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a b s t r a c t

Landslides are among the most devastating natural hazards, severely impacting human lives and
damaging property and infrastructure. Landslide susceptibility maps, which help to identify which
regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation.
Research in this field has grown immensely, ranging from quantitative to deterministic approaches,
with a recent surge in machine learning (ML)-based computational models. The development of ML
models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful
development of accurate susceptibility maps. However, despite their success, these models are rarely
used by stakeholders owing to their ‘‘black box’’ nature. Hence, it is crucial to explain the results,
thus providing greater transparency for the use of such models. To address this gap, the present work
introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for
landslide susceptibility modeling. A convolutional neural network model was used conducted in the
CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-
affected variables, of which 70% was used for training and 30% for testing, and the model achieved
an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode,
which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both
landslide and non-landslide locations, thus providing more clarity as to how the model achieves a
specific result. The SHAP dependence plots explained the relationship between altitude and slope,
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showing a negative relationship with altitude and a positive relationship with slope. This is the first
use of an explainable ML model in landslide susceptibility modeling, and we argue that future works
should include aspects of explainability to open up the possibility of developing a transferable artificial
intelligence model.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Landslides are frequently recurring natural disasters that can
e triggered by rainfall, earthquakes, human activities, or a com-
ination of these factors. Rainfall-induced landslides are the most
ommon type and affect large parts of the world [1,2]. South
orea is highly susceptible to landslides triggered by heavy rain-
all, with an increasing trend associated with changes in rainfall
atterns, primarily due to climate change [3,4]. The risk associ-
ted with landslide events is particularly significant, given their
ccurrence in residential and transportation areas [4].
A key step in landslide mitigation is determining ‘‘where’’

andslides may occur, known as landslide susceptibility mapping
5]. A vast body of international work has explored different
echniques for the development of a robust susceptibility model
sing various approaches [5,6]. Landslide susceptibility models
an be broadly categorized into four types: (i) qualitative models
7], (ii) quantitative/data-driven models, (iii) semi-quantitative
odels [5], and (iv) deterministic models [8]. Irrespective of

he model type, the basic procedure involves the collection of
vailable landslide conditioning variables based on an appropriate
apping unit (e.g., pixel, landslide geometry), which serves as

nput to the model being used [5].
The use of machine learning (ML) models has recently gained

raction owing to their ability to understand the complexities of
nteractions between the variables and target [9,10]. Among the
ost commonly used models are artificial neural networks [6,11],
upport vector machines [12,13], and random forests [14,15].
hese models perform better than conventional statistical mod-
ls. Moreover, several studies have looked at the use of ensemble
odels and improved the results yielded by simple ML models.
owever, these approaches directly classify the input data and do
ot uncover more representative features from these data, which
ould further improve the classification results [16]. With new

eats achieved by deep neural networks, such as their defeat of
umans in the game of Go [17], a two-hand poker game [18], and
everal others, they have also proven successful in different fields,
ncluding computer vision and natural language processing [19].
arious studies have examined different aspects of landslides,
uch as landslide detection [20], landslide mapping [21], and
usceptibility modeling [22], using deep learning techniques.
Chen et al. [20] applied convolutional neural networks (CNN)

o develop a change detection model capable of identifying
andslide-prone regions using spatiotemporal images of moun-
ainous regions in China. Prakash et al. [21] used a modified
-net architecture to map landslides in Douglas County, USA.
he study compared their results with conventional techniques
pixel-based, object-based) and found that deep learning yielded
etter results. Wang et al. [23] were the first to use a CNN model
or landslide susceptibility modeling. The study was conducted
n Yanshan, China, and a comparison between CNN and other
L models’ results revealed that the CNN outperformed the
enchmark ML models. Sameen et al. [22] conducted a similar
tudy for South Korea and found that deep neural networks
erformed better. The aforementioned studies demonstrate that
eep learning models perform considerably better than tradi-
ional ML models. Therefore, in this study, we explored the use of

CNN to develop a robust landslide susceptibility model for South

2

Korea’s CheongJu region, which has witnessed frequent landslide
recurrences in recent years.

