
GPU-Accelerated Approaches

for Graph Data Processing

by

Yuanhang Yu

A THESIS SUBMITTED IN FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

Australian Artificial Intelligence Institute (AAII)

Faculty of Engineering and Information Technology (FEIT)

University of Technology Sydney (UTS)

August, 2023

CERTIFICATE OF ORIGINAL
AUTHORSHIP

I, Yuanhang Yu, declare that this thesis is submitted in fulfilment of the re-

quirements for the award of Doctor of Philosophy, in the Faculty of Engineering

and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are

indicated in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Signature:

Date: 10/11/2023

i

Production Note:

Signature removed prior to publication.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my prin-

cipal supervisor, Prof. Ying Zhang, for his unwavering support, guidance, and

mentorship throughout this journey. His wisdom, patience, and commitment to

my academic and personal growth have been the bedrock upon which this the-

sis stands. In addition to the academic and professional guidance, I am deeply

grateful for the personal care and concern he has shown towards my well-being.

Our bond transcends that of a typical student-supervisor relationship. I am

proud to call him not just my supervisor but also a true friend.

In the same breath, I owe a profound debt of thanks to my co-supervisors, Prof.

Lu Qin and Dr. Dong Wen. Their invaluable perspectives, constructive critiques,

and unwavering support have guided my research trajectory and honed my ideas,

ensuring the robustness and pertinence of my endeavors. Their expertise has

been a beacon, illuminating the intricacies of my research area. At the same

time, I express my deepest respect to Prof. Xuemin Lin and Prof. Wenjie Zhang

for their support. They are outstanding scholars. Their dedication to research

is truly inspirational.

Thirdly, I owe profound gratitude to Dr. Longbin Lai, Dr. Zhengping Qian,

and Prof. Zengfeng Huang. Working alongside them has been a gratifying

experience. They have consistently guided and supported me, o↵ering invaluable

ii

insights that greatly benefited my research. I would also like to extend my

heartfelt gratitude to Mr. Peilun Yang, Dr. Hanchen Wang and Mr. Zhibin

Wang. We have forged a deep and enduring bond during my Ph.D. candidate.

I am immensely grateful for their care, support, and the countless moments of

camaraderie we shared. Their kindness and encouragement make this journey

all the more fulfilling and memorable.

Special thanks to Prof. Bingsheng He and another anonymous examiner for their

insightful comments and suggestions. Their expertise and constructive feedback

have immensely enriched this thesis, rendering it more polished and coherent.

Finally, my heartfelt appreciation goes to my family. To my father Jianguo Yu

and my mother Guixia Zheng, who instilled in me the value of perseverance and

the love for learning, their unwavering faith in my abilities pushed me to reach

greater heights. And to my wife, Liping Niu, whose love, understanding, and

sacrifices have been my anchor during the highs and lows of this endeavor. You

have been my strength, and this achievement is as much yours as it is mine.

iii

ABSTRACT

Graphs become increasingly prevalent in a variety of domains such as bioinfor-

matics, social networks, etc., the size of graph is expanding significantly at the

same time. The need to process graph data in an acceptable time has gained

prominence. As a device equipped with massive computational resources, there is

a growing interest in the GPU for general-purpose computation. In this thesis, we

focus on three common problems in graph data processing, which share the fol-

lowing two characteristics: (1) Given the vast data and inherent complexity, CPU

performance is unsatisfactory, prompting the need for high-parallelism hardware

acceleration; (2) Irregular data complicates optimal use of GPU memory and

threads. With these concerns in mind, we propose GPU-based approaches for

these problems.

The first problem is matrix factorization, widely used in in graph embedding

and recommendation system. Matrix factorization, due to its data-intensive

nature from large matrices, requires the massive parallel processing capabilities

of both CPU and GPU in heterogeneous multiprocessors. The challenge lies in

balancing the workload across these working units. We design a novel strategy

to divide the input matrix into non-uniform blocks for optimal GPU resource

utilization and workload balance. This is achieved by a tailored cost model that

can gauge the performance of working units on blocks. Coupled with dynamic

scheduling, our approach demonstrates enhanced performance with high training

iv

quality on real-world datasets through extensive experiments.

The second problem is approximate k nearest neighbors search, widely ap-

plied in community detection, anomaly detection, etc. Graph-based methods

with outstanding performance are hindered by distance computations among

high-dimensional data points, highlighting the potential for GPU acceleration.

Existing work on the GPU decomposes the search algorithm and accelerates

distance computation by leveraging multiple threads. We notice that it still

su↵ers from the high expenses of data structure operations performed by single

thread. Driven by this motivation, we design a novel GPU-friendly search ap-

proach, which can fully harness multiple threads at all critical steps in search.

In addition, we propose a GPU-accelerated algorithm for building high-quality

graphs with e�cient parallelism. Extensive experiments on benchmark high-

dimensional datasets demonstrate the outstanding performance of our algorithms

in both ANN search and graph construction.

The third problem is subgraph matching, fundamental in a wide range of re-

search fields such as protein interaction analysis and social network analysis. As

an NP-hard problem, subgraph matching is inherently challenging. This o↵ers

a chance for GPU acceleration. Existing work employs a lightweight filtering

method to make a trade-o↵ between high parallelism and e�cient pruning per-

formance. We notice that its pruning performance falls short of expectations

when the labels on graphs are not diverse. Inspired by this, we propose a novel

GPU-friendly filtering approach with strong pruning performance. Additionally,

we propose a 1⇤-phase output scheme to reduce space consumption and optimize

write transactions during enumeration. Together with a pipeline method, our

approach outperforms existing work on real-world datasets through extensive

experiments.

v

PUBLICATIONS

• Yu, Y., Wen, D., Zhang, Y., Wang, X., Zhang, W., Lin, X. (2021,

April). “E�cient matrix factorization on heterogeneous CPU-GPU sys-

tems.” ICDE 2021 (Chapter 3)

• Yu, Y., Wen, D., Zhang, Y., Qin, L., Zhang, W., Lin, X. (2022, May).

“GPU-accelerated Proximity Graph Approximate Nearest Neighbor Search

and Construction.” ICDE 2022 (Chapter 4)

• Yu, Y., Wen, D., Lai, L., Qian, Z., Qin, L., Zhang, Y. “A GPU-accelerated

Subgraph Matching algorithm.” In Submission (Chapter 5)

vi

Contents

CERTIFICATE OF AUTHORSHIP/ORGINALITY i

ACKNOWLEDGEMENTS ii

ABSTRACT iv

PUBLICATIONS vi

1 Introduction 1
1.1 Background . 1

1.1.1 Matrix factorization . 1
1.1.2 k nearest neighbors search 2
1.1.3 Subgraph matching . 4
1.1.4 GPU Architecture . 5

1.2 Motivations . 7
1.2.1 Matrix factorization . 7
1.2.2 k nearest neighbors search 8
1.2.3 Subgraph matching . 9

1.3 Contributions . 11
1.3.1 Matrix factorization . 11
1.3.2 k nearest neighbors search 11
1.3.3 Subgraph matching . 12

1.4 Roadmap . 12

2 Literature Survey 14
2.1 Matrix factorization . 14

2.1.1 Multicore SGD-based algorithms 14
2.1.2 GPU SGD-based algorithms 15
2.1.3 Other related work . 16
2.1.4 Summary . 17

2.2 k nearest neighbors search . 18

vii

CONTENTS

2.2.1 CPU-based ANN methods 18
2.2.2 GPU-based ANN methods 19
2.2.3 Summary . 19

2.3 Subgraph matching . 20
2.3.1 CPU-based subgraph matching methods 20
2.3.2 GPU-based subgraph matching methods 21
2.3.3 Distributed subgraph matching methods 22
2.3.4 Other related work . 22
2.3.5 Summary . 23

3 Matrix Factorization 24
3.1 Preliminaries . 24

3.1.1 Matrix factorization . 24
3.1.2 Stochastic gradient descent 26

3.2 Our approach . 28
3.2.1 A straightforward method 28
3.2.2 Motivation . 29
3.2.3 The framework . 35

3.3 Our cost model . 35
3.3.1 Data preparation and training for CPUs 37
3.3.2 Estimating working e�ciency of GPUs 38

3.4 Workload balance in practice . 42
3.4.1 Dynamic scheduling . 42
3.4.2 Putting things together . 42

3.5 Experiments . 44
3.5.1 Overall e�ciency . 46
3.5.2 Training quality . 49
3.5.3 Matrix division strategy 50
3.5.4 Workload balance . 51

3.6 Conclusion . 54

4 k Nearest Neighbors Search 55
4.1 Preliminaries . 55

4.1.1 Problem definition . 55
4.1.2 Proximity graph search and construction 57

4.2 Proximity graph search . 59
4.2.1 Motivation . 60
4.2.2 GPU-based proximity graph search 63
4.2.3 Analysis . 66

4.3 Proximity graph construction . 67
4.3.1 Motivation . 67

viii

CONTENTS

4.3.2 GPU-based NSW graph construction 68
4.3.3 Analysis . 73
4.3.4 Extension . 74

4.4 Experiments . 76
4.4.1 Search performance . 78
4.4.2 Construction performance 82

4.5 Conclusion . 86

5 Subgraph Matching 87
5.1 Preliminaries . 87

5.1.1 Problem definition . 87
5.1.2 State-of-the-art GPU solution 90

5.2 Framework . 92
5.2.1 Motivation . 92
5.2.2 Solution . 93
5.2.3 Overview . 96

5.3 Implementation . 97
5.3.1 Filtering . 97
5.3.2 1*-phase output scheme 98
5.3.3 Scalability . 101

5.4 Experiments . 103
5.4.1 Experimental Setup . 103
5.4.2 Overall Performance . 104
5.4.3 Filtering Performance . 105
5.4.4 Enumeration Performance 106
5.4.5 Scalability . 108

5.5 Conclusion . 110

6 Epilogue 111

Bibliography 113

ix

List of Figures

1.1 An example of proximity graph 4

2.1 An example of independent and conflicting blocks in 4 ⇥ 4 grid
matrix . 15

3.1 A rating matrix R and a corresponding matrix factorization . . . 25
3.2 Processing speed of GPUs and CPUs on blocks with di↵erent sizes 30
3.3 A running example of the straightforward algorithm given 2 CPU

cores and 1 GPU . 32
3.4 Overview of HSGD* . 34
3.5 Transfer speed varies with block size 38
3.6 Kernel execution time by varying data size 40
3.7 Data transfer optimization . 41
3.8 The final division strategy . 43
3.9 Varying GPU Threads . 47
3.10 Varying CPU Threads . 49
3.11 Test RMSE over training time on four datasets 50
3.12 Test RMSE over training time . 53

4.1 A diagram of search algorithm GANNS 61
4.2 An example of search algorithm GANNS 65
4.3 Our Strategy . 70
4.4 Throughput on di↵erent recall . 79
4.5 Execution time breakdown of GANNS (left) and SONG (right) . . 80
4.6 Throughput on di↵erent parameter k 80
4.7 The e↵ect of nd . 80
4.8 The e↵ect of nt . 80
4.9 Graph construction time . 82
4.10 Graph quality . 83
4.11 Construction time by varying dmax 84

x

LIST OF FIGURES

4.12 Performance scaling of GGCGANNS (left) and GGCSONG (right)
while varying the number of thread blocks 84

5.1 An example of query graph q and data graph G 89
5.2 A bit-vector signature S . 91
5.3 Pruning Ability Comparison . 93
5.4 An example of output scheme . 100
5.5 Pipeline Framework . 102
5.6 Overall Performance . 105
5.7 Filtering Performance . 107
5.8 1⇤-phase output scheme . 108
5.9 Scalability . 109

xi

List of Tables

2.1 A summary of matrix factorization approaches 17
2.2 A summary of k nearest neighbors search approaches 20
2.3 A summary of subgraph matching/enumeration approaches 23

3.1 Network statistics and parameter settings 46
3.2 Comparison of cost models . 51
3.3 E↵ectiveness of dynamic scheduling 52

4.1 Real-life Datasets . 76
4.2 Comparison with CPU algorithm (NSW) 83
4.3 Comparison with CPU algorithm (HNSW) 85

5.1 The summary of notations . 90
5.2 Properties of datasets . 104

xii

Chapter 1

Introduction

In this chapter, we briefly introduce the background of our research problems

and explain the motivations. Following this, contributions of our approaches are

summarized and a structured overview is provided.

1.1 Background

1.1.1 Matrix factorization

As a common technique in machine learning and data mining, matrix factoriza-

tion (MF) has been widely applied in many areas, such as graph embedding [23],

recommendation system [70, 43], social network analysis [68, 7], web mining [86]

and word embedding [82].

Given a sparse matrix R 2 Rm⇥n, MF aims to decompose R into two dense

matrices P 2 Rm⇥k and Q 2 Rk⇥n such that the following condition is satisfied:

R ⇡ P ⇥Q

Here, the latent factor k is far less than m and n such that we can represent the

1

Chapter 1 1.1.2 k nearest neighbors search

sparse matrix with low-dimensional dense data e↵ectively.

The existing methods for solving MF can be roughly classified into three

broad categories, namely, alternating least squares (ALS) [58], coordinate de-

scent (CD) [113] and stochastic gradient descent (SGD) [30]. Among these

methods, SGD-based algorithms have received the most attention due to their

algorithmic simplicity and e↵ectiveness [109]. In order to achieve convergence

during training, SGD-based algorithms perform multiple iterations. They termi-

nate when either the training results have converged or the user-specified number

of iterations have been completed. During each iteration, the gradient of every

element in the sparse matrix is computed and the corresponding vectors in the

result matrices are updated. For the purpose of accelerating this process, several

parallel SGD-based algorithms have been proposed on di↵erent system settings

such as GPUs (e.g., CuMF SGD [109]), multi-core CPUs (e.g., FPSGD [121])

and distributed systems (e.g., NOMAD [115]). The main idea behind these

methods is to partition the sparse matrix into a set of uniform blocks. During

each iteration, multiple working units (e.g., GPU, node or thread) are assigned a

group of mutually independent blocks to update. Here, two blocks are regarded

as independent if they have no shared row or column. This resolves any writing

conflicts arising from updates.

1.1.2 k nearest neighbors search

As a fundamental problem, k nearest neighbors search has been studied in many

areas such as databases, computer vision and recommendation systems.

Given a distance metric � and a query point q, k nearest neighbors search

aims to find k points in the point set P that are closer to q than all other points

under �.

The exact search can be costly due to the curse of dimensionality [45]. There-

2

1.1.2 k nearest neighbors search Chapter 1

fore, many researchers have diverted their attention to approximate algorithms

for the trade-o↵ between accuracy and e�ciency. A wide range of approximate

nearest neighbor (ANN) search algorithms have been proposed. Existing tech-

niques can be roughly classified into three main categories: locality-sensitive

hashing [34], product quantization [110] and proximity graph [95]. As stated in

a recent ANN search benchmark paper [69], proximity graph-based methods have

outstanding search performance and can achieve high recall by only retrieving a

minimal portion of points.

A proximity graph-based method builds a proximity graph on the point set

P . On the graph, a vertex denotes a point in P and chooses certain vertices as

its neighbors based on a specified rule. Figure 1.1 shows an example of proximity

graph. We can traverse the proximity graph from an entry vertex and quickly

identify the promising nearest neighbors of the query point by greedy heuristics.

Due to the high dimensionality of data points, the massive distance computation

is the dominant cost while searching on proximity graph.

It is well-known that GPU is a promising device for solving simple data-

intensive computing tasks (e.g., bulk distance computation) due to having such

an enormous number of lightweight cores and high memory bandwidth. Consid-

ering the GPU-CPU interaction is not expensive in the context of ANN search,

GPU-based solutions have been developed by industry such as Proxima from

Alibaba Group [6] and Faiss from Facebook [53] for a variety of applications

such as information retrieval, recommendation and advertisement. Therefore, it

is rather natural to accelerate the proximity graph ANN search with GPU-based

solutions. SONG [119] is the state-of-the-art algorithm that follows this line

of research. Through breaking down the search algorithm into 3 stages, SONG

can comfortably parallelize the performance-crucial distance computation on the

GPU in the distance computation stage. This significantly speeds up the search

3

Chapter 1 1.1.3 Subgraph matching

v1

v2
v3

v4
v5

v6

v7
v10v8

v9
v11

v12
q Query Point

Ent
ry P

oint

v12 v9 v8 v10 v1 v4 v7 v6 v2 v5 v3 v11
Vertices in the increasing order of distance to q:

Figure 1.1: An example of proximity graph

performance, compared to CPU-based solutions.

1.1.3 Subgraph matching

Subgraph matching has been extensively studied for decades. As a fundamen-

tal problem, it has significant impact on a wide range of research fields such

as protein interaction analysis [84], social network analysis [91], and chemical

compound search [111].

Given a query graph q and a data graph G, subgraph matching is to extract

all subgraph isomorphic matches of q in G.

Due to the NP-hardness of subgraph matching [52], the whole search space

of subgraph matches is prohibitively large. Despite the intrinsic limitation that

cannot be surpassed, substantial research e↵orts have been made to reduce com-

putational complexity in the average case. By their methodologies, these algo-

rithms can be classfied into two classes: join-based algorithms and backtracking

search-based algorithms. The join-based algorithms [59, 60] regard the query

graph q as a multi-way join and execute the join based on a join plan derived

based on cardinality estimation. Following a matching order, the backtracking

4

1.1.4 GPU Architecture Chapter 1

search-based algorithms iteratively find vertices in the data graph to match query

vertices.

