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ABSTRACT

The advent of the Internet of Things (IoT) has led to a highly interconnected digital
ecosystem, revolutionizing sectors from healthcare to urban infrastructure. IoT
devices amass large amounts of data, resulting in improved efficiency and quality

of life. However, the consequential privacy challenges are immense. The decentralized
and heterogeneous nature of IoT networks intensifies these concerns, making traditional
privacy-preserving mechanisms insufficient.

This thesis advances a novel approach to enhance privacy preservation in the IoT,
leveraging the unique attributes of blockchain technology, a decentralized, transparent,
and immutable ledger system. Initially, we delve into the realm of crowdsourcing within
IoT networks, where trust issues and privacy protection are paramount concerns. We
explore the potential of integrating public and private blockchains for differentially pri-
vate crowdsourcing, establishing a foundational application of blockchain in IoT privacy
preservation. This groundwork sets the stage for further exploration of blockchain’s
broader applicability.

Building on the insights from our exploration of crowdsourcing, the research then
extends to multi-agent systems in IoT. These dynamic, complex networks pose their
own set of privacy and security challenges. Drawing on the principles established in our
initial investigation, we propose a blockchain-based solution to fortify security, augment
transparency, and enhance the resilience of multi-agent systems. The proposed approach
encourages more effective, reliable, and secure multi-agent interactions within the IoT.

The stage set by our explorations of blockchain applications in crowdsourcing and
multi-agent systems then paves the way for addressing federated learning, a form
of machine learning ideal for decentralized networks. Despite its promise, federated
learning presents unique privacy and computational challenges within IoT. Integrating
the insights gained from the initial sections, the thesis proposes a pioneering strategy
that fuses public and private blockchain networks. This approach facilitates secure,
efficient, and privacy-preserving federated learning within the Internet of Everything
(IoE), thus expanding the scope of blockchain’s utility in IoT contexts.

In the culminating section, the research introduces a novel blockchain-based defense
mechanism against gradient inversion and poisoning attacks on federated learning
systems, a significant vulnerability in IoT. Drawing on the lessons from previous sections,
this mechanism serves as a testament to the power of blockchain as a comprehensive
defense against a spectrum of privacy and security threats.

In summary, this thesis underscores the immense potential of blockchain technology
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for enhancing privacy preservation across various aspects of IoT, and advocates for its
broader adoption. The study concludes by proposing future work directions, envisioning
a more secure, efficient, and trusted IoT landscape by extending these foundational
findings to a wider array of IoT scenarios.
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1
INTRODUCTION

1.1 Background

The Internet of Things (IoT) is not just another technological innovation; it rep-
resents the next frontier in the digital revolution, with the potential to weave
together an intricate web of interconnected devices, sensors, and systems [8]. As

we’ve seen in recent years, the explosive growth of IoT has been driven by advances
in wireless communication, miniaturization of hardware, and the rising power of edge
computing. The applications of IoT have permeated multiple sectors such as healthcare,
transportation, agriculture, and manufacturing, laying the foundation for smarter homes,
self-driving vehicles, precision agriculture, and the dawn of Industry 4.0 [11].

In healthcare, the impact of IoT is palpable. Wearable fitness trackers offer personal-
ized insights, and remote patient monitoring systems revolutionize patient care. These
devices not only promise enhanced medical outcomes but also a marked reduction in
healthcare costs [2]. In transportation, the integration of IoT is reshaping the landscape
with more efficient traffic management, fewer emissions, improved safety standards, and
the promise of fully autonomous driving. Agriculture is also in the midst of an IoT-driven
revolution, with tech-savvy farming techniques enhancing crop health and maximizing
yield [53]. In the sphere of manufacturing, IoT is ushering in a new era, streamlining
processes such as predictive maintenance, inventory management, and quality control
[93].

However, with this interconnectedness comes a looming shadow: the ever-present
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CHAPTER 1. INTRODUCTION

concerns of security and privacy [10]. Every connected IoT device offers a gateway to
improved functionality, but it also presents a potential avenue for cyber-attacks [4].
Attacks that threaten not just the sanctity and confidentiality of data but, in severe
cases, could even wrest control of the devices themselves ‚Äì a dire scenario in critical
sectors like healthcare or transportation where the implications can be fatal.

These devices constantly collect, process, and transmit a deluge of sensitive data,
making them a veritable treasure trove for any malicious entity. The lack of stringent
security measures can result in this data being intercepted or accessed, leading to grave
breaches of privacy.

Traditional IoT architectures further exacerbate these concerns. Their tendency to
rely on centralized data storage creates a glaring vulnerability: a single point of failure.
This not only makes them ripe targets for distributed denial of service (DDoS) attacks but
also raises significant privacy concerns. Without stringent safeguards, this centralized
trove of sensitive data can be misused, not just by external threats but potentially by
service providers themselves [16].

Adding another layer of complexity is the sheer diversity of IoT devices [86]. The vast
array of capabilities, operating systems, and built-in security protocols means there’s
no one-size-fits-all solution. This lack of standardization poses a formidable challenge,
as ensuring airtight security across such a heterogeneous ecosystem is daunting [21].
Every unique device, with its specific set of vulnerabilities, can inadvertently become the
Achilles heel of the network [38].

In summary, while the promise of IoT is undeniably transformative, it is essential to
navigate its landscape with a keen awareness of the inherent security and privacy risks.
Addressing these challenges is not just important but imperative, demanding a holistic
and nuanced approach tailored to the idiosyncrasies of the IoT ecosystem.

1.2 Motivation

The global IoT landscape, characterized by unprecedented interconnectivity and data
proliferation, brings to light pressing security and privacy issues that demand immediate
attention. The extensive array of IoT applications, coupled with the continuous growth
in IoT device deployment, has led to an exponential increase in data generation, much of
which is of a sensitive nature. Without robust security and privacy measures in place,
this data is left vulnerable to malicious attacks, leading to privacy breaches and severe
consequences for individuals and organizations alike.
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1.3. RESEARCH OBJECTIVES

Traditional security solutions employed in the IoT domain often fail to provide
adequate protection due to the unique challenges presented by IoT architectures. These
systems are predominantly centralized, creating single points of failure that can be
exploited by attackers. Moreover, the heterogeneous nature of IoT devices, stemming
from various manufacturers, operating systems, and protocols, complicates the security
landscape, making it challenging to implement uniform security measures.

Privacy issues in IoT systems are equally concerning. Many IoT devices are inherently
personal and routinely handle sensitive data, such as health records from wearable
devices, personal information from smart home appliances, and location data from
smart vehicles. In the absence of stringent privacy protection measures, this data can
be exploited, leading to privacy infringements that can have significant personal and
societal implications.

The inherent limitations of traditional cryptographic methods in the context of
resource-constrained IoT devices further exacerbate these concerns. Standard encryption
techniques often demand substantial computational resources, rendering them unsuit-
able for many IoT devices. This results in weak or no encryption for data at rest and in
transit, creating a ripe environment for cyber attacks.

In view of these pressing concerns, there is a clear motivation to explore innovative
solutions to address the security and privacy issues in IoT systems. This motivation
leads to the exploration of blockchain technology, renowned for its decentralization,
immutability, and transparency, as a potential solution to these challenges. With its
promising characteristics, blockchain has the potential to revolutionize security and
privacy preservation in the IoT domain, forming the primary focus of this thesis.

1.3 Research Objectives

This thesis focuses on addressing a multitude of privacy issues associated with the
integration of Internet of Things (IoT) systems with the techniques of crowdsourcing,
multi-agent systems, and federated learning. These methods are deeply interconnected,
each adding layers of complexity to the privacy landscape in IoT. The objective is exten-
sive, aiming to understand, evaluate, and improve current privacy-preserving measures
in this interconnected setting, and to anticipate future challenges in the evolving digital
landscape. The specific goals of this research are as follows:

• Understanding the Interconnected Privacy Landscape in IoT: The research aims
to provide a comprehensive understanding of privacy challenges in IoT systems
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when integrated with the interconnected techniques of crowdsourcing, multi-agent
systems, and federated learning. It involves an in-depth exploration of existing
literature, highlighting the privacy concerns unique to each technique and those
arising from their interaction, existing mitigation measures, and their limitations.

• Evaluating Current Privacy-Preserving Methods in Interconnected Systems: A
significant portion of this research is dedicated to critically assessing current
privacy-preserving methods employed in IoT systems incorporating crowdsourcing,
multi-agent systems, and federated learning. The aim is to understand their
strengths and weaknesses, their effectiveness in this complex, interconnected
setting, and identify possible areas for improvement.

• Developing Enhanced Privacy Measures for Interconnected Systems: Based on
the insights gained from the evaluation, this research aims to propose innovative
and robust privacy measures that can effectively address the identified issues
and shortcomings in this interconnected landscape. This involves the creation and
validation of advanced methodologies, models, and techniques, with a significant
emphasis on practical applicability and scalability in real-world IoT scenarios.

• Anticipating Future Privacy Challenges in Interconnected Systems: An essential
aspect of this research is anticipating and preparing for future privacy challenges
in the interconnected landscape of IoT, crowdsourcing, multi-agent systems, and
federated learning. The study aims to identify potential threats and challenges, pro-
viding foresight that can guide the development of future-proof privacy measures
and policies.

• Disseminating Knowledge about Privacy in Interconnected Systems: A fundamen-
tal goal of this research is to contribute to the pool of knowledge on privacy issues
in this interconnected setting. This involves disseminating the research findings
through scholarly publications and practical guidelines, thus assisting researchers,
practitioners, and policymakers in understanding and addressing privacy chal-
lenges in IoT, crowdsourcing, multi-agent systems, and federated learning.

1.4 Major Contributions of This Thesis

This thesis makes numerous significant contributions to the realm of security and privacy
in the Internet of Things (IoT), focusing specifically on the deployment of blockchain
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1.4. MAJOR CONTRIBUTIONS OF THIS THESIS

technology. These contributions are encapsulated in four interconnected research articles
that together address the primary challenges associated with maintaining privacy and
ensuring security in IoT systems:

• Differentially Private Crowdsourcing with Public and Private Blockchain: The
first piece of research presents an innovative differentially private crowdsourcing
system, leveraging public and private blockchains. This research addresses the
critical privacy and trust issues of traditional crowdsourcing systems and offers
adjustable privacy protection levels. The solution forms a strong foundation for
subsequent investigations in the thesis, given the shared characteristics of trust
and privacy needs in multi-agent and federated learning scenarios.

• Blockchain Empowered Multi-Agent Systems: Advancing IoT Security and Trans-
action Efficiency: Building on the insights gained from the initial exploration,
this study proposes a unique integration of multi-agent systems and blockchain
technology in the IoT context. We present innovative algorithms that regulate
agent activities, thereby enhancing the security, transparency, and robustness of
IoT systems. This step brings in the complexity of agent interaction, which serves
as a bridge to the next stage of research focusing on federated learning.

• Public and Private Blockchain Infusion: A Novel Approach to Federated Learn-
ing: Here, we introduce an innovative approach combining public and private
blockchains to enhance federated learning performance while preserving data
privacy and security within the Internet of Everything (IoE). This methodology
reduces clients’ computational demands and ensures trustworthiness in model
migration, offering an advanced solution that echoes the privacy and security
concerns discussed in the previous two articles.

• Blockchain-based Gradient Inversion and Poisoning Defense for Federated Learn-
ing: In the final stage of this research journey, we propose a robust blockchain-based
defense mechanism that effectively protects federated learning systems from gradi-
ent inversion and poisoning attacks. It demonstrates the potential of our unique
approach in enhancing the security and privacy of distributed machine learning
systems in various IoT scenarios, thus culminating our research exploration and
linking it back to the foundational principles discussed in the first paper.

Together, these research articles showcase the innovative ways that blockchain tech-
nology can be utilized to address existing challenges associated with privacy preservation
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and security in IoT. In unison, they advance the field of IoT security and privacy, provid-
ing invaluable insights and setting a path for future research.

1.5 Thesis Organisation

This thesis is meticulously structured to provide a comprehensive view of the research
undertaken. The organization of the thesis is as follows:

• Chapter 1 Introduction: This chapter sets the stage by presenting an overview of
the IoT landscape, discussing the unique security and privacy challenges in the
IoT domain, and establishing the need for novel solutions.

• Chapter 2 Preliminary and Related Work: The second chapter provides a detailed
discussion on privacy preservation in IoT and related works. It also introduces
the fundamentals of blockchain technology, providing the necessary knowledge to
understand its application in the subsequent chapters.

• Chapter 3 Differentially Private Crowdsourcing with Public and Private Blockchain:
This chapter presents the first research article of the thesis. It delves into the
development of a differentially private crowdsourcing system that integrates public
and private blockchains.

• Chapter 4 Blockchain Empowered Multi-Agent Systems: Advancing IoT Security
and Transaction Efficiency: The fourth chapter features the second research ar-
ticle, which proposes a unique confluence of multi-agent systems and blockchain
technology within the IoT domain.

• Chapter 5 Public and Private Blockchain Infusion: A Novel Approach to Federated
Learning: The fifth chapter introduces an innovative methodology that integrates
public and private blockchain networks to enhance the performance of federated
learning while preserving data privacy and security within the IoE.

• Chapter 6 Blockchain-based Gradient Inversion and Poisoning Defense for Fed-
erated Learning: This chapter presents the final research article that proposes a
comprehensive blockchain-based defense mechanism for federated learning sys-
tems against gradient inversion and poisoning attacks.

• Chapter 7 Discussion, Future Work, and Conclusion: The final chapter synthesizes
the insights derived from the research articles, discusses potential avenues for

6



1.5. THESIS ORGANISATION

future research, and provides concluding remarks on the overall contributions of
the thesis.

By providing a clear roadmap of the thesis, this organization enables readers to follow
the logical progression of the research and understand the full extent of its contributions.
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PRELIMINARY AND RELATED WORK

2.1 Preliminary

2.1.1 Internet of Things

The Internet of Things (IoT) refers to the interconnected network of physical objects
which are equipped with sensors, software, and other technologies for connecting and
exchanging data with other devices and systems over the Internet [61].

IoT systems have gained immense popularity due to their ability to bridge the gap
between the physical and digital worlds, enabling a multitude of innovative applications
across various sectors such as healthcare, transportation, manufacturing, smart homes,
and smart cities [82]. These applications range from monitoring and control (such as
smart thermostats or industrial process control) to complex information processing (like
health tracking devices, autonomous vehicles, or drone systems).

At its core, an IoT system consists of three main components: IoT devices, the network,
and the cloud or server. As illustrated in the Figure 2.1, the external layer consists of IoT
devices that connect to the cloud/server via a network. The details of each component
will be discussed in the following sections.

• IoT Devices: IoT devices, or "things", are the physical devices embedded with
sensors, actuators, and processors. These devices can sense, interact with, and
process data from the physical world. They collect, process, and exchange data
via wireless or wired connections. The devices can range from simple sensors
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Figure 2.1: Internet of Things

like temperature sensors, to complex devices like drones or autonomous vehicles.
Many IoT devices also have processing capabilities enabling them to perform
computations on the data they collect before transmitting it.

• Network: The network component in an IoT system connects IoT devices to the
cloud or server. It facilitates the exchange of data amongst devices and between
devices and the cloud. This can involve various communication protocols such
as Wi-Fi, Bluetooth, cellular, Zigbee, LoRaWAN etc., depending on the specific
requirements of the IoT system such as range, power, bandwidth etc.

• Cloud or Server: The cloud component provides the required computing resources
for processing and storing the data generated by IoT devices. It can host various
services and applications for data analysis, visualization, and other functionalities.
The cloud can also be responsible for managing the IoT devices, including tasks like
firmware updates, fault detection, and handling communication between devices.

In addition to these core components, an IoT system often involves middleware, a
software layer that sits between the hardware (the devices and the network) and the
application layer (hosted on the cloud or server). The middleware is responsible for device

10



2.1. PRELIMINARY

management, data management, and provides application support functions like event
processing and service coordination.

From a systemic perspective, an IoT network can be defined as a graph G = (V ,E),
where V is the set of nodes representing IoT devices, and E is the set of edges representing
the communication links between the devices. The data generated by the IoT devices
and communicated over these edges can be modeled as a time-series, given the temporal
nature of the IoT data.

The large-scale, heterogeneous nature of IoT systems, alongside real-time data ex-
change, imposes several challenges including privacy, security, and data management
[64]. IoT devices continuously generate a vast amount of data, often sensitive in na-
ture, raising serious privacy concerns [27]. This data, if not properly protected, could
be exploited by malicious entities. Similarly, security is of prime importance due to the
potentially severe implications of successful cyber-attacks on IoT systems.

Moreover, in the context of integrating IoT systems with crowdsourcing, multi-agent
systems, and federated learning, these challenges become more pronounced. These
integrations may increase the complexity of the data interactions, making it critical to
ensure privacy-preserving data exchanges and secure computations. As IoT technology
continues to evolve and become more integrated with such systems, it becomes essential
to consider these challenges and develop effective solutions for a safe, efficient, and
reliable IoT ecosystem.

2.1.2 Blockchain

Blockchain technology, colloquially known as a distributed ledger technology (DLT), has
emerged as an innovative solution to build trust in decentralized systems, effectively
eliminating the need for a centralized authority [77]. This technology has attracted mas-
sive interest from various industries and academic disciplines due to its distinguishing
features: decentralization, transparency, immutability, and robust security [1].

A blockchain is essentially a distributed, decentralized database, referred to as a
ledger. It contains a chronological series of data blocks, each block being a collection of
transactions or data records. The blocks are linked to each other using cryptographic
principles, thus forming a chain of blocks. This interlinking ensures the immutability of
the records; any change in a block would require changing all subsequent blocks, a task
that is computationally infeasible.

An expanded formal definition can be illustrated as follows:
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Definition 1. Blockchain: A blockchain BC is an ordered sequence of blocks BC =
B0,B1, ...,Bn, where B0 is the genesis block, and each block Bi is defined by a tuple
Bi = (Hi,Hi°1,Ti,Tstamp). Here, Hi is the current block’s cryptographic hash, Hi°1 is
the cryptographic hash of the previous block, Ti represents the transactions included in
the current block, and Tstamp denotes the timestamp at which the block was created.

The transactions in a blockchain are validated and agreed upon by participants
(referred to as nodes) in the blockchain network. This process is achieved through
consensus algorithms. Blockchain can process a variety of transactions. In contexts like
multi-agent systems, federated learning, and IoT, a transaction might refer to diverse
activities such as the registration of an agent, sharing of advice, rating of an agent, or
the dissemination of model updates. An example of a transaction is presented below:

Definition 2. Transaction: A transaction tx within our context is defined by the tuple
tx= (txtype, txdata, txtime, txsign). Here, txtype denotes the type of transaction, which could
be "register", "advise", or "rate". txdata signifies the data pertinent to the transaction,
including information about the agent, the advice shared, or the rating. txtime indicates
the timestamp when the transaction was created. txsign refers to the digital signature of
the agent initiating the transaction, confirming the transaction’s authenticity.

Several key aspects of blockchain contribute to its broad application across numerous
domains. Consensus algorithms, for example, are essential to validate transactions and
maintain the ledger’s consistent state across the network [6]. There are various types of
consensus algorithms including Proof of Work (PoW)[57], Proof of Stake (PoS)[41], and
others, each with their own advantages and disadvantages.

Cryptographic techniques secure the data, ensuring confidentiality, integrity, and non-
repudiation [26]. The combination of public key cryptography for signing transactions
and hash functions for linking blocks provides the basis for the security of blockchain
systems.

Smart contracts represent another integral part of blockchain technology. They are
self-executing contracts with the agreement’s terms directly written into the code. These
contracts facilitate the automation of various processes in a secure, transparent, and
deterministic way [94]. They can be programmed to execute specific actions when certain
conditions are met, enabling the creation of decentralized applications (DApps) on the
blockchain.

Furthermore, blockchain’s inherent immutability ensures that once a smart contract
is deployed on the blockchain, it cannot be altered, enhancing trust in the system. This
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immutability is a result of the blockchain’s design where altering a block would require
a recalculation of every subsequent block’s hash, which is computationally impractical.

Finally, the principle of decentralization in blockchain enhances resilience against
failures and attacks. As each participant maintains a copy of the entire blockchain, even
if a part of the network goes down, the system as a whole continues to function. Moreover,
the lack of a central authority makes the system robust against single-point failures
or attacks. This decentralization is particularly valuable in environments with high
security and reliability requirements, such as IoT networks, multi-agent systems, and
federated learning scenarios.

2.1.3 Differential Privacy

Differential privacy (DP) is a theoretical construct and a powerful methodological tool
that seeks to maximize the utility derived from statistical data analysis while protecting
individuals’ privacy in the dataset [17]. DP achieves this delicate balance by introducing
controlled randomness to the data analysis procedure, preventing precise inference about
any single individual’s information.

The key idea behind differential privacy is that the addition or removal of a single
database entry should not significantly affect the outcome of any statistical analysis.
This is achieved by carefully adding noise to the function’s output. The noise is typically
drawn from a Laplace or Gaussian distribution.

Formally, the DP condition is defined as follows:

Definition 3 (Differential Privacy). A randomized mechanismM provides (≤,±)-differential
privacy if for any two neighbouring datasets D and D0 (i.e., D and D0 differ in at most
one record), the following inequality holds for all events S in the output range of M :

Pr[M (D) 2Y ]∑ e≤Pr
£
M

°
D0¢ 2Y

§
+±

In this definition, Pr[·] denotes probability, S represents any possible output of the algo-
rithm M , and the probability space is over the coin flips of the randomized mechanism
M . Here, ≤ is a non-negative parameter controlling the amount of privacy (a smaller
≤ yields more privacy), and ± is a parameter that provides a bound on the chance that
the privacy guarantee of ≤ is violated. When ± = 0, the mechanism M is termed as
≤-differentially private.

In practice, the choice of the privacy parameters ≤ and ± involves a trade-off between
data privacy and data utility. Smaller values of these parameters result in stronger
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privacy protection but introduce more noise, thereby potentially reducing the usability of
the data [89]. Conversely, larger parameter values decrease privacy protection but make
the data more usable.

An essential feature of differential privacy is its robustness to post-processing, which
means that no matter how the output of a differentially private mechanism is further
processed, the resulting output remains differentially private. This guarantees privacy
protection irrespective of future data processing or analysis. Furthermore, differential
privacy provides a composability property, which means that a sequence of differentially
private computations will itself be differentially private. This is critical in scenarios
where multiple queries or computations are performed on the same dataset.

Today, differential privacy finds extensive use in numerous sectors, including tech-
nology, healthcare, and research, owing to its strong privacy guarantees and versatility.
Major technology companies like Apple [13] and Google [18] have adopted differentially
private mechanisms to protect user data while drawing statistical inferences. Differen-
tial privacy thus serves as an essential tool for preserving privacy in the age of data
proliferation.

2.2 Related Work

In recent years, the Internet of Things (IoT) has grown in importance due to its critical
role in interconnecting a vast array of smart devices, facilitating the seamless exchange of
data. As a result, it plays an essential part in many areas such as smart cities, healthcare,
transportation, and industrial automation. However, this surge in interconnectivity also
magnifies privacy concerns, as these IoT systems often handle sensitive information.
Therefore, ensuring privacy within the IoT domain has become a top priority in both
academia and industry.

Research efforts addressing privacy challenges in IoT have adopted various strategies,
including crowdsourcing, multi-agent systems, and federated learning. Crowdsourcing,
which leverages the collective intelligence of a large group of individuals, offers a promis-
ing avenue for IoT applications, though the increase in data sharing surfaces additional
privacy risks. Similarly, multi-agent systems, which employ multiple interacting agents
to solve complex tasks, have their own set of privacy issues, particularly concerning
data sharing among agents. Federated learning, a machine learning approach where the
learning process is distributed across many devices, also offers significant benefits to IoT
applications. Still, it is not without privacy concerns, especially relating to the potential
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leakage of sensitive data during the learning process.
This section aims to provide a comprehensive overview of current research exploring

privacy issues in IoT in the context of crowdsourcing, multi-agent systems, and federated
learning. Through an in-depth discussion of these studies, we seek to shed light on the
current privacy challenges and solutions within the realm of IoT, thereby contributing to
the continuous effort to enhance the privacy and security of IoT systems. Additionally,
we have conducted comparative analysis between selected research studies and our
proposed chapters.

