. The drive behind this lies in the potential of these techniques to
heighten predictive accuracy, providing a more nuanced comprehension of the factors
contributing to heart diseases. By exploring the synergies within boosting algorithms like
AdaBoost, Catboost, and Gradient Boosting, the research strives to contribute to creating
a sophisticated tool for early detection and risk assessment. Furthermore, the motivation
extends to implementing preventive measures and timely interventions. In the face of an
escalating global burden of heart disease, developing a practical predictive framework is
pivotal in shaping public health strategies and enhancing patient outcomes. The research
aspires to furnish healthcare professionals with a reliable tool for discerning individuals at
risk, ultimately fostering proactive healthcare measures and mitigating the overall impact
of cardiovascular diseases on global health. In summary, the motivation for this research
is deeply rooted in the urgent necessity to augment our predictive capabilities for heart
diseases, providing a proactive and productive approach to address this substantial public
health concern.

2. Technical Details of Dataset

The heart disease dataset [30] offers an extensive range of attributes pertaining to
cardiovascular health and lifestyle decisions, including specific patient information such
as age, gender, cholesterol levels, blood pressure, heart rate, and factors such as diabetes,
family history, smoking habits, obesity, and alcohol consumption. In addition, lifestyle
variables such as the number of hours spent exercising, food habits, stress levels, and
sedentary hours are taken into account. Medical factors, such as prior cardiac issues, drug
use, and triglyceride levels, are taken into account. Factors such as income and geographical
features, including nation, continent, and hemisphere, are also taken into account. The
dataset contains 8763 patient records from various locations worldwide. It includes a
vital binary classification feature that indicates the existence or absence of a heart attack
risk. This dataset serves as a valuable resource for predictive analysis and research in the
field of cardiovascular health. This dataset (See Table ??) serves as a valuable resource for
predictive analysis and research in the field of cardiovascular health.

Table 3. Description of heart disease dataset.

Index Feature Description Value Type

1 Age Age of the patient Numerical

2 Sex Gender of the patient (Male/Female)

3 Cholesterol Cholesterol levels of the patient Numerical

4 Blood Pressure Blood pressure of the patient
(systolic/diastolic) Numerical

5 Heart Rate Heart rate of the patient Numerical

6 Diabetes Whether the patient has diabetes (Yes/No)

7 Family History Family history of heart-related
problems (1: Yes, 0: No)

8 Smoking Smoking status of the patient (1: Smoker, 0:
Non-smoker)

9 Obesity Obesity status of the patient (1: Obese, 0: Not obese)

10 Alcohol Consumption Level of alcohol consumption by
the patient

(None/ Light/
Moderate/ Heavy)
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Table 3. Cont.

Index Feature Description Value Type

11 Exercise Hours
Per Week

Number of exercise hours
per week Numerical

12 Diet Dietary habits of the patient (Healthy/ Average/
Unhealthy)

13 Previous Heart
Problems

Previous heart problems of
the patient (1: Yes, 0: No)

14 Medication Use Medication usage by the patient (1: Yes, 0: No)

15 Stress Level Stress level reported by the patient (1–10)

16 Sedentary Hours Per
Day

Hours of sedentary activity
per day Numerical

17 Income Income level of the patient Numerical

18 BMI Body Mass Index (BMI) of
the patient Numerical

19 Triglycerides Triglyceride levels of the patient Numerical

20 Physical Activity Days
Per Week Days of physical activity per week Numerical

21 Sleep Hours Per Day Hours of sleep per day Numerical

22 Country Country of the patient Numerical

23 Continent Continent where the
patient resides Numerical

24 Hemisphere Hemisphere where the
patient resides Numerical

25 Heart Attack Risk Presence of heart attack risk (1: Yes, 0: No)

Frequency Distribution

This experiment’s dataset has a good mix of classes, with class 1 representing heart
disease (4442 instances) and class 0 representing no heart disease (4321 instances), as shown
in Figure 1. If the dataset is not balanced for the problem statement, machine learning and
ensemble learning models will produce poor results. Sampling techniques can be used in
certain situations to create a balanced dataset.