We focus on backtracking search-based algorithms. Similar to the criti-

cal influence of the join plan on join-based algorithms, the matching order

has a substantial e↵ect on the performance of backtracking search-based algo-

rithms [96]. Identifying the optimal matching order is time-consuming due to

the inherent complexity of the problem. Existing works [15, 38] resort to con-

duct pre-processing that serves two purposes: (1) it can guide a decent match-

ing order when integrated with heuristics. (2) search space can be reduced by

pruning branches of search tree. During both the pre-processing and enumer-

ation processes, a substantial amount of computation involving set intersection

is conducted. This makes it attractive for GPU acceleration. GSI [116] exhibits

outstanding performance within the context of prior research. GSI employs a

lightweight filtering method to make a trade-o↵ between high parallelism and

e�cient pruning performance. In addition, GSI proposes the Prealloc-Combine

strategy to avoid joining-twice.

1.1.4 GPU Architecture

We introduce GPU architecture from thread hierarchy and memory hierarchy.

In terms of thread hierarchy there are two perspectives: hardware and pro-

gramming model, in charge of execution and organization respectively.

Hardware. The GPU consists of several streaming multiprocessors (SM),

including some streaming processors and other resources such as dispatch units.

Programming model. A program executed by a GPU is called a kernel,

the execution of a kernel is supported by thousands of threads. These threads

are organized into several thread blocks. A thread block contains hundreds of

threads. After a kernel is launched, thread blocks will be assigned to SMs,

5

Chapter 1 1.1.4 GPU Architecture

and cores inside each SM execute these threads in a single instruction multiple

threads (SIMT) fashion, at the granularity of a single warp which is the smallest

execution unit from the view of hardware and contains 32 consecutive threads.

In the memory hierarchy of a GPU, there are various types of memory, in-

cluding global memory, shared memory, caches and registers. These di↵er in

capacity, latency and visibility.

Global memory. This has the largest capacity, generally tens of GB. But,

it is o↵-chip that leads to the highest latency. Data in global memory is visible

to all threads. Therefore, data structures of large size usually reside in global

memory.

Shared memory. This is on-chip and can achieve high throughput. How-

ever, it is a relatively scarce resource, which can only reserve a few KB per SM.

It can be only accessed by threads from the same streaming multiprocessors.

Therefore, shared memory is generally used to store frequently accessed data

within thread blocks.

Caches. L1 cache and L2 cache are included. They can reduce the latency

of access to global memory. While the L1 cache is exclusive to every SM, the L2

cache is shared among all SMs. Generally, we cannot access and manage them

explicitly.

Registers. This is the fastest memory and larger than shared memory, which

is roughly hundreds of KB per SM. A register can be only accessed directly by

the thread to which it belongs. Generally, it is used to store local variables of

each thread.

If the size of local variables exceeds the capacity of registers, the excess spills

over into local memory which is actually part of global memory but is only

visible in the thread where it is declared. In addition, warp-level primitives

allow for the exchange of local variables between threads in the same warp. This

6

1.2. MOTIVATIONS Chapter 1

supports communication within the warp. For a more detailed exploration of

GPU architecture, refer to [48].

1.2 Motivations

1.2.1 Matrix factorization

With GPUs now commonly used for general-purpose data-parallel applications,

heterogeneous systems with multi-core CPUs and GPUs are becoming increas-

ingly attractive for many general tasks. In comparison to methods on CPU-only

or GPU-only systems, approaches developed for heterogeneous systems not only

hastens task processing but also makes e�cient use of the computing resources

accessible in heterogeneous systems. In order to meet performance requirements,

CPU-only or GPU-only systems are often over-provisioned, resulting in low aver-

age utilization. For instance, when a task is allocated to a GPU (i.e., starting the

kernel), the CPU remains idle. Similarly, in applications where GPU memory

bandwidth is a significant bottleneck, the vast computational resources of GPUs

are underutilized. The development of techniques for heterogeneous systems fa-

cilitates e�cient utilization of resources that were originally inactive, thereby

reducing running time for the program. Driven by this motivation, a significant

amount of researches on heterogeneous computing techniques [72, 81, 93, 89]

have been proposed. The hybrid algorithm in [89] demonstrates a two orders of

magnitude performance improvement over CPU-only and GPU-only algorithms,

underscoring the promising potential of algorithms designed for heterogeneous

systems. To our best knowledge, no prior studies have tackled the MF task in

heterogeneous CPU-GPU systems. The pursuit of an e�cient MF algorithm

suited for this system setting is desirable. In order to implement an SGD-based

MF solution on heterogeneous CPU-GPU systems, our primary focus is on task

7

Chapter 1 1.2.2 k nearest neighbors search

partitioning and scheduling strategies. This makes our techniques not heavily

reliant on any particular algorithm tailored for CPUs or GPUs.

Due to the intricacy of the GPU thread hierarchy, it is preferable to treat a

single GPU as an entire working unit on the heterogeneous system, similar to a

thread on the CPU. In this case, a straightforward method called HSGD can be

achieved by naturally employing the state-of-the-art shared memory algorithm

FPSGD for our system setting. Despite the success of HSGD, there are still

opportunities for further improvement. First, we observe that the block size

obtained through uniform division in HSGD is insu�cient to fully utilize the

processing capabilities of GPUs. This may limit the overall e�ciency. Second,

a weak training quality can result from the di↵erent computing power between

working units, i.e., GPU and CPU thread. More specifically, there is a consid-

erable di↵erence in the number of computations between blocks assigned to a

GPU and blocks assigned to a CPU thread. This inspires us to develop a novel

approach to alleviate these issues.

1.2.2 k nearest neighbors search

Compared to CPU-based solutions, SONG demonstrates superior performance.

We notice that the execution dependency in data structure operations results in

a bottleneck for SONG, posing challenges for GPU e�ciency. A time breakdown

analysis of SONG reveals that a significant portion, approximately 50� 90%, is

dedicated to data structure operations such as lookup and maintenance while

searching on navigable small world (NSW) graphs.

The primary cause for the low e�ciency of data structure operations is that

SONG continues to adhere to the search paradigm employed by CPU-based solu-

tions. More specifically, the relevant data structure operations, such as searching

and updating in the priority queue and the hash table, can be implemented ef-

8

1.2.3 Subgraph matching Chapter 1

ficiently on the CPU. However, a GPU encounters di�culties when it comes to

dynamically maintain data structures that exhibit high irregular dependency.

While a range of ANN-specific optimization techniques have been developed to

eliminate dynamic GPU memory allocations and trade computations for lower

GPU memory consumption, SONG relies on a single thread for data structure

operations to maintain good overall performance in a warp. This naturally causes

under-utilization of the GPU computing bandwidth.

This motivates us to design a novel graph-based search algorithm on the

GPU such that all key steps can fully exploit the massive parallelism of GPU.

Furthermore, the construction time of proximity graphs is typically more costly

than that of other types of ANN search algorithms, as noted in a recent sur-

vey [69]. This motivates us to develop GPU-based algorithms for accelerating

the construction of representative proximity graphs. Similar to the search algo-

rithm, the primary challenge lies in harnessing the immense parallelism o↵ered

by the GPU. We discover that both straightforward methods su↵er from signif-

icant weakness. More specifically, the sequential graph construction algorithm

in CPU-based solutions is cost-prohibitive on the GPU, and the naive parallel

implementation leads to poor-quality graphs. We propose a divide-and-conquer

approach to address these problems.

1.2.3 Subgraph matching

In comparison to previous GPU-based subgraph matching e↵orts, GSI outper-

forms them by eliminating the redundant calculations from joining-twice and

employing optimizations that hasten set intersection operations during compu-

tation. We notice that the pruning performance of GSI is sensitive to the number

of distinct labels present in the data graph. GSI can only achieve a decent prun-

ing performance on graphs with a large number of distinct labels. When labels

9

Chapter 1 1.2.3 Subgraph matching

on graphs is not pretty diverse, its pruning performance falls short of expecta-

tions. In many real-life applications, the number of distinct labels is not very

large. The limited pruning performance of GSI can result in a deficient matching

order and substantial search space, leading to a drop in search performance in

these applications.

The foremost reason for limited pruning performance is that GSI employs

a lightweight filtering method. Specifically, the neighborhood structure of each

vertex in query graph and data graph is encoded with a bit-vector signature.

The bit-wise operation on signatures enables the exclusion of some infeasible

data vertices from the candidate set associated with a query vertex. However,

the signature struggles to accurately represent neighborhood structure. This oc-

curs as the degree is approximately represented by a very limited number of bits

and the label is rehashed in the signature to save memory consumption. Conse-

quently, the pruning performance of GSI leaves much to be desired, particularly

when the graph has a limited number of labels. Specifically, after the pruning

of GSI, the number of candidate vertices is approximately 104 on the up dataset

with |L| = 20, while [96] indicates that e↵ective pruning can reduce the number

of candidate vertices to the order of 103.

This prompts us to develop a GPU-friendly filtering approach with strong

pruning performance. Furthermore, we notice that the Prealloc-Combine strat-

egy demands more space than necessary to eliminates the redundant calculations

from joining-twice, leading to an unignorable portion of memory consumption

and uncoalesced memory transactions during enumeration. In order to alleviate

this issue, we propose a 1⇤-phase output scheme that can get a tighter upper

bound and more coalesced memory transactions during enumeration. To en-

hance scalability, we design a pipeline method that can switch from BFS to

DFS when data structures during enumeration exceed the capacity of the global

10

1.3. CONTRIBUTIONS Chapter 1

memory.

1.3 Contributions

1.3.1 Matrix factorization

The main contributions of our approach are summarized as follows.

• To our best knowledge, this is the first work for parallel SGD-based matrix

factorization on heterogeneous CPU-GPU systems.

• We propose a non-uniform division strategy to improve both the e�ciency

and training quality.

• We design a cost model tailored to our problem to balance workload, which

takes into account both data transfer and kernel execution in the GPU part.

• Extensive experiments on four benchmark datasets demonstrate that our

approach can outperform competing methods and achieve e↵ective utiliza-

tion of the resources on the heterogeneous CPU-GPU systems.

1.3.2 k nearest neighbors search

The principal contributions of our approach are summarized as follows.

• We develop a novel graph-based ANN search algorithm on the GPU. To

better leverage the massive parallelism of GPUs in all search steps, we

propose a GPU-friendly search paradigm.

• We propose the first GPU-based approach for NSW graph construction,

which allows for e�cient utilization of the immense parallelism of the GPU

11

Chapter 1 1.3.3 Subgraph matching

without sacrificing graph quality. Our technique can be readily extended

to other representative proximity graphs.

• Comprehensive experiments on representative high-dimensional datasets

demonstrate the superior performance of our approaches. Our search algo-

rithm is up to 5 times faster than the state-of-the-art SONG with the same

accuracy. Our graph construction approach delivers a 40-50x speedup on

most datasets as the single-thread CPU-based NSW graph construction

algorithm, while maintaining the same graph quality.

1.3.3 Subgraph matching

The principal contributions of our approach are summarized as follows.

• We develop a novel GPU-friendly filtering method that has strong pruning

ability.

• We develop a 1⇤-phase output scheme to better utilize the GPU by reduc-

ing memory consumption and increasing write throughput during enumer-

ation.

• We propose a pipeline method that can adaptively switch between BFS

and DFS to enhance the scalability.

• Experiments on real-life labeled graphs demonstrate that our approach

outperforms the state-of-the-art method GSI, with up to 4 times speedup.

1.4 Roadmap

The subsequent content of this thesis is organized as follows. Chapter 2 delves

into the related work pertaining to the three problems of our concern. Chap-

12

1.4. ROADMAP Chapter 1

ter 3 presents our approach that addresses matrix factorization on heterogeneous

systems. Chapter 4 and Chapter 5 details our methods for kNN search and

subgraph matching on GPUs, respectively. Finally, Chapter 6 concludes the

thesis and discusses potential future work.

13

Chapter 2

Literature Survey

In this chapter, we conduct a systematic review of the current literature con-

cerning the three key problems we explore.

2.1 Matrix factorization

In this section, we introduce a range of methods for solving matrix factorization

in di↵erent system settings, primarily focusing on SGD-based approaches for

multicore shared memory system and GPU, along with other related works. We

highlight FPSGD [121] and CuMF SGD [109], as they are closely related to our

work.

2.1.1 Multicore SGD-based algorithms

There exist several algorithms that built upon the core ideas of SGD in multicore

shared memory systems. Hogwild [87] adopts a lock-free update strategy, allow-

ing for the fully parallel updating of dense matrices. With a matrix-blocking

partition, DSGD [32] averts conflicts that may arise while updating. Follow-

ing the strategy of DSGD, various approaches [121, 80, 20] have been proposed.

14

2.1.2 GPU SGD-based algorithms Chapter 2

p1
<latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit><latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit><latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit><latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit>

p2
<latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit><latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit><latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit><latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit>

p3
<latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit><latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit><latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit><latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit>

p4
<latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit><latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit><latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit><latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit>

q1
<latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit><latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit><latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit><latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit>

q2
<latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit><latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit><latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit><latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit>

q3
<latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit><latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit><latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit><latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit>

q4
<latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit><latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit><latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit><latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit>

B1,1
<latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit>

B2,3
<latexit sha1_base64="mwJKUki09y0AQiuIIxYCVOzqamU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuIugxxIvHCOYByRJmJ51kyOzsMjMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHSUKIZNFolIdQKqUXCJTcONwE6skIaBwHYwuZv77SdUmkfy0Uxj9EM6knzIGTVWatf7aeWqOusXS27ZXYCsEy8jJcjQ6Be/eoOIJSFKwwTVuuu5sfFTqgxnAmeFXqIxpmxCR9i1VNIQtZ8uzp2RC6sMyDBStqQhC/X3REpDradhYDtDasZ61ZuL/3ndxAxv/ZTLODEo2XLRMBHERGT+OxlwhcyIqSWUKW5vJWxMFWXGJlSwIXirL6+TVqXsVcuVh+tSrZ7FkYczOIdL8OAGanAPDWgCgwk8wyu8ObHz4rw7H8vWnJPNnMIfOJ8/XXWO7g==</latexit>

B3,4
<latexit sha1_base64="XIKJWlEvuvWMzCITTg94ctpYHTE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNhNAnoM8eIxgnlAsoTZSScZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbHg2rjut7OxubW9s5vby+8fHB4dF05OWzpKFMMmi0SkOgHVKLjEpuFGYCdWSMNAYDuY3M399hMqzSP5aKYx+iEdST7kjBortev9tHJdnfULRbfkLkDWiZeRImRo9AtfvUHEkhClYYJq3fXc2PgpVYYzgbN8L9EYUzahI+xaKmmI2k8X587IpVUGZBgpW9KQhfp7IqWh1tMwsJ0hNWO96s3F/7xuYoa3fsplnBiUbLlomAhiIjL/nQy4QmbE1BLKFLe3EjamijJjE8rbELzVl9dJq1zyKqXyQ7VYq2dx5OAcLuAKPLiBGtxDA5rAYALP8ApvTuy8OO/Ox7J1w8lmzuAPnM8fYIGO8A==</latexit>

B4,2
<latexit sha1_base64="CN89kUqqiZaTite6ddmPUkalh1A=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuDOgxxIvHCOYByRJmJ51kyOzsMjMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHSUKIZNFolIdQKqUXCJTcONwE6skIaBwHYwuZv77SdUmkfy0Uxj9EM6knzIGTVWatf7afWqMusXS27ZXYCsEy8jJcjQ6Be/eoOIJSFKwwTVuuu5sfFTqgxnAmeFXqIxpmxCR9i1VNIQtZ8uzp2RC6sMyDBStqQhC/X3REpDradhYDtDasZ61ZuL/3ndxAxv/ZTLODEo2XLRMBHERGT+OxlwhcyIqSWUKW5vJWxMFWXGJlSwIXirL6+TVqXsXZcrD9VSrZ7FkYczOIdL8OAGanAPDWgCgwk8wyu8ObHz4rw7H8vWnJPNnMIfOJ8/Xv6O7w==</latexit>

B1,2
<latexit sha1_base64="OcTE4p1dF+sfDM5z++bV2/Puxzk=">AAAB7nicdVDLSgMxFM34rPVVdekmWAQXMmT6sJ1dqRuXFewD2qFk0kwbmskMSUYoQz/CjQtF3Po97vwb02kFFT1w4XDOvdx7jx9zpjRCH9ba+sbm1nZuJ7+7t39wWDg67qgokYS2ScQj2fOxopwJ2tZMc9qLJcWhz2nXn14v/O49lYpF4k7PYuqFeCxYwAjWRuo2h6lzWZoPC0Vku1dl5LrQkFoVVUsZqdSRCx0bZSiCFVrDwvtgFJEkpEITjpXqOyjWXoqlZoTTeX6QKBpjMsVj2jdU4JAqL83OncNzo4xgEElTQsNM/T6R4lCpWeibzhDrifrtLcS/vH6ig7qXMhEnmgqyXBQkHOoILn6HIyYp0XxmCCaSmVshmWCJiTYJ5U0IX5/C/0mnZDtlu3RbKTaaqzhy4BScgQvggBpogBvQAm1AwBQ8gCfwbMXWo/VivS5b16zVzAn4AevtE+ypj1E=</latexit>

,

Figure 2.1: An example of independent and conflicting blocks in 4⇥4 grid matrix

Among these works, FPSGD [121, 20] is a representative method.

FPSGD uniformly divides the sparse matrix R into a set of sub-matrices,

referred to as blocks. Two blocks are considered independent if they do not

share any common columns or rows of the matrix R; otherwise, they are deemed

to conflict. FPSGD employs the update strategy of SGD on a set of independent

blocks in a batch and continues until the number of computed blocks reaches a

predefined threshold. The reason for selecting independent blocks is to prevent

overwriting caused by conflicts. It can be demonstrated through Example 1.

Example 1. Considering the matrix R divided into 4 ⇥ 4 blocks as shown in

Figure 2.1, the computation of B1,1 updates vectors p1 and q1, while the com-

putation of B2,3 updates vectors p2 and q3. As they update vectors in distinct

regions, the computations on B1,1 and B2,3 can be executed simultaneously. It is

evident that B1,1, B2,3, B3,4, and B4,2 are mutually independent. However, B1,1

and B1,2 are in conflict with each other, as they both update vectors in p1.