2.2.1 Privacy Issues when Combining Crowdsourcing with IoT

Table 2.1: Summary of research on privacy issues when combining crowdsourcing with
IoT
Author(s) Main Contribution Key Techniques
Ren et al. [66] Reinforcement learning-based crowdsourcing Trust evaluation
Yu et al. [90] Crowdsourcing privacy protection Multiauthority ciphertext-policy
Zhang et al. [91] Privacy protection using BGV Double-projection layers
Sharma et al. [69] Edge-crowd integration Mini-edge servers, entropy modelling
Ma et al. [51] Data privacy in crowdsourcing Hash function, Merkle tree
Gan et al. [22] Multihop routing Task requester’s privacy
Seliem et al. [68] Survey on IoT privacy issues No solutions provided
Ang et al. [5] Trustworthiness, privacy Need for a trusted third party

When merging crowdsourcing with IoT networks, numerous studies have already
presented privacy-preserving approaches. For instance, Ren et al. [66] described an
unique reinforcement learning-based intelligent crowdsourcing approach with privacy
protection. In their paper, they employ a trust evaluation mechanism to prevent co-
cheating and to oppose the participant’s privacy exposure preference.

To strengthen privacy protection in a data-sharing environment, Yu et al. [90] sug-
gested a crowdsourcing privacy protection technique based on multiauthority ciphertext-
policy attribute-based encryption. The core aim of their article is to present an indepen-
dent key component distribution technique and employ an encrypted way to preserve
the privacy of participants.

Zhang et al. [91] proposed a method for protecting the privacy of participants using
the BGV encryption algorithm. In their paper, they propose replacing the conventional
deep computation model’s hidden layers with double-projection layers in order to solve
the privacy issues in their newly designed model, which could project the raw input into
two distinct subspaces in the hidden layers in order to learn interacted features of big
data.

15



CHAPTER 2. PRELIMINARY AND RELATED WORK

Sharma et al. [69] described a strategy that focuses on edge-crowd integration to
preserve trust and privacy regulations in IoT. The suggested technique employs crowd-
sourcing as mini-edge servers and entropy modelling to establish entity-to-entity trust.

Ma et al. [51] discussed the use of a hash function and the Merkle tree for privacy
protection. They present exhaustive evidence of employing the hash function, which
could enable the protection of data privacy in crowdsourcing.

Gan et al. [22] designed a multihop routing incentive mechanism that can preserve
task requester’s privacy. However, our proposed method aims to protect the worker’s
privacy, not the requester’s. Moreover, we are aiming for a smart contract rather than an
incentive mechanism.

Seliem et al. [68] provided a comprehensive survey about IoT privacy issues. They
pointed out that privacy may be leaked out from either data or tasks when combining
crowdsourcing with the IoT environment, but they did not provide any potential solutions
to solve the privacy issues when combining crowdsourcing and IoT together.

Ang et al. [5] surveyed the trustworthiness, privacy and security of combining crowd-
sourcing with IoT. According to their research, most solutions need a trusted third party
in their environment, which will cause some privacy and security issues that lead to the
centralized problem.

2.2.2 Privacy Issues when Combining Multi-Agent Systems with
IoT

Table 2.2: Summary of research on privacy issues when combining multi-agent systems
with IoT
Author(s) Main Contribution Key Techniques / Focus
Liang et al. [45] Intrusion detection system MAS, blockchain, deep learning
Mezquita et al. [54] Security in smart grids MAS, blockchain in MicroGrid
Nguyen et al. [58] Task offloading and block mining Blockchain-based MEC system
Luo et al. [50] Distributed electricity trading MAS, blockchain for trading
Calvaresi et al. [9] Trustworthiness in AI agents Blockchain, explainable MAS
Kapitonov et al. [34] Communication protocol for MAS Ethereum blockchain, UAVs
Yang et al. [84] Meme transmission prediction Decentralized blockchain, MAS

In the realm of Internet of Things (IoT) applications, the integration of multi-agent
systems is not a novel concept. However, our focus lies in soliciting manuscripts that
present innovative approaches merging multi-agent systems with blockchain technology
to address the pressing privacy concerns encountered within IoT environments. For in-
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stance, the research conducted by Liang et al.[45] develops an intrusion detection system
for IoT networks, employing a unique combination of a multi-agent system, blockchain,
and deep learning through a hybrid placement strategy. The system effectively counters
transport layer attacks, as evidenced by the NSL-KDD dataset. In contrast, our research
elaborates upon this premise, eschewing deep learning algorithms in favor of an innova-
tive amalgamation of blockchain and multi-agent systems. Our approach utilizes smart
contracts to govern agent interactions, thereby enhancing the decision-making processes.
Simulation results consistently indicate performance improvements over traditional
multi-agent systems. Moreover, we address a wider range of challenges encompassing
privacy, security, scalability, and efficiency within multi-agent IoT environments.

The work of Mezquita et al.[54] pertains to the enhancement of security within
smart grids. Their research employs an integrated multi-agent system and blockchain
technology to facilitate peer-to-peer electricity trading within a MicroGrid (MG) envi-
ronment. The application of blockchain amplifies security, reduces transaction costs,
enables micro-transactions, and authenticates data ownership. The inclusion of a multi-
agent system optimizes energy costs and fosters profitability in local energy production.
Despite their system being tailored specifically to smart grid scenarios, our research
introduces a more adaptable framework, efficiently leveraging multi-agent systems and
blockchain technologies across diverse IoT settings. Additionally, we take a step further
by explicitly addressing privacy and security issues while introducing an innovative
agent rating system. This addition enhances advice-sharing reliability, leading to more
robust operations.

In their paper, Nguyen et al.[58] elucidate a novel cooperative task offloading and
block mining (TOBM) scheme for a blockchain-based mobile edge computing (MEC)
system. The focus is on optimizing various parameters such as offloading decisions,
channel selections, transmit power allocations, and computational resource allocations
to maximize system utility. The research introduces a Proof-of-Reputation consensus
mechanism to mitigate latency problems. Although their framework outlines a solid
approach for integrating MEC and blockchain technologies, our work possesses distinct
advantages. We broaden the application of blockchain and multi-agent systems beyond
MEC to cover various IoT applications. Moreover, we introduce a unique agent rating
system and an innovative advice-sharing method which contribute to improved system
efficiency. Furthermore, our comprehensive privacy and security analysis bolsters the
robustness of our model across different environments, thus showcasing our proposed
framework’s wider applicability.
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Luo et al.[50] discuss a distributed electricity trading system designed to facilitate
peer-to-peer electricity sharing among prosumers, encapsulating both a multi-agent
system and blockchain technology. Their model caters aptly to the niche of electricity
trading. In contrast, our proposed framework broadens the application scope to a wider
array of IoT applications. Moreover, our research offers a refined agent rating system
and a unique advice-sharing mechanism to enhance the functionality of multi-agent
systems, aspects not explicitly addressed in the aforementioned work. Additionally, our
privacy and security analysis reinforces the robustness of our system across varying
conditions, yielding a more versatile and efficient solution for diverse scenarios within
the IoT context.

Calvaresi et al.[9] underscore the expanding entwinement of AI with human society,
particularly with the advent of multi-agent systems (MAS) in critical areas such as
healthcare and finance. Their paper acknowledges trust issues arising from a lack of
explainability in AI agents and proposes a solution merging blockchain technology
with explainability in MAS decision-making processes. Their aim is to create more
transparent, secure, and thus trustworthy systems from a human user’s perspective.
Our research, while aligning with the goal of trustworthiness, takes a slightly different
approach. We amalgamate blockchain with multi-agent systems to enhance security
and privacy in IoT applications and build trust via an effective agent rating mechanism.
Furthermore, our system exhibits superior performance in reducing average hits and
steps, indicating more efficient decision-making, which might implicitly augment user
trust. Therefore, while both studies aim to enhance trust and efficiency, ours specifically
thrives in IoT environments, demonstrating practical superiority and applicability.

Kapitonov et al.[34] present a novel communication protocol that allows agents within
a multi-agent system (MAS) to interact and make decisions for executing tasks in cyber-
physical systems. They focus on autonomous agents such as robots or smart things that
operate in unreliable and unknown environments. The authors employ decentralized
Ethereum blockchain technology and smart contracts to orchestrate peer-to-peer network
communication among agents and present an architecture for autonomous business
activity based on this communication method. Finally, the paper describes the practical
application of this methodology in an autonomous economic system with unmanned
aerial vehicles (UAVs). Our research, in comparison, also focuses on enabling secure
and efficient interactions in MAS via blockchain technology. However, our approach
diverges as it caters specifically to IoT environments. Furthermore, our work integrates
an effective agent rating mechanism to increase trust and accountability, which the cited
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research does not explicitly address. Both works are valuable, but ours is tailored for IoT
applications and demonstrates enhanced decision-making efficiency and trustworthiness.

Yang et al.[84] utilize decentralized blockchain theory and multi-agent system for
meme transmission prediction and discovery. Their system outperforms traditional
prediction methods, showcasing improved prediction and a novel system, Meme-chain,
which adeptly handles meme discovery and information transactions. In contrast, our
study employs similar technologies but with a focus on securing IoT networks. We
concentrate on analyzing agent behavior for intrusion detection, thereby enhancing the
effectiveness of the IoT network. While both studies share technological application, our
unique contribution lies in the domain of IoT security.

2.2.3 Privacy Issues when Combining Federated Learning with
IoT

Table 2.3: Summary of research on privacy issues when combining federated learning
with IoT
Author(s) Main Contribution Key Issues/Threats
Geng et al. [24] Risk of gradient leakage Gradient leakage
Madni et al. [52] Highlighted gradient leakage risk Gradient leakage
Fang et al. [20] Addressed gradient leakage Gradient leakage
Kim et al. [37] Privacy and security risks Centralizing training data
Li et al. [43] Potential risks of centralization Centralizing training data
Various [20, 24, 32, 36, 48, 52, 70] Gradient inversion attacks Gradient inversion
Various [12, 29, 62, 75] Poisoning attacks Data poisoning

In federated learning and blockchain systems, privacy issues have been at the fore-
front of concerns. Geng et al. [24], Madni et al. [52], and Fang et al. [20] highlighted
the risk of gradient leakage, a substantial concern in federated learning where model
updates are shared across devices. Simultaneously, Kim et al. [37] and Li et al. [43]
delved into potential privacy and security risks associated with centralizing training
data in federated learning, proposing that blockchain can provide decentralization to
mitigate these risks.

However, while the above research provides valuable insights, several gaps and
limitations persist:

• Limited Mechanisms for Privacy Preservation: Most of the existing work centers
around identifying threats without proposing effective, scalable, and real-time
solutions to preserve privacy during the training process.
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• Scalability Concerns: With an ever-increasing number of devices partaking in
federated learning, the proposed mechanisms must be evaluated under larger-scale
scenarios, a dimension often overlooked.

• Generalization across Federated Networks: The techniques and protocols discussed
have been predominantly tested in specific environments. Their efficacy across
diverse federated learning setups remains under-investigated.

Specific attack threats have also been pinpointed. A significant tranche of the research
has homed in on gradient inversion attacks [20, 24, 32, 36, 48, 52, 70] and poisoning
attacks [12, 29, 62, 75]. Both attack vectors present profound privacy challenges, threat-
ening the integrity of model training and the potential exposure of sensitive information.

In light of these limitations, this thesis introduces novel mechanisms for real-time pri-
vacy preservation in federated learning, ensuring data protection without compromising
the quality of the trained model. Furthermore, we propose a scalable blockchain-based
solution for federated networks, evaluated across various environments, confirming its
efficacy and generalization capabilities. Through rigorous evaluations against gradient
inversion and poisoning attacks, our techniques consistently demonstrate enhanced
resilience, marking a pivotal advancement in the domain of federated learning and
blockchain systems.
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3
DIFFERENTIALLY PRIVATE CROWDSOURCING WITH THE

PUBLIC AND PRIVATE BLOCKCHAIN

3.1 Introduction

With the proliferation of network-connected smart sensing devices, the Internet of Things
(IoT) has increased communication range, storage capacity, and computational power,
which makes the development of large-scale data-based applications promising [47].
Crowdsourcing is a prevalent IoT application that could utilise sensor-equipped mobile
devices to collect and exchange data. Combining crowdsourcing and the Internet of
Things could make data collection more convenient and effective [79]. In addition, as a
natural progression of the IoT concept, IoE consists of four essential components: people,
things, data, and processes [55]. The increasing number of participants in an IoE scenario
not only creates greater chances for the growth of crowdsourcing, but also increases the
possibility of being fooled by hostile attackers or untrustworthy participants[35]. When
merging crowdsourcing with an IoE environment, privacy and trustworthiness of IoT
devices and data are two major obstacles that must be addressed.

Combining IoT with crowdsourcing will present numerous security and privacy
problems, particularly privacy dangers posed by data and data integrity. In certain
sensing jobs, the data are initially detected by the sensing IoT devices, then transferred
to the service provider, and then returned back to end users or stored in a storage system
[73]. The sensed data may contain sensitive information about the Internet of Things
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devices, such as their position and identification. Sending the data back to IoT devices or
storing it with the service provider increases the danger of sensing data exposure [81].
This procedure may expose sensory information to an unconnected or malicious party. In
addition, due to the large number of IoT devices engaging in the activity, the traditional
identity procedure of crowdsourcing will not be effective. We must also examine the
credibility of the participant and the data.

Various techniques, such as dummy locations [60] and differential privacy [83, 92],
have been proposed to overcome the privacy problem in crowdsourcing systems. For
instance, Sun et al. [72] developed a twofold disturbance localised differential privacy
technique to disrupt workers’ location data. To broaden the breadth of privacy protec-
tion, Wang et al. [76] presented a location obfuscation strategy that combines epsilon
differential privacy with delta distortion privacy. To protect location privacy, Qian et
al. [63] suggested a geo-indistinguishable technique based on differential privacy. Some
sensing data have been transferred to a third party without considering the third party’s
trustworthiness, despite the fact that the majority of these articles have adopted ways to
preserve users’ location privacy.

Motivated by the aforementioned privacy-related difficulties, we are searching for
a reputable third party to resolve these issues. As a reliable third party in crowdsourc-
ing, blockchain technology may be a suitable technology. A user’s registration on the
blockchain network is anonymous due to certain characteristics of blockchain. A user
will receive a pair of public and private keys upon registering for the blockchain network.
These two keys are created randomly and are unique for each user.

While considering the vast number of IoE devices in the IoT scenario, blockchain
possesses sufficient network capacity. The smart contract, which is analogous to a logic
programme that runs on the blockchain network, might ensure that the pre-written logic
is executed automatically. All members in blockchain networks must adhere to the logic
of smart contracts, which also means that blockchain can serve as a trusted third party.

In addition, several specific blockchain characteristics could ensure data privacy
when employing blockchain in a system for crowdsourcing. For instance, we may use the
private blockchain to enhance the level of user privacy protection. Due to the properties of
the smart contract, we may automate the process of protecting privacy by incorporating
privacy-preserving mechanisms within the smart contract.

Due to these benefits of the blockchain network, we presented a blockchain-based
method for differentially private crowdsourcing. The overview of our system is depicted
in Figure 3.1. In this figure, there are two different types of blockchain networks: public
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Figure 3.1: Framework of the proposed differential private crowdsourcing system

blockchain and private blockchain. The requester sends the task to the public blockchain
and receives the data from it. If the worker chooses to complete the task on the private
chain, the Agent assists in publishing the task to the private blockchain. Otherwise, the
worker simply retrieves the task from the public chain, completes it, and then submits it
back to the public blockchain network.

The main contributions of this chapter are summarized as follow:

• We proposed a blockchain-based differentially private crowdsourcing framework
which is suitable for IoT environment. The framework brings significant trustwor-
thy to all crowdsourcing participants .

• The framework could protect both the user’s location privacy and the identity
privacy of the user with different privacy-preserving levels via combing the public
blockchain and private blockchain; the user could choose privacy-preserving levels
according to their preference.

• We further systematically analyzed the throughput, latency and safety of the
proposed system.
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3.2 Crowdsourcing Preliminary

Crowdsourcing was initially described by Jeff Howe in 2006 [28]. It is a mix of the terms
"crowdsourcing" and "outsourcing." Simply said, crowdsourcing is when a business or
institution outsources its needs to an external network and pays for the outcomes [80].
There is also a literature review by Enrique [19] regarding the definition of crowdsourcing.
Typically, crowdsourcing involves a large number of volunteers who are equipped with
mobile sensors and travel to the mission site to collect sensory data. The classic system
for crowdsourcing consists of three major components: requesters, servers, and workers.
The requester will transmit the requirement to the server, which will then assign the
task to the worker; the worker will receive payment upon completion of the task. The
two types of job allocation in traditional crowdsourcing are worker selected tasks (WST)
and server assigned tasks (SAT) [85].

In WST, the server will post the job and wait for the worker to select it based on his or
her preferences. The benefit of WST is that the specific location of the workers will not be
revealed, and the server will not know the job the worker selects. Because the worker’s
current location is unknown, the server is unable to predict the worker’s destination.
The clear disadvantage of this model is, however. The service has no control over the
task allocation, and the worker will select the assignment according to their preferences.
This approach will result in a low assignment success rate, which may provide a concern
for efficiency.

In SAT, the worker must upload their current location to the server and wait for
the server to select them. In this architecture, the server has complete control over
job assignment. However, this paradigm has the disadvantage that both the worker’s
present location and job assignment information are disclosed to the server, which may
pose privacy concerns.

Both types of traditional crowdsourcing have privacy issues within their respective
systems. When combining crowdsourcing and IoT, efficiency and privacy issues must be
considered.

3.3 Problem Definition and System Model

3.3.1 Probelm Definition

In this research, we present a blockchain-based crowdsourcing system that is differen-
tially private and deployable in an IoT environment. The existing system of crowdsourc-
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ing is unfit for future IoE networks. In the model that we developed, the identities of all
devices were effectively resolved. All workers were able to complete the task and submit
their responses and information to the blockchain network. In addition, workers could
finish the assignment on either the public or private chain, depending on their personal
inclination. However, since our technology will be deployed in IoE networks, the number
of users will be substantial.

Moreover, the server in the blockchain system may be untrusted. The problem defini-
tion will show in the following. There should be a set of workers hW1,W2,...,Wni, each of
the workers is registered in our system and get their public key Pk and private key Sk.
When the worker wants to finish the task allocated by the server, they should upload
their sensitivity location-related data-set hWi,Taskn,ETaskn

i ,TTaskn
i i to the smart con-

tract. The ETaskn
i and TTaskn

i means the energy cost and time consumption of the user to
complete the Taskn.

However, when the user uploads their task data-set, all participants in the blockchain
network can get their data set. This process will expose the user’s identity and location
information to the attacker. When attackers get this data-set, they could reckon the
user’s location and identity information according to the energy cost ETaskn

i and time
consumption TTaskn

i in the data-set.
Therefore, a blockchain-based crowdsourcing system that provides a comprehensive

privacy-preserving technique to secure worker privacy is required. This implies that
not only must the user’s location-related information be protected, but also the user’s
identity-related information. Unlike other relevant work, the majority of these projects
create a third-party service to implement the privacy-preserving strategy. In the smart
contract, we wish to implement the differential privacy approach, which will not transfer
information to an untrusted third party.

3.3.2 System Model

To address the privacy issues described in the preceding section, we have constructed
a novel architecture for a crowdsourcing system, details of which are presented below.
Four parties are involved in our proposed framework:

• Requester: Initiates and dispatches tasks to the distributed ledger network. The
main aim is to obtain ample location information data that align with their re-
quirements. Via the blockchain system’s smart contract, the requester obtains and
compensates for qualifying data.
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• Agent: The agent orchestrates the private blockchain for workers who prioritize
a heightened privacy level. Once a worker opts for the private blockchain, the
agent fetches the relevant task, placing it on the private chain awaiting task
completion. The agent garners rewards when they facilitate this transfer to the
private blockchain.

• Worker: As the pivotal task contributor, workers adhere to the requester’s guide-
lines for task completion. Post-task, the data quality undergoes evaluation, with
high-quality contributions earning rewards through smart contracts. Notably, all
workers within the blockchain network remain anonymous.

Under the proposed system, the requester initializes their participation by registering
on the blockchain network and subsequently releasing tasks. Workers then have an
important decision to make regarding their privacy level:

• Regular Privacy Protection: Should the worker be content with standard privacy
safeguards, they can directly upload their solutions, energy consumption, and time
metrics to the public blockchain. Here, data protection is achieved using noise
mechanisms like Dirichlet and Laplace noise.

• Enhanced Privacy Protection: For those seeking superior privacy measures, the
private blockchain route awaits. In this approach, only the hash of the task’s
solution will be stored on the public blockchain, ensuring maximum privacy. An
agent mediates the task data management, downloading the task and awaiting
the worker’s confidential submission on the private chain.

In the public chain, the use of Dirichlet and Laplace noise offers a differential privacy
guarantee with a privacy budget ≤. For the private chain route, only the hash of the
solution is recorded on the public blockchain. This method offers a substantially stronger
layer of privacy protection as the direct linkage between task data and its solution is
obfuscated by the hash. Specifically, for tasks completed on the private chain, we can say
the effective privacy level is significantly heightened compared to the public chain due to
the absence of direct data-task association and the cryptographic strength of hashing
techniques.

Upon the conclusion of the worker’s task, the quality of data undergoes an assessment,
and high-quality contributions are duly rewarded.
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3.3.3 Adversary Model

Since all the data saved in the block is accessible to all blockchain users, our attacker
has complete access to the data. Data-mining-based attack tactics are regarded as the
primary harmful activity. Attackers. The attackers might be any blockchain network
participant.

• Participants in the public blockchain: The number of network users will expand
significantly in IoE networks. Due to the nature of blockchain networks, anyone is
able to join, hence there must also be attackers among the users. In our planned
blockchain network, however, we have included the permissioned blockchain, which
requires all players to be authorised prior to registration. Moreover, in a public
chain, sensitive data such as energy cost and time consumption may result in
the worker’s location privacy and identity privacy being encrypted using a mecha-
nism that protects confidentiality. Therefore, it is challenging for an attacker to
determine the true identities and whereabouts of the workers.

• Workers: A worker in blockchain networks may potentially be an attacker. In our
proposed blockchain network, however, all users are required to make a cryptocur-
rency deposit, which will be forfeited if they engage in malevolent behaviour. In
addition, if the user wishes to join the private blockchain, they must disclose their
true identify to the private chain’s membership control protocol.

• Agents: It is also conceivable for the agent to be malicious. They may exhibit
harmful behaviour in blockchain networks. As with the worker, though, all users
must deposit some cryptocurrency as a margin. If their nefarious behaviours are
uncovered, the agent-influenced margin will be sent to the user.

3.4 Proposed System

In this part, a private crowdsourcing system with distinction will be presented. The
proposed solution could tackle some significant privacy disclosure issues in the crowd-
sourcing system, including the location and identity of workers. Additionally, the system
might automatically protect the location and identity privacy of workers.
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3.4.1 Overview

Combining the blockchain with crowdsourcing has advantages over the original crowd-
sourcing approach, including decentralisation and anonymity. It could finish the entire
crowdsourcing procedure without the assistance of a third party [42]. In a crowdsourcing
system, blockchain functions as a third party, but not as the sole third party. On the
blockchain, all workers and requesters are anonymous, so it provides primary security
for the user’s identity privacy. In addition, because blockchain has smart contract compo-
nents, when a worker completes a task and passes a quality test, he or she will receive
compensation immediately.

Figure 3.2 provides an illustrative representation of our proposed blockchain-integrated
differentially private crowdsourcing system. The details of this figure are shown in the
following:

• Registration Phase: At the system’s outset, the worker, requester, and agent un-
dergo a registration process on the public blockchain. This ensures their verified
participation within the ecosystem.

