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Abstract

Medical diagnostic methods that utilise modalities of patient symptoms such as speech are

increasingly being used for initial diagnostic purposes and monitoring disease state progres-

sion. Speech disorders are particularly prevalent in neurological degenerative diseases

such as Parkinson’s disease, the focus of the study undertaken in this work. We will demon-

strate state-of-the-art statistical time-series methods that combine elements of statistical

time series modelling and signal processing with modern machine learning methods based

on Gaussian process models to develop methods to accurately detect a core symptom of

speech disorder in individuals who have Parkinson’s disease. We will show that the pro-

posed methods out-perform standard best practices of speech diagnostics in detecting

ataxic speech disorders, and we will focus the study, particularly on a detailed analysis of

a well regarded Parkinson’s data speech study publicly available making all our results

reproducible. The methodology developed is based on a specialised technique not widely

adopted in medical statistics that found great success in other domains such as signal pro-

cessing, seismology, speech analysis and ecology. In this work, we will present this method

from a statistical perspective and generalise it to a stochastic model, which will be used to

design a test for speech disorders when applied to speech time series signals. As such, this

work is making contributions both of a practical and statistical methodological nature.

1 Introduction

Numerous degenerative neurological diseases require continuous monitoring of the patient’s

status to ensure treatment regimes are up to date. Furthermore, the same symptoms manifest

in multiple of these conditions [1], demanding expensive equipment and advanced expertise

for the correct diagnosis. As a solution, the developments of artificial intelligence in biotech-

nology have started to support these medical settings with automated computational tools that

can increasingly identify disorders’ abnormalities in real-life-sensing environments [2–5]. The

challenge in detecting symptoms of such nervous system disorders through a computerised

practice is accomplished via several modalities (such as speech, handwriting, radiology, gait,
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etc.) which are employed to reveal indicators of discriminant symptoms associated with neuro-

degenerative disorders, see [3, 4]. The idea is to map different modality-derived features to the

various symptoms and obtain discriminant information about the studied illness. In such a

way, what is usually referred to as a “biomarker” could be defined.

This work focuses on Parkinson’s disease, the degenerative disorder of the central nervous

system resulting from the death of dopamine-containing cells in the substantia nigra, a mid-

brain region [1]. It includes both motor and non-motor signs, worsening with disease progres-

sion [6, 7]. Medical treatments can alleviate the course of the disease, but no definite cure

exists, and an early diagnosis and remote monitoring are critical for prolonging quality of

life in those diagnosed, see [8, 9]. The modality in focus in this work is speech which sets our

goal as characterising speech anomalies of such a disorder for implementing a pre-screening

diagnostic tool and promoting remote telemedicine practices for understanding disease pro-

gression. Thus, our interest is restricted to voice symptoms that manifest from this neurode-

generative disorder, part of the speech-motor disease (SMD) class and markers of what is

known as dysarthria.

Dysarthria refers to a group of divergent SMDs often secondary to neurologic injury (but

not limited to it) and exhibits highly variable speech patterns within and across individuals

[10]. One of the most established clinical taxonomy for SMD corresponds to the Darley, Aron-

son, and Brown (DAB) model [11] that foresees 38 atypical speech features rated on a 7-point

scale and groups dysarthria types based on speech feature profiles [10]. The DAB model split

SMD into two classes, apraxia and dysarthria, and dysarthria into five clusters, flaccid, spastic,

ataxic, hypokinetic, and hyperkinetic. Patients often show a combination of the five subtypes

(i.e., mixed dysarthria) independently of the final diagnosis, and no speech feature (or a set)

has yet to be found discriminative of the different types [1, 12–14]. Furthermore, this clinical

system relies entirely on subjective auditory-perceptual observations requiring advanced

expert clinical training [10, 13]. Automatic Speaker Recognition (ASR) represent the ideal tool

for automatically detecting and monitoring the range of diversity in dysarthria symptoms.

Different types of ASR systems could be used [15, 16]. For example, there are ASR speaker-

independent (SI) systems, trained on large multispeaker datasets, or ASR speaker-dependent

(SD) systems, trained by an existing SI model to a target speaker or by a unique target speaker’s

speech data [10, 17]. Commercially developed SI have low error rates for healthy speakers but

appear to perform considerably worse with speech impairments tasks [10, 18]. Thus, extensive

work has been conducted on SD systems for speech impairments showing stronger perfor-

mances than SI [10, 19, 20]. The speech task used for the discrimination might vary and be

dependent on the speech methodology or the final goal. These are repeating syllables, sponta-

neous dialogue, improvised description of a figure, etc. [2]. An ASR system can use several

speech features descriptive of the different phases of speech production process, extensively

reviewed by [2, 4, 21, 22]. Amongst many, acoustic or vocal tract features describing the articu-

latory phase are the ones that correlate the most with neurodegenerative disorders. Under the

source-filter model [23], a speech signal results from the glottal airflow shaped by the vocal

tract filter as it passes through it. Numerous studies in ASR prove that vocal folds features are

not as discriminatory as vocal tract features [24]. In particular, representations containing

information about the vocal tract’s resonance properties, also known as formants. An individu-

al’s speech formant structures are analogous to that individual’s speech fingerprint, thereby

characterising unique traits of the filter model specific to a human [17]. Following the intro-

duced evidence, an ASR-SD system, relying on acoustic features and describing the speech for-

mant structure, would represent a powerful solution for characterising different symptoms of

dysarthria.

PLOS ONE Empirical mode decomposition for ataxic speech disorders and parkinson’s disease diagnostics

PLOS ONE | https://doi.org/10.1371/journal.pone.0284667 April 26, 2023 2 / 59

https://doi.org/10.1371/journal.pone.0284667


Our work is built upon the following considerations. Firstly, we consider the speech taxon-

omy provided by the DAB model shown in Fig 1 (produced by [10]). Secondly, we consider

Parkinson’s disease and aim to discriminate the presence or absence of such disorder by quan-

tifying ataxic dysarthria or ataxic speech. Fig 1 shows that articulatory speech abnormalities

are prevalent in this kind of dysarthria and correspond to distorted vowels, slow articulatory

breakdowns, telescoping, and slow rate [25–27]. Such abnormalities must be detected through

time-varying features of formant structures. Thus, we will consider data for which the assigned

speech task is “reading text” to observe the evolution of speech over time rather than using

repeated syllables. Ataxic speech is chosen as the discriminant factor for Parkinson’s disease

since, beyond being characterised by several abnormalities of the articulatory tract, whose fea-

tures best capture biometric properties of a human voice, several studies reported a 70–90% of

its prevalence once Parkinson’s appears [28]). Moreover, ataxic speech might be one of the ear-

liest indicators of Parkinson’s [6]. Hence, we aim to construct a biomarker that efficiently

Fig 1. Figure describing the taxonomy of SMD according to the Darley, Aronson, and Brown model. Note that the taxonomy panel was produced by [10] and

modified in this paper. Acoustic features representing the vocal tract and capturing formant structure are amongst the most discriminant in ASR tasks. Our interest is to

detect the presence or absence of Parkinson’s through such acoustic features. Hence, since one of the early symptoms of Parkinson’s is ataxic speech, which implies

several speech abnormalities in the vocal tract, this will be the set of anomalies we aim to discriminate. Furthermore, based on [17], our goal is to construct an ASR-SD

system able to deal with complex settings such as non-stationarity of the speech, small sample sizes, unbalanced data, and interpretation of the obtained results

concerning gender voices, carrying different formant structure.

https://doi.org/10.1371/journal.pone.0284667.g001
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detects formant structures of ataxic speech abnormalities based on acoustic features formu-

lated through a sophisticated time-series signal processing technique. Fig 1 shows the steps of

this procedure. This idea is based on the work proposed in [29], which sought to detect the

presence of ataxic speech in participants with cerebellar ataxia using standard acoustic fea-

tures. By presenting an ad hoc ASR-SD system substituting the one of [29] and efficiently tar-

geting the formant structure of Parkinson’s subjects, we can characterise such a condition

through ataxic speech anomalies. Our method is directly comparable to the one proposed by

[29] and hence interpretable. Fig 2 shows the two ASR systems and their differences. The top

diagram represents the ASR-SI system implemented by [29], while the bottom panel represents

the one proposed in this work. Features and classification information will be provided in the

text below since the methodologies must be introduced first. Note that, only the novel features

are represented in the plot.

Fig 2. Figure showing the ASR systems detecting ataxic speech. The top panel represents the ASR-SI system implemented by [29], which has been exploited to develop

our technique. After having collected the speech data and split it into training and testing sets, the authors extracted (amongst others) Mel Frequency Cepstral

Coefficients (MFCCs) and phase-based cepstral coefficients (MGDCCs) and combined them into a unique feature vector to then perform a classification task with a

Support Vector Machine (SVM) for the diagnosis of cerebellar ataxia. The bottom panel of the plot shows the steps of our ASR system, which instead is SD and relies on

read text as the speech task performed by the participants. The considered data set is given at [38], with people affected by Parkinson’s disease. We constructed the

training and testing set and then extracted (amongst others) six different feature vectors, which we have been tested individually through a Generalized Likelihood Ratio

Test (GLRT). The classification task targets the detection of ataxic speech with an equivalent statistical framework for diagnosing Parkinson’s disease. Note that an

extension of the bottom panel including all the novel features will be presented in Fig 3.

https://doi.org/10.1371/journal.pone.0284667.g002
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The research question we want to address is whether it is possible to quantify ataxic speech,

as done in [29], more robustly and if, by considering that there will be further statistical con-

founders, i.e. other types of dysarthria, such ataxic quantification will be discriminative for

Parkinson’s disease. In doing so, the following components must be taken into account. Firstly,

the developed method should be robust to small sample sizes, often affecting medical diagnos-

tic studies. Secondly, if the data is unbalanced, the designed training and testing procedure

combined with the classification method must handle such an issue to avoid introducing

undesired bias. The standard practice followed by ASR methodologies is to refine standard

glottal/voice features for the classification task or search for a more complex classifier based on

deep learning techniques ([30–36]). The third point is that [17] the ASR speech method should

account for gender since male and female voices enclose distinct resonant frequencies of the

vocal cords and a joint classification would reduce accuracy of the classifier. Furthermore, the

classifier must guarantee a physical interpretation of the obtained results, i.e. features better

performing should reflect the discriminatory power carried by female or male voices. The

other relevant aspect is that considering an ASR-SD is more powerful nowadays in medical

settings since averaging results often employed in standard ASR or Speaker Verification tasks

Fig 3. Figure showing the proposed ASR system detecting ataxic speech. It corresponds to an extension of Fig 2 and presenting all the novel features used, hence, the

IMFs and the BLIMFs (output of SM2 and SM3) and, further, MFCCs will be extracted on these and an SVM equivalent the one performed by [29] will be carried. Note

that only the first 3 bases are retained. Reasons behind this choice will be later introduced.

https://doi.org/10.1371/journal.pone.0284667.g003
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might still be too general for such medical biomarker discovery settings, given the lack of sub-

stantial reference data sets for specific diseases. Further, before moving to a generalisation pro-

tocol, experts providing the final diagnosis and treatments would need highly tested models

already studied on several data.

Furthermore, since accuracy levels of at least 80% are required in health diagnostics, such

challenges just discussed will require the development of tailored solutions involving sophisti-

cated speech analysis methodologies that should be interpretable in order for them to be

relevant for medical practitioners to interpret and trust. This paper aims to address these chal-

lenges by providing a novel method for a modelling methodology for ataxic speech symptom

detection associated with Parkinson’s disease by addressing two core components of statistical

speech analysis for medical diagnosis. The first involves detecting and quantifying ataxic

speech anomalies in the case of Parkinson’s disease, with the case study considering speech

recordings of patients at various stages of this disease. Secondly, it makes statistical contribu-

tions related to developing non-linear and non-stationary time-series methods based on

Empirical Mode Decomposition (EMD) [37], where a novel stochastic model representation is

established for the EMD which then allows a statistical treatment of EMD to be considered.

This is important to undertake statistical analysis tasks such as estimation and inference and to

accurately incorporate statistical uncertainty quantification in out-of-sample predictions and

forecasts, distinct from model from naive extrapolation, often used in the absence of a stochas-

tic model for EMD. We will show that the implemented methodology outperforms traditional

speech methodologies with accuracy scores greater than 80% on the data set collected and

provided by King’s College given at [38], available at https://zenodo.org/record/2867216#.

ZAiHuRWZO3B.

1.1 Introduction to time series empirical mode decomposition

Speech data represents a complex data type that can be analysed through advanced time series

decomposition methods since, if appropriately designed, the extracted bases reveal hidden

insights into the data generating process, often not visible via the analysis of the original signal.

We focus on the time-frequency method [39, 40] known as the EMD. Compared to traditional

Fourier-like methods, the EMD is not prescriptive of the functional form of the basis used (as

cosine for Fourier, for example) and only specifies the properties its basis functions must sat-

isfy. Further, the EMD can relax requirements for statistical assumptions such as linearity or

stationarity. Despite these critical practical features, there has been no statistical formalisation

of a stochastic representation or embedding of the empirical algorithm that the EMD offers,

and we address this challenge in this manuscript.

The EMD basis functions, known as Intrinsic Mode Functions (IMFs), carry the advantage

of being monocomponent [41]. A monocomponent signal is described in the time-frequency

(t,f)-domain by one single “ridge” corresponding to an elongated region of energy concentra-

tion. In addition, considering the crest of the ridge as a graph of Instantaneous Frequency (IF)

vs time, one requires the IF of a monocomponent signal to be a scalar-valued function of time.

In such a way, one is allowed to form the analytic extensions of each of the basis function IMFs

via a well-defined Huang-Hilbert transform to characterise the collection of frequency repre-

sentations obtained explicitly, i.e. the IFs of the signal, in our case the speech signals, see dis-

cussion in [39, 42–44]. The EMD method then utilises the fact that a multicomponent signal

may be described as the sum of two or more monocomponent signals. A basis decomposition

method utilising such characterising features can capture both time and frequency events in a

localised fashion, which is extremely useful when there are non-stationarity effects present, as

in speech.
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Developing a stochastic representation or embedding along with a family of statistical

model representations for the EMD method to complement its algorithmic formulation

will be achieved by considering three methodological problem statements (PS1, PS2, PS3)

addressed in this paper. The first problem is establishing a path-wise statistical model for the

IMFs, satisfying the definitions provided in [37] that will also be consistent with the developed

stochastic representation. The second problem statement considers the assumption that the

EMD is algorithmically applied to the realisation of a time series signal sampled from an

unknown stochastic process. Given the realised time series, the IMFs, per path, are then con-

sidered deterministic unknown functions that must be estimated from the samples. Therefore,

in PS2, we seek to determine a stochastic version of the IMF decomposition compatible at a

population process level with the pathwise representation of the deterministic decomposition

being estimated under the solution to PS1.

Given that we will work with spline model representations as the solution to PS1, it

becomes natural to consider whether Gaussian Processes (GP) [45] stochastic model embed-

dings will satisfy the solution to PS2 when stochastically embedding the IMFs. In this work’s

context, a Gaussian process will be considered a continuous-time stochastic process for which

all finite-dimensional distributions follow multivariate normal distributions. One may then

interpret the GP as a random variable on L2([0, 1]) such that the individual sample paths map-

ping ½0; 1� ! R are considered random functions. In particular, there is a known connection

between such functions when they are represented by splines, which under appropriate condi-

tions are known to be suitable sample path realisations for GPs, see [46]. The challenge will be

to ascertain whether this class of GP stochastic models will sufficiently satisfy the requirements

imposed on the characteristic properties that such a representation should capture if it is to

represent an EMD decomposition as a stochastic representation adequately.

Furthermore, GPs are a robust inference supervised machine learning technique used in

many applications, given that they can be entirely specified by their mean and covariance, or

kernel, functions. This will allow the definition of a stochastic representation with practical

utility in performing tasks such as estimation, inference and forecasting. We will demonstrate

that the GP stochastic representation we will develop for EMD basis functions IMFs when

aggregated together to represent the original signal, can be considered as a special class of

multi-kernel (MKL) GP (see review in [47]) stochastic model representation of the original

time series signal. In practice, the EMD is then learning the multi-kernel spectral decomposi-

tion in terms of the number of kernel components to consider and their characteristic time-

frequency structure for each kernel component. MKL representations can be achieved through

multiple strategies developed in the literature ([48–51]).

The third problem addressed (PS3) pertains to the suitable selection of the covariance func-

tion used to capture the IMFs being stochastically modelled by GPs adequately. Since IMFs

correspond to a collection of non-stationary basis functions, there is a requirement to properly

design the family of kernel functions to accurately model the IMF spline representations esti-

mated under the EMD basis extraction procedure, known as sifting. In this regard, in non-triv-

ial applications such as speech analysis focused on in this manuscript, standard parametric

kernels such as the Matern kernel and the RBF kernel (see [45]) will not suffice. Instead, we

will develop two classes of solutions to this problem that generate two different families of sto-

chastic model GP representations of EMD decompositions. The first is based on a family of

data-adaptive kernels known as the Fisher kernel [52–55], which provides a generic mecha-

nism incorporating generative probability models into the development of the covariance

operator that will be data-adaptive and act as a flexible time series kernel. The second approach

is based on a novel framework to learn optimal partitions of the time-frequency plane that uti-

lises the IFs obtained from the EMD basis IMFs to partition the energy spectrum into localised
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regions that can then be modelled via localised GPs. One of the challenges with this second

approach is how best to learn the time-frequency partition rule. This is solved via a novel appli-

cation of Cross Entropy optimisation (CEM), which is a stochastic optimisation technique that

Rubinstein first presented in 1999 (see [56, 57]). Once the optimal core bandwidths are com-

puted, a new set of frequency band-limited bases we term “band-limited” IMFs (BLIMFs) will

be derived. These new set of basis functions are obtained by aggregating the original IMFs

sample points according to the location of their IFs within the regions of the computed optimal

bandwidths partition. With such a partition model, we can characterise adaptive local band-

widths of the IMFs frequency domain with a kernel function in a GP setting.

1.2 Contributions, notation and structure

There are multiple contributions made by this work both in the direction of medical diagnosis

for ataxic speech in Parkinson’s and for signal processing decomposition methods in speech

analysis. These are given as follows.

• A stochastic embedding model is developed for the EMD method that is consistent with

the properties of the IMFs. The stochastic model for the IMFs is compatible with statistical

representation comprised of B-spline and P-spline and proposes flexible statistical models

that readily lend themselves to estimation, inference and statistical forecasting methods for

EMD decompositions. Yet, this needed to be improved in the time-series signal processing

literature, since traditionally the EMD method did not admit a probabilistic model represen-

tation, so we have developed one in this work.

• The following notation will be used throughout: t0 < t1 < . . .< tN denotes signal observation

times; the time series signal is denoted by sðtÞ : T ! R and is observed at fsðtiÞg
N
i¼1

; the con-

tinuous time spline reconstruction of the signal is denoted by ~sðtÞ : T ! R; the L IMF basis

function from the EMD method are denoted by fglðtÞg
L
l¼1

such that each satisfies

glðtÞ : T ! R; L generically denoted the total number of IMFs extracted for a given signal;

the analytic extension of the l-th IMF will be denoted by �g lðtÞ ¼ H½glðtÞ� where H½�� denotes

the Hilbert transform which produces the analytic signal zlðtÞ ¼ glðtÞ þ i�g lðtÞ; F ½�� will

denoted the Fourier transform; when extracting IMF basis functions under the EMD

method sifting algorithm, we will denote by ~sUlðtÞ the upper envelope used in sifting that is a

spline interpolating the maximum of the current best estimate of the l-th IMF and analo-

gously by ~sBlðtÞ the lower envelope of the l-th IMF interpolating the minimum of the current

best estimate of the l-th IMF in the iterative IMF extraction algorithm known as sifting;

finally, we will denote the collection of frequency band limited IMFs by fgðBLÞ
m ðtÞg

M
m¼1

the

band-limited IMF construction based on M total specified bandwidths.;

The paper is organised as follows: firstly, a review of the EMD method is shown. We refer to

[17] as main reference. Secondly, the EMD stochastic embedding set up is proposed with a

set of objectives that must be satisfied. Afterwards, the stochastic embedding is formally

developed, with the required notions presented to achieve it. Note that, three different sys-

tem models will be formulated in this section: one for the stochastic embedding of the origi-

nal signals and two which are the ones relating to the EMD and proposed in this manuscript.