Figure 1. Frequency distribution of classes in the heart disease dataset.
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The histogram is a significant statistical analysis technique for data visualization.
It depicts the continuous variable distribution for a given interval of time. Through a
histogram, the data are plotted by dividing them into sections called bins. The main use
of the histogram is to inspect the underlying distribution of frequency, as in the case of
normal distribution, skewness, outliers, and so on. Figure 2 below represents the histogram
for each attribute separately to analyze their distribution.

Figure 2. The distribution of the heart dataset features.

A map of the concentration of values between graphical figures, in which matrix
values that are individual are presented as colors, is called a heat map. It is used in the
visualization of two dimensions of the matrix shown in Figure 3. It is also helpful for
pattern finding and hence gives a perspective of depth. In Figure 3, below, we used the
color function in order to create colors of the heat map and added labels (row/column)
to this. The heat map given below indicates how one attribute is co-related to another
attribute, that is, whether it is negatively or positively correlated.

Descriptive statistics are crucial for defining the features of data and condensing the
facts to facilitate human comprehension and interpretation. Table 4 provides an overview
of the statistical measurements for the clinical characteristics, including the number of
records, the lowest (min) value, the highest value, the maximum value, the mean, and the
standard deviation (Std). As an example, the age property has a mean value of 53.84. The
dataset has a mean value and a standard deviation of 21.21. The highest and lowest age
values in the set are 90, and the ages are 18 years individually. These statistical metrics are
likewise computed for the other 22 properties.

Table 4. Statistical analysis of the heart disease dataset.

Attribute Count Mean Std min 25% 50% 75% max

Age 8763 58.8 21.2 18 35 54 72 90

Sex 8763 0.67 0.45 0 0 1 1 1

Cholesterol 8763 259 80 120 192 259 330 400

Blood Pressure 8763 1.85 0.35 1 2 2 2 2
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Table 4. Cont.

Attribute Count Mean Std min 25% 50% 75% max

Heart Rate 8763 75 20 40 58 75 93 110

Diabetes 8763 0.65 0.47 0 0 1 1 1

Family History 8763 0.49 0.49 0 0 0 1 1

Smoking 8763 0.896 0.304 0 1 1 1 1

Obesity 8763 0.501 0.5 0 0 1 1 1

Alcohol consumption 8763 0.589 0.49 0 0 1 1 1

Exercise hours/W 8763 10.01 5.78 0.002 4.98 10.06 15.05 19.99

Diet 8763 0.992 0.81 0 0 1 2 2

Previous heart problem 8763 0.49 0.5 0 0 0 1 1

Medication use 8763 0.498 0.5 0 0 0 1 1

Stress level 8763 5.46 2.85 1 3 5 8 10

Sedentary H/D 8763 5.99 3.46 0.001 2.998 5.93 9 11.9

Income 8763 158,263 80,575 20,062 88,310 157,866 227,749 299,954

BMI 8763 28.89 6.31 18 23.4 28.7 32.3 39.9

Triglycerides 8763 418.3 223.17 30 227 418 612 800

Physical act/w 8763 3.489 2.28 0 2 3 5 7

Sleep hours/day 8763 7.02 1.98 4 5 7 9 10

HA Risk 8763 0.358 0.47 0 0 1 1 1

Figure 3. The relationships and patterns within the heart disease dataset.
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3. Methods

The whole procedure, from data collection through the production of useful outcomes,
is shown in Figure 4, and the technical details of the prediction model can be seen in
Algorithm 1 below.

Figure 4. The details of methodology adapted.