• Task Propagation: Post-registration, the requester transmits the task information
to the public blockchain. This task broadcast ensures visibility to all registered
workers.

• Worker Decision: Workers, upon perceiving a task of interest, must make an
informed decision about the blockchain they wish to operate on.

1. If they opt for the public blockchain, their uploaded sensory data will be
guarded by our differential privacy protection methodology. Successful com-
pletion fetches them rewards directly from the public blockchain.

2. For those leaning towards the private blockchain for augmented privacy, an
intermediate step is introduced. A designated agent, upon verification, bridges
the task information from the public to the private blockchain. As the worker
operates and uploads data to the private blockchain, only the data’s hash
gets reflected on the public blockchain, ensuring a heightened layer of data
privacy.

The details of our proposed privacy-preserving method will be explained in the
following parts.
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Figure 3.2: Overview of the executive process in the proposed system

• Register (Public Blockchain): All works, requesters, and agents must register in
order to participate in the blockchain-based crowdsourcing system. Each registra-
tion receives a pair of keys consisting of a public key and a private key, and their
identification is recorded in the user pool, which includes their username and the
organisation to which they belong.

• Task Announcement: Once the requester has obtained their public and private keys,
they are able to post task specifications on the blockchain-based crowdsourcing
platform. They must provide the task’s requirements and the incentives for each
task.

• Smart Contract Creation in Public Blockchain: To ensure fair trade, the system
would generate a smart contract that the traditional crowdsourcing system does
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not possess, which could execute automatically based on the previously established
protocol. All individuals who wish to join this system, both requesters and workers,
must first deposit a margin of cryptocurrency. After the task is successfully pub-
lished, workers can choose whether to do it on the public or private chain based
on their desired level of privacy protection. If the worker decides to complete the
task on the public chain, the end user(EU) will upload the answer, energy cost, and
time consumption to the blockchain where the energy cost and time usage have
already been stored.

• Load Tasks to the Private Blockchain: If the workers want to finish the task on the
private chain, the leader will retrieve the task-related information from the public
blockchain and post it to the private blockchain network. The agent is responsible
for ensuring task information uniformity on the two blockchain networks (the
public chain and their private chain).

• Upload Sensory Data: Workers upload sensor data to a distributed ledger. In a
private blockchain, the worker’s energy cost and time consumption will be stored
using the same technique as in a public blockchain. In addition, the user might
enter the answer in the private answer section, preventing other organisation
participants from viewing the final response. The participant from other organ-
isations could only view the hash value of the secret chain information, as well
as the already-encrypted energy cost and time consumption. After confirming the
uploaded data’s quality. The qualified statistics are approved and recorded, and the
associated workers are compensated. If the sensory data is deficient, the worker
forfeits their security deposit.

• Payment: If the uploaded data is qualified, the smart contract automatically exe-
cutes the payment process.

3.4.2 Implementation of the proposed system

3.4.2.1 Register

A user is not required to register on the blockchain with his or her true identify. The
user who wishes to register in the blockchain must provide a username and organisation
name, i.e., an anonymous name and the name of the organisation to which he or she
belongs. After successful registration, the user will receive a pair of keys provided by the
organization’s CA.
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Algorithm 1 Register in the Public Blockchain
Require: Utype,Uid, Org
Ensure: RegisterSucess, Pk,Sk,jwt
1: RegisterSucess = False;
2: if Uid 2 Upool then
3: return Change Uid
4: end if
5: Utype 2 Worker, Requester;
6: Pk,Sk √° keyGenerator();
7: Uid √° Pk,Sk ;
8: Poolu √° Upool [ IDui;
9: RegisterSuccess = True;

10: return RegisterSucess, jwt

Algorithm 1 provides the details of the registration process. The RegisterSuccess is
an indicator that reflects whether the user is registered successfully or not. When the
user starts registering, the blockchain network will judge if the Uid has already been
contained in or not. If the Uid has already existed in the Upool it will return the message
which will mention the user to change another Uid that means the registered progress
will be false (Step 2 to 4). Utype indicates the type of the registered users, which contains
two types (worker or requester). The keyGenerator() will generate a pair of keys and
give them to the user according to X509 certification (Steps 6 to 7). Step 8 means if the
user ID is not in the user ID pool Poolu it will be added inside, and the RegisterSuccess
indicator would change to True in Step 9. Finally, it will return the RegisterSuccess and
a jwt token, which will be used in the next progress. Moreover, the jwt token is generated
according to the user ID, and its X509 certification results.

3.4.2.2 Task Announcement

After successfully registering, the requester could advertise the task on the public
blockchain. The task information should include the task requirement, task ID, the
task’s reward, the due date, and the task’s status. Moreover, the requester must possess
the jwt token in order to publish the job on the public blockchain, ensuring that the task
information is accurate and trustworthy.

In Algorithm 2, the indicator TaskSuccess indicate Task is successfully announced
or not. Whenever a requester wants to announce a task, the blockchain network would
check the jwt token of the requester first. If the jwt token is not effective, it will respond
with the jwt token expired message (Step 2 to Step 4). In Step 5, some task-related
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Algorithm 2 Task Announcement
Require: jwt token, T, t, IDt, R, S
Ensure: TaskSuccess, Task
1: TaskSucess = False;
2: if jwt token ineligibility then
3: return jwt token expired
4: end if
5: Task √° T, t, IDt, R, S;
6: TaskSuccess = True;
7: return TaskSuccess, Task

information T, t, IDt, R, S, which means task requirement, task due time, task ID,
rewards and task status, respectively, would give to Task. Then the TaskSuccess will be
changed to True and the TaskSuccess and task information Task would be return (Step 6
to Step 7).

3.4.2.3 Smart Contract Creation in Public Blockchain

In the old crowdsourcing approach, several problems, such as the payment issue, could
not be effectively resolved. However, with a blockchain-based system for crowdsourcing,
this issue could be effectively resolved. In a blockchain-based crowdsourcing system,
a special component known as a smart contract may assure fair trading. This smart
contract would execute automatically based on the previously established protocol.

In addition, all users, both requestors and workers, who wish to announce a task or
join a task must first deposit cryptocurrency as a margin. When the task is announced, it
will be sent immediately to the blockchain through smart contract. The IoE background
indicates that it is an Internet of Everything network. Therefore, all devices that have
already registered on the blockchain might view the task specifications and submit their
responses. As described in the previous section, the worker could choose the amount of
privacy protection, allowing them to execute the transaction on the public or private
chain, depending on their option. Algorithm 3 and Algorithm 4 respectively illustrate
the algorithm for workers deciding whether to finish on the public or private chain.

3.4.2.4 Block Creation Algorithm in Public Chain

After the smart contract has been successfully generated, the system-registered worker
could view the assignment. All workers will have access to the task specifications.
According to our design model, when workers wish to complete a task, they must decide
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whether to complete it on the public or private chain, based on their privacy-protection
preferences. When customers want to complete on the public blockchain, the system will
first validate their jwt token. Workers will be able to submit a response to the smart
contract if the jwt token is valid.

In algorithm 3, the worker’s chosen indicator c is used to indicate whether the
worker chooses to finish the task on the public chain or private chain. After workers
choose to finish the task on public blockchain, they need to send the response result
set hWi,Taskn,ETaskn

i ,TTaskn
i i to SC (Step 1 to 2). SC need to wait for enough response

(Step 3). In Step 4, when SC already get enough response result set, it will generates the
Laplace noise Lap() and Dirichlet noise Dir() according to workers’ Energy cost ETaskn

i
and time consumption TTaskn

i . Then SC will add the noise to each worker’s result set and
store it in the public blockchain (Step 5 to 6). Finally, the system will give a successful
message.

Algorithm 3 Block Creation Algorithm in Public Chain
Require: Workers result response Res, Worker’s chosen indicator c
Ensure: The response set hWi,Taskn,DP(ETaskn

i ), DP(TTaskn
i )i

1: Workers see the Taskn and choose to finish the task on the public blockchain.
2: Workers finish the task and send the result hWi,Taskn,ETaskn

i ,TTaskn
i i set to SC.

3: SC received enough workers response Res.
4: SC generates the noise Lap j(¢Q≤ ) and Dirichlet noise Dir() according to workers

Energy cost ETaskn
i and time consumption TTaskn

i .
5: SC add noise Lap j(¢Q≤ ), Dir() to Ei/T

t and TTaskn
i in the result set to achieve

DP(ETaskn
i ) and DP(TTaskn

i ).
6: SC stores result set hWi,Taskn,DP(ETaskn

i ),DP(TTaskn
i )i on blockchain.

7: return Result set hWi,Taskn,DP(ETaskn
i ),DP(TTaskn

i )i

3.4.2.5 Load Tasks to the Private Blockchain

Because some workers would choose a high level of privacy protection, once they have
been selected to complete the assignment, they might choose whether to complete it on a
private blockchain. When a private job requires processing on our blockchain network, a
private chain is constructed to gather replies and validate transactions. In other words,
the private blockchain would be generated dynamically based on the demand for private
work. Moreover, the private blockchain employs the PBFT consensus to defend against
the Byzantine failure attack. The method of establishing a private blockchain is depicted
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in Algorithm 4. The Merkle tree will be described in depth during the sensory data
upload session.

Algorithm 4 Load Tasks to the Private Blockchain
Require: PrivateChain, Worker’s chosen indicator c
Ensure: Successfully information, jwt Token
1: PrivateChain = False;
2: PrivateChain√° c;
3: if PrivateChain = True then
4: Load tasks to private blockchain.
5: Merkle tree establish.
6: return PrivateChain
7: end if

3.4.2.6 Upload Sensory Data

After completing the task, workers will attempt to submit the sensory data. In this
session, there are two possibilities. The worker selected to establish the findings on the
public chain comes first. The second step is for the chosen worker to record the results
on a private blockchain. Consequently, we shall describe these two scenarios as follows:

a) Finish on public blockchain: If the worker fails to complete the task before the
deadline, the smart contract will automatically end the operation, and the task will
fail. If the worker completes the task before the deadline, after establishing the
results, the miners will check the data’s quality to determine whether or not it is
qualified. If the data meets the requester’s specifications, the workers will receive
the reward, and the hashed findings will be added to the public blockchain.

b) Finish on private blockchain: If the worker elects to publish the results on a private
blockchain, a new private blockchain is created. When the worker completes the
task before the deadline, the agent will first validate the answer; if the answer is
acceptable, the answer of the worker will be hashed in a Merkel tree and just the
hash will be stored in the public blockchain.

The main process of this session would be present in Algorithm 5.

3.4.2.7 Payment

When a task is complete, all public and private blockchains will be upgraded proportion-
ally. The payment procedure would be carried out via the smart contract. Due to the
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Algorithm 5 Upload Sensor data
Require: PrivateChain, Answer of workers Ans, agent answer of data quality DQ
Ensure: PublishSuccess
1: PublishSuccess = False;
2: PublishSuccess √° DQ;
3: if PrivateChain = True then
4: if PublishSuccess = False then
5: return Publish falis
6: end if
7: return PublishSuccess
8: else
9: if VerifiedData = False then

10: return Publish fails
11: else
12: Workers finish the task and send the result hWi,Taskn,ETaskn

i ,TTaskn
i ,Ansi set

to SC.
13: SC received enough workers response Res.
14: SC generates the noise Lap j(¢Q≤ ) and Dirichlet noise Dir() according to workers

Energy cost ETaskn
i and time consumption TTaskn

i .
15: SC generate result set hWi,Taskn,DP(ETaskn

i ),DP(TTaskn
i ),Ansi.

16: SC upload hash to public blockchain.
17: return PublishSuccess
18: end if
19: end if

fact that the worker’s account information is not tied to any personal information in the
blockchain network, the smart contract will pay workers in bitcoin via their public keys
without revealing their true identity.

3.5 Privacy and Security Analysis

3.5.1 Privacy analysis

In this work, we investigate a few common privacy issues in the conventional crowd-
sourcing system and examine how our system could defend against these attacks.

• The server knows the worker’s current location when a worker submits an interest
in the task. Typically, in a conventional crowdsourcing system, the worker must
provide their current location in order to receive more acceptable projects. However,
our solution is distinct in that the server assigns the task and the worker need
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simply submit their chosen location. Therefore, the worker’s location privacy will
not be compromised. Since the entire system relies on the blockchain, all workers
within the blockchain are anonymous. According on the worker’s energy cost and
time consumption, the assignment is assigned.

• The server knows the worker’s further location when they are chosen to finish tasks.
In a conventional crowdsourcing system, when the worker decides to complete the
task, he or she will travel to the precise area to gather the data. However, in our
proposed system, all workers are anonymous in the blockchain system; even if an
attacker knows the worker’s task, they do not know the true identity of the worker
with which it is associated. Moreover, when workers are selected to complete the
assignment, they may choose whether to complete it on a public blockchain or a
private blockchain. If the worker decides to complete the assignment on a private
blockchain, the Merkel tree will protect the worker’s location privacy, resulting in
a better level of privacy protection. The hash will conceal all worker-related data.

• The server knows the worker’s previous location from the payment information.
In a conventional crowdsourcing system, all workers are required to provide their
personal information, such as their real name and bank account number, in order
to be paid after the assignment is complete. With contrast, in the solution we offer,
the entire payment procedure will be conducted automatically in accordance with
the smart contract. The worker will not be required to provide their real identifying
details in order to be compensated. They will automatically receive the bitcoin upon
completion of the assignments. Therefore, it is difficult to match the assignment
with the appropriate workers. Therefore, our system might retain the worker’s
previous location.

Based on these evaluations, we assert that our suggested system could maintain the
location information of workers regardless of their current, future, or previous location.
Our proposed system could prevent the disclosure of location privacy in conventional
crowdsourcing systems.

3.5.2 Security analysis

In a conventional crowdsourcing system, the majority of security issues will occur during
the payment process. To date, the most effective solution to these payment process
security issues has been to find a trustworthy third party. Using a third party, however,
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will still result in complications. For instance, even if the worker completes the task on
time and the data passes the data quality test, it is difficult to guarantee that the third
party will not underpay or pay the worker late.

However, as previously said, our suggested system is a combination of blockchain
technology and crowdsourcing; all regulations are automatically executed by smart
contracts. In our proposed system, there is no third party. When the smart contract’s
conditions are met, the payment task will execute automatically, and the worker will
receive the cryptocurrency immediately.

Malicious workers also pose a threat to the security of traditional crowdsourcing
platforms. Some malevolent workers will accept the assignment but will not complete it
or will provide unqualified data. This means that a worker who receives the identical
task but submits valid data on time will not be eligible for rewards. In a conventional
crowdsourcing system, a reputation system is typically implemented to address these
issues. The task will be assigned to the worker in the system with the best reputation
history. On the other hand, it will create difficulties for new workers who do not yet have
a solid reputation.

However, our proposed solution could alleviate this issue; the server will assign tasks
based on the energy cost and time consumption of the end user. Even if you are a new
worker with a poor reputation, you will be given the job. As a solution to the problem
of workers not submitting qualified data, our proposed system requires customers to
deposit cryptocurrency as a margin. The consensus procedure will ensure that the smart
contract operates efficiently. If the worker gave invalid data, the smart contract would
automatically send the margin to the requester. The same applies to the requester; if the
requester is deemed malevolent, the deposit is forfeited.

Another potential security issue in a typical crowdsourcing system is that malevolent
workers could download and reuse the system’s sensitive data. However, all information
in the blockchain network is encrypted, and all user identities are encrypted by X509
certification, so the attacker will not be able to determine the user’s true identity.

3.6 Results and Analysis

The software configuration comprised Hyperledger Fabric Version 2.X and Hyperledger
Caliper 0.4.1. The hardware configuration included a MacOS 10.15.7 operating system, a
2.2GHz CPU, an Intel Core i7, and 32 GB of 2400MHz LPDDR4 memory. The determin-
istic programming for the blockchain network was developed in Go, running on Visual
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Studio Code.
We may obtain matrices such as send rate, maximum latency, minimum latency,

average latency, and throughput from the Hyperledger Caliper. Comparing the origi-
nal system without our privacy-preserving approach to our differential private crowd-
sourcing method, we utilised three primary matrices: average delay, throughput, and
send rate. The primary variable we analyse is the number of 50, 100, 200, 400, 500, and
800 individual blocks.

3.6.1 Latency

When seen in Figure 3.3, as the block size rose, the average latency of both the existing
system and our new system increased. The corresponding unit of latency is s. Before
200 blocks, however, the latency of these two techniques is essentially identical. From
200 block increments to 400 block increments, these two systems have a nearly identical
upward pattern. Our proposed method has a greater rise trend than the previous system
after 400 blocks.

The average latency of our proposed method is slightly more than that of the original
system since we have employed a mechanism that protects privacy, which requires more
time to calculate. In addition, we may discover that our proposed technique performs
better with smaller block sizes. Even though it demonstrates a bigger rise tendency
after 400 blocks, it is still acceptable because the worker’s anonymity will be preserved.
However, merely the line graph was unable to demonstrate the distinction clearly, so we
drew a box plot to provide more information.

From Figure 3.4, it is virtually identical to what we found in the line graph. In this
diagram, the blue box shows the system without a technique for protecting privacy,
whereas the green box displays our proposed method. We utilised not only the average
latency, but also the maximum and minimum latency values. It would be preferable to
display the latency’s entire shift trend. Both of these delay measures exhibit an upward
trend from 50 to 800 per block. However, it will display certain outliers that have a
considerable impact on the mean latency. The reason why there are outliers in the
average delay is because the hardware will affect the blockchain network. Figure 3.4
reveals that the median average latency before 200 blocks is roughly identical.

Despite the fact that in Figure 3.3, the average latency of our proposed method is
greater than that of the original system, when all the maximum latency, minimum
latency, and average latency are taken into account, the latency of our proposed method
performs better than that of the original system. In other words, the latency performance
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of our proposed solution is more consistent than that of the original system. In addition,
we discovered that, when the block size increases, our proposed technique would have
a superior latency performance than the original system when all maximum latency,
minimum latency, and average latency are taken into account. From Figures 3.3 and
3.4, we can deduce that the average latency of our suggested technique is slightly higher
than that of the standard system, but is acceptable given that it offers a higher level of
privacy protection.

Figure 3.3: The latency comparison of our proposed method
with the baseline

Figure 3.4: The box plot comparison of latency
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3.6.2 Throughput

In Figure 3.5, we can see that both systems exhibit a quick decline from 100 to 400
per block. Interestingly, the throughput of our suggested method is always greater
than that of a system without any privacy-protecting method. Taking into account the
previous results for average latency, our suggested method will have somewhat higher
average latency but a higher throughput than the system without a privacy-preserving
mechanism.

The future IoE network will be more suited to the strategy we suggest. In future IoE
networks, the latency will reduce even further, while the number of connected devices
will skyrocket. At this time, the system’s throughput will be of utmost importance.
Consequently, our proposed approaches are appropriate for future IoE networks. Similar
to the average delay section, a box plot is required to observe more information.

Box plot of the throughput for two systems is depicted in Figure 3.6. In this diagram,
the blue box shows the system without a technique for protecting privacy, whereas the
green box displays our proposed method. Identical to what we discovered in the line
graph. Our proposed solution always yields a greater median than the original system.

In addition, the minimum throughput of our suggested technique is occasionally
more than the maximum throughput of the original system, such as when the block size
is 400, 500, or 800. Although Figure 3.5 and Figure 3.6 both show fluctuations in the
curves, these are primarily due to the computer’s environment. From this section, we
can conclude that the performance of our suggested system’s throughput is superior to
that of the original system, making it more suitable for use in IoE scenarios.

3.6.3 Send Rate

Regarding transmit rate, we have configured both settings at 40 TPS, hence the send
rate of the two systems should be close to 40 TPS. Figure 3.7 demonstrates that the
send rate of both systems falls as the block size increases from 50 to 200. However, both
systems are still approximately 40 TPS. The increase in block size has little effect on the
send rate.

In addition, after 500 block sizes, the transmission rate of our proposed approach is
almost identical to that of the original system. Our new solution performs better than
the previous system prior to 200 blocks. Similar to the average latency and throughput
section, a box plot has been generated for the subsequent data.

Similar to the previous box plot, the blue box in Figure 3.8 shows the system without

40



3.6. RESULTS AND ANALYSIS

Figure 3.5: The throughput comparison of our proposed
method with the baseline

Figure 3.6: The box plot comparison of throughput

a privacy-preserving approach, while the green box represents our suggested method.
Figure 3.8 demonstrates that the median send rate for the two systems is practically
identical when the block size is less than 100. After 200 blocks, our suggested approach’s
send rate will fluctuate marginally more than the system without the privacy-preserving
mechanism.

However, the lowest send rate of our proposed approach is still 36 TPS. From Fig-
ures 3.7 and 3.8, we can deduce that the block size does not greatly affect the send
rate, indicating that when our approach is used in future planned IoE networks, it will
continue to exhibit a good send rate performance.
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Figure 3.7: The send rate comparison of our proposed method
with the baseline

Figure 3.8: The box plot comparison of send rate

3.6.4 Crowdsourcing performance

Regarding the evaluation of the crowdsourcing system’s performance, there are numerous
metrics to consider. Cullina et al.[15] have separated crowdsourcing metrics into four
categories: crowd membership, crowd platform, crowd incentive, and crowd interactions.
We shall discuss these indicators individually in the sections that follow:

• Crowd participants level: Participant is the most essential component of the crowd-
sourcing system. At this level, the identity and quantity of participants are the
two most important indicators. As the number of users increases on the platform
we offer, only the communication time would be affected by the use of blockchain
technology. No other performances will be affected.
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Moreover, in order to join the blockchain network, all participants must first
register and obtain both private and public keys; thus, the identity of participants
issue would be eliminated.

• Crowd platform level: Reliability is one of the most critical metrics for crowdsourc-
ing platforms. Because the blockchain network lacks a third party, all processes are
executed automatically. The platform is far more reliable than conventional crowd-
sourcing platforms. In addition, both privacy and security might be maintained by
our differential privacy strategy.

• Crowd incentivisation level: The reward is also a fundamental component of con-
ventional crowdsourcing. In our platform design, the payment procedure will be
carried out using a smart contract. It will not have the same unpaid issues that
plague conventional crowdsourcing platforms.

• Crowd interactions level: According to our Algorithm 2, the assignment will be
publicised to the entire blockchain network, hence the success rate of allocating
the task will be greater than with a conventional crowdsourcing approach.

3.6.5 Analysis Conclusion

In conclusion, our proposed method may have a good throughput performance and
maintain the same send rate performance, albeit with a slight increase in latency,
although the block size will get larger. However, the problem of latency will be effectively
resolved in future IoE networks. Considering the overall findings, the delay issue may be
acceptable if the worker’s anonymity is protected.

3.7 Summary

When merging crowdsourcing and IoT, the privacy and dependability of IoT devices and
data must be taken into account. Using a combination of public and private blockchains
and a differential privacy mechanism, our suggested technique, a blockchain-based
crowdsourcing system, may successfully address the identity and credibility challenges.
In addition, future IoE environments could benefit from the scalability performance
of our proposed technique. This chapter offers differentially private blockchain-based
crowdsourcing for the Internet of Things (IoT) network. We began by providing some
background information and introducing crowdsourcing, blockchain, and differential
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privacy. After detailing our models, we highlighted obstacles associated with the de-
ployment of the blockchain-based crowdsourcing system in IoT networks. Below is an
evaluation of the privacy and security of our system, as well as our suggested differential
private crowdsourcing. Finally, we examined the performance analysis of our system and
determined that it is suitable for future IoE networks. We believe that this discussion will
generate interest and promote more research into the blockchain-based crowdsourcing
technique that will be utilised in future IoE networks.
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BLOCKCHAIN EMPOWERED MULTI-AGENT SYSTEMS:

ADVANCING IOT SECURITY AND TRANSACTION

EFFICIENCY

4.1 Introduction

In our increasingly digital world, cutting-edge technologies like the Internet of Things
(IoT), multi-agent systems, and blockchain are spearheading various aspects of contem-
porary life [77]. These domains bring unique capabilities to the table: the widespread
reach and interconnection of IoT, the autonomy and adaptability inherent in multi-agent
systems, and the secure, traceable nature of blockchain technology. As technological
boundaries are incessantly pushed, the significance of exploring the synergistic interac-
tions between these areas cannot be overstated [56].

