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Abstract

Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more
levels of non-linear feature transformation of the given data via representation learning in
order to overcome limitations posed by large datasets. As a multidisciplinary field that is
still in its nascent phase, articles that survey DL architectures encompassing the full scope
of the field are rather limited. Thus, this paper comprehensively reviews the state-of-art DL
modelling techniques and provides insights into their advantages and challenges. It was
found that many of the models exhibit a highly domain-specific efficiency and could be
trained by two or more methods. However, training DL. models can be very time-consum-
ing, expensive, and requires huge samples for better accuracy. Since DL is also suscepti-
ble to deception and misclassification and tends to get stuck on local minima, improved
optimization of parameters is required to create more robust models. Regardless, DL has
already been leading to groundbreaking results in the healthcare, education, security, com-
mercial, industrial, as well as government sectors. Some models, like the convolutional
neural network (CNN), generative adversarial networks (GAN), recurrent neural network
(RNN), recursive neural networks, and autoencoders, are frequently used, while the poten-
tial of other models remains widely unexplored. Pertinently, hybrid conventional DL archi-
tectures have the capacity to overcome the challenges experienced by conventional models.
Considering that capsule architectures may dominate future DL models, this work aimed to
compile information for stakeholders involved in the development and use of DL models in
the contemporary world.
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1 Introduction

Developing machines with the ability to ‘think’ has been a long-running aspiration of
inventors throughout history. The popular idea of replicating intelligent human behavior
arranged as processes in machines (Dick 2019) has fueled researchers’ imaginations. In the
present time, artificial intelligence (Al) is a thriving and rapidly changing field with vari-
ous applications in society and economics, such as understanding speech or images, textual
analysis, and in supporting an actively growing research body (Lu et al. 2018). Machine
learning (ML), a part of Al, is a multidisciplinary field spanning computer science, sta-
tistics, and data science that addresses the need for computers to improve automatically
through experience and by the use of data (Jordan and Mitchell 2015). ML is advancing
evidence-based decision-making in the fields of healthcare, education, national security,
finance, economics, manufacturing, and marketing (Jordan and Mitchell, 2015), specifi-
cally by implementing various approaches to teach computers to achieve tasks. However,
conventional ML techniques cannot efficiently process raw data and require mindful engi-
neering and great expertise (Lecun et al. 2015). In the real world, every piece of data may
be influenced by different factors of variations, thus requiring humans to factor in those
variations and decide whether to incorporate them or not. Overcoming such flaws, deep
learning (DL) has recently emerged as a promising approach in ML (Lecun et al. 2015),
currently dominating the majority of the works in the field of ML (Alpaydin 2020).

While it may appear as a seemingly new concept, the idea of DL can be traced back to
the 1940s and subsequently underwent roughly three waves of development with the most
recent current revival beginning in 2006 (Goodfellow et al. 2016). During the first wave
between 1940 and 1960, DL was known as cybernetics, then it gained popularity again in
the 1980s-1990s as connectionism. Fundamental methods such as radial basis function net-
works and multilayer perceptrons were employed in 2014 to solve the problem of design-
ing mobile adaptive tracking controllers (Tzafestas 2014). These two neural networks were
found suitable for decision-making and control. Later, Sengupta et al. (Sengupta et al.
2020) pointed out a few reasons why DL rose to prominence in the twenty-first century,
including the surge of “big data” with quality labels, improvements in regularization tech-
niques, development of near-perfect optimization algorithms, creation of niche software
platforms that can enable the integration of architectures, and advancements in paral-
lel computing power and multi-core, multi-threaded execution. In fact, big data became
a huge issue for conventional ML algorithms along with the increasing size of the net-
work, whereby the performance of old algorithms either became overloaded or deteriorated
(Khamparia and Singh 2019). The enhanced performance of DL can be attributed to its
ability to utilize two or more levels of non-linear feature transformation of the given data
(Zeiler and Fergus 2014).

Deep learning allows computational models with multiple layers to gradually extract
higher-level features from the raw input (Alpaydin 2020; Deng and Yu 2014). The “deep”
in DL, therefore, denotes a high credit assignment path (CAP) depth, which has been
assigned a value of 2 by most researchers (Sugiyama 2019; Telikani et al. 2021; Kashyap
et al. 2021; Mousavi and Gandomi 2021; Tahmassebi et al. 2018a, b, 2019, 2020; Jayara-
man et al. 2020; Kumar et al. 2019). Deep learning enables computers to learn com-
plex concepts by forming them out of simple ones. Goodfellow et al. (2016) adequately
explained that, “Deep learning is a particular kind of machine learning that achieves great
power and flexibility by learning to represent the world as a nested hierarchy of concepts,
with each concept defined in relation to simpler concepts, and more abstract representations

@ Springer



Deep learning modelling techniques: current progress,... 13523

computed in terms of less abstract ones” (Goodfellow et al. 2016). DL is primarily based
on artificial neural networks, a type of computing system roughly mimicking the biological
neural networks of animal brains (Chen et al. 2019), and may employ supervised, unsuper-
vised, or semi-supervised representation learning (Bengio et al. 2013; Lecun et al. 2015;
Schmidhuber 2015). Representation learning, also known as feature learning, sets DL apart
from other techniques in ML. Unlike manual feature engineering, feature learning enables
computers to spontaneously find the representations required for the classifications from
raw data (Bengio et al. 2013). DL, therefore, relies on very little hand-tuning and has the
ability to analyze the rapidly increasing computations and data. The requirement for man-
ual engineering is only restricted to operations, such as altering the numbers and sizes of
layers, to yield different degrees of abstraction (Bengio et al. 2013; Lecun et al. 2015).

The applications of DL span various disciplines and sectors. To begin with, DL has
exhibited remarkable performance in image recognition (Carrio et al. 2017; Krizhevsky
and Hinton 2017; Lecun et al. 2015; Szegedy et al. 2015; Tompson et al. 2014; Wei et al.
2019), displayed potential in image restoration (Schmidt 2014), and demonstrated ground-
breaking results in speech recognition (Ciresan et al. 2012; Deoras et al. 2011; Hinton et al.
2012; Lecun et al. 2015; Sainath et al. 2013). It is currently used in the speech recognition
systems of major day-to-day products (Case et al. 2014; Deng and Yu 2014; Lemley et al.
2017) as well as in the operation of unmanned vehicles (Carrio et al. 2017). The area of
language processing has also been harnessing the benefits of DL (Deng and Yu 2014), in
which DL contributes to natural language understanding and translation (Collobert et al.
2011; Mesnil et al. 2015; Sutskever et al. 2014), query response (Bordes et al. 2014), sen-
timent analysis, text classification, information recovery (Huang et al. 2013; Shen et al.
2014), and writing style recognition (Brocardo et al. 2017), just to name a few. DL has
also been revolutionizing the health sector (Miotto et al. 2018), particularly yielding far-
reaching implications for drug discovery and design and in effectively predicting interac-
tions of potential drugs with molecules of interest (Ma et al. 2015). DL’s ability to acquire
end-to-end learning models from complex, unstructured, diverse, and poorly annotated
data has also led to advancements in biomedical research (Collobert et al. 2011; Naylor
2018; Ravi et al. 2017). With its high image recognition skills, DL has been applied in
clinical imaging, such as neuroimaging (Sui et al. 2020), and has shown great promise in
the identification and detection of lesions, cancer cells, and different organs, as well as in
image enhancement (Cao et al. 2019; Litjens et al. 2017; Wieslander et al. 2017). Bio-
informatics has also applied DL for predicting gene ontology annotations, understanding
the functions of different genes (Chicco et al. 2014), and most importantly for anticipating
how mutations in non-coding DNA affect gene expressions and susceptibility to diseases
(Leung et al. 2014; Xiong et al. 2016).

DL’s applications range far beyond science. For example, the military has taken advan-
tage of the highly efficient image and object recognition ability of DL for various opera-
tions (Mendis et al. 2016; Yang et al. 2018). Businesses have applied DL for improving
their customer relationship management, where it allows for the estimation of the customer
lifetime value that would result from possible direct marketing activities (Tkachenko 2015).
The recommendation systems in various commercial products utilize DL to understand and
predict user preferences (Da’u and Salim 2020; Feng et al. 2019; Oord et al. 2013). Simi-
larly, it has been also used in targeting an appropriate audience for mobile advertisements
(De et al. 2017). Furthermore, DL utilizes both supervised and unsupervised learning in
financial fraud detection and anti-money laundering by identifying anomalies and abnor-
mal money transactions (Paula et al. 2016). While DL has been helping to advance several
fields of research, society, and the economy, it can also be exploited for malicious attempts.
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For instance, DL has been drawing criticisms for compromising cybersecurity as it is sus-
ceptible to attacks by hackers and to deceit (Li et al. 2019a, b, c, d; Norton and Qi 2017;
Papernot et al. 2016). Nevertheless, DL modelling architectures suffer from some errors;
in several instances, DL was found to misclassify or randomly classify images (Nguyen
et al. 2015; Szegedy et al. 2015). To tackle these issues, it is pertinent to design models that
internally create states that are equivalent to image-grammar (Zhu and Mumford 2006). In
addition, Miihlhoff (2020) has argued that despite its much-extolled advantage of requiring
minimal hand-tuning, DL, in fact, relies on microwork by humans, thereby calling it “a
form of distributed orchestration of human cognition through networked media technol-
ogy” (Miihlhoff 2020).

The uses of DL technologies in the contemporary world and their potential for further
applications cannot be disregarded, despite some limitations. Many scholarly works have
been undertaken to comprehensively review the applications of DL technologies across
different sectors. Most review works focus on specific areas and implementations of DL
(Arulkumaran et al. 2017; Gheisari et al. 2017; Pouyanfar et al. 2018; Vargas et al. 2017).
Other reviews have surveyed DL architectures and algorithms in the context of specific
applications, such as speech emotion recognition (Fayek et al. 2017; Pandey et al. 2019),
text classification (Zulgarnain et al. 2020), early diagnosis of Alzheimer’s (Ortiz et al.
2016), electronic health records (Roberto et al. 2020; Xiao et al. 2018), medical image
analysis (Akkus et al. 2017; Cao et al. 2019; Liu et al. 2019; Shoeibi et al. 2020), time
series forecasting (Lara-ben and Carranza-garc 2021), aircraft maintenance, repair, and
overhaul (Rengasamy et al. 2018), and land cover mapping (Pashaei and Kamangir 2020).
With DL having gained momentum only recently, review articles on DL architectures
encompassing the full scope of the field are still lacking. Dixit et al. (Dixit et al. 2018)
provided a brief overview of seven of the most widely used DL architectures (deep neu-
ral networks, deep belief networks, recurrent neural networks, deep Boltzmann machine,
restricted Boltzmann machine, deep autoencoders, and convolutional neural networks), a
list of DL libraries, and some of the most common applications. However, as is perceiv-
able, their paper is not a comprehensive review of existing architectures. In addition to the
models discussed by Dixit et al. (2018), Sengupta et al. (2020) have covered generative
adversarial neural networks and highlighted tests that can be undertaken before implement-
ing different neural networks in safety—critical systems. Shrestha et al. (Shrestha 2019) pro-
vided a rigorous overview of the neural networks and DNNs and found certain limitations
that constrain training, such as overfitting, long training time, and high susceptibility to
getting stuck in the local minima.

Khamparia and Singh (2019) contributed perhaps one of the most important studies
on DL architectures, even though it is limited to neural networks. Their meta-analysis
critically reviewed twelve DL modelling techniques and found that advanced DL archi-
tectures that are combinations of a few conventional architectures are far more robust
than their conventional counterparts. A comprehensive list of DL architectures and
their related applications was also presented. Nevertheless, as a continuously expand-
ing and developing field, there is a need to critically review and compile information
on the state-of-art DL modelling techniques. Therefore, by first delving into a brief
discussion on DL as a subset of ML, this paper comprehensively reviews all of the
available DL modelling techniques. While these modelling techniques have many ben-
efits across multiple disciplines, they are not without limitations. Therefore, this paper
also highlights the advantages and drawbacks of these models and concludes with
future perspectives on DL models, providing directions for enhancing the architecture
designs and increasing the implementation of DL technologies across more sectors.
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Overall, this paper aims to disseminate essential information on the constantly evolv-
ing field of deep learning and direct future research towards improving existing model-
ling techniques.

2 Methodology for selecting, collecting, and analyzing pertinent data

This review utilized an integrative literature method to analyze almost all available
deep learning modelling approaches, as well as their current progress, applications,
advantages, and challenges. Throughout this method, relevant and reliable papers were
selected, collected, filtered, carefully evaluated and analyzed. The database was found
using credible websites, e.g. Scopus and refereed journals from reputable publish-
ers such as Nature, Elsevier, Taylor & Francis, Springer, Wiley, ACS, Inderscience,

9 <

MDPI, Frontiers, and Sage. Relevant keywords such as “Deep learning”, “Deep learn-
ing architecture”, “Deep learning modelling”, “Advantages of deep learning”, “Chal-
lenges of deep learning”, “Future of deep learning”, and each deep learning model
such as “Vector space model”, “Convolutional neural network”, “Recurrent neural
network” and so on, were used to find out publications related to the present work.
Through the Scopus database, 186,154 papers published within the last five years were
identified. The references and bibliographies of the aforementioned publications were
sifted and compiled in order to locate more relevant papers. The following criteria
were used to thoroughly scan and categorize the abstract, introduction, and conclusion
from selected papers:

(i) Preliminary consideration was given to only peer-reviewed articles from reputable
publishers and websites
(i) Researchers who are actively engaged in the relevant research field were chosen and
collected
(iii) The selected publications were evaluated for their balance between modern studies
and prior research
(iv) Referring to websites that employ the aforementioned keywords commercially
(v) The most recent and cutting-edge algorithms relevant to the present work were
emphasised
(vi) Some publications of relevance that were cited in recent studies were rigorously
retrieved as the original source of the studies.

The above criteria assisted in selecting 748 papers that are more relevant. Through-
out the entire review process of available relevant papers, several questions were
raised. To answer these questions, some other references were sourced and examined
for further clarification and improvement. Papers for the present study were chosen
based on a set of inclusion and exclusion criteria, which are illustrated in Table 1. A
total of 419 articles were finally selected by applying the exclusion criteria. Although
the exclusion criteria appeared to provide a solid foundation to find peer-reviewed
and high-quality academic articles, some of the characteristics of the exclusion crite-
ria appeared to be biased and skewed, making it difficult to discover high-quality aca-
demic journals. The authors conducted a test—retest procedure to overcome this issue.
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Table 1 Inclusion and exclusion criteria to select papers for the present review

Inclusion criteria Exclusion criteria

The publications chosen are all academic and peer-  Even if they are academic or peer-reviewed, publica-

reviewed tions lacking a robust discussion are not included
The publications should be pertinent to the topic of Publications that lack information about the afore-
the present study mentioned keywords are not selected
The papers should be capable of answering the The results of any literature that showed a high level
research questions of repetition were filtered out

Any additional information that appears pertinent Any literature with insufficient references and con-
and valuable is also selected texts was not considered

3 Deep learning

Deep learning (DL) is considered an evolution of machine learning (ML) that incorpo-
rates algorithms to learn from data to accomplish some tasks without being explicitly
programmed (Lecun et al. 2015). Both ML and DL are a subset of artificial intelligence
(AI). ML powers a wide range of automated functions in various businesses, from data
security services hunting down malware to finance specialists looking for trade warn-
ings. It has also a wide variety of applications in modern society, such as: developing
intelligent personal assistants for finding helpful information (Dhyani and Kumar 2019),
recommender systems that can suggest relevant items to the users (Zhang et al. 2019),
machine translation to provide the most accurate translation of any text in any language
(Poliak et al. 2018), and predicting the class of object in an image (Chen et al. 2018a;
b). The way machines can learn new techniques becomes interesting whenever deep
learning techniques are employed. The effectiveness of traditional machine-learning
approaches is comparatively lower than DL techniques, as illustrated in Fig. 1, consid-
ering that they require a large volume of data to provide significant results. For a long
time, designing a feature extractor for machine learning systems demanded hand-crafted
features to simplify the learning process. However, such feature extraction techniques
need human expertise and significant domain understanding.

Fig. 1. Perfm;mance of deep Deep learning
learning against traditional learn- algorithms
ing (Ng 2015) -
it
g Traditional machine
g learning algorithms
<
a“) b ,:
A “Uniform —
-performance

Data Volume
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Deep learning allows machines to learn from their mistakes and comprehend the world
as a hierarchy of concepts. In this learning process, the machines learn from data using
a general-purpose learning algorithm, thus needing less human expertise to describe all
the knowledge that the machine requires expressly. The models of DL employ a layered
network architecture, known as an artificial neural network (ANN) (Schmidhuber 2015),
which is modelled after the human brain’s analogous networks. The embedding of lay-
ers results in a significantly more efficient learning experience than traditional machine
learning models. The ability of deep learning to achieve high-level features from a mas-
sive amount of input data, referred to as feature engineering, distinguishes it from machine
learning. As a result, deep learning is gaining popularity with innovative applications in
natural language processing (NLP), computer vision, and predictive modelling (Ahmad
et al. 2019).

4 Deep learning modelling techniques

Deep learning modelling techniques enable computational models to learn feature
representation in data using multiple processing layers and several levels of abstrac-
tion (Lecun et al. 2015). Artificial neural networks (ANNSs) provide the foundation of
advanced deep learning models (Schmidhuber 2015) and perform well in a variety of
domains. However, ANNs suffer from certain drawbacks, such as no guaranteed con-
vergence to an optimal solution and being prone to overfitting the training data. There-
fore, researchers have tried to find solutions using deep architecture. The term “deep”
in “deep learning” was motivated by the number of processing layers through which
the data must pass in the network. A deep learning model is made up of multiple layers
that stack up on top of each other (Fig. 2). The first layer (input) consists of units con-
taining values fed to every neuron in the first hidden layer, then the predicted results
come out of the model from the output (final) layer. The number of units in this layer
equals the number of output classes desired. The hidden layers placed between the
input and output layers apply weights to the inputs and pass them through an activa-
tion function. The activation function is used to help the network add non-linearity and
learn complex relationships in the data. The backpropagation algorithm computes the

Fig.2 a Conventional neural (a)
network b Deep learning neural
network (Oka et al. 2021)
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error between the predicted result and the desired class in the output layer, then pro-
ceeds to the hidden layer to reduce the loss by adjusting the weights. This process is
repeated until the output is accurate enough to be useful.