2.1.2 GPU SGD-based algorithms

Due to its data-intensive nature, matrix factorization can be significantly ac-

celerated by leveraging the vast computational resources of GPUs. Several

15

Chapter 2 2.1.3 Other related work

SGD-based algorithms on the GPU have been developed for this purpose.

GPUSGD [50] follows the matrix-blocking partition and computes independent

blocks simultaneously using multiple thread blocks on the GPU. BIDMach [17]

supports the use of GPU to accelerate SGD-based matrix factorization. Follow-

ing the typical framework of SGD-based methods on the GPU, CuMF SGD [109]

stands as the state-of-the-art through high-performance GPU kernels and the

strategy for e↵ective utilization of CPU-GPU bandwidth.

CuMF SGD implements high-performance GPU kernels by a range of op-

timizations fully exploiting GPU hardware characteristics, which includes warp

shu✏e, memory coalescing, register usage and half-precision. CuMF SGD simul-

taneously performs the memory transfer and the computation to enhance overall

e�ciency. This is supported by CUDA streams. Specifically, each stream consists

of a series of GPU commands executed sequentially, while commands in separate

streams can run concurrently if hardware resources allow. CuMF SGD employs

three streams to manage CPU-GPU memory transfer, GPU kernel computation

and GPU-CPU memory transfer, respectively. In addition, CuMF SGD e↵ec-

tively utilizes the CPU-GPU memory transfer bandwidth during block schedul-

ing by selecting multiple consecutive blocks at once instead of only one inde-

pendent block for the GPU. This reduces the overhead of CPU-GPU memory

transfer.

2.1.3 Other related work

Matrix factorization has been extensively investigated in the literature due to its

broad range of applications. Various SGD-based algorithms for this problem in

other system settings have been proposed such as distributed systems [67] [115]

and parameter server [120].

Besides SGD-based algorithms, alternative methods such as Coordinate De-

16

2.1.4 Summary Chapter 2

Table 2.1: A summary of matrix factorization approaches

Methodology System Approach

SGD

Multicore
Hogwild [87], DSGD [32],

MLGF-MF [80],
FPSGD [121, 20]

GPU
GPUSGD [50], BIDMach [17],

CuMF SGD [109]

Distributed
Sparkler [67], NOMAD [115],

DFM [120]
CD Multicore/Distributed CCD++ [113]
ALS Distributed softImpute-ALS [41]

scent (CD) [113] and Alternating Least Squares (ALS) [41] have been also pro-

posed to solve matrix factorization. These methods employ di↵erent update rules

to compute dense matrices. Specifically, ALS [58] updates only one dense matrix

once while fixing the other and subsequently updates the second dense matrix

similarly. An iteration is deemed complete once both dense matrices have been

updated. CD [113] updates a single element in a dense matrix while maintaining

all other elements in both matrices constant. An iteration is finished when all

elements in both dense matrices have been updated following the same rule.

2.1.4 Summary

All the approaches are summarized in Table 2.1. We aim to develop an SGD-

based matrix factorization method for heterogeneous systems. This indicates our

dedication to improving performance compared to existing multicore or GPU-

based methods. Specifically, we focus on FPSGD and CuMF SGD due to their

representative performance on multicore and GPU systems, respectively. We do

not include distributed system methods in our comparison because they rely on

multiple nodes, while our research is centered on single-system architectures.

17

Chapter 2 2.2. K NEAREST NEIGHBORS SEARCH

2.2 k nearest neighbors search

In this section, we provide an overview of methods for k nearest neighbors search,

implemented on the CPU and GPU.

2.2.1 CPU-based ANN methods

To strike the balance between accuracy and e�ciency, various works have been

proposed from multiple perspectives. Existing techniques can be broadly catego-

rized into three groups: LSH-based methods, product quantization-based methods

and graph-based methods.

LSH-based methods (e.g., [34, 44, 98, 71, 51]) use a set of hash functions,

which have the property that similar points in the original high-dimensional

space are more likely to collide than dissimilar points. By hashing the data

points with these functions, an index structure is built, which can be used to

quickly retrieve the approximate nearest neighbors.

Product quantization-based methods (e.g., [110, 75, 103, 11, 54, 31, 46]) parti-

tion each high-dimensional data point into lower-dimensional sub-vectors. Each

sub-vector is then independently quantized using its own codebook. The final

quantized representation of a data point is the concatenation of the indices of

the code vectors for each sub-vector.

Graph-based methods (e.g., k-DR [8], DPG [69], PANNG [106],

EFANNA [28], FANNG [40], NSG [29], HNSW [74] and Vamana [95]) have gar-

nered significant attention due to their exceptional search performance in han-

dling high-dimensional data. Researchers have dedicated considerable e↵orts to

construct a range of proximity graphs such as kNN graphs, small world graphs,

relative graphs and their various adaptations. These proximity graphs aim to

capture the underlying structure and relationships within the dataset, enabling

18

2.2.2 GPU-based ANN methods Chapter 2

e�cient traversal during search.

Furthermore, there has been a growing interest in providing benchmark and

survey studies (e.g., [69, 104]) for researchers and practitioners. These studies

serve as comprehensive resources that o↵er valuable insights into the state-of-

the-art techniques and best practices.

2.2.2 GPU-based ANN methods

Given the remarkable performance demonstrated by GPUs in general-purpose

data-parallel applications, a growing number of researchers have started to ex-

plore the potential of leveraging GPU technology to accelerate the approximate

nearest neighbor problem.

Quantization-based methods have received considerable attention in the con-

text of GPU-based implementation, due to their intrinsically high level of

parallelism. Examples of such methods include Faiss [53], Robustiq [18] and

PQT [108], which have demonstrated significant performance improvements in

comparison to their CPU-based counterparts. Notably, Faiss [53] builds upon

the idea of IVFADC by incorporating a fast k-selection implementation on the

GPU, enabling billion-scale similarity search. SONG [119] proposes an e�cient

search algorithm on proximity graphs, outperforming Faiss in terms of search

time and accuracy.

2.2.3 Summary

Table 2.2 provides a comprehensive overview of the approaches. We aim to

address the k nearest neighbor search problem on the GPU. Multicore algo-

rithms are beyond the scope of our consideration as GPU-based algorithms have

been proven to o↵er superior performance compared to their multicore coun-

terparts [53, 119]. Given that SONG has demonstrated superior performance

19

Chapter 2 2.3. SUBGRAPH MATCHING

Table 2.2: A summary of k nearest neighbors search approaches

Methodology System Approach

Locality-Sensitive Hashing Multicore
DSH [51], DGH [71], SRS [98],

QALSH [44], iDEC [34]

Product Quantization

Multicore

IVFADC [46], OPQ [31],
LOPQ [54], AQ [11],

OCKM [103], LSQ [75],
Online PQ [110]

GPU
PQT [108], Robustiq [18],

Faiss [53]

Proximity Graph
Multicore

PANNG [106], k-DR [8],
NSG [29], FANNG [40],

EFANNA [28], HNSW [74],
DPG [69], Vamana [95]

GPU SONG [119]

over the PQ-based method Faiss, our performance evaluation is conducted in

comparison with SONG.

2.3 Subgraph matching

In this section, we provide a comprehensive review of subgraph matching tech-

niques across various system settings such as CPU, GPU and distributed system,

as well as other related work.

2.3.1 CPU-based subgraph matching methods

As one of the pioneers in the development of subgraph matching algorithms,

Ullmann [101] uses a candidate set and a partial mapping to keep track of

the search progress and employs a backtracking mechanism when a dead-end

is reached. This lays the foundation for many later algorithms. Through

a set of feasibility rules, VF2 [22] reduces the number of possible map-

pings to be considered during search, thereby improving the e�ciency. Later

20

2.3.2 GPU-based subgraph matching methods Chapter 2

works [90, 42, 117, 118, 39, 88, 15, 38, 14] have been dedicated to deriving an ef-

ficient matching order. QuickSI [90] computes the matching order by estimating

the presence of query vertices and edges in the data graph. In order to leverage

the pruning ability of non-tree edges early, CFL [15] employ a core-forest-leaf

structure for matching query vertices. Within the same part, CFL determines

the matching order by the pre-computation of candidate vertex sets, which is

implemented through several iterations of top-down construction and bottom-up

refinement. By preserving all edges connecting candidate vertex sets, DAF [38]

reduces computation during the search and leverages a failure set to eliminate

more search space e↵ectively.

2.3.2 GPU-based subgraph matching methods

As an NP-hard problem, subgraph matching is inherently di�cult to tackle.

This presents an opportunity for GPU acceleration. Consequently, an increasing

number of researchers have begun investigating the potential of utilizing GPUs

for addressing subgraph matching. GpSM [100] designs e�cient kernels that

harness massive parallelism of the GPU and prunes the search space based on

a simplified query graph. GSI [116] proposes the Prealloc-Combine strategy to

prevent joining-twice and develops several techniques to alleviate the issue of

limited GPU memory. RPS [37] takes advantage of reusable plans arising from

identical local structures in the query graph and selects a matching order that

produces reusable plans as much as possible to save computation. In the context

of subgraph matching problems for a certain type of query graph, PARSEC [24]

first adopts a DFS-based solution and presents a range of optimization meth-

ods such as set intersections with binary-encoded induced subgraphs and smart

counting. Focusing on subgraph matching on large datasets across multiple

GPUs, PBE [36] partitions the data graph into various segments, enabling par-

21

Chapter 2 2.3.3 Distributed subgraph matching methods

allel intra-partition computation. In order to e↵ectively conduct inter-partition

computation, PBE proposes a heuristic method for the order selection.

2.3.3 Distributed subgraph matching methods

In order to accelerate subgraph matching, a number of studies [59, 60, 85] typi-

cally decompose the query graph into multiple join units to leverage parallelism

of distributed systems. TwinTwigJoin [59] selects TwinTwig that is a star of at

most two edges as the join unit and adopts a left-deep join order. It has been

proven that TwinTwigJoin is instance optimal to StarJoin [99] when the cost is

evaluated based on Erdös-Rényi random graph model [27]. To reduce execution

time, CliqueJoin [60] employs clique as the join unit for dense queries and adopts

the bushy join for approaching optimality. CrystalJoin [85] decomposes the query

graph into a core and a set of crystals, allowing for significant compression of

crystal matches to address the output crisis in subgraph matching.

2.3.4 Other related work

In order to explore potential research directions and gain a comprehensive un-

derstanding of existing works, several in-depth surveys have been conducted.

[63] and [96] provide extensive reviews of subgraph matching methods on the

single-machine environment, analyzing their strengths, weaknesses and potential

improvements. RapidMatch [97], on the other hand, o↵ers a comparative study

of backtracking search-based methods and join-based methods. [61] focus on

subgraph matching techniques in distributed systems, examining the challenges

and opportunities presented by this setting.

Several noteworthy theoretical works have been presented in the context of

relational join, which bear a strong connection to subgraph matching problem.

Among these, AGM [9] provides a tight worst-case bound for join size, parame-

22

2.3.5 Summary Chapter 2

Table 2.3: A summary of subgraph matching/enumeration approaches

Methodology Type System Approach

Backtracking

Labeled Multicore

Ullmann [101], VF2 [22],
QuickSI [90],
GraphQL [42],
GADDI [117],

SPATH [118], Turboiso [39],
BoostIso [88], CFL [15],
CECI [14], DAF [38]

Labeled GPU GpSM [100], GSI [116]
Unlabeled GPU RPS [37], PARSEC [24]
Unlabeled MultiGPU PBE [36]

Join Unlabeled Distributed
TwinTwigJoin [59],
CliqueJoin [60],
CrystalJoin [85]

terized by the fractional edge cover, o↵ering valuable insights into the complexity

of relational join in the worst case. To achieve worst-case optimality, NPRR [77]

and LeapFrog [102] have been proposed. Generic Join [78] highlights the com-

mon principles behind these two algorithms and presents a unified framework.

RapidMatch [97] suggests that backtracking search-based methods are worst-case

optimal when the set intersection satisfies the min property. This is substanti-

ated by establishing an equivalence between backtracking search-based methods

and LeapFrog.

2.3.5 Summary

Table 2.3 presents a summary of all methods. We focus on addressing the sub-

graph matching problem on GPUs. As such, multicore algorithms and subgraph

enumeration algorithms, including those on GPUs and distributed systems, are

not considered in our evaluation. As GSI has been shown to outperform GpSM,

we select GSI as the baseline for our performance comparison.

23

Chapter 3

Matrix Factorization

In this chapter, we introduce the methodological details about our approach to

matrix factorization along with the experimental results.

3.1 Preliminaries

In this section, we present the formal definition of matrix factorization and in-

troduce background knowledge of stochastic gradient descent.

3.1.1 Matrix factorization

We consider a user-item rating matrix R 2 Rm⇥n where m and n are the number

of rows and the number of columns of the matrix, respectively. For each 1 

u  m and 1  v  n, ru,v is the rating from the user u to the item v. R

is normally sparse since not every element in R is explicitly reported. Matrix

factorization aims to represent the matrix R as a dot product between two dense

matrices P 2 Rm⇥k and Q 2 Rk⇥n, where k is the number of latent factors. A

24

3.1.1 Matrix factorization Chapter 3

3.0 3.0

5.0 4.5

5.03.0

1.05.05.0

1.44

2.25

2.32

1.49

0.92

0.23

1.28 0.65

0.02 1.33

0.91

1.83

2.00 0.272.10

1.08

R QP
= ×p1

<latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit><latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit><latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit><latexit sha1_base64="uwvbTXbfmhuDcC17/wg8snmFSHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbt0kyy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvVFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJs004y2WylR3Q2q4FAlvoUDJu0pzGoeSd8Lx7czvPHJtRJo84ETxIKbDRESCUbSS7yN/wjDK1bTv9as1t+7OQVaJV5AaFGj2q1/+IGVZzBNkkhrT81yFQU41Cib5tOJnhivKxnTIe5YmNOYmyOc3T8mZVQYkSrWtBMlc/T2R09iYSRzazpjiyCx7M/E/r5dhdB3kIlEZ8oQtFkWZJJiSWQBkIDRnKCeWUKaFvZWwEdWUoY2pYkPwll9eJe2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprQAgYKnuEV3pzMeXHenY9Fa8kpZo7hD5zPH0fykdM=</latexit>

p2
<latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit><latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit><latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit><latexit sha1_base64="cA/cN5SzV850Mcmu6F3DpQgahW4=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfkATyma7aZduNsvuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLlOAGPe/bWVvf2NzaLu2Ud/f2Dw4rR8dtk2aashZNRaq7ETFMcMlayFGwrtKMJJFgnWh8O/M7j0wbnsoHnCgWJmQoecwpQSsFAbInjOJcTfv1fqXq1bw53FXiF6QKBZr9ylcwSGmWMIlUEGN6vqcwzIlGTgWbloPMMEXomAxZz1JJEmbCfH7z1D23ysCNU21LojtXf0/kJDFmkkS2MyE4MsveTPzP62UYX4c5lypDJuliUZwJF1N3FoA74JpRFBNLCNXc3urSEdGEoo2pbEPwl19eJe16zfdq/v1ltXFTxFGCUziDC/DhChpwB01oAQUFz/AKb07mvDjvzseidc0pZk7gD5zPH0l2kdQ=</latexit>

p3
<latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit><latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit><latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit><latexit sha1_base64="ykfSwBKZy4bu0Njf5aTCkNabjdk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMFWwtNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7Syura+Ud6sbG3v7O5V9w/aJs00ZS2ailR3ImKY4JK1kKNgHaUZSSLBHqLRzdR/eGTa8FTe41ixMCEDyWNOCVopCJA9YRTnatI771VrXt2bwV0mfkFqUKDZq34F/ZRmCZNIBTGm63sKw5xo5FSwSSXIDFOEjsiAdS2VJGEmzGc3T9wTq/TdONW2JLoz9fdEThJjxklkOxOCQ7PoTcX/vG6G8VWYc6kyZJLOF8WZcDF1pwG4fa4ZRTG2hFDN7a0uHRJNKNqYKjYEf/HlZdI+q/te3b+7qDWuizjKcATHcAo+XEIDbqEJLaCg4Ble4c3JnBfn3fmYt5acYuYQ/sD5/AFK+pHV</latexit>

p4
<latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit><latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit><latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit><latexit sha1_base64="pPnYIBHTHiSAq++HfzhhIShmtlE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFNKJvtpl262Sy7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvUoIb9Lxvp7S2vrG5Vd6u7Ozu7R9UD4/aJs00ZS2ailR3I2KY4JK1kKNgXaUZSSLBOtH4duZ3Hpk2PJUPOFEsTMhQ8phTglYKAmRPGMW5mvYv+9WaV/fmcFeJX5AaFGj2q1/BIKVZwiRSQYzp+Z7CMCcaORVsWgkywxShYzJkPUslSZgJ8/nNU/fMKgM3TrUtie5c/T2Rk8SYSRLZzoTgyCx7M/E/r5dhfB3mXKoMmaSLRXEmXEzdWQDugGtGUUwsIVRze6tLR0QTijamig3BX355lbQv6r5X9+8va42bIo4ynMApnIMPV9CAO2hCCygoeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBMfpHW</latexit>

q1
<latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit><latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit><latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit><latexit sha1_base64="m0u0YODgrm63PwwmjL+PvhDFz3k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthWaUDbbTbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYm+D6nhUijeQoGS36ea0ziUvBOOrqd+55FrIxJ1h+OUBzEdKBEJRtFKvo/8CcMof5j0vF615tbdGcgy8QpSgwLNXvXL7ycsi7lCJqkxXc9NMcipRsEkn1T8zPCUshEd8K6lisbcBPns5gk5sUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/87oZRpdBLlSaIVdsvijKJMGETAMgfaE5Qzm2hDIt7K2EDammDG1MFRuCt/jyMmmf1T237t2e1xpXRRxlOIJjOAUPLqABN9CEFjBI4Rle4c3JnBfn3fmYt5acYuYQ/sD5/AFJeZHU</latexit>

q2
<latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit><latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit><latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit><latexit sha1_base64="SePJkoTYMsSozdLpZhJPxO5Ah/s=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5JWreq5Ve/uolK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9K/ZHV</latexit>

q3
<latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit><latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit><latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit><latexit sha1_base64="0kXVeJMgRzcfjiaKeOhACwZxhic=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0s4m7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9THrnvXLFrboz0GXi5aRCctR75a9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXVTAwnjIzaAjqWKRWD8bHbzhJ5YpU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDKz8TKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9u4tK7TqPo0iOyDE5JR65JDVyS+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx9MgZHW</latexit>

q4
<latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit><latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit><latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit><latexit sha1_base64="W4lzZTLwbHqZjTBC9oxpugxENnk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m3bpZhN3J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilXg/5EwZh9jDt1/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nb56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdVzq95drVK/zuMowgmcwjl4cAl1uIUGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w9OBZHX</latexit>

Movies

C
u
st
o
m
er
s

Figure 3.1: A rating matrix R and a corresponding matrix factorization

mathematical representation of the matrix factorization is shown as follows.

ru,v ⇡ puqv (3.1)

In Equation 3.1, pu is the u-th row vector of P , and qv is the v-th column vec-

tor of Q. Matrix factorization achieves Equation 3.1 by minimizing the following

loss function.