The IoT revolution has redefined our interactions with the immediate physical envi-
ronment. By creating a network of interlinked devices that can communicate and share
data, IoT has enabled unparalleled levels of connectivity and automation [78]. From
enhancing the functionality of residential spaces to facilitating industrial automation,
IoT is now integral to a multitude of cross-industry applications. However, the flip side
of increased interconnectivity is the daunting task of managing dispersed, complex data
while ensuring robust security and privacy measures [65].

Concurrently, the field of artificial intelligence has witnessed impressive strides in
the development of multi-agent systems [25]. Comprising numerous autonomous entities
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or agents capable of environmental perception, information processing, and independent
decision-making, these systems are engineered to achieve specified objectives. The extent
of an agent’s capabilities can vary from executing simple tasks to tackling intricate
problems, depending on the degree of sophistication.

Despite the enhanced efficiency and adaptability that multi-agent systems offer,
particularly in complex and distributed environments, they are not without challenges
[39]. A notable concern is the management of information or advice exchange among
agents. Given the independent operation of agents, which may often have distinct goals,
it is critical to ensure the quality, authenticity, and effectiveness of shared advice.

Blockchain technology, primarily recognized for underpinning cryptocurrencies, fills
this gap. Its potential, however, transcends digital currencies [14]. It is a decentralized,
distributed digital ledger technology that securely documents transactions across several
computers, essentially making recorded data impervious to tampering. This makes
blockchain an ideal mechanism for improving traceability and securing information
exchange in a distributed system.

The amalgamation of multi-agent systems, blockchain technology, and IoT is an
exciting frontier, capable of managing the intricacies of distributed data processing and
decision-making within IoT systems [40]. Secure and transparent information exchange
in an IoT system via blockchain can substantially enhance system robustness and
reliability. Concurrently, the autonomous decision-making capability of multi-agent
systems can optimize system operations based on real-time data garnered from IoT
devices [44].

This Chapter presents an innovative methodology that synthesizes multi-agent sys-
tems with blockchain technology in the context of IoT, aiming to enhance the traceability
of advice shared among agents within a multi-agent system via a public blockchain
network. This integration fosters an environment conducive to transparent, secure,
and efficient information exchange, thereby augmenting the overall performance and
reliability of the IoT system.

In this pursuit, we put forth a suite of algorithms that orchestrate various facets of
the advice exchange process within the blockchain network, including agent registration,
advice request publication, advice sharing, and agent rating. In this system, each agent
(potentially an IoT device or a virtual agent) must initially register with the blockchain
network, authenticated via JSON Web Tokens (JWTs). Subsequently, an agent seeking
advice publishes a request, which is broadcast across the network. Responsive agents
offer advice, and the smart contract processes and uploads this advice onto the public
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chain.
To stimulate the sharing of quality advice, we propose a reward-based rating mecha-

nism. Upon advice utilization, the requesting agent transfers a reward to the advising
agent via the smart contract, which consequently updates the advising agent’s rating
based on the received reward. The transparency and immutability intrinsic to blockchain
ensure that these ratings are fair, unbiased, and tamper-resistant.

Our approach amalgamates the strengths of IoT, multi-agent systems, and blockchain
technology, thereby heralding a new era of secure, transparent, and efficient IoT systems.
By illuminating this potent synthesis, we aspire to contribute to the genesis of innovative
solutions that fully exploit these technological domains.

Our contributions can be encapsulated as follows:

• This study offers an exhaustive examination of the integration of multi-agent
systems, blockchain technology, and IoT. We scrutinize the unique advantages of
these technologies and their synergistic potential in managing intricate, distributed
data processing and decision-making challenges within IoT systems.

• Our research unveils a collection of novel algorithms dedicated to agent registration,
advice request publication, advice sharing, and agent rating within a blockchain-
anchored multi-agent system. These algorithms fortify the traceability, quality, and
efficacy of advice sharing among agents in IoT landscapes.

• We implement a transparent, reward-based rating mechanismwithin the blockchain
network to promote the exchange of high-quality advice among agents. By fostering
an environment that rewards effective advice, we contribute to building a more
robust multi-agent system. The secure and transparent nature of blockchain en-
sures these rewards are fair, unbiased, and tamper-resistant, bolstering the overall
credibility and efficacy of the system.

4.2 Multi-agent Preliminary

4.2.1 Multi-agent System

A Multi-Agent System (MAS) is a network of agents that interact and communicate with
each other, each pursuing a shared or individual objective [33]. In this context, an agent
refers to an entity that can perceive its environment, reason to understand its perception,
and take actions accordingly. A formal definition of an agent can be given as follows:
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Definition 4. Agent: An agent Æ is characterized by a tuple Æ = (SÆ,AÆ,PÆ,ZÆ,øÆ),
where:

• SÆ delineates the set of all potential states of the agent.

• AÆ symbolizes the set of all actions the agent can execute.

• PÆ : SÆ£AÆ !¢(SÆ) serves as the state transition function, where ¢(·) signifies a
set of all probability distributions over SÆ.

• ZÆ represents the set of all possible observations the agent can make about its
environment. An observation can be viewed as a partial or noisy reflection of the
actual state the agent is in. Depending on the agent’s sensors and the complexity
of the environment, the agent might not always observe the exact state. Thus, ZÆ

encompasses all the interpretations or perceptions the agent can have about its
surroundings.

• øÆ : SÆ ! ZÆ is the observation function mapping each state to an observation. It
signifies how the real state of the agent translates to what the agent observes or
perceives.

Definition 5. Multi-Agent System: A Multi-Agent System (MAS) is represented as a
tuple MAS = (A ,E ,R), where:

• A = {Æ1,Æ2, ...,Æn} defines a finite set of agents.

• E characterizes the environment within which agents operate and interact.

• R = {r1, r2, ..., rn} denotes the set of reward values, where each ri 2 Rreward repre-
sents the reward obtained by agent Æi for a certain action in a particular state.
Here, Rreward symbolizes the set of real numbers, quantifying the rewards obtained
by agents for their actions.

• The global state or ’stage’ of the MAS, denoted as Sglobal, is an aggregate of the
states of each individual agent, i.e., Sglobal = SÆ1 £SÆ2 £ ...£SÆn .

Within the multi-agent system, agents can communicate and share advice with each
other to augment their performance or broaden their understanding of the environment.
This information exchange can be formalized as an advice-sharing function.
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Definition 6. Advice Sharing: In a multi-agent system, advice sharing refers to the
process wherein agent Æi conveys a dynamic piece of information or knowledge, denoted
as AdviceÆi , to another agent Æ j at a particular state Staten of the system. As the
system evolves, transitioning from one state to another (e.g., from Staten to Staten+1),
the advice might change based on new observations, actions, or outcomes. This advice
can encompass insights about the optimal action, environmental perceptions, or any
other relevant knowledge that might aid Æ j in its decision-making or in comprehending
the environment better. Mathematically, this advice-sharing process can be described by
the function:

(4.1) fadv :Æi,Æ j,Staten ! AdviceÆi

where both Æi and Æ j are elements of the set of agents A , and Staten is from the set of
all feasible states (or stages as previously mentioned) within the system.

The advice-sharing mechanism promotes collaboration among agents. When combined
with blockchain technology, it ensures the traceability and security of the disseminated
advice, thus establishing a dependable and resilient multi-agent system. The following
sections delve deeper into how the integration of blockchain technology augments the
advice-sharing procedure and overall efficacy of the multi-agent system.

4.2.2 Multi-agent Q-Learning

Q-learning is a model-free reinforcement learning technique that instructs agents to
learn an optimal policy via their interactions with the environment [? ]. In the multi-
agent system (MAS) context, this strategy is referred to as Multi-Agent Q-Learning
(MAQL), where multiple autonomous agents independently apply Q-learning algorithms
to maximize their individual rewards.

Definition 7. Q-Learning: In Q-Learning, each agent Æ maintains a Q-table QÆ :
S£ A ! R, where S is the set of states and A is the set of actions. The Q-value of a
state-action pair (s,a), denoted by QÆ(s,a), is an estimate of the expected future reward
when agent Æ executes action a in state s and subsequently follows the optimal policy.
The Q-value is updated iteratively through the Bellman equation:

(4.2) QÆ
new(s,a)√ (1°∏)QÆ(s,a)+∏[r+∞max

a0
QÆ(s0,a0)],

where ∏ is the learning rate, r is the reward received after executing action a in state
s, ∞ is the discount factor, s0 is the succeeding state, and the max operation is executed
over all actions a0 in state s0.
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Definition 8. Multi-Agent Q-Learning (MAQL): In MAQL, each agent Æ 2A inde-
pendently learns its Q-table QÆ : S£ A! R and updates the Q-values according to its
individual rewards. This procedure can be formalized as:

(4.3) QÆ
new(s,a)√ (1°∏)QÆ(s,a)+∏[rÆ+∞max

a0
QÆ(s0,a0)],

where rÆ is the reward for agent Æ. It’s crucial to note that, from the perspective of an
individual agent, the environment in the multi-agent context is non-stationary, as it is
also influenced by the actions of other agents.

Q-learning and its multi-agent extension have broad applicability, particularly in dy-
namic and competitive environments. Integrated with blockchain technology, it becomes
a potent tool for enhancing the autonomous and decentralized decision-making process
within the MAS.

4.3 Problem Definition and System Model

4.3.1 Problem Definition

Considering the criticality of trust and traceability in multi-agent systems, especially
within the Internet of Things (IoT) context, our primary objective is to devise and
implement a system that not only prompts agents to share high-quality advice but also
guarantees the traceability and integrity of shared advice. Additionally, we aim to assess
the agents based on their contributions to the system, encompassing the quality of their
advice and their level of engagement.

We tackle this problem by integrating a blockchain network into the multi-agent
system to capitalize on its transparency, immutability, and decentralization attributes.
The multi-agent system under consideration consists of a set of agents A =Æ1,Æ2, ...,Æn,
where each agent Æi is capable of sharing advice, receiving advice, and carrying out
actions based on the received advice.

Formally, our problem is articulated in three distinct parts:
Agent Registration: Every agent Æi is required to register within the system to

partake in advice sharing. This registration procedure, fortified and verified by the
blockchain network, ensures the genuineness of each agent’s participation, maintaining
the trustworthiness of the system.

Advice Sharing and Block Creation: When an agent Æi encounters a situation
that demands counsel, it dispatches a request to the system. Subsequently, the system
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broadcasts this request, inviting other agents to provide their advice. Each shared piece of
advice undergoes rigorous logging and endorsement by the blockchain network, ensuring
the traceability and authenticity of each recommendation.

Rating Mechanism: After an agent Æi acts upon the advice from its peers, the
system embarks on a dual evaluation:

• Outcome Evaluation: This can be mathematically formulated as O : AÆi £SÆi !
Rreward, where AÆi represents the action space and SÆi represents the state space of
agent Æi. The outcome evaluation function, O(a, s), quantifies the tangible rewards,
r, that agent Æi accumulates, following the implementation of the advice through
action a in state s.

O(a, s)= r

• Quality of Advice: We can denote this as Q : Rreward £ AÆi ! Rquality, where
Rquality represents the set of real numbers quantifying advice quality. The quality
evaluation function, Q(r,a), derives from the outcome, signifying how beneficial,
accurate, and relevant the advice was in assisting agent Æi to achieve better
rewards.

The challenge lies in devising a system that seamlessly integrates these three compo-
nents while ensuring efficient and secure agent registration, traceable advice sharing,
and a fair rating mechanism. The system needs to be scalable to accommodate a growing
number of agents and transactions, while preserving the integrity and authenticity of
shared advice, even in the presence of adversarial attempts. The performance of the
system will be assessed based on criteria such as advice traceability, the quality of shared
advice, and the fairness of the rating mechanism.

4.3.2 System Model

This section presents the system model that merges multi-agent systems and blockchain
to ensure the traceability of advice exchanged by agents within the multi-agent system.
We detail three critical components: agents, smart contracts, and the blockchain network.

• Agents: Agents are autonomous entities interacting within the multi-agent system.
They possess individual knowledge and expertise, which can be leveraged to offer
advice to other agents when requested. Each agent has a unique identifier, referred
to as Agentid, and is associated with a specific stage in the decision-making process,
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referred to as Stage. The agents collectively facilitate informed decision-making
by sharing and receiving advice.

• Smart Contracts: Smart contracts are autonomous contracts with the terms of the
agreement directly written into code stored within the blockchain network. They
act as mediators between agents and the blockchain, enabling the execution of
predefined actions based on certain triggers or conditions. In our system, smart
contracts play a pivotal role in enabling and validating advice sharing among
agents. They ensure the integrity and transparency of the advice sharing process
by enforcing predefined rules and verifying the eligibility of participating agents.

• Blockchain Network: The blockchain network is the underlying infrastructure
of our system, providing a decentralized and unalterable ledger for recording
advice shared among agents. It comprises a distributed network of nodes, each
maintaining a copy of the blockchain. The blockchain network ensures traceability
and transparency of the advice by securely storing the advice sets on the public
chain. Each advice set comprises the requester’s identifier (Requesterid), the
advising agent’s identifier (Agentid), the current stage (Stage), and the advice
given (Advice). By utilizing blockchain technology, the system guarantees tamper-
proof and auditable records of the advice, allowing for the evaluation and rating of
agent suggestions.

• Advice Sharing Algorithm: To illustrate the operation of our system, we present
the Advice Sharing Algorithm in Blockchain (Algorithm 8). This algorithm outlines
the steps involved in the exchange of advice among agents and its recording on
the blockchain network. Initially, agents recognize the need for advice and consult
their knowledge to offer suitable suggestions. They then forward the advice sets to
the smart contract (SC), which acts as the intermediary between the agents and
the blockchain network. The SC verifies the eligibility of the advising agent and
uploads the advice sets to the public chain. The requesting agents can then retrieve
the advice sets and proceed to the next stage of their decision-making process.

In summary, our system model combines multi-agent systems, smart contracts, and
blockchain technology to ensure the traceability and evaluation of advice within the
multi-agent system. By capitalizing on the transparency and immutability of blockchain,
we safeguard the integrity and accountability of the advice-sharing process, ultimately
enhancing the decision-making capabilities of agents.
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Figure 4.1: Overview of proposed system

4.4 Proposed System

4.4.1 Overview

The proposed systemmarries multi-agent systems and blockchain technology to construct
a secure and efficient framework for collaborative decision-making and information
exchange. The system ensures data confidentiality, integrity, and traceability while
preserving privacy. Figure 4.1 presents a comprehensive visual of the proposed system.
Multiple entities are enrolled within the blockchain network, wherein they contribute
their collective expertise by uploading advice. In turn, the blockchain network furnishes
a comprehensive record of their rating history. The system employs multiple algorithms
to craft a robust and efficient blockchain-based multi-agent system. Further information
on the algorithms will be provided in Section 4.4.2.
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4.4.2 Implementation of Our Designed System

4.4.2.1 Agent Register

The Agent Registration procedure, defined in Algorithm 6, allows for the inclusion of an
Agent and its corresponding organization (Org) into the blockchain network. This process
is vital for enabling the Agent to offer advice within the multi-agent system, participate
in the rating mechanism, and ensuring the traceability of the advice shared by agents
through the blockchain.

Algorithm 6 Agent Register
Require: Agent, Org
Ensure: RegisterSucess, jwt
1: RegisterSucess = False;
2: Check Org;
3: if Agentid 2 Upool then
4: return Agentid already existed.
5: end if
6: Pk,Sk √° keyGenerator();
7: jwt √° Pk, Sk;
8: Agentid √° jwt;
9: Poolagent √° IDpool [ IDui;

10: RegisterSuccess = True;
11: return RegisterSucess, jwt

Initially, the RegisterSuccess flag is set to false, indicating that the registration
process is yet to be successful. The Org is then examined. If the Agent ID (Agentid)
already exists in the pool of unique agent IDs (Upool), the algorithm returns an error
message notifying that the Agentid is already in use. This feature serves to prevent
duplicate registrations and ensure the uniqueness of each agent in the system.

If no duplication is found, the keyGenerator function produces a pair of keys: a public
key (Pk) and a private key (Sk). These keys underpin the cryptographic measures that
secure the registration and subsequent transactions of the Agent. The generated keys
are then attributed to a JSON Web Token (jwt), a digital token utilized to authenticate
the agent’s identity.

Next, the Agentid is assigned to the jwt, effectively associating the agent’s identity
with the authentication token. The Agentid is then added to the agent pool (Poolagent),
which is updated to include the new agent ID.

Upon successful registration, the RegisterSuccess flag is set to true. The algorithm
then returns the RegisterSuccess flag and jwt, denoting the successful registration of
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the agent into the network with appropriate security measures in place. This sequence
of operations allows agents to securely register on the blockchain network, laying the
foundation for their participation in advice sharing and rating within the multi-agent
system.

4.4.2.2 Smart Contract Creation in Blockchain

In the proposed system that merges blockchain and multi-agent systems, smart contracts
serve a critical role in enabling secure and transparent interactions among agents. Smart
contracts allow the implementation of predefined actions and uphold agreed rules within
the blockchain network.

In the system, agents within the multi-agent system leverage smart contracts to
establish a shared protocol governing their interactions. The smart contract acts as a
conduit, facilitating the exchange of information, advice, and other pertinent data among
agents.

Algorithm 7 and Algorithm 8 illustrate the decision-making processes for agents
when they determine the execution of their tasks. These algorithms afford agents the
flexibility to make decisions based on their specific needs and preferences.

The fusion of blockchain and multi-agent systems via smart contracts offers several
advantages. It heightens the security, transparency, and traceability of agent interactions.
The immutability and consensus mechanisms offered by blockchain ensure the integrity
of shared information and guard against unauthorized alterations or tampering.

By harnessing smart contracts within the blockchain, the proposed system establishes
a robust and efficient framework for collaboration and decision-making within multi-
agent systems. The usage of smart contracts promotes trust, transparency, and autonomy
among agents, ultimately improving the overall performance and effectiveness of the
system.

4.4.2.3 Block Creation Algorithm in Blockchain

The Block Creation Algorithm, detailed in Algorithm 7, is formulated to manage situ-
ations where an agent within the multi-agent system needs advice from other agents.
This algorithm ensures the secure conveyance and recording of advice requests on the
public blockchain network, employing smart contracts (SC).

Initially, an agent encounters a scenario that requires advice from others. The agent
then forms a request set hRequesterid, Agent, Stagei, where Requesterid is the ID

55



CHAPTER 4. BLOCKCHAIN EMPOWERED MULTI-AGENT SYSTEMS: ADVANCING
IOT SECURITY AND TRANSACTION EFFICIENCY

Algorithm 7 Block Creation Algorithm in Public Chain
Require: Agent meet the situation that needs advice from other agents
Ensure: The request set hRequesterid, Agent, Stagei
1: PublishSuccess == False
2: Agent meets the situation that needs advice from other agents.
3: Agent send the request advice set hRequesterid, Agent, Stagei to SC.
4: if Agent jwt token ineligibility then
5: return jwt token expired
6: end if
7: SC publish the set hRequesterid, Agent, Stagei on the public chain.
8: PublishSuccess == True
9: return Response set hRequesterid, Agentid, Stage, Advicei

of the agent seeking advice, Agent signifies the advising agent, and Stage denotes the
current state or context of the needed advice.

At this juncture, the PublishSuccess flag is initially set to False, signifying that the
advice request has not been successfully broadcasted on the public blockchain network.

Subsequently, the requesting agent sends the request set to the SC. If the agent’s
JSON Web Token (jwt) is found to be ineligible (e.g., it’s expired), the algorithm stops
and returns an error message indicating the jwt token has expired. This step ensures
that only authenticated agents can request advice, thereby protecting the integrity of
the advice-sharing process.

Once the jwt token is verified as valid, the SC publishes the request set hRequesterid,
Agent, Stagei on the public chain, making the advice request available to all other
agents. After a successful publication, the PublishSuccess flag is set to True, indicating a
successful completion of the advice request broadcast.

The algorithm concludes by returning the response set hRequesterid, Agentid,
Stage, Advicei. This operation marks the completion of the block creation process,
effectively enabling a secure, transparent, and traceable request for advice within the
multi-agent system on the public blockchain network.

4.4.2.4 Advice Upload to Blockchain

The Advise Sharing Algorithm, as detailed in Algorithm 8, is designed to handle the ex-
change of advice between agents within the multi-agent system on the public blockchain
network. This process involves a requesting agent asking for advice, other agents pro-
viding advice based on their knowledge, and the smart contract (SC) processing and
uploading the advice to the public chain.
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Algorithm 8 Advise sharing Algorithm in Public Chain
Require: Agent request set hRequesterid, Agent, Stagei
Ensure: The response set hRequesterid, Agentid, Stage, Advicei
1: Other agents realise there are some agents who need advice
2: Other agents check their knowledge and return the advice
3: Other agent give advice and send the advice set hRequesterid, Agentid, Stage,

Advicei to SC.
4: if Agent jwt token ineligibility then
5: return jwt token expired
6: end if
7: SC upload the set on the public chain.
8: Request agent download the set and move on next stage.
9: return Response set hRequesterid, Agentid, Stage, Advicei

At the beginning of the algorithm, a requesting agent sends a request set consisting
of hRequesterid, Agent, Stagei, where the Requesterid is the ID of the agent asking
for advice, Agent is the advising agent, and Stage signifies the current stage or context
of the advice needed.

Upon realizing that an agent needs advice, the other agents within the system
use their knowledge to generate appropriate advice. They then create an advice set in
the form hRequesterid, Agentid, Stage, Advicei, where Advice is the information or
suggestion they are providing.

The advising agents submit their advice set to the Smart Contract (SC). However, if
an agent’s JSONWeb Token (jwt) is found to be ineligible (e.g., expired), the process stops
and returns an error message stating that the jwt token has expired. This step helps to
maintain the integrity and authenticity of the advice being provided and safeguards the
security of the multi-agent system.

Assuming that the jwt tokens are valid, the SC uploads the advice set onto the
public chain. This action makes the advice accessible to the requester and promotes
transparency and traceability.

Subsequently, the requesting agent downloads the advice set from the public chain,
enabling it to use the advice for its next action.

Lastly, the algorithm returns the response set hRequesterid, Agentid, Stage, Advicei,
signaling the successful completion of the advice-sharing process. This sequence of oper-
ations fosters a collaborative learning environment in which agents can exchange advice
securely and efficiently, thus enhancing the overall system performance.
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4.4.2.5 Rating

The Rating Algorithm, outlined in Algorithm 9, is established to quantify and monitor
the performance of agents based on the advice they provide within the multi-agent
system on the public blockchain network. The process involves the requesting agent
evaluating the usefulness of the received advice and awarding rewards accordingly. The
algorithm then updates the rating of the advising agent.

Algorithm 9 Rating algorithm
Require: The response set hRequesterid, Agentid, Stage, Advicei
Ensure: The rating set hAgentid, Times, Reward, Ratingi
1: Agent who needs advice has downloaded the set hRequesterid, Agentid, Stage,

Advicei
2: Agent use the advice and send the getting reward to SC
3: if Agent jwt token ineligibility then
4: return jwt token expired
5: end if
6: SC update the rate of the agent according to the rewards hAgentid, Times, Reward,

Ratingi
7: return The rating set hAgentid, Times, Reward, Ratingi

The algorithm starts with the requirement of the response set hRequesterid, Agentid,
Stage, Advicei. This set represents the advice given by the Agentid to the Requesterid
in a particular Stage.

The agent in need of advice has already downloaded this set. After utilizing the
advice in the respective context (Stage), the agent then sends a reward, reflecting the
perceived quality of the advice, to the Smart Contract (SC).

