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Abstract: The problem of estimating earthquake risk is one of the primary themes for researchers
and investigators in the field of geosciences. The combined assessment of spatial probability and the
determination of earthquake risk at large scales is challenging. To the best of the authors’ knowledge,
there no updated earthquake-hazard-and-risk assessments for the Eurasia region have been published
since 1999. Considering that Eurasia is characterized by a seismically active Alpine–Himalayan fault
zone and the Pacific Ring of Fire, which are frequently affected by devastating events, a continental-
scale risk assessment for Eurasia is necessary to check the global applicability of developed methods
and to update the earthquake-hazard, -vulnerability, and -risk maps. The current study proposes
an integrated deep-transfer-learning approach called the gated recurrent unit–simple recurrent unit
(GRU–SRU) to estimate earthquake risk in Eurasia. In this regard, the GRU model estimates the
spatial probability, while the SRU model evaluates the vulnerability. To this end, spatial probability
assessment (SPA), and earthquake-vulnerability assessment (EVA) results were integrated to generate
risk A, while the earthquake-hazard assessment (EHA) and EVA were considered to generate risk B.
This research concludes that in the case of earthquake-risk assessment (ERA), the results obtained
for Risk B were better than those for risk A. Using this approach, we also evaluated the stability of
the factors and interpreted the interaction values to form a spatial prediction. The accuracy of our
proposed integrated approach was examined by means of a comparison between the obtained deep
learning (DL)-based results and the maps generated by the Global Earthquake Model (GEM). The
accuracy of the SPA was 93.17%, while that of the EVA was 89.33%.

Keywords: earthquake risk; hazard assessment; vulnerability mapping; artificial intelligence (AI);
transfer learning; Eurasia
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1. Introduction

Earthquakes are the most catastrophic phenomena to seriously threaten urban areas.
Recently, the importance of earthquake-risk analysis has increased, particularly the analysis
of the safety of the design of structures associated with nuclear power plants and chemical
industries [1]. Consequently, several studies have attempted to provide different techniques
to assess and manage earthquake risk around the world. For instance, the protection
of nuclear power plants against earthquake risk was evaluated in several studies [2–5].
Moreover, geographical information systems (GIS) and artificial intelligence (AI) techniques
were adopted to identify suitable locations for nuclear plants by estimating earthquake
risk [6,7]. Earthquake-risk estimation is greatly dependent on the integrated capability of
seismological, geological, and geotechnical effects [8]. Therefore, the problem of earthquake
risk must be dealt with by researchers and scientists from multiple disciplinary fields.

Pourghasemi et al. [9] conducted a study on multi-hazard-probability assessment in
Iran. In their work, an earthquake-probability map, which mostly covered the Zagros–
Bitlis thrust fault, was designed, with an accuracy of more than 80%. Durlević et al. [10]
generated a multi-hazard-probability map for southern Serbia. They found high spatial
probability in the resulting multi-hazard map. Tang et al. [11] evaluated seismic spatial and
temporal distribution quantitatively based on a single fractal model. Their results showed
that the time interval of the seismic activity was shortened, and the fractal dimension of the
Eurasian seismic belt tended to grow with time. In the Eurasia seismic belt, Zheng et al. [12]
determined the temporal and spatial distribution of earthquakes. According to their results,
the seismic energy of the earthquake fault zone has both a relatively quiet and an active
stage. The study conducted by Shebalin et al. [13] examined the unified seismotectonic
zonation in Northern Eurasia. They estimated the possible events that feature the maximum
magnitude, and the recurrence period was determined using seismological and active fault
parameters. Genmo et al. [14] performed a study on the space–time distribution of large
earthquakes in the Indian–Eurasian plate-collision zone. The study described the possibility
of greater events in the next few decades, along the eastern part of the Himalayas and in
the central parts of the Asian continent.

A review of the seismic hazards estimated in the former USSR since 1930 was con-
ducted by Ulomov et al. [15], and five seismic-hazard maps were produced for northern
Eurasia. Ulomov [16,17] and the Global Seismic Hazard Assessment Program (GSHAP)’s re-
gional center conducted this study on seismic-hazard assessment in northern Eurasia using
a deterministic–probabilistic approach. The study showed the expected MSK intensity (VII)
and its transformation into peak ground acceleration (PGA) with a 10% exceedance rate
over 50 years. Regional and country-scale studies are recorded in the literature on (EHA) in
the Himalayan region [18,19]. Strakhov et al. [20] developed general seismic-zoning maps
of northern Eurasia, generated seismic-effect models and earthquake-source zones, and con-
ducted seismic-hazard assessments. Lapajne [21] incorporated the macro-seismic intensity
to estimate seismic risk. For a given distribution of seismic hazard, temporal changes and
regional differences must be properly incorporated for risk estimation. Using a probabilistic
approach based on seismographic data, Shapira [22] evaluated the earthquake risk at the
Afro–Eurasian junction. In order to evaluate the validity of the proposed approach, a com-
parison between the obtained results and the historical seismicity was made. Gupta and
Srivastav [23] conducted an earthquake-risk assessment in the Himalayan region and its
adjoining areas. Based on their findings, a realistic estimation of earthquake recurrence, the
construction of geodynamic models, and the determination of source parameters are essen-
tial for the estimation of risk. An assessment of earthquake vulnerability for energy security
in the Eurasian Economic Union was carried out by Iakubovskii et al. [24]. This study ap-
plied a mathematical model to estimate the reliability of the electricity-supply system under
the threat of earthquakes. It determined the critical interconnection lines that are vulnerable
to earthquake hazards. Jackson [25] evaluated the effect of earthquake vulnerability on the
growth of villages into megacities. This study mentioned that extreme catastrophes are
infrequent because of the low exposure of modern cities. Several earthquake-vulnerability
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studies can be found in the literature on buildings [26], transportation networks [27], urban
areas [28], and engineering structures [29].