However, all the above studies lack a key component: model
explainability. Although hybrid and deep learning models have
yielded superior and more accurate results, they are considered
black boxes, and their use among stakeholders is minimal. A
review article by Dikshit et al. [9] on the challenges of using
artificial intelligence (AI) in the field of geohazards highlighted
this key missing link in existing studies. More recently, Ozturk
et al. [24] raised a similar question with the aim of exploring
dynamic susceptibility and outcome interpretation in data-driven
models. In this work, we attempt to interpret an ML model
using an additive explainer, SHapley Additive exPlanation (SHAP)
[25]. The algorithm has recently attracted interest owing to its
additive properties, which provide various plots and help clarify
the inter-dependencies among variables toward model outcomes.
For example, Matin and Pradhan [26] used SHAP to explain the
reliability of the ML model for mapping building damage after
an earthquake event. Abdollahi and Pradhan [27] used SHAP to
explain a deep learning model used for vegetation classification.
García and Aznarte [28] used SHAP to analyze NO2 predictions
in Madrid using a long short-term memory (LSTM) model. In
the field of geohazard studies, Dikshit and Pradhan [29] used
SHAP to investigate how deep learning models achieve specific
results under different drought conditions. Their study applied
an LSTM model to predict droughts in Australia, comparing SHAP
results with physical-based models, and found that SHAP yielded
similar results. To the best of the authors’ knowledge, this is the
first paper to apply an explainable AI (XAI) model to investigate
landslide susceptibility.

This study’s key contribution lies in the application of an
explainable model (SHAP) in landslide susceptibility modeling.
The work explored model outcomes for the entire region as
well as for specific landslide and non-landslide pixels. It further
investigated dependence among the variables, which contributes
to achieving the model’s result. This can benefit the broader
landslide study community by clarifying how ML models achieve
their outcomes, so as to apply such models effectively for disaster
management purposes. The objectives of the study were to apply
a robust landslide susceptibility model based on a CNN, analyze
and examine the results obtained from the CNN, and introduce
the use of SHAP in landslide modeling followed by interpreting
the model’s outcomes.

The paper is organized as follows. The ‘‘Study Area’’ section
(Section 2) describes the area of interest and the history of land-
slides in the region. Section 3 discusses the various datasets used,
which are also landslide conditioning factors. Section 4 explains
the CNN architecture and basics of the SHAP algorithm. Section 5
presents the CNN results, along with the landslide susceptibil-
ity map. The section also presents SHAP plots displaying model
outcomes for the entire test dataset as well as landslide and
non-landslide locations. Section 6 provides a comprehensive dis-
cussion of the results and highlights avenues for future research.
Finally, Section 7 summarizes and concludes the study.

2. Study area

The study area is the CheongJu region (covering 939 km2) of

Chungcheongbuk-do Province located in the central part of South

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. (a) The blue boundary indicates Chungcheongbuk-do Province and the red boundary depicts the CheongJu region. (b) Elevation map of the CheongJu region
with landslide locations.
Korea (Fig. 1). The country is situated in the northeast part of Asia
next to China and Japan and has an area of 99,600 km2, 70% of
hich is covered by mountains with elevations up to 1200 m [30].
ost landslides in South Korea occur due to intense rainfall, caus-

ng an average of 36 fatalities every year with annual damages
f 500–1000M US$ [30,31]. CheongJu City has two rivers, around
hich a wide alluvial plain has formed. The east includes many
ountains, such as the Sandang, Gunyeo, and Uam mountains.
he study area has a distinctly temperate continental climate.
herefore, summers are hot and humid, whereas winters tend
o be cold and dry. The average annual precipitation is greater
han 1200 mm, and it rains intensively in summer. In July 2017,
eavy rainfall of 290 mm a day associated with climate change
as recorded. This heavy rainfall caused not only flooded rivers
ut also several landslides within a few days. This resulted in
amage amounting to over 26M US$, of which 2.5M US$ was due
o landslides while the remainder was due to flooding.

Chungcheongbuk-do Province is situated in a temperate cli-
atic zone, with warm and humid summers and an annual

ainfall of over 1500 mm. Rainfall occurs frequently during the
onths of June–September, with the highest rainfall occurring in

uly. As per Köppen classification, the region has two different
limates—a hot humid continental climate and a warm humid
ontinental climate—of which the former is the dominant type.