L =
X

(u,v)2R

(ru,v � puqv)
2 + �Pkpuk

2
F + �Qkqvk

2
F (3.2)

In Equation 3.2, (ru,v �puqv)
2 measures the gap between ru,v and estimated

value puqv. �Pkpuk
2
F and �Qkqvk

2
F are used to avoid over-fitting. k.k2F computes

the Frobenius norm1 of a vector. �P and �Q are regularization coe�cients.

Example 2. We give an example of the matrix factorization in Figure 3.1. The

rating matrix R contains nine ratings for four movies given by four customers.

The number of latent factors k is 2. We have r1,2 = 5.0 which means that u1

gives a rating 5.0 to v2. The results of R’s matrix factorization are shown on the

right of R. P is a user preference matrix, and Q is a movie feature matrix. The

1https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

25

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

Chapter 3 3.1.2 Stochastic gradient descent

vector p1(0.23, 2.32) is the preference of the user u1, and q2(1.33, 2.00)
T is the

feature of the movie v2. The estimated value of p1q2 is 4.9459, which is close to

R1,2 5.0.

3.1.2 Stochastic gradient descent

It is time-consuming to calculate the loss of the whole matrix R when using the

loss function of Equation 3.2, especially when R contains billions of items. Sev-

eral works have been done to minimize Equation 3.2 and improve the e�ciency

of matrix factorization [30, 58, 113]. We follow a prevalent algorithm called

stochastic gradient descent (SGD) [30].

SGD executes several iterations. The number of iterations can be specified

by users. Instead of straightforwardly applying the gradient descent to minimize

Equation 3.2 in each iteration, SGD computes the gradient of every element ru,v

in R and updates the corresponding vectors in the result matrices. Consequently,

the original loss function in Equation 3.2 is reduced to the following equation.

L = (ru,v � puqv)
2 + �Ppup

T
u + �Qq

T
v qv (3.3)

The gradient of Equation 3.3 is represented as follows.

@L

@pu

= 2(puqv � ru,v)q
T
v + 2�Ppu (3.4)

@L

@qv

= 2(puqv � ru,v)p
T
u + 2�Qqv (3.5)

Based on the gradient (Equation 3.4 and Equation 3.5), we train the model

iteratively, and the value of the loss function decreases until it is convergent.

26

3.1.2 Stochastic gradient descent Chapter 3

Algorithm 1: SGD
Input: Rm⇥n, k,�P ,�Q, �, t
Output: Pm⇥k, Qk⇥n

// Data pre-processing phase

1 Init(Pm⇥k, Qk⇥n);
// Training phase

2 foreach iteration 1 to t do
3 foreach ru,v 2 Rm⇥n do
4 eu,v ru,v � puqv;
5 pu pu + �(eu,vqT

v � �Ppu);
6 qv qv + �(eu,vpT

u � �Qqv);

// Data post-processing phase

7 Save(Pm⇥k, Qk⇥n);

Equation 3.6 shows this process where � is the learning rate.

pu pu � �
@L

@pu

qv qv � �
@L

@qv

(3.6)

We present the pseudocode of SGD in Algorithm 1. There are several input

parameters. Rm⇥n is a sparse rating matrix stored in the form of triadic tuple.

k is the number of latent factors. � is the learning rate. � is the regularization

parameter. t is the number of iterations. Algorithm 1 outputs two feature matri-

ces Pm⇥k and Qk⇥n. The algorithm consists of three phases: data preprocessing,

SGD training, and data post-processing. The data preprocessing phase initial-

izes two resulting matrices P and Q with values generated randomly. In the

training phase, in each iteration (line 3-6), every element is picked to decrease

the value of loss function by using Equation 3.6. The SGD training terminates

when the given number of iterations is reached (line 2) or the model converges.

The feature matrices are stored after training.

Problem Definition. We aim to develop an e�cient SGD-based matrix fac-

torization algorithm on the heterogeneous CPU-GPU systems.

27

Chapter 3 3.2. OUR APPROACH

Remark 1. Our research mainly focuses on the scheduling strategy for the task

division and assignment between CPUs and GPUs. Our proposed techniques will

not closely depend on any specific GPU or GPU SGD-based matrix factorization

algorithms.

3.2 Our approach

In this section, we first give a straightforward method and show its drawbacks.

Then, we briefly introduce scheduling algorithms for heterogeneous systems and

propose our method to balance workloads. Finally, an overview of our improved

algorithm is provided.

3.2.1 A straightforward method

A straightforward idea to utilize both CPU and GPU resources is to treat a GPU

kernel as a worker thread. Based on this idea, we can adapt FPSGD [121] by

regarding a GPU as an additional worker thread. Similarly, to avoid the conflict

and obtain good training quality, a worker thread receives a new block satisfying

the two criteria in Section 2.1.1 once it finishes processing a block. We apply

the FPSGD and CuMF SGD algorithms to process a matrix block on a CPU

thread and a GPU kernel, respectively. This straightforward algorithm shown

above can be called HSGD.

Let nc and ng be the number of CPU threads and GPUs. Following the

matrix-division rule in [121], the number of blocks should be at least (nc + ng +

1)⇥ (nc+ng+1). We refine this formula and give a more precise matrix-division

rule.

Rule 1. Given an input rating matrix R, nc CPU threads, and ng GPUs, R

should be divided into at least (nc + ng + 1)⇥ (nc + ng) blocks.

28

3.2.2 Motivation Chapter 3

We explain the rationale of this rule. When the number of blocks is less than

(nc + ng + 1)⇥ (nc + ng), every thread is always assigned the same block. As a

result, only several specific blocks are updated during the algorithm. Obviously,

this will lead to a terrible training result. Even worse, the algorithm cannot

fully exploit all worker threads. For example, in Figure 2.1, assume that there

are 4 threads. The block B1,1 is assigned to thread 1, and the rest gray blocks

are assigned to other threads. When thread 1 finishes processing B1,1, the rest

gray blocks may still be occupied. To avoid conflicts, thread 1 has to continually

process B1,1. By contrast, when the block number increases to (nc + ng + 1) ⇥

(nc+ng), thread 1 can always locate a spare row or column which is not occupied

by other blocks.

3.2.2 Motivation

Even though the HSGD successfully combines CPU and GPU resources, we have

several observations which can help (i) improve the working e�ciency of GPUs

and (ii) balance workloads for di↵erent hardware.

Exploiting Hardware Characteristics. GPUs and CPUs have di↵erent fea-

tures. We have two observations as follows.

Observation 1. In the context of MF, small blocks cannot saturate the GPU

computing power.

To indicate the relationship between the block size and the e�ciency of the

GPU, we launch a GPU kernel with the default configuration to process blocks

with di↵erent sizes. The details of configuration and hardware can be found in

Section 3.5. The GPU throughput is reported in Figure 3.2(a), where the labels

on the x-axis represent the number of elements in a block, and the labels on the

y-axis represent the average number of elements processed in every second.

29

Chapter 3 3.2.2 Motivation

40

80

120

500 1000 1500 2000 2500

u
p

d
at

e
sp

ee
d

 (
m

il
li

o
n

 p
o

in
ts

/s
)

block size (thousand points)

(a) GPU

2.5

5

7.5

100 200 300 400

u
p

d
at

e
sp

ee
d

 (
m

il
li

o
n

 p
o

in
ts

/s
)

block size (thousand points)

(b) CPU

Figure 3.2: Processing speed of GPUs and CPUs on blocks with di↵erent sizes

The throughput significantly increases when the block size is relatively small.

Afterward, the upward trend becomes gentle as the block size continues to grow.

This phenomenon may be due to two main reasons. First, we need to transfer

data via the PCI-e bus to the global memory of GPU when launching a GPU

kernel. A small block cannot fully utilize the bandwidth of the bus. Second,

more data can better utilize all threads and the cache mechanism of the GPU.

Observation 2. In the context of MF, the computing power of CPU cores is not

sensitive to the block size.

The average number of elements processed by a thread of CPU in every

second is shown in Figure 3.2(b). Unlike the GPU, the throughput of a CPU

thread always remains stable when the block size varies. This is because the

worker threads of CPU are relatively more independent than those of GPU and

the computing capability of a CPU thread is not so powerful, compared with the

whole GPU device.

Nonuniform Matrix Division. Based on the above two observations, an

immediate idea to improve the algorithmic e�ciency is to set the block size as

large as possible. However, as mentioned in Section 3.2.1, the input matrix

should be divided into at least (nc+ng +1)⇥ (nc+ng) blocks and the block size

30

3.2.2 Motivation Chapter 3

under this division strategy is still relatively small. For example, we use 16 CPU

threads and a GPU in the default configuration of our experiments. Considering

the real-world dataset Yahoo!Music with 1, 000, 990 rows and 624, 961 columns,

we divide it into at least 18⇥ 17 blocks. Consequently, the number of elements

in each block is less than 1 million, which is still not large enough to saturate

the GPU computing power in the light of Figure 3.2(a).

To improve the working e�ciency of GPUs, we divide the rating matrix into

blocks with di↵erent sizes. The large ones are assigned to GPUs, and the small

ones are assigned to CPUs. Towards this end, there are several issues that we

need to address. For example, we need to answer how to set suitable block sizes

for both CPU and GPU, and how to divide the rating matrix in practice. We

will answer these questions in the following section, and the final matrix division

strategy will be given in Section 3.4.

Workload Balance. As shown above, we should make the size of blocks as-

signed to GPUs as large as possible in terms of improving the working e�ciency

of GPUs. However, an extreme nonuniform division strategy may cause a serious

workload imbalance problem, which can remarkably reduce the overall e�ciency

when combining two hardware resources. To prevent this issue, a scheduling

strategy should be considered. Many e↵orts have been done to balance work-

loads for the applications in heterogeneous systems. They can be categorized

into three kinds: (1) dynamic methods, (2) static methods by classifier, and (3)

static methods by cost models. Here, we briefly review some of representative

methods among them and elaborate reasons why they cannot be straightfor-

wardly used in our problem. Then, we propose our own method. For more

details of scheduling strategies in heterogeneous systems, interested readers can

refer to surveys[83, 76].

(1) Dynamic Methods. The dynamic methods assign a new task to a com-

31

Chapter 3 3.2.2 Motivation

…

1 2 3 4 number of updates
0 ∞

B2,2
<latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit>

B1,1
<latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit>

B3,3
<latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit><latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit><latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit><latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit>

B3,4
<latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit><latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit><latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit><latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit>

B1,1
<latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit>

B2,2
<latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit>

B1,1
<latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit>

B2,2
<latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit>

B1,1
<latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit><latexit sha1_base64="n44nu5SdYsjVYcSSEaoELpfNcUQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgRQY8hXjxGMA9IljA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uMJHCWN//9tbWNza3tgs7xd29/YPD0tFx08Sp5tjgsYx1O2QGpVDYsMJKbCcaWRRKbIXju5nfekJtRKwe7STBIGJDJQaCM+ukVq2X0Us67ZXKfsWfg6wSmpMy5Kj3Sl/dfszTCJXlkhnToX5ig4xpK7jEabGbGkwYH7MhdhxVLEITZPNzp+TcKX0yiLUrZclc/T2RsciYSRS6zojZkVn2ZuJ/Xie1g9sgEypJLSq+WDRIJbExmf1O+kIjt3LiCONauFsJHzHNuHUJFV0IdPnlVdK8qlC/Qh+uy9VaHkcBTuEMLoDCDVThHurQAA5jeIZXePMS78V79z4WrWtePnMCf+B9/gBXlo7n</latexit>

B2,2
<latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit><latexit sha1_base64="k/cD5dGVOT/3XzH5GdMECL40lFM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCHos9eKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOo1BVruqzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20a1XPrXoP15V6I4+jCGdwDpfgwQ3U4R6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AWqKO6Q==</latexit>

B3,3
<latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit><latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit><latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit><latexit sha1_base64="PYaOcG35ahxRRaUks3kaGt5XlgY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnos9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ7WL2rRfrrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ip5vKx6btW7v6rUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXa6O6w==</latexit>

B3,4
<latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit><latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit><latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit><latexit sha1_base64="A5NUZZSWO1bjmgBOPmr98NXDitI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REC3os9eKxgrWFNpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqd3oZ1cXtWm/XHGr7hxklXg5qUCOZr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+blTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZn9TgZCc4ZyYgllWthbCRtRTRnahEo2BG/55VXyeFn13Kp3X6vUG3kcRTiBUzgHD66hDnfQhBYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXzOO7A==</latexit>

Figure 3.3: A running example of the straightforward algorithm given 2 CPU
cores and 1 GPU

putational device according to the performance of devices on previous tasks

[89, 49, 64, 13, 16, 21, 105, 55]. For example, [89] maintains a double-ended

queue. CPU processes the tasks from the front of the queue. Simultaneously,

GPU processes the tasks from the reverse direction. The algorithm naturally

enables the dominant hardware resource to handle more tasks.

The baseline algorithm in Section 3.2.1 essentially adopts a dynamic strategy.

If a CPU core or a GPU finishes updating a block, it is assigned a new block

without incurring any conflict. The dynamic method performs well in other

problems if there is not any rule to assign tasks.

However, this type of method does not work well in our problem due to the

independence property of the task assignment. As discussed in Section 3.2.1, we

first equally divide the matrix into a set of blocks, which is necessary to avoid

conflicts. GPUs cannot achieve an ideal performance in this setting according

to Observation 1. In addition to the problem of GPU working e�ciency, the

dynamic update method in HSGD may su↵er from a poor training result. We

give an example to explain this problem.

Example 3. We consider computing the matrix factorization of a rating matrix

R on a machine with two CPU threads c1, c2 and one GPU g1. Assume that

we divide R into 3 ⇥ 4 matrix blocks, which is shown in Figure 3.3. In the

beginning, two CPU threads c1, c2 and the GPU g1 get blocks B1,1, B2,2, and B3,3,

32

3.2.2 Motivation Chapter 3

respectively. Normally, the computing power of a GPU is much stronger than

that of a CPU thread. As a result, when g1 has completed its task B3,3, c1 and c2

are still working on their blocks B1,1 and B2,2. According to the scheduling policy

of HSGD, g1 will apply a new block which is independent of B1,1 and B2,2 and has

the least number of updates. Block B3,4 satisfies these conditions. g1 picks B3,4

in the second step of Figure 3.3. In the following steps, g1 will continually update

the two blocks in the lower right corner since B1,1 and B2,2 are always occupied

by c1 and c2. This phenomenon makes the numbers of updates for di↵erent blocks

severely unbalanced, which is demonstrated in the last matrix. The number of

updates for a block is relatively large if the corresponding color is dark. Compared

with the original SGD algorithm which updates matrix elements randomly, the

process in this example leads to a weak training result.

(2) Static Methods by Classifier. Static methods provide scheduling decisions for

worker threads of di↵erent devices before applications start. This type of method

establishes a classifier based on training datasets in the o✏ine phase [35, 57, 107,

33]. Given a new task, the classifier identifies the class of the task and applies a

corresponding strategy of task assignment derived from the o✏ine phase. There

are several drawbacks if applying the classifier-based methods in our problem.

First, it is complicated and time-consuming to generate training data including

static code features and optimal partition strategies. Moreover, these methods

usually rely on specific frameworks such as OpenCL [94] and Insieme [1] to

obtain static code features. This makes them not general. Second, they are

usually designed for multi-task platforms. Consequently, The partition scheme

generated by them is coarse-grained.

(3) Static Methods By Cost Model. This type of method estimates CPU’s and

GPU’s execution time by establishing a cost model [72, 62]. A cost model is a

function revealing the relationship between the input data size and the corre-

33

Chapter 3 3.2.2 Motivation

An input rating matrix

ModelingCPU Cost Model GPU Cost Model

Partition workload Assign blocks by scheduler

CPU threads

GPU kernels

Offline preprocessing

Outputs�

Figure 3.4: Overview of HSGD*

sponding execution time of a specific worker thread. A representative approach

among them is Qilin [72]. It divides a training dataset N into two parts N1 and

N2, which are assigned to CPUs and GPUs, respectively. N1 is further divided

into m subparts N1,1...N1,m. Each subpart N1,i is processed by a CPU thread,

and the corresponding execution time is recorded. A similar operation is applied

to N2 by GPUs. Qilin uses the curve fitting to construct two linear equations as

the projections of the execution times for CPUs and GPUs respectively.