The process is halted if the agent’s JWT token is found to be ineligible, such as in
cases where it has expired, ensuring that only valid and authenticated agents are able
to award rewards.

Assuming the JWT token is valid, the SC then updates the rating of the advising agent
based on the received reward. This involves creating or updating the rating set hAgentid,
Times, Reward, Ratingi, where Agentid is the ID of the agent who provided advice,
Times indicates the number of times this agent has given advice, Reward represents
the total rewards received, and Rating is the updated rating based on these rewards.

Finally, the algorithm returns the rating set. This allows for continuous monitoring
and evaluation of each agent’s performance within the system, promoting a merit-based
advice-sharing environment. The transparency and traceability of the public blockchain
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network support this process, ensuring fairness and reliability in the performance
appraisal of agents.

4.5 Privacy and Security Analysis

4.5.1 Privacy Analysis

Privacy preservation is a crucial aspect of the proposed system, given its application
in a multi-agent system environment where each agent might possess unique private
information. This section analyzes how our model preserves privacy while facilitating
advice sharing, traceability, and agent evaluation.

Our privacy protection strategy fundamentally relies on blockchain technology and
the use of a cryptographic scheme during agent registration and transaction record-
ing. Privacy analysis primarily focuses on two elements: agent anonymity and advice
confidentiality.

• Anonymity of Agents: In our model, each agent is represented by a unique identifier,
the Agentid, which is generated from the JWT token at the time of registration.
This ID is used throughout the system to denote the agent’s activities, such as
advice request, advice sharing, and rating updates. This design ensures that the
agent’s real identity is concealed during interactions, thereby providing a level of
anonymity.

It’s important to note that while Agentid is visible within the blockchain network,
it doesn’t lead back to the actual identity of the agent outside the system due to
the one-way nature of the cryptographic function used in the JWT generation.
Therefore, the blockchain network ensures non-linkability between the Agentid
and the real-world identity of the agent, providing strong anonymity protection.

• Confidentiality of Advice: The advice provided by agents is critical information that
requires protection from unauthorized access. In our model, the advice content
is encapsulated within a transaction and recorded onto the blockchain. Here, the
blockchain’s immutability property ensures that once the advice is written onto
the blockchain, it cannot be altered or deleted, thus maintaining the integrity of
the advice.

Furthermore, we utilize cryptographic techniques to protect the confidentiality
of advice content. Specifically, advice shared by an agent is encrypted using the
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public key of the advice requester before it is recorded on the blockchain. Only
the intended requester, who holds the corresponding private key, can decrypt and
access the advice content. This process not only preserves the confidentiality of the
advice but also binds the advice to its intended requester, further enhancing the
privacy of the system.

In summary, our system effectively guarantees privacy by ensuring the anonymity of
the agents and the confidentiality of the advice content. The integration of blockchain
technology and cryptographic techniques offers a solid foundation for privacy protection
in the proposed multi-agent system. In the next section, we will discuss the security
analysis of our proposed system.

4.5.2 Security Analysis

In this section, we focus on the security aspects of the proposed system. Given the
potential adversarial threats in a multi-agent system, maintaining a high level of security
is crucial. The security properties we evaluate in our model include authenticity, integrity,
and non-repudiation.

• Authenticity: Authenticity, in this context, refers to the verification of an agent’s
identity and the assurance that an advice-sharing transaction is indeed initiated by
the claimed agent. Our system ensures authenticity through a secure registration
process and the use of JWT tokens.

When an agent registers, it generates a pair of public and private keys and a JWT
token. The JWT token, containing the public key, is recorded in the blockchain
network and used to authenticate the agent in all subsequent transactions. This
cryptographic technique guarantees that an impersonating agent cannot forge a
transaction without the rightful agent’s private key.

• Integrity: The integrity of the system pertains to the assurance that the advice
shared in the system remains unchanged during storage and transmission. The
inherent immutability feature of blockchain technology guarantees the integrity of
the system.

Once an advice-sharing transaction is validated and recorded into a block, it
becomes part of the blockchain, making it tamper-resistant. This immutability
ensures that the advice, once written onto the blockchain, cannot be modified or
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deleted by any agent or third-party entity, thereby preserving the integrity of the
advice.

• Non-Repudiation: Non-repudiation ensures that a participating agent cannot deny
its actions retrospectively. In our system, the non-repudiation property is achieved
by employing digital signature technology in the transaction process.

When an agent initiates a transaction, such as advice sharing, it signs the trans-
action with its private key. The signature, along with the transaction content, is
recorded onto the blockchain. Since the private key is only known to the signing
agent, this mechanism provides robust evidence that the transaction was indeed
initiated by the claimed agent, offering non-repudiation assurance.

In conclusion, the proposed system incorporates necessary security measures to
tackle potential security threats. The integration of blockchain technology with secure
cryptographic methods offers robust protection against common security threats, thereby
ensuring the safe operation of the multi-agent system in an adversarial environment.

4.6 Results and Analysis

In this section, we meticulously analyzed the impact of two pivotal variables, namely
the map size and the number of agents, on average hits and steps, thereby facilitating a
comparative evaluation between our innovative approach and traditional multi-agent
systems. Two distinct map sizes were considered: 800*800 and 1200*800. Moreover, we
experimented with varying agent numbers, specifically employing 4, 5, 6, and 8 agents,
to discern the influence exerted by different quantities of agents.

It’s imperative to note that the chosen number of agents is intricately tied to the map
size. An overly expansive map, when coupled with a sparse agent population, could detri-
mentally impact learning efficacy by hindering thorough exploration and exploitation
of the environment. Conversely, in smaller maps, an excessive number of agents might
lead to overcrowdedness, resulting in potential conflicts, resource contention, and com-
munication bottlenecks, thereby possibly diminishing the overall system performance
and learning effectiveness. Consequently, an optimal balance is sought to ensure that
the agent population is commensurate with the map size, ensuring effective learning
and operation. Hence, we strategically chose to work with 4, 5, 6, and 8 agents to per-
form a thorough comparison between our method and traditional multi-agent systems,
carefully ensuring that the selected agent quantities are computationally efficient and
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demonstrative of the distinctive advantages of our approach amid varying environmental
complexities. Our selection aims to astutely balance efficient resource utilization and
potent demonstration of our method‚Äôs scalability and applicability across different
scenarios.

In traditional multi-agent systems, certain agents occasionally provide misleading
advice when approached by others. Our model, however, utilizes blockchain technology to
identify and record such inappropriate advice, thereby deterring agents from dispensing
false information. Figures 4.2 through 4.17 illustrate this: the yellow line portrays the
performance of a conventional multi-agent system, while the blue line represents the
performance of our proposed model.

Figure 4.2: Average hits of setting
with 800*800 map size and 4 agents

Figure 4.3: Average hits of setting with
800*800 map size and 5 agents

Figure 4.4: Average hits of setting with
800*800 map size and 6 agents

Figure 4.5: Average hits of setting with
800*800 map size and 8 agents
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Figure 4.6: Average steps of setting
with 800*800 map size and 4 agents

Figure 4.7: Average steps of setting with
800*800 map size and 5 agents

Figure 4.8: Average steps of setting with
800*800 map size and 6 agents

Figure 4.9: Average steps of setting with
800*800 map size and 8 agents

4.6.0.1 Setting of 800*800 map size

• Analysis of Average Hits: Following, we delve into an examination of the average
hits under the chosen experimental settings. As illustrated by Figures 4.2 through
4.5, our suggested strategy consistently surpasses the performance of the conven-
tional multi-agent system. Particularly noteworthy is that after 600 cycles, our
model tends to yield approximately 200, or even fewer, average hits per round.

Figures 4.2, 4.3, 4.4, and 4.5 highlight a greater degree of fluctuation in the
conventional system when juxtaposed with our proposed model. This volatility is
most strikingly displayed in Figure 4.3, where average hits of the original system
exhibit significant variations. This irregularity primarily stems from instances
when specific agents in the conventional system distribute faulty advice, thereby
leading other agents to undertake incorrect actions, resulting in irregularities in
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average hits.

Moreover, Figure 4.4 demonstrates that the conventional system shows a rising
trend in average hits after 300 cycles. Conversely, our model, after merely 100
cycles, allows the average hits across different agent numbers to converge slowly.

• Analysis of Average Steps: Our focus then shifts towards the examination of average
steps within these parameters. Intriguingly, the results bear a close resemblance to
those of the average hits. According to Figures 4.6 to 4.9, our innovative approach
generated average steps of 232.9, 163.2, 154.9, and 120.2, whereas the traditional
multi-agent system produced 338.1, 207.7, 240.2, and 125.2, respectively.

Of particular note in Figure 4.7, the results of the conventional system display
significant oscillations from 0 to 100 cycles, which can be attributed to poor advice
from certain agents. This variation is particularly pronounced in comparison to
other findings. Figures 4.6, 4.7, and 4.8 reveal an increasing trend in the volatility
of the conventional system. In stark contrast, our strategy illustrates a steady
convergence pattern after 300 cycles in Figures 4.6 to 4.9.

An additional observation from Figure 4.9 shows that post 600 cycles, both systems
yield similar results of 120.2 and 125.2. This can be primarily attributed to the
smaller map size (800x800) for eight agents, hence, the average steps do not
markedly differ. However, the trend still reinforces that our proposed solution
outperforms the conventional multi-agent system in terms of average hits.

4.6.0.2 Setting of 1200*800 map size

Figure 4.10: Average hits of setting with
1200*800 map size and 4 agents

Figure 4.11: Average hits of setting with
1200*800 map size and 5 agents
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Figure 4.12: Average hits of setting with
1200*800 map size and 6 agents

Figure 4.13: Average hits of setting with
1200*800 map size and 8 agents

Figure 4.14: Average steps of setting
with 1200*800 map size and 4 agents

Figure 4.15: Average steps of setting
with 1200*800 map size and 5 agents

Figure 4.16: Average steps of setting
with 1200*800 map size and 6 agents

Figure 4.17: Average steps of setting
with 1200*800 map size and 8 agents
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• Analysis of Average Hits: Probing into the average hits within a setting of 1200x800
map size, we uncover patterns that mirror those observed in the previous 800x800
map size setting. Figures 4.10 through 4.13 elucidate how our recommended
strategy continues to outdo the conventional multi-agent system. Notably, after
600 cycles, our method gravitates towards approximately 160 average hits, whereas
the original system is skewed towards 240 average hits.

Figure 4.11 reveals substantial fluctuations in the original system’s average hits
from 50 to 100 cycles, with no discernible convergence. In stark contrast, our
approach demonstrates a consistent trend of convergence across Figures 4.10 to
4.13. Particularly in Figure 4.13, our strategy displays a convergence trend from 0
to 600 cycles, while the conventional system reveals a growing trend between 20 to
30 cycles.

When compared with the 800x800 map size, it is evident that erroneous advice
exerts a lesser influence on the average hits. As the map enlarges, agents are
exposed to a more diverse range of scenarios, thus mitigating the negative impact
of incorrect advice. This is mirrored in the lower average hits for the 1200x800
setting, regardless of whether it’s our proposed approach or the conventional
system.

• Analysis of Average Steps: Regarding average steps for the 1200x800 map size, our
method maintains its superior performance over the original system. As portrayed
by Figures 4.14 to 4.17, following 600 cycles, the average steps of our approach settle
at 284.9, 214.1, 206.8, and 132.5, as compared to 351.5, 239.7, 253.3, and 155.3 in
the traditional system. Remarkably, our approach exhibits a decreasing trend in
average steps across varied agent numbers post 600 cycles, a trend conspicuously
absent in the original system.

Significantly, Figure 4.15 reveals the conventional system charting a fluctuating
and ascending trend from 20 to 200 cycles. In contrast, our method maintains
a steady convergence trend from 0 to 600 cycles. The volatility in the original
system’s average steps can primarily be ascribed to faulty advice disseminated by
several agents during this stage, leading to the lack of convergence post 100 cycles.

Comparing the average steps for the 1200x800 setting with the 800x800 setting,
it is observable that after 600 cycles, the results are larger for both our proposed
approach and the conventional system. This can be traced back to the expanded
map size, which necessitates more steps for all agents to complete their tasks.
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4.6.0.3 Summary of Analysis

Our empirical evaluations provide compelling evidence of our proposed approach’s superi-
ority over the traditional multi-agent system across a multitude of performance measures.
In the context of an 800x800 map size, our methodology consistently exhibited strong
performance, particularly after 600 cycles, during which it regularly returned fewer aver-
age hits and steps compared to the traditional system. In addition, our method displayed
a notable reduction in volatility and exhibited a convergence trend, underscoring its
resilience against poor advice and errors induced by agents.

When examined under the more expansive 1200x800 map size framework, our system
sustained its leading performance, recording lower average hits and steps than the
conventional system after 600 cycles. Despite the growth in map size, which introduced
a broader variety of scenarios and diluted the effects of faulty advice, our method
maintained a lower average hit count. This outcome emphasizes the robustness of our
multi-agent system’s advice sharing protocol.

Comparative analysis of results across different map settings unveils that as the map
size escalates, the steps required for agents to accomplish their tasks also increase, re-
gardless of the system employed. However, our proposed approach exhibits a significantly
slower growth rate of required steps than the conventional system. This observation
reinforces the efficiency and adaptability of our methodology across diverse scenarios.

In conclusion, our experimental findings offer compelling validation of our proposed
approach’s efficacy in meeting its goals - minimising the count of hits and steps, safe-
guarding robustness against poor advice, and demonstrating efficient adaptability in
variable scenarios. As such, it establishes a promising foundation for future investiga-
tions and advancements in the field of blockchain-integrated multi-agent systems.

4.7 Summary

In this chapter, we have unveiled an innovative model that successfully integrates
multi-agent systems and blockchain technology, nested within the broad context of the
Internet of Things. Our proposed solution provides a resilient and effective mechanism
for secure, autonomous interactions among disparate agents within an IoT setting. The
empirical data gathered emphatically indicate the significant efficiency and adaptability
improvements offered by our model over conventional systems. These improvements
encompass reductions in hits and steps, robustness against inadequate advice, and
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commendable scalability in handling extensive scenarios. These outcomes serve as an
affirmation of the practicality and efficacy of our system.
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5
PUBLIC AND PRIVATE BLOCKCHAIN INFUSION: A NOVEL

APPROACH TO FEDERATED LEARNING

5.1 Introduction

The realization of the Internet of Everything (IoE) is steadily progressing due to the
rapid expansion of the Internet of Things (IoT) . A crucial aspect of the IoE is the
interconnectedness of all entities within the network. Although this simplifies life for
individuals, it also results in numerous devices connecting to the internet and generating
massive amounts of data.

Federated learning (FL) has emerged as a promising technique for training machine
learning models using decentralized data sources, such as those found in IoT devices
[59, 67, 73]. FL enables collaborative model training without requiring data sharing
or centralization, addressing critical concerns regarding data privacy and security [7].
However, the communication and computational overheads associated with FL become a
significant hindrance as the number of IoT devices expands, particularly when handling
sensitive data.

Blockchain technology, a distributed and secure system for data storage and manage-
ment, has been employed across various industries due to its openness, immutability,
and security. Integrating FL with blockchain technology has been proposed as a solution
to these challenges, as it provides a decentralized and secure platform for data shar-
ing, verification, and payment [37]. The fusion of FL and blockchain allows for a more
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efficient and secure method to train machine learning models on decentralized data
sources. Blockchain technology can also offer a more scalable alternative for managing
and distributing models developed with FL, particularly in IoT scenarios with numerous
resource-constrained devices.

Prior research has explored the integration of FL and blockchain, proposing different
approaches, such as utilizing smart contracts to govern the FL process on a blockchain
[71], or employing cryptographic techniques to ensure FL’s security and anonymity [70].
Lu et al. [49] presented the first blockchain-powered secure data sharing architecture
for distributed parties. However, the fusion of public and private chains in federated
learning has yet to be thoroughly examined.

Designing an efficient and secure method for managing models on a blockchain
is a primary challenge when merging FL with blockchain technology. This requires
addressing various factors, including consensus processes, transaction speed, storage
capacity, and privacy concerns. Furthermore, managing the models and ensuring their
security and privacy differ depending on the use of public or private blockchains.

We propose a groundbreaking method that incorporates FL with both public and
private blockchains to address these challenges. Specifically, we recommend employing
private blockchains to allow smaller entities, such as corporations, to train models
internally using FL before sharing the results on a public blockchain. The trained models
will be stored on the public blockchain, where other organizations can use them for
additional training and evaluation. This method not only lessens communication and
computational demands on devices but also ensures data security and privacy, as each
organization maintains control over its private blockchain. Figure 5.1 offers an overview
of our proposed system. In this figure, two types of blockchain networks are depicted:
the public blockchain and the private blockchain. The requester first sends the global
model to the public blockchain. Subsequently, the agent uploads this global model to
the private blockchain, allowing the slower client to perform model aggregation. Once
the epoch matches the predetermined epoch setting in the private blockchain, the agent
transfers the model from the private chain to the public blockchain for further model
aggregation.

Our contributions are in followings:

• We present a novel proposition for a federated learning-based blockchain network
that enables the establishment of a private chain dedicated to the model aggrega-
tion process within federated learning. Our framework harnesses the advantageous
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Figure 5.1: Overview of our proposed system

fusion of public blockchain and private chain technologies, thereby augmenting the
performance of the federated learning training process.

• Our proposed system demonstrates enhanced accuracy and convergence rates
compared to traditional federated learning.

• We further evaluate the performance of our proposed system compared to the
conventional blockchain network by examining latency, throughput, and send rate
metrics.

5.2 Federated Learning Preliminary

Federated learning is a decentralized machine learning technique designed to tackle
the problem of private data leakage that may arise during collaborative model training
across multiple devices. Consider N clients with respective datasets D1, D2, ..., DN .
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Traditional machine learning would require collecting these datasets at a central server
for model training, potentially exposing sensitive information and resulting in privacy
breaches. In contrast, federated learning enables local model training, reducing the need
for data sharing.

Federated learning typically consists of three stages:

• The central server selects participating clients for the current training round and
shares the present global model, denoted as Modelg, with them.

• Each participating client, Ci, independently computes a local model, denoted as
Modelp, using their local dataset Di, containing ni samples. The local model is
then transmitted back to the central server.

• The central server aggregates local models from each participating client and
generates a new global model, denoted as Modelg. If the accuracy of the new
global model meets a predefined threshold, the training process stops; otherwise,
the process continues for the next training round.

The local model learning process can be described as minimizing the local loss
function, as shown in Equation (5.1).

(5.1) Fi(w)= 1
|Di|

X

j2Di

f j
°
w,xj, yj

¢

where f i represents the loss function of the i° th client, x and y are sample indices,
f j(w,xj, yj) is the loss function on data sample (xj, yj) with parameter vector w, and |Di|
is the size of data samples in Di.

To synchronize the learning across all clients and achieve a global model, the global
loss function is defined as the weighted sum of all local loss functions. This global loss
function can be expressed as shown in Equation (2):

(5.2) F(w)=
nX

i
piFi(w)

where n is the total number of clients, and pi is the fraction of the total data that
client i possesses.

The learning stages persist until the loss function converges or reaches the maximum
number of iterations or training time allowed. To assess the effectiveness of federated
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learning algorithms, we consider the algorithm to have achieved ≤-accuracy loss if
Equation (3) holds:

(5.3) |VFed°VSum| < "

where VFed and VSum represent the accuracy of federated learning algorithms and
conventional distributed learning methods, respectively.

5.3 Problem Definition and System Model

5.3.1 Problem Definition

In traditional federated learning, as depicted in Figure 5.2, if a fast device and a slow
device have similar data distribution, the central server can transfer a high-quality
feature extractor from the fast device to the slow device. This transfer mechanism
accelerates the training process for the slower device and promotes quicker convergence
of the global model.

However, challenges arise in the traditional federated learning model (Figure 5.2).
Specifically, communication bottlenecks occur when the central server is waiting for
slower devices to complete their training. This waiting period can significantly delay the
aggregation and update of the global model, especially when there is a broad disparity in
computational power among the devices. Some researchers have turned to game theory
to optimize this waiting dilemma. Still, in this chapter, we present a novel approach
grounded in blockchain technology. By allowing devices with limited computational power,
or entities managing a large fleet of devices, to form private chains, we can streamline
the training process.

In the proposed blockchain-based federated learning system, a set of clients, de-
noted as <C1,C2, ...,Cn >, participate. Each client, upon registration, receives a pair of
cryptographic keys: a public key Pk and a private key Sk. After obtaining the global
model, denoted as Modelg, and executing the federated learning process, clients update
the blockchain with a new dataset <BID ,Weights,Gradient,Model, ID >. Here, BID

denotes the block ID, with weights, gradient, and model being essential parameters for
the global model update. The term ID corresponds to the client’s unique identifier.

The computation bottleneck in federated learning arises when devices with varying
computational capacities participate. For devices with limited processing power, execut-
ing the learning algorithm can be time-intensive. Communication bottlenecks, on the
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Figure 5.2: Traditional Federated Learning

other hand, occur due to the latency inherent in transmitting updates, especially in a
decentralized system like blockchain.

In addressing these challenges, we introduce an IoT-compatible federated learning
system underpinned by blockchain technology. Traditional methods, which merge feder-
ated learning with blockchain, often rely solely on a singular type of blockchain. When
deploying federated learning within the Internet of Everything (IoE) framework, it be-
comes imperative to amalgamate both public and private chains. This dual-chain setup
not only combats computational and communication challenges but also facilitates effi-
cient device ID management. While the public chain serves as a universal repository for
model uploads and downloads, the private chains cater to specific entities or companies
desiring a segregated space for model sharing.

5.3.2 System Model

To address the computing challenges described earlier, we have developed a new ar-
chitecture for a crowdsourcing system, which involves three parties in our proposed
framework.

• Agent: The agent is a crucial component in our proposed system. First, the agent
needs to register in the blockchain network and undergo identity verification. The
agent can then upload the global model Modelg, which is used for subsequent fed-
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erated learning training processes. After waiting for the entire system to complete
their federated learning training, the agent can download the trained model and
publish the new model for training in the blockchain network.

• Client: The client, which also represents IoT devices in our system, is essen-
tial in future IoE scenarios as numerous IoT devices will join the blockchain
networks. Like the agent, each client needs to register in the blockchain first.
Additionally, during the registration process, they must specify the organization
or company they belong to. Clients can download the global model and train the
model locally. After completing the training process, they will publish the dataset
<BID ,Weights,Gradient,Model, ID > on the blockchain network to help update
the global model.

• Company: There are two types of companies: those containing a few clients and
those containing many clients. Companies with only a few clients do not need to
establish a private chain. They can naturally run the federated learning training
process according to the settings in the smart contract. For companies with many
clients, as mentioned earlier, they may bring significant computing challenges that
slow the federated learning training process. In our designed system, companies
with many clients can establish their private chain for a more efficient federated
learning training process.

The agent will register and upload the global model to the public chain first. The
federated learning epoch must be set in the smart contract. A blockchain network will be
initialized first. After the entire blockchain network is initialized, the federated learning
training process will start. Different types of companies will download the global model
to train the model with their dataset. Companies with only a few clients will naturally
run the training process. However, for companies with many clients, the blockchain
network will establish a private chain for them. The federated learning training process
epoch setting on the private chain is determined by the epoch setting on the public chain.
After completing the private chain’s epoch setting, the company with many devices will
upload their private model Modelp to the public blockchain to finish the model updating
process. A more detailed description of this entire process will be provided in Section 5.4.

5.3.3 Adversary Model

In our designed system, we take into account two potential threat categories:
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• Insider Threats: Within our proposed system, clients are deemed semi-trusted
during the training process. Given this assumption, clients may be honest but
curious about parameter updates and could potentially deduce sensitive informa-
tion from blockchain transactions. Specifically, although the original data is not
directly shared, inquisitive clients can still extract training data from gradients
and approximate the raw data, particularly when the architecture and parameters
are not completely secured. Moreover, malicious clients can exploit and learn data
structures, such as image pixels derived from global model updates, without the
consent of other clients and MEC servers. However, in our blockchain network,
each time a client accesses data, the action is recorded in the blockchain network,
facilitating the detection of data leaks.