Considering the concepts of neural networks discussed above, several deep learn-
ing modelling techniques are built as described in the following subsections. These
techniques have various applications, such as the detection, classification of objects
in images and video data (Lea et al. 2016), finding sentiment and emotion from text
data (Jin Wang et al. 2016a; Hassan et al. 2018; Majumder et al. 2019), audio pro-
cessing applications like speech recognition (Rao et al. 2018a; b), and neural machine
translation (NMT) with translation between different languages (Sutskever et al. 2014).
Developing a deep learning-based model in these fields requires the pre-processing
of raw data, feature selection, optimal parameter determination, and the evaluation of
classification accuracy and convergence speed. This section covers different types of
deep learning modelling approaches and explains their underlying mathematical con-
cepts, advancements, latest implementations, and applications in various fields.

4.1 Vector space model

The vector space model (VSM) is an arithmetic model in which texts are represented as
vectors. It has been successfully applied in information filtering, information retrieval,
and other areas (Abualigah and Hanandeh, 2015; Van Gysel et al. 2018; Mitra and
Craswell 2017). The vector elements describe the weights or importance of every word
in a document. The cosine similarity technique can be applied to find the degree of
similarity between two documents (Giinther et al. 2016). In the vector space model
shown below, documents are described as a term-document matrix (Shi et al. 2018) or
a term-frequency matrix, where the rows represent the documents and the terms are
defined by the columns. Words, sentences, or phrases are often used as terms, each of
which depends on the application and context. Each cell signifies the term’s weight in
a document, and if a term is present in the document, the cell value will be non-zero.

Dy wy Wa1 Wn
D, wp  wy Wi
Dn Win Wop =t Wy

Suppose there is a document D, and a query ¢g. The cosine similarity formula can be
used to find the similarity between D, and g using the formula:

YV oww,
i=1""1J " L.q

\/2,1 . \/Z, Yy (1)

The query and document vectors are not correlated if the cosine value gives zero in
Eq. (1). The vector space model assumes that the terms are independent of each other.
As a result, the model ignores the possibility of semantically related index terms.

cos Dk q
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4.1.1 Word embedding

In recent years, research interest in the concept of using a vector representation of words
and word embedding has increasingly progressed. The latter has been often utilized in
advanced natural language processing applications, such as information retrieval, question
answering (Zhou et al. 2016), and machine translation (Zhang et al. 2017a; b, ¢). Word
embedding is a method of generating vectors and mapping them to associated words.
Tomas Mikolov’s word2vec (Mikolov et al. 2013) models can generate high-dimensional
vector representations of words when training on a large text dataset (Demeester et al.
2016). These vectors are capable of capturing syntactic and semantic information. In its
simplest form, a word2vec model involves the training of a simple neural network to com-
plete a task and includes only one hidden layer in the neural network, as shown in Fig..
The goal is to simply learn the hidden layers’ weights, which are used as word vectors in
many applications (Zhang et al. 2015). The size of the input layer depends on the number
of words in the vocabulary for training, where one neuron represents one word. The hidden
layer size is defined by how many dimensions we want to keep in the resulting word vec-
tors. It is suggested that the dimensionality of the vectors be set between 100 and 1000 in
the original model (Demeester et al. 2016). Higher dimensionality provides high quality of
word embedding, while the output layer has the same size as the input layer.

To train the embedded weights, the continuous bag of words (CBOW) and skip-gram
are two useful techniques. Given a target word, the skip-gram model attempts to predict
alternative context words. Here, input to hidden layer connections remains the same as the
word2vec fully connected network. However, a simple modification is made in the hid-
den to output layer connection to give space for the selected number of context words.
Contrariwise, the CBOW model aims to predict target words given a set of context words,
the number of which depends on the setting of the window size. For example, in the sen-
tence, “the quick brown fox jumped over the lazy dog.”, ‘the’ and ‘brown’ might be used
as context words and ‘quick’ as the target word. A tweak to the neural network architecture
is required in this scenario as is a simple modification to adjust the input to hidden layer
connection C times. Here, C is the number of context words. By adding these configura-
tions to the network, the hidden layer’s output can be found by taking the mean of the
context words. The steps after calculating the hidden layer remain precisely the same. A
text classification system was proposed by Ali et al. (2019) for retrieving transportation
sentiment from social networking and news sites. The authors combined a topic2vec and
word2vec to create a word embedding model that describes the documents using a low
dimensional vector but keeps the semantic meanings. The model obtains a sentiment clas-
sification accuracy of 93% with transportation datasets, outperforming topic2vec document
representation approaches. The model treats the unimportant words as sentiment words
that cause decreasing classification performance. However, sophisticated data pre-process-
ing is needed to improve classification accuracy (see Figs. 2, 3).

4.1.2 Sentence embedding
The sentence embedding model aims to produce a fixed-length continuous vector repre-
senting the entire input. A rough sense of the relative locations of the sentence vectors

in the original vector space can be obtained from the figure. Similar sentences are close
together in summary-vector space. Skip-thought is one of the popular sentence embedding
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Fig.3 Illustration of word2vec fully connected neural network (Orkphol and Yang 2019)

models that demonstrates significant results in several tasks, including semantic similarity,
paraphrase detection, image annotation (how well the sentences describe an image), and
classifications (Kiros et al. 2015).

Vector representation, which is used for words, phrases, sentences, paragraphs, docu-
ments, or even images, can be generalized as representing “thoughts.” On the other hand,
the skip-thought model abstracts skip-gram architecture to the sentence level (Kiros et al.
2015). The idea behind this model is that the context words embed a word’s meaning. The
model tries to map sentences with common syntactic and semantic information into simi-
lar vectors by reconstructing the neighbouring sentence. The skip-thought model has three
main parts: encoder, previous decoder, and next decoder, as shown in Fig. 4.

In Fig. 4, given a sentence s; at index i, the encoder produces a fixed-length representa-
tion z;. It needs to access the word embedding layer (also called the lookup table layer) that
maps each word into a corresponding vector. Inside an encoder, a recurrent neural network
(RNN) with the gated recurrent unit (GRU) or long short-term memory (LSTM) activation
is fed every word sequentially in a sentence. This encoder captures the temporal patterns
of sequential word vectors. The previous decoder takes the embedding z; from the encoder
and “tries” to generate the proceeding sentence s;_;. This decoder uses another recurrent
network that generates the sentence sequentially and shares the same lookup table layer
from the encoder. The next decoder takes the embedding z; from the encoder and “tries” to
generate the subsequent sentence s, ;. This decoder also uses a recurrent network similar to
the previous decoder. The encoder is the end result of the skip-thought model as it contains
syntactic and semantic information.

Previous

Decoder || S;j .1: 1 got back home
I Sj .1:1got back home I \
I Si: I could see the cat on the steps. Z;
| Si +1: This was strange. | Next

Decoder || Si +1: This was strange.

Fig.4 Skip-thought model overview (Hassan et al. 2018)
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Due to the vast amount of textual data surfacing online, the demand for text summa-
rization is continuously increasing worldwide. As a result, the necessity of natural lan-
guage processing (NLP) models arises to extract the essential and valuable information
from the long text while maintaining critical information. Mohd et al. (2020) introduced
a text summarizer that obtains the features of a long text document using different tech-
niques, such as Latent Dirichlet Allocation (LDA) and Term Frequency-Inverse Docu-
ment Frequency (TF-IDF), which represents each sentence as a numerical vector. Simi-
lar vectors are aggregated together using a genetic algorithm. Lastly, the LDA technique
was utilized to obtain the center sentence of each cluster to be included in the resulting
summary. The macro-average of precision from the experimental results was found to
be 34%, which is higher than the benchmark standard. However, the technique was per-
formed on only one dataset, and thus the precision may not be feasible.

Different types of difficulties, such as combining syntactic information or identi-
fying different labels for the document classification task, are acknowledged using
DocBERT. The DocBERT is a document classification model based on Bidirectional
Encoder Representations from Transformers (BERT) (Adhikari et al. 2019). The gen-
eral idea is to use a fully connected layer to filter the representation obtained from the
common language specification (CLS) token and then employ a SoftMax layer to con-
vert 768-dimensional encoding to class distribution. Adhikari et al. (2019) reported
the state-of-the-art results on four popular datasets, attempting to address the BERT
model’s high computational expense and reduce the parameters by 30-fold. The average
document length was found to be less than BERT, while the maximum length was 512.
However, BERT can outperform non-contextual embeddings on various tasks, such as
the clinical domain. Si et al. (2019) explored the performance of classic word embed-
ding approaches (word2vec, GloVe) and contextualized methods (BERT) on a clinical
concept extraction task. The output of the BERT model was fed into a bi-LSTM, which
showed that contextual embeddings play a significant role in achieving better perfor-
mance (F1-measures of 93.18) on various benchmark tests in the datasets like SemEval.

4.1.3 Graph embedding

Graph embedding is a technique for transforming a whole graph into a single vector
while preserving the graph’s relevant information. The resulting vectors contain highly
informative features that can be used for the task, such as node classification, ranking,
alignment, link prediction, clustering, and visualization. The primary goal of graph
embedding techniques is to reflect high-dimensional points into a residual continuous
vector space with low dimensions (Fig. 5). As a result, it is easy to compute the node
similarity using the dot product or cosine distance formula. Graph analytics is also con-
siderably faster and more accurate than computing in the high-dimensional complex
graph domain.

Although matrix-factorization approaches have been proposed to represent a node
earlier, they are significantly affected by conventional dimension reduction techniques.
Comparatively, recent techniques focus on learning node embeddings using random
walk characteristics. A graph structure can be translated into a sample collection of lin-
ear sequences using the DeepWalk model (Perozzi et al. 2014), which employs hierar-
chical SoftMax techniques as the loss function. The primary concept underlying this
method is to learn embeddings, and therefore (Hamilton et al. 2017):
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DEC(z;,7)) £ ———=— = P,, T(;|v) @)

where P,, T(v;|v;) denotes the probability of visiting from vertex v; to v; on a length-T
;andDEC (zi,zj) is a function that takes the node embeddings z; and z; and uses them to
decode the graph metrics.

A hypergraph embedding method, LBSN2Vec, was developed by Yang et al. (2019) for
location-based social network (LBSN) data that enhances friendship and location predic-
tion task effectiveness. LBSN provides services to the users to publish their location and
location-related contents like photos or notes. Encoding both users and places into low-
dimensional vectors produces hyperedges by sampling friendships and checking-in using
a random walk. The model chooses two nodes from the sample graph and then feeds the
nodes into a model similar to skip-gram to generate low-dimensional vectors represent-
ing the nodes. The authors revealed that the LBSN2Vec model outperforms the baseline
graph embeddings in predicting the friendship of two individuals and location predic-
tion by 32.95% and 25.32%, respectively. However, the study was limited to random walk
approaches for the location prediction task in the hypergraph. Further research is thus
required to take advantage of the meta-graph or hypergraph for the deep learning-based
recommendation model.

4.2 Convolutional neural network

Convolutional neural networks (CNNs) are particularly useful to reduce the number of
parameters in an ANN. This has inspired researchers and practitioners to consider adopt-
ing larger models to accomplish tasks that were previously difficult to handle with regular
ANNs. The CNN model is influenced by an animal’s visual cortex and is intended to learn
low-level to high-level features from the data received gradually. For example, the model
first detects the low-level edge in the first layer in the image classification task and then the
high-level features like shapes and faces in an image (see Fig. 5).
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To understand the architecture of CNN, we explain the essential CNN model compo-
nents. A CNN model is comprised of three primary layers: convolution, pooling, and fully
connected layers. The first two layers generate features from the input, while the third layer,
the fully connected layer, connects the extracted features to the final output. The convo-
lution layers retrieve the high-level characteristics from the data provided. The primary
objective is to compute different feature maps by projecting a tiny array of numbers called
a "kernel" to the input data. The input is also known as a tensor. An element-wise product
between each kernel element and the input tensor is performed at each position of the ten-
sor. Then, the summation of these values is calculated and applied to the associated index
of the output tensor (Fig. 6). Multiple kernels are used to repeat this process to produce an
arbitrary number of feature maps. Each feature map represents distinct input tensors’ char-
acteristics, and each kernel can be considered as a different feature generator. The size and
number of kernels are two primary hyperparameters that describe the convolution opera-
tion. Usually, the kernels’ size is 3 X 3, but it can also be 55 or 7x 7. The number of ker-
nels is chosen arbitrarily depending on the depth of the output feature maps. Mathemati-
cally, convolution operation can be defined by the following equation (Khan et al. 2020):

fp. = Y idxy) 0 efw,v) 3)

c X,y

where f[k is the output feature map of the k-th convolution operation of the /-th layer. This
can be computed as F} = [f5(1, 1), ...ff(p.q). ... ff(P,Q)], where i, is the input tensor
and i (x,y) is an element of that tensor. These values will be element-wise multiplied by
e;‘(u, v), the k-th convolutional kernel of the /-th layer.

CNN introduces non-linearity to the network by applying a non-linear activation func-
tion. Previously, the popular choice was non-linear activation functions, including sig-
moid or tangent functions (LeCun et al. 2012). However, to resolve the vanishing gradi-
ent problem (Nwankpa et al. 2018) of the sigmoid and tangent function, Rectified Linear
Unit (ReLU) and its variants, such as leaky ReLU and Parametric Rectified Linear Unit
(PReLU), are used. One of the recently proposed activation functions named Mish outper-
forms ReLU and other typical activation functions in many deep networks across bench-
mark datasets (Misra 2019). The activation function of the convolutional feature map can
be computed as:

Insert Tensor
—e T 3 * 3 kernel
3 L eI TTYSE
i : 5 - - 2 1 Output Tensor
6 3 8 2 2 1 2 (55 | s2
—————— - . =)
9 6 "[=~t=al._5 Bk hEE IS D I ] 57 50
= - L Lt

.............................................................................

Fig.6 Convolution operation
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aj = g(Fy) (4)

where F’ ;‘ is the output of a convolutional operation that goes to an activation function g();
and a;‘ is the non-linear output of the k-th input feature map in the [/-th layer.

The extracted features from the convolutional and pooling layers are flattened to
a one-dimensional array of numbers. Those features are then fed into the traditional
neural network, where each input is connected to its subsequent layer neurons by a
learnable weight. The main drawback of a fully CNN is that it requires training many
parameters, which contributes to its high computational expense and possible overfit-
ting. The dropout technique is used to overcome such difficulties, in which a few nodes
and connections are removed (Goodfellow et al. 2013). The output layer is the final
layer of CNNs, where softmax function is widely used to provide probability distribu-
tion (Russakovsky et al. 2015). Another classifier, the support vector machine (SVM),
can also classify data (Tang 2013).

Parallel computing has made CNNs more efficient than humans in recognizing vis-
ual patterns, making them a desirable alternative for wide-area monitoring because of
their advantages over humans. Mukherjee et al. (2020) proposed a CNN-based genera-
tive model, namely “GenInSAR”, for combined coherence estimation and phase filter-
ing which directly learns interferometric synthetic aperture radar (InSAR) data distri-
bution. InSAR is a developing and extremely successful remote sensing method for
monitoring a variety of geophysical parameters, including surface deformation. The
unsupervised training on simulated and satellite InSAR images of the proposed model
(GenInSAR) outperformed the other comparable methods (CNN-InSAR(as-is), CNN-
InSAR(retrained), NLSAR, NLInSAR, Goldstein, Boxcar) in reducing the total resi-
due (by more than 16.5% on average), with fewer over-smoothing/artifacts surrounding
branch cuttings. Compared to the related methods, the phase cosine error, coherence
and phase root-mean-square-error of GenInSAR were improved by 0.05, 0.07 and 0.54,
respectively. As a result, the InSAR machine learning can be improved by GenInSAR’s
ability to produce new interferograms.

4.2.1 CNN-LSTM

Long short-term memory (LSTM) can learn long-term relationships in data. However,
spatial data like images are challenging to model with the standard LSTM. The convo-
lutional neural network combined with long short-term memory (CNN-LSTM) is based
on an LSTM network that is primarily designed for sequence prediction tasks where
the input is spatial data, such as images, videos, or temporal structure of words in a
sentence, paragraph, or document. The model shown in Fig. 7 illustrates the combined
regional CNN and LSTM to identify the sentiment of text (Wang et al. 2016a), which
considers an individual sentence as a region and long-distance relationship of sentences
in the prediction task.

The main architecture of the CNN-LSTM model consists of the input layer, convolu-
tion layer, pooling layer, sequential layer (LSTM hidden layer), and fully connected layer.
The first three layers are the CNN layers. The CNN layer’s output data is transferred to the
LSTM layer. Following temporal modelling, the data from the LSTM layers are sent to a
fully connected layer. These layers are well-suited to produce higher-order features that are
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Fig.7 Regional CNN-LSTM model for sentiment analysis (Jin Wang et al. 2016a)

easy to distinguish within distinct categories. The CNN model is used for feature extrac-
tion, while the LSTM model is employed for data interpretation over time.

4.2.2 Temporal convolutional network (TCN)

The novel work on the temporal convolutional networks (TCNs) was first proposed
by Lea et al. (2016) for video-based action segmentation. This approach involves two
phases: (i) CNN computes the low-level features that encapsulate spatial-temporal
information, and (ii) RNN feeds the low-level features into a classifier to extract the
high-level temporal information. Although TCN demands the integration of two differ-
ent models, it offers a unified technique to capture all two layers of information in a
hierarchical manner. The original TCN model possesses a convolutional encoder and
decoder architecture. The model captures a set of video features as the input and then
extracts a D-dimensional feature vector for each video frame. If a video has T frames,
the input X appends all the frame-wise features in a way that X € R™P_ Similar to other
CNN architectures, the networks apply some filters followed by non-linear activation of
the input to extract features. The convolution consists of / layers, where the collection
of filters in each layer is defined as { W }21 for W € R¥Fr-1, Here, F, is the number of
convolution filters in the / layer with a temporal window d. If X,_, is an output from the
previous layer, the /-th layer output, X;, can be calculated as follows (Kim and Reiter
2017):

X, =f(W=xX,_)) 5)

where f denotes any non-linear activations functions, e.g., ReLu.
Convolutional neural networks and their variants are used in various applica-
tions, such as the detection, classification of objects in images and video data, finding
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sentiment and emotions in natural language data, and audio processing applications like
voice recognition. A CNN-based architecture named LeafNet was developed by Barré
et al. (2017) to identify plant species from the leaf images. The authors experimented
with their model on three publicly available state-of-the-art datasets of leaf images:
LeafSnap, Foliage, and Flavia. The previous studies on these datasets were based on
the hand-crafted feature extraction technique. After data augmentation, approximately
270,000 leaf images were used on a 17-layer CNN to train the LeafNet model with
image sizes of 256 X 256 pixels. Improved accuracies (by 0.8-13.3%) of 86.3%, 95.8%,
and 97.9% were found on the LeafSnap, Foliage, and Flavia datasets, respectively, com-
pared to previous studies. However, this method is comparatively slow (training takes
about 32 h) and lacks context due to the small, cropped window sizes.