Section 5 presents how to develop a generative embedding kernel based on the Fisher kernel.

Furthermore, the formulation of the cross-entropy problem with the derived solution used

to formalise an optimal time-frequency partition for the second stochastic embedding is pre-

sented. Section 6 introduces the framework of speech based medical diagnostic with a sub-

section on motivation for Parkinson’s speech detection, a subsection standard benchmark

model solving this task and the GLRT Test used to test the presence or absence of
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Parkinson’s disease developed in this paper. The last section shows the experiments results

and discussion conducted on the speech data for Parkinson’s detection.

2 Statistical model framework for empirical mode decomposition

This section introduces a formalism required to understand the EMD method and builds

upon the work presented in [17]. EMD basis characteristics of IMFs have been defined in [37]

through a set of non-constructive properties only and are obtained via a procedure known as

sifting, based on a recursive extraction of the signal energy associated with the intrinsic time

scales of the original signal. They are therefore ordered according to their number of oscilla-

tions or convexity changes, and they furthermore satisfy the property that their sum repro-

duces the original realised signal path. Hence, the observed time series is reconstructed in

principle exactly when the resulting IMFs are estimated or extracted numerically in a manner

that perfectly satisfies the characterising properties of the EMD method.

Consider a continuous non-stationary speech signal s(t) observed as a sample recording at

times 0 = t1 < . . .< tN = T. When applying the EMD basis decomposition framework, we first

convert the partially observed discrete time signal s(t) into a continuous time analog signal,

denote by ~sðtÞ. To achieve this we use a natural cubic polynomial spline. We will also express

the EMD bases fglðtÞg
L
l¼1

as natural cubic splines, derived from representation ~sðtÞ.
Definition 2.1. Given a set of l knots a = τ1 < τ2 < . . .< τl = b, a function ~s : ½a; b� ! R is

called a cubic polynomial spline if:

• ~sð�Þ is a polynomial of degree 3 on each interval (τj, τj+1) (j = 1, . . ., l − 1)

• ~sð�Þ is twice continuously differentiable

It is then a natural cubic spline when ~s 00ðaÞ ¼ ~s 00ðbÞ ¼ 0.

Hence, the speech signal representation ~sðtÞ is expressed in the class of truncated power

basis, where the knot points are placed at the sampling times (τi = ti)

~sðtÞ ¼ a0 þ a1t þ a2t2 þ a3ðt � t1Þ
3

þ
þ . . .þ a3þl� 2ðt � tl� 1Þ

3

þ
:

The coefficients are estimated by standard penalised least squares

XN� 1

i¼1

ðsðtiÞ � ~sðtiÞÞ
2
þ l

Z tiþ1

ti

~s 00ðtÞ2dt

with natural cubic spline constraints ~s00ð0Þ ¼ ~s00ðtNÞ ¼ 0 and where λ> 0 controls smoothness

of the representation. In this case, the number of total convexity changes (oscillations) of the

analog signal ~sðtÞ within the time domain [0, tN] is denoted by to L 2 N. One may now define

the EMD decomposition of a speech signal ~sðtÞ as follows.

Definition 2.2 (Empirical Mode Decomposition). The Empirical Mode Decomposition of
signal ~sðtÞ is represented by the finite number of non-stationary basis functions known as Intrin-
sic Mode Functions (IMFs), denoted by {γl(t)}, such that

~sðtÞ ¼
XL

l¼1

glðtÞ þ rðtÞ ð1Þ

where r(t) represents the final residual (or final tendency) extracted, which has only a single con-
vexity. In general the γl basis will have l-convexity changes throughout the domain (t1, tN) and
each IMF satisfies:
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• Oscillation The number of extrema and zero-crossing must either equal or differ at most by
one;

abs
dglðtÞ

dt
¼ 0 : t 2 t1; tNð Þ

� ��
�
�
�

�
�
�
� � jfglðtÞ ¼ 0 : t 2 t1; tNð Þgj

� �

2 f0; 1g ð2Þ

• Local Symmetry The local mean value of the envelope defined by a spline through the local
maxima denoted ~sUlðtÞ and the envelope defined by a spline through the local minima denoted
by ~sBlðtÞ is equal to zero pointwise i.e.

mlðtÞ ¼
~sUlðtÞ þ ~sBlðtÞ

2

� �

I t 2 t1; tN½ �ð Þ ¼ 0 ð3Þ

The minimum requirements of the upper and lower envelopes are:

~sUlðtÞ ¼ glðtÞ; if
dglðtÞ

dt
¼ 0 &

d2glðtÞ
dt2

< 0;

~sUlðtÞ � glðtÞ 8t 2 ðt1; tNÞ

~sBlðtÞ ¼ glðtÞ; if
dglðtÞ

dt
¼ 0 &

d2glðtÞ
dt2

> 0;

~sBlðtÞ � glðtÞ 8t 2 ðt1; tNÞ:

ð4Þ

This definition provides characteristic properties that an IMF basis, γl(t), under the EMD

method should satisfy. Evidently, it is not constructive, i.e. prescriptive of the functional form

of the basis. Therefore, in this manuscript, we opt to utilise throughout the same flexible natu-

ral cubic spline representation as used to represent the speech signal interpolation ~sðtÞ also for

the IMFs. Such a B-spline based representation for the realised deterministic basis decomposi-

tion that makes up the statistical model for the EMD pathwise representation will be essential

to motivate the use of the Gaussian process stochastic model embedding for the stochastic pro-

cess based representation we develop for the EMD method.

One can note that each IMF carries a unique number of convexity changes that can occur

at any time spacings. Typically, the times of convexity change are irregularly spaced and reflect

non-stationarity in a local bandwidth of the frequencies that characterize the signal at that

time instant. As a result of this property, one can still order the basis IMF’s naturally according

to the unique number of total convexity changes they produce in (t1, tN).

As outlined in [37], the construction of an IMF basis is directly linked to the concept of

local symmetry required to handle non-stationary data. This notion is enclosed by the mean

envelope that captures a local time scale, and the definition of a local averaging time scale is

hence bypassed. Such a requirement is fundamental to avoid asymmetric waves affecting the

concept of instantaneous frequency, formalised below.

2.1 Extraction of EMD basis functions Intrinsic Mode Functions (IMFs):

The sifting procedure

We briefly outline the process applied to extract recursively the IMF basis representations,

which is a procedure known as sifting, see [58]. To extract the l-th IMF The first step consists

of computing extrema of the current signal representation after having removed the previously

extracted IMFs by ~slðtÞ :¼ ~sðtÞ �
Pl� 1

i¼1
giðtÞ, which still admits a spline representation. Using

the spline representation of ~slðtÞ one needs to find the roots of the first derivative ~s 0lðtÞ to
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produce the sequence of time points for successive maxima and minima given by:

ft∗j g
L
l¼1
¼ t 2 ½t1; tN � : a1 þ 2a2t þ 3

X3þl� 2

i¼3

aiðt � t1Þ
2

þ
¼ 0

( )

:

Without loss of generality, we assume the maxima occur at odd intervals, i.e. t∗
2jþ1

, and min-

ima occur at even intervals, i.e. t∗
2j. The second step of sifting builds an upper (~sUlðtÞ) and lower

(~sBlðtÞ) envelope of ~slðtÞ using two natural cubic splines through the sequence of maxima and

the sequence of minima respectively:

~sUlðtÞ ¼ aUl
0 þ aUl

1 t þ aUl
2 t2 þ

XbL=2c

i¼0

aUl
iþ3ðt � t∗

2iþ1
Þ

3

þ
;

~sBlðtÞ ¼ aLk
0 þ aBl

1 t þ aBl
2 t2 þ

XbL=2c

i¼0

aBl
iþ3ðt � t∗

2iÞ
3

þ
;

such that ~sUlðtÞ � ~slðtÞ 8t with ~sUlðt∗
2jþ1
Þ ¼ ~slðt∗2jþ1

Þ for all odd t∗j and strictly greater otherwise;

and equivalently ~sBlðtÞ � ~slðtÞ 8t with ~sBlðt∗
2jÞ ¼ ~slðt∗2jÞ for all even t∗j and strictly less than other-

wise. One then utilises these envelopes to construct the mean signal denoted by ml(t) given in

Eq (3), which will then be used to compensate the current representation of the speech signal

by ~slðtÞ ¼ ~slðtÞ � mlðtÞ at each time point t 2 [t1, tN]. This procedure is then repeated on the

compensated signal, where again the current maxima and minima are obtained to produce

envelopes which in turn produce a new estimate of the mean ml(t) which in turn is used

in a defluctuation step to compensate the signal ~slðtÞ. This is repeated until the conditions

specified in Definition 2.2 for the envelope and mean functions are satisfied, which when

achieved produce the current deflucuated version of the signal ~slðtÞ as the l-th IMF γl(t).
This procedure then repeats again for the l + 1-th IMF extraction working now on signal

~slþ1ðtÞ :¼ ~sðtÞ �
Pl

i¼1
giðtÞ, and the entire sifting process terminates when the L + 1-st IMF

is extracted and it corresponds to the IMF ‘tendency’ which only has one convexity change in

[t1, tN] and is often denoted distinctly by r(t), see [17] for an algorithm and further details.

2.2 Obtaining Instantaneous Frequencys (IFs) from IMF basis functions

The EMD method extracts a set of basis functions (IMFs), each of which will admit a time-

varying frequency structure that can be characterized by their corresponding instantaneous

frequeny (IF) signal. The IF of a given IMF basis is extracted in the following stages.

First, one takes the Hilbert Transform of each IMF fglðtÞg
L
l¼1

, in order to construct a set of

analytic extensions f�g lðtÞg
L
l¼1

via the Hilbert transform as follows:

�g lðtÞ ¼ H glðtÞ½ � ¼
1

p
lim
�!1

Z þ�

� �

glðtÞ

t � t
dt

which then produces the collection of analytic signals {zl(t)} with zlðtÞ ¼ glðtÞ þ �g lðtÞ. We

observe that when γl(t) is a proper IMF such that it respects the restrictions defined in (4), its

Hilbert transform can be obtained in closed form. The complex analytical signal zl(t) can be

then represented by the polar representation zl ¼ alðtÞeȷylðtÞ with time varying amplitude

alðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

l ðtÞ þ �g2
l ðtÞ

p
and time varying phase ylðtÞ ¼ arctan ~g lðtÞ

glðtÞ
.
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The instantaneous frequency ωl(t) for IMF γl(t) is then found from the time-varying phased

of zl(t) as the rate of change given by:

olðtÞ ¼
1

2p

dθlðtÞ
dt
¼

1

2p

�g 0lðtÞglðtÞ � �g lðtÞg0lðtÞ
g2

l ðtÞ þ �g2
l ðtÞ

:

As observed in [37] conditions (4) that characterize the IMF properties are specified to

ensure that the instantaneous frequency remains positive and therefore admits a meaningful

physical interpretation.

Since, we adopt a statistical model representation for the IMFs based on cubic splines one

can utilise this representation of the l-th IMF to obtain the Hilbert transform of the sum of

local cubic polynomial transforms, see for details [59]:

�g lðtÞ ¼ H glðtÞ½ � ¼
1

p

XN� 1

i¼1

�g li
ðtÞ ti� 1 < t � ti

where4i = τi − τi−1 and �g li
ðtÞ is the Hilbert transform of the i-th polynomial:

�g li
ðtÞ ¼ ali

t3 þ bli
t2 þ cli

t þ dli

� �
log

t
t � 4i

� �

þali

42
i t

2
� 4it

2 �
43

i

3

� �

þ bli
� 4it �

42
i

2

� �

� cli
4i:

Such a representation for the IMF γl(t) produces a smooth, differentiable, continuous func-

tion, it is approximated by the class of polynomial basis in the L2 space.

3 EMD stochastic embedding set-up

We have shown in Section 2 that working with cubic splines for the representation of the

EMD method is advantageous from many perspectives. Firstly it is suitable to represent the

interpolated signal ~sðtÞ from the observed time series fsðtiÞg
N
i¼1

in an optimal fashion based on

minimising mean squared error. Secondly, it allows one to perform the sifting procedure read-

ily when representing the envelope functions and results in a collection of IMF basis functions

fglg
L
l¼1

representations that are also cubic splines. Thirdly, the analytic extension via the

Huang Hilbert transform, used to obtain the instantaneous frequency, admits closed form

solutions for the representations of the IFs folg
L
l¼1

which is also characterised readily by cubic

splines. Lastly, and most importantly, when considering moving from the path-wise EMD

method basis extraction for one of the time series realised trajectories to a stochastic process

embedding representation, the representation of IMFs via cubic splines allows one to utilise

the established connection between Gaussian processes and B-splines to motivate working

with Gaussian process stochastic embeddings.

3.1 EMD stochastic embedding objectives

In developing the stochastic embedding of the EMD, we will distinguish between the deter-

ministic (realised) or empirical EMD decomposition for a given signal trajectory, satisfying at

any time t 2 [0, T] the property of EMD decomposition

sðtÞ ¼
XL

l¼1

glðtÞ þ rðtÞ
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for IMF γl(t) satisfying the mathematical characterisation given in Definition 2.2; and the sto-

chastic process embedding of the EMD representation, denoted at any time t 2 [0, T], by the

random variables (upper case for random variables)

SðtÞ¼d
XL

l¼1

GlðtÞ þ RðtÞ

The challenge with developing a stochastic embedding for EMD method is that it will be

required to satisfy a few core features:

1. Sample paths of the embedded EMD stochastic process should be able to be consistent with

the basis functions for the IMFs obtained from the empirical sample based characteristics

that represent the classical EMD method as set-up in Definition 2.2.;

2. Since the EMD method satisfies for each realised sample time-series trajectory ~sðtÞ that

~sðtÞ ¼
XL

l¼1

glðtÞ þ rðtÞ

then one would naturally require such a property to be inherited at the population stochas-

tic process level such that:

~SðtÞ¼d
XLþ1

l¼1

GlðtÞ

where we have denoted the stochastic process for R(t) by ΓL(t) to reduce notational burden.

Ideally the representations of processes ~SðtÞ and IMF stochastic processes fGlðtÞg
L
l¼1

would

satisfy:

1. Stochastic processes used to model ~SðtÞ and IMF processes fGlðtÞg
Lþ1

l¼1
have known finite

dimensional distributions and are from family of known stochastic process models

which are easily parameterised and characterised. We will denote this family of models

for distributions at time t

2. Stochastic processes used to model ~SðtÞ and IMF processes fGlðtÞg
Lþ1

l¼1
would also ideally

be easily calibrated to realised EMD sample based decompositions via standard estima-

tion methods like maximum likelihood estimation with closed form expressions for the

likelihood of the model for the stochastic embedding.

3. IMF stochastic processes fGlðtÞg
L
l¼1

are of the same family of stochastic process model as

that which represents the signal stochastic process ~SðtÞ. In other words if, for each time

t, one has that random variable ~SðtÞ � F 2 F is distributed by F in a family of distribu-

tion models F where

~SðtÞ � Fða;C~SÞ :¼

Z a

� 1

. . .

Z a

� 1

fG1 ;...;GLþ1
ðg1; . . . ; gLþ1Þdg1 . . . dgLþ1

with C~S denoting the parameters of the model that indexes the family member from F
and furthermore, where fG1 ;...;GLþ1

is the joint distribution of the IMF random variables

and tendency at time t, then it also holds that for each t 2 [0, T] and l 2 {1, . . ., L + 1} the

distribution of the IMF random variables satisfies that it is also a member of this family
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of distribution models such that

GlðtÞ � Fðs;CGl
Þ 2 F ;

indexed by parameter vectors Cl.

4. Another desirable property for the stochastic embedding representation of EMD would

be to have the conditional distributions also members of the same family of distributions

of ~SðtÞ, such that for each t 2 [0, T] and any combination of J� L + 1 indexes denoted

by subset K � f1; . . . ; Lþ 1g one has that the random variable

X

i2K

GiðtÞjG1;...;LnK � Fðs;CKÞ � F

Note: In the case one assumes an independence model approximation for the joint dis-

tribution of the IMF random variables and tendency at each time t 2 [0, T] such that

fG1 ;...;GL;R
ðg1; . . . ; gL; rÞ ¼

YL

l¼1

fGl
ðglÞfRðrÞ

Then the EMD method decomposition implies that the stochastic representation of the

IMFs are closed under convolution. This means that at each time t the random variable

for the signal S(t)�F(s;CS) and the random variables for the IMFs Gi � Fðs;CGi
Þ satisfy

that

Fðs;CSÞ ¼⊛
L
i¼1

Fðs;CGi
Þ⊛ Fðs;CRÞ

such that Fðs;CSÞ; Fðs;CG1
Þ; . . . ; Fðs;CGL

Þ; Fðs;CRÞ 2 F

4 Developing a stochastic embedding of EMD

In this section we develop two approaches for the stochastic embedding of the EMD method

which will be consistent with the EMD empirical decomposition whilst also concurrently satis-

fying the properties set out for such a stochastic representation of EMD given in Section 3.1.

To achieve this we will develop two different system models each of which will be based on ver-

sions of multi-kernel Gaussian Processes models with specially selected kernel structures. The

reference baseline or benchmark model we will compare to these two novel system models for

EMD stochastic representation will be a Gaussian process fit directly to the original signal s(t).
Gaussian Processes (GPs) are a highly expressive family of stochastic models widely

adopted in machine learning, see [45]. Formally, a Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian distribution, which is entirely

described by its mean and kernel covariance function as detailed in Definition 4.1. The positive

definite covariance function often referred to as kernel determines the class of functions from

which such processes sample paths take support.

Definition 4.1 (Gaussian Process (GP)). Denote by f ðxÞ : X ! R a stochastic process,
parametrised with state-space fxg 2 X , where X � Rd

. The random function f(x) is a Gaussian
Process if all finite dimensional distributions are Gaussian, where for any n 2 N, the random

vector (f(x1), f(x2), . . ., f(xn)) is jointly normally distributed. We can therefore interpret a GP for-
mally defined by the following class of random functions:

f :¼ ff ð�Þ : X ! R : f ð�Þ � GPðmð�;cf Þ; kð�; θf ÞÞg ð5Þ
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with mð�;cf Þ : X ! R, kð�; θf Þ : X � X ! Rþ,

mð�;cf Þ ¼ E½f ð�Þ�

kð�; θf Þ ¼ E½ðf ð�Þ � mð�; θmÞÞðf ð�Þ � mð�; θmÞÞ�
ð6Þ

The properties of the functions, i.e. smoothness, periodicity, etc., are determined by the suf-

ficient statistic given by the covariance kernel function.

Before introducing these GP models, we will motivate theoretically why the class of GP

models is suitable for a stochastic embedding that will be shown to be both meaningful for reg-

ularised spline representations of IMFs as well as suitable to satisfy the properties outlined for

such a stochastic embedding of EMD discussed in Section 3.1.

4.1 Spline representations of an IMF and reproducing kernel hilbert spaces

In order to make explicit the connection between using spline models to represent the path-

wise empirical EMD decomposition of ~sðtÞ and the stochastic embedding via a multi-kernel

Gaussian process, we will recall briefly known connections between splines and Gaussian Pro-

cesses (GPs). Splines may be viewed as limits of interpolations related to stationary Gaussian

processes. Hence, we will explore further this connection as follows.

Consider seeking to recover the l-th unknown IMF function γl(t) for t 2 [0, T] based on

current sifting defluctuation step data ~slðtÞ :¼ ~sðtÞ �
Pl� 1

i¼1
giðtÞ at time points t1, . . ., tN

denoted as observations here generically by yi :¼ ~slðtiÞ. That is one has data fti; yig 2 T � R
and we seek the function representation for the l-th IMF glðtÞ : T ! R that minimizes the

objective given generically in Eq (7), for instance which may be the familiar penalised residual

sum-of-squares,

QðglÞ ¼
XN

i¼1

Lðyi; glðtiÞÞ þ lJðglÞ ð7Þ

where L is a loss function, λ� 0 is regularisation strength and J is a functional imposing

smoothness on the IMF representation γl. One can connect the regularised spline solution to

GPs by considering Reproducing Kernel Hilbert Spaces (RKHS) to explore the unifying frame-

work to motive the GP stochastic embedding model, see details in [60] and more recent works

in [46, 61, 62].