• External Threats: Clients may confront adversaries who try to introduce backdoors
into the model by manipulating data features or incorporating an incorrect subset
of data into the original dataset, aiming to alter local clients’ training objectives.
Attackers may also compromise client devices and tamper with local model para-
meters during the learning process, leading to errors in the global model update.
Furthermore, adversaries can exploit wireless communication channels during FL
training to access clients’ personal information. For example, sensitive user infor-
mation, such as age and preferences, might be extracted from parameter update
packages. External eavesdroppers can also gain unauthorized access to clients,
potentially taking control of the model update aggregation process. However, our
proposed system utilizes a permissioned blockchain, which requires clients to pass
an identity check before participating in the network. This significantly raises the
cost of external threats and helps prevent attacks.

5.4 Proposed system

5.4.1 Overview

In our proposed federated learning system with public and private blockchain, we address
the massive computing challenges in future IoE scenarios. This approach can tackle
traditional federated learning problems as mentioned in the problem definition section.
The smart contract of the blockchain network automates model updating and aggregation
while preserving the privacy of participants since all clients on the blockchain network
are anonymous. Figure 5.3 depicts the procedure of our proposed federated learning
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Figure 5.3: Process of proposed system. (1) Register. (2) Global model upload. (3) Upload
the model to the private chain. (4) Model updating setup. (5) Model aggregation in the
private chain and send it to the public chain. (6) Model aggregation in the public chain.
(7) Global model update and the requester request the model.

system with public and private blockchain. More details of the implementation will show
in Section 5.4.2.

Initially, the agent, client, and company register on the public blockchain. Companies
register as separate organizations within our proposed system, with each organization
consisting of multiple clients. When registering on the blockchain network, clients must
specify their affiliated organization. In contrast, agents’ registration does not involve
indicating an organization, as they are responsible for uploading, rather than updating,
the global model. Subsequently, the agent uploads the global model to the public chain.
Once the global model is uploaded, companies establish their private chains to improve
the federated learning training process. The federated learning training epoch is set
within the smart contract. When the private chain’s training process reaches the specified
epoch in the smart contract, model aggregation commences in the private chain. The
private model, Modelp, is then sent to the public chain for further aggregation. Once
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the smart contract detects the completion of the model aggregation process, it updates
the final global model, Model f , which the agent can then obtain. The following sections
provide a detailed explanation of our proposed method.

• Register: All agents, clients, and companies must register to participate in our
proposed system. Upon registration, the company will receive an organization
name in the blockchain network. Each client and agent will receive a pair of keys,
and their identification is recorded in the user pool, which includes their username
and the organization or company they are affiliated with.

• Global model upload: Once the agent successfully registers in the public blockchain,
they can publish the global model Modelg to the public chain. However, the agent’s
identity must be verified before uploading the global model.

• Private model upload: When the smart contract recognizes that the global model
has been successfully uploaded and there are some organizations with numerous
clients that may impede the federated learning training process, a private chain
will be established. The agent in that company can upload the Global model to the
private chain to address the computing problem.

• Model updating setup: To ensure the federated learning training process runs
successfully on both the public and private chains, the epoch of the federated
learning training process on both chains must be set. The epoch setting on the
public chain should be a multiple of the epoch setting on the private chain. This is
done to ensure that when the model aggregation is finished on the private chain,
it can be sent to the public chain for model aggregation immediately. The model
aggregation on the public chain will not need to wait for the private chain.

• Model aggregation in private chain and public chain: When the smart contract
realizes the federated learning training process on the private chain has reached
the set epoch, it will instruct the agent in the organization to send the private
model Modelp to the public chain and wait for further model aggregation on the
public chain. At this time, the agent’s identity check will also be required. Moreover,
when the federated learning training process on the public chain also reaches the
epoch setting, the whole model aggregation process will start on the public chain.

• Global model update: After the entire training process is finished on the public
chain, the smart contract will update the final global model according to the model
on the public chain and wait for the next model upload.
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5.4.2 Implementation of Our Designed System

5.4.2.1 Register

In our proposed blockchain-based registration process, users are not obligated to reveal
their true identities. Instead, they supply a pseudonym and their affiliated organization’s
name during registration. Upon successful registration, the organization’s Certificate
Authority (CA) issues a pair of cryptographic keys to the user. Algorithm 10 outlines
the registration process, with the RegisterSuccess indicator signifying a successful user
registration.

Algorithm 10 Client Register
Require: Uname, Org
Ensure: RegisterSucess, jwt
1: RegisterSucess = False;
2: Check Org;
3: if Uname 2 Upool then
4: return Uname already existed.
5: end if
6: Pk,Sk √° keyGenerator();
7: jwt √° Pk, Sk;
8: Uname √° jwt;
9: Poolu √° Upool [ IDui;

10: RegisterSuccess = True;
11: return RegisterSucess, jwt

During registration, the blockchain network verifies if the user’s pseudonym, Uname,
is already included in the Upool, and the associated organization is checked in step 2.
If Uname exists in the Upool, the user is prompted to choose a different pseudonym,
and the registration process is considered unsuccessful (Steps 3-4). A pair of keys is
generated by the keyGenerator() and provided to the user through a JSON Web Token
(JWT) following X509 certification (Steps 6-8). If the user ID is not in the user ID pool,
Poolu, it is added in step 10, and the RegisterSuccess indicator is set to true. The process
concludes by returning the RegisterSuccess status and a JWT, which is used in later
steps. Notably, the JWT is generated based on the user ID and corresponding X509
certification results.

5.4.2.2 Global Model Upload
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Algorithm 11 Global Model Upload
Require: jwt token, Modelg
Ensure: UploadPublic, Model
1: UploadPublic = False;
2: if jwt token ineligibility then
3: return jwt token expired
4: end if
5: Model √° Modelg;
6: UploadPublic = True;
7: return UploadPublic, Model

After successful registration, users can continue to upload the global model to the
public chain. As depicted in Algorithm 11, the UploadPublic indicator represents suc-
cessful model uploads to the public chain. When a user tries to upload the global model,
the blockchain network evaluates the JWT for validity. If found invalid, an expiration
message is returned (Steps 2-4). In step 5, the global model Modelg is uploaded to Model
on the public chain. Subsequently, UploadPublic is set to true, and both UploadPublic
and Model are returned (Steps 6-7).

5.4.2.3 Private Chain Establish

Following the successful upload of the global model to the public chain, it is essential to
upload the model to the private chain as well, incorporating an authorization process.

Algorithm 12 Upload to the Private Chain
Require: jwt token, Modelg
Ensure: UploadPrivate, Modelp
1: UploadPrivate = False;
2: if jwt token ineligibility then
3: return jwt token expired
4: end if
5: Modelp √° Modelg;
6: UploadPrivate = True;
7: return UploadPrivate, Model

In Algorithm 12, upon successful upload of the global model to the public chain, the
model must be uploaded to the private chain. The UploadPrivate indicator signifies
the successful upload of Modelg to the private chain. Similar to Algorithm 11, user
authentication is required when uploading Modelg to the private chain (Steps 2-4). In
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Step 5, the global model Modelg is uploaded to Modelp. Subsequently, UploadPrivate
is set to true and returned with the model.

5.4.2.4 Model Updating Setup

Once the global model has been successfully uploaded to both the public and private
chains, the model updating setup must be finalized, as depicted in Algorithm 13. The
system sets Publicepoch and Privateepoch according to the specified epoch in Step 2.
Importantly, the Publicepoch must be a multiple of Privateepoch to ensure simultaneous
model aggregation on both the public and private chains. If this condition is met, the
UpdatingSetup indicator is set to true (Steps 3-5), and both UpdatingSetup and epoch
are returned.

Algorithm 13 Model Updating Setup
Require: epoch
Ensure: UpdatingSetup, Publicepoch, Privateepoch
1: UpdatingSetup = False;
2: Set Privateepoch and Publicepoch
3: if Publicepoch is multiple of Privateepoch then
4: UpdatingSetup = True
5: end if
6: return UpdatingSetup, epoch

5.4.2.5 Model Aggregation in Private Chain

With the epoch successfully configured, federated learning proceeds on the private
chain according to the set epoch. Upon reaching the specified Privateepoch, the smart
contract (SC) initiates the model aggregation process on the private chain, detailed in
Algorithm 14.

In Algorithm 14, the UpdatingSetup indicator is required initially. As federated
learning progresses on the private chain, and private node Pn reaches the Privateepoch
setting, the SC aggregates the model on the private chain Modelp (Steps 2-5). Addi-
tionally, the JWT token is verified when Pn uploads Modelp (Steps 6-8). The SC then
sends the model to the public chain for model aggregation (Step 10). The private chain
aggregation indicator, Aggregationp, is set to true, and both Aggregationp and the
model are returned.
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Algorithm 14 Model Aggregation in Private Chain
Require: jwt token, Privateepoch, Modelp, Aggregationp
Ensure: UpdatingSetup
1: Aggregationp = False;
2: SC realise node reach Privateepoch;
3: if Pn reach Privateepoch then
4: SC aggregate Modelp;
5: Model √° Modelp;
6: if jwt token ineligibility then
7: return jwt token expired
8: end if
9: end if

10: SC send Model to PublicChain.
11: Aggregationp = True;
12: return Aggregationp, Model

5.4.2.6 Model Aggregation in Public Chain

In parallel to the private chain model aggregation process, a similar process occurs on
the public chain, as outlined in Algorithm 15. At the onset of Algorithm 15, the public
chain aggregation indicator (Aggregationg) is set to false. When the global node Gn

reaches the previously set epoch, the SC commences model aggregation (Steps 2-4). A
JWT token must be validated to upload the model (Steps 5-7). Ultimately, the indicator
Aggregationg is set to true and returned alongside Modelg.

Algorithm 15 Model Aggregation in Public Chain
Require: Model, jwt token, Aggregationg
Ensure: epoch, Aggregationp
1: Aggregationg = False;
2: if Gn reach epoch then
3: SC aggregate Model.
4: Modelg √° Model;
5: if jwt token ineligibility then
6: return jwt token expired
7: end if
8: end if
9: Aggregationg = True;

10: return Aggregationg, Modelg
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5.4.2.7 Global Model Update

Following model aggregation on the public chain, a global model update process is
initiated, wherein the Model f is updated using Modelp and Modelg. Algorithm 16
outlines the primary process for the global model update. Initially, the UpdateSuccess
indicator is set to False. When the smart contract (SC) identifies that both Aggregationp

and Aggregationg indicators are True, it signifies the completion of model aggregation
on both private and public chains. Consequently, the SC updates the final global model
Model f based on Modelp and Modelg (Steps 2-4). The UpdateSuccess indicator is then
set to True, indicating the conclusion of the global model update process. The final global
model Model f and the UpdateSuccess indicator are returned.

Algorithm 16 Global Model Update
Require: SC, Model f
Ensure: Aggregationg, Aggregationp, Model, UpdateSuccess
1: UpdateSuccess = False;
2: if Aggregationg and Aggregationp == True then
3: SC update the final global model Model f .
4: Model f √° Modelp,Modelg;
5: UpdateSuccess = True;
6: end if
7: return UpdateSuccess, Model f

5.5 Privacy and Security Analysis

5.5.1 Privacy Analysis

A paramount concern in federated learning revolves around the protection of client
data during the model’s training phase [80]. In the conventional paradigm of federated
learning, data is accumulated and amalgamated on a singular centralized server, inadver-
tently elevating the potential for privacy infringements [88]. The synergistic employment
of both public and private chains can serve as a potent antidote to these privacy threats.

Public chains, celebrated for their transparency and incorruptibility, emerge as the
ideal candidates for documenting and authenticating transactions within a decentralized
milieu. Yet, their application in federated learning is not devoid of challenges. Inherent
in the very design of public chains is the fact that all data is open to inspection by every
participant in the network. This includes all data accumulated during the model training
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process. The unintended consequence is that any inadvertent revelation of sensitive
information might snowball into severe privacy transgressions, with ensuing legal and
ethical repercussions.

Private chains, juxtaposed against public chains, introduce a heightened echelon of
data privacy and dominion. Their architecture is such that they restrict network entry
solely to accredited entities, creating a fortress around sensitive data and permitting
access only to those who bear the requisite authorization. When inducted into federated
learning, private chains play a pivotal role in curtailing the risk of data exposure and
bolstering the sanctity of client data. A unique facet of private chains is their adaptability.
They can be meticulously molded to resonate with explicit privacy stipulations, encom-
passing techniques like advanced encryption and stringent access controls to fortify
data.

However, the incorporation of private chains is not without its hurdles. Navigating
coordination intricacies among disparate participants becomes imperative to vouchsafe
the precision and reliability of the model. A promising resolution to this conundrum lies
in the embrace of a hybrid blockchain framework, adeptly weaving together the strengths
of both public and private chains. This amalgamated architecture, as elucidated in our
proposed methodology, adeptly surmounts these challenges.

5.5.2 Security Analysis

Besides privacy concerns, federated learning also presents security challenges related to
data integrity and availability [87]. The centralized architecture of traditional federated
learning, in which client data is gathered and aggregated on a centralized server, is
susceptible to external attacks. Employing public and private chains in tandem can
bolster the security of the federated learning process.

Although public chains offer transparency and decentralization, they may compromise
security. Public chains are susceptible to attacks such as 51% attacks, where a single
entity gains control of over 50% of the network’s computational power, allowing them
to manipulate chain transactions. Additionally, the deployment of smart contracts in
public chains could expose the network to vulnerabilities like reentrancy attacks and
denial-of-service attacks. These security risks can threaten the integrity and availability
of data stored on the chain, which can have disastrous consequences in the context of
federated learning.

On the other hand, private chains deliver improved security and network control.
Private chains limit access to authorized participants, reducing the likelihood of external

84



5.6. RESULTS AND ANALYSIS

attacks. Furthermore, private chains can be customized to satisfy particular security
requirements, including implementing access controls and encryption to protect sensitive
data.

By leveraging public and private chains simultaneously, we can exploit the benefits
of both strategies while mitigating their respective risks. Specifically, we can use private
chains to maintain clients’ data privacy and enhance the security of the federated
learning process. In addition, public chains can guarantee transaction transparency and
immutability, as well as provide a decentralized network that is resilient to single-point-
of-failure attacks.

It is crucial to acknowledge that incorporating public and private chains in federated
learning introduces challenges associated with network management, such as interoper-
ability between different chains and coordination of participants’ efforts. These obstacles
necessitate the development of novel frameworks and protocols to guarantee the secure
and efficient functioning of the network.

5.6 Results and Analysis

In this section, we analyze our system from two aspects: federated learning performance
and blockchain platform performance. The experiment settings are detailed in the
corresponding sections below.

5.6.1 Federated Learning Performance

We assessed the performance of our proposed system using two datasets: MNIST and
CIFAR10. The results of the train loss are as follows:

• MNIST: We undertook a comprehensive comparative analysis, evaluating our
system in relation to the original federated learning approach and other federated
learning systems integrated with a public blockchain network, utilizing the MNIST
dataset.

In particular, we conducted a meticulous investigation, examining two distinct
epoch settings: 10 and 50 epochs. The training losses of the traditional federated
learning approach, the other federated learning systems incorporating a public
blockchain, and our proposed system are depicted in the subsequent figures.

Both Figure 5.4 and Figure 5.5 present the training progress for an epoch setting
of 10, considering variations in the number of users (50 and 100, respectively).
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Figure 5.4: Setting with 10 epochs and
50 users under MNIST dataset

Figure 5.5: Setting with 10 epochs and
100 users under MNIST dataset

Figure 5.6: Setting with 50 epochs and
50 users under MNIST dataset

Figure 5.7: Setting with 50 epochs and
100 users under MNIST dataset

Additionally, Figure 5.4 focuses on the accuracy attained by the traditional fed-
erated learning approach, which reaches 96.94 after 10 epochs. Conversely, the
integration of other federated learning systems with a public blockchain network
achieves a higher accuracy of 97.89. Significantly, our proposed system outperforms
both, attaining an accuracy of 98.39.

Furthermore, in Figure 5.5, the accuracy of the traditional federated learning
system is 96.92, which is lower than that of the other federated learning systems
combined with a public blockchain network (97.14). However, our proposed system
achieves an accuracy of 97.97, surpassing both of these performances. Notably, our
proposed system consistently demonstrates lower training loss than the traditional
federated learning system and other federated learning systems combined with a
public blockchain network at each epoch.
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In Figure 5.6 and Figure 5.7, we present results that are consistent with the
previous findings. We conducted experiments using an epoch setting of 50 to
compare our system with other federated learning systems that incorporate a
public blockchain, as well as the traditional federated learning approach.

When considering 50 epochs and 50 users, the accuracy of the traditional federated
learning system is observed to be 98.14, while the accuracy of the other proposed
system is 98.77. However, our proposed system achieves a higher accuracy of 99.04.

Under the setting of 100 users, our proposed system demonstrates an accuracy of
98.75, surpassing both the accuracy of the traditional system (98.12) and the other
proposed system (98.36).

In summary, our proposed system demonstrates superior performance compared
to other federated learning systems that solely integrate a public blockchain net-
work, as well as the traditional federated learning approach, in MNIST dataset.
Our system consistently achieves higher accuracy and lower training loss across
various epochs and user settings. These findings underscore the effectiveness of
our proposed system in enhancing the performance of federated learning tasks.

• CIFAR10: For the CIFAR10 dataset, we employed a similar experimental setup
as with the MNIST dataset, utilizing two distinct epochs (20 and 50 epochs) and
varying the number of users (50 and 100) for comparison.

Figure 5.8: Setting with 20 epochs and
50 users under CIFAR-10 dataset

Figure 5.9: Setting with 20 epochs and
100 users under CIFAR-10 dataset

In the case of 20 epochs and 50 users, the traditional federated learning system
achieved an accuracy of 51.47, while the other proposed system reached 51.19. How-
ever, our proposed system demonstrated superior performance with an accuracy

87



CHAPTER 5. PUBLIC AND PRIVATE BLOCKCHAIN INFUSION: A NOVEL
APPROACH TO FEDERATED LEARNING

Figure 5.10: Setting with 50 epochs and
50 users under CIFAR-10 dataset

Figure 5.11: Setting with 50 epochs and
100 users under CIFAR-10 dataset

of 55.02. Figure 5.8 illustrates a faster convergence rate for our proposed system,
as evidenced by significantly lower training loss after only 2 epochs. Similarly,
Figure 5.9 presents a similar trend, where our proposed system demonstrates
a faster convergence rate compared to the other two methods. Specifically, our
system achieves an accuracy of 49.11, which is higher than the accuracy of the
other federated learning system that incorporates a public blockchain (48.42), as
well as the accuracy achieved by the traditional federated learning system (48.97).

Similarly to the findings in Figure 5.8 and Figure 5.9, our proposed system demon-
strates a faster convergence rate in Figure 5.10 and Figure 5.11. In both cases, our
proposed system achieves a low training loss after 5 epochs.

Under the setting of 50 epochs and 50 users, our proposed system achieves a higher
accuracy of 53.51, surpassing the accuracy of the traditional federated learning
system (46.24) and the other proposed federated learning system that incorporates
a public blockchain (51.37).

Moreover, with 50 epochs and 100 users, our proposed system also attains a higher
accuracy of 54.51 compared to the accuracy of the traditional federated learning
system (51.17) and the other proposed system (52.19).

In summary, for the CIFAR-10 dataset, our proposed method exhibits higher
accuracy compared to the traditional federated learning system and the other
proposed system that integrates a public blockchain. Additionally, our proposed
method demonstrates a faster convergence rate. This advantage becomes more
pronounced as the number of epochs increases.
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5.6.2 Blockchain Platform Performance

In the blockchain platform performance analysis, we assessed our system using three
key metrics: latency, throughput, and send rate. These metrics are crucial in determining
the performance of a blockchain platform. We compared our proposed system, which
incorporates federated learning, with the original blockchain platform that does not,
using varying numbers of individual blocks (50, 100, 200, 400, 500, and 800).

• Latency: As illustrated in Figure 5.12, the mean latency for both the traditional
blockchain network and our proposed method rose as the block size increased. Up
to 500 blocks, the latency performance of our proposed method closely paralleled
that of the conventional blockchain network. Beyond 500 blocks, our proposed
method demonstrated a more rapid latency growth rate, mainly due to the rising
number of model updates transmitted through the blockchain network as the block
size grew. Although the latency of our proposed method reached 18 seconds at 800
blocks in contrast to 15 seconds for the traditional blockchain network, it remains
within tolerable limits. To better showcase the differences, we generated a box plot
encompassing the average, maximum, and minimum latencies.

The box plot in Figure 5.13 validates our observations from the line graph. Our
proposed method, signified by green boxes, displayed a higher median latency
compared to the traditional blockchain network, indicated by blue boxes. Notably,
our proposed method showed superior performance at 500 blocks, achieving a
lower maximum latency than the traditional blockchain system. In conclusion, our
proposed method exhibited a slightly higher latency performance compared to the
traditional blockchain network.

• Throughput: Figure 5.14 reveals a rapid decline in throughput for both systems
from 100 to 800 blocks. Notably, our proposed system initially outperformed the
original system. However, due to the model update and aggregation processes in
federated learning, the transmission of additional data may have caused a delay
in throughput. We constructed a box plot to provide more detail, similar to our
latency analysis.

The box plot in Figure 5.15 mirrors the findings of the line graph, with our proposed
system achieving a higher median throughput at 100 blocks than the original
blockchain network. However, for other block size settings, the original blockchain
network demonstrated superior performance.
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Figure 5.12: The latency comparison of our system with the original blockchain network

Figure 5.13: More details of latency comparison

• Send Rate: Both systems were configured with a send rate of 40 TPS, and the
system with a send rate closer to this benchmark is considered better performing.
As the send rate is critical to the federated learning training process, a low send
rate could substantially affect the training speed. In Figure 5.16, our proposed
system is closer to the 40 TPS send rate, particularly for 100, 200, and 500 blocks.
We created a box plot in Figure 5.17 to provide more insight.

The box plot in Figure 5.17 indicates that our proposed system often exhibits a
considerably higher median send rate than the original system. Across all block
settings, the lowest send rate for our system is 37 TPS, compared to 36 TPS for the
original blockchain network. Based on figures 5.16 and 5.17, we can conclude that
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Figure 5.14: The throughput comparison of our system with the original blockchain
network

Figure 5.15: More details of throughput comparison

our proposed system outperforms the original blockchain network in terms of send
rate.

5.6.3 Analysis Conclusion

In conclusion, our proposed system outperforms both the traditional federated learning
approach and other federated learning systems that incorporate a public blockchain,
across both the MNIST and CIFAR-10 datasets. Our system consistently demonstrates
superior performance, exhibiting lower training loss, higher accuracy, and a faster
convergence rate. These results highlight the efficacy and potential of our proposed
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Figure 5.16: The send rate comparison of our proposed method with the original
blockchain network

Figure 5.17: More details of send rate comparison

system in improving the performance of federated learning tasks in various datasets.As
for blockchain platform analysis, our proposed system show a bit higher latency and
throughput than the original blockchain network, but we get a higher send rate which
is useful when deploying the federated learning in blockchain networks. As the block
size increases, both the original system and our proposed system are likely to exhibit
higher latency and lower throughput. The results show our proposed system is suitable
for future IoE networks when employ the federated learning in blockchain networks.
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5.7 Summary

In conclusion, this chapter introduces a novel approach to address the challenges of
federated learning by integrating public and private chains. Through extensive exper-
iments conducted on the MNIST and CIFAR-10 datasets, we have demonstrated that
our proposed method achieves higher accuracy, faster convergence rates, and reduced
training loss compared to both traditional federated learning approaches and other
proposed federated learning systems that integrate blockchain networks. Furthermore,
in comparison to the original blockchain network, our method exhibits slightly increased
latency and throughput but a superior send rate, which is crucial for effectively integrat-
ing federated learning and blockchain. By adopting our approach, the computational
burden on client devices is alleviated while ensuring the preservation of data privacy
and security.
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BLOCKCHAIN-BASED GRADIENT INVERSION AND

POISONING DEFENSE FOR FEDERATED LEARNING

6.1 Introduction

The rapid development of the Internet of Things (IoT) has ushered in a new era of
interconnected devices and data generation, with countless applications spanning vari-
ous domains, including healthcare, transportation, smart homes, and agriculture [78].
The exponential growth in data has necessitated the development of advanced machine
learning techniques to analyze and derive actionable insights from this data. As tra-
ditional centralized machine learning models face challenges in terms of data privacy,
communication overhead, and scalability, Federated Learning (FL) has emerged as a
promising decentralized approach to address these issues [73].