Algorithm 1 Workflow of Methodology Employed:

• Input: Dataset
• Output: Prediction Model
• BEGIN
• Step 1; ingress dataset
• Step 2: pre-process the dataset (data transformation, data cleaning)
• Step 3: Xtrain, Ytrain...70% of dataset.
• Step 4: Xtest, Ytest......30% of dataset.
• Step 5: D1 models and their Algorithms
• mn = (DT, RF, Boosting techniques)
• for (i = 0, i < 3, i ++) do
• Model.fit();
• Model.predict();
• Print (Accuracy(i), Confusion matrix, Roc curve)
• End
• Step 6: Placement of framework
• STOP

3.1. Machine Learning Framework

All experimental data were analyzed using Anaconda. Anaconda is a public and
licensed accessible version of the popular Python and R language skills for scientific com-
puting, designed to streamline deployment and package management (machine learning
and data science applications, pre-processing of massive amounts of data, predictive anal-
ysis, etc.). Furthermore, we used TensorFlow to implement all ML models. TensorFlow
is an open-source machine learning framework developed by Google. It provides tools
for building and deploying machine learning models, including neural networks. Tensor-
Flow supports distributed computing and offers high-level and low-level APIs. Keras is
another Python library with a high-level neural network API built on top of TensorFlow. It
simplifies the process of creating and training deep learning models with an easy-to-use
syntax. Keras includes pre-trained models and supports various neural network architec-
tures. Finally, scikit-learn, which is a popular ML library for Python, is applied. It offers a
wide range of algorithms and tools for tasks like classification, regression, and clustering.
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Scikit-learn follows a modular design and provides utilities for data pre-processing and
model evaluation.

3.2. Pre-Processing

The pre-processing of data is an integral step in achieving improved outcomes prior
to the development of ensemble machine learning models. Through the utilization of
techniques such as resampling and discretization, the acquired dataset underwent pre-
processing using the Integrated Development Environment Spyder with Python (3.9.1) as
the programming tool.

The necessary libraries for data quality evaluation have been imported, and missing
values have been filled. Although data imputation is not employed for every feature, we
have filled the missing values pertaining to some attributes with their mean of neighboring
values. Some attributes with the missing values were: age = 31, BP = 28, cholesterol = 23,
BMI = 11, obesity = 05, and income = 08. The boxplot was used to find outliers, and the
interquartile range approach was used to replace the outlier with viable sample values.
However, out of 26 attributes, attributes like patient ID, country name, continent name,
and hemisphere have been discarded. Before creating the machine learning models, data
transformation was conducted to increase data efficiency. The interquartile range (IQR)
encompasses the data points falling between the first and third quartiles, respectively. The
outliers are removed through an interquartile range, setting a threshold of 1.5. Although
it depends upon the type of dataset. Any points outside the range given are removed:
Q1 − 1.5 × 1QR to Q3 + 1.5 × 1QR. The process of pre-processing is shown in Figure 5 below.

Figure 5. The details of pre-processing steps.

The dataset splitting ratio has been chosen with care, taking into account aspects
such as overfitting, model complexity, size of the dataset, and the unique requirements of
machine learning activity. The dataset is split into a 60:40 ratio. This means that, for every
algorithm, 60% of the dataset is used for training, and the remaining 40% of the dataset is
used for testing the algorithm. Through the train_test_split function, the implementation
of the train–test–split evaluation procedure is carried out using the sci-kit learn library.
The loaded dataset is taken by the function as the input, and then two subsets of this
split dataset are returned. Ideally, we split the original dataset into input(x) and output(y)
columns, followed by the function calling that passes both the arrays and splits them
exactly into the train and test subsets separately. After the generation of results, 10-fold
cross-validation will also be used to validate the results, and then all these results will be
compared in terms of optimal accuracy.

3.3. Ensemble Learning Approaches

Ensemble learning approaches are widely investigated across several domains for the
purpose of addressing practical challenges [31]. These models have achieved substantial
advancements in the accurate forecasting, identification, assessment, and prediction of
many medical conditions. This research examined three ensemble-learning-based boosting
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algorithms for the purpose of predicting cardiac disease. The experiment made use of the
algorithms listed below.

3.3.1. Decision Tree

When it comes to classification and regression, one non-parametric supervised learning
approach that is often utilized is Decision Trees or DTs. The objective is to train a model to
learn basic decision rules derived from data attributes in order to forecast the value of a
target variable. A piecewise constant approximation is one way to look at a tree [32].