In the context of our problem, a simple linear function in [72] is hard to

accurately estimate the execution time of GPUs. Recall Figure 3.2(a), it is not

a horizontal line. This proves that the execution time does not increase linearly

as the number of elements in a block grows.

Our Method to Balance Workloads. We propose a hybrid method for our

problem. We first customize a cost model to divide the matrix specialized for

the MF problem. We improve the accuracy of the GPU cost model. The details

of cost models are given in Section 3.3. Second, we have a dynamic scheduling

mechanism, which allows the dominant resource to use work-stealing mecha-

nism. This alleviates the deviation between the cost model and the practical

performance.

34

3.2.3 The framework Chapter 3

3.2.3 The framework

In this section, we give an overview of our improved algorithm in Figure 3.4,

which is called HSGD*. Our method contains an o✏ine preprocessing phase

and an online processing phase. The o✏ine phase (the gray area in Figure 3.4)

derives a cost model which estimates the hardware performance. This step can

be performed only once on a machine, and the corresponding parameters are

stored to support the query of any input rating matrix in the online phase.

In the online phase, a sparse rating matrixR is given. HSGD* first divides the

matrix into two parts, denoted as R1 and R2, based on cost models of CPUs and

GPUs from the o✏ine phase. Then, R1 and R2 are further divided into several

blocks. Finally, the scheduler assigns blocks to worker threads. The calculation

process continues until the number of iterations reaches the predefined value.

During most of the period when HSGD* runs, CPU threads are only allowed to

process blocks in R1, and GPUs are only allowed to process blocks in R2. Similar

to HSGD, the block assignment avoids conflicts in the same row or column. We

also have a dynamic scheduling strategy to balance workloads in practice, which

is not reflected in Figure 3.4. The details will be shown in Section 3.4. A

formal pseudocode of the framework HSGD* is reported in Algorithm 2, which

is self-explanatory.

3.3 Our cost model

Given an input matrix R, let ↵ and 1 � ↵ be the proportion of the workload

assigned to GPUs and CPUs, respectively, where 0  ↵  1. We use Tg(↵ · R)

and Tc((1� ↵) ·R) to denote the time spent on updating elements in ↵ ·R and

(1 � ↵) · R by a GPU and a CPU thread, respectively. When the context is

clear, Tg(↵) and Tc(1 � ↵) are used for short. The total running time T of our

35

Chapter 3 3.3. OUR COST MODEL

Algorithm 2: HSGD*
Input: Rm⇥n, k,�P ,�Q, �, t, nc, ng

Output: Pm⇥k, Qk⇥n

// Offline Phase

1 generate cost models of both CPUs and GPUs;
// Online Query Processing

2 partition Rm⇥n according to the cost models;
3 pre-process data;
4 InitScheduler(Rm⇥n, nc, ng);
5 scheduler assigns blocks to CPU threads and GPUs;
6 return Pm⇥k, Qk⇥n;

algorithm is represented below.

T = max(
Tg(↵)

ng
,
Tc(1� ↵)

nc
) (3.7)

Note that both Tg(↵) and Tc(1� ↵) are monotonic. Based on the computed

cost functions, the total running time is minimized when the load between re-

sources keeps balancing. We set ↵ using the following equation.

↵ = argmin|Tg(↵)

ng
� Tc(1� ↵)

nc
| (3.8)

Based on discussion above, our aim is to derive cost functions fg(↵) ' Tg(↵)

and fc(↵) ' Tc(↵) for a GPU and a CPU thread, respectively, where fg(↵)

(resp. fc(↵)) denotes the estimation of Tg(↵) (resp. Tc(↵)). As discussed ear-

lier, a straightforward method to establish a cost model is to follow the works

[72, 62] which think that execution time is linearly related to the size of the input

matrix. However, based on Observation 1, we find that the processing speed of

GPUs increases when the block size increases in our problem. This makes linear

regression methods for the GPU cost model inaccurate. Moreover, the compu-

tation in execution kernels of GPUs and the data transfer are not completely

36

3.3.1 Data preparation and training for CPUs Chapter 3

Algorithm 3: Cost Estimation
Input: Rm⇥n

Output: fc and fg
// S is an array of segments

// Pc and Pg are arrays of structures

// Data preprocessing phase

1 S SampleDataset(Rm⇥n);
// Training cost models

2 Pc TestCPUKernel(S);
3 fc CPUModelFitting(Pc);
4 f transfer

g TestTransferSpeed();
5 Pg TestGPUKernel(S);
6 f execute

g GPUModelFitting(Pg);
7 fg Comebine(f transfer

g , f execute
g);

serial due to CUDA stream mechanism. The total running time of GPU is not

a simple sum of the kernel execution and the data transfer. This observation

makes us reconsider how execution kernel and data transfer exactly influence the

total running time of GPUs, which is not discussed in previous cost models.

In the rest of this section, we introduce the strategy to prepare the train-

ing data in Section 3.3.1 and propose our cost model of GPUs in Section 3.3.2.

For the cost model of CPUs, we use a linear function to estimate the perfor-

mance similar to [72]. A formal pseudocode to compute cost models is given in

Algorithm 3. We explain each step as follows.

3.3.1 Data preparation and training for CPUs

To derive the training data, we shu✏e the input dataset to avoid uneven data

distribution. After the data is shu✏ed, we equally divide input dataset into

N disjoint parts S1, S2, S3...SN , stored in array S at line 1 of Algorithm 3.

Then, CPU execution kernel configured with a single thread is launched to

compute on datasets generated in the last step at line 2. Instead of comput-

37

Chapter 3 3.3.2 Estimating working e�ciency of GPUs

 2.5

 5

 7.5

 10

 12.5

64KB 1MB 16MB 256MB

tr
an

sf
er

 s
p

ee
d

 (
G

B
/s

)

data size

(a) CPU to GPU

 2.5

 5

 7.5

 10

 12.5

64KB 1MB 16MB 256MB

tr
an

sf
er

 s
p

ee
d

 (
G

B
/s

)

data size

(b) GPU to CPU

Figure 3.5: Transfer speed varies with block size

ing on S1, S2, S3...SN respectively in [72], CPU execution kernel computes on

S1, S1+S2, S1+S2+S3...S1+S2+S3+ ...+SN respectively, and the correspond-

ing execution time is recorded. After this, we get an array Pc including data size

and corresponding execution time. As a training data set, this array is used to

curve fitting for CPUs. Our adaptation generates a wider range of training data

which can better reflect the relationship between data size and execution time.

To eliminate noise, the execution time in the training data is derived from the

average of multiple tests.

3.3.2 Estimating working e�ciency of GPUs

Given a task, the total processing time by a GPU is spent on two parts: (1)

data transfer between the CPU and the GPU via the PCI-e bus, and (2) GPU

execution kernels.

Data Transfer. Data transfer has two directions — from CPU to GPU (some-

times called Host to Device) and from GPU to CPU. We denote the times spent

on them by f c)g
g and f g)c

g , respectively. We only discuss the process to model

the data transfer from CPU to GPU, and the model for the other direction is

similar.

Figure 3.5 reveals the transfer speed for data with di↵erent sizes. The transfer

38

3.3.2 Estimating working e�ciency of GPUs Chapter 3

speed grows very fast in the beginning. After the data size is larger than a

threshold, the transfer speed remains stable. Based on this phenomenon, we use

a function to fit the curve when the dataset is not very large, then use the linear

regression to model the rest. A formal model is expressed as follows. |R| denotes

the size of data transferred from CPU to GPU, and ⌧ denotes the threshold.

f c)g
g =

8
>><

>>:

|R|
a ·

p
log|R|+ b

if |R|  ⌧ ;

a · |R|+ b otherwise.

The rationale for |R|  ⌧ is that the data transfer time can be represented by

the quotient of the data size and the transfer speed. According to Figure 3.5, we

use the function a ·
p
log|R|+ b to model the curve of the first stage. We select

this function since the trend performs like an inverse function of the parabola.

Note that the label distribution on the x-axis is not linear. This is because the

logarithmic scale can make the trend clearly presented even though the data

size is small. Obviously, this phenomenon shows that we cannot fully utilize

the bandwidth of the PCI bus if the data is not large enough, which supports

Observation 1. Then, we determine the threshold ⌧ by the extent to transfer

speed variation. Empirically, when the variation of the transfer speed is less than

2% in a time unit, we consider that the transfer speed has been stable. Finally,

we fit the curve as a linear function for the second stage when |R| > ⌧ . The

curve fitting can be done by using the least squares method.

GPU Execution Kernel. We design the cost model of the GPU execution

kernel. Similar to Figure 3.5, the throughput of updating remains stable after

the block size reaches a threshold, which means that the computing power of

the GPU is saturated. To fit the curves, we use a logarithmic function when

the dataset is not very large, and then use the linear regression to model the

rest. The growth trend of the logarithmic function can be slower than the power

39

Chapter 3 3.3.2 Estimating working e�ciency of GPUs

40

80

120

500 1000 1500 2000 2500

u
p
d
at

e
sp

ee
d
 (

m
il

li
o
n
 p

o
in

ts
/s

)

block size (thousand points)

Figure 3.6: Kernel execution time by varying data size

function (e.g.,
p
x), which is more consistent with the trend in Figure 3.6. This

is why we choose it to model the curve of the first stage. A formal model is

expressed as follows, where fkernel
g denotes the time spent on R by the GPU

execution kernel. The function a · log|R| + b represents the processing speed of

the GPU execution kernel.

fkernel
g =

8
><

>:

|R|
a · log|R|+ b

if |R|  ⌧ ;

a · |R|+ b Otherwise.

Overall GPU Cost Model. We cannot simply sum the time of the kernel

execution and the data transfer as our estimation for the overall execution time of

the GPU, since these two parts are not absolutely serial. Specifically, to improve

the overall working e�ciency of GPUs, we adopt a widely used optimization

based on the CUDA stream mechanism. A CUDA stream contains a list of GPU

commands executed in serial, and commands in di↵erent streams are executed in

parallel if hardware resources permit. At the same time, commands in di↵erent

streams can be synchronized. This mechanism allows us to perform data transfer

and kernel execution in parallel without breaking correctness. We explain this

idea in the following example.

40

3.3.2 Estimating working e�ciency of GPUs Chapter 3

Figure 3.7: Data transfer optimization

Example 4. As shown in Figure 3.7, we use three streams to manage the data

transfer from CPU to GPU, the kernel execution, and the data transfer from GPU

to CPU, respectively. Assume that a block B is assigned to the GPU. Stream

1 transfers B and corresponding P,Q to the global memory of a GPU. Then,

the GPU kernel scans the block B and updates P,Q. Simultaneously, stream 1

continuously transfers the next block B0 assigned to the GPU and corresponding

P 0, Q0. When stream 2 finishes B, stream 3 transfers the updated P,Q back to

CPU.

From this example, the overall time for GPU fg can be roughly decided by

the maximum time spent among these three streams because it covers the time

of the other two parts. Note that although the first and the last schemes cannot

be overlapped by the maximal stream in the figure, the cost can be ignored when

the number of transferred and computed blocks is very large. Note that f g)c
g is

always smaller than f c)g
g since we do not need to transfer blocks back to CPU.

Therefore, we define the overall cost model of a GPU as follows.

fg = max(f c)g
g , fkernel

g) (3.9)

The overall cost model of a GPU depends on the maximum between data

transfer time from CPU and GPU and execution time of the GPU kernel.

41

Process B

Stream 1: CPU to GPU

Stream 2: Execution Kernel

Stream 3: GPU to CPU

Process B’

B P Q B’ P’ Q’

P Q P’

…
…

…B’’ P’’ Q’’

Q’

Chapter 3 3.4. WORKLOAD BALANCE IN PRACTICE

3.4 Workload balance in practice

In this section, we present techniques to further balance workload.

3.4.1 Dynamic scheduling

Even though we have proposed a tailored GPU cost model for MF, the estimation

may be still hard to exactly reflect the computing power of devices given a

di↵erent dataset. The workloads of CPU and GPU may be unbalanced if we

assign blocks simply according to the cost model. To remedy this issue, we adopt

a dynamic scheduling strategy when one device finishes its tasks. Specifically,

assume that the GPU has finished its tasks. Instead of waiting for the tasks being

processed by CPUs, we allow GPUs to pick some blocks originally assigned to

CPUs. We call it static phase when the GPU and the CPU only process the

originally assigned tasks and call it dynamic phase when one of them finishes its

own tasks and is involved in processing tasks of the other. In static phase, every

GPU is assigned to blocks in specific rows so that it can update one segment of

one result matrix all the time and avoid the transfer of this segment.

3.4.2 Putting things together

We explain our final strategy for the matrix division. An example is shown in

Figure 3.8.

Number of Columns. Based on the cost model proposed in Section 3.3, we

first partition the matrix into two sub-matrices Rc and Rg for CPUs and GPUs,

respectively. They are marked by white and gray in Figure 3.8. In the light

of Rule 1, we further divide the matrix into nc + 2 ⇥ ng + 1 columns. This

setting guarantees two things. The first thing is that GPUs can always know

42

3.4.2 Putting things together Chapter 3

…
CPU Blocks

GPU Blocks

� <latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
1
�

�

<latexit sha1_base64="0Ab1PEg6RXqn4XqxDSohmP5NfxQ=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRi8cK9gPaUCbbTbt0s4m7G6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqKGvQWMSqHaBmgkvWMNwI1k4UwygQrBWMbqd+64kpzWP5YMYJ8yMcSB5yisZKbe+8iyIZYq9UdivuDGSZeDkpQ456r/TV7cc0jZg0VKDWHc9NjJ+hMpwKNil2U80SpCMcsI6lEiOm/Wx274ScWqVPwljZkobM1N8TGUZaj6PAdkZohnrRm4r/eZ3UhNd+xmWSGibpfFGYCmJiMn2e9Lli1IixJUgVt7cSOkSF1NiIijYEb/HlZdKsVryLSvX+sly7yeMowDGcwBl4cAU1uIM6NICCgGd4hTfn0Xlx3p2PeeuKk88cwR84nz9nmY+O</latexit>

nc + ng rows

ng rows
nc + ng rows in dynamic scheduling

nc + 2 x ng + 1 columns

Figure 3.8: The final division strategy

not only the current block but also the next block. This enables the overlap

between computation and data transfer in Figure 3.7. The second thing is that

there always exists a spare column when a GPU kernel or a CPU thread finishes

processing its block.

Number of Rows for CPUs. As shown in Rule 1, we can divide the input

matrix into nc + ng rows, where there are nc (resp. ng) rows in Rc (resp. Rg).

However, this division strategy causes a problem when the dynamic scheduling is

activated. Specifically, assume that GPUs have finished their own tasks and are

involved in processing blocks of CPUs. Currently, we have totally nc +ng (CPU

and GPU) threads working on (nc + 2⇥ ng + 1)⇥ nc blocks. This would break

Rule 1 and cannot fully exploit all worker threads. To support the assistance

from GPUs, we set the number of rows of CPUs as nc+ng based on Rule 1. The

setting would not a↵ect the CPU e�ciency since the computing power of CPUs

is not sensitive to the block size as shown in Observation 2.

Number of Rows for GPUs. Similarly, If CPUs first finish their tasks and

apply for blocks in Rg, the number of rows in Rg should be at least nc + ng.

However, compared with the row number ng for GPUs, the row number nc +

ng leads to a smaller block size, which cannot saturate the computing power

of GPUs according to Observation 1. Di↵erent from the case of CPUs, the

division strategy for GPUs needs to satisfy that the block size is large enough

43

Chapter 3 3.5. EXPERIMENTS

in the beginning, while the number of rows is large enough to avoid conflicts if

CPUs join. To achieve this target, we divide Rg into ng rows. For each row

Ri
g where 1  i  ng, we further divide Ri

g into dng+nc

ng
e sub-rows. As a result,

relatively large blocks with sizes Rg

(nc+2⇥ng+1)⇥ng
are assigned to GPUs in static

phase, and blocks with sizes Rg

(nc+2⇥ng+1)⇥ng⇥dng+nc
ng

e
are assigned to GPUs and

CPUs in dynamic phase.

Example 5. We give an example to explain the division strategy for Rg. Assume

that we have 2 GPUs and 4 CPU threads, i.e., nc = 4, ng = 2. We divide Rg

into 2 rows, and each row is further divide into 3 sub-rows. In static phase, we

assign a block with size Rg

9⇥2 to a GPU, and in dynamic phase, we assign a block

with size Rg

9⇥6 to a GPU or a CPU thread. On the other hand, Rc is divided into

9 columns and 6 rows. This division for Rc would not change in the algorithm.

3.5 Experiments

In this section, we conduct extensive experiments to show the e�ciency and the

e↵ectiveness of our proposed algorithms. Algorithms appearing in our experi-

ments are summarized as follows.

• CPU-Only: Only CPU works. We uniformly divide the matrix and use

the strategy in [121] to assign blocks. More details can be found in Sec-

tion 2.1.1. We use AVX and OpenMP for acceleration.

• GPU-Only: Only GPU works. We vary the number of rows and columns

for the matrix division and adopt the best one. The ”-O3” optimization

flag is supported.

• HSGD: CPU and GPU work in parallel. The algorithm is introduced in

Section 3.2.1. AVX, OpenMP, and ”-O3” optimization flag are supported.

44

3.5. EXPERIMENTS Chapter 3

• HSGD*: CPU and GPU work in parallel. Nonuniform matrix division and

dynamic strategy are used. Our cost model decides the size of blocks as-

signed to two hardware resources. AVX, OpenMP, and ”-O3” optimization

flag are supported.

Stochastic gradient methods and the parameter k used in [121] and [109]

are di↵erent. To correctly combine two methods on Heterogeneous CPU-GPU

Systems, we embed the core part of LIBMF2 and CuMF SGD3 into our code

and make minor modifications to make the stochastic gradient methods they use

consistent. For stochastic gradient method, We choose to use the more concise

one in [121]. For the value of parameter k, we choose the larger one in [109]

because a large k value can lead to a better training result.