.1. Data used

The occurrence of landslide events is influenced by multiple
actors, including topography, vegetation, and soil [6]. The se-
ection of variables for susceptibility modeling depends on the
egion of interest and the data available. Various researchers con-
ucted investigations using different variables, and several review
rticles have provided comprehensive analyses of their variable
election [5,32]. Although several variables affect landslide inci-
ence, variables are often selected based on the characteristics of
he study area and the available data. Therefore, in the present
tudy, we use 16 variables (details provided in Table 1) includ-
ng topographical, geo-environmental, and soil variables, among
thers. Different landslide studies in South Korea have applied
hese factors [11,22]. Some of the variables had categorical values
soil attributes, vegetation attributes, and land cover), whereas
he others had continuous values. No reclassification was per-
ormed for variables with continuous values to eliminate model
ensitivity associated with reclassification.
3

Table 1
Landslide affecting variables used in the study.
Variable type Variable name Data source

Geomorpho-
logical

Slope

Ministry of Land, Infrastructure
and Transport (MOLIT), Korea

Topography
Elevation
Aspect
Plan curvature
Profile curvature

Vegetation

Forest type

Korea Forest ServiceForest density
Timber diameter
Forest age

Soil

Soil depth
National Institute of
Agricultural Sciences. Korea

Soil drain
Surface soil texture
Deep soil texture

Geology Lithology Korea Institute of Geoscience and
Mineral Resources (KIGAM), Korea

Land use Land use type Ministry of environment, Korea

Most of the landslides occurred in mountainous regions, as is
also evident from the elevation map (Fig. 1b), ranging from 20 to
655 m. According to Varnes [33] classification, this region is sus-
ceptible to slide and flow landslide types. The slides were single
rotational types, and the flows commonly seen in the study area
were debris flows. Detailed information on landslide occurrence
locations was extracted from the landslide occurrence history
provided by the Korea Forest Service. A spatial database was
prepared by interpreting aerial images captured before and after
each event (i.e., images from 2016 and 2018 were used to identify
landslide occurrences in 2017). Multiple landslides occurred in
2018, with the largest landslide occurring at 36◦41′52.14′′N and
127◦35′47.98′′E, with a length of 962 m and an areal coverage of
6510 m2, based on aerial photographs. Some of the damage that
occurred as a result of landslides in 2018 is illustrated in Fig. 2(a,
b). Fig. 3(a, b) shows an example of a landslide occurrence at
36◦40′18.58′′N, 127◦42′3.28′′E, with an area of 14 m2, length of
4 m, and width of 3 m.

The region’s geology is heterogeneous (Fig. 4). These variables
affect landslide mechanisms, as rock types determine the suscep-
tibility to slide activity [34]. The geology is divided by period into
unknown metamorphic sedimentary rocks, Precambrian meta-
morphic rocks, Paleozoic metamorphic and sedimentary rocks,
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Fig. 2. Landslide damage on July 16, 2018.
Fig. 3. Panoramic (a) and close-up view (b) of a landslide occurrence on July 16, 2018, in the CheongJu region (36◦40′18.58′′N, 127◦42′3.28′′E).
esozoic igneous rocks, and Quaternary alluvium. The meta-
edimentary rocks are known as the Ogcheng group [35]. They
onsist mainly of quartzite, schist, and phyllite. The Precambrian
etamorphic rocks located in the northwest of the study area
onsist largely of gneiss—specifically, biotite angen gneiss, banded
iotite gneiss, granitic gneiss, and some mica schist have been
dentified [35].

The Paleozoic metamorphic sedimentary rocks are widely dis-
ributed in the eastern part of the study area. Most exhibit a
E strike and NW dip. They are distributed from west to east
n a layer composed of sandstone, shale, phyllite, and calcareous
hale; a layer composed of sandy shale, phyllite, and calcareous
hale; a limestone layer; schist layers; arenaceous phyllite; and
ayers including coal. The arenaceous phyllites are widely dis-
ributed in the westernmost region of the Paleozoic rocks. The
aleozoic rocks are folded, and thus, old formations are located in
he syncline, with arenaceous phyllites repeated [36]. The Meso-
oic igneous rocks include gneiss and are widely distributed over
he CheongJu area. They consist of granites and dikes. Granites
nclude porphyritic granite, biotite granite, and diorite [37]. There
4

are acidic and basic dikes. Most acidic dikes are quartz veins and
felsite dikes, whereas the basic dikes are andesitic in composi-
tion. The Quaternary alluvium is deposited along the rivers and
consists of unconsolidated sediments, such as sand, gravel, and
clay.

The CheongJu area can be divided into seven distinct topo-
graphical categories, of which more than 38% consist of moun-
tains, followed by valleys (19%) (Fig. 5a). The land use patterns of
the area affect landslide activity, as anthropogenic activities have
caused changes, which in turn have led to an increase in such
events (Fig. 5b). The global landslide inventory data gathered by
Froude and Petley [38] also demonstrated that human activities
linked to landslide activity have risen significantly and should
thus be used as a variable in landslide modeling studies.