3.3.2. Random Forest

Random Forest algorithms consist of three primary hyperparameters that must be
configured prior to the training process. These crucial parameters encompass the node
size, the quantity of trees, and the number of features sampled. Once established, the
Random Forest classifier becomes an invaluable tool for tackling both regression and
classification problems. The underlying structure of the Random Forest algorithm is
essentially a compilation of Decision Trees. Each individual tree within this ensemble
is constructed by utilizing a data sample drawn from a training set with a replacement,
which is commonly referred to as the bootstrap sample. To evaluate the effectiveness of this
algorithm, one-third of the training sample is reserved as test data, known as the out-of-bag
(oob) sample. This oob sample will play a significant role in our subsequent analysis and
exploration of the Random Forest algorithm [33].

3.3.3. Gradient Boosting

Gradient boosting is a machine learning approach that belongs to the ensemble family.
It is often used for both classification and regression applications. The algorithm constructs
a prognostic model by assembling a collection of feeble learners, often Decision Trees, and
then amalgamates them to generate a more robust and precise model. The fundamental
concept behind Gradient boosting is to iteratively train further models in order to rectify
the inaccuracies of the preceding models. The mathematical intricacies entail the use of
calculus, specifically the calculation of gradients and partial derivatives. The choice of
loss function will dictate the mathematical formulations for these gradients. Typical loss
functions used in machine learning include mean squared error for regression problems
and cross-entropy for classification tasks. The intricacies might become more intricate, but
the underlying premise is iterative optimization to minimize the loss by modifying the
model’s predictions [34,35].

3.3.4. CatBoost

CatBoost [36] is a supervised machine learning technique used by the Train Using Auto
ML program. It utilizes decision trees for both classification and regression tasks. CatBoost
is characterized by two primary attributes: its ability to handle categorical data and its use
of gradient boosting. Gradient boosting is an iterative approach that involves constructing
many decision trees. Each successive tree enhances the outcome of the preceding tree,
resulting in superior outcomes. CatBoost enhances the original gradient boost technique to
achieve a more efficient implementation. CatBoost addresses a constraint present in other
decision tree-based techniques, where it is usually necessary to preprocess the input by
converting category text variables into numerical values, such as one-hot encodings. This
technique has the capability to directly handle a mixture of category and non-categorical
explanatory factors without the need for pre-processing. Preprocessing is an integral aspect
of the algorithm. CatBoost employs an encoding technique known as ordered encoding to
encapsulate category attributes [37].

3.3.5. XGBoost

It employs an ensemble of diverse decision trees (weak learners) to compute simi-
larity scores independently. To address the issue of overfitting during the training phase,
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the method adjusts the gradient descent and regularization procedure. You are able to
control overfitting with the help of regularization, which is provided by XGBoost. This is
accomplished by imposing L1/L2 penalties on the weights and biases of each tree [38].

After performing optimization techniques, the objective function of XGBoost is com-
posed of two distinct components that serve to capture both the model’s deviation and
the regularization term, aiming to prevent overfitting. Let us denote the dataset as
D = {(xi, yi)}, which encompasses a comprehensive collection of n samples and m features.
Within this dataset, the predictive variable can be visualized as an additive model, compris-
ing a combination of k fundamental models [39]. Upon conducting sample predictions, the
outcome can be summarized as follows:

ŷi =
K

∑
k=1

fk(xi), fk ∈ φ (1)

φ = { f (x) = ws(x)}
(

s : Rm → T, ws ∈ RT
)

. (2)

In the context where ŷi symbolizes the label prediction and xi stands for one of the
samples, the predicted score is denoted by fk(xi) or the given sample. Moreover, φ is
used to signify the set of regression trees, which essentially encapsulates the tree structure
parameters of s, f (x). Additionally, w serves as a representation of the weight of the leaves
and the number of leaves.

The objective function of XGBoost encompasses not only the traditional loss function
but also the model complexity, thus enabling its utility in evaluating the operational
efficiency of the algorithm. Within the framework of Formula (3), the first term is indicative
of the traditional loss function, whereas the second term pertains to the model’s complexity.
Consequently, the comprehensive nature of the XGBoost objective function allows for a
thorough assessment of both the predictive performance and the overall complexity of the
model [39].