Datasets and Parameter Setting. We evaluate algorithms in four real-world

datasets — MovieLens4, Netflix 5, R1 6, and Yahoo!Music7. Statistics of the

datasets are presented in Table 3.1. For reproducibility, we consider the original

training/test sets in our experiments. More details about each dataset can be

found on the corresponding website. We set the parameters following [20], which

are also listed in Table 3.1.

Experimental Environment. We use a machine with Intel Xeon E5-2687W

v3 3.10GHz processors and a Quadro P4000 GPU with 8GB global memory. The

number of available cores is 20. The system interface of the GPU is PCI Express

3.0⇥16. The total bandwidth is 32GB/s. By default, we use 16 CPU threads

and 128 GPU parallel workers. Here, we follow the definition of GPU parallel

workers in [109], which means the number of elements computed simultaneously

2https://github.com/cjlin1/libmf
3https://github.com/cuMF/cumf_sgd
4http://grouplens.org/datasets/movielens/
5https://www.kaggle.com/netflix-inc/netflix-prize-data
6https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
7https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

45

https://github.com/cjlin1/libmf
https://github.com/cuMF/cumf_sgd
http://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

Chapter 3 3.5.1 Overall e�ciency

Table 3.1: Network statistics and parameter settings

Datasets MovieLens Netflix R1 Yahoo!Music

m 71,567 2,649,429 1,948,883 1,000,990
n 65,133 17,770 1,101,750 624,961

#Training 9,301,274 99,072,112 104,215,016 252,800,275
#Test 698,780 1,408,395 11,364,422 4,003,960

k 128 128 128 128
�P 0.05 0.05 1 1
�Q 0.05 0.05 1 1
� 0.005 0.005 0.005 0.01

in the GPU kernel. All datasets can fit in memory in our experiments.

Organization. Section 3.5.1 shows the adaptiveness of our algorithms by vary-

ing the computing resources. Section 3.5.2 shows the e↵ectiveness of our al-

gorithm compared with the state-or-the-art competitor. Section 3.5.3 and Sec-

tion 3.5.4 evaluate our optimization techniques including matrix division strategy

and workload balance.

3.5.1 Overall e�ciency

We evaluate the overall e�ciency of our final algorithm HSGD* with CPU-Only

and GPU-Only as comparisons. We use Root Mean Square Error (RMSE) 8 as

a metric for the loss, which is widely used in many recommender systems. For

each dataset, we terminate all algorithms and record the corresponding running

time when the RMSE reaches a predefined value. Given that we use a di↵erent

stochastic gradient method from [109] and a di↵erent k value from [121], the

predefined loss values they used are not available. For fair comparison, we select

these values that can be reached by all methods including HSGD which su↵ers

from a weak training quality. The predefined loss values are 0.66, 0.82, 20, and

19 for MovieLens, Netflix, R1, and Yahoo!Music, respectively. The comparisons

8https://en.wikipedia.org/wiki/Root-mean-square_deviation

46

https://en.wikipedia.org/wiki/Root-mean-square_deviation

3.5.1 Overall e�ciency Chapter 3

CPU-Only GPU-Only HSGD*

 4

 8

 12

 16

 32 64 128 256 512

R
u

n
n

in
g

 T
im

e
(s

)

GPU parallel workers

(a) MovieLens

 8

 16

 24

 32

 32 64 128 256 512

R
u

n
n

in
g

 T
im

e
(s

)

GPU parallel workers

(b) Netflix

 10

 20

 30

 40

 50

 60

 70

 80

 32 64 128 256 512

R
u

n
n

in
g

 T
im

e
(s

)

GPU parallel workers

(c) R1

 80

 120

 160

 200

 32 64 128 256 512

R
u

n
n

in
g

 T
im

e
(s

)

GPU parallel workers

(d) Yahoo!Music

Figure 3.9: Varying GPU Threads

between HSGD and HSGD* will be shown in Section 3.5.3.

Varying GPU parallel workers

In this experiment, we evaluate the adaptiveness of our algorithm by varying

the GPU parallel workers from 32 to 512. The running times of algorithms for

di↵erent GPU parallel workers are reported in Figure 3.9 for four datasets. Note

that the CPU thread number is fixed to the default value 16.

As a reference, the running time of CPU-Only is stable on all settings. Ini-

tially, the GPU-Only is slower than CPU-Only. When we use more GPU threads,

the running time of GPU-Only decreases and overtakes that of CPU-Only. The

running time of HSGD* is the smallest among all algorithms. For example, in

47

Chapter 3 3.5.1 Overall e�ciency

R1, given 32 GPU worker threads, HSGD* takes 30 seconds while CPU-Only

and GPU-Only take 33 seconds and 170 seconds respectively. When the thread

number increases to 512, HSGD* takes 14 seconds while GPU-Only takes 23

seconds. The decrease of the time of HSGD* also shows that our algorithm is

adaptive to di↵erent GPU settings and can fully utilize the increasing computing

power of GPUs.

Varying CPU thread Number

In this experiment, we evaluate the adaptiveness of our algorithm by varying

the CPU thread number from 4 to 16. The GPU parallel workers are fixed to

the default value 128. The running times of algorithms for di↵erent CPU thread

numbers are reported in Figure 3.10.

In contrast to Figure 3.9, the running time of GPU-Only is consistent, and the

running time of CPU-Only decreases when we use more CPU threads. HSGD*

is the fast algorithm on all settings and all datasets. For example, in R1 when

the CPU thread number is 4, HSGD* takes 29 seconds, while CPU-Only takes

109 seconds, and GPU-Only takes 48 seconds. When the CPU thread number

increases to 16, HSGD* takes only 20 seconds while CPU-Only takes 33 seconds.

The decrease of the time of HSGD* shows that our algorithm is adaptive to

di↵erent CPU settings and can fully utilize the increasing computing power of

CPUs.

Figure 3.10 and Figure 3.9 show the high e�ciency of HSGD*. When the

gap between the computing power of CPU and GPU is limited (default setting),

HSGD* achieves a 1.4-2.3x speedup over CPU-Only and a 1.4-2.3x speedup over

GPU-Only on all datasets. The experiments also show that the overhead cost

of HSGD* is minor. When the gap between the computing power of CPU and

GPU is large, e.g., CPU uses 16 threads and GPU uses 512 parallel workers in

48

3.5.2 Training quality Chapter 3

CPU-Only GPU-Only HSGD*

 4

 8

 16

 4 6 8 10 12 14 16

R
u

n
n

in
g

 T
im

e
(s

)

CPU Thread Number

(a) MovieLens

 20

 30

 40

 50

 4 6 8 10 12 14 16

R
u

n
n

in
g

 T
im

e
(s

)

CPU Thread Number

(b) Netflix

 10

 20

 30

 40

 50

 4 6 8 10 12 14 16

R
u

n
n

in
g

 T
im

e
(s

)

CPU Thread Number

(c) R1

 100

 140

 180

 220

 4 6 8 10 12 14 16

R
u

n
n

in
g

 T
im

e
(s

)

CPU Thread Number

(d) Yahoo!Music

Figure 3.10: Varying CPU Threads

Figure 3.9, HSGD* still achieves a slight speedup over GPU-Only.

3.5.2 Training quality

In this experiment, we report the derived loss values (RMSE) of our algorithm

HSGD* during the training process to show the e↵ectiveness of our method. The

experiment will demonstrate the loss value of our algorithm finally converges to

a reasonable value. CPU-Only and GPU-Only are also compared as references.

The results are shown in Figure 3.11. The downward trends of HSGD* are

obvious, and the loss of HSGD* converges in the shortest time. In addition,

HSGD* achieves a similar converged loss value compared with other algorithms,

49

Chapter 3 3.5.3 Matrix division strategy

CPU-Only GPU-Only HSGD*

 0.6

 0.7

 0.8

 0.9

 1

 0 1.5 3 4.5 6

T
es

t
R

M
S

E

Running Time (s)

(a) MovieLens

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40

T
es

t
R

M
S

E

Running Time (s)

(b) Netflix

 14

 18

 22

 26

 30

 0 25 50 75 100

T
es

t
R

M
S

E

Running Time (s)

(c) R1

 18

 20

 22

 24

 26

 28

 30

 0 25 50 75 100

T
es

t
R

M
S

E

Running Time (s)

(d) Yahoo!Music

Figure 3.11: Test RMSE over training time on four datasets

which shows the e↵ectiveness of our algorithm. For example, in Yahoo!Music,

the loss of HSGD* drops to 23 in 10 seconds. At the same time, the loss values of

CPU-Only and GPU-Only are 25.2 and 25, respectively. When time increases to

25 seconds, the loss of HSGD*, CPU-Only, and GPU-Only drops to 20, 22.5, and

22.3, respectively. Finally, all loss values of HSGD*, CPU-Only, and GPU-Only

stay about 19.

3.5.3 Matrix division strategy

We evaluate the e↵ectiveness of our matrix division strategy in this experiment.

For each dataset, we record the loss (RMSE) value on di↵erent running times of

50

3.5.4 Workload balance Chapter 3

Table 3.2: Comparison of cost models

Datasets MovieLens Netflix R1 Yahoo!Music

Workload proportion

HSGD*-Q
C 49.56% 55.98% 56.07% 56.46%
G 50.44% 44.02% 43.93% 43.54%

HSGD*-M
C 55.91% 49.02% 49.75% 53.61%
G 44.09% 50.98% 50.25% 46.39%

Running time
HSGD*-Q 0.92 s 15.87 s 13.07 s 40.88 s
HSGD*-M 0.89 s 13.02 s 12.08 s 35.41 s

HSGD* with HSGD as a comparison. The result is shown in Figure 3.12.

We can see that the training quality of HSGD is poor especially when process-

ing relatively large datasets. This phenomenon is consistent with the discussion

in Example 3. The nonuniform matrix division in HSGD* fixes this issue. Given

the same running time, HSGD* derives a smaller loss value than HSGD, and

the advantage of HSGD* is obvious especially in large datasets. For example,

given 50 seconds in R1, the RMSE value for HSGD* reaches to 17, while that for

HSGD is only 21. The result proves that nonuniform matrix division can utilize

GPU resources better.

3.5.4 Workload balance

We evaluate the e↵ectiveness of techniques used to balance workloads in this

section.

Cost models

To show the e↵ectiveness of our cost models, we report the proportion of work-

loads derived by our cost models with [72] as a comparison in Table 3.2. To

clearly reflect the algorithmic e�ciency based on two cost models, we make these

51

Chapter 3 3.5.4 Workload balance

Table 3.3: E↵ectiveness of dynamic scheduling

Dataset HSGD*-M HSGD*
MovieLens 0.89 s 0.84 s
Netflix 13.02 s 11.42 s
R1 12.08 s 10.58 s

Yahoo!Music 35.41 s 30.96 s

two methods run the same number of iterations, which is 20 in this experiment.

In Table 3.2, HSGD*-Q represents the algorithm HSGD* which uses Qilin

[72] to evaluate the working e�ciency of hardware. HSGD*-M represents the

algorithm HSGD* which uses our model in Section 3.3 to evaluate the working

e�ciency of hardware. Note that for fairness, both HSGD*-Q and HSGD*-

M do not include the dynamic scheduling strategy in Section 3.4 to further

balance workloads. ”C” and ”G” in the table represent the assigned proportion

of workloads to CPUs and GPUs, respectively.

The practical running times of HSGD*-Q and HSGD*-M are also reported.

The running time of HSGD*-M is smaller than that of HSGD*-Q on all datasets.

This result proves that our cost model can derive a more accurate estimation for

the working e�ciency of hardware. We can find that HSGD*-M prefers to assign

more work to GPU compared with HSGD*-Q on all datasets except MovieLens.

For MovieLens, HSGD*-M observes that the performance of GPU is not strong

when processing a small dataset (Observation 1). Therefore, it assigns less work

to GPU. The e↵ectiveness of HSGD*-M becomes considerable when the dataset

is large. Note that given a smaller target loss, both algorithms will require more

iterations, and the advantage of our method will become obvious. For example,

to achieve the predefined loss value of Yahoo!Music in Section 3.5.1, HSGD*

needs 46 iterations, which is more than twice that of this experiment.

52

3.5.4 Workload balance Chapter 3

HSGD HSGD*

 0.6

 0.7

 0.8

 0.9

 1

 0 1.5 3 4.5 6

T
es

t
R

M
S

E

Running Time (s)

(a) MovieLens

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40

T
es

t
R

M
S

E

Running Time (s)

(b) Netflix

 14

 18

 22

 26

 30

 0 25 50 75

T
es

t
R

M
S

E

Running Time (s)

(c) R1

 18

 20

 22

 24

 26

 28

 30

 0 25 50 75 100

T
es

t
R

M
S

E

Running Time (s)

(d) Yahoo!Music

Figure 3.12: Test RMSE over training time

Dynamic scheduling

We evaluate the e↵ectiveness of the dynamic scheduling strategy (Section 3.4).

Similar to the experiment for cost models, we use HSGD*-M to denote our

final algorithm without the dynamic scheduling technique to further balance

workloads. The running times of HSGD*-M and HSGD* on all datasets are

shown in Table 3.3.

The result shows HSGD* is faster than HSGD*-M on all datasets. Note that

in MovieLens with relatively small size, the computing power of GPU cannot

be saturated, which degrades the e↵ectiveness of the dynamic scheduling. As

a result, the improvement of dynamic scheduling on MovieLens is minor. By

53

Chapter 3 3.6. CONCLUSION

combining the new cost models and the dynamic scheduling strategy, our final

algorithm achieves a significant improvement in balancing workloads of MF.

3.6 Conclusion

In this chapter, we delve into addressing the matrix factorization problem on

heterogeneous systems.

We discover that a non-uniform partitioning strategy can boost GPU e�-

ciency while sustaining high recall. Based on this key observation, we introduce

a cost model to determine the sizes of large and small matrix blocks and dy-

namically allocate tasks at runtime, aiming to achieve load balancing across two

working units.

Experimental findings demonstrate that our method yields a performance

acceleration ranging from 1.4 to 2.3 times when compared with CPU-only or

GPU-only methods. Furthermore, experimental results indicate that our cost

model and dynamic scheduling strategy reduce running time due to their e↵ective

load balancing.

While our approach exhibits potential, it also comes with certain limitations.

Our approach is tailored for discrete heterogeneous systems where the CPU

and GPU have their own separate memory spaces. In the context of integrated

heterogeneous systems, where data transfer between CPU and GPU memory is

absent, our cost model may not hold its accuracy.

54

Chapter 4

k Nearest Neighbors Search

In this chapter, we introduce the methodological details about our approach to

k nearest neighbors search along with the experimental results.

4.1 Preliminaries

In this section, We formalize the problem of ANN search on proximity graphs

and review the search algorithm on proximity graphs along with representative

proximity graphs.

4.1.1 Problem definition

Definition 1. (K Nearest Neighbor Search). Given a set of points P (|P | >

k) and a distance function � in a space S, k nearest neighbor search for a query

point q 2 S is to return a set of points N ✓ P (|N | = k) such that 8u 2 N, 8v 2

P \N,

�(u, q)  �(v, q). (4.1)

Due to the curse of dimensionality [45], considerable research e↵orts turn to

searching approximate k nearest neighbors (ANN) when the dimensionality of

55

Chapter 4 4.1.1 Problem definition

the space S is high. In this way, we might find a good trade-o↵ between result

quality and search e�ciency. Let X = {xi|1  i  k} denote the result by an

approximate algorithm, a common way to measure precision for the query point

q is defined as |X\N(q)|
k where N(q) includes k nearest neighbors of the query q.

A variety of proximity graphs have been proposed in the literature to facil-

itate approximate nearest neighbor search. Below is a general definition of the

proximity graph followed by two important properties.

Definition 2. (Proximity Graph). Given a set of points P in a multidimen-

sional space S and a distance function �, a proximity graph G = (V,E) of P

consists of a set of n vertices V = P where each vertex in V is uniquely asso-

ciated with a point in P , and a set of m edges E each of which connects two

vertices in V .

Without loss of generality, we assume a proximity graph G is a directed

graph. Whenever there is no ambiguity, we use a point and its corresponding

graph vertex exchangeably. Generally, there are two key properties for proximity

graphs used for ANN search:

(1) For each vertex v, all or the majority of its outgoing neighbors are close to v

in terms of the given distance function �. A few outgoing neighbors not close to

v might also be included to speed up the search in some proximity graph models

(e.g., long edges in NSW graph [73]).

(2) All vertices have the same (similar) number of outgoing neighbors. We may

use an upper bound dmax and a lower bound dmin to control the number of

outgoing neighbors in proximity graphs. The bounded number of neighbors is

friendly for GPU-based graph processing. Note that we only keep the outgoing

neighbors in adjacency lists.

Problem statement. We aim to develop e�cient GPU-accelerated algorithms

for approximate nearest neighbor (ANN) search on a proximity graph as well as

56

4.1.2 Proximity graph search and construction Chapter 4

constructing proximity graphs.

4.1.2 Proximity graph search and construction

Search on proximity graph. Though a variety of proximity graph models

have been proposed in the literature, most of them use the beam search strategy

which is an A⇤-like search algorithm with a limited budget. The key idea of the

beam search on proximity graphs is the greedy heuristic that guides the search,

i.e., (1) choose the unvisited neighbor vertex which is closest to the query q in

the graph search. (2) apply the backtracking to avoid a locally optimal solution

under a particular budget, i.e., search more nearest neighbors than required for

exploring neighbors of local optimum.