The above-mentioned studies suggest that earthquakes associated with the Alpine–
Himalayan belt, the Pacific Ring of Fire, and local faults in Eurasia have caused massive
destruction. Few EHA studies on a continent scale have been conducted in Eurasia. As
a research gap, machine learning and deep learning (DL) models have also not been
implemented in Eurasia. Furthermore, no integrated deep-transfer-learning models to
estimate earthquake risk on a continent scale can be found in the literature. Limited research
on regional-to-national-scale earthquake-risk assessment can be found in the literature
using GIS and AI techniques [9,10]. This study fills this research gap. As a novelty in this
study, the risk was assessed by following two definitions of natural hazards, according to
which the probability and vulnerability were estimated using the deep-transfer-learning
model. Two maps, named Risk A and Risk B, were developed and compared, followed by
the spatial probability, hazard, and vulnerability. Earthquake-risk assessment is generally
associated with the challenges of modeling complexities, data limitations, and accuracy [9].
The purpose of this article is to address the challenges associated with the inaccessibility of
data, the integration of spatial information, and the combination of different methodological
concepts, as well as addressing the secondary effects. The largest continental area on Earth
is the Eurasian continent, which is exposed to high levels of earthquake hazard due to large-
magnitude events originating in the Alpine–Himalayan belt [17]. In this work, we quantify
the present-day earthquake risk using an integrated deep-transfer-learning technique. Our
main concern is to develop an approach to the design of an earthquake-spatial-probability
map (SPM), hazard estimation using Medvedev–Sponheuer–Karnik scale (MSK) intensity,
a vulnerability assessment, and a risk evaluation. The main contribution of this work lies in
the application of an integrated deep-learning model for a continent-scale study area using
a geospatial approach to update the earthquake risk in Eurasia. Another contribution of
the current study leverages the hidden interaction of factors and their relative importance.
The main objectives are: (i) to estimate the SPA using the GRU model and to evaluate the
EHA using the MSK intensities in the study area; and (ii) to derive the vulnerability using
the population density, building density, public education, gross development products,
industries, and income-level data by implementing the SRU model. In this context, (iii) to
depict the ERA in Eurasia, the integration of hazard and vulnerability was conducted. This
study constitutes a first step towards supporting decision makers in understanding and
taking proper actions to reduce potential losses in Eurasia.

2. Seismotectonic of the Study Area

Physiographically, Eurasia is the single largest continental area on Earth, characterized
by a land surface of 55,000,000 km2 (21,000,000 sq. mi) [30]. There is no clear physical
divisional boundary between Europe and Asia; this boundary is a fully social construct,
making Eurasia the largest continent on Earth. The total population of Eurasia is ap-
proximately 5,360,351,985, with a density of 93/km2 (240/sq. mi) (Population of Europe
(2019)—Worldometers; Population of Asia (2019)—Worldometers) [30,31]. The geology
and major events and fault types in Eurasia are shown in Figure 1.



Remote Sens. 2023, 15, 3759 4 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 24 
 

 

 

Figure 1. Study-area map of Eurasia. (a) Geology: 0 water), 1 (shifting sands), 2 (rocky land), 3 
(ice/glacier), 4 (salt), 5 (gelisols), 6 (histosols), 7 (spodosols), 8 (andisols), 9 (oxisols), 10 (vertisols), 
11 (aridisols), 12 (ultisols), 13 (mollisols), 14 (alfisols), 15 (inceptisols), 16 (entisols). (b) Major events 
and faults in Eurasia. 

Seismic zones are the specific regions of the Earth for which a common seismicity 
rate is assumed to calculate probabilistic ground motions. The major seismic-zone charac-
teristics are magnitude–frequency relationships, strain release, and fault-plane solutions. 
The Eurasian continent is composed of 93 countries [32]. Central Eurasia is one of the most 
significant areas of seismic activity, and it is governed by intense interactions between 
tectonic plates and continental blocks, such as northern Eurasia, Arabian plate, African 
plate, Indian sub-continent, eastern China, North America, Pacific plate, etc. [33]. The het-
erogeneity of the tectonic structure is at different scales (crustal scale to regional scale); 
therefore, it is necessary to investigate the static and dynamic characteristics of tectonic 
objects. Eurasia is characterized by very low, diffuse (Russian and Siberian land), and se-
vere seismicity in the orogenic belts (Alpine–Himalayan Belt) [17,20]. The most geo-dy-
namically active zone, named the Kuril–Kamchatka subduction zone, is a region of high 
seismicity, with earthquakes focus, at depths of 600 km and more. The thickness of the 
platform’s crust is 40 ± 5 km, while the orogenic belts reach 60 km [34]. Other subduction 
zones, such as the Carpathians and Pamir Hindukush zones, generate intermediate-focus 
earthquakes (depth range from 150 km to 300 km). The relict-deformation zone and in-
tracontinental seismic regions [15,16] are subject to deformation processes, resulting in 
high seismicity. Therefore, each seismic zone is considered as a feature that controls the 
seismicity of the region. 

The hierarchical structure of intraplate earthquakes can be determined by historical 
geological processes that are controlled by Quaternary and recent tectonic activities [17]. 
The size of the active-fault-plane area controls the earthquake-magnitude limit, whereas 

Figure 1. Study-area map of Eurasia. (a) Geology: 0 water), 1 (shifting sands), 2 (rocky land),
3 (ice/glacier), 4 (salt), 5 (gelisols), 6 (histosols), 7 (spodosols), 8 (andisols), 9 (oxisols), 10 (vertisols),
11 (aridisols), 12 (ultisols), 13 (mollisols), 14 (alfisols), 15 (inceptisols), 16 (entisols). (b) Major events
and faults in Eurasia.

Seismic zones are the specific regions of the Earth for which a common seismicity rate is
assumed to calculate probabilistic ground motions. The major seismic-zone characteristics
are magnitude–frequency relationships, strain release, and fault-plane solutions. The
Eurasian continent is composed of 93 countries [32]. Central Eurasia is one of the most
significant areas of seismic activity, and it is governed by intense interactions between
tectonic plates and continental blocks, such as northern Eurasia, Arabian plate, African
plate, Indian sub-continent, eastern China, North America, Pacific plate, etc. [33]. The
heterogeneity of the tectonic structure is at different scales (crustal scale to regional scale);
therefore, it is necessary to investigate the static and dynamic characteristics of tectonic
objects. Eurasia is characterized by very low, diffuse (Russian and Siberian land), and severe
seismicity in the orogenic belts (Alpine–Himalayan Belt) [17,20]. The most geo-dynamically
active zone, named the Kuril–Kamchatka subduction zone, is a region of high seismicity,
with earthquakes focus, at depths of 600 km and more. The thickness of the platform’s crust
is 40 ± 5 km, while the orogenic belts reach 60 km [34]. Other subduction zones, such as the
Carpathians and Pamir Hindukush zones, generate intermediate-focus earthquakes (depth
range from 150 km to 300 km). The relict-deformation zone and intracontinental seismic
regions [15,16] are subject to deformation processes, resulting in high seismicity. Therefore,
each seismic zone is considered as a feature that controls the seismicity of the region.