A Hilbert space H is an inner-product space which is complete in the metric induced by its

norm. For every Hilbert space of functions on a set T , one may define for each t 2 T the eval-

uation functional f: t 7! f(t). If every evaluation functional in the Hilbert space is bounded,

then one obtains a Reproducing Kernel Hilbert Space (RKHS). Note L2 is not an RKHS since

the Dirac-delta function is not in L2. In an RKHS the Riesz representation theorem states that

one may find, for each t a representer kt 2 H such that

f ðtÞ ¼ hf ; kti:

Then one can define a function known as the kernel k : T � T ! R by k(s, t) = ks(t). This

function will be unique to a given RKHS H and has the properties of symmetry, nonnegative

definiteness and satisfies the reproducing property hk(�, s), k(�, t)i = k(s, t).
To understand why the RKHS space and reproducing kernel K are introduced, consider

the space of all finite linear combinations of functions fkð�; sÞjs 2 T g with the inner product

given by hks, kti = k(s, t) along with linearity. It is then the case that k is a kernel for this space

with the property, according to the Representer Theorem, that solutions to the regularised
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empirical risk given in Eq (7) take the form

f ð�Þ ¼
XN

i¼1

aikð�; tiÞ

for ai 2 R for all i 2 {1, . . ., N}. The conditions under which such a representer theorem exists

are studied in [63].

Given these results one may then link the estimation problem for representing each IMF to

the case of polynomial smoothing splines, used to represent the IMF basis functions under the

EMD method proposed. To see this consider, without loss of generality T ¼ ½0; 1�, penalty

function JðglÞ ¼
R 1

0
ðg
ðmÞ
l ðtÞÞ

2dt which acts to penalise irregularity and induce smoothness in

the spline representation of IMF basis. One can then construct an RKHS whose norm corre-

sponds to this smoothing penalty J. Hence, the kernel needs to be made explicit.

Using Taylor’s theorem in one dimension with integral remainder term to express the IMF

function γl, which is assumed to have at least m − 1 order absolutely continuous derivative in

[0, 1] and g
ðmÞ
l 2 L2½0; 1�, then

glðtÞ ¼
Xm� 1

i¼1

ti

i!
g
ðiÞ
l ð0Þ þ

Z 1

0

ðt � sÞm� 1

þ

ðm � 1Þ!
g
ðmÞ
l ðsÞds;

where (�)+ is the positive part only and zero otherwise. If functions with this series representa-

tion with the first m − 1 derivatives being 0 at t = 0 are denoted by W0

m, then for gl 2W0

m one

has

glðtÞ ¼
Z 1

0

Gmðt; sÞg
ðmÞ
l ðsÞds

where Gmðt; sÞ :¼ ðt � sÞm
þ
=ðm � 1Þ!. Now observe that one can obtain an RKHS space from

W0

m with the inner product

hf ; gi ¼
Z 1

0

f ðmÞðsÞgðmÞðsÞds

and kernel k1ðt; sÞ ¼
R 1

0
Gmðt; rÞGmðs; rÞdr. Now if one defines the null space of the penalty

function as H0 ¼ spanðfφiðtÞg
m
i¼1
Þ with φi(t) = ti−1/(i − 1)!. Then the kernel for H0 is

k0ðt; sÞ ¼
Pm

i¼1
φiðsÞφiðtÞ. As shown in [60] the space Wm of functions with m − 1 absolutely

continuous derivatives and m derivatives can be written as a direct sum H ¼ H0 �W0

m with

kernel k = k1 + k0. Furthermore, J(γl) will be the square norm of the projection Pγl of γl onto

W0

M so the PRSS estimation objective in Eq (7) with JðglÞ ¼
R 1

0
ðg
ðmÞ
l ðsÞÞ

2ds becomes

QðglÞ ¼
XN

i¼1

Lðyi; glðtiÞÞ þ lkPglk
2

ð8Þ

for gl 2 H. By Representer Theorem, the solution is the generalised form given by

gll ðsÞ ¼
XN

i¼1

aik1ðs; tiÞ þ
Xm

j¼1

bjφjðsÞ

is comprised of two parts: an unpenalized component of H0 and a linear combination of the

projections onto W0

m of the representers of evaluation at the N time points t1, . . ., tN. For the
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squared error loss L(yi, γl(ti)) = L(yi − γl(ti))2 the solution corresponds to the natural polyno-

mial spline, see discussion in [64].

Hence, we have been able to motivate the spline representation of the IMF as the solution

to a generalised estimation problem in an RKHS regularised function space. Now we will

endeavour to connection this through the RKHS theory to the Gaussian process embedding.

4.2 Relating spline representations of an IMF and a gaussian processes

stochastic embedding

Now we will treat Γl(t) as a random function modelled by a GP and we will illustrate the math-

ematical connection between the spline representation on the pathwise EMD method decom-

position of an IMF and the stochastic embedding developed in this work via GP models.

For Gaussian process prediction with likelihoods that involve the observed values of the

IMF γl at N training points, extracted by the EMD method sifting algorithm, the empirical loss

L(yi, γl(ti)) can be expressed according to the negative log-likelihood. Then the analog of the

representer theorem, as detailed in [65] is given as follows.

Since the predictive distribution of Γl(t*) at test point t* given observations y1, . . ., yN is

given by

0:8pðglðt∗Þjy1; . . . ; yNÞ ¼

Z

pðglðt∗Þjglðt1Þ; . . . ; glðtNÞÞpðglðt1Þ; . . . ; glðtNÞjy1; . . . ; yNÞdglðt1Þ . . . dglðtNÞ

which in the GP case is expressed in terms of the GP covariance kernel k by

E½glðt∗Þjy1; . . . ; yN � ¼ ½kðt∗; t1Þ; . . . ; kðt∗; tNÞ�
TK � 1E½glðt1Þ; . . . ; glðtNÞjy1; . . . ; yN �

¼
XN

i¼1

aikðt∗; tiÞ
ð9Þ

with ½a1; . . . ; aN � ¼ K � 1E½glðt1Þ; . . . ; glðtNÞjy1; . . . ; yN � where K is the N×N Kernel matrix

(Gram matrix).

One then obtains the regularized solution to Eq (7) from a GP perspective by noting that

for the specific choice of loss and penalty given by

Q glð Þ ¼
1

s2
N

XN

i¼1

ðyi � glðtiÞÞ
2
þ

1

2
kglk

2

H

where the loss function is set to the negative log-likelihood in which s2
N is the Gaussian noise

model variance. The solution for the estimated IMF using this regularized estimation produces

ĝ l ¼ argmin
gl
QðglÞ which if one substitutes glðtÞ ¼

PN
i¼1
aikðt∗; tiÞ and uses the fact of RKHS

space hkð�; tiÞ; kð�; tjÞH ¼ kðti; tjÞ can be re-expressed by an estimation objective explicitly in

terms of the GP model as follows:

QðαÞ ¼
1

2
αTKα þ

1

2s2
N

jy � Kαj2

¼
1

2
αT K þ

1

2s2
N

K2

� �

α �
1

s2
N

yTKy þ
1

2s2
N

yTy:

Rewriting the objective in this manner expresses it as a parameter optimization problem in

terms of coefficient vector α, this is the advantage of knowing that a Representer Theorem can
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be applied. If one then minimizes Q w.r.t. vector of coefficients α one obtains

α̂ ¼ ðK þ s2
NINÞ

� 1y

which gives the prediction at test point t*

glðt∗Þ ¼ ½kðt∗; t1Þ; . . . ; kðt∗; tNÞ�
T
ðK þ s2

NINÞ
� 1y

which is exactly the predictive mean given in Eq (9).

Now to explicitly recover the solution to the smooth spline interpolation for the IMF repre-

sentation obtained via solving Eq (8) using m = 2 and the regularised GP solution just pre-

sented we can use the result of [66] which shows that in this case if one considers a random

function representation of the IMF given by

glðtÞ ¼
X1

j¼0

bjt
j þ f ðtÞ

where b � Nð0; s2
b
IÞ and f(�) a GP with covariance s2

f kspðt; t0Þ given by

kspðt; t0Þ ¼
Z 1

0

ðt � sÞ
þ
ðt0 � sÞ

þ
ds ¼

jt � t0jminðt; t0Þ2

2
þ
minðt; t0Þ3

3
:

Then to complete the example of the regularizer in the cubic spline case, we must remove

penalties on polynomial terms in the null space by making taking σβ!1. This produces the

final predictive mean solution for the GP representation of the cubic spline characterisation of

the IMF given by

g lðt∗Þ ¼ ½kðt∗; t1Þ; . . . ; kðt∗; t2Þ�
TK � 1

y ðy � HTbÞ þ ½ð1; t∗Þ�
T
b

with Kernel covariance matrix Ky corresponding to elements s2
f kspðti; tjÞ þ s2

Ndij evaluated at

all training points, H the matrix collecting the vector of polynomial basis terms (1, t) at training

points and kernel least squares coefficient estimator given by

b ¼ ðHK �y 1HTÞ
� 1HK � 1

y y:

From this solution, one can see that the resulting solution for the predictive mean function

for the GP representation of the IMF for γl will have a cubic polynomial form.

4.3 Gaussian processes based stochastic EMD embeddings

Having established how the GP representations is connected mathematically to the empirical

path-wise cubic spline representation for an IMF in the EMD method, we now generalise the

stochastic embedding from a single IMF to the entire collection of IMFs under two different

system models proposed. Each of these will be designed to satisfy the properties proposed for

the stochastic embedding objectives set out in Section 3.1.

To achieve the desired embedding, consider first the stochastic process associated with the

observed sampled signal converted from samples {s(t1), . . ., s(tN)} to spline ~sðtÞ which when

considered as the realisation of stochastic process will be denoted by S(t) and ~SðtÞ respectively.

The reference model used for comparison to the stochastic EMD models will involve directly

modelling the process ~SðtÞ without the EMD method signal decomposition information, via a

GP model given in System Model 1 (SM1).
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4.3.1 System Model 1 (SM1): Gaussian process for ~SðtÞ. For SM1 there is a choice to cal-

ibrate the GP model directly to observations of the process S(t) or to set up the model alterna-

tively as follows, using the values of ~sðtÞ for estimation of the GP model. This second choice

will often be both more aligned as a reference model to the EMD method stochastic embed-

ding as well as more robust to noise due to the regularisation that can be adopted when obtain-

ing ~sðtÞ. Therefore, under SM1 the GP model for signal S(t) is obtained via

SðtÞ¼d ~SðtÞ þ �ðtÞ

where we treat ~SðtÞ as a GP

~SðtÞ � GPðmðt;c~SÞ; kðt; t0; θ~SÞÞ; ð10Þ

with mðt;c~SÞ and kðt; t0; θ~SÞ representing the mean and kernel functions respectively, c~S and

θ~S are the sets of hyperparameters of the mean and the kernel respectively. The additive error

�(t) corresponds to a regression error based on using the spline representation ~sðtÞ for the

representation and potentially calibration of the SM1.

4.3.2 System Model 2 (SM2): Gaussian processses for IMFs fGlðtÞg
L
l¼1

. When the EMD

is applied to signal ~sðtÞ and the set of basis functions are extracted, each IMF γl(t) will be con-

sidered as the realised path of the stochastic process denoted as Γl(t) and the one for the resid-

ual r(t) denoted as R(t). This will produce the following stochastic embedding of the EMD

given:

s

°1(t) ¡1(t) » GP(¹1(t;µ¹1); k1(t; t0;µ1))

~(t)
...

°L(t) ¡L(t) » GP(¹L(t;µ¹L); kL(t; t0;µL))

with

~SðtÞ¼d
XL

l¼1

GlðtÞ þ RðtÞ

where �(t)�N(0, σ�) and Γl(t) represents the GP for IMF l and there are l = 1, . . ., L of them

and R(t) represents the GP on the residual tendency component. This general structure will

form the basic structure for the two stochastic embeddings proposed for the EMD method

and we will refer to these two models as System Model 2 (SM2) and System Model 3 (SM3).

Therefore one can see that the resulting model is still a GP model but differs from the base-

line benchmark model in Eq (10) as follows

~SðtÞ � GP
XL

l¼1

mðt;cGl
Þ þ mðt;cRÞ;

XL

l¼1

kðt; t0; θGl
Þ þ kðt; t0; θRÞ þ s�dt;t0

 !

ð11Þ

It is apparent that the proposed GP model for the stochastic embedding of the EMD

method differs from a direct GP model on the signal as detailed in reference model directly in

how the sufficient statics are designed. The key point of the stochastic embedding of the EMD

method GP framework is that the kernel of the GP is now comprised of a multi-kernel frame-

work, where each kernel can be specifically calibrated to the extracted EMD’s basis functions.

Furthermore, it is trivially to verify that this stochastic embedding of the EMD method satisfies

the objectives set-out in Section 3.1.
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4.4 Treatment of the residual tendency stochastic embedding

As detailed in Section 3 last component extracted by the EMD corresponds to the residual or

tendency component r(t). By definition, this last component has only one convexity within

the domain [0, T]. Therefore, it is possible, without loss of generality, to partition it in two

subregions [0, s] and [s, T] in which monotonicity applies locally in each. Consequently one

could then impose the following structure on the GP model for R(t) over each region that

enforces a stochastic monotonicity as discussed in [67], producing an isotonic restriction on

the Gaussian Process. This is achieved by imposing derivative constraints on the sufficient

statistics. Effectively, this utilises the fact that a derivative of a Gaussian process is a Gaussian

process ([65]) and therefore a convexity constraint will result in conditions on the mean as

outlined below:

E
@mðt; θRÞ

@t

� �

¼

@E½RðtÞ�
@t

> 0; 8t 2 ½0; s�

@E½RðtÞ�
@t

< 0; 8t 2 ðs;T�:

8
>>><

>>>:

One can then consider to impose these conditions at all out-of-sample points R(t*) in such

a manner that on average one preserves monotonicity. Given the conditional distribution for

R(t*)|R(t1), . . ., R(tN) one imposes the following conditions on the predictive distribution:

E
@Rðt∗Þ
@t
jRðt1Þ; . . . ;RðtNÞ

� �

¼
@kðt∗; tÞ
@t∗

ðK þ s2

�
IÞ� 1
½Rðt1Þ; . . . ;RðtNÞ�

T
> 0

Var
@Rðt∗Þ
@t
jRðt1Þ; . . . ;RðtNÞ

� �

¼
@

2kðt∗; tÞ
@t∗@t∗

�
@kðt∗; tÞ
@t∗

ðK þ s2

�
IÞ� 1 @kðt; t∗Þ

@t∗
> 0

where t = [t1, . . ., tN]T and

Cov
@rðtÞðiÞ

@t
; rðtÞðiÞ

" #

¼
@

@t
Cov rðtÞðiÞ; rðtÞðiÞ

h i
; Cov

@rðtÞðiÞ

@ti
;
@rðtÞðjÞ

@tj

" #

¼
@

@tj
Cov rðtÞðiÞ; rðtÞðjÞ

h i
:

There exists a second option for the stochastic embedding of EMD to treat the tendency,

which involves rewriting the model in a conditional form as follows:

~SðtÞjrðtÞ � GP
XL

l¼1

mðt; θGl
Þ þ rðtÞ;

XL

l¼1

kðt; t0; θGl
Þ þ s�dt;t0

 !

:

Under this formulation, the monotonicity of the tendency is obtained using the EMD meth-

ods pathwise extracted tendency function r(t). This is equivalent to developing an empirical

Bayes formulation of the stochastic EMD embedding, see discussion in [68].

4.5 Adaptive band-limited IMF partitions

Consider the extracted instantaneous frequencies (IFs) ω1(t), ω2(t), . . ., ωL(t) which were con-

structed from the IMFs γ1(t), . . ., γL(t) as described in Section 2.2. The EMD method extracts

these functions in decreasing order according to the oscillation index of the IMFs, i.e. osc
[ω1(t)] > osc[ω2(t)]> . . .> osc[ωL(t)], where osc[�] is an operator that counts the number of

turning points ie. convexity changes of a signal. Notice, that in non-stationary settings, the

number of oscillations will not correspond to particular stationarity in the frequency plane,
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and in fact the IMFs can have time-varying IFs that move around the frequency plane but

remain ordered in general by their oscillation. Therefore, in order to use the EMD extracted

IMFs for a stochastic embedding that is aligned with a traditional notion of bandwidth based

analysis, we develop the concept of the Band Limited IMFs (BLIMFs). This allows for the

development of a stochastic representation of an EMD signal decomposition that is guaranteed

to be characteristic of a particular frequency band. This leads to the third system model (SM3)

which is formulated based on the idea of aggregating the IMFs samples whose IFs lie within

the same frequency band. Such newly formulated Quasi-IMFs are named band-limited IMFs

and denoted as BLIMFs and are then modelled according to the same GP. To define the

model, one needs first to introduce a partition rule which identifies different local frequency

bandwidths.

In order to develop SM3 based on BILMFs we need to first present the formalism of what

we refer to as an adaptive partition of the (time,frequency) plane based on the EMD extracted

instantaneous frequencies (IFs) ω1(t), ω2(t), . . ., ωL(t). We will construct a partition based on

the observed IF samples, denoted by fpl;ng
L;N
l¼1;n¼1

where pl;n ¼ ðtn;olðtnÞÞ 2 P :¼ T � I with

time interval T ¼ ½t0; tN � and frequency interval I ¼ ½o0;oM� ¼ ½minn;lolðtnÞ;maxn;lolðtnÞ�,
whereP denotes the partition region. In developing the BLIMFs, a criteria and estimation

objective will be established that will allow for the definition of an optimal partition, denoted

byP*, for the collection of empirical samples fpl;ng
L;N
l¼1;n¼1

. To define P* we will segregate P

into an M×D partition. The partition of M non-overlapping bandwidths, denoted fImg
M
m¼1

, in

the frequency domain satisfy

I ¼
[M

m¼1

Im; s:t:
\M

m¼1

Im ¼ ; and jI j ¼
XM

m¼1

jImj:

Within each bandwidth Im a time domain partition is sought, that can be unique to each

bandwidth, corresponding to D total time partitions per bandwidth. This produces a set of

time partitions for the m-th bandwidth given by

T ¼
[D

d¼1

T m;d; s:t:
\D

d¼1

T m;d ¼ ; and jT j ¼
XD

d¼1

jT m;dj:

As noted, it is not necessary that jT m;dj ¼ jT m0 ;dj for m 6¼m0 and m, m0 2 {1, . . ., M}. From

this formulation of time partitioned bandwidths we can arrive at a partition of P by defining

MD rectangles, each denoted byPm;d ¼ Im � T m;d for m = 1, . . ., M and d = 1, . . ., D which

are non-overlapping and satisfy

P ¼
[D

m;d

Pm;d; s:t:
\

m;d

Pm;d ¼ ; and jPj ¼
X

m;d

jPm;dj:

See a diagramatic example of such a partition in Fig 4. In this illustration the frequency

domain is partitioned into three intervals and the time domain into four intervals.
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System Model 3 (SM3): Gaussian Processses for BLIMFs fGðBLÞm ðtÞg
M
m¼1

. Given a parti-

tion P* with M bandwidth we can develop the BLIMFs as follows

g
ðBLÞ
1 ðtÞ ¼ g1ðtÞIfo1ðtÞ2

SD

d¼1
P∗

1;dg
þ . . .þ gLðtÞIfoLðtÞ2

SD

d¼1
P∗

1;dg

g
ðBLÞ
2 ðtÞ ¼ g1ðtÞIfo1ðtÞ2

SD

d¼1
P∗

2;dg
þ . . .þ gLðtÞIfoLðtÞ2

SD

d¼1
P∗

2;dg

..