Federated Learning enables the training of machine learning models using data from
various devices while preserving user privacy by keeping the data on local devices and
sharing only the model updates [59]. This approach has become increasingly popular in
IoT scenarios, where numerous connected devices generate and process data at the edge.
FL not only reduces the communication overhead associated with transmitting large
volumes of data to a central server but also fosters collaborative learning among edge
devices while ensuring that sensitive information remains secure [46].

However, the distributed nature of FL exposes it to various types of attacks that can
compromise the learning process, model performance, and overall system security [87].
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Among these, Gradient Inversion Attacks (GIA) and Poison Attacks (PA) are particularly
detrimental. GIAs involve adversaries that manipulate the gradient updates in a way
that sabotages the learning process, ultimately compromising the performance of the
model [31]. These attacks are difficult to detect, as the adversaries can subtly alter the
gradient updates, leading to a gradual degradation of model performance over time.

PAs, on the other hand, are orchestrated by adversaries injecting malicious data
samples into the training process [74]. These data samples are carefully crafted to
manipulate the model’s behavior, causing it to produce incorrect or malicious outputs
when presented with specific inputs [80]. The malicious data samples often appear to be
legitimate, making it challenging to identify and prevent such attacks. The consequences
of PAs can be severe, leading to a decline in the model’s performance and integrity, and
potentially causing significant harm if deployed in critical applications.

Given the importance of data security and privacy in IoT and FL, developing effective
defense mechanisms against these types of attacks is crucial. Blockchain technology, with
its inherent decentralized and tamper-resistant nature, has emerged as a promising so-
lution to enhance the security of FL in IoT scenarios [3]. By leveraging the cryptographic
features, consensus algorithms, and smart contracts provided by blockchain technology,
we can ensure the integrity and authenticity of the gradient updates and data samples
used in the FL process.

In response to these threats, we propose a novel framework that combines blockchain
technology and differential privacy to defend against Gradient Inversion Attacks and
Poison Attacks in Federated Learning. To protect against GIAs, our framework employs
a two-pronged approach. First, it uses a public blockchain to secure the gradient infor-
mation uploaded by clients through smart contracts and applies Differential Privacy
Stochastic Gradient Descent (DPSGD) for enhanced protection. Second, it incorporates
a private blockchain, where clients directly integrate DPSGD during the Federated
Learning process to protect the gradients. To defend against PAs, our framework takes
advantage of the traceability offered by blockchain technology to identify and exclude
attackers from the learning process.

This chapter presents the design and implementation of the proposed defense frame-
work, detailing its components and underlying mechanisms for defending against GIA
and PA. The framework is designed to ensure the security and privacy of the data used
in the FL process, improve the overall reliability and performance of the trained models,
and provide robust protection against various attack scenarios.

Our contributions are in the followings:
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• We develop a blockchain-based defense against gradient inversion and poisoning
attacks, directly addressing critical security and privacy concerns in federated
learning IoT applications. This innovative solution mitigates threats to global
model integrity and effectiveness, warranting consideration for wide-scale adoption.

• Our approach uniquely combines public and private blockchain levels, ensuring
robust gradient protection while maintaining model performance and utility. This
balanced and comprehensive method offers a significant advantage over existing
techniques, as it addresses a broader range of attack vectors without sacrificing
model quality.

• Extensive experiments validate our method’s effectiveness, revealing improved
accuracy and stable training loss convergence in attack scenarios. These findings
showcase the potential of our approach for enhancing security and privacy across
various IoT applications, substantiating its relevance and value to the federated
learning research community.

6.2 Preliminary

6.2.1 Gradient Inversion Attack in Federated Learning

Gradient Inversion Attack is a type of adversarial attack targeting the Federated Learn-
ing process, in which an attacker manipulates the gradient updates submitted by their
device to intentionally invert the learning process [30]. The goal of a GIA is to degrade
the global model’s performance and compromise the overall system’s security.

During the Federated Learning process, the clients compute the gradient updates
(rL) based on their local data and transmit these updates to the central server. In a GIA,
the attacker modifies the gradient updates, leading to an inverted learning process. The
attacker can perform this manipulation as follows:

(6.1) rLA =°ÆrL+ØrA

where rLA represents the malicious gradient update submitted by the attacker, Æ and
Ø are the attack parameters controlling the strength of the inversion, and rA is the
additional adversarial gradient crafted by the attacker.

Defending against GIA requires the implementation of robust mechanisms to ensure
the authenticity and integrity of the gradient updates shared among participating
devices.
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6.2.2 Poison Attack in Federated Learning

Poison Attack is another adversarial attack targeting Federated Learning systems [74],
in which an attacker injects carefully crafted malicious data samples (x§, y§) into the
training process. These poisoned samples can negatively impact the global model’s
performance and cause the model to produce incorrect predictions.

The attacker aims to maximize the loss function L(x§, y§,w) with respect to the model
parameters w, in order to influence the training process:

(6.2) L(x§, y§,w)= L(x, y,w)+∏(x§, y§)

where ∏ is the attack parameter controlling the strength of the poisoning effect, and
(x, y) represents the original training data.

Defending against PA necessitates the development of methods to detect and exclude
attackers who contribute malicious data samples and to maintain the integrity of the
training process.

6.3 Problem definition and system model

In this section, we define the problem that our proposed defense framework addresses and
present the system model that underlies our approach. The problem definition focuses on
defending against Gradient Inversion Attacks and Poison Attacks in Federated Learning
systems, while the systemmodel provides an overview of the components and interactions
that constitute the proposed framework.

6.3.1 Problem Definition

The primary goal of our defensive framework is to safeguard Federated Learning systems
within Internet of Things (IoT) contexts from Gradient Inversion Attacks (GIA) and
Poison Attacks (PA). Specifically, we strive to:

• Hinder adversaries from manipulating gradient updates submitted by their devices
in order to reverse the learning process, which would result in the deterioration of
the global model’s performance and jeopardize the overall system’s security.

• Identify and exclude attackers that introduce malicious data samples into the
training process, leading the global model to generate inaccurate predictions and
adversely affecting its performance.
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Numerous clients <C1,C2, ...,Cn > exist, with each client initially registering in the
blockchain network. Following the acquisition of the model from the blockchain network,
they commence the federated learning training process to obtain the result set hCID,
epoch, Gradient, IDi. The CID represents the ID of the client, while the epoch and
Gradient are essential components for updating the global model. The term ID refers to
the block ID.

Nevertheless, as previously noted, some attackers within the blockchain network will
attempt to employ GIA to extract private information from the Gradient. Additionally,
there may be attackers who utilize poison attacks and upload the poison set hCID, epoch,
A(Gradient), IDi.

To accomplish these objectives, we employ a combination of blockchain technology and
differential privacy techniques to guarantee the integrity and authenticity of gradient
updates and data samples utilized in the Federated Learning process.

6.3.2 System Model

Our proposed defensive framework is composed of multiple components and interactions
that collectively offer robust protection against GIA and PA in Federated Learning
systems. The system model includes the following elements:

• Clients: A collection of IoT devices participating in the Federated Learning process,
generating and processing data locally. Each client calculates gradient updates
based on its local data and shares the set hCID, epoch, Gradient, IDi with the
blockchain network.

• Smart Contract: Within the context of blockchain networks, a smart contract is a
program designed to independently execute pre-defined logic on the network. The
present study proposes a smart contract-enabled system wherein a Client may
employ a smart contract to train a local model with Differential Privacy Stochastic
Gradient Descent (DPSGD), while also incorporating DPSGD when uploading
sets of hCID, epoch, Gradient, IDi. Furthermore, the smart contract can detect
attackers attempting to engage in poison attacks.

• Public Blockchain: A decentralized and transparent ledger utilized to secure gra-
dient information uploaded by clients via smart contracts. The public blockchain
enforces integrity and authenticity checks on the gradient updates, ensuring their
validity.
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• Private Blockchain: A permissioned and secure ledger employed during the Feder-
ated Learning process to directly safeguard the gradients. The private blockchain
offers additional privacy and security guarantees in comparison to the public
blockchain.

• Differential Privacy Stochastic Gradient Descent (DPSGD): A privacy-preserving
technique applied to gradient updates in order to protect them from GIA. DPSGD
introduces calibrated noise to gradient updates, guaranteeing strong privacy while
maintaining model performance.

The interplay of these components establishes the foundation of our defense frame-
work, with the objective of delivering extensive protection against Gradient Inversion
Attacks and Poison Attacks in Federated Learning systems. By incorporating blockchain
technology and differential privacy methodologies, our framework guarantees the secu-
rity and privacy of data and gradient updates involved in the learning process, ultimately
enhancing the overall dependability and performance of the trained models.

6.4 Proposed System

6.4.1 Overview

The proposed privacy-preserving federated learning framework is designed to facilitate
secure and efficient model updating and training while maintaining the confidentiality
and privacy of sensitive data. The system employs both public and private blockchains to
defend against malicious attacks and ensure secure storage and tracking of result sets.
Multiple algorithms operate in concert to create a robust and efficient blockchain-based
federated learning system. Figure 6.1 illustrates the comprehensive overview of our
proposed system. Further details on the algorithm will be provided in Section 6.4.2.

6.4.2 Implementation of our designed system

6.4.2.1 Registration

Both Client and Agent must initially register in the blockchain network to participate in
the public blockchain. Algorithm 17 outlines the Client Registration procedure, which
enables the enrollment of Client and Agent into the network.
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Figure 6.1: Overview of proposed system

Algorithm 17 Client Register
Require: Cid, Agent, Org
Ensure: RegisterSucess, jwt
1: RegisterSucess = False;
2: Check Org;
3: if Cid 2 Cpool then
4: return Cid already existed.
5: end if
6: keyGenerator() generated a pair of key according to Org
7: jwt √° Pk, Sk√°keyGenerator();
8: Cid √° jwt √° SC, Agent √° jwt √° SC;
9: Pool √° Cpool [ IDui;

10: Pool √° Agent [ IDui;
11: RegisterSuccess = True;
12: return RegisterSucess, jwt
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Initially, the RegisterSuccess flag is set to false, and the SC verifies whether the Org
exists. If the Cid is already present in the pool of client IDs (Cpool), the algorithm returns
an error message. Otherwise, the keyGenerator produces a pair of public and private keys
using the Org. The JSON Web Token (jwt), a digital signature employed to authenticate
and verify the client’s identity, is created by assigning the generated public and private
keys to the Agent and Cid, respectively. The client ID and Agent are added to the pool of
registered clients, and the RegisterSuccess flag is set to true. The algorithm then returns
the RegisterSuccess flag and jwt. This procedure enables secure registration of clients
into the network with proper authentication measures in place.

6.4.2.2 Global Model Upload

Following successful registration in the blockchain network, the Agent can upload the
global model. Algorithm 18 delineates the Global Model Upload procedure, enabling the
Agent to upload a global model to the network. The input parameters for the algorithm
include the Agent’s jwt token and the global model (Modelg) to be uploaded. The algo-
rithm’s output consists of a success flag UploadModel and the uploaded global model
(Model).

Algorithm 18 Global Model Upload
Require: Agent jwt token, Model
Ensure: UploadModel, Model
1: UploadModel = False;
2: Agent send model to SC
3: if jwt token ineligibility then
4: return Agent jwt token expired
5: end if
6: SC upload the gloabl model Model
7: Modelg √° Model ;
8: UploadModel = True;
9: return UploadModel, Model

Initially, the UploadModel flag is set to false, and the Agent submits the global model
to the Smart Contract (SC) for upload. If the jwt token provided by the Agent is invalid,
the algorithm returns an error message indicating that the Agent’s jwt token has expired.
If the jwt token is valid, the SC uploads the global model to the network. The global
model is then stored as Modelg, and the UploadModel flag is set to true. Finally, the
algorithm returns the UploadModel flag and the uploaded global model. This procedure
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ensures the secure upload of global models to the network with proper authentication
measures in place.

6.4.2.3 Model Updating Setup

After completing the global model setup, it is essential to establish the epoch settings
for the federated learning training process. Algorithm 19 outlines the Model Updating
Setup process, which determines the epoch and batch size parameters required for model
training. The input parameters of the algorithm include the epoch and batch size, and
the output consists of a success flag UpdatingSetup and the epoch parameter.

Algorithm 19 Model Updating Setup
Require: epoch, batchsize
Ensure: UpdatingSetup, epoch, batchsize
1: UpdatingSetup = False;
2: Set epoch and batchsize to SC
3: if Publicepoch is multiple of Privateepoch then
4: UpdatingSetup = True
5: end if
6: return UpdatingSetup, epoch

In step 1, the UpdatingSetup flag is set to false. The epoch and batch size parameters
are then established in the Smart Contract (SC). If the Public epoch value is a multiple of
the Private epoch value, the UpdatingSetup flag is set to true. This condition is verified to
ensure that the private epoch value divides the public epoch value without a remainder,
signifying that the private model training is synchronized with the global model updates.
Lastly, the algorithm returns the UpdatingSetup flag and the epoch parameter. This
process aids in ensuring the accuracy and consistency of model training by maintaining
synchronization between the private and public epoch values.

6.4.2.4 Private Chain Establishment

Algorithm 20 describes the process of creating a private chain and uploading a model
to it. The input parameters for the algorithm include the Agent’s jwt token and the
private model (Model) to be uploaded. The algorithm’s output consists of a success flag
UploadPrivate and the uploaded private model (Modelp).

Initially, the UploadPrivate indicator is set to false, and the Agent uploads the
model to the private chain (Steps 1-2). An authentication process is also required in this
procedure (Steps 3-5). If the jwt token is valid, the model is stored as Modelp in the
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Algorithm 20 Upload to the Private Chain
Require: jwt token, Model
Ensure: UploadPrivate, Modelp
1: UploadPrivate = False;
2: Agent upload the Model to private chain
3: if jwt token ineligibility then
4: return Agent jwt token expired
5: end if
6: Modelp √° Model;
7: UploadPrivate = True;
8: return UploadPrivate, Model

private chain. Subsequently, the UploadPrivate indicator is set to true, and the algorithm
returns the UploadPrivate flag and the uploaded private model. This process facilitates
the secure storage of private models on the private chain, ensuring confidentiality and
data privacy.

6.4.2.5 Privacy Preservation in Public Chain

To defend against gradient inversion attacks, we propose Algorithm 21, which details
how we counter such attacks at the public chain level. The input parameters of the
algorithm include the Client and a results set hCID , epoch,Gradient, IDi containing the
gradient values. The output of the algorithm consists of a privacy-preserving results set
hCID , epoch,DP(Gradient), IDi, where DP(Gradient) represents the gradient values
with added Laplacian noise for privacy preservation.

Algorithm 21 Privacy Preserving for Gradient in Public Chain
Require: Client, Results set hCID, epoch, Gradient, IDi
Ensure: The privacy preserving set hCID, epoch, DP(Gradient), IDi
1: Client finish the training process and send the results set hCID, epoch, Gradient,

IDi to SC.
2: if jwt token ineligibility then
3: return Client jwt token expired
4: end if
5: SC generates the noise Lap j(¢Q≤ ) according to the Gradient.
6: SC add noise Lap j(¢Q≤ ) to Gradient in the result set to achieve DP(Gradient).
7: SC stores result set hCID, epoch, DP(Gradient), IDi on blockchain.
8: return Result set hBID, epoch, DP(Gradient), IDi

Initially, the Client completes the training process and sends the results set hCID,
epoch, Gradient, IDi to the Smart Contract (SC). The authentication process is then
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initiated. If the jwt token is valid, the SC generates Laplacian noise Lap j(¢Q≤ ) based
on the gradient values and adds it to the gradient values in the results set to achieve
DP(Gradient) (Steps 5-6). The SC stores the privacy-preserving results set hCID , epoch,
DP(Gradient), IDi on the blockchain for secure storage and tracking. Finally, the
algorithm returns the privacy-preserving results set hBID , epoch,DP(Gradient), IDi.
This process ensures privacy preservation for the gradient values in the public chain,
safeguarding the confidentiality and privacy of sensitive data.

6.4.2.6 Privacy Preserving for Poison Attack

Algorithm 22 outlines the privacy-preserving process for poison attacks in the Public
Chain. We utilize the traceability of the blockchain to defend against poison attacks. The
input parameters of the algorithm include the Attacker, the Requester, and a result set
hCID , epoch,A(Gradient), IDi containing the poisoned gradient values. The output of
the algorithm is a DefenseIndex, indicating whether the poison attack was successfully
detected and prevented.

Algorithm 22 Privacy Preserving for Poison Attack in Public Chain
Require: Attacker, Requester, Results set hCID, epoch, A(Gradient), IDi
Ensure: DefenseIndex
1: DefenseIndex == False
2: Attacker send the poison results set hCID, epoch, A(Gradient), IDi to SC
3: SC upload the results set to public chain
4: Requester download the set and upload the global model
5: SC find the attacker in public blockchain according to the previous results history
6: SC remove the attacker’s jwt token
7: SC resend the previous results set to public chain
8: Requester re-download the set and re-upload the global model
9: DefenseIndex == True

10: return DefenseIndex

Initially, the DefenseIndex is set to false. The Attacker sends the poisoned results
set containing A(Gradient) to the Smart Contract (SC), which uploads the results set
to the public chain. The Requester downloads the results set and uploads the global
model. Subsequently, the SC checks the previous results history on the public blockchain
to identify the Attacker. If the Attacker is identified, the SC removes the attacker’s
jwt token and resends the previous results set to the public chain. The Requester then
re-downloads the results set and re-uploads the global model.
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If the poison attack is detected and prevented, the DefenseIndex is set to true, and the
algorithm returns the DefenseIndex. This process ensures the detection and prevention of
poison attacks, preserving the security and integrity of the data and thwarting malicious
actions.

6.4.2.7 Privacy Preservation in Private Chain

Algorithm 23 outlines the privacy-preserving process for gradients at the Private Chain
level. The input parameters of the algorithm include the Client and Agent, and a
result set hCID , epoch,Gradient, IDi containing the gradient values. The output of the
algorithm is a privacy-preserving result set hCID , epoch,DP(P(Gradient)), IDi, where
DP(P(Gradient)) represents the gradient values with added Laplacian noise for privacy
preservation.

Algorithm 23 Privacy Preserving for Gradient in Private Chain
Require: Client, Agent, Results set hCID, epoch, Gradient, IDi
Ensure: The privacy preserving set Result set hCID, epoch, DP(P(Gradient)), IDi
1: Client get the Model on private chain
2: SC use private chain privacy preserving method to protect the training results
3: Client start federated learning process
4: Client finish the training process and send the results set hCID, epoch, P(Gradient),

IDi to SC.
5: if jwt token ineligibility then
6: return Client jwt token expired
7: end if
8: SC generates the noise Lap j(¢Q≤ ) according to the P(Gradient).
9: Agent send the results set to the public chain

10: SC add noise Lap j(¢Q≤ ) to Gradient in the result set to achieve DP(Gradient).
11: SC stores result set hCID, epoch, DP(P(Gradient)), IDi on blockchain.
12: return Result set hBID, epoch, DP(P(Gradient)), IDi

Initially, the Client retrieves the model from the private chain and commences the
federated learning process. Upon completion of the training process, the Client sends the
results set containing the gradient values hCID , epoch,P(Gradient), IDi to the Smart
Contract (SC). If the jwt token provided by the Client is invalid, the algorithm returns
an error message stating that the Client’s jwt token has expired. If the jwt token is valid,
the SC generates Laplacian noise Lap j(¢Q≤ ) based on the P(Gradient).

Subsequently, the Agent sends the results set to the public chain. The SC adds the
Laplacian noise to the gradient values in the results set, resulting in DP(Gradient). The
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SC stores the privacy-preserving results set hCID , epoch,DP(P(Gradient)), IDi on the
blockchain for secure storage and tracking.

In conclusion, the algorithm returns the privacy-preserving results set hBID , epoch,
DP(P(Gradient)), IDi. This process ensures privacy preservation for the gradient values
in the private chain, safeguarding the confidentiality and privacy of sensitive data.

6.5 Privacy, Security and Time Analysis

6.5.1 Privacy Analysis

In this section, we provide a comprehensive privacy analysis of the proposed blockchain
and differential privacy-based framework for defending against Gradient Inversion
Attacks (GIA) and Poison Attacks (PA) in Federated Learning (FL). Our analysis focuses
on evaluating the ability of the framework to preserve the privacy of the data used in the
FL process, as well as assessing the effectiveness of the implemented privacy-preserving
techniques in preventing data leakage and unauthorized access.

6.5.1.1 Data Privacy in Federated Learning

Federated Learning inherently preserves data privacy by ensuring that raw data remains
on local devices, and only gradient updates are shared among participating devices.
Our framework builds upon this inherent privacy-preserving characteristic of FL by
implementing additional measures to further protect data privacy, as discussed below:

• Secure and private gradient updates: In the proposed framework, we employ
Differential Privacy Stochastic Gradient Descent (DPSGD) to protect the gradient
updates. DPSGD ensures that the gradient updates shared among devices are
secure and private by adding carefully calibrated noise to the updates, thereby
providing strong privacy guarantees. This technique protects the privacy of the data
used in the FL process without significantly compromising the model’s performance.

• Public and private blockchain integration: Our framework utilizes a combination of
public and private blockchains to enhance privacy. The public blockchain is used for
securely uploading gradient information through smart contracts, while the private
blockchain is employed during the Federated Learning process to protect gradients
directly. This dual-blockchain approach enhances the privacy and security of the
data used in the FL process.
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6.5.1.2 Privacy Preservation in the Blockchain-based Framework

In addition to the privacy-preserving techniques inherent to FL, our proposed frame-
work integrates additional privacy-enhancing mechanisms that leverage the features of
blockchain technology and differential privacy:

• Confidentiality of smart contracts: Smart contracts play a vital role in automating
the enforcement of security policies within our framework. To protect the privacy
of sensitive information processed by the smart contracts, we employ cryptographic
techniques, such as zero-knowledge proofs (ZKPs), to ensure that the execution of
smart contracts does not reveal any sensitive data to unauthorized parties.

• Anonymity and unlinkability: To prevent adversaries from linking gradient updates
to specific devices or users, our framework utilizes anonymization techniques
and secure aggregation protocols. These mechanisms ensure that the identity of
participating devices remains anonymous during the FL process, making it difficult
for adversaries to infer sensitive information about individual users based on the
gradient updates.

• Data storage and access control: Our framework addresses privacy concerns related
to data storage and access control by implementing decentralized and encrypted
data storage solutions, such as distributed hash tables (DHTs) or encrypted data
shards. Additionally, we utilize attribute-based encryption (ABE) schemes to en-
force fine-grained access control policies, ensuring that only authorized devices can
access the stored data.

In conclusion, the privacy analysis demonstrates that our proposed blockchain and
differential privacy-based framework effectively preserves the privacy of the data used in
Federated Learning. By leveraging a combination of cryptographic techniques, privacy-
preserving consensus algorithms, secure data storage solutions, and differential privacy,
the framework ensures that sensitive information remains protected from unauthorized
access and data leakage throughout the FL process, ultimately contributing to the overall
security and trustworthiness of the trained models.