The hierarchical structure of intraplate earthquakes can be determined by historical
geological processes that are controlled by Quaternary and recent tectonic activities [17].
The size of the active-fault-plane area controls the earthquake-magnitude limit, whereas the
number and rank of faults and the fault-movement intensity affect the seismic events that
occur per unit of time. These faults divide larger layers into blocks that can be considered
larger and longer faults. Conversely, thinner layers contain many faults, but of smaller
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sizes, whereas thicker layers contain few faults, which are larger in size. Major recent
earthquakes in Eurasia and their characteristics are shown in Table 1.

Table 1. Major earthquakes in Eurasia during the last five years and their characteristics.

Date Latitude Longitude Depth Mag
(Mw) dmin rms Place

27 July 2022 17.5601 120.8011 10 7 5.237 0.75 13 km SE of Dolores, Philippines
16 March 2022 37.7132 141.5793 41 7.3 2.936 0.88 57 km ENE of Namie, Japan

29 December 2021 −7.5482 127.5773 165.49 7.3 3.713 1.06 125 km NNE of Lospalos,
Timor Leste

14 December 2021 −7.6033 122.2274 14.27 7.3 1.025 0.61 Flores Sea

11 August 2021 6.4748 126.7151 55.14 7.1 1.273 1.27 60 km ENE of
Pondaguitan, Philippines

21 May 2021 34.5983 98.2513 10 7.3 4.655 0.77 Southern Qinghai, China
20 March 2021 38.4515 141.6477 43 7 2.378 0.75 30 km E of Ishinomaki, Japan

13 February 2021 37.7265 141.7751 43.98 7.1 3.085 0.94 73 km ENE of Namie, Japan

21 January 2021 4.9931 127.5145 80 7 2.821 0.77 211 km SE of
Pondaguitan, Philippines

30 October 2020 37.8973 26.7838 21 7 1.518 0.59 13 km NNE of
KarlovÃ¡sion, Greece

17 July 2020 −7.836 147.7704 73 7 1.671 1.1 114 km NNW of Popondetta,
Papua New Guinea

25 March 2020 48.9638 157.6955 57.8 7.5 4.109 0.66 221 km SSE of
Severo-Kurilâ, Russia

13 February 2020 45.6161 148.959 143 7 4.501 0.83 95 km ENE of Kurilâ, Russia
14 November 2019 1.6213 126.4156 33 7.1 1.271 1.15 141 km NW of Ternate, Indonesia

3. Data and Methodology
3.1. Data Acquisition

In this study, catalogues and descriptions of historical events were collected from the
United States Geological Survey (USGS) and National Seismological Centre (NSC) ranging
from 2000–2022. A database was developed using Landsat ETM+ data for regional faults,
and the Geological Institute of the Russian Academy of Sciences (GIRAS) developed an
active-fault database for Eurasia in the Laboratory of Neotectonics and recent geodynamics
(Table 2). The database is composed of data from several sources, including studies pub-
lished by several researchers [34,35]. This database is suitable for synthetically-active-fault
analyses at a regional scale or large scale. An complete earthquake catalog alone is insuf-
ficient for risk estimation; however, data from several public and private organizations,
such as the United States Geological Survey (USGS), Advanced National Seismic System
(ANSS), Northern California Earthquake Data Center (NCEDC), and the National Earth-
quake Information Center (NEIC) were also collected. In this study, earthquake catalog,
fault information from (GIRAS), digital elevation model (DEM), and lithology information
from Landsat-8-image-and-USGS-based large-scale dataset were employed to train the
GRU model, predict targets, and develop the SPM. The GEM published the earthquake
hazard and risk atlas based on the traditional probabilistic seismic hazard assessment
(PSHA) technique, which can be regarded as an authentic reference for validation of the
integrated AI-based results. In the current research, a detailed seismotectonic map was de-
veloped for earthquakes stronger than 5.5 Mw, detailed faults, and geology in Eurasia. The
above-mentioned information and maps were processed in the current study to generate
thematic layers through digitization and georeferencing using ArcGIS Pro.
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Table 2. Data used for earthquake-risk assessment in Eurasia.

Category Thematic Layers Source Description of Data Importance

Spatial-probability
assessment (SPA)

Slope
Elevation
Curvature

Global digital elevation
model (USGS) https://
earthexplorer.usgs.gov/
(accessed on 20
February 2022)

Derived from Global
ASTER DEM.

These factors control the
landform, which may
reform and activate
crustal faults.

Proximity to thrust
Tectonic contacts

Geological Institute of
the Russian Academy of
Sciences (GIRAS)
Global faults data

Derived from Landsat
ETM+ and shapefiles
using digitization
and Euclidean
distance ArcGIS.

High-magnitude events
are observed in thrust
faults; however, tectonic
contacts does not
necessarily generate
earthquakes.

Epicenter density
Earthquake frequency
Magnitude var
Seismic gap
Depth variation

USGS earthquake
catalog (https:
//earthquake.usgs.gov
(accessed on 20
February 2022))

Derived using kernel
density and IDW
interpolation using a
complete catalog.

The occurrence
probability can be
understood through
magnitude clusters,
depth information on the
fault zone, frequency
of events,
and gaps that are not
yet affected.

Geology

www.nrcs.usda.gov
(accessed on 1
March 2022)
Global soil data

Derived from Landsat
8 dataset.

Very solid granites are
mostly found in fault
zones that transmit
energy better than others.

Earthquake-hazard
assessment (EHA) PGA

USGS global earthquake
catalog (https:
//earthquake.usgs.gov
(accessed on 20
February 2022))

PGA can be derived
using (MMI = 1/0.3
× (log10 (PGA × 980)
− 0.014) using
Probabilistic approach,
or it can be converted
from MSK intensity, as
presented in Table 3.

log A
(

m
s2

)
= 0.333Imsk

− 2.222

Hazard is the temporal
probability necessary for
risk assessment.

Earthquake-
vulnerability
assessment (EVA)

Population density
Public education Global-risk-data

Platformhttps:
//preview.grid.unep.ch/
(accessed on 10
March 2022)

Derived using
digitization, kernel
density, and
IDW interpolation.

Social and physical
characteristics/factors
are necessary for the
vulnerability assessment.

High income level
Gross-domestic-
product value

Building density
Industries

Earthquake-risk
assessment (ERA)

1. SPA × EVA
2. EHA × EVA

http://www.syque.com/
quality_tools/tools/
TOOLS11.htm, n.d.
(accessed on 11
March 2022)

Derived using
digitization, raster
calculator, and various
other tools.

Two main factors that are
required for risk are the
seismic hazard and the
vulnerability of the
population and property
to this hazard.

Table 3. Conversion of MSK intensity to PGA.