Obj =
m

∑
i=1

l
(

yi, ŷ(t−1)
i + fi(xi)

)
+ Ω( fk), (3)

Ω( fk) = γT + 1/2λw2. (4)

In the realm of these two exquisite formulas, the mystical entity denoted by the
ethereal symbol i gracefully signifies the ethereal concept of the numerous samples that
reside within the sacred dataset, while the enigmatic symbol m adorns itself with the mantle
of representing the grandiose total amount of data that have been ceremoniously imported
into the ethereal k th tree. As if imbued with arcane power, the enigmatic symbols γ and λ
step forward to take on the audacious task of adjusting the very fabric of complexity within
the ethereal tree. Behold, for in this realm, the very essence of regularization terms emerges
as a mighty force, capable of adorning the final learning weight with a velvety smoothness
and shielding it from the treacherous clutches of overfitting, like a knight in shining armor.

3.3.6. AdaBoost

As an ensemble method, AdaBoost [40] (or adaptive boosting) applies machine learn-
ing techniques. One-level decision trees, also known as decision trees with a single split,
are the most used estimator in AdaBoost. Decision stumps are a common name for these
trees. In this method, every piece of data is given the same weight while building a model.
It then gives points that were wrongly classified as a higher weight. The following model
gives more weight to all points that have higher weights. It will not stop training models
until the reported error is reduced [25,41].



Computation 2024, 12, 15 15 of 22

3.3.7. Light GBM

Distributed systems are ideal for maximizing Light GBM’s performance [42]. With
Light GBM, you may train decision trees that expand “leafwise”, meaning that, for any
given circumstance, you only divide the tree once based on the gain. Especially when
working with smaller datasets, leaf-wise trees have the potential to overfit. Overfitting
may be prevented by reducing the tree depth. Light GBM employs a histogram-based
approach, which involves dividing data into bins based on the distribution’s histogram.
Instead of using each data point, the bins are used for iteration, gain calculation, and data
splitting [43].

3.4. Performance Measures

The results yielded from the proposed algorithms may be evaluated by the following
below-mentioned measures [24,44,45]:

Accuracy is interrupted from the given formula:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
. (5)

In the equation, TP and TN stand for True Positive and True Negative, and FP and FN
stand for False Positive and False Negative, respectively. TP + TN signifies the percentage
of correctly classified instances, and TP + TN + FN + FP signifies the total number of
correctly and incorrectly classified instances.

Precision is part of the significant instances involving the retrieved instances. The
equation for precision is given below:

Precision =
TP

(TP + FP)
. (6)

Recall is a small portion of appropriate instances, which is retrieved over the total
quantity of relevant instances. The equation for the recall is given below:

Recall =
TP

TP + FN
. (7)

The following equation, which satisfies the definition of specificity, is given below:

Specificity =
TN

(TN + FP)
. (8)

F-measure is based on double the precision times recall divided by the sum of precision
and recall. The equation for F-Measure is given below:

F = 2 × Precision × Recall
Precision + Recall

. (9)

A confusion matrix, also referred to as an error matrix, is an incredibly useful tool in
machine learning. It serves as a comprehensive and informative table that effectively sum-
marizes the performance of a classification model. This matrix (See Figure 6) is extensively
utilized to evaluate the accuracy and effectiveness of a model’s predictions, providing
valuable insights that aid in decision-making processes. Moreover, the confusion matrix
acts as a visual representation that encompasses a wide range of information regarding
how well a model classifies different classes. By comparing the predicted labels against the
actual labels, it effectively showcases the model’s capabilities and limitations. Structured in
a square matrix format, the rows and columns correspond to the true and predicted classes,
allowing for a detailed analysis of the model’s performance. An essential aspect of the
confusion matrix is its ability to facilitate the computation of various performance metrics.
These metrics include accuracy, precision, recall, and F1 score, each offering unique insights
into the model’s predictive capabilities. By providing a clear distribution of correct and
incorrect predictions across different classes, the confusion matrix offers a comprehensive
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understanding of the model’s strengths and weaknesses. Overall, the confusion matrix
serves as an invaluable tool in the field of machine learning. Its ability to summarize and
visualize the performance of a classification model provides researchers and practition-
ers with the necessary information to make informed decisions. One can significantly
enhance the accuracy and effectiveness of their models by harnessing the power of the
confusion matrix.