Geomorphological variables, such as the elevation, slope, as-
pect, and plan and profile curvature, were derived from a digital
elevation model with a spatial resolution of 10 m. These factors
are important for landslide modeling, as they have a direct cor-
relation with slope failure [11,22]. The aspect (Fig. 6a) plays a
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Fig. 4. Geological map of the study region.
Fig. 5. (a) Topographical and (b) landcover maps of the CheongJu area.
ritical role in landslide events, as it influences moisture condi-
ions via rainfall and solar radiation [6]. The region’s slope ranges
rom 0◦ to 78◦ (Fig. 6b) and is an important variable in landslide
susceptibility modeling [22]. The curvature reflects a change in
slope values along each slope’s curve, which has the potential to
influence slope stability [22]. Herein, two different variables are
used to represent curvature: the plan and profile (Fig. 6c, d). The
plan curvature is perpendicular to the direction of the peak slope.
For convex surfaces, the curvature is positive and vice versa for
concave surfaces [39]. By contrast, the profile curvature is parallel
to the direction of the maximum slope, which affects flow across
the surface [39].

Vegetation attributes are represented by four variables: forest
ype, forest density, forest age, and timber diameter, which were
btained from the Korean Forest Service (Fig. 7a–d). Owing to the
verwhelming presence of hilly regions, these variables play a
rucial role in landslide susceptibility modeling [22,40]. Similarly,
orest density influences landslide occurrence as it is related to
round reinforcement, whereas the forest type has an influence as
denser canopy cover leads to higher interception and enhanced
5

root penetration [40,41]. Moos et al. [40] studied the effect of
forest structure on shallow landslides and found that forests in
poor condition experienced more landslide occurrences.

Rainfall-triggered shallow landslides occur due to a complex
process primarily caused by the interaction between hydrologi-
cal processes and soil mechanical reactions toward hydrological
loading [39]. Geology concerns not only the base of the region
but also the soil materials. Therefore, soil characteristics, such
as texture, hydraulic properties, and thickness, are affected by
local lithology [42]. A cause investigation implemented after the
CheongJu landslides found that the area was vulnerable to heavy
rainfall owing to its concave water-collecting topography and
thin soil layers. The variations in soil strength are dependent on
pore water pressure, whereas soil hydration status during heavy
rainfall is controlled by the surface topography, bedrock, and soil
hydraulic properties [39]. Soil attributes also play a significant
role, with clayey soil setting up a potential slip zone, particularly
for shallow landslide events. In this study, we examined four
different soil attributes: deep soil texture, soil depth, surface
soil texture, and soil drainage (Fig. 8). Clayey soil plays a key
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Fig. 6. Digital elevation model attributes used in the study: (a) aspect (b) slope (c) plan curvature, and (d) profile curvature.

Fig. 7. Vegetation attributes used as variables in the study: (a) forest age, (b) forest density, (c) forest type, and (d) timber diameter.
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Fig. 8. Soil attributes used as variables in the study: (a) deep soil texture, (b) soil depth, (c) surface soil texture, and (d) soil drainage.
ole in soil movement, as it has a strain softening behavior. Soil
ovement is influenced by basic soil properties, such as cohesion,
hear strength, and the friction angle [43].

. Models and techniques

This section discusses the application of a CNN and SHAP in
he present study, details the architecture used, and demonstrates
ow SHAP helps with interpreting the results.

.1. Convolutional Neural Network (CNN)

A CNN is a deep learning algorithm with characteristics that
nclude hierarchical features, local connectivity, and shared
eights [44]. Owing to these features, a CNN can hierarchically
xtract low-, middle-, and high-level image features. It comprises
hree main layers: a convolutional layer that reads inputted data
equences and automatically extracts relevant features, a pooling
ayer that extracts important features and focuses on important
ariables, and a fully connected layer that interpret the internal
epresentation and puts out a vector representing multiple time
teps [19]. Given the low number of features in the input data, a
ingle convolution layer has been applied to avoid the problem
f over smoothing [45].
The first layer behaves as a feature extractor that extracts the

eature maps related to the target variable. It learns trainable
ilters to extract local information from the input matrix. The
onvolutional layer also uses an activation layer to add non-
inearity. The selection of activation functions is vital in helping
he network discern complex patterns in the data. The final
ayer conserves important information and reduces the number
f parameters, particularly when large images are fed as input.
arameters can be pooled in several ways, such as the maximum,
um, average, etc, with maximum being used in this study.
7

3.2. Support Vector Machines (SVM)

SVM is a robust supervised technique derived from statistical
learning theory and the principle of structural risk minimization
[46]. The architecture was originally developed for classification
works, and later extended to regression tasks. The motive of
structural risk minimization is to minimize the upper bound of
generalization error [46]. The objective of the model is to identify
a hyperplane in a-dimensional plane, where a is the number
of features, that clearly classifies the data points [47]. Given
x as landslide affecting variables, Eq. (1) shows the separating
hyperplane.

xi (w ∗ yi + a) ≥ 1 − ξi (1)

where, w is the hyperplane orientation in the feature space, a
is the hyperplane offset distance from the origin, and ξi is the
positive slack variable.