In another work, a region-based convolutional neural network (R-CNN) has been
applied in the computer vision field for the object detection task. Li et al. (2019a, b, c, d)
proposed the stereo R-CNN method that can perform three-dimensional (3D) object detec-
tion in autonomous vehicle navigation. The method identifies and integrates objects in both
the left and right images simultaneously and uses a region-based object detection align-
ment to retrieve the correct 3D bounding box. The stereo R-CNN captures input images
with a resolution of 600 % 2000 and takes advantage of ImageNet’s pre-trained ResNet-101.
The model was evaluated on the KITTI object detection benchmark. The proposed method
outperformed a previous study (Chen et al. 2018a, b) for 3D object proposals by over
25-30%. Due to the absence of precise depth information, the model can only produce
shallow 3D detection results. Variations in appearance can also have a significant impact.

Chen et al. (2018a, b) introduced an unsupervised domain adaptation model for cross-
domain object detection based on the faster R-CNN model (Zhang et al. 2016a, b). They
employed two domain classifiers: one for high-level features at the global image scale and
another for features clipped by the region proposal network at the instance (object) scale.
The model was validated for different domain shift datasets. Via experiments, the authors
found that the domain adaptive faster R-CNN model outperforms the faster R-CNN model
by over 8.8%. This improvement was found consistent across the categories, thus indicat-
ing that the suggested method can minimize domain mismatch between object categories.
However, the model was not trained to recognize traffic in darkness and is only adaptable
to specific scenarios.

A dynamic CNN-based system was proposed by Chu et al. (2017) for tracking objects in
videos. Using shared CNN features and Region of Interest Pooling, the model takes advan-
tage of single object trackers. The experimental results showed that the proposed online
multi-object tracking algorithm outperforms Markov decision processes by 4%. Although
the model performed well in tracking objects, it is unsuitable for applications with limited
resources. Also, the model may consume a lot of memory and time as it constructs a net-
work for individual objects and performs online learning. Since CNN works well for both
image classification and natural language processing tasks, CNN-based text classification
models are gaining popularity. For instance, multi-layer CNN produces optimal features
during the training process to reflect the semantics of the sentence being evaluated. These
semantic constructs can be applied to a variety of applications, including text classification,
text summarization, and information retrieval.

A CNN-based method was suggested by Hughes et al. (2017) for classifying clinical
texts into one of 26 categories, such as “Brain” or “Cancer.” The model classifies texts
by converting each document into a sentence-level representation. The authors used
two stacked convolutional layers followed by a pooling layer. The experimental analy-
sis revealed that the model improves the word embedding-based methods by accuracy of
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around 15%. However, the model was trained with a relatively small dataset (4000 sen-
tences). To improve the model performance, domain adaptation techniques can be used to
transfer knowledge from another domain to the medical field (Sun et al. 2016).

CNN-based models have also been successfully applied in the sentiment analysis of
Twitter data. To predict user behavior via sentiment analysis, Liao et al. (2017) examined
different deep learning techniques. They employed CNN and word embedding techniques
to get better results than traditional learning algorithms, such as SVM and Naive Bayes
classifiers. Their approach interpreted the sentence matrix to be the same as an image
matrix. A linear kernel was convoluted to that sentence matrix, and a max-pooling func-
tion was applied to each feature to find the fixed-length representation of the sentence.
The model was assessed on several benchmark datasets, including MR and STS Gold. The
maximum development accuracy was found to be up to 74.5%. To improve the model accu-
racy, a multilayer CNN may be used instead of a simple CNN (single channel) for sentence
classification.

CNN-based approaches are also becoming more prominent in cosmology because of
their noticeable performance. DeepSphere is a graph-based CNN that works on cosmologi-
cal data analysis (Perraudin et al. 2019) to predict a class from a map and classify pixels.
The data often come as spherical maps represented as a graph in the network so that the
model can perform the convolution and pooling operations. In the latter work, DeepSphere
outperformed all the baselines by 10% in terms of classification accuracy. However, the
model was applied to only the classification problem performed on scalar fields. To further
demonstrate the performance of DeepSphere, it would be useful to make comparisons to
various spherical CNN implementations with different sampling techniques.

4.3 Recurrent neural network (RNN)

Recurrent neural networks (RNNs) have recently demonstrated promising performance
on various natural language processing tasks and have produced superior results on mul-
tiple tasks, such as sentiment classification (Wang et al. 2016c), image captioning (Yao
et al. 2017), and language translation (Li et al. 2017a; b). There are numerous situations in
which data sequences describe the case itself. For example, in a language modelling task,
a sequence of words defines their meaning. If the sequences are disturbed, the informa-
tion makes no sense. In a traditional neural network, the assumption is that there has no
dependency between the input and output. Considering this case, a network connecting to
prior information is needed to fully comprehend the data. As a response, RNNs are useful,
which are termed from the fact that they execute the same computation for each sequence
element. The output in every state is dependent on the previous calculation. RNNs keep
a "memory" that captures the information about what has been computed so far (Tomas
Mikolov et al. 2010, 2011). An RNN can be unfolded into an entire network, as illustrated
in Fig. 8.
The computation flows running in an RNN for the text processing task are as follows:

e X, denotes the present input at time step 7, where input is given as a one-hot encoded
vector. For example,x; = [ 10 00 0]’ is the initial word in a sentence.

e s, signifies the hidden state at time step ¢, captures the “memory of the network, and is
computed using the previous hidden state and the present step’s input:
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Fig. 8 Unfolded recurrent neural network (Lecun et al. 2015)
s, =f(Ux, + Ws,_)) (6)

where f is an element-wise non-linear function, such as tanh or ReLU . In the case of calcu-
lating the first hidden state, s,_, is typically set to all zeros. W and U are the weight matrix
of the hidden state and input, respectively.

e 0, represents the output at time step ¢. For instance, to predict the next word in a sen-
tence, the probability can be calculated by applying the softmax function.

o, = softmax(Vs,) @)

An RNN can, in theory, summarize all historical information up to time step s,. Unfor-
tunately, the accuracy of RNNss is significantly inhibited by the vanishing gradient problem
(Bengio et al. 1994). To address this problem, gated recurrent units and long short-term
memory have become more powerful models and gained acceptance in recent years as the
best strategy to implement recurrent neural networks.
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Fig.9 A schematic for a long short-term memory cell (Jenkins et al. 2018)
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4.3.1 Long short-term memory (LSTM)

A long short-term memory (LSTM) network is comprised of different memory blocks
referred to as cells. A cell is constructed by gates that control the flow of information:
forget, input, and output gates (Fig. 9). A forget gate removes information from a cell con-
figuration, and the input gate updates the newly entered data to the cell. The input gate
determines the rate at which new data enter the cell, whereas the output gate limits the data
in the cell and computes the output activation of the LSTM unit.

The gating mechanism in a LSTM can be defined by the following equations:

i, =o(Wix, + Uh,_, + b ®)
fi=c(Wx, +Uh,_, +b) ©)
0, =o(W’x,+ U’h,_; + b°) (10)

C, = tanh(W¥x, + USh,_, + b®) (11)
C,=f®C_ +i®C, (12)
h, = 0,  tanh(c,) (13)

where i, is input gate; f, denotes forget gate; o, is output gate at a time step t; Et is a new
memory cell vector; and W and U are parameter matrices.

4.3.2 Bidirectional long-short time memory (BiLSTM)

Regular recurrent neural networks with LSTM cells can be extended to bidirectional recur-
rent neural networks in which the data is passed through two LSTMs (Graves et al. 2013;
Graves and Schmidhuber 2005). One forward LSTM offers the input sequence in the cor-
rect order (forward layer), and another backward LSTM provides the input sequence in
reverse order (backward layer). This technique improves the model’s accuracy by captur-
ing the long-term dependencies of the input sequence in both directions. In the BiLSTM,
the forward layer computation is identical to those in the regular LSTM that computes
the sequences (E, ¢,) from ¢t = 170T. On the other hand, the backward layer computes the
sequences E‘c_, from ¢ = Ttol as described below:

i, = o(Wix, + Uh,,, + ) (14)
fi=c(Wx,+Uh,, +V) (15)
5, = c(W°x, + U’h,,| +b°) (16)

C, = tanh(Wex, + Ush,,, +b®) (17)
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C,=f®Cy, +i,®C, (18)
h, = 3, ® tanh(z;) (19)

In a study conducted by Siami-Namini, Tavakoli, and Namin (2019), LSTM and BiL-
STM were compared in terms of time series data modelling. The prediction accuracy of the
BiLSTM-based model was 37.78% higher than that of standard LSTM-based models after
training with both directions of input data. However, BiLSTM-based models achieved slower
performance than the LSTM-based models. Another study (Brahma 2018) introduced a new
model suffix bidirectional LSTM (SuBiLSTM) that improved BiLSTM for sentiment classifi-
cation and question classification tasks (see Figs. 7, 8, 9).

4.3.3 Gated recurrent unit (GRU)

The architectures of a gated recurrent unit (GRU) and long short-term memory (LSTM)
are closely related, since both are crafted similarly and, in some situations, generate equally
outstanding results (Murali and Swapna 2019). The GRU cell is comprised of two gates: an
update gate z and a reset gate r. It addresses the vanishing gradient problem of a regular RNN
by using the update gate to determine how much historical memory (from earlier time steps)
should be maintained and proceed to the future and the reset gate to pair the new input with
the prior memory, as shown in Fig. 10.
The gating mechanism in GRU is expressed by the following equations:

z=0(Wh_ +Ux) (20)
r=o(Wh,_, +Ux,) 21)
c =tanh(W (h_, ® r) + U.x,) (22)
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Fig. 10 Gated recurrent unit cell (Zhao et al. 2019)
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h=c®)®(1-2)®h._,) 23)

where x, is the input vector; A, is output vector; W and U are parameter matrices; o is the
sigmoid function; and ® denotes the Hadamard product (entry-wise product).

Due to their versatility in various applications, RNNs have been successfully used in
multiple tasks, including language modelling, speech-to-text processing, caption generator,
machine translation, and other fields. RNN has also been applied in the sentiment analysis
task to produce effective outcomes. For instance, Basiri et al. (2021) proposed a model to
determine the sentiment from long reviews and short tweet text. In the model, the attention
mechanism in RNNs is used to pay more attention to certain factors by assigning different
weights when processing the data. The linguistic structures become more descriptive by
applying the attention mechanism. Two bidirectional LSTM and GRU are also employed
to generate the input text’s previous and next contexts feature representation. The proposed
model improved the accuracy from 1.85% to 3.63% for five long review datasets and from
0.25% to 0.54% for three short tweet datasets. While the study emphasized sentiment clas-
sification at the document level, there is potential to investigate sentiment classification at
the sentence and aspect levels.

Another RNN model based on dialogue was built with an attention mechanism for emo-
tion detection in textual conversations with six emotion labels (Majumder et al. 2019). The
model has several variants, including DialogueRNN + Att and BiDialgouRNN, and con-
siders both context and speaker information. The network employs three GRUs to track
individual speaker states, global context from the preceding utterances, and the emotional
state through the conversations. The data are provided and fed into the GRU for emotion
representation, depending on the context. Although the DialogueRNN model achieved a
better f1-score of 6.62% on several experiments, which is above the baselines (Majumder
et al. 2019), it is time-consuming for training and not parameter-efficient for global or local
contexts.

In RNN-based neural machine translation (NMT), sequence-to-sequence (seq2seq)
architectures are used to deal with translation between languages. These seq2seq archi-
tectures apply two RNNs, namely an encoder and decoder. A study (Camgoz et al. 2018)
utilized the standard seq2seq model to recognize sign language gestures from a video of
someone performing continuous signs. In the study, the CNN was trained on the sentence
level annotation to extract features from the video before translating it to text. These fea-
tures were fed to the seq2seq model. The model scored 18.13 on the BLEU-4 matric (Pap-
ineni et al. 2001) and 43.80 on the ROUGE matric (Lin 2004). The model assumed that
the CNN could learn good feature representation, but this hypothesis’s validity was not
evaluated.

To model long texts for generating semantic relations between sentences, researchers
face challenges in sentiment analysis. Rao et al. (2018a, b) handled the problem by propos-
ing the State Refinement-LSTM (SR-LSTM) and SSR-LSTM models based on deep RNN.
The models have two hidden layers: the first one uses LSTM to represent the semantic rela-
tionship of sentences, and the second one encodes those sentence relationships at the docu-
ment level. The SR-LSTM model outperformed other models by obtaining an accuracy of
44% and 63.9% on the IMDB and yelp2015 datasets, respectively, while the SSR-LSTM
model achieved an accuracy of 44.3% and 63.8% on the same datasets. However, the mod-
els considered only the sequential order of the documents. In future works, it may possible
to represent the documents using tree-structured LSTM.

RNNSs have also been successfully applied in intelligent health care systems. For example,
Uddin et al. (2020) presented a multi-sensors data fusion network that relies on a recurrent
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neural network to recognize human activities and behavior. They extracted features from mul-
tiple body sensors and enhanced the features using Kernel Principal Component Analysis
(KPCA) techniques. Then, human activities were recognized by training a deep RNN. The
proposed method was assessed on three publicly available datasets. The average performance
was found to be 99% using precision, recall, and F1-score matrices. It is possible to extend the
work by developing a real-time human behavior tracking system with considering more com-
plex human activities.

The RNN-LSTM approach for time series modelling has recently attracted much interest.
The applicability of RNN-LSTM was analyzed by Sahoo et al. (2019) for predicting daily
flows during the low-flow periods. The model effectively used the time series data by taking
advantage of the LSTM memory cell to learn features from both the current and past values
of an observable object. The model’s performance (root-mean-square error RMSE=0.487)
on hydrological data outperformed the traditional RNN model (RMSE=0.516) and naive
method (RMSE=0.793). Nevertheless, multiple hidden LSTM layers can be used to enhance
the performance of the model. Experts are also attempting to use deep learning approaches
in typhoon prediction as deep learning techniques become more sophisticated. Alemany
et al. (2019) proposed a fully connected RNN to predict hurricane trajectories from historical
cyclone data that could learn from all types of hurricanes. The model produced better predic-
tion accuracy than the previous models. For example, the mean absolute error (0.0842) of the
RNN model was better than that of the previous sparse RNN average model (0.4612) to track
Hurricane Sandy in 2012. The model may take advantage of converting the grid locations to
latitude—longitude coordinates to reduce the conversion error.

4.3.4 Deep echo state network

The deep echo state network (DeepESN) is a recently proposed technique to enhance the effi-
ciency of a general echo state network (ESN) in several domains. ESN is a reservoir comput-
ing model in which the reservoir computing shows efficiency to train RNNs by preserving
memory using its recurrent nature. A dynamic reservoir is incorporated in ESN, presenting a
sparsely linked recurrent network of neurons that differs from a traditional multilayered neu-
ral network. The reservoir is the network’s only hidden layer, and its input connections are
assigned at random and cannot be trained. On the other hand, the weights between the reser-
voir and output are the only ones that can be trained. The system learns the weights by linear
regression rather than backpropagation. DeepESN is simply the ESN model’s application of
the deep learning architecture.

The DeepESN output is produced using a linear structure of the recurrent units across
all recurrent layers. After initialization, the DeepESN reservoir component is left untrained.
Therefore, the usual ESN technique is subject to stability limitations. Such limits are stated
in DeepESN by the criteria for the ESN of the deep reservoir computing network. In the deep
echo state network, input is processed by the first layer, and the previous layers’ outputs pro-
cess the successive layers’ inputs. Therefore, the state transition function of a DeepESN can be
presented by the following equation (LukoSevicius and Jaeger 2009):

D@y = (1-a®)a0¢ - 1) + aPtanh(WPiO (1) + 60 + WOxO@ - 1)) (24)

where [ represents the number of layers; Wi(r? refers to the input matrix for /; #® denotes

bias weight vector; and W expresses the recurrent weight matrix for layer /. Here, ()
signifies the input for the / th layer of the network at time ¢. The output of the model can be
expressed by the following equation:
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y(t) = W, xXV0x®(@) ... x + 0 (25)

out

where W, is the weight matrix between the reservoir and output y(?).

Based on the DeepESN, a novel technique was developed by Gallicchio et al. (2018a)
for diagnosing Parkinson’s disease. This is a significant initial work in the DeepESN
domain that shows the superiority of DeepESN over the shallow echo state network model.
The proposed technique identified Parkinson’s disease by using the time series data gath-
ered from a tablet device while subjects performed sketching spiral tests with a pen. The
acquired data contain x and y components of the pen, pen pressure, and grip angle. These
signals were used to feed the model with no feature extraction and data pre-processing. The
proposed model was evaluated on a public spiral test dataset and showed to perform better
than the shallow ESN and other state-of-the-art methods.

Gallicchio et al. (2018b) proposed a DeepESN technique based on additive decom-
position for predicting the time series data where the additive decomposition technique
was used as a pre-processing step to the model. Data are split into three parts by additive
decomposition (trend, seasonality, and residual) and then fed to the DeepESN. The perfor-
mance of the additive decomposition-DeepESN was compared with LSTM, GRU, ESN,
and DeepESN algorithms on six different datasets. The proposed model demonstrated
significant performance for large, multidimensional data. Although ESN was found to be
computationally efficient, it delivered a poor performance in prediction. LSTM and GRU
required five times more computational time than DeepESN and additive decomposition-
DeepESN. The additive decomposition-DeepESN model showed a low standard deviation,
proving its stability, whereas other reservoir algorithms were unstable, i.e., with a higher
standard deviation. Thus, the additive decomposition technique has the ability to improve
the stability and performance of the DeepESN.