Figure 6. The components of the confusion matrix.

3.5. Validation

The next step is to randomize the supplied dataset and, for this, the k-fold cross-
validation approach is utilized to test the data for the assessment of various ensemble
machine learning algorithms. The dataset is partitioned into k subgroups containing the
same data. This search employs 10-fold. As a result, data are 10-folded, with each fold
around the same size. As a result, for each of the ten subsets of data, this validation
approach employs one-fold for testing and the remaining nine-fold for training, as seen in
Figure 7 below.

Figure 7. Ten-fold cross validation technique.

4. Experimental Results

The confusion matrix shown below is used to evaluate the performance of boosting
models for identifying mislabeled/errors in predicting cardiac illness. It compares actual
results to projected values using four factors: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). The confusion matrix shown in Figure 8 below is
used to evaluate the performance of boosting models for identifying mislabeled/errors in
predicting heart illness. It compares actual results to projected values using four factors:
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8. The testing confusion matrix of (a) GBoost, (b) AdaBoost, (c) CatBoost, (d) Light Boost,
(e) Random Forest, (f) XGBoost, and (g) Decision Tree.
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Testing Performance of Algorithms Employed: The accuracies of the algorithms are
displayed in Table 5 below. Before pre-processing, the algorithms achieved a testing
accuracy of 60.73%, 63%, 67%, 68%, 71.21%, 71.54%, and 72%. After pre-processing,
the algorithms achieved an accuracy of 71%, 74%, 87%, 93%, 90%, 92.38%, and 95%,
correspondingly.

Table 5. The average performance of seven ensemble learning models to classify heart disease.

Algorithm Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR FI-Score MCC

DT 0.716 0.695 1 1 0.193 0 0 0.304 0.82 0.366

RF 0.743 0.729 0.78 0.904 0.504 0.219 0.095 0.27 0.807 0.457

GBoost 0.909 0.898 0.953 0.987 0.703 0.046 0.012 0.101 0.94 0.766

CatBoost 0.8739 0.8372 1 1 0.6415 0 0 0.1628 0.9114 0.7329

XGBoost 0.9238 0.899 0.9869 0.9943 0.794 0.0131 0.0057 0.101 0.9442 0.8356

Light GBM 0.938 0.934 0.953 0.987 0.785 0.046 0.012 0.065 0.96 0.828

AdaBoost 0.952 0.952 0.953 0.987 0.8344 0.0469 0.0122 0.0475 0.9698 0.8628

4.1. Feature Importance for AdaBoost

Feature importance is a technique used in machine learning to determine the most
important features (i.e., variables or columns) in a dataset that contribute the most to
the outcome of a model. The feature important scores are calculated for AdaBoost only
because it attained the highest accuracy. The feature importance is calculated by setting
a threshold of 0.3. If we are supposed to perform feature selection, we generally set a
threshold and then only look at features with relevance ratings higher than that. Reducing
overfitting and simplifying the model are two potential benefits of setting a threshold of
0.3. However, it varies from model to model. The feature importance for XGB is shown in
Figure 9 below: Also, so far as the feature selection technique is concerned, we have used
a correlation-based feature selection technique. The results have been validated through
five-fold and ten-fold cross-validation.

Figure 9. Features importance based on the AdaBoost.
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4.2. Comparative Results