SVM has been long used in landslide modeling and is one of
the earliest used approaches in this field, often considered as a
benchmark model [6,9,48]. In the SVM model, the separation of
hyperplane formations from a training dataset is the first step.
This separation is created in the original space with n coordinates
(xi is the variable of vector x) between the points of two different
classes. Pixels are assigned values of ±1 above or below the
hyperplane, where class (+1) are landslide pixels and class (−1)
are non-landslide pixels.

3.3. SHapley Additive exPlanations (SHAP)

The SHAP concept emerged in game theory, in which an in-
dividual’s contribution is calculated in a collective game [49].
The goal was to distribute the combined gain among the players,
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epending on their contributions and outcomes. Based on Shapley
alues, meaningful rewards are provided in an unbiased manner
o an individual rather than having players rewarded equally,
ased on consistency, local accuracy, and the null effect [49]. This
oncept has re-emerged in ML problems following work by Lund-
erg and Lee [25], owing to their black box nature, and has gained
rominence in the field, as it can help with deciphering model
utcomes, thus providing greater transparency and promoting
rust in the use of ML models.

The unique aspect of the estimation of Shapley values can
e categorized into three properties, which are local accuracy,
issingness and consistency [25]. Local accuracy refers to the
xtent of relevant features captured in the explanation, missing-
ess refers to the determination of explanation changes between
uns and consistency refers to the degree of explanations and
redictions being coupled [50]. Readers are referred to Lundberg
nd Lee [25] for an in-depth mathematical understanding of these
ttributes.
The Shapley value is the mean of the marginal contribu-

ions for all possible feature permutations. The mathematical
xpression is as follows:

i =

∑
S⊆N\{i}

|S|! (n − |S| − 1)!
n!

[v (S ∪ {i}) − v(S)] (2)

where ∅i is the contribution of feature i, N is the set containing
all features, n is the number of features in N, S is the subset of N
that contains feature i, and v(N) is the base value, denoting the
predicted outcome for each feature in N without knowledge of
the feature values.

The model outcome for each observation is estimated by
adding the SHAP value of every feature for observation. For a
model f and feature vector z, the model is defined as:

g
(
z ′

)
= ∅0 +

M∑
i=1

∅iz ′

i , (3)

where g is the explanation model, z ′ϵ {0, 1}M is the simplified fea-
ure vector of z (so z = hz

(
z ′

)
). M is the number of features and ∅i

can be obtained from Eq. (2). ∅0 is the model output when all the
features are absent (z ′

= hz(0)). The CNN model was trained once,
and the analysis is performed on the test dataset. The Shapley
values are based on the idea that the outcome of each possible
combination of players should be considered to determine the
importance of a single variable. This leads to a possibility of 2F

odels to be trained in the SHAP formula. However, the library
eveloped by Slundberg uses approximations and samplings to
olve this issue.
Based on the ML architecture, various SHAP explainers are

vailable. For an in-depth understanding of different explainers
nd their use cases, readers are referred to Molnar [51]. In this
tudy, we used DeepExplainer, which is an enhanced version of
he DeepLIFT algorithm that approximates the conditional ex-
ectations of SHAP values based on a selection of background
amples. The sampling explainer is an extension of the Shapley
ampling values explanation method [52].

. Application of models

In the present work, one-dimensional (1D) CNN architecture
as used, wherein the input data were considered to comprise
n image with each pixel containing values of the landslide con-
itioning factors. Each input cell’s data were represented via a
olumn vector with the length equaling the number of variables.
ach vector element corresponded to a variable’s value. Landslide
nd non-landslide pixels were allocated values of 1 and 0, re-

pectively, and the triggering factors were overlaid. Thereafter,

8

all essential information was extracted for landslide and non-
landslide locations and split into two parts—70% for training and
30% for testing—which is the most commonly applied split ratio
for landslide modeling [6,11]. To compare the model results, SVM
model was used where in, radial basis function (RBF) kernel
was used, which has been proven to provide accurate results in
classification tasks and is a popular choice in the field [48]. The
kernel is expressed as:

K
((
Mi,Mj

))
= exp(

(
−Υ

Mi − Mj
 2

)
) (4)

where K
((
Mi,Mj

))
is the kernel function and Υ is a kernel

parameter, which was set to 1.0.
Thereafter, landslide susceptibility map is produced, validated

and assessed using the area under receiver operating characteris-
tics curve. Based on the best performing model, the trained model
is fed into SHAP algorithm, to identify the most impactful features
and their interdependence. The methodology used in the present
study is illustrated in Fig. 9.