4.3.5 Elman recurrent neural network

The difference between the Elman recurrent neural network (ERNN) (Elman 1990) and
other recurrent networks is that the hidden layer’s output is used as input for the context
layer in the former. The architecture of ERNN consists of four layers: input layer, recurrent
layer, hidden, and output layer. Each layer has one or multiple neurons that use a non-linear
function of their weighted sum of inputs to transfer information from one layer to the next.
Each hidden neuron is linked to a neuron of the single recurrent layer with the constant
weight of one. As a result, the recurrent layer contains a copy of the hidden layer’s state
one instant ago. The benefit of using ERNN is that it emphasizes the relationship between
future and previous values even when it is difficult to learn from them. The ERNN can be
described by the following equations (Achanta and Gangashetty 2017):

h,=f(Wx, + Wh,_, +by) (26)

y; = g(Uh, +b,) 27

where W; signifies hidden weight’s input; W denotes the recurrent weight matrix of the hid-
den layer; b, represents the hidden bias; U refers to the hidden output matrix; b, is the Bias
Vector of the output layer; and f and g are the non-linear functions of hidden and output
layers, respectively. Input is represented by x,, the state of £, and y, refer to the outputs at
time 7.
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An ERNN model with a stochastic time effective function (ST-ERNN) was developed
by Jie Wang et al. (2016b) to forecast stock indices. The architecture is built by combin-
ing ERNN, multilayer perceptron, and stochastic-time-effective function, where a sto-
chastic process is used to describe the level of historical data impact in the market. The
time-strength function includes a drift function and Brownian motion to model the appear-
ance of random changes while keeping the primary trend. The proposed neural network
performs better than other existing neural networks in financial time series forecasting.
Considering the rapid changes in the stock market data that make the field non-linear and
nonstationary, predicting this kind of data is very challenging. Nevertheless, ST-ERNN
showed a significant performance that can be crucial for future experiments in this domain.
Krichene et al. (2017) applied ERNN for forecasting Mackey Glass time-series elements.
The performance of ERNN was evaluated via comparison with two other existing models
(Al-Jumeily et al. 2014; Park 2010) using the same dataset, where ERNN showed better
performance. It is worth noting that optimal performance was achieved when the weights
of the context units were randomly initialized.

4.4 Recursive neural network

A recursive neural network (RvNN) is a nonlinear model that can function on structured
inputs and is applicable to parse trees in natural language processing (NLP), image anal-
ysis, protein topologies, among other applications in structured domains. For instance,
RvNN performs extremely well in the NLP tasks. Despite their deep structure, the archi-
tecture of RvVNN lacks the capacity for hierarchical representation (Irsoy and Cardie 2014)
and contains complex informative processing models. Because they acquire high-level rep-
resentations from explicit inputs, recursive networks are effective in many deep learning
tasks where the input is a structure. RvNNs are normally defined on a directed positional
acyclic graph (Micheli et al. 2007). The form of RvNN is shown in Fig. 11, referring to the
parse tree on the left side (Ma et al. 2018). If the parent node’s feature vector is p, and c1
and c2 are its children, then

p =f(w.[cl;c2] + b) (28)

® 0@ O '
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The cat plays piano

The cat plays piano

Fig. 11 The tree and its associated RvNN architecture (Ma et al. 2018). In the figure, S represents a sen-
tence, NP is a noun phrase, VP is a verb phrase, D denotes determiner, N signifies noun, and V is a verb
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where f(.) is the activation function. The computation is recursively done for all nodes, and
the hidden vectors of nodes’ can then be used for different classification tasks.

Tree-structured recursive neural networks (RvNNs) were used to perform rumor detec-
tion on Twitter by Jing Ma, Gao, and Wong (2018). This study constructed two recursive
networks on top-down and bottom-up tree-structured neural networks. Rather than a sen-
tence’s parse tree, the model’s input is a propagation tree rooted from a source post, and
each node is a sensitive post rather than individual words. Recursive feature learning can
capture the content semanticization of posts along with the tree structure and the receptive
relationship between them. The basic concept of the bottom-up model is to create a feature
vector by traversing each node recursively from the leaves to the root on the top. On the
other hand, the concept of the top-down approach is to create an enhanced feature vector
for each post, considering its propagation direction, in which rumor indicators are com-
bined along the path of propagation. However, for the non-rumor class, the proposed mod-
els did not perform well. Yet, they could add other types of data into the structured neural
models, such as user properties, to boost representation learning even further.

Biancofiore et al. (2017) analyzed atmospheric particulate matter (PM) and forecasted
daily averaged concentrations of PM10 and PM2.5 up to 1-3 days. Particulate matter is
a significant pollutant that affects human health, thus studies on reducing PM are critical.
The latter researchers implemented a multiple linear regression model, feed-forward neu-
ral network, and neural networks with the recursive structure and found that the recursive
neural network model outperforms the other methods. The total number of input variables
and neurons in the second layer in the model determines how many neurons are in the first
layer. The network’s output, the predicted particulate matter concentration, is represented
by a single neuron in the final layer. In the latter work, the RvNN model correctly predicted
95% of the days, but this decreased to 57% when considering only the days where the lim-
its were exceeded. In addition, the false-positive rate was 30% in this study.

Lim and Kang (2018) extracted the relation between chemical compounds and genes.
They experimented with three methods, a tree-LSTM model with a position feature and
a subtree containment feature, and implemented an ensemble process. The authors also
implemented a stack augmented parser interpreter neural network (SPNN). The study
revealed that the SPNN with ensemble technique outperformed the tree-LSTM with
ensemble technique, which means that the extra tracking layer is beneficial. However,
the proposed model is unable to comprehend the structure of a sentence. More training
instances are needed to resolve this error. Also, coordination was not detected, whereby a
comma, parenthesis, or special term like “and” or “or” is used to express coordination rela-
tions. This form of error may be avoided with the use of a separate module that looks for
terms of equal emphasis.

4.5 Neural tensor network

In several natural language processing tasks, neural tensor networks (NTNs) have been
successful. However, they need to estimate a considerable number of parameters, often
resulting in overfitting (Yang et al. 2015) and excessive training times. An NTN model
constructed by Socher, Chen, et al. (2013) implements a 3D tensor for combining two input
vectors as bellow:

x1

fawitty, + v xz] +b) (29)
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where WKl € R™ ig the tensor (W is a slice matrix); V € R¥™?" is the linear mapping to
combine input vectors x; and x,; b refers to a bias term; f is the non-linear activation func-
tion; and x” Wl!*Hx, is an array of k bilinear products.

In contrast to the regular neural network model, NTN can connect two input vectors
with a tensor directly. Although the NTN model is efficient, it takes considerable time
to compute. Several studies were done to reduce the time complexity using parameter
reduction techniques. For instance, Ishihara et al. (2018) introduced two-parameter
reduction techniques based on the matrix decomposition method, while Y. Zhao, Liu,
and Sun (2015) and P. Liu, Qiu, and Huang (2015) proposed simple matrix decom-
position techniques for reducing parameters. A neural tensor model named the con-
volutional NTN converts all word tokens into vectors with the help of a lookup layer,
encode questions and answers with coevolutionary, pooling layers to fixed-length vec-
tors, and finally modelling their interactions with a tensor layer. Therefore, in a seman-
tic vector space, this model will group related questions and answers to avoid the prob-
lem of lexical distances.

Qiu and Huang (2015) proposed a convolutional NTN for community-based ques-
tion answering, integrating sentence modelling and semantic matching into one model.
They implemented contrastive max-margin criterion to train the model. This study
evaluated two different datasets for English and Chinese languages and found that the
proposed model can handle more complex interactions with tensor layers than exist-
ing models. However, texts were converted into fixed-length vectors with the proposed
convolutional layer, saving the essential information lost in bag-of-words. The experi-
ments on the Chinese dataset demonstrated worse performance than the English data-
set, which may be due to some mistakes in the segmentation of the Chinese expression.

A deep attention NTN for visual question answering was introduced by Bai et al.
(2018). In this approach, tensor-based representations are used to find the joint rela-
tionship between images, questions, and responses. The authors used bilinear features
to model images and questions that were further encoded by third dimension, i.e. the
response as a triplet. The correlation between various triplets was broken down by dif-
ferent types of answers and questions. For the most discriminatory inference reasoning
method, a slice-wise attention module was developed. The model was optimized by
learning a label regression with Kullback—Leibler divergence losses. This designing
technique enabled fast convergence and scalable training across a wide range of answer
sets. The proposed model structure was integrated into the known visual question
answering models MLB (Kim et al. 2017) and MUTAN (Ben-Younes et al. 2017). The
proposed technique showed more accuracy than independent MLB and MUTAN mod-
els. This study compared GloVe word embedding with the word embedding learned
from the proposed model and demonstrated that the model could be applied to more
visual question answering models for further verification.

Hu et al. (2017) proposed enhanced face recognition performance by combining
face recognition features and facial attribute features in a variety of tasks. They created
a robust tensor-based model that develops fusion as a problem of tensor optimization.
Due to the great number of parameters, the model was not effective in explicitly opti-
mizing this tensor, and therefore a rich fusion architecture was proposed on the basis
of the tensor. The results revealed that this tensor-based fusion’s Tucker-Low-Rank
decomposition has the same Gated Two Stream neural network, making neural network
learning simple but effective. The authors experimented on three well-known data-
bases (MultiPIE, CASIA NIR-VIS2.0, and LFW) and found that the fusion approach
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significantly increased the face recognition performance. This technique can be
expanded to large-scale data utilizing effective Mini Batch SGD-based learning since
they set the equivalence between tensor-factorization and gated neural network archi-
tecture. Another advantage is that this model can be expanded to deeper architectures.

4.6 Continuous-bag-of-word with denoising autoencoder-logistic regression

To analyze sentiments, a Multimodal Learning technique was presented by Baecchi et al.
(2016) by implementing neural network-based models for microblogging contents that
might consist of texts and images. The proposed architecture is based on the continuous-
bag-of-word (CBOW) model (Mikolov et al. 2013) and was further extended to include
a denoising autoencoder (DA) to include visual data. Thus, CBOW-logistic regres-
sion (LR) is the extended version of CBOW. The difference between CBOW and the
extended model is that the new architecture can perform classification and representa-
tion concurrently. The idea behind this approach is that the multi-tasking technique can
develop the performance of a neural network, while the proposed model can incorporate
semantic and sentiment polarity. The model was further extended to CBOW-DA-LR to
include visual data, such as images in tweets. The descriptor acquired by the denoising
autoencoder, along with the regular word presentation, provides a new descriptor for a
word window in the tweet and learns a logistic regressor at the same time. The proposed
CBOW-DA-LR technique was compared to SentiBank, a commonly-used approach in
this domain, and showed higher accuracy (79% accuracy on text +image data vs. 72% of
SentiBank). Although this specific technique shows significant improvements, it should
be further evaluated to ensure its validity.

4.7 Deep belief network

A deep belief network (DBN) is used to stack several unsupervised networks utiliz-
ing the hidden layer of each network for the next layer’s input. A stack of restricted
Boltzmann machines (RBMs) is typically used in the DBN. The benefit of the restricted
Boltzmann machine is to fit the sample features (Hinton 2009). Therefore, a hidden lay-
er’s output in an RBM can be used as another RBM’s visible layer input. This method
may be considered as the further extraction of the features from the extracted features of
the samples.

Suppose that W is the generative weights of the hidden layers learned by an RBM denote
p(v|h, W) and prior distribution over hidden vectors p(h|W). If v is the visible vector, then
the probability of v can be expressed by the equation:

pw) = ;p(mmp(vm, w) (30)

where p(v|h, W) is kept after learning W; and p(h|W) is replaced by a more reliable model
of the grouped following distribution on hidden vectors.

A computer-aided diagnosis system was built by Abdel-Zaher and Eldeib (2016) for
detecting breast cancer, utilizing a weight-initialized backpropagation neural network from
a trained DBN having identical architecture. The authors implemented DBN in an unsuper-
vised state for acquiring the input features from the main Wisconsin breast cancer dataset.
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The obtained network weight matrix of DBN was then shifted into the backpropagation
neural network to enroll the supervised state. In the supervised form, the backpropaga-
tion neural network was evaluated on Levenberg Marquardt and Conjugate Gradient algo-
rithms. The proposed methodology showed 99.68% accuracy, which outperforms prior
studies. Therefore, this work proposes an efficient system to construct an accurate breast
cancer classification model. However, a deep belief network needs significant computa-
tional effort on hardware, and thus building a real-life computer-aided diagnosis system
based on DBN is very challenging.

Zhao et al. (2017) proposed a feature learning technique named discriminant DBN for
synthetic aperture radar (SAR) image classification. In the study, discriminant features
were obtained in an unsupervised way by integrating the ensemble-learning technique with
a DBN. Some SAR image patch subsets were organized and labelled for training weak
classifiers, then the particular patch was defined by projection vectors. The SAR image
patch was projected into each weak decision space covered by weak classifiers. The mod-
el’s performance was found to be better than other proposed approaches in this domain.
However, since fixed neighbors govern the model, the weak classifier’s training strategy’s
neighbor selection process may cause significant variance in pseudo-labelling. Some adap-
tive strategies can be utilized to choose specific samples for training the weak classifiers.

Another deep belief network, namely convolutional deep belief network (CDBN) is a
hierarchical generative model for a real size image. RBM and DBN find it challenging to
scale to complete pictures since they do not take into account the 2D form of the image,
and therefore, the weights for detecting a specific feature must be acquired separately for
each position. CDBN addresses this issue by scaling to the size of real images. The key to
this solution is probabilistic max-pooling, a new strategy for shrinking higher layer rep-
resentations in a probabilistically sound manner. This model stacks convolutional RBMs
(CRBMs) to construct a multilayer structure similar to DBNs. The CRBM is analogous
to RBM, except the weight among the hidden and visible layers is distributed over each
position in the image. By integrating the energy functions of all individual layer pairs, the
system generates an energy function. After training the given layer, the weights and activa-
tions of the layer are frozen and passed on to the next layer as input.

Assume a CDBN with detection layer (H), visible layer (V), pooling layer (P), and
another higher detection layer (H'); H' and K’ has groups, shared weights I" = {T'"! ... T }
connects pooling unit P* and detection unit H'. The energy function can be described as
(Lee et al. 2009):

E(v,hp, ') ==Y vo(WE s i) = N b D ik =Y pro(T s« i) = 3 b Y i
k k ij kil ] ij
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Based on CNN structure, Wu et al. (2018) presented a novel technique for pathological
voice detection, in which the weights of the CNN are pre-trained by a CDBN. The model
uses statistical approaches to detect the structure of the input data. The performance of
the proposed technique was compared with the existing techniques using the Saarbrucken
voice database. Generative models are generally used to develop the deep learning models
on a small dataset and avoid overfitting. The study reported an accuracy of 68% and 71%
on the validation set, respectively. This is a slight improvement compared to other exist-
ing methods. The results demonstrated that CNN can be tuned more robustly by applying
CDBN to initiate the weights and can avoid the overfitting issue. However, the accuracy for
the testing set decreased, which proves that a more robust system might affect the accuracy.
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A Gaussian Bernoulli-based CDBN (GCDBN) model is made up of many coevolution-
ary layers that are built on Gaussian Bernoulli restricted Boltzmann machines (GBRBM).
Therefore, the architecture takes the benefit of GBRBM and convolution neural networks.
After each convolutional layer, the feature maps are down-sampled using a stochastic
pooling layer. Using a convolutional neural network and GRBM, the proposed system
can extract relevant features from a real-sized image using generative convolution filters,
reducing the amount of connecting weights, and improving the learning of spatial informa-
tion from nearby picture patches. Li et al. (2019a, b, c, d) proposed the GCDBN model
for image feature extraction, which can reduce the computational cost significantly by
replacing fully connected weights with the convolutional filter. However, as a limitation of
this study, only one GCDBN was built with five layers. The recognition accuracy can be
increased by adding more convolutional and pooling layers in the proposed architecture.

DBNs are also widely used in the analysis of hyperspectral imaging (HSI). However,
they fail to examine training samples’ prior knowledge, limiting the discriminant capacity
of retrieved features for classification. MMDBN, a manifold-based multi-DBN was thus
proposed by Li et al. (2022) in order to acquire deep manifold characteristics of hyper-
spectral imaging. The MMDBN created a hierarchical initiation approach that initializes
the network based on the data’s hidden local geometric structure. The MMDBN algorithm
efficiently extracted the deep characteristics from each HSI class. Experimental findings
on the Salinas, Botswana and Indian Pines datasets reach 90.48%, 97.35%, and 78.25%,
respectively, demonstrating that MMDBN outperforms some state-of-the-art algorithms in
classification performance. MMDBN’s classification performance can be further improved
by designing the combined spectral-spatial deep manifold networks.

4.8 Hybrid neural network

The process of artificial neural network (ANN) learning entails predicting values for a set
of parameters and an architecture (Guti 2011). After choosing an architecture, supervised,
unsupervised, or reinforcement learning is often accomplished by repetitively modifying
the connection weights using a gradient descent-based optimization method. The signifi-
cant challenges with this type of technique are the need for a prior-determined architecture
for the neural net, its sensitivity to early training conditions, and its local nature. Several
activations or transfer methods have been used for the hidden layer nodes in hybrid mod-
els. Many studies have suggested hybridizing various basis functions via a single hybrid
hidden layer or different linked pure layers. A hybrid neural network (HNN) was initially
introduced to model a fed-batch bioreactor [36]. The hybrid model is comprised of a partial
first principal model that provides previous information about the process with a neural
network, which acts as an estimate of unmeasured process arguments.

A genetic algorithm is a type of evolutionary algorithm that uses evolutionary biology
concepts like inheritance and mutation. A number of operators (selection operator, substi-
tution operator, recombination operator, and mutation operator) are used in genetic algo-
rithms to bring together the current generation’s eligible members to produce new eligi-
ble members. Arabasadi et al. (2017) developed a hybrid technique that combines genetic
algorithms with neural networks for diagnosing coronary artery disease, using Gini-index,
principal component analysis, information-gain, and weight-by-SVM for feature selection.
The initial weights of a neural network were determined with a genetic algorithm, then
the neural network was trained using training data. The proposed technique implements a
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feed-forward topology with one hidden layer in the neural network. The experiment con-
tained 22 inputs and five neurons in a hidden layer to produce an output that indicates
whether the patient has CAD or not. The suggested approach improved the performance of
a neural network by around 10% by upgrading its initial weights with a genetic algorithm
that offers better weights for the neural network. However, several limitations were found
in this study. Instead of genetic algorithms, other established evolutionary algorithms
like evolution strategy and Particle-Swarm-Optimization (PSO) could be implemented to
ensure the validity of the model. Some parameters, such as momentum factor and learning
rate, could also be optimized.