MSK intensity to
PGA conversion

Intensity in
MSK scale 0 4 5 6 7 8 9 10 11 12

PGA (in g) 0 0.03 0.05 0.092 0.18 0.32 0.52 0.82 1.2 1.6

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthquake.usgs.gov
https://earthquake.usgs.gov
www.nrcs.usda.gov
https://earthquake.usgs.gov
https://earthquake.usgs.gov
https://preview.grid.unep.ch/
https://preview.grid.unep.ch/
http://www.syque.com/quality_tools/tools/TOOLS11.htm
http://www.syque.com/quality_tools/tools/TOOLS11.htm
http://www.syque.com/quality_tools/tools/TOOLS11.htm
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3.2. Overall Methodology

In the current study, we developed a geo-database that contains thematic layers as
the causal factors for the SPA (Figure 2). Numerical data points were generated in GIS
using all the thematic layers, keeping the earthquakes and non-earthquakes as targets,
and exported to an Excel file. The purpose of the integrated GRU–SRU approach is to
provide a better understanding of multiple implementations of models and data. The GRU
method has shown superior performance in predictions using huge datasets, and SRU can
provide satisfactory accuracy for limited thematic datasets; hence, it was chosen for this
study [36,37].

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 24 
 

 

 

Figure 2. Methodological flowchart of earthquake-risk assessment. 

It was first determined whether the probability assessment was important by 
correlating factors. Next, the GRU model was implemented for prediction purposes to 
estimate the earthquake spatial probability in Eurasia. Similarly, the vulnerability was es-
timated using the SRU model and several vulnerability factors, where targets were vul-
nerable (exposure) and non-vulnerable (bare land surface and unused land, desert, and 
forest areas) locations. The spatial-probability-prediction results were plo�ed with the 
density to check the prediction capability. However, an explainable AI, named SHapley 
Additive exPlanations (SHAP) [38], was implemented to estimate the probability based 
on individual instances for the prediction. Next, the interaction of the factors that de-
scribed the logic behind the obtained prediction was plo�ed.  

The predicted probability values were plo�ed for each factor to check how each factor 
contributed towards the SPA. Next, we estimated the PGA values using the MSK intensity 
and generated the earthquake-hazard map (EHM) for Eurasia. Finally, the risk was esti-
mated by multiplying spatial probability by vulnerability (Risk A) and temporal probabil-
ity (hazard) by vulnerability (Risk B). The risk maps were generated using a transfer-
learning-based integrated GRU–SRU model, which was considered trustworthy, and 
maps were produced for future land-use planning and research purposes. The obtained 
risk maps were then compared with the GEM-based risk map for validation purposes. 
Ultimately, the Risk B map provided a greater closure output than the GEM-based risk 
map compared to the Risk A map. 

3.3. Gated Recurrent Unit 

The GRU is a simplified version of LSTM, and it is characterized by a smaller number 
of parameters than LSTM, according to Wang et al. [39]. The GRU model is very popular 
due to its high accuracy with small data sets [40]. In the first step, GRU develops a single 
update gate by merging the input and forget gates in association with a reset gate. More 
status information can be brought in at the previous moment when the update gate value 
is larger. Similarly, the smaller the reset-gate value, the more information is neglected. 
Next, the update gate controls the degree of information of the preceding moment when 
brought to the ongoing state. The reset gate controls the degree of information of the pre-
vious moment by ignoring the status. Figure 3a illustrates a typical GRU architecture. The 
activation vectors are represented as ��, ��, and �� at time t for the reset gate, update gate, 
and output gate, respectively. Mathematically, they can be expressed as: 

Figure 2. Methodological flowchart of earthquake-risk assessment.

It was first determined whether the probability assessment was important by correlat-
ing factors. Next, the GRU model was implemented for prediction purposes to estimate
the earthquake spatial probability in Eurasia. Similarly, the vulnerability was estimated
using the SRU model and several vulnerability factors, where targets were vulnerable
(exposure) and non-vulnerable (bare land surface and unused land, desert, and forest
areas) locations. The spatial-probability-prediction results were plotted with the density
to check the prediction capability. However, an explainable AI, named SHapley Additive
exPlanations (SHAP) [38], was implemented to estimate the probability based on individual
instances for the prediction. Next, the interaction of the factors that described the logic
behind the obtained prediction was plotted.

The predicted probability values were plotted for each factor to check how each
factor contributed towards the SPA. Next, we estimated the PGA values using the MSK
intensity and generated the earthquake-hazard map (EHM) for Eurasia. Finally, the risk
was estimated by multiplying spatial probability by vulnerability (Risk A) and temporal
probability (hazard) by vulnerability (Risk B). The risk maps were generated using a
transfer-learning-based integrated GRU–SRU model, which was considered trustworthy,
and maps were produced for future land-use planning and research purposes. The obtained
risk maps were then compared with the GEM-based risk map for validation purposes.
Ultimately, the Risk B map provided a greater closure output than the GEM-based risk map
compared to the Risk A map.

3.3. Gated Recurrent Unit

The GRU is a simplified version of LSTM, and it is characterized by a smaller number
of parameters than LSTM, according to Wang et al. [39]. The GRU model is very popular
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due to its high accuracy with small data sets [40]. In the first step, GRU develops a single
update gate by merging the input and forget gates in association with a reset gate. More
status information can be brought in at the previous moment when the update gate value
is larger. Similarly, the smaller the reset-gate value, the more information is neglected.
Next, the update gate controls the degree of information of the preceding moment when
brought to the ongoing state. The reset gate controls the degree of information of the
previous moment by ignoring the status. Figure 3a illustrates a typical GRU architecture.
The activation vectors are represented as rt, zt, and Ot at time t for the reset gate, update
gate, and output gate, respectively. Mathematically, they can be expressed as:

Zt = σg(Wzxt + Uzht−1 + bz) (1)

rt = σg(Wrxt + Urht−1 + br) (2)

Ot = (1 − zt) ∗ ht−1 + zt ∗ σh (Whxt + Uh(rtht−1) + bh (3)

where sigmoid function is represented as σg and σh denotes the hyperbolic tangent. Here,
W and U denote the parameter matrices, while b is considered the bias vector. The Wz, and
Wr represent the parameter matrix with respect to update gate and reset gate, whereas Wh
denotes the parameter matrix based on hyperbolic function.
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3.4. Simple Recurrent Unit

The SRU model is the simple recurrent unit developed by Lei et al. [41] based on the
LSTM and GRU models. The SRU model follows a similar gate structure to LSTM and
GRU, which controls the information flow within the model. The gate calculations depend
only on the current-input loop, which is the main principle of the SRU model. Therefore,
the model only multiplies in a point-by-point matrix-dependent manner, which makes the
network easy to adapt for running in a parallel process. The SRU model that sets the forget
gate and reset gate is considered a deeper network, as it requires higher processing speed
and less computational power. Figure 3b illustrates a typical SRU-model architecture. The
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activation vectors at time t, such as ft, rt, It, and Ot, represent forget gate, reset gate, input
gate, and output gate, respectively. They can be mathematically expressed as follows:

ht = σ
(

W f xt + U f � ht−1 + b f

)
(4)

It = ft � ht−1 + (1 − ft) � (Wxt) (5)

rt = σ(Wrxt + Ur � ht−1 + br) (6)

Ot = rt � ht + (1 − rt) � xt (7)

where the point-wise multiplication operation is represented as �, while W and U are
parameter matrices and b is the bias vector [42].