One of the key steps in developing a neural network model is
hyper parameter tuning [19]. The sizes of the convolutional and
pooling layers reflect the scale of model operations. The activation
function defines the weighted sum of the input and approximates
any non-linear function. The ReLU function was used in the study
to introduce non-linearity [53]. The loss function measures the
inconsistency between the predicted and observed values; herein,
we used the categorical cross-entropy loss function [53,54]. We
further used the Adam optimizer with standard β values of 0.01
(momentum) and 0.001 (learning rate) for a momentumized gra-
dient descent in our back propagation. To avoid overfitting, a
dropout layer of 0.5 was added [55], and the model was applied
with Keras [56] with TensorFlow as a backend. The number
of epochs was 500. The CNN architecture used in the study is
illustrated in Fig. 10.

The model’s performance was examined based on receiver
operating characteristics (ROC), an approach that is commonly
applied in geohazard modeling [57]. It is based on the curve
representing sensitivity plotted on the ordinate axis versus speci-
ficity plotted on the abscissa. Sensitivity refers to the landslide
pixels correctly identified, whereas specificity refers to the non-
landslide pixels correctly identified, which is based on a confusion
matrix [57]. Accordingly, the area under the curve represents the
overall model performance.

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

where TP (true positive) and TN (true negative) are the number
of grid cells that were correctly classified, and FP (false positive)
and FN (false negative) are the number of grid cells that were
incorrectly classified.

The area under the ROC curve (AUC) is used to assess the
model’s prediction quality by analyzing its ability to predict the
occurrence or non-occurrence of events. Specifically, an AUC
value of 1 indicates perfect agreement between actual and mod-
eled data, whereas a value of 0.5 indicates inaccuracy in the
model (random fit) [57,58]. After the CNN and SVM model were
run, landslide susceptibility maps were developed, and the area
was divided into five risk classes based on the natural breaks
(Jenks) method: very high, high, moderate, low, and very low
[23].

To understand the interactions and importance of variables
in data-driven modeling, partial dependence plots or bar plots
are typically generated. In the case of SHAP, dependence plots
illustrate the impacts of variable relationships better than con-
ventional approaches and may be considered a better alterna-
tive [27,28]. However, several plots can be constructed based on
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Fig. 9. XAI methodology used in the present study.
Fig. 10. Schematic illustration of the 1D CNN architecture used in the study.
Table 2
Confusion matrix of the models for the testing dataset.
Model Landslide (1) Non-landslide (0) Accuracy

CNN Landslide (1) 125 20 0.892Non-landslide (0) 31 298

SVM Landslide (1) 110 27 0.846Non-landslide (0) 46 291

Shapley values. These include a summary plot that explains the
cumulative effect of the variables, a dependence plot in which
the effect of a single feature on the model predictions is plotted,
an individual force plot that explains the effect of individual
variables for a single observation, and a collective force plot that
is a combination of all the force plots rotated at 90◦ and stacked
9

horizontally to provide a single plot [25,51]. In the present study,
we focused on summary plots and force plots. SHAP summary
plots can replace conventional bar plots in examinations of global
significance, whereas local explanations can be analyzed based on
force plots [28].

5. Results

This section discusses the model results and the explainability
of the CNN model with respect to achieving an accurate landslide
susceptibility map. After model training, each grid was assigned
a susceptibility index. Thereafter, weights were assigned to each
factor class, and the susceptibility map was developed in an
ArcGIS environment. For visualization purposes, the values were
reclassified into five different categories using the natural breaks
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Fig. 11. Landslide susceptibility map developed using (a) CNN and (b) SVM model.
Fig. 12. ROC-AUC plot derived from the CNN model.