Algorithm. Given a proximity graph G = (V,E), a query point q and a num-

ber k of returned nearest neighbors, Algorithm 4 searches nearest neighbors in

iterations. (1) A max-heap N , a min-heap C and a hash table H are initialized

(Lines 1-3). (2) A start vertex vs is added to C and H to start iterations up

(Lines 4-5). (3) As iterations begin, for each iteration, (a) pick the vertex vc

closest to q in C (Line 7). (b) check whether vc is closer than the current k-th

nearest neighbor vf in N (Line 9). If the number of vertices in N is smaller

than k, we regard �(vf , q) = INF . (c) If the condition does not hold, the search

terminates (Line 10). Otherwise, vc is added to N (Line 14), and its unvisited

outgoing neighbors are inserted into C for subsequent exploration and marked

as visited (Lines 15-17).

Example 1: Given the proximity graph G1, the query point q in Figure 1.1

and k = 4, Algorithm 4 returns k-nearest neighbors of q. In the beginning, N ,

C and H are empty. Suppose v1 is chosen as the entry point, it is added to C

and H. Then, the first iteration starts up. In iteration 1, as the closest point

to q in C, v1 is popped up from C. Afterwards, v1 is directly pushed into N

57

Chapter 4 4.1.2 Proximity graph search and construction

Algorithm 4: Search on Proximity Graph
Input: A proximity graph G = (V,E), a query point q and the number of

returned nearest neighbors k
Output: A set N of k nearest neighbors of q in V

1 C := ;; // candidate set
2 N := ;; // top k result so far
3 H := ;; // visited points set
4 pick a start vertex vs;
5 C := C [{vs}; H := H [{vs};
// search on the proximity graph

6 while |C| > 0 do

// pop the point vc closest to q

7 vc := C.Min(); C.Pop();
// k-th closest neighbor so far

8 vf := N .Max();
9 if �(vc, q) > �(vf , q) and |N | = k then

10 break ;

11 if |N | > k then

12 N .Pop();

13 N := N [{vc};
14 foreach outgoing neighbor u of vc in G do

15 if u 62 H then

16 C := C [{u}; H := H [{u};

17 return N ;

because the number of points in N is lower than k. Last, all neighbors of v1 are

sequentially added to C and H because they are neither visited. In iteration 2,

v8 is popped up from C and pushed into N . Its unvisited neighbor v10 is added

into C and H. In subsequent iterations, the search algorithm traverses the path

v10 ! v12 ! v9, thereby visiting all neighbors of points on this path. After

iteration 5, the closest point to q in C is v4, which is worse than v10 (the furthest

point to q in N). Hence, traversal terminates, and v12, v9, v8 and v10 in N are

returned.

Construct proximity graph. A variety of proximity graph models have been

proposed in the literature. Here, we focus on two representative models: Navi-

gable Small World (NSW) graph and K Nearest Neighbors (KNN) graph.

Navigable Small World Graph. In an NSW graph, the outgoing edges of each

58

4.2. PROXIMITY GRAPH SEARCH Chapter 4

vertex include short-range links and long-range links. Short-range links are re-

garded as an approximation of the Delaunay Graph [10], and long-range links

maintain the properties of the small world [56]. The construction process is a

serial insertion of all points in the dataset. For each new point, (1) dmin nearest

neighbors are selected from points in the current graph (all points are selected

if the number of points in the current graph is less than dmin). (2) selected

nearest neighbors are bidirectionally linked with the new point. The insertion

continues until all points have been inserted into this graph. G1 in Figure 1.1 is

constructed as an NSW graph where dmin is set to 2. For example, among three

neighbors of v7, v1 and v5 are picked because they are closest to v7 when v7 is

inserted; v8 is picked because v7 is one of the closest neighbors of v8 when v8 is

inserted.

As its important variant, the hierarchical navigable small world graph

(HNSW) is a hierarchical graph where each layer is an NSW graph for a subset

of points.

K Nearest Neighbors Graph. In a KNN graph, each point is connected to its k

(Here, k = dmin = dmax) nearest neighbors. NN-Descent [25] is often used to

construct the KNN graph. It first randomly picks neighbors for each point and

iteratively improves the quality of neighbors of each point by exploring the neigh-

bors of its neighbors. The process terminates when the precision improvement

of the KNN graph is small enough.

4.2 Proximity graph search

First, we introduce the motivation of our GPU-based proximity graph search.

We next present the search algorithm and a theoretical analysis.

59

Chapter 4 4.2.1 Motivation

4.2.1 Motivation

We note that the distance computation can be significantly accelerated by GPU-

based solutions because the sub-vectors of an entire feature vector (i.e., a point in

high-dimensional space) are independent and can naturally be processed simul-

taneously. For instance, we can simultaneously use 32 threads in a warp to com-

pute the Euclidean distance between two points (i.e., vectors) in 640-dimensional

space where each thread takes care of the 20-dimensional sub-vector, and the

partial results can be easily aggregated by warp-level primitives. However, as

stressed in [119] and illustrated in Figure 4.5 in Section 4.4, the bottleneck of

the state-of-the-art graph search becomes the data structure operations. This

is because SONG still follows the search paradigm of CPU-based solutions and

the corresponding data structure operations (e.g., dynamic maintenance of the

priority queue and hash table) are expensive on a GPU. Though a set of op-

timizations have been explored, SONG uses a single thread for data structure

operations in each query to avoid irregular dependency among threads in their

implementations. This inherently underutilizes the GPU computing bandwidth

since multiple threads with the same instruction will be invoked at the same time

even when the smallest computing unit, i.e., the warp, is used for each query.

To better maintain the data structures in the GPU solution, we apply the

lazy strategy on the updating and checking operations. Though the lazy strategy

has been widely adopted in the literature, we would like to point out that the

existing works on proximity graph based ANN search, including the state-of-

the-art GPU solution, maintain the data structures in an eager manner. To

better apply a lazy strategy for the GPU-friendly solution, we need to choose

new data structures and re-design the search paradigm, which, together, pose

new challenges. We re-design the search algorithm so that the maintenance of

60

4.2.1 Motivation Chapter 4

v

threads in a block

N …

find the first unexplored vertex v
u1 u2 u3 u4 u5 …
adjacency list of v

threads in a block

T …
for each vertex u in T:

d1 d2 d3 d4 d5 …

threads in a block

Vector of u:

d1 d2 d3 d4 d5 …

q1 q2 q3 q4 q5 …Vector of q:

compute distance of q and u

Registers
u1

threads in a block

T …

check if explored

T …

GPU bitontic sort

T …

N …

Merge T into N

1. Candidate locating 2. Neighborhood exploration

3. Bulk distance computation.

4. Lazy check

5. Sorting

6. Candidate update

Figure 4.1: A diagram of search algorithm GANNS

data structures is friendly to GPU. The key challenge is to implement e�cient

parallelism during the update of data structures while ensuring that iterations

can keep running. We focus on the following two perspectives.

Candidate selection. It is non-trivial to have an e�cient GPU implementation

for priority queues as stressed in [119]. A set of optimization techniques has been

proposed by SONG such as bounded priority queue optimization and selected

insertion optimization to accommodate the GPU computation. Nevertheless,

SONG has to rely on a single thread for the above process because it extracts

the closest point sequentially from a priority queue, which is e�cient in terms

of following the greedy heuristics and quickly approaching the target but not

friendly for the parallel computation in GPU.

Lazy update. To alleviate the above issue, an alternative is to use a concurrent

heap [19] that supports parallel operations. Unfortunately, it is ine�cient in the

context of ANN search. This is because the number of points stored in the heap

is few in our problem. As a result, the depth of the heap is low. This means that

we have to sequentially update almost all vertices in the heap when we insert or

delete points.

Instead of dynamically maintaining the candidate set and current top k result

with two priority queues, we use a lazy update strategy with two fixed-length

arrays N and T with lengths ln and lt, respectively. We say that

� A vertex is a visiting vertex regarding q if its distance to q will be calcu-

61

Chapter 4 4.2.1 Motivation

lated.

� A vertex is an exploring vertex regarding q if the distances of its neighbors

to q will be calculated.

N keeps the top k results and potential exploring vertices at the same time.

In each iteration, a vertex in N is picked as the exploring vertex; T stores visiting

vertices that are outgoing neighbors of the exploring vertex.

The selection of an exploring vertex can be based on warp-level primitives.

N and T can be updated by GPU sorting and merging algorithms, i.e., the

maintenance of the candidate set and current top k result can be e�ciently

paralleled.

Visited vertices mark. During search, a vertex might be accessed multiple

times when its neighbors are explored. Thus, it is necessary to mark the visited

vertices to reduce the redundant computation. In CPU-based proximity search,

a hash table can be used for e�ciently checking if a vertex has been visited

(Line 16 of Algorithm 4). In this way, re-computation of the visited vertices can

be avoided. In [119], two possible alternatives are discussed for this purpose:

opening addressing hash table and bloom filter, followed by visited deletion op-

timization. The open addressing hash table with a single thread is used in the

implementation of SONG because the overhead of synchronization does not pay-

o↵. As an alternative, one may wonder if the well-known bitmap hashing can be

applied since it can be easily paralleled without any synchronization cost. Un-

fortunately, this is not e�cient on the GPU because of the high latency of the

random memory accesses involved in the warp threads and the limited on-chip

memory [66].

Lazy check. Based on the above observation and the fact that the distance com-

putation in the context of GPU computation is very e�cient, we do not check

if a neighbor of v has been visited. Consequently, we can avoid the use of a

62

4.2.2 GPU-based proximity graph search Chapter 4

hash table at the cost of some redundant distance computations. Note that we

still assess if a vertex has been explored by checking the array N to avoid the

propagation of this redundant distance re-computation.

4.2.2 GPU-based proximity graph search

We first show the data structures used in the search algorithm and corresponding

memory space allocation. The search algorithm is presented next.

Data Structures and Memory Allocation. Data structures in our search al-

gorithm, as well as corresponding GPU memory allocation are as follows. (1) The

proximity graphG, high-dimensional points (i.e., features), and high-dimensional

queries, are kept in the GPU global memory. (2) N and T are allocated in the

shared memory. (3) The coordinate values (i.e., feature) of each point, including

the query q, will be assigned to the registers.

Search Algorithm. Note that we allocate a thread block for one query. Since

ANN search of each query points is independent, the inter-block level parallelism

is immediate by utilizing multiple thread blocks. Next, we illustrate our GPU-

based ANN search algorithm in one thread block.

Initially, T is empty, and N includes the start vertex vs. We use N [v] (resp.

T [v]) to denote the array element associated with the vertex v in N (resp. T),

and N [v].explored (resp. T [v].explored) to indicate if v has not been explored.

Then, search starts up. Each iteration of the search is illustrated in Figure 4.1.

It consists of 6 phases as follows.

(1) Candidate locating. When each iteration starts, the first vertices v with

N [v].explored = false in N will be identified. In particular, threads access the

flag explored of vertices in parallel. Warp-level primitives ballot sync and ↵s

are used to aggregate these flags to reveal the first unexplored vertex. If these

vertices are all explored, subsequent vertices are processed in the same way. The

63

Chapter 4 4.2.2 GPU-based proximity graph search

search will be terminated if all vertices in N are already explored.

(2) Neighborhood exploration. Let {ui} denote outgoing neighbors of v. They

are loaded into T by collaboration of threads in the thread block, and we set

T [ui].explored as false. Then, v is marked as explored.

(3) Bulk distance computation. Distances between vertices in T and q are com-

puted one by one. For each vertex in T , its corresponding d-dimensional vec-

tor (point) is transferred from the GPU global memory to the registers of nt

threads. Each thread is responsible for the computation of its corresponding

sub-vector, and the partial results are aggregated by the warp-level primitive

shfl down sync.

(4) Lazy check. As discussed in Section 4.2.1, there might be redundant distance

computation because we do not check whether a vertex has been visited when it

is inserted to T . Nevertheless, we will exam if vertices in T have been explored

before they are merged into N to prevent the propagation of redundant compu-

tation. Given that vertices in N are sorted by their distances w.r.t q, we perform

a parallel binary search for vertices in T . T [v].explored is set to true if v is al-

ready in N because we do not need to consider v for neighborhood exploration

again.

(5) Sorting. The well-known GPU algorithm bitonic sort [12] is employed to sort

vertices in T based on their distances w.r.t q and the flag explored, and ties are

broken by vertex ID.

(6) Candidate update. Since vertices in T and N have been ordered, we apply the

bitonic sorting-based merge [53] algorithm to retrieve ln closest vertices among

T [N , and keep results in N for further processing. Note that it is possible that

v has been explored in N , then discarded from N . In this scenario, v will not

appear in N again since the distance of the ln-th vertex of N will keep decreasing

during the search. In this way, we can avoid exploring the neighbors of a vertex

64

4.2.2 GPU-based proximity graph search Chapter 4

N: T:v1Initialization

Iteration 1

v2 v3 v5 v7 v8T:

N: v8 v1 v7 v2

v8 v7 v2 v5 v3T:

Iteration 2

v1 v10T:

N: v8 v10 v1 v7

v10 v1T:

Iteration 3

v9 v12T:

N: v12 v9 v8 v10

v12 v9T:

Iteration 4

v9 v10T:

N: v12 v9 v8 v10

v9 v10T:

Iteration 5

v2 v4T:

N: v12 v9 v8 v10

v4v12T:v12 v2

explored vertex

unexplored vertex

Figure 4.2: An example of search algorithm GANNS

multiple times though its distance to q might be re-computed.

Example 2: Given k = 4, the proximity graph G1 and the query point q in

Figure 1.1, our search algorithm returns k-nearest neighbors of q. Similarly, we

assume that the entry point is v1. In the beginning, it is loaded into N , and its

flag explored is initialized as false.

In iteration 1, the first point not yet explored in N is the point v1. Therefore,

its neighbors v2, v3, v5, v7 and v8 are loaded into T , and the flag explored of v1

in N is set to true. Then, distances between vertices in T and q are computed.

During lazy check, no point has a duplication in N . As a result, none of the

points are set as explored. After sorting, the order of vertices in T becomes

v8, v7, v2, v5 and v3. Last, we update N by merging it with T . In iteration 2, v8

is recognized as the next explored point and its neighbors are loaded, computed,

checked, sorted and merged. Subsequently, the path v10 ! v12 ! v9 is traversed.

In iteration 5, the only unexplored point in N , v9 is chosen as the next explored

point. However, its neighbors make N unchanged. Meanwhile, points in N are

all explored. Hence, the process terminates, returning v12, v9, v8 and v10.

As shown, though our search algorithm has the same search path as Al-

gorithm 4 and SONG, neighbors of the exploring point in each iteration are

considered in a batch rather than one by one. This increases parallelism and

reduces the cost of maintaining data structures. Moreover, compared with Al-

gorithm 4 and SONG, our search algorithm consumes less memory because it

65

Chapter 4 4.2.3 Analysis

aborts the maintenance of visited points.

Remarks. To justify the practicality of solving ANN search on the GPU, we also

investigate the impact of data transfer between CPU and GPU on total time cost.

Specifically, compared with the time of querying on the GPU, the time of data

transfer between CPU and GPU is negligible. This is because (1) data transfer

occurs only at the beginning and end of search, and the size of data is minor

compared with bandwidth. For instance, the size of results is around 1MB when

there are 2000 queries in one batch and k is set to 100. However, the bandwidth

of data transfer (PCI Express 3.0×16) is around 10GB/s; (2) CUDA provides a

stream mechanism that supports asynchronous processing of kernel computation

and data transfer. That is to say, data transfer can be overlapped with querying

on the GPU even when several batches of points need to be processed on the

GPU.

4.2.3 Analysis

Memory Usage. Memory usage is of importance in GPU-based algorithms.

The proposed search algorithm makes much e↵ort to (1) avoid additional bu↵er

such as auxiliary arrays; (2) reduce the usage of shared memory of one thread

block to enhance potential parallelism, i.e. the sizes of N and T are profitable.

For instance, ln usually takes 32, 64 or 128 while lt, is set to dmax which is 32

by default; and (3) utilize registers. As reported in [47], the register is the

largest SRAM structure on the chip, usually around 256KB per SM. Instead of

ignoring this important memory structure, we load the vector of q and points

into registers for the distance computation.

Time Complexity. Given the number nt of threads in a thread block, the

complexity of phases (1) and (2) is O(lnnt
) and O(lt

nt
), respectively; for phase

(3), the complexity is O(lt ⇥ nd
nt
) where nd is the dimensionality of the points;

66

4.3. PROXIMITY GRAPH CONSTRUCTION Chapter 4

for phase (4), the complexity is O(log ln ⇥ lt
nt
); for phase (5), the complexity

is O(log2 lt ⇥ lt
nt
); and for phase (6), the complexity is O(log ln ⇥ ln

nt
). Putting

them together, the overall cost is O(log ln ⇥ lt+ln
nt

+ lt ⇥ nd
nt

+ log2 lt ⇥ lt
nt
) time for

each iteration of the search. As a reference, the time complexity of three phases

of SONG is O(lt), O(lt ⇥ nd
nt
) and O(lt ⇥ log ln), respectively. Theoretically, the

speedup of both bulk distance computation and data structure operation is linear

to the number of threads nt within a thread block.

4.3 Proximity graph construction

We first present the motivation of our GPU-based NSW graph construction

algorithm. We next describe the algorithm and give an analysis. Then, we

briefly show the techniques for the construction of two other popular proximity

graphs: HNSW and KNN graphs.

4.3.1 Motivation

Intuitively, the improvement of the search performance by SONG and our search

algorithm can immediately accelerate NSW graph construction. However, it is

nontrivial due to the sequential insertions during construction.

Straightforward methods. Generally, we have two straightforward GPU im-

plementations for NSW graph construction as follows.

Sequential method. We can strictly follow the sequential processing of the points

{v1, v2, . . .}. Specifically, for a new point vi, we conduct ANN search on the

current NSW graph G, put its k nearest neighbors obtained from ANN search

{u1, . . . , uk} as the adjacency list of vi, and update the adjacency list of ui with

vi as well. Then vi+1 will be processed on the new graph G0, including edges

created by the insertion of vi.

67

Chapter 4 4.3.2 GPU-based NSW graph construction

Parallel method. We can simply design a parallel method by parallel processing

of the points {vi, vi+1, . . .}. In particular, ANN search on the current NSW graph

G is performed in parallel for each point in the batch, and results are aggregated

to update edges together.