3.5. Data Preprocessing and Feature Engineering

In this study, we selected 11 thematic layers (slope, elevation, curvature, proximity
to thrust, tectonic contacts, epicenter density, earthquake frequency, magnitude variation,
seismic gap, depth variation, and geology) to implement the GRU predictive model for SPA.
The earthquake data collected from USGS and randomly generated non-earthquake data
were trained using the GRU-based binary classification model. Multiple raster and vector
datasets from GIRAS and other agencies were utilized for the preparation of thematic layers,
which were then converted into multi-values and incorporated into the training process.
First, the data were prepared in an Excel sheet with all factors and the binary target of
earthquakes and non-earthquakes (Figure 4). Second, the GRU model continuously scanned
through the input dataset to predict the earthquake (1) and non-earthquake (0) data points.
The classifier was trained with 70% (training) and 30% (validation), randomly. During
training, 31,383 samples were prepared using the above-mentioned dataset for training
and validation purposes. Third, the test was conducted with 2 million points to derive the
SPA. The model parameters that were used to predict and optimize the model included
Adam optimizer, batch size (100), and verbose (1). Finally, predicted values were converted
into pixels after post-processing and the SPM was generated. As a result, the SHAP was
implemented to explain the prediction outputs, as well as factor-interaction values.

In the next step, the SRU model was developed as a binary classification for the
earthquake-vulnerability assessment [42]. Next, six parameters were selected as inputs to
feed the model in a sequence with a random split of the dataset (70% training and 30%
validation) (Figure 4). Subsequently, the SRU model continuously scanned through the
input dataset to predict the vulnerability (1) and non-vulnerability (0) datapoints. During
training, the 31,703 samples were prepared using the above-mentioned dataset for training
and validation purposes. Finally, the test was conducted with 2 million points to derive
the EVA. To optimize the SRU, the Adam optimizer was employed, while the other model
parameters included the batch size (64), epoch (100), and loss function (0.001).

The hazard map was developed based on GRU-based probability and MSK intensity
for the Eurasian continent. The MMI intensity was calculated by converting magnitude
to intensity values. It is evident that the MMI scale is similar to MSK intensity (Table 3),
with 12 classes; therefore, we converted the MSK intensities into PGA values. Next, the
IDW interpolation technique was implemented to make the PGA variation [43]. Next, the
Venn-diagram-intersection theory was employed to develop a hazard map, and the zones
were derived using the quantile classification technique [44]. Finally, the risk was estimated
using all the above-mentioned components.
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3.6. Data Representation

For both GRU and SRU models, the layers were sequentially stacked as single-band
images by converting them into data points in an Excel file. The SHAP model was imple-
mented to rank the parameters based on their importance. The series of parameters was as
follows: magnitude variation, depth variation, tectonic contacts, seismic gap, earthquake
frequency, epicenter density, elevation, slope, proximity to step faults, proximity to thrust
faults, curvature, and geology. Each pixel value of structured data was converted based on
the sequence of significance in descending order. Hence, the most important parameters
were processed first, followed by the least important parameters. The recurrence structure
of both models, GRU and SRU, allows important information that contributes to vulnera-
bility to be retained and passed to the hidden layer. The importance of factors is shown in
Figure 5a, using a summary plot and the effect. Figure 5b depicts the correlations among
the four most important factors used for spatial probability. The highest correlation values
were observed between magnitude variations and seismic gap and between magnitude
variation and depth variation.
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3.7. Transfer Learning

Transfer learning deals with the transfer of gained knowledge from a pre-trained
model to new scenarios (Figure 2). According to Pan and Yang [45], it is characterized by a
source domain (DS), a target domain (DT), a learning task (TS), and a target learning task
(TT). Tan et al. [46] further explained the transfer-learning task by domain, tasks, and a
non-linear function of deep neural networks. In the case of network-based deep transfer
learning, the parameters of the source model are generally used in the target model [47]. In
the target model, these parameters are considered new initial values and applied to a new
dataset. Tuning a network is faster and easier in the case of transfer learning than when
training another model from scratch. Transfer learning can perform satisfactorily using
fewer data.

Firstly, a GRU model was trained using the earthquake catalog in and around Eurasia.
Secondly, the pre-trained model was tested using another dataset without any targets to
predict information. The dataset was developed for Eurasia with 2 million points to estimate
the spatial probability using the knowledge gained from the trained model. Similarly, an
SRU model was trained using vulnerable and non-vulnerable points as targets. Another
dataset was developed with 2 million points without any targets to predict the information
to estimate the vulnerability using the knowledge gained from the previously trained
model. With transfer learning, SPA cannot be restricted to a specific location. Instead, the
knowledge of SPA from a data-rich area can be shared and utilized by others, which is an
asset for SPA in new regions, especially areas with limited/no data. Furthermore, this can
be useful in AI-based vulnerability assessments. Thus, to validate the transfer learning, we
applied transfer learning for both GRU and SRU models in the context of spatial-probability
and -vulnerability assessments in Eurasia, with great accuracy.

3.8. Evaluation Metrics

In the current study, we applied 11 factors for SPA and 6 factors for EVA, which were
derived as thematic layers from seismological, geological, and geo-structural, sociological
data as factors (Table 2). The performance-evaluation metrics employed to appraise the
predictive dimensions were as follows: recall (TPR), F1-score (F1), precision (PPV), and
support and accuracy (ACC) [48]. The statistical expression of these metrics is presented
in Equations (8)–(11).

TPR =
TP
P

=
TP

TP + FN
= 1 − FNR. (8)
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F1 = 2 × PPV × TPR
PPV + TPR

=
2TP

2TP + FP + FN
. (9)

where TPR (hit rate) represents true-positive rate, while F1-score denotes the harmonic
mean of precision and sensitivity. The precision and accuracy must be expressed as:

PPV =
TP

TP + FP
. (10)

ACC =
TP + TN

P + N
. (11)

where PPV denotes the positive predictive value and ACC is the accuracy. Here, N and P
demonstrate the negative and positive data points, respectively, where TN is true negative,
FP is false positive, and TN is true negative.