A novel metaheuristic method was suggested for improving the free parameters of the
PV generation forecasting engine. Using this metaheuristic optimization approach, the
shark-smell-optimization (SSO) technique has been enhanced. The metaheuristic algorithm
incorporates efficient operators to improve its global and local search capabilities. A new
forecasting methodology was applied to a hybrid forecasting engine that combines a neu-
ral network with a metaheuristic algorithm (Abedinia, Amjady, and Ghadimi 2018). This
method includes a two-stage feature selection filter that filters out inefficient inputs using
information-theoretic criteria, such as mutual information and interaction gain. For PV
generation prediction, a three-stage neural network-based forecasting engine was designed
and trained via a combination of a metaheuristic algorithm and the Levenberg—Marquardt
learning method. With the help of this hybrid technique, the neural network-based forecast-
ing engine eliminated underfitting and overfitting problems.

An HNN with Wavelet Transform and Bayesian Optimization was used in a study con-
ducted by (Liu et al. 2022) to predict the copper price for the short-term and long-term.
Wavelet Transform was applied to the data to reduce noise and remove extraneous informa-
tion whereas the algorithm of Bayesian Optimization was utilized on the searching task’s
hyperparameter. For training and forecasting copper price, GRU and LSTM were used.
The results showed that the proposed approaches, GRU or LSTM, can accurately forecast
the copper price in the short and long term with the mean squared errors of less than 3%
in both cases. With this HNN, the unnecessary data can be filtered out while the optimal
hyperparameter set is searched. It is simple and straightforward to use in predicting the
price of other commodities such as the stock market.

4.8.1 Probabilistic neural network (PNN) and two-layered restricted Boltzmann (RBM)

A hybrid deep learning model was presented by Ghosh, Ravi, and Ravi (2016) for senti-
ment classification that combines a two-layered restricted Boltzmann machine (RBM) and
probabilistic neural network (PNN). Sentiment classification is a sub-domain of sentiment
analysis that identifies positive and negative sentiments from a review. In the proposed
architecture, RBM was used for dimensionality reduction, and PNN classified the senti-
ment. The hybrid model was assessed in five datasets and performed better than other exist-
ing models in this domain. The technique achieved a sensitivity of 92.7%,93.3%, 93.1%,
94.9%, and 93.2% for a book dataset, movie dataset, electronics, and kitchen appliance
dataset, respectively. The study revealed that the model does not rely on external resources,
such as sentiment dictionaries, reducing the system’s complexity. It also does not perform
POS tagging, which, although is typically needed in this domain, reduces the system’s
time complexity. In future works, the model should be evaluated with more experiments to
ensure its validity.
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4.8.2 Dynamic artificial neural network

In the field of deep learning, dynamic neural networks (DNNs) are an emerging technique
that can outperform traditional static models in terms of accuracy, adaptiveness, and compu-
tational complexity (Han et al. 2021). Static models have limited parameters and computa-
tional graphs at the inference stage, whereas DNN architecture and parameters are flexible
to different inputs. The outputs of static models are computed based on their link with feed-
forward inputs, as there is no feedback. However, the outputs of dynamic neural networks are
determined by the present and previous values of inputs, outputs, and the network architec-
ture (Abbas Ali Abounoori Esmaeil Naderi Nadiya Gandali Alikhani Hanieh Mohammadali
2016). DNNSs can be divided into three types (Tavarone et al 2018): (i) instance-wise dynamic
models that process each instance individually using data-dependent structures or parameters,
(ii) spatial-wise dynamic models that perform adaptive computing on image data at various
spatial locations, and (iii) temporal-wise dynamic models that accomplish adaptive inference
for sequential data, such as movies and texts along the temporal dimension. Instance-wise and
spatial-wise methods are used specifically in image recognition, whereas temporal-wise mod-
els show emerging improvements in text and audio data. These three types can be combined
simultaneously for video-related research domains (Li et al. 2017a, b; Niklaus et al. 2017).

Godarzi et al. (2014) improved an artificial neural network (ANN), specifically named a
nonlinear autoregressive model with eXogenous input (NARX), to predict oil prices by devel-
oping a dynamic neural network. For the validation and improvements of results, the method-
ology followed three stages: ANN static, time series, and NARX. For identifying the signifi-
cant factors that affect the oil price, a time series model was developed in the first stage. Then,
a static ANN model was built to verify the acquired data from the first stage to ensure the opti-
mal performance of the NARX model. In the last phase, the NARX model was implemented
for the prediction. The methodology was found to be a novel approach for oil price prediction
and can be used for other domains like predicting coal or natural gas price.

4.9 Generative adversarial networks

Goodfellow et al. (2014) was the pioneer of adversarial training for image generation, whereby
training is formulated as a minimax adversarial game and a discriminator is used to distin-
guish fake data from real samples. The generator works by generating fake samples based
on a probabilistic model with the given data. Then, a classification model is applied to verify
whether the generated samples belong to the expected class. The generator aims to fool the
discriminator, whereas the discriminator works to detect the false samples generated by the
generator. Generative models have been used in a wide range of research domains and have
undergone numerous advances since their introduction (Bau et al. 2019; Odena et al. 2017,
Brock et al. 2019; Ledig et al. 2017; Miyato et al. 2018; Karras et al. 2018). In every adversar-
ial approach, there are two models working simultaneously: (i) the generative model acquires
the data distribution, and (ii) the discriminative model measures the probability of sample
point whether it is coming from the training samples. Generative adversarial networks (GAN)
learning concerns finding the optimal parameters 07, for a generator function G(Z;OG) by a
minimax game. This relation can be represented by the following expressions (32-35), as sug-
gested by Goodfellow et al. (2014):

92 =, argmngmaxf(gG’ HD) (32)

G
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= 5, " (05, 07,(05)) (33)

05(06) = 0,5 (06.0p) (34)
where fis determined by:
f(06.60p) =E,, [log(D(x:0p))] +Ezopio [log(l = DIG(Z:65):0p)]  (35)

For ensuring maximum loss in the above equation, the optimal discriminator D*(x) is
a known smooth function for the generator probability p;(x), as described in (Goodfel-
low et al. 2014). The smooth function can be formulated as:

Pdata ()C)

D'(x) = —————
(x) Pdata (X) + pG(x)

(36)

GAN has been in a wide range of applications since its emergence. Generative
approaches are being applied to validate machine learning models’ robustness and to
generate new data for rare examples and for image-to-image translation (Park et al.
2019; Taigman et al. 2017; Xu et al. 2018), image super-resolution (Ledig et al. 2017;
Se¢nderby et al. 2017), synthesis training (Brock et al. 2019; Tang et al. 2019), text-to-
image synthesis (Hong et al. 2018; Zhang et al. 2017a, b, c), and many more. However,
the training of generative models is very sensitive to the selected hyperparameters. New
network architectures have been introduced on a regular basis to this research paradigm
in order to maintain training stability.

4.9.1 Unrolled generative adversarial networks

To solve the problems of mode collapse, instability of GANs network training with
complex recurrent generators, and increasing diversity, Pfau (2017) introduced a method
for reducing complexity in GANs training. The proposed algorithm defines the genera-
tor’s objective in order to achieve an unrolled optimization of the discriminator. The
authors argued to use a local optimum of the discriminator parameters 67 (as presented
in Eq. 34) to be demonstrated as a fixed point, which comes from an iterative optimiza-
tion procedure. Pfau (2017) developed the complex recurrent generators increasing the
diversity and scope of the data distribution. To explain the unrolled GAN, the authors
used the discriminator parameter 07 to express the fixed mark of an iterative optimiza-
tion process. The expression continues in the following order (15-17):

0y = 0p (37)
df(0g,0%)

=0 g —— 2 38

D n dgg ( )

05(0) = Jim oy, (39)

where #* represents the learning rate scheduler. Equation (37) is the full batch steepest
gradient ascent equation, and Eqs. (36) and (38) supplement the expression to explain the
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iterative optimization process. This approach is different from that presented in (Good-
fellow et al. 2014), which indicates that the generator requires that the discriminator be
updated via several steps to run every update step for the generator. Some drawbacks of
this algorithm include high computational cost and cost for each training period as well as
increased complexity with respect to the number of steps.

4.9.2 Style-based generator architecture for generative adversarial networks

Motivated by the style-transfer model presented in (Huang and Belongie 2017), an alterna-
tive generator architecture was proposed in (Karras et al. 2019) for GANs. The presented
generator improved the state-of-the-art work with regard to traditional distribution matri-
ces, which continued towards finding better interpolation properties and latent factors vari-
ation. The authors stated that compared to the traditional generators (Karras et al. 2018)
that are used to feed the latent code within the input layer, their architecture (Karras et al.
2019) allows input to be mapped through an intermediate space. This latent space then
allows control of the generator through the adaptive instance normalization or AdaIN
(Dumoulin et al. 2018, 2017; Ghiasi et al. 2017; Huang and Belongie 2017) within every
convolutional layer. The proposed automated linear separability and perceptual path met-
rics quantified the aspects needed for the generator.

The affine transformations learned from the 8-layer MLP was specialized by a parame-
ter w to styles y, where y=(y,, y,), which led to AdaIN (Dumoulin et al. 2018, 2017; Ghiasi
et al. 2017; Huang and Belongie 2017). Followed by the synthesis network g of each con-
volution layer, AdalN function performs the computation as follows:

x;— ()

AdaIN (x;, y) = yy=——— + Y, (40)
©oo(x)
where each feature map x; is normalized individually, the feature matrix is scaled, and bias
is added by applying the respective scalar components from the style y. Karras et al. (2019)
redesigned the generator architecture, which exposed new approaches for image synthesis
tasks. It is clear from the obtained results that style-based generators outperform the tradi-
tional GAN generators.

4.9.3 Multi-Level generative models for partial label learning (MGPLL)
with non-random label noise

The presented MGPLL method (Yan and Guo 2020) learns a problem through a feature
level and label level generator. It follows a bidirectional mapping of data points and label
vectors. A noise label generation is also used while developing the network to form non-
random noise and to execute label denoising. The model architecture has a multi-class pre-
dictor to locate the training samples to denoise label vectors. Afterwards, a conditional
feature generator is applied to perform the inverse mapping. Yan and Guo (2020) adopted
adversarial loss from Wasserstein Generative Adversarial Network (WGAN) to formulate
their learning. They claimed their model to be the pioneering work that exploited multi-
level generative architecture models. Moreover, the network was modelled with non-ran-
dom noise labels in order to learn the partial label (Zeng et al. 2013). The noise label gen-
erator was responsible for exploiting non-random characteristics of noise labels, whereas
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the data feature generator was accountable for executing the conditioning upon the data
samples based on the particular ground data. Later, the prediction model performed inverse
mapping between these labels and features. The GAN architecture was designed particu-
larly for label learning partially. The conditional label level generator pointed to the advent
of the label-dependent non-random noise, whereas the feature level generator was used to
produce data from the denoised label vectors. As a partial label learning generative archi-
tecture, the authors tested the model against both synthetic PL and real-world (FG-NET,
Lost, MSRCv2, Birdsong, Yahoo! News) datasets, where they achieved satisfactory state-
of-the-art performance.

4.9.4 Dual adversarial co-learning for multi-domain text classification

Multi-domain sentiment classification was performed by Wu and Guo (2020) through the
novel dual adversarial co-learning method. The authors explored a number of real-world
sentiment analysis tasks and demonstrated how multi-domain text classification (MDTC)
addresses the problem of a model constructed for one domain failing when tested on
another domain. The methodology focuses on domain-invariant and domain-specific fea-
tures by shared-private networks, and two classifiers were trained to extract features. Both
the classifiers and feature extractors were designed to work in an adversarial manner, which
resulted in the basis of prediction discrepancy on unlabeled data. A multinomial multi-
domain adversarial discriminator was developed to enhance the effectiveness of feature
extraction of the domain invariant features. This technique separates the domain-specific
features from the domain invariant features. The presented methodology is novel in such a
way that the network tries to align data across domains within the extracted feature space
and labelled and unlabeled data within each domain. This technique also contributes to
avoiding overfitting the limited labelled data.

According to Wu and Guo (2020), if each of the M domains has a limited number of
labelled instances, then L,, = {(xl-,yi)}f’; , and unlabeled instances U,, = {(xl-)};;”’l. In the
study, the challenge was to make use of all available resources of the M domains. The
authors reported that this helped to improve the multi-domain classification performance.
They furthermore introduced separation regularizer (Bousmalis et al. 2016; Liu et al. 2016)
to ensure that domain-specific extractors remained distinct from the extractors, which are
domain-invariant. The introduced methodology was designed to pull features from domain
invariant and domain-specific literature. The shared private network was used to pass
the extracted features from the texts, followed by two classifiers that work together in an
adversarial fashion. A multinomial multi-domain discriminator was applied to increase
the effectiveness of domain-invariant feature extraction. The authors tested this model on
two MDTC benchmark datasets and for unsupervised domain adaptability. The generative
model positions data with respect to extracted feature space and distinguishes labelled and
unlabeled data between each domain. However, the model should be more robust to avoid
overfitting for limited data samples.

4.9.5 Capsule neural network
A capsule neural network (CapsNet) was first introduced by Sabour et al. (2017) to address

a few drawbacks of the convolutional neural network (CNN). For instance, the sub-sam-
pling layers involved in CNN provide less translation invariance. Also, CNN loses the
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information about location and position estimation and is more prone to overfitting train-
ing data for these reasons. It learns the features without understanding the spatial infor-
mation. Thus, most of the CNN models are not effective to avoid misclassification. Cap-
sNet addresses these issues by avoiding the sub-sampling layers, which helps the model to
maintain the spatial and pose information. The idea of capsules was introduced by Hinton
et al. (2011). CapsNets use these “capsule” neural units to encode the relationship between
features and location with capsules as well as transformation matrices. Since this approach
acquires translation equivariance, CapsNets are more powerful than CNN for samples with
misled spatial and pose information.

The dynamic routing algorithm (Sabour et al. 2017) also helps CapsNets to overcome
the inability of features to acquire spatial information and scarcity of rotational invariance.
CapsNets also encode part-whole relationships like orientations, brightness, and scales
among different entities that are objects’ features or feature parts. They use shallow CNN
to acquire spatial information. However, CapsNets perform poorly on classification tasks
for missing semantic information. For shallow convolutional architecture, a high number of
convolutional kernels are used to provide the network with a broad receptive field, but this
approach is also prone to overfitting. Since their inception, CapsNets has been employed
in various researches, including cancer and tumor cell detection (Mobiny and Van Nguyen
2018; Afshar et al. 2018), generative adversarial network (Jaiswal et al. 2019), monitor-
ing machine health (Zhu et al. 2019), object height classification (Popperli et al. 2019),
rice image recognition (Li et al. 2019a, b, ¢, d), protein translational analysis (Wang et al.
2019), hyperspectral images (Landgrebe 2002), and many more.

Hyperspectral images are used for agriculture (Gevaert et al. 2015), land coverage clas-
sification (Yan et al. 2015), vegetation and water resource studies (Govender et al. 2007),
scene classification (Hu et al. 2015), and other environmental monitoring related activities.
Deng et al. (2018) presented two-layered CapsNet, which was trained on less training sam-
ples than Hyperspectral Image (HSI) classification. The work was motivated by the sim-
plicity and comparability of shallower deep networks. The model was trained on two real-
life HSI data: PaviaU (PU) and Salins A. Upon the observation, CapsNet gave an overall
accuracy of 94% and an average accuracy of 95.90% on the PU dataset, whereas CNN had
93.45% and 95.63% accuracy, respectively. The study also made a comparison among Ran-
dom Forests, Support Vector Machines, and CNN with CapsNet in terms of network archi-
tecture. The authors stated that traditional deep learning-based models would not be suit-
able for HSI datasets (Zhong et al. 2018) and that CNN could achieve higher performance
with more training samples, but for limited training data, CapsNet worked better. Figure 12
shows the native logic for Hyperspectral Image (HSI) classification in its conceptual form.

CapsNet was also used in another HSI study (Jiang et al. 2020), in which a new model
called Conv-Caps was designed by integrating CNN and a capsule network with Markov
Random Fields (MRF) for possessing spectral as well as spatial information. With MRF,
the study used graph cut expansion for more efficient classification performance. A CNN-
based feature extractor was also used in the network design. In the model, the layer was
followed by a feature map in order to obtain a probability map. In the last stage, MRF
was used to find subdivision labels. This method takes proper advantage of the spectral
and spatial information that hyperspectral images provide. The model was evaluated with
a Bayesian framework perspective and produced satisfactory results. To make capsule net-
works more robust, various research approaches have been introduced over time, a few of
which are presented below.
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Fig. 12 HSI classification overview presented in (Deng et al. 2018)

4,9.6 Multi-lane capsule network

Multi-Lane Capsule Network (MLCN) was introduced by Do Rosario et al. (2019) to
address the limitation of traditional Capsule Networks. The algorithm was tested on the
reputed FashionMNIST and CIFAR10 datasets. When compared to traditional CapsNet
architectures, the authors achieved satisfactory outcomes with their novel lane proposals.
The experimental baseline was similar to the original configuration employed in (Sabour
et al. 2017). According to the findings of do Rosario et al. (2021), MLCN was found to be
two times more efficient, on average, than the typical capsule network. The authors intro-
duced the problem of load balancing that occurs when distributing heterogeneous lanes
within both homogeneous and heterogeneous accelerators. They addressed this issue with
a greedy approach, which was argued to be 50% more efficient than the brute force naive
approach. Furthermore, the load balancing issue was handled by the neural architecture
search created by their MLCN models, which matched device memory.