.

g
ðBLÞ
M ðtÞ ¼ g1ðtÞIfo1ðtÞ2

SD

d¼1
P∗M;dg
þ . . .þ gLðtÞIfoLðtÞ2

SD

d¼1
P∗M;dg

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð12Þ

these extracted BLIMFs in turn lead to the band-limited stochastic embedding of EMD

Fig 4. Partition Rule Definition showing how the empirical IFs samples fpl;ng
L;N
l¼1;n¼1

(colored in green) within regionP are partitioned into 12 time-frequency sub-

regions that are defined by running the CEM method derivingP*. Note that, for this figure, we used only the first three IMFs, hence the first three IFs. This means

that L = 3 in the Figure. The three IFs corresponds to the first three IFs of a speech segment used within the application of interest. Therefore, as it will be later in the

paper highlighted, we consider speech segments with length N = 5000 samples.

https://doi.org/10.1371/journal.pone.0284667.g004
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method that we denoted as System Model 3 (SM3) given as follows

s

°1(t) !1(t) ¡
(BL)
1 (t)j¦ = ¦¤ »GP(¹BL1 (t;µ¹BL1 ): k

BL
1 (t: t0;µkBL1 ))

~(t) : : : ¦¤ : : : : : :

°L(t) !L(t) ¡
(BL)
M (t)j¦ = ¦¤ »GP(¹BLM (t;µ¹BLM ): kBLM (t: t0;µkBLM ))

where G
ðBLÞ
l ðtÞ denote the stochastic GP embedding of the l-th BLIMF. We note that since the

BLIMF construction satisfies that

~sðtÞ ¼
XM� 1

m¼1

gðBLÞm ðtÞ ¼
XL

i¼1

giðtÞ

one can see that there will be no loss of information. However, the advantage will be in band-

width selectivity as well as producing a frequency band-limited multi-kernel GP formulation

where under SM3 one represents the stochastic process ~SðtÞ via multi-kernel representation

given by

~SðtÞjP∗¼
dX

M

m¼1

GðBLÞm ðtÞ � GPðmsðt; θms
Þ; ksðt; t

0; θks
ÞÞ;

where msðt; θms
Þ ¼

PM
m¼1

mBL
m ðtÞ and ksðt; t0; θks

Þ ¼
PM

m¼1
kBL

m ðt; t
0; θkBL

M
Þ.

To demonstrate such a construction, consider the illustration in Fig 5. The left panels show

the first three IMFs γ1(t), γ2(t), γ3(t) extracted on a given speech signal. The x-axis represents

the time (in seconds). Only three IMFs have been considered in this example since, for

speech analysis in general, the first 3 IMFs capture the majority of the frequency content (cor-

responding to formant frequencies, i.e. the frequencies at which the vocal folds vibrate)

required to describe, capture or classify voices in general (see [17]). The right panels present

the first three BLIMFs, which are obtained according to the model given in Eq (12). It is possi-

ble to observe how the time sample points have been reassigned within a new basis since its

related frequency sample points fell into a different sub-region.

5 Time series covariance functions for multi-kernel GP stochastic

EMD embeddings

In this section we discuss how to develop a generative embedding kernel based on the Fisher

kernel first proposed in [52]. This kernel family has the advantage that it can be developed to

produce a time series kernel for a GP that will adapt to the local structure of the observed pro-

cess being modelled. It does this through a generative embedding mechanism that transfers

the observed signal into a model space and then develops a subsequent sequence of feature vec-

tors captured by the covariance operator that makes up the kernel. When the feature vectors

represent summary statistics of a fitted model over the observed signal, such as the Fisher

score, one produces the Fisher kernel embedding. We will use this Fisher kernel structure for

SM1, SM2 (per IMF) and SM3 (per BLIMF). We begin this section by presenting the Fisher

kernel basic details. We then subsequently discuss how we obtain the partition P* for SM3

definition of the optimal BLIMFs.
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5.1 Generative embedding kernel

The idea of a generative embedding kernel is to map the original time series data into a model

derived sequence of feature vectors that form an embedded time series representations. Think

of, for instance, a time series of summary statistics. When the summary statistics are based on

a model representation, this is known as a generative embedding as the model generates the

feature time series upon which the GP kernel is designed from the original input time series

data. In [52] a generative embedding approach was developed where the kernel used was

termed a Fisher kernel. It was given this name as the final stage of the generative embedding

map was determined by the gradient of the log-likelihood of the parameters of an underlying

generative model, which subsequently defined a new feature space called the Fisher score

space. It describes how that parameter contributes to the process of generating a particular

input data. The gradient maintains all the structural assumptions that the model encodes

about the generation process.

The Fisher kernel has been successfully employed within speech verification and recogni-

tion tasks by [69] and [70]. Its role in this work consists of detecting voice disturbances in

displacement, direction, and velocity to differentiate between healthy and ill subjects. The

adopted generative models used to produce the Fisher score feature space were intentionally

kept simple and utilised basic time series models to represent the generative model embedding

selected to produce the speech signal IMF based feature vectors. The model for the generative

embedding of the l-th IMF will be denoted by g(γl(t);θk) with model parameters θk. Such gen-

erative models are not designed to be perfect representations of the original time series but

rather to capture summary features of the IMF over time that, in turn could produce an

Fig 5. Comparison of the original extracted IMFs (left panels) and the obtained band-limited IMFs. (right panels). The original signal is a segment of the speech

signals considered in section 7. The x-axis represents time and is given in seconds. It corresponds to 0.13 seconds, or, 130 milliseconds approximately (given that the

speech segments is 5000 samples recorded at 44.kHz). The y-axis shows the amplitudes of the IMFs (left panels) and the band-limited IMFs (right panels).

https://doi.org/10.1371/journal.pone.0284667.g005
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adaptive Fisher kernel structure that could adapt locally to a time varying frequency character-

istics of each IMF.

One defines the Fisher score at time t, denoted by Uθk
ðtÞ as follows:

Uθk
ðtÞ ¼ rθk ln gðglðtÞ; θkÞ

whererθk denotes the gradient operator with respect to θk of the time t of the log-likelihood

term lng(γl(t);θk). In so doing, one constructs an embedding into a generative model feature

space which allows one to subsequently define the Fisher kernel via the inner product in this

space:

kðt; t0Þ ¼ Uθk
ðtÞ⊺ I � 1 Uθk

ðt0Þ

where I is the Fisher Information Matrix I :¼ E½Uθk
ðtÞ Uθk

ðtÞ>�. Hence, the Fisher score is a

feature mapping such that Uθk
ðtÞmaps γl(t) into a feature vector that is a point in the gradient

space of the manifold MYk
, see [52]. The gradient Uθk

ðtÞ defines the direction δ which maxi-

mizes lng(γl(t);θk) while traversing the minimum distance in the manifold given by D(θk, θk +

δ), where D(x, y) = kx − yk. This latter gradient is usually known as natural gradient and is

obtained from the ordinary gradient via �θk
ðtÞ ¼ I � 1Uθk

ðtÞ. Hence, the mapping glðtÞ !
�θk
ðtÞ is called the natural mapping and the natural kernel associated to it corresponds to the

inner product between these feature vectors relative to the local Riemannian metric. Note that

the information matrix is asymptotically immaterial and so often one works with the simpli-

fied kernel given by setting I ¼ I.

5.2 Adaptive gaussian kernel design through optimal time-frequency EMD

partitions

In SM3, where the BLIMFs are used to define the inputs to the GP models, one has a choice to

either select the desirable time-frequency partitions P* based on apriori information about

the signal spectrum or frequency bands of interest over time. Alternatively, in many settings,

such apriori beliefs about the partition may not be available and one instead seeks an optimal

partition P* according to a desirable data-driven criterion. This section develops a solution to

the optimal data-driven partition rule for SM3.

Many possible objectives could be considered. The one considered in this work is to deter-

mine the optimal partition for a given number of bandwidths that achieves empirical coverage

of the sample IFs per time-frequency slot with most uniform coverage over P. Such a partition

is based on a discretised representation of the time-frequency plane that uses the IFs samples

so that these can be allocated to frequency bandwidths whose distribution is as close as possible

to uniform such that each band selected will have equivalent total spectral energy contribu-

tions from each BLIMF. This problem corresponds to a combinatorial search which becomes

highly computational when it comes to standard optimisation techniques like simulated

annealing, tabu search, MCMC algorithms. In this section an effective solution is proposed

using the cross-entropy method (CEM) of [71] which has been shown to be highly effective in

solving hard COPs.

A core component of CEM is that it exploits an Importance Sampling (IS) framework to

approximate the optimal solution. In the main literature of CEM minimising the Kullback–

Leibler (KL) divergence, the distributions are commonly referred to as the target (true) distri-

bution treated as an ideal model for the data (in this case, a uniform distribution) and an

empirical distribution (an approximation of the true distribution), in this case, based on the

empirical distribution of the sample IFs obtained from a given partition rule. An overview
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of the process of constructing IMFs followed by IFs then an optimal partition ruleP* via

CEM followed by construction of the subsequent BLIMFs given the partition rule is provided

in Fig 6.

5.2.1 Formulation of the time-frequency partition optimisation problem. This subsec-

tion formalises the optimisation problem that estimates the optimal partition P*. A given par-

tition of P according to M frequency bands is structured according to an increasing sequence

of parameters ω1, . . ., ωM−1, defining frequency bandwidth subintervals of I . In addition, for

each bandwith there are D time partitions determined, for the m-th bandwidth, by an increas-

ing sequences of parameters sm,1, . . ., sm,D−1, which defines the subintervals of T . Hence, we

denote the set of parameters to be estimated to determine the partition by vector:

c ¼ ½o1; . . . ;oM� 1; s1;1; . . . ; s1;D� 1; . . . ; sm;1; . . . ; sm;D� 1; . . . ; sM;1; . . . ; sM;D� 1� 2 C: ð13Þ

We will next introduce the CEM importance sampling structure. Consider

X ¼ fðm; dÞgM;D
m¼1;d¼1

, the set of DM tuples and a random variable X : X ! R with a target

Fig 6. Figure presenting the steps required for the implementation of System Model 3. The first plot represents the original interpolated signal ~sðtÞ. This is a segment

of speech signal used within the experiments section and corresponds to 0.13 seconds of speech. The x-axis corresponds to time (measures in seconds) and the y-axis to

the amplitude. In the following plots, equivalent settings for the axes apply. Afterwards, the EMD is applied and the first three IMFs γ1(t), γ2(t), γ3(t) are plotted. The

related IFs ω1(t), ω2(t), ω3(t) are extracted and plotted. After, the empirical sample points of the IFs are passed to the CEM method. The fourth step of this procedure is

the initial partitionP0 used to initialise the cross-entropy algorithm, while the fifth step represents the CEM estimated optimal partitionP*. Lastly, the reconstructed

BLIMFs are provided.

https://doi.org/10.1371/journal.pone.0284667.g006
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uniform density π(x) given on support X by:

Target : pðxÞ ¼
Y

m;d

p
1fx¼ðm;dÞg
m;d for pm;d ¼ P X ¼ m; dð Þð Þ ¼

jPm;dj

jPj
:

such that the probability of drawing tuple (m, d) is proportional to the area of rectangle Pm,d

versusP. Given a current estimate of the partition P* one can also construct the empirical dis-

tribution from N time samples of the L set of IFs denoted by p̂ðxÞ such that

Empirical : p̂ðxÞ ¼
Y

m;d

p̂
1fx¼ðm;dÞg
m;d for p̂m;d ¼ P̂ X ¼ m; dð Þð Þ ¼

jPm;dj

LN
;

where Pm;d ¼ folðtnÞ 2 P
∗
m;d : l 2 f1; . . . ; Lg; n 2 f1; . . . ;Ngg. Therefore, the probability of

drawing tuple (m, d) reflects the proportion of the number of points pl,n = (tn, ω(tn)) that lay

within the rectangle P∗
m;d � P∗ to the overall sample size. Furthermore, the distribution p̂ðxÞ

is clearly then a function of the parameter vector C, which has parameters that satisfy the con-

ditions for each bandwith:

C ¼

o1; . . . ;oM� 1 2 ðo0;oMÞ such that o0 < o1 < . . . < oM� 1 < oM;

s1;1; . . . ; s1;N1 � 1 2 ðt0; tNÞ such that t0 < s1;1 < . . . < s1;D� 1 < tN ;

..

.

sm;1; . . . ; sm;Nm � 1 2 ðt0; tNÞ such that t0 < sm;1 < . . . < sm;D� 1 < tN ;

..

.

sM;1; . . . ; sM;NM � 1 2 ðt0; tNÞ such that t0 < sM;1 < . . . < sM;D� 1 < tN :

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

and characterise the partition P*. From these definitions, it is clear that under these defini-

tions one has that πm,d and p̂m;d are valid probabilities and satisfy

X

m;d

pm;d ¼ 1 and
X

m;d

p̂m;d ¼ 1:

The optimization objective can then be formed under the CEM which in this problem for-

mulation involves selecting the support of X in such a way that the Kullback-Leibler diver-

gence,

KLðp̂; pÞ ¼
Z

x2X
pðxÞlog

pðxÞ
p̂ðxÞ

� �

dx;

measuring the similarity between the two proposed distributions target and empirical parti-

tioned density, is minimised based on determining an optimal choice of the parameters that

define the partition ψ?, given as follows:

c
∗
¼ argmin

c2C

KLðp̂; p;cÞ ¼ argmax
c2C

� KLðp̂; p;cÞ ð14Þ
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Since this is a discrete problem, this objective can be simplified as follows:

KLðp̂; p;cÞ ¼
XM

m¼1

Xd

d¼1

p x ¼ m; dð Þð Þ log
pðx ¼ ðm; dÞÞ
p̂ðx ¼ ðm; dÞÞ

� �

¼ logLN � logjPj þ
1

jPj

XM

m¼1

Xd

d¼1

n
jPm;dj logjPm;dj � logjPm;dj

� �o
:

ð15Þ

The derivation is provided in SI, section 6 in S1 File.

5.2.2 Kernel density estimator smoothing of kullback-leibler divergence in optimal par-

titioning problem. For a given current estimate of the partition P*, it can arise for a given

emprical sample of the IFs that certain sub-rectangles P∗
m;d might not contain any of the sam-

ple points pl,n = (tn, ωl(tn)) 2P. As a result, the corresponding set Pm;d will be empty, i.e.

Pm;d ¼ ;. Consequently, the probabilities p̂m;dðxÞ ¼
jPm;d j

LN equal zero and their logarithms used

to calculate KLðp̂; p;cÞ in Eq (15) tend to infinity. To avoid these numerical difficulties one

can approximate p̂m;dðxÞ by a kernel density estimator p̂e
m;dðx; k; hÞ parametrised by kernel

k : P�P! R and bandwidth h> 0 such that

p̂e
m;dðx; k; hÞ ¼

Z

Pm;d

p̂ðp; k; hÞdp ¼
Z om

om� 1

Z sm;d

sm;d� 1

p̂ðp; k; hÞdp;

where p̂ðp; k; hÞ : P! ½0; 1� is a kernel density estimator of points p = (t, ω(t)) 2P specified

on a sample set pn,l

p̂ðp; k; hÞ ¼
1

Nh

YN

n¼1

YL

l¼1

k
p � pn;l

h

� �

such that
Z

P

p̂ðp; k; hÞdp ¼ 1:

By using the above, the objective function of the partitioning problem in (15) is reformu-

lated to be the Kullback-Leibler divergence between π(x) and

p̂eðx; k; hÞ ¼
Y

m;d

ðp̂e
m;dðx; k; hÞÞ1fx¼ðm;dÞg ; ð16Þ

given by

KLðcÞ :¼ KLðp̂e; p;cÞ ¼

Z

x2X
pðxÞlog

pðxÞ
p̂eðx; k; hÞ

� �

dx

¼
XM

m¼1

Xd

d¼1

p x ¼ m; dð Þð Þlog
pðx ¼ ðm; dÞÞ

p̂eðx ¼ ðm; dÞ; k; hÞ

� �

¼ � log jPj � logC

þ
1

jPj

XM

m¼1

Xd

d¼1

jPm;dj log jPm;dj � log
p̂eðx ¼ ðm; dÞ; k; hÞ

C

� �

ð17Þ

with C> 0 and set to a very small number, ie C = 10−100. The derivation of the above is pro-

vided in SI section 7.
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5.3 Stochastic optimisation of optimal time-frequency partition via cross

entropy

Given the formulated objective function for the partition problem defined in (14) one can now

define the CEM approach to stochastic optimisation used to solve for the optimal partition

given the IFs. Recall, such an objective utilises the KL(�) divergence as a similarity measure

between two distributions, empirical and target. This must be optimised with respect to the

vector of parameters ψ. The CEM process to undertake this stochastic optimisation is devel-

oped by considering the level sets of the objective function {ψ: KL(ψ)�z} for z 2 R, such that

at the point that z ¼ K̂L ¼ argmax
c2C

KLðcÞ, we have {ψ: KL(ψ)�z} = {ψ?}. We can formulate

the importance sampling solution to achieving this outcome through a sequence of K interme-

diate solutions each based on a progressively less relaxed level set constraint i.e. z1 < z2 < � � �

< zK where zK � argmax
c2C

KLðcÞ and at each iteration one updates the importance distribu-

tion to increase the chance of sampling solutions that are feasible according to the current

level set constraint. Next we define the IS formulation of the CEM stochastic optimisation

solution. This will involve defining an IS sampling distribution for the parameters ψ as given

in Eq (13) that make up the specification of the current estimate of the optimal partition P*.
In order to achieve this we consider a family of probability measure fPφ0 : φ0 2 Fg with sup-

portC that admits a density {fφ: φ 2 F} also parametrised by φ 2 F. Let Eφ denote the expecta-

tion taken with respect to Pφ. Let us fix φ and z and define a rare event probability problem:

Pφ½KLðcÞ � z� ¼ Eφ½IfKLðcÞ�zg� ¼

Z

C

IfKLðcÞ�zgfφðcÞdc

Instead of approximating this probability naively by sampling from fφ, the importance sam-

pling method is used. Let gφ0 denote the importance sampler with φ0 2F. Importance sampling

approximates the rare event probability by

Pφ½KLðcÞ � z� ¼
Z

C

IfKLðcÞ�zgfφðcÞdc ¼
Z

C

IfKLðcÞ�zg

fφðcÞ
gφ0 ðcÞ

gφ0 ðcÞdc

¼ Eφ0 IfKLðcÞ�zg

fφðcÞ
gφ0 ðcÞ

" #

�
1

S

XS

i¼1

IfKLðciÞ�zg

fφðc
i
Þ

gφ0 ðc
i
Þ

( )

where vectors ψi for i = 1, . . ., S are iid samples generated from IS density gφ0(ψ). The optimal

importance sampler densities (gφ0) parameters φ0 are then obtained progressively in the CEM

iterations for a given level set z by:

φ? ¼ argmax
φ02F

Z

C

IfKLðcÞ�zgfφðcÞ log
fφðcÞ
gφ0 ðcÞ

dc

� argmax
φ02F

1

S

XS

i¼1

IfKLðciÞ�zg log gφ0 ðc
i
Þ

ð18Þ

where vectors ψi for i = 1, . . ., S are iid samples generated from fφ0(ψ). Notice that the last line

of 18 corresponds to the maximum likelihood estimation (MLE) of φ0 when the samples

are {ψi: KL(ψi)�z}. The CEM starts from an initial sampling distribution gφ?
0

and iteratively

updates the threshold ẑ and the sampling distribution gφ0. For a detailed introduction to cross-

entropy, the reader should refer to [57].
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5.4 Design of the cross entropy importance sampling distribution

In this manuscript the optimisation problem is over a discrete support and so we have utilised

a Multinomial distribution for the importance sampling distribution. In order to specify this

distribution, consider a discretisation of the intervals I and T . The importance sampling dis-

tribution must reflect the distribution of discrete random variables that partition the rectangle

P. Consider regular dense grids of I and T constructed by:

1. Partition of I into small Nω intervals of size Do ¼
oM � o0

No
, and we define I grid

no
¼ o0 þ ½no �

1; no�Do for nω = 1, . . ., Nω, therefore jI grid
a j ¼ Do;

2. We partition T into small Nτ intervals of size Dt ¼
tN � t0

Nt
, and we define T grid

nt
¼ o0 þ ½nt �

1; nt�Dt for nτ = 1, . . ., Nτ, therefore, jT grid
t
j ¼ Dt.