4. Results
4.1. Spatial-Probability Assessment

The spatial-probability assessment (SPA) was performed using the GRU model based on
the classifications of the earthquake (1) and non-earthquake (0) points. In total, 31,383 points
were derived using various factors, of which 15,700 were earthquakes above 4.5 Mw, while
15,800 were non-earthquakes. The GRU model predicted 11,941,030 km2 as the most
probable earthquake location in Eurasia. The GRU model recorded 93.17% accuracy for the
SPA. The precision was estimated as 0.93, the recall was 0.93, the F1 score was 0.93, and the
support was 9415. The SPM is shown in Figure 6. The density of the probability is plotted;
according to this information, the model predicted more values for the earthquakes than
the non-earthquakes (Figure 7a).
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The importance of all the applied factors is presented in Figure 7b. The values ranging
between 0 and 0.2 were considered to represent low probability, while the values ranging
between 0.8 and 1 were considered to represent high probability. According to the Shapley
game theory, the highly important factors are magnitude variation, seismic gap, depth
variation, and epicenter density.

Three factors, magnitude variation, seismic gap, and depth variation, contributed
more towards earthquake prediction than non-earthquake prediction. No discernible
patterns were observed in any of the unpredicted earthquakes. The probability map was
derived with probability values ranging from 0 (non-earthquake) to 1 (earthquake). The
model accuracy and loss are plotted in Figure 8a,b and the classification report is shown in
Table 4. More than 13,000 earthquakes fell within the high-probability zone, which was
mostly restricted to the vicinity of the active fault locations in the Alpine–Himalayan belt
and Pacific Ring of Fire. The high-probability zones were characterized by high levels of
earthquake magnitude, fault density, epicenter density, and seismic gap.

The future probability of earthquake occurrence is higher in the Alpine-Himalayan Belt
and the countries situated near to Pacific Ring of Fire, as shown in Figure 6. However, the
Alpine-Himalayan Belt has already experienced moderate (4.5 Mw) to disastrous magnitude
events (8 Mw) due to the collision zones and thrust faults. Most of the earthquakes in this
area are deep-focus earthquakes. The Pacific Ring of Fire is characterized by thrust faults
and volcanic activities producing a huge number of earthquakes. These zones have a high
capability to strike high-magnitude earthquakes in the future.
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Table 4. Model evaluation report for GRU model.

GRU report
(Prediction
accuracy:
0.931705)

Precision Recall F1 Score Support

Non-earthquake 0.9422 0.9186 0.9302 4666
Earthquake 0.9219 0.9446 0.9331 4749
Accuracy 0.9317 9415
Macro average 0.9320 0.9316 0.9317 9415
Weighted average 0.9320 0.9317 0.9317 9415
Confusion matrix True positive True negative
Predicted positive 4286 380
Predicted negative 263 4486

Few high magnitude-earthquakes can also be found out of these zones in Eurasia,
specifically due to large local active faults. The above-mentioned zones are characterized by
the interdigitation of rocks, which makes the zones irregular with complex geo-structures
and deformation. Few seismic gaps can be found in the map that shows high probability.
Medium probability could be observed in the surrounding areas of high probable zones.
Russia, Eastern China, Central and South India, Saudi Arabia, and Western Europe are
falling under low probability zone. Countries falling under high probability are Central
Europe, Turkey, Iran, Syria, Iraq, Pakistan, India, West China, Nepal, Bhutan, Bangladesh,
Myanmar, Indonesia, and Japan.

4.2. Hazard Evaluation

Earthquake hazard for the Eurasian continent was developed that involves a source of
strong vibration zones. Ground-motion footprints in terms of PGA were estimated using
the MSK intensity-PGA conversion as shown in Table 3. Using the PGA values and spatial
probability, the hazard map was developed through GIS. The degree of earthquake hazard
in Eurasia was developed where PGA reached to a minimum of (0.0276–0.115 g) or more
and could be appraised as a hazardous zone. The developed hazard map is shown in
Figure 9. The intensity is very high in the countries such as Japan, Indonesia, Bhutan,
Myanmar, North India, Pakistan, Iran, Turkey, and central Europe.

Other countries in Eurasia are coming under low to medium category. Next, the
hazard map was classified into five classes: very-high (>IX), high (VIII–IX), moderate
(VI–VIII), low (V–VI), and very-low (<VI). The obtained map demonstrates that approxi-
mately 24,940,772 km2 of Eurasia is falling under a very-high hazard zone. Most of these
areas are located in the Alpine Himalayan belt and Pacific Ring of Fire while the north-
ern part of Eurasia (Russia and neighboring countries) is coming under the low to the
very low zone. There is a hazard zone can be observed from Pakistan towards Russia
followed by Afghanistan, Tajikistan, Kirgizstan, Kazakhstan, and Mongolia. However,
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the entire Himalayan zone is covered by moderate to very-high hazard zones as per the
obtained results.
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4.3. Vulnerability Assessment

The earthquake vulnerability map of the Eurasian continent was developed using
6 parameters. The vulnerability map generated based on the deep SRU model as shown
in Figure 10. Population density (24.9%), public education (19.2%), high-income level
(15.2%), GDP (14.7%), building density (14%), and industries (12%) were ranked as 1 to
6, respectively. The lowest rank was obtained by a number of industries, whereas the
remainder were ranked higher. The model achieved an overall accuracy of 89%, whereas
precision (0.89), Recall (0.89) and F1 score (0.89) were achieved by vulnerability prediction
(Table 5). The model accuracy and model loss are presented in Figure 11a,b. The reason
behind the higher testing accuracy than training could be the transfer learning with a
new data set. The obtained vulnerability map was classified into five classes based on
the quantile classification technique: very-low, low, medium, high, and very-high. The
resulting map shows that approximately 15,801,480 km2 area of the continent is under the
very-high vulnerability zone.

Table 5. Model evaluation report for SRU model.