6.5.2 Security Analysis

In this section, we present a thorough security analysis of the proposed blockchain
and differential privacy-based framework for defending against Gradient Inversion
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Attacks (GIA) and Poison Attacks (PA) in Federated Learning (FL). Our analysis focuses
on evaluating the robustness and resilience of the framework against various attack
scenarios, as well as assessing the effectiveness of the implemented defense mechanisms
in ensuring the integrity and authenticity of the gradient updates and data samples
used in the FL process.

6.5.2.1 Gradient Inversion Attack (GIA) Defense

The security of our framework against GIA relies on the integration of Differential
Privacy Stochastic Gradient Descent (DPSGD) within the FL process, as well as the use
of public and private blockchains. To assess the effectiveness of this defense mechanism,
we consider the following attack scenarios:

• Adversaries submit manipulated gradient updates: In this scenario, adversaries
attempt to compromise the learning process by submitting gradient updates that
have been maliciously modified to invert the learning process. Our framework
employs DPSGD to add calibrated noise to the gradient updates, making it difficult
for adversaries to successfully manipulate the updates without being detected.
Furthermore, the framework leverages the public blockchain and smart contracts
to ensure the integrity and authenticity of the uploaded gradient information.

• Adversaries attempt to bypass DPSGD: To bypass the DPSGD protection, adver-
saries could attempt to infer sensitive information about the original gradients by
exploiting the added noise. However, DPSGD provides strong privacy guarantees,
making it highly challenging for adversaries to recover the original gradients
without violating the privacy constraints.

6.5.2.2 Poison Attack (PA) Defense

The security of our framework against PA relies on the robust traceability mechanism
enabled by blockchain technology. This mechanism is designed to detect and exclude
attackers injecting malicious data samples into the training process. To evaluate the
effectiveness of this defense mechanism, we consider the following attack scenarios:

• Adversaries inject poisoned data samples: In this scenario, adversaries attempt to
compromise the model’s performance and integrity by injecting carefully crafted
malicious data samples into the training process. Our framework leverages the
traceability features of blockchain technology to track the origin of the data samples

109



CHAPTER 6. BLOCKCHAIN-BASED GRADIENT INVERSION AND POISONING
DEFENSE FOR FEDERATED LEARNING

and identify potential attackers. By detecting and excluding the attackers from the
learning process, our framework effectively mitigates the impact of PAs.

• Adversaries attempt to forge their identities: To evade detection and exclusion,
adversaries could attempt to create multiple fake identities or impersonate le-
gitimate devices. Our framework addresses this threat by implementing robust
identity management and authentication schemes, such as public key infrastruc-
ture (PKI) and digital signatures, which make it difficult for adversaries to forge
their identities or impersonate legitimate devices.

In conclusion, the security analysis demonstrates that our proposed blockchain and
differential privacy-based framework effectively defends against Gradient Inversion
Attacks and Poison Attacks in Federated Learning. By utilizing a combination of DPSGD,
blockchain technology, and robust traceability mechanisms, the framework ensures the
integrity and authenticity of the gradient updates and data samples used in the FL
process, ultimately improving the overall reliability and security of the trained models.

6.5.3 Time Complexity Analysis

In this section, we present a time complexity analysis of our proposed blockchain-based
defense mechanism for federated learning IoT scenarios, taking into account the use of
DPSGD for gradient encryption on both the public and private chains.

Let n be the number of clients participating in the federated learning process, and
let t be the number of iterations required for the global model to converge. For each
iteration, each client computes its local model update, which involves a time complexity
of O(p), where p is the number of model parameters.

After computing the local model update, the clients employ DPSGD to encrypt their
gradients. The time complexity of DPSGD is O(p) for each client, as it involves adding
noise to each gradient component. As there are n clients, the total time complexity for
applying DPSGD across all clients is O(n§ p).

Next, the clients submit their encrypted gradients to the public and private chains.
The time complexity of committing transactions to the blockchain is generally propor-
tional to the number of transactions. However, by parallelizing the submission and
processing of transactions, we can reduce the time complexity of this step to O(1) instead
of O(n).
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Finally, the global model is updated using the aggregated gradients from both the
public and private chains. By employing an efficient aggregation mechanism, we can
maintain a time complexity of O(p) for this step.

Taking all the steps into account and considering the parallelization and optimiza-
tion strategies, the overall time complexity of our proposed defense mechanism for one
iteration becomes O(np). Over t iterations, the total time complexity is O(t(np)), which
demonstrates that our approach scales linearly with the number of clients, model para-
meters, and iterations, offering a practical and efficient solution for securing federated
learning systems in IoT scenarios.

6.6 Results and Analysis

6.6.1 Gradient Inversion Attack Defense Performance

Parameters Description: In our experiments related to defense against gradient
inversion attacks, certain parameters, namely ∏, ±, and ≤, were of paramount importance.
These parameters influence the defense mechanisms’ effectiveness.

• ∏: With a default value of 0.95, this parameter strikes a balance between the
robustness of the defense mechanism and the accuracy of the model. A higher ∏

prioritizes model accuracy, while a lower value leans towards privacy.

• ±: This parameter represents the noise scale factor essential for ensuring differ-
ential privacy. For our experiments, we adopted default values for ± from the set
{1e°3,1e°4,1e°5}. Different ± values analyze the trade-off between preserving
privacy and maintaining model utility. Lower values of ± generally signify stronger
privacy guarantees.

• ≤: Denoted as the privacy budget, ≤ quantifies the privacy loss in differential privacy.
In our experiments, the default value for ≤ is set to 2. A smaller value of ≤ suggests
better privacy, but it might come at the expense of data utility or accuracy.

Attacker Scenarios and Metrics: Our investigation delves into various attacker
scenarios:

1. Uninformed Attacker: This category encompasses attackers who are oblivious to
the private BatchNorm statistics or the private labels of the victim batch. Figure
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Figure 6.2: The baseline of our proposed system

6.3 for the public blockchain and Figure 6.5 for the private blockchain visually
portray the defense efficacy against such attackers.

2. Informed Attacker: This attacker is enlightened about the underlying assump-
tions, encompassing knowledge about the private BatchNorm statistics and the
private labels of the victim batch. The resilience of our defense system against
such informed adversaries is captured in Figures 6.4 and 6.6 for public and private
blockchains, respectively.

The metrics that we employ for evaluation primarily focus on the resemblance be-
tween the data reconstructed by the attacker and the original dataset. A closer match
suggests potential vulnerabilities, while significant deviations affirm the defense mecha-
nisms’ robustness.

In this part, we use the CIFAR10 dataset to evaluate our proposed system. Figure 6.2
illustrates the baseline architecture of our proposed system. As observed in the figure,
without any protection and defense mechanism, an attacker can easily recover the
dataset through the gradient inversion attack.

However, when our proposed system is implemented to defend against gradient
attacks, the results are significantly different. This can be attributed to the two distinct
levels of privacy-preserving protection employed in our proposed system, namely the
public chain level and the private chain level. The results obtained from these two levels
of protection are presented separately in our study. Additionally, our analysis assumes
that the attacker is unaware of the private BatchNorm statistics or the private labels
of the victim batch, and also considers the scenario where the attacker possesses such
information [23].

112



6.6. RESULTS AND ANALYSIS

Figure 6.3: The defence performance of our proposed system without the assumption at
public blockchain level

• Public blockchain level protection: The public blockchain level protection employs
Algorithm 21 to defend against gradient inversion attacks. In this context, the
smart contract aims to safeguard the results set submitted by the Client to the
public blockchain.

Figure 6.3 presents the outcomes when the attacker lacks knowledge of the private
BatchNorm statistics or the private labels of the victim batch. The figure demon-
strates the effectiveness of our public blockchain level protection, as the attacker is
virtually incapable of recovering the original data. Only the truck figure bears a
resemblance to the original dataset.

In contrast, Figure 6.4 illustrates the situation where the attacker is aware of the
underlying assumptions. The results in this figure are more discernable; however,
the attacker remains unable to recover the data from the gradient. Only the bird
figure exhibits similarity to the original figure. Thus, our proposed system appears
to successfully defend against gradient attacks at the public blockchain level,
regardless of the attacker’s knowledge of the private labels of the victim batch.

• Private blockchain level protection: With respect to private blockchain level pro-
tection, the smart contract not only employs the public chain privacy-preserving
mechanism but also incorporates the DPSGD protection method when the Client
conducts the federated learning training process. Analogous to the public chain
level protection, Figure 6.5 displays the results when the attacker is uninformed
about the assumptions. The figure reveals that the attacker cannot reconstruct the
image from the gradient.
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Figure 6.4: The defence performance of our proposed system with the assumption at
public blockchain level

Figure 6.5: The defence performance of our proposed system without the assumption at
private blockchain level

Figure 6.6 depicts the outcomes when the attacker possesses knowledge of the
assumptions. The figure indicates that regardless of whether the attacker knows
the private BatchNorm statistics and the private labels of the victim batch, recon-
structing the original data from the gradient remains challenging. This outcome is
due to the protection provided by the private chain protection method.

6.6.2 Poison Attack Defence Performance

In this section, we demonstrate the efficacy of our proposed system in defending against
poison attacks. The analysis employs two distinct datasets, MNIST and CIFAR10, as
previously mentioned. We evaluate our system based on two aspects: training loss per
epoch and final result accuracy.
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Figure 6.6: The defence performance of our proposed system with the assumption at
private blockchain level

Figure 6.7: Setting with 10 epochs under
MNIST dataset

Figure 6.8: Setting with 20 epochs
MNIST dataset

Figure 6.9: Setting with 30 epochs
MNIST dataset

Figure 6.10: Setting with 40 epochs un-
der MNIST dataset
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Figure 6.11: Setting with 50 epochs un-
der MNIST dataset

Figure 6.12: Setting with 100 epochs un-
der MNIST dataset

Figure 6.13: Accuracy results of MNIST
dataset

• MNIST: For the MNIST dataset, we examine epochs 10, 30, 40, 50, and 100 to
display the training loss at each epoch. The green line in the figures represents the
normal system’s results under poison attack, while the red line corresponds to the
system incorporating our proposed blockchain defense method. As illustrated in
Figure 6.7-6.12, significant fluctuations in training loss occur, regardless of whether
the number of epochs is 10 or 100. The original system’s training loss does not
drop below 0.2 even after 100 epochs, primarily due to poison attacks in federated
learning, causing fluctuations in training loss. Further insights are obtained from
the accuracy depicted in Figure 6.13.

In Figure 6.13, we observe rapid accuracy improvement for both our proposed
method and the original system between epochs 10 and 20. However, after 20
epochs, the growth rate in accuracy for both methods slows down. During epochs
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20 to 30, the normal method even exhibits a decreasing accuracy trend. After
100 epochs, our proposed method achieves an accuracy of 98.43, while the normal
system records an accuracy of 96.

• CIFAR10: For the CIFAR10 dataset, we consider epochs 10, 20, 30, 40, 50, 100,
and 200 to showcase the training loss at each epoch. In comparison to the MNIST
dataset results, the original system demonstrates stronger fluctuations in Fig-
ure 6.14-6.20. From these figures, it is evident that our proposed method offers a
superior convergence rate and lower training loss with fewer fluctuations across
epochs 10 to 200. Particularly in Figure 6.19 and Figure 6.20, as the number of
epochs increases, the normal system displays significant fluctuations in training
loss results and only a limited decrease. Analogous to the previous dataset, we
present an accuracy figure for the CIFAR10 dataset to provide more detailed
results.

In Figure 6.21, we notice a gradual increase in the accuracy trend of our proposed
system, while the original system’s accuracy fluctuates. At epochs 50 and 150,
the original system’s accuracy declines significantly. At epoch 50, our proposed
system achieves an accuracy of 55.91, while the original system’s accuracy stands
at merely 35.12. At epoch 150, our proposed system records an accuracy of 62.58,
whereas the original system’s accuracy is only 36.16. Finally, at epoch 200, the
accuracy of our proposed system reaches 65.2, while the original system attains an
accuracy of 49.59.

Figure 6.14: Setting with 10 epochs un-
der CIFAR10 dataset

Figure 6.15: Setting with 20 epochs un-
der CIFAR10 dataset
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Figure 6.16: Setting with 30 epochs un-
der CIFAR10 dataset

Figure 6.17: Setting with 40 epochs un-
der CIFAR10 dataset

Figure 6.18: Setting with 50 epochs un-
der CIFAR10 dataset

Figure 6.19: Setting with 100 epochs un-
der CIFAR10 dataset

Figure 6.20: Setting with 200 epochs un-
der CIFAR10 dataset

Figure 6.21: Accuracy results of CI-
FAR10 dataset
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6.6.3 Blockchain Platform Time Cost

In this section, we present the experimental results for the blockchain platform time cost,
which evaluates the efficiency of our proposed blockchain-based defense mechanism for
federated learning IoT scenarios using Hyperledger Fabric 2.X. Our experiments yielded
the following observations:

• Blockchain Network Setup Time: The time required to establish the entire blockchain
network, including the initialization of channels, peers, and orderers, was approxi-
mately 35 seconds. This setup time is a one-time cost for initializing the system
and is considered acceptable for practical federated learning IoT applications.

• Consensus Process: The duration associated with the consensus process is con-
tingent upon the particular consensus algorithm implemented in the blockchain
platform. In our investigation, subsequent to establishing the blockchain network,
the endorsement of all nodes is necessitated by the consensus algorithm, which
incurs a time cost of approximately 3 seconds. Our findings indicate that the time
cost incurred by the consensus process is reasonably tolerable and acceptable
within the context of our federated learning IoT scenario.

• Transaction Processing Time: The time taken for processing and committing trans-
actions, including the local model updates and the aggregation of gradients on
the public and private chains, was approximately 2 seconds. This demonstrates
the efficiency of Hyperledger Fabric 2.X in handling transactions in our proposed
defense mechanism.

• Encryption of Gradient Updates Time: The time cost associated with the encryption
of gradient updates using DPSGD was around 1 second. This indicates that our
defense mechanism effectively incorporates privacy-preserving techniques without
adding significant overhead to the learning process.

Table 6.1 presents the results of the time cost analysis, which includes a comparison of
normal federated learning, federated learning with DPSGD defense, and our proposed
method. Following the completion of the first iteration, the time cost of normal federated
learning is recorded as 45 seconds, while federated learning with DPSGD defense incurs
a time cost of 85 seconds, and our proposed system reports a time cost of 134 seconds.
The increased time cost observed in our proposed system as compared to federated
learning with DPSGD defense is attributable to the fact that our time cost encompasses
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Table 6.1: Time Cost of Train with 32 Clients and 199 Iterations

Comparison Methods t = 0 t = 9 t = 199
Normal Federated Learning 45 450 9000
Federated Learning with DPSGD 85 850 17000
Our Proposed System 134 998 19238

the duration required for blockchain network setup and endorsement of all nodes. At
t= 10, the results of the analysis suggest that the time cost of our proposed method is
more comparable to that of normal federated learning, which recorded a time cost of 998
seconds, as compared to federated learning with DPSGD defense, which incurred a time
cost of 850 seconds.

The time costs associated with the Hyperledger Fabric 2.X blockchain platform were
within acceptable limits for practical federated learning IoT applications, even when
the number of clients and model parameters were large. This demonstrates that our
blockchain-based defense mechanism offers an efficient and scalable solution for securing
federated learning systems against gradient inversion and poisoning attacks, without
significantly impacting the overall performance of the learning process.

6.6.4 Analysis Conclusion

In summary, our proposed blockchain-based defense mechanism exhibits robust defense
capabilities against both gradient inversion attacks and poisoning attacks in federated
learning IoT scenarios. In the case of gradient inversion attacks, the combination of
public and private blockchain level protection, along with the encryption of gradient
updates using DPSGD, effectively prevents attackers from reconstructing the figure
based on the obtained gradient. As for poisoning attacks, our system demonstrates
superior accuracy results and more stable training loss convergence.

Moreover, our experimental results indicate that the time costs associated with the
Hyperledger Fabric 2.X blockchain platform, including the network setup, transaction
processing, and encryption of gradient updates, are within acceptable limits for practical
federated learning IoT applications. This demonstrates that our defense mechanism
offers an efficient and scalable solution for securing federated learning systems against
gradient inversion and poisoning attacks, without significantly impacting the overall
performance of the learning process.
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6.7 Summary

In summary, this chapter has proposed a robust blockchain-based solution to defend
against gradient inversion attacks and poisoning attacks in federated learning IoT
scenarios. By combining public and private blockchain levels of protection, our system
effectively mitigates these attacks, ensuring both the privacy and security of gradient
updates. Our experimental results demonstrate that our approach significantly hinders
attackers from reconstructing figures using the gradients they obtain and provides
improved accuracy and stable convergence of training loss under poisoning attacks.
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7
DISCUSSION, FUTURE WORK AND CONCLUSION

7.1 Discussion

This thesis has delved deeply into the complexities of privacy issues in IoT, particularly in
the realms of crowdsourcing, multi-agent systems, and federated learning. The analysis
has been exhaustive, presenting a vivid portrait of the landscape of privacy-preserving
methods, their strengths, and their inherent limitations.

The utilization of differential privacy in frameworks, notably federated learning,
has undeniably fortified privacy protections. However, this protective measure is a
double-edged sword; while it safeguards sensitive data, the incorporation of noise may
compromise the system’s performance. Blockchain technology, known for its potential
in ensuring data privacy and integrity, emerges as another pivotal component. Yet, its
integration into IoT is not without its challenges. Scalability concerns and computational
efficiency become especially poignant as the blockchain grows in size.

The intricacies of federated learning, especially when intertwined with IoT, further
underscore the nuanced nature of privacy concerns. The decentralized nature of federated
learning inherently offers a level of privacy. Still, the interplay between privacy, system
performance, and intricacy necessitates a meticulous analysis. It is imperative to address
the complexities in federated learning, particularly with the challenges associated with
asynchronous updates from multiple devices, skewed data distributions, and potential
adversarial attacks.

Our discussion on crowdsourcing in conjunction with IoT elucidated the multifaceted
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privacy challenges that arise. Though solutions like data anonymization and aggregation
have been instrumental, they are not infallible. The limitations of these techniques
emphasize the need for more comprehensive and robust privacy strategies.

Multi-agent systems, when interfaced with IoT, amplify the intricacy of privacy
concerns. Techniques rooted in reinforcement learning and trust-centric methodologies
highlight the prospects of both learning-driven and decentralized stratagems in forti-
fying privacy. However, these systems can be vulnerable to different attacks, and their
resilience against such threats remains an area that warrants further exploration.

7.2 Limitations

Despite the comprehensive analysis, this thesis has its limitations. The primary limita-
tion revolves around its applicability to a myriad of attacks. While the focus has been
predominantly on gradient inversion attacks, other sophisticated attacks may exploit
unforeseen vulnerabilities in the proposed solutions.

Another limitation pertains to scalability, especially concerning blockchain technology.
As blockchain size increases, potential issues like longer transaction validation times,
increased storage requirements, and enhanced computational power demands arise.
Addressing these scalability concerns, particularly in real-world IoT applications with
millions of interconnected devices, remains a daunting task.

The inherent complexities of federated learning, including the challenges of handling
asynchronous updates, addressing skewed data distributions, and mitigating stragglers,
have not been extensively explored. These aspects can profoundly impact the overall
system performance and privacy, indicating a need for rigorous testing of any proposed
solutions against these challenges.

7.3 Future Work

Looking forward, there are several exciting directions for future research in this area.
Firstly, while this thesis has largely focused on theoretical analysis and simulations,
practical implementations in real-world IoT systems could provide invaluable insights
into the functioning and limitations of the proposed privacy-preserving strategies.

Secondly, as edge computing and 5G technologies continue to evolve, exploring their
implications for IoT privacy is a promising research direction. For instance, edge com-
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puting could potentially enhance privacy by processing data closer to its source, thereby
reducing the need for data transmission and the associated privacy risks.

Thirdly, with machine learning techniques becoming increasingly sophisticated, it is
important to understand how these advancements can be leveraged to improve privacy
protections. For example, homomorphic encryption and secure multi-party computation
are areas worth investigating in the context of IoT.

Lastly, the development of robust, universally applicable privacy metrics would
contribute significantly to this field, enabling more meaningful comparisons between
different privacy-preserving techniques and providing a more solid basis for decision-
making in IoT design.

7.4 Conclusion

In conclusion, addressing privacy issues in IoT systems, especially when incorporated
with crowdsourcing, multi-agent systems, and federated learning, remains a paramount
concern in the advent of an increasingly interconnected digital landscape. This thesis
has explored these privacy challenges extensively, providing a critical examination of
several privacy-preserving techniques, their strengths, weaknesses, and potential areas
for improvement.

Our exploration of integrating crowdsourcing with IoT revealed the complexity of pri-
vacy challenges in such scenarios. While several techniques such as data anonymization
and data aggregation proved useful, they are not without limitations, underscoring the
need for developing more robust and holistic approaches to privacy.

The discussion of multi-agent systems in IoT further amplified the complexity of
privacy issues. We explored solutions based on reinforcement learning and trust-based
methods, indicating the potential for learning-based and decentralized approaches in
enhancing privacy.

The investigation into federated learning with IoT revealed the potential of this
decentralized learning method in privacy preservation. Our discussions shed light on
various ways to augment federated learning with differential privacy and blockchain
technology for better privacy protection. Nevertheless, the trade-offs between privacy,
system performance, and complexity require careful consideration.

Looking forward, as edge computing, 5G technology, and more advanced machine
learning techniques continue to evolve, the landscape of IoT and associated privacy
concerns will likewise continue to change. Future research efforts need to keep pace with
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these advancements, exploring their implications for IoT privacy, and innovating newer,
more robust privacy-preserving strategies.

In this thesis, we have navigated the intricate landscape of privacy in IoT systems.
It is our hope that this work will stimulate further research in this crucial area, aiding
in the development of IoT systems that respect and protect user privacy while offering
the many benefits that IoT promises. The goal is not just to keep pace with the evolving
privacy challenges but to anticipate and address them proactively, thereby ensuring the
sustainable growth of IoT systems in various sectors. By integrating privacy-preserving
measures into the fabric of IoT design and operation, we can build a more secure and
privacy-aware digital future.
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APPENDIX

A.1 Notations of This Thesis

Table A.1: Notations

Notations Description
Utype The type of the user
Uid The ID of the user
Pk The public key of the user
Sk The private key of the user
jwt A jwt token which used to verified user’s identity
Org The organization of the user
T The requirement of the task
t The due time of the task
IDt The ID of the task
R The reward of the task
S The status of the task
Res Worker’s response message set
c The chosen indicator of the user
SC The smart contract of the blockchain network
Wi The unique ID of the worker who finish the task T
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Table A.1: Notations

Notations Description
Taskn The ID of the task
ETaskn

i The energy cost of the worker to finish the task
TTaskn
i The time consumption of the worker to finish the task

Lap j(¢Q≤ ) The Laplace noise
Dir() The Dirichlet noise
Agent The agent of multi-agent system
Agentid The ID of the agent
Upool The pool of user
Poolagent The pool of agent
IDpool The pool of all user
Requesterid The ID of the requester
Stage The current stage of the requester
Advice The advice which given by other agent
Times The time of agent been asked for advice
Reward The total reward of the agent
Rating The rating of the agent
Uname The name of the user
Poolu The pool of the user
Model The model on the public chain
Modelg The global model
Modelp The model on the private chain
Publicepoch The epoch of public chain
Privateepoch The epoch of private chain
epoch The epoch of federated learning
Pn The node of private chain
Gn The node of public chain
Model f The final model
Cid The ID of client
Cpool The pool of the client
Pool The poll of all users
batchsize The batch size of federated learning
DP() The differential privacy preserving method
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Table A.1: Notations

Notations Description
Gradient The gradient of federated learning training process
BID The ID of the block
A(Gradient) The result of attacked gradient
V The set of nodes representing IoT devices
E The set of edges representing the communication links between the devices
BC Blockchain
Bn The number of blocks
Hi The hash of the block
Ti The timestamp of the block
tx The information of transactions
M The randomized mechanism
D One of the data-set
Pr[·] The probability of [·]
≤ The parameter of differential privacy
± The parameter of differential privacy
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