Now define the probabilistic model to partition I into M subintervals, Im for m = 1, . . ., M
according to an (M)-dimensional multinomial random vector X with entries Xm on the sup-

port of {0, . . ., Nω} which indicate how many subsequent grids I grid
no

are connected to construct

partitions Im and corresponding break points om� 1;om 2 I . Therefore, the multinomial ran-

dom vector X models the number of grid points out of Nω that belong to each of M intervals

with probabilities of being in an interval being 0� p1, . . ., pM� 1 for
PM

m¼1
pm ¼ 1. The distri-

bution function of X is formulated as

pðx; pÞ ¼ pðx1; . . . ; xM; p1; . . . ; pMÞ ¼
No!

QM
m¼1

xm!

YM

m¼1

pxm
m :

for p = [p1, . . ., pM]. Recall that
PM

m¼1
Xm ¼ No since X divides Nω points into M subsets. For

instance, for realisations of X1, Â X2 such that x1 = 2 and x2 = 5, the partitions I 1 ¼ ½o0;o1�

and I 2 ¼ ½o1;o2� are given by

o1 ¼ o0 þ Dox1 and o1 ¼ o1 þ Dox2 ¼ o0 þ Doðx1 þ x2Þ

This example gives an intuition for the general rule

om ¼ o0 þ Do

Xm

m0¼1

xm0 for m ¼ 1; . . . M � 1:

and defines the approach to sample W1, . . ., WM−1 via change of variables such that Wm ¼

o0 þ Do

Pm
m0¼1

Xm0 for m = 1, . . .M − 1. The realisation of W1, . . ., WM−1, denoted by ω1, . . .,

ωM−1, represent the break points defining partitions I 1; . . . ; IM. Also, we recall that ω0 and

WM = ωM are fixed.

We model M independent not identical partitions of the time-domain interval T into D
subintervals by following the same steps. We define M independent multinomial random

variables that are D-dimensional, each, denoted by X0m for m = 1, . . ., M, which entries X0m;d on

the support of {0, . . ., Nτ}, for d = 1, . . ., D, specify how many subsequent grids T grid
nt

are con-

nected to construct partitions T m;d of T and determine break points sm;d� 1; sm;d 2 T . We

denote their distributions by pðx0m; p0mÞ for p0m ¼ ½p
0
m;1; . . . ; p0m;D� such that

PD
d¼1

p0m;d ¼ 1. For

every m = 1, . . ., M this construction satisfies
PD

d¼1
X0m;d ¼ Nt and

sm;d ¼ t0 þ Dt

Xd

d0¼1

x0m;d0 for d ¼ 1; . . . ;D � 1; m ¼ 1; . . . M:
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where x0m;d is a realisation of X0m;d. Therefore, the random variables Sm,1, . . ., Sm,D−1 for m = 1, . . .,

M are defined via change of variables such that Sm;d ¼ t0 þ Dt

Pd
d0¼1

X0m;d0 for d = 1, . . .D − 1

with realisations sm,1, . . ., sm,D−1 representing the break points of the partitions T m;1; . . . ; T m;D.

Again, we recall that t0 and Sm,D = tN are fixed for every m = 1, . . ., M.

We can now connect this formulation back to the IS framework in the previous section as

follows. Given this model, the joint distribution of C = [W1, . . ., WM−1, S1,1, . . ., SM,D−1] can

we written as

gðc; φÞ ¼ C pðxm; pÞ
YM

m¼1

pðx0m; p0mÞ:

Using this IS distribution we can now rewrite the IS parameter estimation rule under CEM

framework, according to Eq (18) as follows, using

log gðc; φÞ ¼ logC þ logðNo!Þ þ
XM

m¼1

flogðxm!Þ þ xmlogðpmÞg

þM logðNo!Þ þ
XM

m¼1

XD

d¼1

flogðx0m;d!Þ þ x0m;dlogðp
0

m;dÞg:

to obtain the estimation equation for the IS parameters with constraint imposed on

P ¼ ½p; p0
1
; . . . ; p0M� 2 ½0; 1� under a Lagrangian constrained parameter estimation given as

follows:

LðP; lÞ ¼
XS

s¼1

(

1fKLðp̂ ;p;cðsÞÞ�gg

�

logCþ logðNo!Þ þ
XM

m¼1

�

logðxðsÞm !Þ þ xðsÞm logðpmÞ

�

þM logðNo!Þ þ
XM

m¼1

XD

d¼1

n
logðx

0ðsÞ
m;d!Þ þ x

0ðsÞ
m;dlogðp

0

m;dÞ
o
:

�)

þl

 

1 �
XM

m¼1

pm

!

þ
XM

m¼1

lm

 

1 �
XD

d¼1

p0m;d

!

:

where P represents the IS distribution parameters to be estimated and vector l 2 RMþ1
are the

Lagrangian multipliers. If one then seeks the First Order Conditions for this Lagrangian, one
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obtains the system of equations that admit a feasible solution as follows:

@LðP; lÞ
@p1

¼
XS

s¼1

1fKLðp̂ ;p;cðsÞÞ�gg
xðsÞ1

p1

n o
� l ¼ 0

..

.

@LðP; lÞ
@pM

¼
XS

s¼1

1fKLðp̂ ;p;cðsÞÞ�gg
xðsÞM

pM

n o
� l ¼ 0

1 �
XM

m¼1

pm ¼ 0

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

)

p∗
1
¼

1

l

XS

s¼1

1fKLðp̂ ;p;cðsÞÞ�ggx
ðsÞ
1

n o

..

.

p∗M ¼
1

l

XS

s¼1

1fKLðp̂;p;cðsÞÞ�ggx
ðsÞ
M

n o

XM

m¼1

pm ¼ 1:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

These solutions to the IS distribution parameter estimates can be further simplified by not-

ing that since
PM

m¼1
pm ¼ 1 and

PM
m¼1

xðsÞm ¼ No one can obtain:

1

l

XS

s¼1

1fKLðp̂ ;p;cðsÞÞ�gg

XM

m¼1

xðsÞm

( )

¼ 1) l ¼ No

XS

s¼1

1fKLðp̂ ;p;cðsÞÞ�gg

and finally

p̂m ¼

PS
s¼1

1fKLðp̂ ;p;cðsÞÞ�gg
xðsÞm
No

n o

PS
s¼1

1fKLðp̂ ;p;cðsÞÞ�gg

ð19Þ

Following the same steps, we have that

p̂0m;d ¼

PS
s¼1

1fKLðp̂ ;p;cðsÞÞ�gg

x
0ðsÞ
m;d
Nt

� �

PS
s¼1

1fKLðp̂;p;cðsÞÞ�gg

ð20Þ

Note that the support of the random variables introduced in this subsection includes zero,

and this may lead to the situation that some partitions are of zero length. If that happens, the

breakpoints ω1, . . ., ωM and s1,1, . . ., sM,D−1 are not admissible as they may not form increasing

sequence. Consequently, they do not belong to the feasible setC. To address this difficulty, we

may consider two procedures
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1. sample directly from the conditional distribution

X1; . . . ;XMjX1 6¼ 0; . . . ;XM 6¼ 0

X0
1;1
; . . . ;X0M;DjX

0
1;1
6¼ 0; . . . ;X0M;D 6¼ 0:

2. sampling from the Multinomial distribution and and force non zero realisation by remov-

ing any realisations that contain 0 entry to meet the conditions of the feasible set.

An algorithm for the CEM method based on this IS distribution construction is provided in

the, section 8 in S1 File.

6 Application: Speech based medical diagnostics

In this section, we introduce how we will adopt the aforementioned Stochastic Embedding of

the EMD method into a medical signal processing application based on the diagnostics of Par-

kinson’s Disease. The goal is to detect ataxic speech by constructing a probabilistic model for

the speech signal whose tested properties will reveal the presence or absence of acoustic feature

abnormalities consistent with ataxia. Before proceeding to the experiments and the obtained

results, we first review speech medical diagnostic frameworks and benchmark models used for

Parkinson’s disease.

6.1 Comparative benchmark models for Parkinson disease speech analysis

Among the various empirical tests considered for Parkinson’s disease dysfunctions evaluation,

there are also speech and voice tests, based on auditory-perceptual subjective assessments of

the patient’s ability to perform a range of tasks. The standard metric designed to follow Parkin-

son’s disease progression, introduced in 1987, is called the “Unified Parkinson’s Disease Rating

Scale” (UPDRS) [72, 73]. A UPDRS assessment produces an integer number providing infor-

mation about the stage of symptoms, where speech has two explicit labels, namely UPDRS II-5

and UPDRS III-18, ranging between 0–4. The label 0 represents the less severe stage, given as

“Normal speech”, and 4 is the most severe stage, given as “Unintelligible most of the time”.

One challenge with such a survey-based diagnosis is that even for expert specialist doctors,

it is difficult to find standardised reference baselines. This leads to a desire for a standardised

objective based on formulation of a statistical model based solution that can be used for detect-

ing the presence of the disease and surveilling its progression, see discussion in [74]. The bio-

marker used in this work corresponds to formant structure in speech, and the symptoms of

interest are the ones affecting the vocal tract that result in ataxic speech in people with Parkin-

son’s disease. Hence, the objective is to identify acoustic disturbances in displacement, direc-

tion and rate (or velocity); see discussion in [29]. For further discussion on how to detect

ataxic speech symptoms in Parkinson’s disease, the given speech tasks used or the employed

acoustic features the reader might refer to [9, 74, 75] as references for further description of

both tasks and features.

In speech classification tasks, numerous studies have shown that most of the discriminatory

power in detecting speech variations arises from a type of individual “vocal signature” or

“vocal figure print” known as the speech formants structure. Speech formants are a concentra-

tion of speech acoustic energy, usually occurring at approximately each 1,000Hz frequency

band, directly related to the oscillatory modes of resonance of an individual vocal tract struc-

ture. Several alternatives can be employed to extract aspects of formant feature information,

often based on basis decomposition techniques [76, 77] aiming to separate the signal into com-

ponents whose frequency spectra could be preferably dominated by a single non-overlapping

formant frequency. A widely used technique is to adopt warped filter basis extraction methods
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applied to windowed raw speech signal segments. A popular choice in practice is the Mel Fre-

quency Cepstral Coefficients (MFCCs), see [78]. The MFCCs capture magnitude-based ceps-

tral information, measuring the short-term power spectrum of a speech signal based on a

linear cosine transform of a log power spectrum through a nonlinear mel scale of frequency

[17]. This frequency scale is based on the Mel filter bank shown in Fig 7. The output of

this process is a collection of functional MFCCs which captures the frequency information

within several frequency bandwidths in a non-linear stationary fashion. These features have

been successfully used in health diagnostics for ataxic speech ([9, 74, 75]). We are interested

in the background proposed in [29]. The reader might refer to [17] for a detailed review of the

MFCCs.

The main contribution of [29] is to consider phase-based cepstral features combined with

the magnitude cepstrum as a human signature to detect speech abnormalities of ataxic speech.

While the magnitude cepstrum has been widely used in the analysis of ataxic speech (see [79,

80]), the phase cepstrum has often been discarded for two main reasons: the difficulty in phase

wrapping and the conventional view of the human auditory system as “phase deaf”. This per-

spective has recently changed, with several studies testifying that the change of sound phase

has an instead significant impact on auditory perception [81–83]. Specifically, [29] made use

of the modified group delay function (MGD) [84] to derive phase-based cepstral coefficients

(MGDCCs) and combines them with magnitude cepstrum based features, i.e. the MFCCs [85,

86]. A Random Forest and an SVM framework are used to assess the discrimination power of

these features in detecting ataxic speech.

The work in this paper will extend and enhance the features utilised in [29] to significantly

improve the accuracy of ataxic speech symptom detection associated with Parkinson’s disease

assessment in early-onset patients and its progression throughout the patients illness. We will

set as the benchmark comparison the current state of the art solution of the SVM framework

of [29], and we will compare our proposed EMD stochastic embedding approach combined

with a tailored version of the Likelihood Ratio test to make inferences on disease state. As pre-

sented in [17] (and references within), comparing and relating such results is possible. We

will further consider the background proposed by [17] and extract MFCCs on the IMFs and

BLIMFs since such bases will carry the discriminant information for the performed classifica-

tion task. Moreover, the bases carry less non-stationary content than the complex structure of
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Fig 7. The Mel filter bank structure for 40 filters. Each peak represents the center frequency of the filters.

https://doi.org/10.1371/journal.pone.0284667.g007
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the raw speech data, allowing for the MFCCs to be more efficient as discriminatory features

in inference and testing when compared to existing methods that rely on local stationarity

assumptions of Fourier-type transformations. The considered dataset, described in subsection

7.1, leads to a text-dependent environment where controls (healthy subjects) and sick patients

read a given text. Reasons to employ such a specific set of sentences using the reading text task

are clarified when discussing the experimental set-up in Section 7.

The other relevant feature used in [29] correspond to the MGDCCs, exploiting the modi-

fied group delay function. As studied in [42–44], the instantaneous frequency (IF) is a func-

tion assigning a frequency to a given time, whereas the group delay (GD) is a function

assigning a time to a given frequency and, therefore, the question of interest here is whether

the two functions are inverses of each other. In practice, this is not always the case because

the IF function may not be invertible. Two conditions need to be verified for the laws of the

two functions to be inverse of one another: (1) the variations in time of the IF are monotonic,

and (2) the bandwidth-duration (BT) product is sufficiently large. This restricts the signals of

interest to be a monocomponent signal whose IF is a monotonic function of time. Further-

more, when this is the case, the laws carry an enclosed physical meaning: the IF describes

the frequency modulation of the signal, while the GD represents the time delay of the signal.

Thus, when studying features based on such functions, a monocomponent signal is required,

or the interpretability of the results might be misleading. Alternatively, as in our case, when

such features are applied instead to the decomposed IMF basis functions after applying EMD

to the speech signal, then by construction each IMF will satisfy such properties, this provides

a general applicability of such interpretations from our approach, not afforded to the previ-

ous benchmark approach in general speech applications. Two of our system models (the sec-

ond and the third) strongly rely on this discussion and propose stochastic embeddings based

on the IMFs, which are, by definition, monocomponent functions. Furthermore, system

model 3 is built upon the IFs of the IMFs. Therefore, our final aim is to provide two models

distinguishing the two families of controls and Parkinson’s disease patients based on the

IMFs and the IFs to depict ataxic speech.

We also include the reference benchmark features of [29] to compare our results thor-

oughly. These are given in Table 1. Hence, beyond MFCCs and MGDCCs, we compute the

percent jitter, referring to the measurement of voice frequency perturbation, the percent shim-

mer, corresponding to voice amplitude perturbation, the relative average perturbation (RAP),

the amplitude perturbation quotient (APQ), the pitch perturbation quotient (PPQ), the mean

and the standard deviation of the cepstral peak prominence (CPP). The reader should refer to

[79] for further explanations since the authors used these to detect ataxic speech for Parkin-

son’s disease.

6.2 Proposed stochastic EMD hypothesis testing framework for Parkinson’s

detection

In this section, it is demonstrated how to use the GP stochastic models from SM1, SM2 or

SM3 to develop a hypothesis testing framework that can be utilised to perform inference on

the presence or absence of Parkinson’s disease features in speech recorded from patients. For a

given system model (SM1, SM2 or SM3), the EMD method was used to extract IMFs from two

different sampled populations of patients, those diagnosed at various stages of Parkinson’s dis-

ease progression vs a second population sample of healthy patients. Given the sample speech

signals from each population sample, the training stage of the inference procedure involved

performing EMD method on the speech signal samples, extracting IMFs and IFs, calibrating

the Fisher kernel via a generative embedding model using linear time series models for each
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IMF, extracting the optimal IFs time-frequency partition P* using CEM and then using the

stochastic formulation of each system model SM1, SM2 or SM3 to train the subsequent GP

models. Since the stochastic embedding of the EMD method under SM1, SM2, or SM3

are each based on GP models, we will be able to generically present the hypothesis testing

framework as follows using a generic kernel k(t, t0), which will be replaced with the relevant

kernel used to specify SM1, SM2 or SM3 as discussed in previous sections of this manuscript.

The result of this process, described in more detail in the subsequent results section, will be an

estimated representative stochastic EMD embedded GP population model for sick patients

with Parkinson’s disease (distinguished by a subscripted process ~SðtÞ
1
) and a corresponding

estimated representative stochastic EMD embedded GP population model for the healthy

patients (distinguished by a subscripted process ~SðtÞ
0
) in the medical study. These were then

used to develop a likelihood ratio test (LRT) hypothesis testing framework that could be uti-

lised out-of-sample to detect unclassified patients as either not presenting with any speech dis-

order based symptoms consistent with Parkinson’s disease or presenting with speech disorder

symptoms consistent with Parkinson’s disease. Hence, the two models that will be compared

under the LRT testing framework are given by:

Model0 : S0ðtÞ � GPð0; k0ðt; t0ÞÞ 8t 2 ½t1; tN �

Model1 : S1ðtÞ � GPð0; k1ðt; t0ÞÞ 8t 2 ½t1; tN �

This results in a null and alternative hypothesis to test given as follows:

H0 : ~S0ðtÞ¼
d ~S1ðtÞ i:e: GPð0; k0ðt; t

0ÞÞ ¼ GPð0; k1ðt; t
0ÞÞ 8t 2 ½t1; tN �

H1 : ~S0ðtÞ 6¼
d

~S1ðtÞ i:e: GPð0; k0ðt; t
0ÞÞ 6¼ GPð0; k1ðt; t

0ÞÞ 8t 2 ½t1; tN �

Table 1. Description of the experimental set up. The selected benchmark features correspond to the ones of [29], i.e. MFCCs, MGDCCs, Jitter(%): frequency perturba-

tion, Shimmer (dB): amplitude perturbation, APQ (%): amplitude perturbation quotient, PPQ (%): pitch perturbation quotient, RAP (%): relative average perturbation,

CPP mean: mean of cepstral peak prominence corresponding to the mean of voice quality perturbation and CPP s.d.: variation in the cepstral peak prominence corre-

sponding to variation in voice quality perturbation. These are extracted on the given speech signals ~sðtÞ. The configuration employed for the extraction procedure of these

features are provided in subsection 7.4. Then, each system model is performed, and the GLRT is applied. Note that, SM1 is considered as benchmark model since it is the

proposed reference given standard ASR direclty extract features on the raw data (as done for the bencmark introduced). Further, when it comes to SM2 and SM3, we will

consider the first three IMFs or the first three BLIMFs only since they are the ones that detect the great majority of formants required for the classification of Parkinson’s

disease. Both the SVM and the GLRT will be done by patient, setting up a text-dependent and a speaker-dependent environment.

Experiment Description

System Feature Data Classifier

Benchmark MFCCs, MGDCCs, Jitter, ~sðtÞ SVM

Shimmer, APQ, PPQ, ~sðtÞ SVM

RAP, CPP mean, CPP s.d ~sðtÞ SVM

SM1 GP ~sðtÞ GLRT

SM2 GP-EMD γ1(t), γ2(t)γ3(t) GLRT per IMFs

SM3 GP-EMD γ1(t)(BL), γ2(t)(BL), γ3(t)(BL) GLRT per BLIMFs

SM2 EMD-MFCCs IMF1-MFCCs SVM per IMFs-MFCCs

IMF2-MFCCs

IMF2-MFCCs

SM3 EMD-MFCCs BLIMF1-MFCCs SVM per BLIMFs-MFCCs

BLIMF2-MFCCs

BLIMF2-MFCCs

https://doi.org/10.1371/journal.pone.0284667.t001
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Since a GP is also specified by its sufficient mean and covariance functions, testing for

equality of distributions will be equivalent to testing for equality of the mean and covariance

functions. The problem formulation in this manuscript is designed in a manner that the class

of kernels utilised are restricted so that the Model0 is nested in the Model1, and hence these

hypotheses can be tested with the Generalised Likelihood Ratio Test (GLRT). This is a GLRT

formulation since the kernel hyper parameters are estimated. One can then obtain the test sta-

tistic by considering the log likelihood of each model under the GP stochastic embedding

obtained from both the sick and healthy population samples for any of the system models

(SM1, SM2 or SM3) given for samples ~sðtÞ ¼ ½~sðt1Þ;~sðt2Þ; . . . ;~sðtNÞ� generically by:

L̂ ¼ � ~sðtÞ⊺K̂ � 1
0

~sðtÞ � logðdet½K̂ 0�Þ þ ~sðtÞ⊺K̂ � 1
1

~sðtÞ þ logðdet½K̂ 1�Þ ð21Þ

Defining d as the difference in dimensionality of model parameter vectors for H0 and

H0[H1, one has an asymptotic distribution under the null hypothesis, for the test statistic

given by

� 2 logL � X 2

d

The above tests will be carried to identify the discrimination power associated with the dif-

ferent IMFs stochastic embedding proposed. In this way, each embedded IMF and band lim-

ited IMFs will be individually tested.