SRU Report

Precision Recall F1 score Support

Non-vulnerability 0.8959 0.8908 0.8933 4771
Vulnerability 0.8907 0.8958 0.8932 4740
Accuracy 0.8933 9511
Macro average 0.8933 0.8933 0.8933 9511
Weighted average 0.8933 0.8933 0.8933 9511
Prediction accuracy: 0.89
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The density of the vulnerability was plotted where the model predicted more val-
ues for the non-vulnerable points than for the vulnerable points, which resulted in a low
accuracy, of 89% (Figure 7c). The importance of all six factors (Figure 7d) demonstrates
the instance-wise SHAP values. Several parts of the Eurasian continent fall within the
very-high-vulnerability zone. These are Central Europe, Central Eurasia, and Western
Eurasia. Japan, Korea, China, Indonesia, India, Iran, Turkey, and Europe possess high
seismic vulnerability under the present seismic scenario. Russian, Georgian, Mongolian,
Azerbaijani, Turkmenistan, Afghanistan, Tajikistan, Uzbekistan, and Kazakhstan are coun-
tries within the moderate-to-low-vulnerability zone, characterized by a moderately low
vulnerability index. Therefore, the resultant map is useful for the vulnerability mapping of
93 countries in Eurasia.
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4.4. Risk Estimation

The earthquake risk was spatially evaluated using the integrated AI and transfer-
learning technique, as presented in Figure 12. Two risk maps were developed, Risk A and
Risk B, and classified using quantile classification techniques. In this study, the risk was
classified into five classes, very high, high, moderate, low, and very low, for both maps.
According to the obtained outputs, 6,345,693 km2, 8,881,332 km2 and 1,697,867 km2, and
15,840,672 km2 of the Eurasian continent was regarded as a very-high-to high-risk zone
based on the Risk A and Risk B maps, respectively (see Table 6).

Table 6. Risk-area calculation for Eurasia using an integrated AI model.

Risk A

Classes Area (S. km) In (Hectares) Possible locations

Very high 6,345,693 6,345,693,00

Central Eurasia,
including Japan,
Indonesia, China,
India, Pakistan, Iran,
Turkey, and some
parts of Europe.

High 8,881,332 8,881,332,00
Areas surrounding
Alpine–
Himalayan Belt

Moderate 8,997,807 8,997,807,00
Northern and
Southern Eurasia

Low 22,535,100 22,535,100,00

Very low 8,000,068 8,000,068,00

Total 54,760,000 54,760,000,00

Risk B

Very high 1,697,867 1,697,867,00

Alpine–Himalayan
belt, including
Japan, Indonesia,
China, India,
Pakistan, Iran,
Turkey, and
Southern Europe.High 15,840,672 15,840,672,00

Moderate 18,337,150 18,337,150,00
Northern and
Southern EurasiaLow 13,884,300 13,884,300,00

Very low 5,000,011 5,000,011,00

Total 54,760,000 54,760,000,00

Finally, 8,997,807 km2 and 18,337,150 km2 of Eurasia were at moderate risk on both
maps. The very-high-risk areas were observed in central Eurasia, including Japan, Indone-
sia, China, India, Pakistan, Iran, Turkey, and some parts of Europe. Medium-to-very-low
risk was found in northern and southern Eurasia (Figure 12). Most of the future casualties
or damages are expected in the very-high-risk zone, where a pancake form of collapse may
occur [49]. The current risk results indicate that aged buildings, high population density,
low income, and low GDP could be the reasons for the high risk estimated for this area. Fur-
thermore, the risk results suggest that the renovation and rehabilitation of aged buildings
in high-population-density areas is a primary requirement. Both low- and very-low-risk
zones might be unaffected by any future damage, and if this damage occurs, it can be
repaired. The total population in very-high-to-high-risk areas in Eurasia is estimated to be
in the range of approximately 1.5 billion, and approximately USD 11,250 million in Eurasia
is at high risk from earthquake scenarios in the Alpine–Himalayan belt and the Pacific Ring
of Fire.
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5. Discussion

The earthquake spatial probability was evaluated for Eurasia using a deep GRU model
to achieve robust accuracy. The most recent knowledge on seismic activity and geospatial
data in Eurasia was employed to estimate the earthquake probability. This study compared
the old probabilistic seismic-zoning map and the latest earthquakes in Eurasia with the
resulting earthquake-probability map. The development of a probability-assessment model
for earthquakes above 5.5 Mw using several conditioning factors was a major objective,
and excellent results were shown. The prime cause the very high spatial probability in
Central Eurasia could be the major active faults and the huge number of high-magnitude
earthquakes. According to the literature, the GRU model is one of the most reliable models
for prediction. In this study, the GRU achieved an accuracy of 93% and significantly
reduced the processing time, as well as improving the efficiency. The proposed model
provides the best estimates of probability using historical earthquakes. The interaction
values for each factor showed that the four highest-ranking factors (magnitude variation,
seismic gap, depth variation, and epicenter density) indicated positive interaction, whereas
zero and negative interactions were shown by other factors (Figure 13). The interaction
effects were already doubled in the pairwise interaction plot. The SHAP values were
higher in the main effects (diagonals) than in the interaction effects (off-diagonals). Most
of the earthquakes were predicted by the model at depths of 0–200 km, with a magnitude
variation of 5.7–8 Mw, a seismic gap of 0–100 km, and an epicenter density characterized
by 0–10 events (Figure 14). Because the GRU model generates spatial probability, the
probability classes explain the variation in the probability with respect to distance and
location. The current study shows good accuracy using GRU, as mentioned above, which
is comparable to some DL-based approaches to spatial probability, as discussed below.
Jena et al. [50] conducted a spatial-probability study for India using a deep convolutional
neural network (DCNN) and successfully estimated the probable areas. They achieved
an overall accuracy of 96%. Pourghasemi et al. [9] conducted a multi-hazard-probability
assessment study in Iran, in which they estimated the spatial probability of earthquakes
with an accuracy of above 80%. Finally, they developed a multi-hazard map that works as
a primary tool for sustainable land-use planning.
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earthquake and 1-earthquake).