Table 6, presented below, serves as a means of conducting an analytical comparison
between our proposed framework and the existing body of work. This comparison is
rooted in the examination of various crucial aspects, including the methodology employed,
the dataset utilized, and the analysis conducted. It is worth noting that the majority of
lifestyle factors that were studied and explored in the context of our proposed framework
are shared by all the studies that were conducted for the purpose of comparison. Through
meticulous analysis, it was revealed that our proposed framework had exhibited a re-
markable performance, particularly in terms of various assessment criteria, with a notable
focus on the accuracy of heart disease prediction. In order to surpass the achievements of
previous relevant studies and to ensure the attainment of superior outcomes, a series of
advanced procedures were implemented. These procedures encompassed techniques such
as data imputation, which was employed to manage missing values effectively, as well as
the identification and replacement of outliers through the utilization of the well-regarded
boxplot method. Moreover, in order to enhance the reliability and validity of the findings,
the data underwent a rigorous process of standardization and normalization, which was
carried out using the transformation method. Furthermore, to further solidify the credibility
of the results produced by our proposed framework, the K-fold cross-validation approach
was meticulously employed during the development and implementation stages of the
suggested framework. This approach ensures that the findings obtained are both robust
and generalizable, thereby enhancing the overall validity of the framework’s predictions
and conclusions.

Table 6. The average performance of seven ensemble learning models to classify heart disease.

Ref Year Method Dataset Splitting Ratio Results

[46] 2020 CNN UCI with 303 instances and
14 attributes 70:30 Accuracy = 94.78%

[47] 2022 AB, LR, CART, SVM,
LDA, RF, XGB

UCI with 303 instances and
14 attributes 70:30

XGB Precision = 90, Recall = 100,
F-measure = 95, and
Accuracy = 91.80%.

[8] 2023 SVR, ANFIS, M5 Tree UCI with 1028 instances and
13 attributes 70:30 ANFIS, ANN-LM, and ANN-BFG,

Accuracy = 94.7%, 96.2%, and 91.50.

[48] 2022
Stacking ensemble of
LR, RF, SGD, Ensemble
of GDC and ADA

Cleveland, Switzerland, long
beach Va Satlog 60:40

MTE, Accuracy, Precision, Recall,
F-measure, AUC-ROC = 91.84%,
91.75%, 95.22%, 93.30% and 94.05%.

[49] 2023 RF, LR, NB, DT UCI 70:30
Accuracy, ROC, Precision, Recall, F1,
and Score = 0.98%, 0.63%, 0.98%,
1.00%, 0.99%.

[19] 2021 CNN UCI 60:40 Precision = 0.8669, Recall = 0.8174,
Fl-score = 0.8414, Accuracy = 0.8667.

Our
Model

DT, RF, CatB, GB, XGB,
Adaboost, Light GBM

Kaggle with 8763 and 26
attributes 60:40

AdaBoost, Accuracy, Sensitivity,
Specificity, and Precision = 0.952%,
0.952%, 0.953%, and 0.987%.

5. Conclusions

This paper makes a significant contribution by comparing ensemble machine learning
classifiers, mainly focusing on boosting algorithms, for the early prediction of cardiovas-
cular disease (CVD). Pre-processing steps were implemented to enhance dataset quality,
emphasizing the management of corrupted and missing information, as well as outlier
elimination. In addition to the AdaBoost model, six other ensemble learning algorithms
were employed to predict CVD, and their performances were evaluated using a range of
statistical indicators. The experimental results highlight the AdaBoost model’s exceptional
accuracy, with a 96% accuracy in the training set and 95% in the testing set. The robustness
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of the DT, RF, CatBoost, GBoost, XGBoost, AdaBoost, and Light GM algorithms was vali-
dated through five-fold and ten-fold cross-validation techniques. AdaBoost consistently
demonstrated a superior performance across various criteria, including accuracy, recall,
and f1-score. Furthermore, the study incorporated a correlation feature-based selection
technique. To enhance the predictive potential of boosting classifiers for heart disease,
future efforts should involve training and testing on larger, primary datasets. The study
acknowledges the need for further research, from data collection to result in visualization,
to elevate the research’s calibre. In the future, extending this study to develop a web
application based on boosting and other machine learning, as well as deep learning models,
using larger datasets could yield optimal results for efficient heart disease prediction. Addi-
tionally, exploring other deep learning techniques, particularly those incorporating image
data, could further advance the understanding and prediction capabilities in the realm
of cardiovascular health. This research sets the stage for future investigations, emphasiz-
ing the continual evolution and expansion of methodologies for enhanced heart disease
prediction and management.
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