7 Experiments

A study of Parkinson’s speech samples is developed to assess the performance of each of the

system models and their associated inference procedures presented in Section 6.2. The refer-

ence benchmark comparison will be based on the features and models introduced in [29] for

the detection of ataxic speech. We aim to identify such an ataxic dysarthria symptom as a dis-

criminative speech degradation symptom of Parkinson’s with the proposed system models for

the EMD and further compare SM2 and SM3 to standard speech practices of directly applying

an ASR system on the raw speech data.

We begin with an overview of the selected Parkinson’s speech dataset and its experimental

setup. The first section explains the required pre-processing and the procedure for balancing

the datasets since the study had an uneven number of labelled sick vs healthy patients. This is

highly precious for the constructed method to avoid overfitting often occurring in ASR-SD

systems. The structuring of training and testing sets is then presented. We defer the interested

reader to the specialised details relating to the practical pre-processing and Fisher kernel con-

struction methods given in the provided, sections 4 and 5 in S1 File. The validation model

phase is described, and the description of our guideline reference model, introduced in 6.1 is

provided. Finally, the results obtained through our proposed models are described. Table 1

shows the different features used, over which data and the corresponding classifier. The classi-

fication procedure will be conducted at a patient level, providing a text-dependent and a

speaker-dependent environment. Note that the python code required for the implementation

of the three system models is given within this Github page https://github.com/mcampi111,

where it is possible to find a repository named “EMD-Stochastic-Embedding-for-PD-Speech”

containing the code. The employed data described at [38] is given at https://zenodo.org/

record/2867216#.ZAiHuRWZO3B.
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7.1 Data description and experimental set up

The speech dataset considered for the analysis was provided by [38]. It contains speech record-

ings from two populations: healthy participants and patients affected at various stages of Par-

kinson’s disease progression. The recording environment uses a typical examination room for

UK medical practices with dimensions of ten square meters in area and a reverberation time of

approximately 500ms to perform the voice recordings. The voice recordings are performed in

the realistic situation of doing a phone call and have been performed within the reverberation

radius; hence, they can be considered “clean”. The sampling rate is standard for speech at 44.1

kHz and a bit depth of 16 Bit (audio CD quality).

The dataset is split between two sets of recordings: in the first one, the selected partici-

pants are asked to make a phone call and then read out two tests: “The North Wind and the

Sun” and “Tech. Engin. Computer applications in geography snippet”. These were selected

in the experimental design described in [87] since the first contains poetic structures and the

second contains technical jargon, both of which are less familiar to participants’ everyday

text. In the second set of recordings, the participants start a spontaneous dialogue with the

test executor, who asks random questions. In our case studies, we only considered the first

set of recordings. Hence, the used task to assess ataxic speech in Parkinson’s disease is read-

ing a given text. The second set of recordings corresponding to spontaneous dialogue is con-

sidered highly challenging for this assessment. However, it could be employed in further

research and used to study surveillance of the disease and its progression. The reader is

referred to [87] for further detail on the collection process and experimental set-up used in

the clinical setting.

We note that this database of speech signals was specifically selected given the quality of the

recordings and its recording procedure. The procedure used is most aligned with the standard

medical practice of relevance to telemonitoring solutions for remote Parkinson’s disease detec-

tion prior to requesting the patient to travel to a hospital for further in-person testing. This is

useful for pre-screening those likely to need to travel for initial diagnosis as well as for analysis

of the impact on speech for disease progression analysis for those living remotely from special-

ist care or those unable to easily travel from their house to the hospital on a regular basis.

There are 37 participants in total, of which 21 are healthy and 16 are sick, affected by Parkin-

son’s disease at different stage levels. Amongst the 21 healthy participants, 19 are female, while

2 are male. Of the 16 sick participants, 4 are female, and 12 are male. The dataset is therefore

significantly unbalanced within both classes, i.e. healthy versus sick and male versus female.

Furthermore, the Parkinson’s participants are labelled according to the following scores: the

HYR score, the UPDRS II-5 score and the UPDRS III-18 score introduced in 6.1. Considering

the UPDRS II-5 score, the Parkinson’s participants are classified in a range between 0 and 3 at

maximum, particularly for the female patients, 2 are at a 0 stage level, and 2 are at a 1 stage level.

In the case of the sick male patients, 5 male patients are at a 0 stage level, 4 patients at 1 stage

level, 2 patients at 2 stage level and 1 patient at a 3 stage level. Hence, a further level of unbalanc-

edness is introduced. Section 1 of the S1 File provides a more detailed summary of the described

database. Table 2 summarises the above description. As a result, a procedure to balance the

dataset and its pre-processing is presented in the following subsection.

7.2 Pre-processing, balancing the dataset and construction of training and

testing segments sets

This subsection outlines a brief description of the pre-processing performed to obtain a bal-

anced selection of speech records for the testing and inference tasks undertaken. As noted, the

recordings taken into account are the read text only for each participant. Within the recording
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procedure, each participant was asked to make a phone call and then read two different texts

above mentioned. Each audio file corresponds to a continuous, unsegmented recording of the

read text at the sampling rate was 44.1kHz. Therefore, we will have one audio file for each

patient denoted as s(t). Depending on the patient, the reading order might change, and the

recording lengths (due to different reading paces) vary between 73s and 203s. We removed the

silence at the beginning and the end of the recordings and the initial participant’s dialogue

with the interlocutor asking to start reading.

In order to perform the EMD, the underlying signal needs to be continuous. Therefore, we

fit a cubic spline with knots points placed at the sample points through each of the recordings,

and we denote it as ~sðtÞ. Afterwards, we split each recording into batches of 5000 sample length

for computational reasons, which approximately corresponds to 0.113 seconds (given a sample

rate of 44.1kHz). Given that the audio files have different lengths, the number of resulting

minibatch segments of 5000 samples for each patient differs. Fig 8 shows the number of seg-

ments for each patient divided by the scores of the UPDRS II-5 for both female (left panel) and

male (right panel) patients.

As noted, one can see that the populations represented are highly unbalanced for the num-

ber of male and female patients, the different categories of the UPDRS II-5 score and the

Table 2. Description of the “Mobile Device Voice Recordings at King’s College London (MDVR-KCL)”. The number of speakers is 37, split between healthy and sick

patients. Furthermore, the gender and the UPDRS II-5 score are introduced in the Table. It is possible to observe how unbalanced the dataset is, particularly regarding gen-

der and the UPDRS II-5 score. For each speaker, the dataset provides two sets of recordings. In our experiments, we use the read text and set the scenario to a text-depen-

dent one. Moreover, we conduct our analysis by patient, and therefore we will be in a speaker-dependent setting.

MDVR-KCL Dataset Description

Parkinson’s disease Status Healthy Sick

Gender Female Male Female Male

UPDRS II-5 score − − 0 1 2 3 0 1 2 3

# of Speakers 19 2 2 2 − − 5 4 2 1

https://doi.org/10.1371/journal.pone.0284667.t002

Fig 8. Barplots for the number of segments of length 5000 samples (approximately 0.113 seconds) for the female patients (left panels) and the male patients (right

panels). The x-axis represents the different stages of the UPDRS II-5 where we also included the healthy patients. The y-axis represents the counts of the segments

divided by patient.

https://doi.org/10.1371/journal.pone.0284667.g008
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number of sick and healthy patients. To balance the representation of each patient, we com-

pute the minimum number of segments for each patient by gender and then randomly select

that minimum number of minibatches (5000 samples each batch) from each patient by sam-

pling with replacement. We denote the minima as Nf and Nm and we have that Nm = 372 and

Nf = 442. Therefore we will have Nm×14 segments for the male patients and Nf×23 segments

for the female patients.

Once we have obtained a balanced representation of each patient with respect to the number

of segments, the following step consists of constructing training and testing sets of segments

for our classification task, divided into model estimation and model validation. Consider the

female case as an example and note that an equivalent procedure is applied to the male case.

To construct the training set, we firstly left one patient out for the testing set. Then from the

remaining number of patients segments, i.e. Nf×18 for the healthy case and Nf×3 for the sick

case, we randomly extract 80% of Nf corresponding to 354 segments. Hence, we will have 354

segments representing the class of healthy patients and 354 segments representing the class of

sick patients, randomly extracted from 18 and 3 patients equally represented. For the testing

set instead, we randomly select 20% of Nf from the two left out patients segments, one for the

healthy and one for the sick classes, corresponding to 89 segments. Therefore, we will have 89

segments for the healthy patient left out and 89 segments for the sick patient left out. We then

rotate the left out patients and repeat the procedure. This means that we perform cross-valida-

tion at a segment and a patient level, so neither class, i.e. sick or healthy, nor any patient is

misrepresented in the experiments, and, as a result, over-fitting is handled as well as a fine

representation of the given data. Note that, we will refer to ~sðtÞtr
0

and ~sðtÞtr
1

with tr = 1, . . ., Ntr

for the training set and to ~sðtÞts
0

and ~sðtÞts
1

with tr = 1, . . ., Nts for the testing set. Note that for the

male case, Ntr = 298 and Nts = 75.

7.3 Testing procedure for the model validation phase

The next step uses these training data sets to develop a fitting procedure which involves the

construction of the generative embedding Fisher kernels from the EMD outputs as described

in Section 5.1. This requires practical parts beyond the paper’s main scope, detailed in the

Sections 4 and 5 in S1 File. There are two main aspects which are relevant at this point and

that the reader should consider. First, the fitting procedure aims to identify fast changes that

cannot be perceived by the human ear, i.e. by a doctor. Therefore, the procedure is done on

mini-batches of approximately 2.2ms, meaning that each segment will be further split into

mini-batches. Each mini-batch can then be characterised by a simple model whose set of

hyperparameters will be informative with respect to fast changes signalling the presence/

absence of the disease. Second, it is highly likely that not all mini-batches are discriminatory

for such a task. Hence, a model selection criterion is required. Once a set of best discrimina-

tory models are identified, a rule able to describe a unique family (i.e. female sick, female

healthy, male sick and male healthy) of speech signals that can then be tested is required. The

steps of the fitting procedure are given as follows: (1) Split the segments into mini-batches;

(2) Fit a set of ARIMA models (see Section 4 in S1 File for further details on this) on each

mini-batch; (3) Select the best model per mini-batch and then per segment according to the

Akaike Information Criterion; (4) save the obtained model hyperparameters that will then

be used to derive a Fisher score employed in the testing procedure; (5) save the proportion

for each winner model, i.e. how many times a specific model for the mini-batches was

selected as best over its segment. In such a way, a “weighted” rule will be defined for the defi-

nition of the Fisher score in the testing procedure. Note that we will end with Nf = 354 best
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models for the female families (i.e. both sick and healthy) and Nm = 298 for the male families

(i.e. both sick and healthy).

The testing procedure computes the Fisher score vectors by evaluating the obtained best

models on the testing data (also split by mini-batches) of each patient. By considering the

healthy female case, for example, 354 models are evaluated on each mini-batch of every testing

segment. In practice, one has 354 sets of hyperparameters describing one mini-batch, while

the desired scenario would be having one set of hyperparameters per mini-batch. This is

achieved by computing the Fisher scores for every best model per mini-batch and then aggre-

gating them to have a unique vector testing the discriminatory power of the best models as a

whole. An equivalent procedure is done for the sick female family on that same mini-batch

and, therefore, one can redefine the GLRT test formulated in Eq (21) as

L̂ ¼ � ð ~U j
θ0
Þð~K j S

0 Þ
� 1
ð ~U j

θ0
Þ
⊺
� logðdet½~K j S

0 �Þ

þð ~U j
θ1
Þð~K j S

1 Þ
� 1
ðU j

θ1
Þ
⊺
þ logðdet½~K j S

1 �Þ

ð22Þ

This shows that the test is done on the Fisher scores, rather than directly on the speech seg-

ments. Fig 9 shows the step of the described procedure. Furthermore, the details and deriva-

tion of such a procedure are outlined in the Section 5 in S1 File. In Eq (22), ~U j
θ0

and U j
θ1

represent the centred, weighted, aggregated Fisher scores evaluated on a testing mini-batch

for healthy and sick family (of a specif gender) respectively. ~K j S
0 and ~K j S

1 represents the regu-

larised Gram Matrices derived from such Fisher scores. Note that each Gram Matrix can be

defined as

~K j
v ðk�kÞ ¼

~U j ⊺
θv

~U j
θv

for j ¼ 1; . . . ;Nf ;t

where v 2 {0, 1}. The Gram Matrix regularisation is needed since computational instability

could be encountered with the inversion of such a matrix or the log-determinant and corre-

sponds to the covariance shrinkage estimator. Once the Gram Matrices are regularised, we

added the superscript “S” for notational correctness. For further details, see the section 5 in S1

File. Once the GLRT has been done on each mini-batch of every segment, then the accuracy

has been computed since this is a supervised learning procedure where we know in advance

the labels of each segment. The results of the accuracy are provided in Tables 4 and 6.

7.4 Results

In this section, we observe formant structures of the original speech signals, IMFs and BLIMFs

to interpret the obtained results and the reasoning behind our proposed solutions. We first

review the healthy and ill patient speech spectrograms and their quantification of acoustic

energy and afterwards compare the obtained results. The results will take into account gender

since male and female formants lie within different frequency bandwidths typically. We fur-

ther present a subsection describing the model complexities of the IMFs and the BLIMFs to

compare the differences between sick and healthy modelling features.

7.4.1 Spectrograms and formant structure. Spectrograms given in Fig 10 show speech

segments of 5,000 samples for four different voices: the top left panel refers to the voice of a

healthy female subject, while the top right panel represents the voice of a female sick patient.

The bottom panels are for male voices, healthy and sick, in the same order as above. We focus

on the range of 0–5 kHz since the first five formants are visible. Hence, the y-axis varies within

this range, while the x-axis represents time and is given in seconds (0.113 approximately).

Focusing on the healthy subjects, the top left panel has an energy spectrum more spread out
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than the correspondent bottom one. This shows how, in general, female voices tend to have

higher formants than male voices. Furthermore, F0, also called fundamental frequency and

capturing the pitch, for male voices is more pronounced and lives within 0–1kHz, while, for

female voices, it often lies at higher frequencies. This is visible in the bottom panel, where the

frequency content of 0–1kHz is stronger than frequencies within the rest of the spectrum. Fur-

thermore, formants duration over time is usually more irregular for female voices than male

ones; therefore, fast changes in time will be more challenging to detect for females than males.

The right spectrograms refer to speech segments of sick patients.

These plots aim to demonstrate why it is possible to accurately detect Parkinson’s disease

with the proposed EMD-GP methods. One can observe the ataxic speech features present in

sick patients compared to the non-ataxic speech of healthy patients. This manifests typically in

clear spectral signatures that the EMD framework is able to accurately identify and then utilise

in the EMD-GP testing framework for the GLRT test. Furthermore, the amount of energy

intensity produced at various frequencies over time in the speech of sick patients with Parkin-

son’s tends to be higher than in healthy subjects. This is potentially indicative of lesser control

of vocal structures used to modulate speech intensity in sick patients, consistent with patients

who tend to slur or drag words.

Fig 9. Figure showing a diagram for the steps required for the testing procedure of the model estimation phase. The GLRT test is computed on each mini-batch

extracted by the segments of every patient. Note that each mini-batch is approximately 2.2.ms. The GLRT test is conducted on weighted and aggregated Fisher score

vectors.

https://doi.org/10.1371/journal.pone.0284667.g009
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Therefore, this paper aims to construct an effective tool able to quantify such energy changes

in both domains in a data-adaptive fashion. Since the location of the formants is strongly bio-

metric for an individual, and they carry a high level of non-stationarity, the idea is first to isolate

formants through basis functions that can deal with these properties and secondly to develop

a statistical methodology which quantifies formants distributions that are indeed a priori

unknown. Note that, each of the shown spectrograms has a second panel below which repre-

sents the GLRT test conducted on the mini-batches of that segment and will be below discussed.

If we focus on Fig 11, one can observe that there are six spectrograms. The left panels are

speech segments of the first three IMFs, i.e. γ1(t), γ2(t), γ3(t) extracted by the speech segment

related to the sick male patient in Fig 11(d). The right panels alternatively represent the spec-

trograms of the speech segments of the first three BLIMFs computed on the IMFs given in the

left panels and denoted as g
ðBLÞ
1 ; g

ðBLÞ
2 ; g

ðBLÞ
3 . This time we focused on a bigger frequency range,

Fig 10. There are two panels for every plot. The top panels are spectrograms of the original speech segments for four voices. The x-axis is time (0.113 s), given in seconds,

the y-axis is frequency given in Hz (0–5000Hz). The second panel represents the results of the GLRT test conducted on every mini-batch of that segment. There are 50

mini-batches per segment. White corresponds to 0 and black to 1. 0 corresponds to equality in distribution, hence no disease detected, while 1 corresponds to the detection

of Parkinson’s disease. (a) Healthy female speech segment, (b) Sick female speech segment. UPDRS score equal to 1, (c) Healthy male speech segment and (d) Sick male

speech segment.

https://doi.org/10.1371/journal.pone.0284667.g010
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i.e. 0–10kHZ, to observe a broader spectrum. The figures clearly demonstrate that the first

IMF captures the highest formants of the speech signal, the third and fourth formants. The sec-

ond IMF detects the second formant and finally, the third IMF identifies the fundamental fre-

quency F0. This can be observed in the left spectrograms, where the energy content decreases if

one moves from the top to the bottom spectrograms.

Fig 11. There are two panels for every plot. The top panels are spectrograms of the speech segments IMFs (left) and the BLIMFs (right) obtained from the EMD of the

male speech segment given in Fig 10(d). The x-axis is time (0.113 s), given in seconds, the y-axis is frequency given in Hz (0–10000Hz). The second panel represents the

results of the GLRT test conducted on every mini-batch of that IMFs or BLIMFS segment. There are 50 mini-batches per segment. White corresponds to equality in

distribution, hence no disease detected, while black corresponds to the detection of Parkinson’s disease. (a) Speech segments of the first three IMFs extracted from the

sick male speech segment given in Fig 10(d) and (b) Speech segments of the first three BLIMFs computed on the IMFs of the the sick male speech segment given in

Fig 10(d).

https://doi.org/10.1371/journal.pone.0284667.g011
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By looking at the BLIMFs spectrograms instead, it is clear that the energy content has been

reassigned within different regions since the IFs have been partitioned into an optimal parti-

tion obtained with the cross-entropy method presented in section 5.2. Indeed, g
ðBLÞ
1 appears to

localize highest frequency content more efficiently than the basic IMF γ1(t). While the first

IMF shows energy concentration at very high frequencies, i.e. around 9–10kHz, for most of

the time, g
ðBLÞ
1 captures a strong energy concentration around 2kHz and 4kHz, reflecting the

second and the third formants which are visible in Fig 10(d). In the case of the IMFs, these for-

mants are split between the second basis and third basis, which detects the fundamental fre-

quency below 2kHz. Instead, g
ðBLÞ
2 presents an energy spectrum which contains a lot more

energy than the correspondent second IMF.

We believe that this BLIMF isolates the noise spread across the three IMFs, and, therefore,

retains information that is less useful and polluted for detecting the disease. Indeed, the spec-

trum looks uniform in energy concentration and recalls a spectrum of the white noise signal.