The earthquake hazard was estimated using the PGA values of the macro-seismic
events. The MSK intensities were estimated for all the earthquakes above 5.5 Mw and
converted into PGA values. The SPM was multiplied by the PGA to estimate the EHM.
This hazard map can suggest the level of destruction that may occur due to high-intensity
earthquakes. Therefore, according to the MSK intensity scale, it can be assumed that an
earthquake intensity > IX is destructive and catastrophic, and that the hazard is very high.
Intensity ranges between VIII and IX can be considered to denote highly hazardous zone,
VII–VIII denote medium-hazard zones, V–VII denote zones with low levels of hazard,
and values of <V denote zones with very low hazards. The hazard map was prepared
based on the quantile classification in GIS. Very-high-to-high hazards were observed in
the Himalayan belt and in the Eurasian countries in the Pacific Ring of Fire. The resulting
map showed very low hazards in northern and southern Eurasia and can be used for
disaster prevention and land-use-planning services by administrative agencies. The very-
high-to-high hazard levels may be due to seismic amplification in loose sedimentary rocks,
active faults, and complicated geo-tectonics. Abdollahzadeh et al. [51] conducted a PSHA
by considering potential seismic sources in northern Iran and estimated PGA values of
0.3 g for 475- and 0.5 g to 0.75 g for 2475-year return periods. Grunthal [52] conducted a
seismic-hazard assessment in Europe and estimated a PGA of 0.6 g for a 10% exceedance
rate over 50 years. Zhang et al. [53] conducted a global seismic-hazard assessment in Asia.
The highest expected PGA for a 10% exceedance rate over 50 years was estimated as 0.48 g
in the Alpine–Himalayan belt. A comparative assessment of the PGA values observed in
Eurasia in previous studies showed that the current results are good.
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Spatially, the earthquake vulnerability can be understood from the resulting map
developed for Eurasia. Approximately 60% of the population lives in very highly, highly,
and moderately vulnerable zones. Notably, the high population and building density
could be the reason behind the very-highly-to-highly vulnerable status of these areas in
Eurasia. The rationale behind low vulnerability is minimal social characteristics. Thus, the
developed vulnerability map can be considered as a source map for future risk mapping
in Eurasia. For a detailed assessment, a country-scale vulnerability study is required,
including various factors such as building types, the quality of materials and individual
incomes, age groups, etc. Very-high- and high-earthquake risk areas should be considered
by national governments for earthquake-mitigation planning. Moradi et al. [54] estimated
earthquake vulnerability using the Choquet integral and the Shapley game theory. Ac-
cording to their results, highly dense populations and aged nonstandard buildings are
very vulnerable to earthquakes. Ruggieri et al. [55] evaluated seismic vulnerability using a
deep-convolutional-neural-network model for existing buildings by exploiting available
photographs. Their results showed that the vulnerability index varied from 0.364 to 0.704
for different building classes, with an accuracy of 97%.

The earthquake risk (A and B) comparison was performed based on two risk-estimation
formulas, which provide the basis for an accurate risk assessment (Figure 12). How-
ever, Risk A demonstrated that most parts of Japan, Indonesia, China, Afghanistan,
Pakistan, India, Iran, Turkey, Tajikistan, and Kirgizstan were in very-high-risk areas,
while according to Risk B, areas of very high risk were distributed in some specific lo-
cations in very highly earthquake-prone countries. In the case of the Risk A map, the risk
was estimated using an industrial approach, through a multiplication of EPA and EVA
(http://www.syque.com/quality_tools/tools/TOOLS11.htm, n.d. (accessed on 11 March
2022)) [56]. To generate Risk B, the product of EHA and EVA was calculated according to
scientifically sound earthquake research [57]. The potential reasons behind the high level
of risk include dense population, high building density, long active faults, high epicenter
density, and high-magnitude events. The risk can be reduced in central Asia by considering
the rehabilitation of the existing buildings, proper mitigation planning, and increasing
the coping capacity [58]. Mangalathu et al. [59] conducted a regional earthquake-risk
assessment for infrastructures using active machine learning. The results showed that the
model achieved an accuracy of 80% for 100 bridge samples, which is equivalent to a model
based on 480 bridge samples. Pelizari et al. [60] estimated earthquake risk using street-level
imagery and a deep-convolutional-neural-network model. According to their results, the
obtained output for the earthquake-prone Chilean capital, Santiago, showed an accuracy
above κ = 0.81 in all the classification tasks. Hence, this study provides accurate results,
and the proposed integrated AI method works efficiently.

The advantages and disadvantages of the integrated AI model depend on the execu-
tion, type of application, and data quality. Continent-scale earthquake-risk assessments
using a robust integrated GRU–SRU model can provide accurate results. The SRU model
was applied for the vulnerability estimation and was useful for prioritizing the criteria
based on transfer-learning techniques.

This study provides evidence of accurate and comprehensive risk assessment on
a continental scale. The limited studies on Himalayan collision zones and evidence of
events show that the obtained results are accurate in terms of probability and risk [61–63].
However, the consolidation and inclusion of mitigation measures is necessary for the
evaluation of the actual risk map using an appropriate risk-assessment strategy. The
disadvantages of this study are associated with the integrated GRU–SRU model, which is
data-dependent and needs large data set for an effective earthquake-probability study. The
selection of appropriate criteria for probability mapping is necessary; otherwise, biased
outputs may occur.

http://www.syque.com/quality_tools/tools/TOOLS11.htm
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6. Conclusions

The objective of this research was to assess the earthquake risk in Eurasia on a conti-
nental. This is a new approach, and it was applied for the first time in Eurasia to estimate
risk, followed by spatial probability, hazard, and vulnerability. The SPA was conducted
at magnitudes above 5.5 Mw. Furthermore, in this study, an integrated deep transfer
learning (GRU-SRU) model was implemented by considering several parameters based
on the recent advances in DL models. In view of the geological and geo-structural dis-
tribution, as well as the level of urban development, very-high-risk areas were observed
in central Eurasia, including Japan, Indonesia, China, India, Pakistan, Iran, Turkey, and
some parts of Europe. The SPM showed that central Eurasia is at high risk due to its
diverse and complex geo-tectonic environment. The hazard map showed that most of
the hazard areas fall within the Alpine–Himalayan belt. These areas are characterized by
a long history of earthquakes associated with high PGA and large events. Poor ground
conditions may lead to high vulnerability. However, the renovation of old buildings and
residential places is a primary task in central Asia and Europe, as well as eastern coastal
countries in the Eurasian continent. The proposed integrated AI approach is a robust and
efficient approach to future earthquake-risk estimation. The risk results indicated that
(6,345,693 km2) and (1,697,867 km2) of the area is covered by a very-high-risk zone, based
on Risk A and B, respectively. This Risk B map showed similar to the GEM-based risk
map, which were acceptable, although the factors used were not the same. This work was
limited to risk evaluation in the absence of liquefaction factors, fault characteristics, soil
characteristics, and precursors. The criteria selection was based on a literature review for
the site-specific and country-scale analysis; thus, it was transferable to a continent-scale
study. The criteria were chosen strictly based on the historical catalog and geo-tectonic
conditions. The aforementioned factors and randomly selected factors proved to be reliable
for future probability and risk mapping, but they may not always be effective. Therefore,
the current approach helps in reducing the computational complexity associated with risk
assessment. In real-world scenarios, this study on earthquakes is crucial to formulate and
implement state-of-the-art DL models. The traditional and previously developed models
have uncertainties, including data dependency, accuracy, and modeling; addressing this
detailed analysis will be a focus in the future.
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