Chang and Liu (2020) improved the MLCN algorithm by addressing the issue of cap-
sule networks creating undesirable priorities in the background, which usually results in
poor performance if the background contains too much variance. The authors proposed a
newly configured multi-lane capsule network architecture with a strict-squash (MLSCN)
function for image classification with a complex background to solve this issue. The novel
architecture replaced the traditional squash function and optimized the dropout function
d. The strict-squash algorithm was proposed to prevent the vulnerability of dynamic rout-
ing while also limiting the uselessness of the capsule initialization features. For meaning-
ful feature extraction, the authors also proposed a coherent dynamic weighting assignment
strategy in the multi-lane module. By combining these two methods, the authors recom-
mended MLSCN on the basis of MLCN. The research work focused on addressing the
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issue of misclassification of images with complex backgrounds. This issue can be repre-
sented with the input formalized as below (Chang and Liu 2020):

lx’ = (8115 -+ 81/ (G215 -+ 82)s s (&1 -+ &) (41)

where g;; is the input pixel value in location (i,j). After the convolutional network pro-
cesses, the feature map can be obtained using:

nm = (@115 - ,gU) (8215 - ,821) ,(g,-l,..-,g,-,-)) (42)

where g is the output pixel value in the location (i, ); and Fum is the capsule layer input,
which is responsible to finish the classification step. Following this step, the output layer
can be defined as:

P ={py,py...p;}

where p; is the probability for each category. Most of the regions of an input image have
a background as the content or information; however, this information is useless as it is
the background of the image. Yet, the capsule network provides redundant attention to the
information. As a result, it was identified as the fundamental cause of poor performance in
traditional capsule networks. This problem was solved using the aforementioned network
combined with the original capsule network along with multi-lane architectures. Chang
and Liu (2020) improved their work by making three major contributions: the strict-squash
function, lanes filter, and drop-circuit.

If u; is activation vector of the capsule i of the previous layer, V;; is the inclination
of the capsule i moving to be clustered in capsule j. The relation between these two
parameters can be formalized by the following equation (Chang and Liu 2020):

Vil = Wi X u; (43)

The summation of coupling coefficients between i and the other previous capsules
equals 1, which was achieved by a ‘routing SoftMax’ in which the initial logits b; are
prior probabilities and the capsule i must be coupled with capsule j. Equations (44)- (47)
are used to perform the necessary computations for the model architecture (Chang and
Liu 2020).

_exp(by)
i 2 bie @
5; = Z(lei X Vi) (45)

The squash function is interpreted as a normalization step upon the weighted sum
from the previous layers and is presented as:

u; —Squash(S) ﬂi (46)
s IS
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Finally, to compute ¢;; and update u; or v;;,
the result of the first iteration:

the following equation is used, where ; is

bjji = by + vy X 47

Based on the best classification performance on four benchmark image classification
datasets, Chang and Liu (2020) found that, in comparison with a single input type, mul-
tiple input types can help the multi-lane architecture to achieve better results. One short-
coming of their research was the drop-circuit, which could not recognize the combined
adapted lanes. Consequently, the dropout algorithm would need further research as it
establishes randomness in the experimental results.

4.9.7 Complex-valued capsule network (Cv-CapsNet)

To adjust complex datasets, He et al. (2019) focuses on the extraction of multi-scale,
complex-valued, and high-level features. Moreover, they introduced an algorithm with a
restricted encoding unit of the complex-valued capsule and dense network, with a generali-
zation of the dynamic routing in the complex-valued realm. The generalized dynamic rout-
ing algorithm was used to fuse the real- and imaginary values of complex-valued primary
capsules. The parameters trained for complex-valued routing were lowered when compared
to real-valued routing of the same dimensional capsules. He et al. (2019) also introduced
Cv-CapsNet+ +as an extended framework utilizing a 3-level Cv-CapsNet model. It was
designed for multi-scale high-level complex-value feature extraction and merging the low-
level capsules information that represents the features of instantiation. In addition, Trabelsi
et al. (2018) presented a method to simulate complex and real-valued convolution, which
was demonstrated for a complex-valued filter matrix W = (A + iB) and a complex-valued
vector h = (x + iy) using the following computation:

W h=(A+iB)* (x+1iy) (48)

Real-valued matrices were also presented to introduce the real and imaginary parts in

Eq. (49)

RW=h)| |A-B X

SWxh |~ |BA|"]|y “49)

Here, the real and the imaginary components of the output convolutions are two sepa-

rate parts. Moreover, the real and the imaginary part for all complex-valued convolutions
are detached from each other but concatenated with respect to the real and complex parts
for the following complex-part layer. He et al. (2019) argued that this modelling guaran-
tees the sustainability of the complex-valued convolutions and ensures the complex-valued
encoding. Thus, the architecture was employed to fetch multi-scale features, including orig-
inal, semantic, and structure features. In the model, CReLU (complex-valued) (Trabelsi
et al. 2018) was chosen as the activation function. The authors implemented the model
on CIFAR10 Fashion and MNIST datasets. The model performed well by achieving fewer
trainable parameters with a smaller number of iterations. The generalized dynamic routing
algorithm helped to combine the real values with the imaginary values, greatly reducing
the number of trainable parameters for the same dimensional complex routing model as
compared to the real-valued routing models. However, they could not reduce the computa-
tional complexity for training the model.
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4.9.8 Multi-scale CapsNet

A novel variation of capsule networks was introduced by Xiang et al. (2018), focusing on
computational efficacy and representation capacity. In the leading stage of the presented
multi-scale architecture, information was extracted following the multi-scale information
extraction method. However, on the second stage hierarchy, the features were encoded into
multi-dimensional capsules. An improved drop-out was also introduced in the research
work to enhance the robustness of the capsule network. The authors considered the hier-
archical features of the dataset and exploited multi-dimensional capsules for encoding
those features. The multi-scale capsule encoding consists of two stages, where the first
stage obtains the semantic and structural information through multi-scale feature acqui-
sition. Another top branch of the two layers retrieved the semantic information from the
data as well. The foremost hierarchy of the middle branch of the architecture performed
the medium-level feature extraction process. The last branch took on the actual original
features that were obtained without trainable parameters. In the second stage of the archi-
tecture, feature hierarchies were encoded into multi-dimensional capsules. The final branch
layer was encoded to high-level features of 12D, medium level features of 8D and low-level
features of 4D. The following weight matrices were used to compute the predicted vectors
(Xiang et al. 2018):

A 1
= Wiju[
R
ity = Vyu;
A3 _ 3
i, = Uyl

i = concat@', 02, ®)
Equation (50) is used as the objective function of the multi-category capsule network
(Xiang et al. 2018):

J
Ly = Y Tymax(0,m* = [|V,Il)” + A(1 = T, max(Q, |V, || = m™)* (50)
J=1

The length of a capsule portrays the probability of the entity, where the length is argued
to be compressed to [0,1]. Equation (51) represents that the length can be compressed
without changing its direction and helps in translating the length as the capsule detects the
actual probability of a given data feature:

Isl® s
V= 51
T+ sl GD

where v; represents the capsule output of the j-th unit; and s, is the total input. Dynamic
routing was used as a form of the information selection method, which ensures that the
outputs of the children capsules are sent to their respective parent capsules (Xiang et al.
2018). On the other side, the routing coefficients are adjusted by the update() function
shown below:
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il _ i
b —b+uj u;

! = softmax(b™)

The authors achieved state-of-the-art performance of the model on FashionMNIST and
CIFAR10 datasets. MS-CapsNet was also used in the Synthetic Aperture Radar (SAR)
image detection task (Xiang et al. 2018). Gao et al. (2021) addressed the issue of noise
detection and deformation sensing in traditional CNN architectures with their implemented
multiscale capsule network for feature extraction in SAR image pixels. The multiscale
module exploited spatial information from the image features. The authors also applied an
adaptive fusion convolution module to address the issue of noise detection and tested the
model’s architecture on three real-life SAR datasets.

4.9.9 Attention mechanism

The attention mechanism is described as a mapping mechanism to query and set a key-
value pair to the output. In the output, all of the elements in values, keys, query, and out-
put are vectors. The output values are produced as a weighted sum of the input values,
and the weight values are assigned using a compatibility function. The query with respect
to the associated key generates this compatibility function. Self-attention, also known as
intra-attention, is such an attention-based mechanism that relates various positions of a unit
sequence to compute the representation of that sequence input. The self-attention algorithm
has been used for reading comprehension (Cheng et al. 2016), textual entailment (Paulus
et al. 2018), summarization (Parikh et al. 2016), task-dependent sentence representation
(Lin et al. 2017), and in many other fields.

Vaswani (2017) introduced the transformer-based attention mechanism for sequence
transduction, replacing the recurrent units to employ in encoder-decoder network archi-
tectures for multi-headed self-attention units. The transformer was trained significantly
for translation tasks and was found to be faster than the recurrent and convolutional-based
architectures. The model was applied to 2014 WMT English-to-German and 2014 WMT
English-to-French machine translation work. The encoder was used to map and input
sequence for symbol representations and to generate an output sequence given the con-
tinuous representation. The transformer was employed to follow the overall architecture
with the help of self-attention as well as the point-wise fully connected layers within the
encoder-decoder network architecture.

Vaswani (2017) proposed a self-attention algorithm to perform two machine translation
work and achieved satisfactory and parallelizable results. The model obtained a 28.4 score
on BLEU for the 2014 WMT English-German machine translation task and a 41.8 score
on the 2014 WMT English-French machine translation work. The model was generalized
through the transformer-based attention mechanism on words, which proved to be advanta-
geous over previous researches (Gehring et al. 2017; Kaiser and Sutskever 2016). It was
successfully implemented to the English constituency parsing task with both large and lim-
ited training samples. However, the authors did not evaluate this model for image, audio,
and video data.
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4.9.10 Deep Boltzmann machines

Deep Boltzmann Machine (DBM) (Srivastava and Salakhutdinov 2014), a deep neu-
ral network architecture, is trained in a semi-supervised approach. The architecture of
DBM allows the network to acquire knowledge about complex feature-based relation-
ships. DBMs have a wide range of applications like facial expression recognition (He
et al. 2013), text recognition (Srivastava and Salakhutdinov 2014), person identification
from audio-visual data (Alam et al. 2017), 3D model recognition (Leng et al. 2015), and
many more. DBM consists of units that are respective to input data. The hidden units in
a DBM consist of symmetrical-coupled stochastic binary units. Different layers of the
DBM architecture hold the binary hidden units. Coupling is enabled in consecutive two
layers in a top-down and bottom-up approach. Such structure allows DBM to understand
complicated internal representations of input data.

4.9.11 Deep-FS: A feature selection algorithm for deep Boltzmann machines

A deep feature selection algorithm was presented by Taherkhani et al. (2018), which
was argued to have the ability to remove unwanted features from extensively large data-
sets. Considering that a feature selection algorithm can help improve the performance of
a machine learning model significantly, this algorithm was developed for DBM domain
work. The algorithm was used by a Deep Boltzmann Machine and gathered the data
distribution in a network. Such an algorithm is capable of embedding feature selection
within a Restricted Boltzmann Machine, as presented in Fig. 13.

Considering an RBM of D binary units, if V is a vector containing states of the D
units, there is the set V € {0,1}P and a vector h, which contains states of the hidden
units. If an RBM has F hidden neurons, the F dimensional hidden variables are h €
{0,1}F. Taherkhani et al. (2018) expressed the joint configuration of V and h as defined
in the following Eq. (52):

F

D
EV.h)y=-) 2 Wvih; — Z by, = Y ah; (52)
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Fig. 13 Representation of a restricted Boltzmann machine comprised of two layers of hidden and visible
neurons. In the network, there are D visible and F hidden neural units (Taherkhani et al. 2018)
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where W;; is the weight connecting the ith visible component v; and the jth hidden compo-
nent /;; and b; and g, are the biases connecting to the ith v151b1e units and the jth hidden
units, respectlvely An energy function was employed by Taherkhani et al. (2018) for the
joint distribution of the visible and hidden variables, which assignment is demonstrated in
Eq. (53):

P(V.,h) = —exp(—E(V h)) (53)

where Z is a partition function, also known as the normalizing term. The function Z is
defined below:

Z= Z Z exp(—E(V, h)) (54)
vV h

The overall sum was calculated for all pairs (V;h). If V is a D dimensional vector and k&
is an F dimensional binary vector, there are 2°*F different pairs of (V,k) that are possible.
Additionally, the visible units are considered to be binary. Moreover, the conditional prob-
abilities of P(h|V) and P(V|h) were calculated in (Taherkhani et al. 2018) by the following
equations:

F
P|V)=[]r(1IV) (55)

J=1

D
PvVIR) =[] p(vilk) (56)
i=1

Furthermore, these conditional probabilities can be extended as:

p(h=1[V) = g(Z Wiy +a)) (57)
F
p(v; = 11h) = 2}’ Wyh; + b)) (58)

i=1

Based on the results of Taherkhani et al. (2018), the novel feature selection algorithm
was designed to handle feature selection from large datasets. The algorithm was embedded
into DBM classifiers, which helped to handle a reduced quantity of input features with less
learning errors from large datasets. The algorithm performed well because of its ability to
remove irrelevant features from large data. The results demonstrated that more than 45%
of the features can be reduced from the FashionMNIST dataset, which helped to reduce
the network error from 0.97 to 0.90%. In addition, the time of execution was reduced by
more than 5.5% for classification tasks. The model was tested on GISETTE, PANCAN,
and MADELON datasets and showed to be highly effective for all datasets. Specifi-
cally, it reduced the input features by 81% for GISETTE, 77% for PANCAN, and 57% for
MADELON datasets.
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4,9.12 Restricted Boltzmann machine

Restricted Boltzmann machine (RBM) is a variant of the Boltzmann Machine, contain-
ing a stochastic neural network (generally) for unsupervised learning (Guo et al. 2016).
Unlike other Boltzmann machines, RBMs have a defining trait of providing a bipartite
graph for its visible and hidden layers, enabling the implementation of a gradient-based
contrastive divergence algorithm for training. Developed RBM models use noisy recti-
fied units (linear) to store data on intensities. To create learning modules, RBMs can
be efficiently applied to compose deep networking models, such as Deep Energy Mod-
els (DBNs), Deep Boltzmann Machines (DBMs), and Deep Belief Networks (DBNs).
Generally, RBMs are not a popular choice for computer vision-based applications; how-
ever, in recent times, a few RBM models have been structured to perform vision tasks.
For example, Shape Boltzmann Machine, proposed by Eslami et al. (2014), can learn
to apply the probability distribution method on object shapes to model binary shape
images.

Another prominent use of RBMs, suggested by Kae et al. (2013), is in combination
with CRF to model local and global structures for face segmentation with improved
performance in face labelling. Furthermore, another novel method based on DBN archi-
tecture and mean-covariance RBM was employed for phone recognition. Various frame-
works and models for RBMs have been intensively studied and developed, each having
its own sets of merits and demerits. Although most RBMs that are utilized for vision
tasks exhibit remarkable capability in performing image and object classification/iden-
tifying tasks, such models must be a hybrid of one or more networks to be efficient.
As of yet, standard RBMs alone are not adopted for memory associative or computer
vision-based tasks and are usually in compliance with more than one other deep learn-
ing framework.

4.9.13 Sequence classification restricted Boltzmann machines with gated units

The intractability of learning and inference in RBM was investigated by Tran et al.
(2020) considering the exponential complexity of the gradient computation while
maximizing the log-likelihoods. The algorithm optimized a conditional probability
distribution in place of a joint probability distribution for sequence classification. The
authors also introduced gated-Sequence Classification Restricted Boltzmann Machine
(gSCRBM), in which an information processing gate is integrated alongside long short-
term memory (LSTM) networks. The network architecture was evaluated in an optical
character recognition (OCR) task and for multi-resident activity recognition in smart
homes. It was argued that gSCRBM requires much fewer parameters compared to other
recurrent architectures with memory gates. The SCRBM was constructed by the roll-
ing RBMs along with the class label over the time of training. The network architecture
interpreted the probability distribution with the following equation:

T
p(ylzT’xl:T’hl:T) ZHp(y[,x’,hflht_l) (59)

=1
where x!*T, h!T are the time series corresponding to the visible and hidden states; y'*7 is a

sequence of class labels; and hO are the hidden unit biases.
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The model faced difficulty with an intractable inference, as explained in (Sutskever and
Hinton 2007). The authors also suggested that this problem could be solved through the
addition of recurrent units, as done for RTRBM (Sutskever et al. 2009). For RTRBM, the
class labels were excluded, while in the case of SCRBMs, local distribution at time ¢ was
p(y', x', W |h'~1). This was replaced by the expression presented in Eq. (60):

W) = >

where h'~!is the expected values vector for the hidden units at time t-1 and is calculated as:

exp(—E, (', X', ht;ilt_l)

PO XL I =
e exp(—E,(y',x',h';h-1)

(60)

yx!

ilt—l — [E[HI_I|X1:’_1,y1:[_1] (61)

The local energy function is given by:
’ ’ A "~ T
E, <y ,x,h ;h’_l) =- [(x’)TWXh + uyT, + (h’_l) Whh] h—a'x' — by - c'h’ (62)

The algorithm was designed to achieve better learning and dynamic interference in
sequence classification. For long-term information retrieval, the algorithm followed the
structure of rolling RBMs, and gated units (gSCRBM) were introduced. The gSCRBM
performed better in terms of parameters because it was trained with fewer parameters
than traditional LSTMs and GRUs. The model was evaluated to prove its superior perfor-
mance over advanced LSTM structures (Yu et al. 2019), Bidirectional LSTM (BiLSTM),
and Stacked LSTM (StackedLSTM) (Graves and Schmidhuber 2005). It was found that
SCRBM outperformed the other models in terms of generalization. Although GRUs and
LSTMs generated better results in a few circumstances, the authors explained that those
architectures demand more sophisticated structures, longer processing time, and more hid-
den units. SCRBM was found to be more compact with fewer parameters but with the same
amount of neurons as another RNN network containing the same hyperparameters. How-
ever, the SCRBM was not able to capture long-term information, which led to a vanishing
gradient or exploding gradient problem. This issue was later resolved by the gated unit
(gSCRBM).

4.10 Stacked denoising autoencoders

4.11 Autoencoders

Autoencoder neural networks were designed for unsupervised learning by applying a back-
propagation algorithm of the target values for equalizing the inputs. The autoencoder learns
the approximation between the output and identity function when the input is compared to
the output. When the autoencoder discovers the features or data structure, the hidden units
are subjected to a sparsity constraint. Autoencoder models require knowledge of the geom-
etry of the data to properly understand the input data. Constraining the node in the hidden
layer allows autoencoders to learn the low-dimensional representation of the model.
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Desired output: p(2), p(3), p(4)...

Output neurons o o ® Q

Input
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( oo [TH

Context
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Input: p(1), p(2), P(3)-..