The last BLIMF g
ðBLÞ
3 cannot localize the fundamental frequency correctly. However, this is

now detecting its fast frequency changes dispersed across the entire spectrum. Therefore, the

CEM can find a partition identifying basis functions that provide a more efficient decomposi-

tion in formant detection.

The bottom panels of Figs 10 and 11 represent the GLRT test carried on the mini-batches of

that considered speech segment, or, in the case of Fig 11, on the speech segment of the corre-

spondent IMF or BLIMF. There are 50 mini-batches per segment; therefore, a band corre-

sponds to 50 GLRT tests for every spectrogram. If the GLRT band is coloured in white, it

indicates that the GLRT test on that mini-batch found equality in distribution and, therefore,

no presence of Parkinson’s disease. In the opposite case, the GLRT test has detected differences

in distributions, and it implies the detection of Parkinson’s. If one now considers Fig 10, which

demonstrates the results for SM1, which does not use the EMD IMF or BLIMF structures, it is

possible to observe that the GLRT performs poorly on the original data segments. It appears to

detect Parkinson’s disease when there is no Parkinson’s disease since the left panels refer to the

segments from healthy patients and show a GLRT band with more black tests detected in the

healthy patients rather than in the sick ones. This suggests that SM1 will not perform well for

the given task, which is expected given that the original signal is highly non-stationary and,

therefore, challenging to model with a simple covariance function for the entire signal.

If we next consider the results for the EMD-GP model using standard IMFs, looking at the

GLRT tests in Fig 11, the first two IMFs do not detect Parkinson’s disease more efficiently than

the raw data. This is the case since, quite often, γ1(t) and γ2(t) capture high noise levels and,

therefore, are not great candidates for performing accurate inference on disease state in the

patient. Regarding IMF3, the mini-batches detecting the correct condition increase, suggesting

that the fundamental frequency of male voices is a good discriminant for Parkinson’s disease

detection. Such facts will be reflected in the classification results provided in Tables 4 and 6.

Next, we consider the EMD-GP model using the BLIMFS. The GLRT tests of the BLIMFs per-

form quite differently from all the others. Particularly, the first and the third BLIMFs show

perfect performances since every mini-batch (except for only two of them in g
ðBLÞ
1 ðtÞ) is classi-

fied correctly. Furthermore, the second BLIMF performs less effectively, suggesting that the

noise affecting the formants structure can be isolated for a more discriminant decomposition.

This is highly encouraging for the newly defined basis functions and will be further analysed in

the discussion sections.

7.4.2 Model complexity. This subsection aims to show the different model complexities

provided by the computed Fisher kernel in detecting differences between healthy and sick par-

ticipants according to ataxic speech feature presence or absence. Indeed, the computation of
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the Fisher kernel is obtained by fitting a set of nested ARIMA models with different model

orders and parameter estimates. The details of the fitting procedure are provided in the Sup-

plementary Information in detail. Hence further to the spectrograms and how these capture

formant features, our idea is to present how the IMFs and the BLIMFs differentiate between

speech affected by Parkinson’s vs healthy unaffected speech. To achieve such a goal, we first

show Fig 12. The figure presents two panels, the left one related to the IMFs (the first three)

and the right one concerning the BLIMFs (the first three again). We used the parameters of

the ARIMA model fitted on these basis functions and ran two separate algorithms for visuali-

sation purposes of this high dimensional feature space. We are able to obtain such visualisa-

tions of the high dimensinal porjections to two dimensions, showing the sub-space of optimal

discriminatory structure from our EMD embeddings, between healthy and sick patient voice

features, via the t-distributed stochastic neighbour embedding (t-sne), introduced by [88].

This algorithm constructs a probability distribution over pair of input data objects (the IMF

feature embeddings) so that similar data are assigned a higher probability while dissimilar data

has a lower probability. Afterwards, a similar probability distribution over the points in a low-

dimensional map is constructed, and the Kullback-Leibler divergence between the two distri-

butions is minimised with respect to the location of the points in the map. In practice, t-sne

represents an algorithm for dimensionality reduction, acting in a more sophisticated manner

to a simpler linear idea of projection sub-space discovery as the familiar standard Principal

Component Analysis (PCA). Via the t-sne it is then possible to observe that there exists sub-

spaces of the feature space in which discriminatory power exists between sick and health

Fig 12. Results of t-SNE for the ARIMA parameters of the first three IMFs (left panel) and the first three BLIMFs (right panel). Note that, to run the algorithm, a

PCA step was applied to reduce the initial data dimensionality, 90% of explained variation was retained. The axes represent the two dimensions identified by the t-SNE

algorithm denoted as comp-1 and comp-2. Note that the azure points are denoted as 1 in the legend and refer to the parameters of the sick patients, while, the 0 points to

the ones of the healthy patients.

https://doi.org/10.1371/journal.pone.0284667.g012
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patients under the proposed IMF and BLIMF EMD stochastic feature embeddigns, see reults

in Fig 12. It is clear that the t-sne shows that both IMFs and BLIMFs appear to separate the

two classes of patients, as a result one may expect strong classification performance when

using these features. Furthermore, the BLIMFs appear to show better separation than the

IMFs. This is due to the fact that, by modelling the frequency domain rather than the time

domain, fast changes characterising the formant structure of sick patents are better captured.

Note that we provided plots for the female case. Equivalent results were found in the case of

the male and not reported for space reasons.

We provide a second plot describing the model order complexity of the ARIMA models

used to obtain the embedding for the two considered basis function methods: IMF and

BLIMFs. Fig 13 presents two panels where the x-axis shows the basis functions (three for both

IMFs and BLIMFs) split according to healthy and sick patients for the female case. The y-axis

indicates the difference in total model order complexity of the best fitting ARIMA model (total

of AR+I+MA coefficients) subtracted from the largest model order considered. Thereby, rep-

resenting the difference in model order parsimony between models on different features

(IMFs or BLIMFs for healthy vs sick patients). If this difference is large, then the complexity of

the underlying fitted signal (i.e., the IMFs or the BLIMFs) is more parsimonious, requiring

fewer parameters in the ARIMA model to achieve an accurate fit. Indeed, using fewer parame-

ters in a specific segment explains that less autocorrelation is present across each observation.

We claim that when Parkinson’s is present, then a much higher autocorrelation will be present

in the formants; therefore, many more parameters are required for an efficient fit. By observing

Fig 13. Barplots presenting the number of zero ARIMA parameters fit on the mini-batches for the female case. The left panel refer to the case of the first three IMFs

(used in the system model classification and presented in the sections below) split according to healthy (HC) and sick (PD) patients. The right panel presents an

equivalent plot referring to the case of he first three BLIMFs, (used in the system model classification and presented in the sections below) split according to healthy

(HC) and sick (PD) patients.

https://doi.org/10.1371/journal.pone.0284667.g013
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the left panel for the IMFs, the bases for the sick patients have no parameters equal to zero,

meaning that they have a higher complexity, also signalling a slower autocorrelation decay in

the speech features for sick patients vs healthy. This is due to the fact that there are different

rates of change in their formant structure due to the presence of Parkinson’s disease and the

manifestation of ataxic speech disorder symptoms that arises. For the IMFs related to the

healthy participant instead, the number of zero parameters is relatively reduced across the first

three IMFs. Since we are considering the female case, the first and the second IMFs are captur-

ing the great majority of the formants; therefore, these two components, particularly the first

one, tend to carry more energy content. In comparison to the sick patients, such bases require

a significantly lower number of parameters to be fit accurately, supporting our conjecture and

the presented results in the sections below.

The right panel shows results for the BLIMFs instead. By looking at the case of the bases for

the sick patients, as for the IMFs, a meagre number of zero parameters are found, showing evi-

dence of a more complex structure due to the presence of the disease. In the case of healthy

patients, all three BLIMFs appear to have a high number of zero parameters hence providing

evidence for a less complex structure compared to the IMFs. The reason behind this is that the

third system model partitions the IMFs according to an optimal partition based on the IFs.

This clearly shows that such a method captures the frequency content more efficiently since

the energy content is split across the three bases more uniformly. In such a way, a better char-

acterisation of each formant can be achieved and, by this mean, a better classification between

sick and healthy patients will be achieved. This will be shown in the following subsections.

7.4.3 Model comparisons. Tables 3–6 shows results by gender with achieved accuracy

scores by benchmark and proposed models. The accuracy is defined as the sum of the true pos-

itive and true negative detected examples over the sum of true positive, true negative, false pos-

itive and false negative. Each table is split according to healthy and sick patients, ordered by

their UPDRS score. In the female case, most of the patients are healthy; for the sick patients,

there are only two stages, being identified as “0” and “1”. In the male case, instead, there are

only two healthy patients, while a great deal are instead sick patients. The UPDRS scores range

between “0” and “3”. The analysis has been conducted for male and female speakers separately

because it is widely known that formants differ significantly between genders, with female for-

mants typically lying at higher frequencies than males. Therefore, any classification or infer-

ence procedure tackling speech analysis should consider gender and not pollute the classifier

with resonant frequencies that are inaccurately detected since they belong to the other gender

class.

We compare EMD-GP proposed models to reference benchmark features for speech analy-

sis previously used in ataxic speech detection for Parkinson’s disease [29, 79]. Each model is

introduced in Table 1 and in subsection 6.1. Note that, before extracting any of the state-of-

the-art features, we pre-emphasise and Hamming-windowed ~sðtÞ to avoid issues of aliasing in

discrete sample MFCCs or MGDCCs representations. Each speech signal is subject to a 0.97

pre-emphasis factor. It is then segmented into frames of 25ms with 50% overlap, meaning, for

a sampling frequency fs = 44.1 kHz, that the total number of samples in each frame is Ns =

1102.5. We further extract MFCCs from the IMFs and BLIMFs, by following the approach pro-

vided in [17]. Equivalent treatments are applied to the bases before computing the IMFs-

MFCCs and the BLIMFs-MFCCs.

Results of state-of-the-art features are given in Tables 3 and 5. As [29], we extracted the

coefficient sets on frames of the original speech signals and then averaged them across the con-

sidered frames, resulting in 12 averaged MFCCs and 11 averaged MGDCCs for each speaker.

We further compute the non-averaged and individual coefficients cases, performing classifica-

tions with only the MFCCs and the MGDCCs. Similarly, the benchmark set proposed in [29]
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is used. We reproduced equivalent classification procedures with a kernel-based SVM and a

cross-validation procedure with 10 folds. Regarding averaging the coefficients, [29] claimed

that such an operation trades accuracy for computation speed. However, most of the discrimi-

nant power lies in the abnormal changes of the various speech frames, and the averaging

would smooth the energy content of the derived coefficients. The obtained low performances

of these features in our work support precisely such a statement, along with the fact that the

most significant problem of these decomposition techniques, i.e. the MFCCs or the MGCCs, is

their required stationarity assumption, which is rarely achieved if not in optimal recording

environments with silence and non-reverberation conditions. This is unattainable in standard

medical facilities or with voice recordings over wireless devices such as mobile phones. A fur-

ther discussion of these challenges can be found in [17]. Amongst the various benchmark con-

sidered, no features achieved an accuracy superior to 70% accuracy, limiting their use in these

Table 3. Accuracy performance results of the benchlark female patients. Accuracy is computed as TPþTN
TPþTNþFPþFN. The columns show: the UPDRS score (marked as NaN in

the case of healthy patients), the benchmark measures performances, corresponding to the MFCCs, MGDCCs, Jitter(%): frequency perturbation, Shimmer (dB): amplitude

perturbation, APQ (%): amplitude perturbation quotient, PPQ (%): pitch perturbation quotient, RAP (%): relative average perturbation, CPP mean: mean of cepstral peak

prominence corresponding to the mean of voice quality perturbation and CPP s.d.: variation in the cepstral peak prominence corresponding to variation in voice quality

perturbation, as given in [29]. Note that the used classifier is the SVM. A cross-validation has been performed for any of the presented results and, therefore, the provided

accuracy are the averaged accuracy scores. Configuration for the cross-validation for the benchmark features and the SVM are given in 7.4.

State-of-the-art Benchmark Female Results (Non-EMD Speech Data Based Approaches)—Accuracy

Healthy Patients

Benchmark (SVM) Benchmark—not averaged (SVM) Benchmark—standard (SVM)

UPDRS MFCCs MGDCCs MFCCs + MGDCCs MFCCs MGDCCs MFCCs + MGDCCs Jitter Shimmer APQ PPQ RAP CPP mean CPP s.d.

NaN 0.125 0.456 0.500 0.220 0.340 0.510 0.603 0.471 0.566 0.623 0.651 0.552 0.643

NaN 0.221 0.556 0.519 0.410 0.554 0.589 0.236 0.487 0.592 0.389 0.558 0.578 0.661

NaN 0.345 0.665 0.456 0.459 0.311 0.601 0.398 0.410 0.295 0.694 0.230 0.667 0.411

NaN 0.434 0.590 0.435 0.310 0.440 0.489 0.672 0.665 0.661 0.601 0.518 0.531 0.222

NaN 0.367 0.542 0.567 0.398 0.210 0.499 0.411 0.572 0.589 0.671 0.660 0.590 0.559

NaN 0.554 0.453 0.521 0.519 0.558 0.559 0.445 0.456 0.589 0.557 0.365 0.628 0.472

NaN 0.557 0.433 0.567 0.489 0.490 0.601 0.430 0.583 0.418 0.524 0.235 0.254 0.338

NaN 0.515 0.662 0.601 0.550 0.501 0.545 0.414 0.447 0.426 0.513 0.522 0.342 0.567

NaN 0.500 0.345 0.451 0.509 0.567 0.558 0.415 0.672 0.332 0.462 0.557 0.457 0.667

NaN 0.450 0.678 0.401 0.449 0.519 0.589 0.427 0.598 0.492 0.379 0.572 0.243 0.453

NaN 0.650 0.546 0.510 0.551 0.591 0.432 0.453 0.472 0.566 0.331 0.154 0.362 0.647

NaN 0.610 0.634 0.555 0.451 0.553 0.650 0.421 0.463 0.362 0.463 0.624 0.473 0.372

NaN 0.565 0.690 0.501 0.611 0.601 0.678 0.431 0.473 0.245 0.452 0.251 0.531 0.537

NaN 0.656 0.694 0.645 0.611 0.667 0.641 0.451 0.252 0.542 0.253 0.425 0.641 0.654

NaN 0.311 0.601 0.649 0.456 0.489 0.601 0.442 0.425 0.525 0.252 0.7483 0.472 0.472

NaN 0.454 0.550 0.559 0.501 0.551 0.573 0.444 0.593 0.528 0.583 0.572 0.325 0.523

NaN 0.369 0.500 0.590 0.389 0.378 0.456 0.534 0.542 0.251 0.542 0.255 0.542 0.325

NaN 0.328 0.564 0.611 0.456 0.588 0.592 0.429 0.458 0.472 0.325 0.235 0.234 0.252

NaN 0.500 0.445 0.590 0.568 0.588 0.645 0.439 0.545 0.453 0.564 0.234 0.235 0.235

Sick Patients

Benchmark (SVM) Benchmark—not averaged (SVM) Benchmark—standard (SVM)

UPDRS MFCCs MGDCCs MFCCs + MGDCCs MFCCs MGDCCs MFCCs + MGDCCs Jitter Shimmer APQ PPQ RAP CPP mean CPP s.d.

0 0.256 0.570 0.690 0.358 0.590 0.699 0.557 0.433 0.544 0.746 0.472 0.462 0.340

0 0.543 0.601 0.701 0.555 0.619 0.707 0.497 0.511 0.566 0.513 0.673 0.374 0.362

1 0.556 0.611 0.711 0.501 0.640 0.699 0.558 0.443 0.556 0.462 0.323 0.476 0.453

1 0.343 0.575 0.702 0.410 0.595 0.710 0.573 0.543 0.435 0.345 0.345 0.647 0.601

https://doi.org/10.1371/journal.pone.0284667.t003
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medical diagnostic areas. These features also rely on stationary frequency transformations

which are not achieved in these practices promoting telemedicine.

The results of the EMD-GP structures are given in Tables 4 and 6, for females and males,

respectively. SM2 and SM3 results are provided for the first three IMFs and BLIMFs. Results

for the residual tendency and the rest of the IMFs are not presented. They have been tested,

and no better results have been achieved. As highlighted above and provided in [17] (and ref-

erence within), the first three IMFs capture most of the formants structure acting as a human

speech fingerprint representing a powerful discriminant tool for the characterisation of ataxic

speech. Another critical point is that the original IMFs γ1(t), γ2(t), γ3(t) often carry a great deal

of noise. Therefore, a median filter has been applied, providing a smoother version of such

bases denoted as gs
1
ðtÞ; gs

2
ðtÞ; gs

3
ðtÞ.

Once the EMD is computed, the IFs have been extracted. The following step is applying the

cross-entropy method to compute the BLIMFs. We select the first three IFs for this step, i.e.

ω1(t), ω2(t), ω3(t), since the great deal of formants will be described by them. In the configura-

tion of the CEM, we selected M = 3 and D = 5, ρ = 0.2, β = 0.6, S = 100, Nω = 100, Nτ = 100 and

a maximum number of CEM iteration was equal to 100. Alternatives have been considered,

but similar results were obtained, and, therefore, we select the minimum number to obtain a

low computational cost. Once performed, the CEM provides a set of grid points, i.e. ωm and

sm,d for m = 1, . . ., M, d = 1, . . ., D which partition the time-frequency plane. Then the BLIMFs

are derived as given in Eq 12 and the GLRT test is applied as for SM2.

Table 5. Accuracy performance results of the male patients. Remark that the accuracy is computed as TPþTN
TPþTNþFPþFN. The columns show: the UPDRS score (marked as NaN

in the case of healthy patients), the benchmark measures performances, corresponding to the MFCCs, MGDCCs, Jitter(%): frequency perturbation, Shimmer (dB): ampli-

tude perturbation, APQ (%): amplitude perturbation quotient, PPQ (%): pitch perturbation quotient, RAP (%): relative average perturbation, CPP mean: mean of cepstral

peak prominence corresponding to the mean of voice quality perturbation and CPP s.d.: variation in the cepstral peak prominence corresponding to variation in voice

quality perturbation, as given in [29]. Note that the used classifier is the SVM. A cross-validation has been performed for any of the presented results and, therefore, the

provided accuracy are the averaged accuracy scores. Configuration for the cross-validation for the benchmark features and the SVM are given in 7.4.

State-of-the-art Benchmark Male Results (Non-EMD Speech Data Based Approaches)—Accuracy

Healthy Patients

UPDRS Benchmark (SVM) Benchmark—not averaged (SVM) Benchmark—standard (SVM)

MFCCs MGDCCs MFCCs + MGDCCs MFCCs MGDCCs MFCCs + MGDCCs Jitter Shimmer APQ PPQ RAP CPP mean CPP s.d.

NaN 0.410 0.515 0.519 0.500 0.511 0.558 0.379 0.583 0.264 0.327 0.453 0.463 0.472

NaN 0.643 0.590 0.571 0.519 0.576 0.598 0.379 0.463 0.527 0.274 0.463 0.665 0.655

Sick Patients

UPDRS Benchmark (SVM) Benchmark—not averaged (SVM) Benchmark—standard (SVM)

MFCCs MGDCCs MFCCs + MGDCCs MFCCs MGDCCs MFCCs + MGDCCs Jitter Shimmer APQ PPQ RAP CPP mean CPP s.d.