ethod (Fig. 11a, b). The model’s ROC curve using the test set
s illustrated in Fig. 12. The CNN model achieved an accuracy of
9.2%, whereas SVM model achieved an accuracy of 84.6% (see
able 2).
As the summary plot shows (Fig. 13), the altitude and surface

oil texture are the most influential factors contributing to land-
lide incidence. In the case of altitude, the observations on the
ight-hand side of the plot rendered in blue indicate the negative
orrelation between altitude and landslide probability, i.e., the
igher the altitude, the lower the chance of landslide occurrence
n the study area. However, the relationship with slope was
ositive, meaning that as the slope increases, the probability of
andslide occurrence increases as well. Altitude is widely known
o be a key factor in landslide events. However, the SHAP plots
uggest that not only altitude but also slope play important roles.
o investigate this further, we examined the SHAP dependence
lot for these variables (Fig. 14).
Soil texture was positively correlated with landslide occur-

ence. Considering the numbers assigned to each class, the prob-
bility of landslide occurrence is greater in areas with the clayey
oil type. However, as the soil type changes to sand, the prob-
bility of landslide occurrences decreases. Regarding land cover,
he probability of landslide incidence is lower in residential and
10
built-up areas compared to natural grassland areas and scattered
forest areas. The plan curvature ranked third among all potential
landslide-causing factors, and as it increases, the probability of
landslide occurrence decreases.

As the dependence plot illustrates, altitudes below 300 m have
larger SHAP values, meaning that most landslides tend to occur
within this altitude range. The landslide inventory data revealed
that around 56% of the landslides occurred at altitudes of less
than 300 m. Moreover, over 44% of landslide incidences occurred
at altitudes ranging between 200 and 300 m. Less than 10% of
the landslide events occurred at altitudes greater than 400 m.
Upon examining the relationship between slope and landslide
events, 18% of the landslides occurred at locations with slope
values higher than 30◦, with a maximum slope of 46◦.

The plots below are individual force plots for landslide and
non-landslide locations that clarify how the variables might affect
the model outcome. Fig. 15 shows the SHAP force plot for individ-
ual landslide and non-landslide locations. These individual force
plots illustrate three important characteristics: the output value
(values in black and bold font under f(x)) indicating the predic-
tion probability for an observation, the base value indicating the
mean of the prediction probability for the entire test dataset, and
variables that reduce (blue) or increase (pink) the probability of
landslide occurrence.

The probability of a landslide occurrence for a landslide pixel
(marked in green) is 85%, and variables such as altitude, aspect,
and tree group are predicted to increase the probability (indicated
in pink). Conversely, variables such as slope and forest age class
cause the predicted probability to decrease. At another location
(marked in brown), the probability of no landslide occurrence is
around 98%. At this location, factors such as tree group and forest
age class improve the model outcome, whereas altitude decrease
the model outcome. It is important to clarify that the values of
the variables mentioned here are the actual values.

6. Discussion and future work

The present study applied a CNN architecture to develop a
landslide susceptibility model for South Korea’s CheongJu region.
The deep learning model was compared with SVM, which can be
considered as a benchmark ML model. A total of 519 landslide
locations along with 16 landslide conditioning variables, of which
70% were used for training and 30% for testing, were used to
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Fig. 13. SHAP summary plot of the test dataset.
Fig. 14. SHAP dependence plot for altitude and slope.
evelop the models. The model was validated using a ROC-based
UC approach, which revealed a model accuracy of 89.2% for CNN
odel and 84.6% for SVM model with the testing dataset. The

esults of the study show the capability of deep learning model to
rovide considerable improved results compared to benchmark
odels. Regarding previous studies in South Korea using CNNs,
ee et al. [59] examined the Mt. Umeyon region and achieved an
ccuracy of more than 99%. With regards to ML models, multiple
tudies have been conducted in South Korea. As an example,
adavi et al. [60] studied landslide susceptibility using logistic
egression and decision trees in Gangwon-do and achieved an
ccuracy of 90%. Lee et al. [11] achieved an accuracy of 80.1%
sing an artificial neural network for Inje, in the eastern part
11
of South Korea, whereas Lee et al. [61] achieved an accuracy of
78.4% for the Seoul region. It is important to understand that
variable selection was not conducted in this study to explore the
importance of all the variables in the SHAP plots.