Fig. 14 Representation of Elman network (Liou et al. 2014)

4.11.1 Autoencoders for Words

Liou et al. (2014) presented the Elman network for encoding each word of a different vec-
tor in semantic space, which is related to corresponding entropy coding (Elman 1990,
1998) and is operated on an encoder for training. The authors utilized the Elman network
as a super Turing machine for powerful computation work (Siegelmann 1995). Figure 14
illustrates the Elman network employed by a simple recurrent network, which was designed
for semantic word categorization. However, because it could not handle the encoding task,
the Elman network was redesigned in order to encode the words into the semantic space

o __________NEURAL NETWORK(NN) ENERGY INFORMED NN
\:\\ =
: ‘\)__:gD—>ZI
s
~sl =~
: ’,’ b_>Zm

e et e e Potentia.lenergyloss

No: continue training (update network parameters
by an optimization step)

Internal energy NN

=> a(,p)

Fig. 15 Schematic representation of deep energy model (Samaniego et al. 2020)
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domain. The achieved codes were utilized in indexing, ranking, and categorizing literary
tasks.

Liou et al. (2014) encoded each word for individual vectors while training. The ward
was bound with corresponding entropy coding in semantic space. The training methodol-
ogy also included ranking, indexing and categorizing literacy steps from the training data.
The model was trained on the basis of acquired datasets from two Chinese novels: Romance
of the Three Kingdom and Dream of the Red Chamber. However, they still needed to inves-
tigate whether a low error rate could be achieved without the renewed coding units and the
same network architecture.

4.11.2 Deep energy models

The deep energy model (DEM) is a deep learning training technique for deep networks and
architects based on the restrictive Boltzmann machine learning methodology (I. Goodfel-
low et al. 2016; Guo et al. 2016). It includes a feed-forward neural network that transforms
data inputs deterministically rather than modelling the output via a layer of stochastic hid-
den units (perceptron/neuron), as shown in Fig. 15. The feedforward network (g,) acts on
the universal approximation theorem in order to approximate a continuous function, map-
ping corresponding inputs and outputs (Nguyen-Thanh et al. 2020).

Unlike deep belief networks and deep Boltzmann machines that have multiple stochas-
tic hidden layers, DEM consists of a single stochastic hidden layer (h), which allows effi-
cient inference and simultaneous training of all the layers within the network (Ngiam et al.
2011). Hopfield energy models were one of the earlier developed DEMs that, in their sim-
plistic nature, allow closed-form modelling (Bartunov et al. 2019). However, the Hopfield
model has significant demerits and is unable to work with the quadratic dimensionality of
memory patterns. The capacity for more patterns is also limited by the number of param-
eters in the network. Since real-world data consist of higher-order dependencies, the Hop-
field energy model cannot be used (Bartunov et al. 2019). Ngiam et al. (2011) utilized
the DEM approach to process natural images, demonstrating significant improvements in
data outputs when compared to greedy layer-wise training. In recent years, the develop-
ment of energy-based models meta-learning (EBMM) has been observed to show better
performance as a memory model that is capable of recalling training, memorizing patterns,
and performing compression (Bartunov et al. 2019; Kraska et al. 2018; Parkhi et al. 2015;
Sun et al. 2015; Zhang et al. 2016a, b). Meta-based learning primarily operates on the read
(x;0) and write (X) functions by means of truncated gradient descent, as follows:

read (%,0) = x&+D = xk _ y(k)VXE(x(k)), X0 =3 (63)
1 < 2
LX.0) = > E[|‘xi - read()?i;e)' R (64)
i=1
W(x,0) = E(x;0) + af |V E(x;0)| 5 + B0 — 0| 3 (65)
| <« —
write (X) 00, g*+D = 9@ — 11<’)N D VWi, 07), 60 =19 (66)

i=1
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where x is the input (the deterministic dynamics); X represents the Nth set of input pat-
terns compressed into parameters,0, by the writing rule; N is the number of stored patterns;
k=1, 2,...K (number of sequences required to be updated to perform gradient descent
for optimization for reading function); t=1, 2,...T (number of sequences required to be
updated to perform gradient descent for optimization for write function), respectively;
y®andn® are the learned stepped sizes for reading and writing functions respectively; E(x)
represents the energy function; V, is the derivative operator; and W(x, 0) is the writing loss
function, consisting of meta parameters o andp, representing the energy function at a local
minimum that must be two-fold and requires the hessian term to be positive. The later part
of the writing loss function performs optimization, limiting deviation of prior parameter, 0,
from the initial parameter,0. Finally, implementing gradient descent tunes the writing func-
tion as Eq. (34); where L(X, 0) denotes the score matching objective, or the reconstruction
error for the read function.

Compared to past DEMs, EBMMs can utilize slow gradient learning, having effec-
tive convolutional memories, particularly due to fast writing rules (Bartunov et al. 2019).
EBMMs also adhere to and manage memory capacity efficiently, even for non-compress-
ible inputs, such as binary strings to natural images of high compression. It also has the
ability to differentiate different patterns (energy levels). The method proposed by Bartunov
et al. (2019) resolves the functioning pace of EBMMs with fast writing and limited param-
eter updates (a maximum of 5 steps), adding new inputs for the weights. Another advan-
tage of this method is the association of faster reading and fewer gradient descent steps.
The employability of the proposed operations, which store N patterns in memory and do
not require additional assumptions, further adds to the efficiency of the model (Bartunov
et al. 2019). However, batch writing assumption is a challenge for EBMM and could be
improved with more elaborate architecture.

It is also difficult to find the optimum balance between writing speed and the model’s
capacity (a commonality for most deep learning energy models) (Ba et al. 2016; Bartunov
et al. 2019). In addition, the characterized properties of the learning attractor models are
not yet known, and EBMM cannot return different associations when under uncertainty,
which occurs due to compression. Furthermore, with the general application of gradient-
based meta-learning, it is difficult to evaluate the expected outcome of EBMMs, mainly
because of the high dimensionality pattern space of inputs that increases the resulting dis-
tortion of the model and decreases the output reliability after adaptation. Therefore, a dif-
ferent gradient descent functionality is necessary. Also, parametric gradient-based optimi-
zation requires significant updates (for memory/recalling applications) and, hence, is slow.
Resolving these existing issues, together with the observation and exploration of more sto-
chastic variants for EBMMs would lead to significant improvements for DEM.

Statistical learning and construction of an inference-free hierarchical framework offer
a viable solution for density estimation, consisting of higher dimensional challenges. By
utilizing Bayesian (Eq. (67)) and Parzen score matching functions (Eq. (68)) (Saremi et al.
2018; Vincent 2011) together with a multilayer perceptron of scalable energy learning
operation (Eq. (69)), the deep energy estimator network (DEEN) can be modelled and fur-
ther optimized (Saremi et al. 2018), as follows:

X(E) = & + o2y(E:0) (67)

where ¢ denotes any level of noise; y represents the score function; & is the noisy measure-
ment of underlying random variable x; and 0 is the parameter vector.
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PE =1 ¥ SEX®) (68)
k

where P represents the Parzen density estimator; S signifies the smoothing kernel; k rep-
resents the nth x of a dataset, x={x!,x?...x"}; and n is the number of elements in the

dataset, x.
E(x;0) = Z WEXL“)hff)(x;{w(l), w?, ..., W(L)}) = Z e%(x;0) (69)

In Eq. (69) (Saremi et al. 2018), E(x;0) is linearly constructed from the preceding hid-
den layer h', in which w is the weight of each data x and parameter 8, e* denotes the expert
(corresponding products of expert, PoE) parametrized by the neural network, and a signi-
fies the number of iterations.

Deep energy estimator networks (DEENs) have been demonstrated to be effective
with high dimensionality data values (Saremi et al. 2018). However, it is important
to note that although DEEN can auto-regularize due to its Parzen function, it is not
an autoencoder. In fact, DEEN can operate with a decoder by not directly estimating
the score functions (Alain et al. 2014) and, thus, skipping stability issues of denoising
autoencoders. Being dataset-dependent, DEEN does not impose any bounds towards ¢
and can be effectively regularized. Apart from working with higher dimensionality data,
deep energy estimators are employed for semi-supervised, unsupervised learning, and
generative modelling (Saremi et al. 2018). DEENSs provide consistent estimations and,
therefore, acquire increasing interest; however, more testing is required to examine the
network’s performance for dynamic data as well as the scalability potential.

Another prominent application of DEM is the nonlinear finite deformation hyper-
elasticity problem, operating on an energy and loss function. For instance, using Eule-
rian motion description and transport deformation gradient formulation, the nonlinear
response of elastic materials (in 3D) with a large deformation continuum can be mod-
elled by employing DEM via DNNs. In a previous work, a neural network is structured
using Eq. (70), then optimized to minimize its potential energy using a loss function
(Nguyen-Thanh et al. 2020):

n_y
2}( = G(Z W{(jill:l + bi), 0 < 1 < L (the final layer) (70)

where Z is the final output of the final layer I; w and b are weights and biases, respectively;
and o is the activation function acting on the kth neuron of the Ith layer.

DEM can also be utilized for nonlinear deformation, being faster with fewer cod-
ing and having the traction-free boundary conditions to be auto-filled. Training enables
faster solution retrieval, and the model can be easily coded in common machine learn-
ing operating platforms, such as TensorFlow and Pytorch (Nguyen-Thanh et al. 2020).
However, the use of DEM has certain drawbacks due to the imposition of the boundary
condition of parameters and the associated integrations used for modelling and, there-
fore, requires further study to improve the integration techniques. Moreover, the mod-
elling tends towards non-convexity of loss function during the nonlinear evolution of
network neurons, and so, an enhanced theoretical understanding is required to better
establish the deep neural network architecture. DNNs for finite deformation hyper-elas-
ticity are trained using backpropagation, computing the gradient loss and minimizing
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the function, using a standard optimizer. Considering the tendency of a gap to exist
between backpropagation and energy-based models, Nguyen-Thanh et al. (2020) admin-
istered forward propagation to approximate the solution with defined boundary condi-
tions, which directs the prediction. Scellier and Bengio (2017) proposed equilibrium
propagation to bridge gaps between backpropagation and the energy-based model. The
main objective of equilibrium propagation is to ensure a learning framework for the
DEMs with a 0.00% training error. Provided the statistics of an excellent training error
score, it would be interesting to observe the performance of such a system for different
deep learning techniques and DEMs with complex non-linear data of high parameters
and dimensions.

Reinforcement learning (RL) is another intensively studied deep learning method
that has unique connections with DEMs in terms of state and action spaces. RL sur-
pluses the shortcomings associated with DEMs, which are mostly sampling issues and
unpopularity with regression models (Zhang et al. 2020). For example, performing
molecular modelling using a DEM-based system would be difficult due to the absence
of frameworks that do not involve a classification route for the dataset. Consequently,
when it comes to modelling problems that do not involve density estimations or the
necessity for energy functions, a new neural network is required. Recently, Zhang et al.
(2020) proposed a novel approach, where RL is reformulated into distribution learning
to resolve sampling issues, using a minimax generative adversarial network to develop a
targeted adversarial learning optimized sampling (TALOS) methodology. Another tech-
nique using entropy policy, called variational adversarial density estimation (VADE),
was also effective (for molecular modelling), demonstrating how cross-fertilization
between EBMs/DEMs and RL can overcome the challenges of EBMs. Haarnoja et al.
(2017) explored maximum RL via DEM using the Markov decision process (Eq. (71))
and modified the objective to maximize the entropy (Eq. (72)). Using soft Q learning
and the Bellman equation, the model operated on learning maximum entropy policies

(Eq. (73)).

T g—argmax 2 E(slﬂ‘ yop, [T (8¢5 )] 1)
t

TMaxEnt=ar 8MaX, Z E(slﬂl)an [I”(St, a[)] + (XH(TE(' |St))] (72)
t

where S and a are state and action space, respectively; r denotes reward; p, signifies the
marginals of state and state action for the policy, 7(-|st); and « acts as a hyperparameter.

l * *
nMﬂXEm(atlsO = exp&(Qsoﬂ (Sl’ at) - Vsofl(St))) (73)

where V7 . represents a partition log function; and Q7 . denotes a Q-function (proven and
detailed by Ziebart and Fox (2010) and Haarnoja et al. (2017), respectively).

Reinforcement learning energy modelling policies, which are suitable for high-
dimensional values, have been observed to be robust and applicable to code robotic
tasks and, hence, have become quite popular amid humanoid robots. Although the
model requires pre-training of the general-purpose stochastic policies, when compared
with other deep energy modelling techniques, reinforcement learning via DEM seems
most promising, particularly by being able to solve inputs and sampling issues for
energy-based modellings.
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4.11.3 Deep coding network

Deep predictive coding network is a bio-inspired framework built on the theoretical
understanding of how the brain infers sensory stimuli. The mechanism by which the
brain speculates decisions based on certain data (e.g. visual information) has been for-
mulated as the baseline for predictive coding, followed by the adaptation of filter objec-
tives and training of modules via gradient descent. However, due to the still very mis-
understood functioning of neurons in the brain, it is likely that the connected neurons
in the brain consist of a more complex architecture, significantly limiting existing deep
learning models. Incorporating a feedforward and feedback (prediction making) system
along with each layer of a neural network is a generative understanding of deep cod-
ing networks, particularly the deep predictive coding system. Such networks are heav-
ily studied and used for computer vision, where classification for images and videos is
performed.
A base equation for a deep predictive coding network is given by (Dora et al. 2018):

N Y. .X; Y, . X,
Al ()]
E= 2 o(Yan =)+ X Lok ) + 2 LY, ) (74)
1=0 m,n m,n

m,n,ij

where [, is the calculated error in compliance with p-norm; yin , is a vector in a channel of

the Ith layer, consisting of mth rows and nth columns; wﬁ}?n ;; fepresents the filter through

which neurons at m, n position of / layer is projected; Y,andX, are the height and width of
the layer arranged in a 3D box shape; and ¥ and y denote the predicted and actual activity
of neurons, respectively.

With limited research and understanding of brain processing, particularly of events asso-
ciated with memory, learning, and attention, developing mature and complex deep predict-
ing coding network architectures remains challenging. Therefore, visual image mapping
requires further analysis. Nevertheless, many novel deep learning frameworks and applica-
tions employ the use of predictive coding across various fields for plethora machine learn-
ing applications. For instance, Dora et al. (2018) developed a generative model based on
deep predictive coding and trained using unsupervised learning for processing real-world
images and to effectively capture the statistical regularities of the data. Such ability makes
the model suitable for various image classification and computer vision tasks. The applica-
tion of a similar model in security is another prominent example.

The importance of machines to detect video anomalies is gaining popularity to enhance
security and surveillance. However, video anomalies are highly ambiguous and complex,
with high error margins and poor scores in existing reconstruction and prediction modules
(Hasan et al. 2016; Liu et al. 2017; Ye et al. 2019). A recent application of deep learning
by Ye et al. (2019) demonstrated an improved video anomaly detection. Using a predic-
tive coding network with an error refinement module, the methodology was able to refine
coarse predictions, reconstruct errors, and create a framework that assembles reconstruc-
tion and prediction modules. The modified predictive coding model uses a multilayer net-
work that extracts prediction error features (Egs. (75) and (76)). The new predictions are
then generated to rectify prediction errors using the convolution of the ConvLSTM unit,
enabling sequential dynamics modelling (Eq. (77)). Afterwards, the system performs
refinement. To reach a refined estimation, score gaps between the frames (normal and
abnormal) are reconstructed. Equation (79) represents the error refinement module based
on Eq. (78). The objective functions were minimized and optimized. Metrics, including
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intensity (to measure pixel-wise difference), gradient (to prevent blurry predictions), and
motion constraints, were utilized as a part of the adversarial training strategy.

PEP: E_, =1, -1, (75)

where E;_; is the previous prediction error; I,_; represents the ground truth; and /I\(j_l)
denotes the previous prediction.

R;_, = PEP(E;_}) (76)
In Eq. (44), R;_, extracts deep features, and E;_, is the previous prediction error.
I; = Conv(ConvLSTM(R;_, )) (77)

where ﬁ is the updated prediction generated from the previous prediction error; and
ConvLSTM is a special LSTM operation (spatial convolutions placed for connected
transformations).

— ZteNSt _ ZIGAST

AS
T T

(78)

n a

where AS is the regularity score gap for error refinement (between normal and abnormal
frame); S, is the regularity score; t, time frame; N is the sequence number set for the nor-
mal frame; A is the sequence number set for the abnormal frame; and T, and T, denote the
total number of normal and abnormal frames, respectively.

E, = ERM(E,) (79)

where ]5/1\t and E, are the updated prediction error and preceding prediction error of time step
t, respectively.

Another novel method was proposed by Tandiya et al. (2018) based on deep parse coding
to detect radio frequency (RF) anomalies that are present in wireless connections. The neural
network was trained to recognize the anomaly when there is a potent deviation between the
predicted and actual outcomes. The method performs real-time RF monitorization, which is
both non-intrusive and automated. Tandiya et al. (2018) demonstrated that the use of deep pre-
dictive coding is faster and more efficient than other ML-based approaches. Sequenced images
of the network’s normal operation were obtained using Prednet, a video frame detector, which
teaches the network to make predictions and detect anomalies. Auto-tuning the hyperparam-
eters could be one significant improvement for the predictive coding networks, using:

N
S20 = 5 X X Of + /DXy f = /) (50
r=1
where a=cycle frequency as one axis.

The anomaly detection efficiency of this neural network was close to 100%. The seis-
mocardiography-based detector showed to act relatively faster than the first detector, which
is responsible for the detection anomaly in consecutive spectrogram images. The seis-
mocardiography-based detector spots image anomalies almost instantaneously, and such a
methodology of anomaly detection can be employed for networks with variable constraints

and devices. However, the robustness of detection can be further improved by working
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with complex anomalies, evaluating longer run times, and employing machine learning
techniques to process raw data in different forms. Showing promising error rates and effi-
cient predictive capacity, each framework has its own merits and demerits. Given that pre-
dictive coding is an area that requires further understanding, the functions and frameworks
applied by machine learning engineers to solve problems in various disciplines, with vari-
ous biases, can be significantly improved and optimized further.