0 0.520 0.650 0.611 0.551 0.656 0.678 0.627 0.573 0.647 0.445 0.465 0.653 0.365

0 0.555 0.600 0.619 0.458 0.623 0.674 0.602 0.553 0.453 0.543 0.637 0.455 0.446

0 0.390 0.588 0.690 0.553 0.598 0.593 0.535 0.511 0.453 0.554 0.553 0.437 0.372

0 0.430 0.590 0.699 0.441 0.489 0.563 0.635 0.563 0.477 0.564 0.574 0.463 0.477

0 0.551 0.500 0.652 0.428 0.649 0.693 0.610 0.674 0.342 0.245 0.572 0.425 0.254

1 0.439 0.595 0.702 0.469 0.532 0.564 0.456 0.467 0.578 0.656 0.564 0.564 0.463

1 0.312 0.610 0.712 0.654 0.689 0.709 0.626 0.465 0.553 0.562 0.465 0.463 0.698

1 0.235 0.645 0.705 0.613 0.601 0.731 0.616 0.505 0.676 0.698 0.687 0.556 0.699

1 0.611 0.650 0.675 0.689 0.673 0.678 0.595 0.666 0.699 0.689 0.687 0.685 0.563

2 0.387 0.611 0.718 0.445 0.562 0.699 0.628 0.668 0.668 0.635 0.678 0.675 0.689

2 0.654 0.674 0.731 0.510 0.661 0.722 0.581 0.677 0.678 0.675 0.698 0.698 0.678

3 0.442 0.659 0.750 0.567 0.698 0.719 0.678 0.659 0.665 0.678 0.699 0.688 0.667

https://doi.org/10.1371/journal.pone.0284667.t005

PLOS ONE Empirical mode decomposition for ataxic speech disorders and parkinson’s disease diagnostics

PLOS ONE | https://doi.org/10.1371/journal.pone.0284667 April 26, 2023 51 / 59

https://doi.org/10.1371/journal.pone.0284667.t005
https://doi.org/10.1371/journal.pone.0284667


T
a

b
le

6
.

A
cc

u
ra

cy
p

er
fo

rm
a

n
ce

re
su

lt
s

o
f

th
e

m
a

le
p

a
ti

en
ts

.
R

em
ar

k
th

at
th

e
ac

cu
ra

cy
is

co
m

p
u

te
d

as
TP
þ
TN

TP
þ
TN
þ
FP
þ
FN

.T
h

e
co

lu
m

n
s

sh
o

w
:t

h
e

U
P

D
R

S
sc

o
re

(m
ar

k
ed

as
N

aN
in

th
e

ca
se

o
f

h
ea

lt
h

y

p
at

ie
n

ts
),

th
e

S
M

1
,S

M
2

an
d

S
M

3
p

er
fo

rm
an

ce
s

o
b

ta
in

ed
w

it
h

a
G

L
R

T
.A

s
o

u
tl

in
ed

,t
h

e
fi

rs
t

th
re

e
b

as
es

h
av

e
b

ee
n

co
n

si
d

er
ed

fo
r

S
M

2
an

d
S

M
3

.F
u

rt
h

er
m

o
re

,n
o

te
th

at
a

cr
o

ss
-v

al
id

at
io

n
h

as
b

ee
n

p
er

fo
rm

ed
fo

r
an

y
o

f
th

e
p

re
se

n
te

d
re

su
lt

s
an

d
,t

h
er

ef
o

re
,t

h
e

p
ro

v
id

ed
ac

cu
ra

cy
ar

e
th

e
av

er
ag

ed
ac

cu
ra

cy
sc

o
re

s.
C

o
n

fi
g

u
ra

ti
o

n
fo

r
th

e
cr

o
ss

-v
al

id
at

io
n

fo
r

S
M

1
,S

M
2

,S
M

3
an

d
th

e
G

L
R

T
in

7
.2

.A
ft

er
-

w
ar

d
s,

th
e

re
su

lt
s

o
f

th
e

IM
F

s-
M

F
C

C
s

an
d

B
L

IM
F

s-
M

F
C

C
s

ar
e

p
ro

v
id

ed
.T

h
e

co
n

si
d

er
ed

b
as

es
ar

e
th

e
sa

m
e

o
f

th
e

S
M

2
an

d
S

M
3

.C
o

n
fi

g
u

ra
ti

o
n

fo
r

th
e

S
V

M
ru

n
co

rr
es

p
o

n
d

s
to

th
e

sa
m

e
o

f
[2

9
]

g
iv

en
in

7
.4

.

M
a

le
R

es
u

lt
s

(E
M

D
S

p
ee

ch
D

a
ta

B
a

se
d

A
p

p
ro

a
ch

es
)—

A
cc

u
ra

cy

H
ea

lt
h

y
P

a
ti

en
ts

U
P

D
R

S
S

M
1

(G
L

R
T

)

S
M

2
(G

L
R

T
)

S
M

2
(G

L
R

T
)

S
M

3
(G

L
R

T
)

IM
F

s-
M

F
C

C
s

(S
V

M
)

B
L

IM
F

s-
M

F
C

C
s

(S
V

M
)

~ sð
tÞ

γ 1
(t

)
γ 2

(t
)

γ 3
(t

)
gs 1ð

tÞ
gs 2ð

tÞ
gs 3ð

tÞ
gð

BL
Þ

1
ðt
Þ
gð

BL
Þ

2
ðt
Þ
gð

BL
Þ

3
ðt
Þ

gð
BL
Þ

3
ðt
Þ

IM
F

1
-M

F
C

C
s

IM
F

2
-M

F
C

C
s

IM
F

3
-M

F
C

C
s

B
L

IM
F

1
-M

F
C

C
s

B
L

IM
F

2
-M

F
C

C
s

B
L

IM
F

3
-M

F
C

C
s

N
aN

0
.3

7
9

0
.5

1
3

0
.4

4
5

0
.4

6
3

0
.5

0
0

0
.5

6
7

0
.4

9
0

0
.2

2
5

0
.2

3
5

0
.0

5
9

0
.5

4
3

0
.3

9
2

0
.3

2
1

0
.2

5
2

0
.2

0
1

0
.2

1
1

N
aN

0
.3

7
9

0
.4

8
8

0
.4

4
9

0
.4

6
2

0
.5

3
1

0
.4

5
0

0
.4

4
1

0
.2

2
5

0
.2

5
0

0
.0

2
6

0
.4

4
5

0
.3

7
9

0
.5

0
0

0
.2

0
1

0
.2

1
0

0
.0

9
8

S
ic

k
P

a
ti

en
ts

U
P

D
R

S
S

M
1

(G
L

R
T

)

S
M

2
(G

L
R

T
)

S
M

2
(G

L
R

T
)

S
M

3
(G

L
R

T
)

IM
F

s-
M

F
C

C
s

(S
V

M
)

B
L

IM
F

s-
M

F
C

C
s

(S
V

M
)

~ sð
tÞ

γ 1
(t

)
γ 2

(t
)

γ 3
(t

)
gs 1ð

tÞ
gs 2ð

tÞ
gs 3ð

tÞ
gð

BL
Þ

1
ðt
Þ
gð

BL
Þ

2
ðt
Þ
gð

BL
Þ

3
ðt
Þ

gð
BL
Þ

3
ðt
Þ

IM
F

1
-M

F
C

C
s

IM
F

2
-M

F
C

C
s

IM
F

3
-M

F
C

C
s

B
L

IM
F

1
-M

F
C

C
s

B
L

IM
F

2
-M

F
C

C
s

B
L

IM
F

3
-M

F
C

C
s

0
0

.6
2

7
0

.4
9

9
0

.5
2

8
0

.5
2

1
0

.6
9

0
0

.6
1

1
0

.7
1

0
0

.7
8

7
0

.7
2

7
0

.9
1

1
0

.6
7

8
0

.7
0

1
0

.7
3

4
0

.7
1

5
0

.8
2

3
0

.8
6

8

0
0

.6
0

2
0

.4
9

3
0

.5
3

7
0

.5
3

4
0

.6
0

1
0

.6
9

9
0

.7
2

2
0

.8
6

5
0

.7
2

9
0

.9
1

1
0

.7
0

0
0

.6
9

9
0

.7
3

4
0

.7
8

2
0

.8
1

0
0

.8
8

8

0
0

.5
9

7
0

.5
0

2
0

.5
2

7
0

.5
4

9
0

.6
1

0
0

.7
2

9
0

.7
3

0
0

.7
6

4
0

.7
4

1
0

.9
2

0
0

.6
6

7
0

.6
8

9
0

.7
9

3
0

.7
9

8
0

.8
1

6
0

.8
4

9

0
0

.6
3

5
0

.4
8

0
0

.5
2

2
0

.5
2

3
0

.6
7

3
0

.7
1

9
0

.7
1

0
0

.7
2

9
0

.7
2

4
0

.8
7

8
0

.7
1

1
0

.7
6

3
0

.7
9

3
0

.6
9

9
0

.8
0

2
0

.8
9

9

0
0

.6
1

0
0

.4
8

5
0

.5
4

8
0

.5
4

9
0

.7
1

5
0

.6
9

0
0

.7
2

1
0

.7
6

3
0

.7
2

2
0

.9
1

6
0

.6
7

2
0

.7
1

7
0

.7
9

8
0

.8
0

2
0

.8
1

0
0

.8
9

9

1
0

.6
1

5
0

.4
9

6
0

.5
5

1
0

.5
2

2
0

.7
0

0
0

.7
1

1
0

.7
3

5
0

.8
2

1
0

.7
6

4
0

.9
5

4
0

.6
5

9
0

.7
4

8
0

.7
6

2
0

.7
9

1
0

.7
8

4
0

.8
3

4

1
0

.6
2

6
0

.5
0

2
0

.5
4

8
0

.5
4

5
0

.7
0

9
0

.7
0

5
0

.7
2

1
0

.8
4

5
0

.7
6

2
0

.9
4

7
0

.6
9

8
0

.7
1

0
0

.7
8

7
0

.7
8

5
0

.8
1

0
0

.8
7

3

1
0

.6
1

6
0

.5
0

5
0

.5
4

6
0

.5
7

5
0

.7
1

1
0

.6
1

0
0

.7
2

1
0

.7
4

5
0

.6
9

0
0

.8
3

5
0

.6
9

9
0

.6
8

9
0

.7
8

6
0

.7
8

8
0

.8
0

1
0

.8
9

0

1
0

.5
9

5
0

.5
1

0
0

.5
3

4
0

.5
3

4
0

.6
8

7
0

.7
2

2
0

.7
2

0
0

.7
8

0
0

.7
3

1
0

.9
2

6
0

.7
0

6
0

.7
1

3
0

.7
9

8
0

.7
1

6
0

.8
1

9
0

.8
7

8

2
0

.6
2

8
0

.4
8

5
0

.5
0

5
0

.5
3

3
0

.7
3

3
0

.7
4

1
0

.7
4

5
0

.8
8

1
0

.7
6

0
0

.9
2

3
0

.6
4

5
0

.7
9

9
0

.8
1

1
0

.7
1

0
0

.8
1

0
0

.8
9

8

2
0

.5
8

1
0

.4
9

2
0

.5
4

3
0

.5
5

0
0

.7
2

1
0

.7
3

0
0

.7
2

7
0

.8
8

8
0

.8
9

9
0

.9
1

0
0

.6
8

9
0

.7
8

5
0

.7
9

8
0

.7
8

1
0

.8
6

7
0

.9
0

1

3
0

.6
3

4
0

.4
8

9
0

.5
3

7
0

.6
3

8
0

.7
2

0
0

.7
1

1
0

.7
4

9
0

.8
9

9
0

.9
5

0
0

.9
4

9
0

.6
6

8
0

.7
8

7
0

.7
9

5
0

.7
3

3
0

.8
9

0
0

.9
1

0

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
8
4
6
6
7
.t
0
0
6

PLOS ONE Empirical mode decomposition for ataxic speech disorders and parkinson’s disease diagnostics

PLOS ONE | https://doi.org/10.1371/journal.pone.0284667 April 26, 2023 52 / 59

https://doi.org/10.1371/journal.pone.0284667.t006
https://doi.org/10.1371/journal.pone.0284667


A further point made in [17] is that the MFCCs can be more efficiently exploited when

applied to the IMFs bases, which indeed capture formant structure. Moreover, the MFCCs rely

on Fourier-type transformations which require stationarity of the underlying signal. Hence,

deriving such coefficients on the IMFs, which carry minor levels of non-stationarity compared

to the raw signals, is highly beneficial. We introduce a new feature type by applying the

MFCCs to the BLIMFs. MGDCCs were also applied on such bases, but results are not shown

since they are not optimally performing.

8 Discussion and conclusions

We start by focusing on the benchmark female accuracy scores provided in Table 3. Across the

state-of-the-art features, the MFCCs combined with the MGDCCs were more reliable than

using the individual sets of MFCC or MGDCCs separately. The combined benchmarks of

MFCC+MGDCCs represent the standard to beat using the EMD-GP methods. These results

produced an accuracy result around 70%. This is the case in both the averaged and non-aver-

aged coefficients settings, suggesting that the technique undertaken in [29] provides an effec-

tive solution since saving part of the computational cost required for an SVM using all the

coefficients. Equivalent results are achieved in Table 5 in the male case, showing the maximum

accuracy result of 75%. The main issues encountered with these features include the following

challenges. Firstly, there is a requirement for stationarity of the underlying signal, which is

rarely respected, especially when the speech signal is not recorded in an ideal noise-free envi-

ronment. In standard medical settings, there is significant background noise, there are non-

ideal microphones used in phones or mobile devices. Secondly, in the case of averaging the

coefficients, most of the discriminant power carried by the frames describing the individual

biometric formant structures will be polluted with the average operation. The final objective is

indeed identifying which time-frequency regions, by gender, can discriminate ataxic speech.

This is a delicate exercise per se, which should always take into account these observations and

carefully consider the possibility of contamination of the classifier when reduction of complex-

ity is in favour of the employed method. Furthermore, when it comes to health diagnostic, an

accuracy score of 70% will not be considered since it is highly risky and therefore more power-

ful solutions need to be considered.

Next, by looking at Tables 4 and 6, it was demonstrated that when using a GLRT test, fitting

a GP model directly to the speech signal is ineffective since the covariance function (GP ker-

nel) function is not sufficiently flexible to capture the structure required to discriminate ataxic

speech features. This is true even with the data-adaptive Fisher kernel structure; it does not

provide any significant results in both sets of analysis, i.e. for males or females. Indeed, the for-

mant behaviour of the underlying signals carries a very complex structure affected by fast

changes, which are not only due to the presence or absence of ataxic speech.

Therefore, such time-frequency fast variant modes require a refined modelling methodol-

ogy, which, in this work, is represented by the stochastic embedding of the IMFs and the

BLIMFs under the EMD-GP structures proposed. The next step is indeed to consider SM2

with the first three IMFs. These bases still do not show acceptable performances. It is often the

case that the IMFs capture most of the data non-stationarity; therefore, their power in model-

ling fast changes may be reduced. However, by applying a median filter to gs
1
ðtÞ; gs

2
ðtÞ; gs

3
ðtÞ,

better performances are obtained in this robust version. In the female case, the maximum

achieved accuracy corresponds to 78%, while in the male case to 74%. What is important to

notice at this stage is that in the former case, most of the discriminant power lies in the highest

IMFs, i.e. γ1(t) and γ2(t), since females tend to have higher formants which are detected by

higher frequency content of the EMD decomposition. In the male case, the third IMF shows
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more patients with the highest accuracy levels. Indeed, male voices tend to have formants at

lower frequencies detected by gs
3
ðtÞ. This is particularly meaningful since it reflects the stan-

dard formants structure of female and male voices in general and provides useful interpreta-

tion to further develop such a modelling idea.

The best performing model came from the EMD-GP model structure based on using the

first three BLIMFs defined previously and denoted by SM3. This outperformed all benchmarks

and all other competitor models. The CEM has been applied to the first three IFs with configu-

ration explained at the beginning of this section 7.4. The performances of this system model

are outstanding compared to any other model. In the female case, g
ðBLÞ
2 ðtÞ achieves levels of

accuracy greater than 90% for any patient with any UPDRS score. g
ðBLÞ
3 ðtÞ also provides high

performances always greater than 88%, while g
ðBLÞ
1 ðtÞ achieves accuracy scores of 73% at least.

With the use of the CEM, the discriminatory power is shifted towards the second and third

BLIMFs, rather than in IMF1 and IMF2, with significant performance gains achieved. This

shows that the CEM can isolate more stationary basis functions characterised by the same fre-

quency content and provide more powerful discrimination. As for the female case, all the

BLIMFs for all patients in the male case provide high accuracy score levels. Highest perfor-

mances are given by the third BLIMF, which achieves 90% for almost every patient.

While in the female case, the second BLIMF shows the best performances, in this case is

g
ðBLÞ
3 ðtÞ that carries most of the discriminatory power. This again reflects how males have lower

formants than females and therefore detected by the third BLIMF. The second and the first

BLIMFs well perform and provide high levels of accuracy. Furthermore, with the increase of

the UPDRS score and hence the Parkinson’s stage, the accuracy increases across all the three

basis functions, which suggests the BLIMFs well detect the progression of the disease.

A further set of features was provided in both Tables 4 and 6. This is based on [17] promot-

ing the extraction of MFCCs on the IMFs and, given the novelty of this work, on the BLIMFs.

As discussed, this kind of coefficient’s main issue is the stationarity requirement for the under-

lying signal. Using the IMFs and BLIMFs rather than the raw data allows, in both cases, i.e.

males and females, a significant increase in the performances. Indeed, compared to the state-

of-the-art provided by [29], these features show strong discrimination power with some com-

binations for the male case achieving 90% of accuracy. This proves a clear advantage in using

the IMFs bases or the BLIMFs rather than the original signals. The advantage of such methods

also lies in the interpretation associated with the obtained results. The IMFs-MFCCs coeffi-

cients better detecting Parkinson’s disease in the female case correspond to the ones of the first

and second IMFs since capturing the highest formants of female voices hence finding discrimi-

nation power. In the case of male voices, a great deal of power lies instead in the second and

third IMFs, revealing indeed the presence of formants lying at lower frequencies. We firmly

believe that capturing the formant structure with such decomposition proposed methods will

be the keystone to differentiate amongst the different types of dysarthria.

Two significant contributions were provided in this manuscript. The first was methodologi-

cal in nature. We developed a novel technique for the stochastic embedding of the Empirical

Mode Decomposition. This is lacking in the literature and introduces the definition of stochas-

tic Multi-Kernel EMD by allowing for more robust solutions in classification or forecasting

models based on non-stationary signal decomposition methods. As highlighted, two different

stochastic EMD-GP embeddings have been presented. The first directly utilises the original

IMFs in a GP compositional structure, while the second relies on an optimal cross-entropy-

based procedure used to define band-limited IMFs (BLIMFs), which produce distributions

more consistent with stationarity properties, making the fitting of GP models in the EMD-GP

based BLIMF stochastic embedding more reliable than that obtained using only the original
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EMD IMFs. The selection of the optimal partitions to characterise the BLIMFs utilised a novel

use of the cross entropy method based on importance sampling distribution to derive the opti-

mal time-frequency partition employed for defining the BLIMFs. The introduction of the

BLIMFs in the literature allows for probabilistic statements directly on the frequency domain,

which has been a significant challenge in the literature for decades.

The second significant contribution produced was an essential demonstration of the utility

of the stochastic embedding models for the EMD-GP frameworks, using both IMFs and

BLIMFs. This allowed for the formulation of an ASR-SD system relying on such bases. It was

shown that the stochastic EMD-GP embedding structures could be used in a GLRT-based

inference testing procedure for speech signals to detect ataxic speech features. This is a critical

task to solve when detecting the possibility of Parkinson’s disease in patients from those who

do not display standard ataxic speech features. It was demonstrated that using the BLIMFs and

GP stochastic embedding structures produced accuracies for the detection of ataxic speech in

Parkinson’s patients with far greater accuracy than current state-of-the-art methods using

SVMs and also outperformed standard GP models that did not utilise the EMD frameworks.

This has been the case even when the adopted state-of-the-art kernel designs are based on a

generative embedding framework for time-series kernels based on Fisher kernels. We further-

more proved the relevance of IMFs and BLIMFs by characterising novel features based on the

fact that the application of the MFCCs on the raw data would always suffer from the stationar-

ity requirements of these methodologies. Hence, the need for the proposed decomposition

techniques further provides a relevant interpretation. We believe that the proposed EMD-GP

frameworks hold great potential for developing other speech disorder analyses and detection

of symptoms consistent with different neurological disorders, especially accurately when uti-

lised in real-world recording environments using mobile phones in open doctors’ office envi-

ronments or hospitals, where background noises can be significant. We demonstrated that

even in such recording settings, it was still possible to diagnose ataxic speech accurately. This

shows a substantial improvement over the current state-of-the-art methods we implemented

compared to the real data case study.
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