However, this paper’s novel contribution is not limited to the
development and application of the CNN model but also includes
the introduction of the explainability concept for landslide stud-
ies. No mathematical definition for the concept of interpretability
exists; rather, it can be explained as the degree to which a human
can rationally understand the reasoning behind a decision and/or
prediction based on a model output [62–64]. The more inter-
pretable the model, the easier it is to contemplate why a specific
decision is made. Ideally, the model would be self-explanatory,
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Fig. 15. SHAP individual force plots for landslide and non-landslide locations overlaid on the (a) elevation map and (b) slope map of the region.
hich can be easily achieved for simple models, but with increas-
ng complexity, particularly for ML-based models, this possibility
s diminished [28]. Interpretable ML models are widely believed
o be less accurate than complex deep neural networks. How-
ver, Rudin [65] discredited such notions and suggested that the
otion of compensating for accuracy and explainability seems
o be preventing users from developing XAI models. It must be
orne in mind that a key difference exists between interpretable
nd explainable models. Hence, different explainable models ex-
st (e.g., LIME [66], DeepLIFT [67], neural-backed decision trees
68], and SHAP [25]) that can provide explanations for model
utcomes [25]. The SHAP framework provides values based on a
o-operative game theory approach, which allows the model out-
omes to be explained based on interactions among the variables
sed.
The study highlights the benefits of using SHAP by precisely

haracterizing model prediction outcomes at various geographic
oordinates. As this is an introductory work, we have restricted
urselves to demonstrating SHAP’s potential with respect to land-
lide susceptibility modeling. In the present work, we focused
n the use of SHAP plots to clarify variations across the entire
est dataset and individual locations for both landslide and non-
andslide locations. Three different SHAP plots were developed
or the testing dataset, which are (a) SHAP summary plot; (b)
HAP dependence plot and (c) SHAP force plot. The summary plot
anks the variables in terms of their importance and depicts the
alues which have contributed towards increasing or decreasing
12
the model outcome. In the case of dependence plot, the variables
considered were altitude and slope. The plots show that over
40% of landslides happened at altitudes between 200 m–300 m,
whereas less than 10% of landslides occurred at heights more
than 400 m. In case of relationship between slope and landslide
events, less than 20% of landslides occurred with slopes more
than 30◦. The SHAP force plot reveals individual contribution
for a specific geolocation, in this case we examined one known
landslide pixel and non-landslide pixel. The results show the
prediction probability and the contribution of different variables
in increasing or decreasing the model outcome.

Most of the discussion was restricted to two variables—altitude
and slope—which are typically considered the most important
variables in landslide studies. However, researchers are encour-
aged to analyze different variables at various locations. Such
detailed analysis of all the landslide variables lies beyond the
scope of this study. As this constitutes an introduction to the use
of SHAP in landslide studies, the study has some limitations. First,
the study did not consider variable selection to showcase the full
benefits of SHAP outcomes. Second, the present work does not
explain outcomes from a true spatial context but rather, limits
the explanation to certain locations.

The benefits of using SHAP are manifold: for example, it can be
used for variable selection, as demonstrated by Matin and Prad-
han [26], who used SHAP plots to eliminate non-influencing vari-
ables for earthquake damage mapping. Their study also revealed
significant variation from conventional variable importance plots.
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hese plots explicitly examine how a model achieves a specific
utput based on each observation and, by using the plots, one
an also examine spatial influence. With such benefits, we argue
hat future studies involving ML models should include explain-
bility in several ways for landslide studies as well as in wider
ydrological applications to promote trust among stakeholders.

. Conclusions

An accurate and robust landslide susceptibility map is crucial
or the implementation of effective landslide mitigation strate-
ies. Despite considerable advancement in the use of ML models
n susceptibility modeling, their use by government agencies or
takeholders remains minimal owing to their ‘‘black box’’ nature.
herefore, the use of explainable ML models to increase trans-
arency in model outcomes has recently gained traction. This
aper introduces the use of an explainable ML model for landslide
usceptibility modeling in South Korea’s CheongJu region. The
tudy developed and compared CNN model with SVM model to
evelop a susceptibility map. The model outcomes of the CNN
odel was interpreted using SHAP, analyzing global and local

nterdependencies. A total of 519 points were used, of which 70%
as used for training while the remainder was used for testing.
his study’s main findings are as follows:

• The CNN model achieved an accuracy of 89%, compared to
84% by SVM model proving the method’s effectiveness in
developing an accurate and robust landslide susceptibility
model.

• The paper introduces the use of SHAP in landslide studies,
and different plots were illustrated, including a summary
plot, a dependence plot, and individual force plots. Based
on the SHAP summary plot, the most important variables
were altitude, surface soil texture, plan curvature, aspect,
and slope.

• The study found that landslide occurrences were negatively
correlated with altitude but positively correlated with slope.

• Future work involving ML models should consider the use
of explainable models for landslide modeling.
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