The main objective of sparse coding, a special case of deep predictive coding, is to deter-
mine a set of input vectors as a linear combination of basis vectors, which is then taught to
efficiently represent data, as seen in Eq. (49) (for example, image data for classification). In
a study by Zhang et al. (2017a, b, c), deep sparse coding (a deep modelling technique) pro-
duced effective results in extracting high distinct features from raw image pixels, for which
the process is based on unsupervised learning. The deep sparse coding network is constructed
upon basic input, a sparse-coding and pooling layer, and a normalization and map reduc-
tion layer. Such an algorithm uses heuristics to minimize non-convex functions. Although
the system is dependent on a CNN architecture and could have improved speed, the overall
framework is easier to code and functions better than any independent CNNs. However, deep
sparse coding suffers from not being mathematically rigorous and converging towards a local
minimum. Arora et al. (2015) demonstrated how sparse coding can also converge to a global
minimum, providing a novel-based initialization method that returns a better starting point.

1 ,
Cij = arg min Ellxi’j —Wcin s S.t||Cij) |L(, < K (81)

where X; is the receptive field at spatial location i, j; W represents the weight of the input;

C is the number of colored channels (of the input layer), as well as the number of feature

maps for the feature map layer (Zhang et al. 2017a, b, ¢); K controls the sparsity of ¢;; and
L, is a constraint under batch tree orthogonal matching pursuit.
= argmin L7 - 3 82
C—argmlni —Zmz] w,, * C, +ﬂz |C1 (82)

where w,, is the kernel; and C,, is the sparse feature map.

Convolutional sparse coding network (CSN), based on Eq. (50), incorporates the frame-
work of a convolutional system (Zhang et al. 2017c). Similar to a deep sparse coding net-
work that primarily performs patch-level approximation, CSN conducts image-level recon-
struction (approximation as well), but with more hindrance due to the convolution’s nature.
Therefore, deep sparse coding was observed to propagate sharp information forward. The
hierarchical sparse coding (HSC) framework is a similar working sparse coding network
that completes the patch operation using concatenation methodology. For HSCs, map
reduction layers are essential to delve deeper. Utilizing multi-level optimization and non-
negative sparse coding, Sun et al. (2017) developed a multilayer sparse coding network.
The latter system is a deep learning framework consisting of bottleneck modules with an
expansion and reduction layer of sparse coding, consisting of wide and slim dictionaries
that are able to generate high- and low-dimensional distinct features and clustered repre-
sentations, respectively. A supervised learning technique was also employed to train the
dictionaries, optimizing regulatory parameters. Although the network requires fewer layers
and parameters, the deep learning architecture should be further studied to improve pro-
cessing efficiency. The general descriptions of each deep learning modelling technique, as
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well as the main surveyed studies in terms of their main objectives, outcomes, and applica-
tions, have been summarized in Table 2.

5 Advantages and challenges of deep learning models

The several advantages underpinning deep learning models, including image processing
and recognition, speech recognition, self-driving cars, and so on, have sparked such wide-
spread attention. The main benefit of using deep learning models over machine learning
(ML) technologies is their capacity to produce new features through a limited range of
features in the trained dataset (Kotsiopoulos et al. 2021). These models can generate new
tasks for solving current ones as well as they also cover a variety of human life aspects.
A significant amount of time can be saved using deep learning models when dealing with
massive datasets, as deep learning algorithms can generate features without the need for
human intervention (Gupta et al. 2021).

Despite their numerous advantages, deep learning models have a number of noticeable
challenges. First, they are unable to provide arguments supporting the fact that a particular
conclusion is reached (Signorelli 2018). In addition, unlike typical machine learning, peo-
ple are not able to follow an algorithm to figure out why the system decides that the image
portrayed is a dog rather than a cat. To correct these types of errors in deep learning algo-
rithms, the entire algorithm must be revised, which requires additional time. Also, high-
performance computing units, high powerful GPUs and enormous quantities of storage are
needed to train the models. Therefore, deep learning models require more time compared
to traditional ML methods (Palanichamy 2019). The challenges of applying the deep learn-
ing models are summarized in Table 3 along with their advantages.

In general, deep learning (DL) often produces better results as opposed to machine
learning. For example, the largest data portion of an institute/organization is unstructured
since it appears in so many different formats, including texts and images. Most machine
learning (ML) algorithms struggle to make sense of unstructured data, therefore this type
of data is underutilized. Herein lies the strength of deep learning. The main benefit of using
DL over other ML algorithms is its capacity to produce novel features from limited sets of
features already present in the training dataset. It follows that DL algorithms can devise
new challenges to address existing problems. DL enables full-cycle learning by using neu-
ral networks’ capability for featurization, from inputting raw data to producing an outcome.
This approach allows for the optimization of all relevant parameters, which ultimately
results in improved precision.

A key advantage of using the DL approach is that it can perform feature engineering
on its own. In this method, the algorithm is not given any explicit instructions, but rather
it automatically searches through the data for features that correlate and then combines
them to facilitate faster learning. Because of its ability to handle massive data, DL scales
extremely well. The algorithms of DL can be learned on a wide range of data formats
while still producing insights relevant to the objectives of the training. For instance, DL
algorithms can be utilized to identify correlations between social media activities, market
research, and other factors in order to predict the future stock value of a particular firm.

There are a number of issues with DL models as well. In order to outperform alternative
methods, deep learning needs access to a massive dataset. Therefore managing data is the
key challenge that hinders DL in industrial implementations. Deep learning is currently
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limited in its applicability because of the extensive computer resources and training data-
sets it necessitates. It is still a mystery as to how exactly DL models arrive at their conclu-
sions. Not like in traditional ML, where we can trace back the reasoning behind a system’s
identification of a given image as representing a cat rather than a dog. To rectify errors in
DL algorithms, the entire algorithm must be modified. However, no universally applicable
theory is available that can help us to choose the appropriate DL tools as it needs knowl-
edge of training methods, topology, and other features.

6 Comparative analysis of deep learning modelling techniques

Through the present review, it has been determined to what extent deep learning (DL)
modelling techniques can be used in real-world applications. In addition, the methods
employed, the outcomes, and the challenges of DL that have been modelled are identi-
fied. The comparative study compares available DL techniques based on their strengths and
weaknesses, as well as performance metrics. The advantages and challenges outlined in the
previous section make up the basis for the comparative study on strengths and weaknesses.

6.1 Comparative study based on weakness and strength

One of the common DL models, namely the vector space model (VSM) is found simple
in structure and allows the computation of the similarity degree between documents and
queries on a continuous scale. In contrast, the VSM assumes that words are statistically
independent. Additionally, documents with a similar context and distinct term vocabulary
will not be connected, resulting in a "false negative" match. Convolutional neural network
(CNN), on the other hand, uses less time for classification and has good precision in image
recognition challenges. However, comparatively larger data sets are required to train for
CNN. Poor data labeling is another disadvantage of CNN, which can dramatically affect
system performance and precision. Several classification issues, including image classifica-
tion, have been successfully addressed using a predictive coding network (PCN). One of its
drawbacks is that there is a lack of certainty regarding how the estimated error minimiza-
tion functions.

It is observed that the recurrent neural network (RNN) is useful for time series forecast-
ing. In RNN, weight remains constant across all levels, minimizing the number of param-
eters the network must learn. However, gradient and explosion vanishing issues limit the
length of RNN sequences. Its computation process is comparatively slow because of its
repeated/recurrent nature. However, for highly optimal execution, a long training period
may be needed. In most cases, the efficiency and accuracy of the Hierarchical bidirectional
recurrent neural network (HBRNN) are comparatively better than the other networks as it
is constructed through the extensions of bidirectional recurrent neural network (BRNN)
and RNN. Before predictions can be made with HBRNN, the full sequence must be acces-
sible. On the basis of the scoring function, the recursive neural network (RvNN) is capable
of detecting samples that are relatively similar to one another. Obtaining labeled data for
RvNN:s is an incredibly challenging and time-consuming task. Compared to a typical neu-
ral network layer, a neural tensor network (NTN) is a powerful tool for modelling relational
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data. Massive triplet samples are required for NTN to properly train, however, this has a
little effect on sparse knowledge graphs on a global scale.

Deep belief network (DBN) enables highly efficient applications in the domains of
handwriting, face, and speech recognition due to the model’s continual learning of the
characteristics of randomly input samples. However, DBNs do not account for the two-
dimensional structure of input images, which could significantly affect their performance.
Attention mechanism can deduce information from an input that is most pertinent to
accomplishing a task, hence enhancing performance, especially in language processing.
Ambiguous inputs can be handled by Deep Boltzmann machine (DBM) more robustly.
DBM is capable of identifying latent features in data. One of the limitations of DBM is
that maximum probabilistic learning in DBM is a challenge due to the hard inference issue
caused by partition functions. The restricted Boltzmann machine (RBM) is comparatively
faster than a traditional DBM because of the limitations in the number of connections
among the nodes. But the process of learning an RBM is computationally intensive, and in
the case of large datasets, the combined optimization of the parameters is not feasible due
to the slower approximation interface of RBMs.

A well-generalized ability on smaller datasets makes capsule neural network (CapsNet)
suitable for use in a wide range of applications. CapsNets are not able to perform consist-
ently across various datasets, particularly large datasets such as ImageNet. Using hidden
deterministic layers as opposed to hidden stochastic layers, the deep energy model (DEM)
can perform interface and learn quickly. It is less popular due to computational difficulties
and the difficulty of evaluating the likelihood (learning) in DEMs. A generative adversar-
ial network (GAN) does not require estimating a probability distribution by introducing a
lower bound like a variational autoencoder. But GAN has a mode collapse problem, and its
data-generation process is intrinsically slow.

6.2 Comparative study based on performance criteria

This section compares the performance of several deep learning modelling techniques
based on two key performance factors such as prediction accuracy and complexity level,
which are crucial for suitable model selection. The study of the computational complex-
ity of deep learning models is important because it can answer the fundamental question
of why deep learning architecture performs substantially better than traditional machine
learning algorithms. In addition, understanding the complexity is useful to analyze and
compare different deep learning models and improve their performance. The complexity
analysis of deep learning models highly depends on the model structure; on the other hand,
the models are structurally different. Therefore, they cannot be generalized and directly
compared to one another.

One of the recent studies (Hu et al. 2021) surveyed the latest research on model com-
plexity in deep learning. In the study, four factors that influence the deep learning model
complexity were surveyed: (i) model framework including activation functions such as tanh,
ReLu, and others, (ii) model size, including the depths of the neural network layers and the
number of trainable parameters, (iii) optimization process such as the number of iterations
(epochs) to optimize the model, optimization algorithms, hyperparameters, and (iv) data
complexity, which includes class imbalance and high dimensional data. The performance
of a DL model also relies on other parameters such as hardware platforms (high-end GPU),
compiler optimization, and implementation tools. Based on some of those factors and lit-
erature availability, we analyze the performance and computational complexity of different
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Table 4 Comparison of different variants of deep learning architectures applied in different fields based on
performance criteria and complexity

Deep learning model Applied field Performance (prediction accu- Compu-
racy or other matrices) tational
complexity
AE Time Series Prediction High High
BD-LSTM Sentiment Analysis High High
Bi-LSTM Time Series Prediction Medium High
CNN Sentiment Analysis Medium High
Malicious URLs Detection High Medium
Human Activity Recognition High High
Intrusion Detection Systems Medium Medium
CNN-LSTM Malicious URLs Detection High Medium
GRU Time Series Prediction Medium Medium
LSTM Time Series Prediction Medium Medium
RNN Sentiment Analysis Low Low
Time Series Prediction Low Medium
Intrusion Detection Systems High Medium
RNN-GRU Sentiment Analysis Medium Medium
RNN-LSTM Sentiment Analysis High Medium
RNN-LSTM Human Activity Recognition Medium Medium

variants of deep learning models across different application fields (Seo et al. 2020; Zeroual
et al. 2020; Cui et al. 2018; Vazhayil et al. 2018; Shakya et al. 2018), and classify them into
three categories: Low, Medium, and High, as illustrated in Table 4. The lack of relevant
comparative DL literature is identified as the key challenge behind this comparative survey.

The time complexity of an algorithm mainly depends on the input data, and it can be
described using the big-oh notation. Due to its complex nature of architecture, structural
differences, and many other factors, the time complexity of the deep learning model is usu-
ally measured by how long it takes a model to solve a problem on specified hardware.
An empirical analysis of how the configuration settings affect the running time of deep
learning models was conducted by Lee and Chen (2020). The analysis demonstrated that
model complexity increases the running time, but if the data quality is below average, it
is not worthwhile to increase model complexity. In the sentiment analysis task, increasing
the CNN model’s complexity may not improve the performance, whereas increasing the
RNN model’s complexity invariably improves the model performance. Bi-LSTM is found
to be superior to other CNN and RNN models for sentiment analysis (Seo et al. 2020). In
malicious URL detection, CNN-LSTM gives comparatively high accuracy than ordinary
CNN with a little more computational cost (Vazhayil et al. 2018). However, CNN shows a
significant improvement over RNN-LSTM in computer vision tasks such as human activity
recognition (Shakya et al. 2018). CNN is a better choice in intrusion detection systems if
it is a binary classification problem (Cui et al. 2018). For multi-class classification, regular
CNN performs poor than others while RNN is a good choice because of the sequential
data. It is much more computationally expensive than RNN in its architecture. Compared
to RNN, Auto Encoder (AE) shows superior performance in forecasting time-series data.
But RNN is relatively faster and needs less computational cost than LSTM, Bi-LSTM, and
AE (Zeroual et al. 2020).
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7 Future of deep learning

As we step foot into a new era of surplus big data and information, the future of deep learn-
ing is not only prominent but vital for the advancement, resilience, and problem-solving
endeavors of the globe. Deep learning has become a necessary tool across every discipline
from science, engineering, humanity, and health to climate studies and many more. From
developing cybersecurity and surveillance to performing quantum computing, deep learn-
ing will be an evident constant of the future. With the great success of deep networks in
the field of computer vision and the development of artificial intelligence, being able to
extract meaningful and correct features from data to generate necessary outcomes, without
discrimination and being more tolerant of nuisance variations in data (Deng 2014; Guo
et al. 2016), deep learning is the basis for future innovations. As of yet, further knowledge
and understanding are required to improve and construct deep learning networks that deal
with complex high dimensionality data and variations to characterize inputs and outputs
efficiently (Kato et al. 2016).

The growing interest in investments, particularly of giant tech companies (Google,
Facebook, Apple), represents and signals the value and potency of deep learning in the pre-
sent and future. Although deep learning demands high computational power and constant
training to generate reliable results, more work is yet to be done to ensure that deep learn-
ing networks are efficient and cost-effective in extracting and identifying distinct features
from real-world data, mimicking the ability of biological intelligence. Therefore, when
constructing a deep learning methodology, it is important to ensure that the model can deal
with uncertainty, is scalable, and has transferable qualities to be implemented and applied
to multiple problem systems (Zhang et al. 2020). Alongside the development of deep learn-
ing techniques, the availability of user-friendly hardware and software systems are signifi-
cant future prospects for deep learning.

Larger and more extensive datasets are necessary for enhancing the performance of
DL models in a complex and dynamic construction environment including many human
resources, several types of equipment, and a variety of human and equipment activities
(Fink et al. 2020). As humanity surfs the wave of artificial intelligence and deep learning,
ethical frameworks must be developed to ensure the sound employment and enhancement
of deep learning techniques in order to manage proper conduction and utilization of big
data that are fed into deep learning architectures, subsequently generating beneficial and
sustainable solutions. Due to the small sample size of training and limited unsafe activities
considered, several workers’ actions can not be recognized (Ding et al. 2018). With a larger
dataset, the model can therefore improve and give more precise results. Nevertheless, there
is presently no publicly available complete and standardized dataset, also for particular
tasks like activity recognition, pose detection and object detection, as well as for different
views, a wide range of construction sites, occlusion circumstances, and lighting.

Combining deep learning with expert knowledge can be a fruitful area of research since
models may be dynamically augmented with acquired new data, resulting in effective digi-
tal twins which can help in maintenance decision making. Despite the fact that physics-
induced deep learning is now pursuing multiple directions, there is no agreement or no
consolidation on various directions as well as how they can be translated to industrial appli-
cations. There is a need for additional studies to refine and consolidate these techniques,
which may help increase the generalization ability of the models developed. Another issue
that must be addressed in future studies is the effective selection and composition of sets of
training data. This is especially important in environments that are constantly changing and
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have extremely variable operating conditions, where the training dataset is not representa-
tive of the whole range of predicted operating conditions. Continuous decisions must be
made as to whether new data needs to be included in training datasets and the algorithms
updated, or whether the information is repetitive and included already in the datasets used
for training the algorithms.

8 Conclusion

Deep learning (DL) is a thriving multidisciplinary field that is still in its nascent phase.
With the growing availability of data, DL architectures can be successfully applied to
problems across various sectors in the modern world. This paper provides a comprehen-
sive systematic review of the state-of-the-art DL modelling techniques. Some models can
be trained by two or more methods, which means their efficiency relies on the domain in
which they are used. The use of hierarchical layers for proper data classification, as well
as supervision in learning to determine the importance of the database of interest, are
both important factors to develop robust DL. models. While nearly all of the models dis-
play robustness to some extent, existing techniques are still flawed, which subjects them
to criticisms. With the availability of big data across various domains, the quality of data
can become an issue when training DL models. Training DL models can also be very time-
consuming, expensive, and requires hundreds of correct examples for better accuracy,
which can limit their use for everyday purposes or in sensitive security systems. The result-
ing models may also be domain-specific and, therefore, may have restricted applications.
In addition, DL is susceptible to deception and misclassification, which can threaten the
social and financial securities of individuals and/or corporations. Getting stuck on local
minima also makes most models unsuitable for online modes.

CNNs, RNNs, GANs, and autoencoders are the more frequently used DL architectures
across various sectors. However, the potential application of other architectures in cur-
rent areas that use DL is widely unexplored. This paper found that advanced DL models,
which are essentially hybrid conventional DL architectures, have the potential to overcome
the challenges experienced by conventional models. Moreover, generative models exhibit
greater capabilities as they are less reliant on examples. Future networks should strive to
generate a set of possible outcomes, instead of providing one final prediction for the input,
which may help tackle the issue of distorted or unclear inputs. Developing new strategies
to optimize parameters, particularly hyperparameters, is another possibility that requires
further investigation. Capsule architectures may dominate future DL models as they offer
an enhanced way of routing information between layers. If the current challenges can be
addressed, DL models can potentially contribute to further innovations in the field of Al
and for solving far more complex problems.
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