Remarks. (1) The sequential method is ine�cient because of the waste of the

GPU computing bandwidth, i.e., there is no inter-block level parallelism. (2)

The parallel method su↵ers from the quality of graphs. This is because all other

points in the same batch are ignored during the graph construction for each

point vi, e.g., they will not appear in its adjacency list.

The pitfalls of the above two methods prompt us to design a new NSW graph

construction algorithm such that we can fully exploit the GPU computing band-

width without sacrificing the quality of the constructed graphs. In a nutshell,

we use the divide-and-conquer strategy. As shown in Figure 4.3, we partition

the points P into a set of disjoint groups {P0, . . . , Pt} of the same size. In the

first phase, we process each group Pi by one thread block and build a local NSW

graph Gi by sequentially processing the points. Then the local graphs will be

successively merged to the first local graph G0. We carefully design the imple-

mentation to ensure that (1) all operations in the graph construction are friendly

to GPU; (2) both inter-block level parallelism and intra-block level parallelism

are achieved; and (3) the quality of the resulting graphs is the same as the NSW

graph constructed by sequential insertions.

4.3.2 GPU-based NSW graph construction

We first demonstrate data structures as well as their locations in the memory

hierarchy. Notice that the search process is also included in the construction

process, and we only introduce new data structures here.

Data Structures and Memory Allocation. (1) The proximity graph G

68

4.3.2 GPU-based NSW graph construction Chapter 4

is pre-allocated in the global memory to store neighborhood information of all

points. (2) Graph G0 is also pre-allocated in the global memory. It is used to

store intermediate neighborhood information for the optimization of our GPU

solution. (3) An edge list E is located in the global memory, and is used to record

nearest neighbors for inserted points. (4) An array I is used for the processing

of the edge list E, which is allocated in the global memory.

Construction Algorithm. Without loss of generality, we assume that all

points are assigned a unique ID, representing the order in which they are inserted.

Let v.N denote the adjacency list of the vertex (point) v in the NSW graph. for

each vertex u 2 v.N , we say the edge v ! u is a “forward edge” if u.ID ¡ v.ID.

Otherwise, v ! u is a “backward edge”.

Generally, a forward edge v ! u is generated in an aggressive way when v

issues a KNN search in NSW graph construction, and u is included in the search

result. A backward edge v ! u is created in a passive way when u issues the

kNN search, and v is one of the search results.

Algorithm 5 presents the pseudo-code of the NSW graph construction.

The term parallel do across blocks indicates the inter-block level paral-

lelism, i.e., the task is parallel processed by multiple thread blocks. We first

partition points in P into t+ 1 disjoint groups P0, P1, . . . , Pt (Line 1).

The following construction algorithm consists of two phases: local graphs

construction and local graphs merge.

(1) Local graph construction. (Lines 2-8) We assign each group Pi to a thread

block for local graph construction (Line 2). The computation of each local graph

is independent so the inter-block level parallelism can be immediately achieved.

These points in the group Pi will be sequentially inserted into the local graph

Gi using the following two steps (Lines 4-8).

Step 1. For each inserted vertex vij in Pi, we search dmin nearest neighbors on

69

Chapter 4 4.3.2 GPU-based NSW graph construction

Local Graph 1

…

Thread Block 1

Phase 1: Parallel Local Graph Construction

Local Graph 2

Thread Block 2

Local Graph 3

Thread Block 3

…

Phase 2: Iteratively merge to Local Graph 1

Local Graph 1 Local Graph 2 Local Graph 3

Figure 4.3: Our Strategy

Gi. The search results of each new point vij are stored in their corresponding

adjacency lists in both G and G0, denoted by vij.N and vij.N 0 respectively. Note

that vij.N 0 uses memory space allocated for G0.

Step 2. For each point uij in the adjacency list of vij, its adjacency list in G

is updated. Specifically, we insert the vertex vij into the adjacency list of uij.

We then locate the position by binary search and write the vertex id of vij and

the distance between uij and vij. Note that the adjacency list of each vertex is

an array with fixed size dmax where elements are ordered by distance. The last

element is discarded if the list is already full.

(2) Local graphs merge. (Lines 9-22) After constructing local graphs, the last

t graphs are sequentially merged into the first local graph G0. It requires t

iterations, and there are three steps in each iteration. Assume we are in the i-th

iteration.

Step 1. For each vertex vij in Gi, it is processed by one thread block. The

computations of these vertices are independent of each other in this step, hence

the inter-block level parallelism is immediate.

70

4.3.2 GPU-based NSW graph construction Chapter 4

First, dmin nearest neighbors of vij is retrieved against the graph G0 which

includes points in P0 . . . Pi�1 (Line 12), and these nearest neighbors will merge

with vij.N 0 in G0 to form new vij.N (Line 14). Recall that vij.N 0 stores nearest

neighbors of vij among points in Pi which have smaller ID than vij. Consequently,

the dmin nearest neighbors of vij among points accessed before vij are kept in

vij.N , i.e., the forward edges of vij are now readily available.

Next, we update the backward edges. Note that the update of backward

edges for points uij in
S

vij2Pi

vij.N is a bit tricky because the vertex uij might

be included as one of the nearest neighbors in several adjacency lists, i.e., it

could appear across multiple thread blocks. Hence, it might lead to inconsistent

results if we do not have any concurrency control among blocks. Therefore, we

put these backward edges into an edge list E for subsequent processing (Line

17).

Step 2. Here, we aim to organize these backward edges in compressed sparse

raw (CSR) format ((Line 19)). (1) We employ bitonic sorting to organize edges

in E by the IDs of the starting vertices (i.e., uij), with the ties broken by the

distances. (2) I[i] is set to 1 if the i-th edge in E is the first edge of a particular

starting vertex; otherwise, I[i] = 0. (3) The prefix sum of I is computed, and

we update I such that I[i] is the beginning position of i-th starting vertex in E.

Step 3. Now, we update the backward edges of starting vertices in E. We assign

each starting vertex to one thread block. Assume the vertex uij is assigned to

the i-th thread block. (1) We use I[i] and I[i+1]�1 to obtain the corresponding

edges of uij in E, and load these edges from the global memory to the shared

memory. (2) We load the current adjacency list of uij in G0 from the global

memory to the shared memory. (3) These two adjacency lists are merged, and

we use the first dmax elements as the adjacency list of uij.

Consequently, we update G0 by merging Gi, and G0 is returned after all local

71

Chapter 4 4.3.2 GPU-based NSW graph construction

Algorithm 5: GPU-based NSW Graph Construction
Input: A point set P , the minimum degree dmin in G and the maximum

degree dmax in G

Output: A proximity graph G = (V,E)
1 partition P into disjoint sets P0, P1, . . . , Pt;
2 parallel do across blocks

3 Gi := ;;
4 foreach vij in Pi do

5 vij .N , vij .N 0 := Search(Gi, vij , dmin);
6 foreach uij in vij .N do

7 parallel do within block

8 uij .N := uij .N [{vij};

9 for i = 1 to t do

10 E := ;; I := ;;
11 parallel do across blocks

// vij 2 Gi

12 vij .N := Search(G0, vij , dmin);
13 parallel do within block

14 vij .N := vij .N [vij .N
0;

15 foreach uij 2 vij .N do

16 parallel do within block

17 E := E [(uij ! vij , �(uij , vij));

18 parallel do across blocks

19 E, I := GatherScatter(E);

20 parallel do across blocks

21 parallel do within block

22 uij .N := uij .N [{E[I[i]], E[I[i] + 1], . . . };

23 return G0;

graphs are processed.

Remarks. Though we propose Algorithm 5 in the context of GPU, it is essentially

independent of hardware substrate. That is to say, it can also be applied to other

system settings that have multiple working units such as multi-core CPU systems

and distributed systems. In these system settings, each working unit can be

individually responsible for the construction of one local graph and the search of

nearest neighbors of one point in the merged local graph in each iteration during

the merging of local graphs.

72

4.3.3 Analysis Chapter 4

4.3.3 Analysis

Quality of graphs. Given exact nearest neighbors, Algorithm 5 can generate

the NSW graph, which is the same as that constructed by sequential insertions.

Proof sketch. Suppose the NSW graph is constructed by the sequential insertion,

the outgoing edges of a vertex v consists of forward edges and backward edges,

denoted by Ev
f and Ev

b , respectively. Specifically, the ending vertices in Ev
f are

nearest neighbors ahead of v, and v is one of the nearest neighbors of each ending

point u in Ev
b which is behind v.

We can prove that if nearest neighbors set ⌘v among points ahead of v can

be found for each point v, we can construct NSW graphs. It is self-explanatory

that Ev
f has been found. Consider any u in Ev

b , v must appear in ⌘u. Otherwise,

u will not appear in Ev
b because we can find the nearest neighbors set ⌘ for each

point including u, we can update Ev
b after u searches its nearest neighbors.

In Algorithm 5, v.N initially records the nearest neighbors of v within P0 [

. . . Pi�1, and v.N 0 keeps the nearest neighbors of v from Pi which are ranked

before v. Therefore, we have v.N [v.N 0 = ⌘v for each vertex v. 2

Memory Usage. Global memory and shared memory are used in other parts

besides search. (1) The size of G is O(np⇥dmax) where np is the number of points

in P and the user-defined parameter dmax represents the maximum degree in G.

(2) The size of G0 is O(np ⇥ dmin) where dmin denotes the number of returned

nearest neighbors while searching. (3) The size of E is O(nb ⇥ dmin) where nb

denotes the number of points in a batch. (4) The size of I is also O(nb ⇥ dmin).

(5) For each thread block, the usage of shared memory is O(dmax) for merging.

Time complexity. We analyze the time complexity of steps excluding search.

Let nt and nb be the number of threads in one thread block and the number of

thread blocks respectively. Note that nt may vary in di↵erent kernels. (1) The

73

Chapter 4 4.3.4 Extension

complexity of Step 2 in the local graph construction phase is O(dmax⇥ t
nb
⇥ dmin

nt
)

where t represents the number of local graphs. Specifically, there is the factor

dmax because we must place neighbors in new positions. (2) For Step 2 in the local

graph merge phase, the complexity is O(log2 |E|⇥ |E|
nb⇥nt

) and O(log |E|⇥ |E|
nb⇥nt

)

for bitonic sorting and prefix sum computation, respectively. (3) For Step 3 in

the local graph merge phase, the complexity is O(log dmax ⇥ |Pi|
nb

⇥ dmax
nt

) where

|Pi| represents the number of points in the local graph Pi. This implies that,

theoretically, the speedup of the NSW graph construction is linear to the number

of threads within a thread block (nt) as well as the number of thread blocks (nb).

4.3.4 Extension

Though the proposed construction algorithm (Algorithm 5) is tailored for the

NSW graph, with minor modifications it can also be used to construct other

proximity graphs. Next, we show how to extend the above NSW graph con-

struction algorithm to support two popular proximity graphs: the HNSW and

KNN graphs.

HNSW graph. HNSW graph [74] is a hierarchical organization of the NSW

graph where each layer is an NSW graph for a subset of the point set P that is

randomly selected. The higher the level of a layer is, the fewer points it contains.

The bottom layer includes all points in P .

The adaptation of Algorithm 5 to support the construction of the HNSW

graph is natural. A straightforward method is to construct an NSW graph for

the subset of points on each layer respectively. However, when the construction

of each NSW graph is independent of each other, search of nearest neighbors of

points during construction can not benefit from the hierarchical structure that

can shorten search path. To avoid this drawback, we determine to construct

HNSW graph level-by-level.

74

4.3.4 Extension Chapter 4

However, there is still one problem even though we sequentially construct

NSW graph on each layer: the random selection of subsets on each layer is such

that we can not directly access adjacency lists of points on some layers according

to their vertex IDs because some points might not be on this layer. A possible

method is to maintain an index for each layer that records the position of each

vertex it has. However, it assigns an index for each vertex on each layer, which

consumes additional memory. A better method might be that (1) we shu✏e IDs

of vertices and record the mapping. (2) during construction, these vertices are

inserted into each layer in turn, i.e., vertices with smaller IDs can reach higher

levels. This means that we can access the adjacency list of one vertex according

to its vertex ID because points that have a smaller ID than this must be also

on this layer. (3) vertex IDs are recovered based on the stored mapping after

construction. Consequently, we only need to maintain a shu✏ed order while

keeping the random selection of points on each layer.

KNN Graph. The di↵erence between a KNN graph and an NSW graph is that

the former needs to maintain global nearest neighbors for each point. That is to

say, when a set of new points P 0 are added into a KNN graph constructed on the

point set P , we need to find not only the nearest neighbors on P for each point

in P 0, but also the nearest neighbors on P 0 for each point in P . Then, for each

point in P (resp. P 0), returned nearest neighbors on P 0 (resp. P) are merged

into its original adjacency list on P (resp. P 0).

A straightforward adaptation of Algorithm 5 is that (1) during local graph

construction, we maintain nearest neighbors in the current local graph for each

point. (2) while merging local graphs, we search the nearest neighbors for vertices

in both G0 and Gi. (3) we update the corresponding adjacency lists in both

graphs, comparable to the update of the backward edges. The main drawback

of this solution is that multiple NN searches will be invoked for each point.

75

Chapter 4 4.4. EXPERIMENTS

Table 4.1: Real-life Datasets

Dataset Type Dimension Vertices Metric

SIFT1M [5] Image 128 1M Euclidean
GIST [5] Image 960 1M Euclidean

NYTimes [26] Text 256 0.29M Cosine Similarity
GloVe200 [82] Text 200 1.18M Cosine Similarity
UQ V [92] Video 256 3.03M Euclidean
MSong [2] Audio 420 0.99M Euclidean
Notre [3] Image 128 0.33M Euclidean

UKBench [79] Image 128 1.1M Euclidean
DEEP [112] Image 96 8M Euclidean
SIFT10M [5] Image 32 10M Euclidean

To overcome it, we turn to an iterative method proposed by [25]. This method

follows the property that the neighbors of neighbors are likely to be neighbors.

Initially, this method randomly generates the adjacency list of each point. Then,

it is iteratively improved. In each iteration, each pair of neighbors {u1, u2}

of each vertex v will form two new edges u1 ! u2 and u2 ! u1 for u1 and

u2, respectively. Then, these newly generated edges are used to update the

adjacency lists of vertices. This process terminates when the adjacency lists

of all points cease to change. We can see that the key to this framework is

distance computation between each pair of neighbors of each vertex and the

update of adjacency lists. They can be implemented naturally as shown in

Figure 4.1 (BulkDistanceComputation) and Algorithm 5 (Step 3 of local graphs

merge phase).

4.4 Experiments

We conduct experiments to evaluate (1) the e�ciency of our GPU-accelerated

nearest neighbors search algorithm GANNS; (2) the impact of the number k

of returned nearest neighbors and the number e of explored vertices; (3) the

76

4.4. EXPERIMENTS Chapter 4

e�ciency of our GPU-based graph construction framework GGraphCon; and (4)

scalability.

Datasets. We use ten real-world datasets as summarized in Table 4.1. In par-

ticular, (1) NYTimes and GloVe200 are heavily skewed while the dimension of

GIST is relatively high. This makes them hard, compared to other datasets.

(2) SIFT10M consists of ten million vectors randomly selected from SIFT1B

[5]. Here, we only use the first 32 dimensions of each vector. Similarly, DEEP

comprises eight millions points randomly selected from the original dataset

DEEP1B1.

Algorithms. We implement the following algorithms in C++ and CUDA C. (1)

GANNS is shown in Section 4.2.2 for GPU-based nearest neighbors search. In

our implementation, we set ln to the power of 2 for ease of GPU memory manage-

ment. Here, we introduce another parameter e to achieve a fine-grained trade-o↵

between e�ciency and accuracy, where we only considere the first e vertices in N

for exploration. (2) GSerial and GNaiveParallel (Section 4.3.1) are straightfor-

ward GPU-based graph construction algorithms that use SONG for searching.

(3) The GPU-based graph construction framework GGraphCon is shown in Sec-

tion 4.3.2. It includes (3.1) GGraphConGANNS that uses GANNS for searching,

(3.2) GGraphConSONG that uses SONG for searching.

Baselines. (1) For ANN search, we compare with the state-of-the-art graph-based

ANN search algorithm SONG [119]. The code is from original authors2. (2) For

graph construction, apart from straightforward methods GSerial and GNaivePar-

allel, we also compare with algorithms GraphConNSW and GraphConHNSW on

CPU. GraphConNSW establishes navigable small world graphs with degree limi-

tation, which is implemented by [119]2. GraphConHNSW constructs hierarchical

1https://research.yandex.com/datasets/biganns
2https://github.com/sunbelbd/song

77

https://research.yandex.com/datasets/biganns
https://github.com/sunbelbd/song

Chapter 4 4.4.1 Search performance

navigable small world graphs [74], which is publicly available3.

Evaluation. (1) For nearest neighbors search, we measured the accuracy by recall,

which is defined as the ratio of correct nearest neighbors to returned neighbors.

The accuracy is evaluated over the test set. Specifically, each test set comprises

2000 vertices. Search time is denoted by ”Queries Per Second” which represents

the average number of completed queries per second. (2) For graph construction,

we report running time and measure the quality of graphs by recall, which can

be achieved given the same search algorithm.

Configuration. The experiments are conducted on a Linux Server powered by a

26-core Intel Xeon Gold 6238R 2.2GHz CPU and NVIDIA Quadro P5000 GPU

with 2560 cores and 16GB memory. We compile all codes with NVCC (CUDA

10.0), GCC 5.4.0 and the -O3 flag.

4.4.1 Search performance

E�ciency. Fixing k = 10, we evaluate the e�ciency of GANNS and SONG.

We test the number of queries per second when varying the recall. As shown in

Figure 4.4, we have the following observations. (1) The ranges of recall achieved

by GANNS and SONG are the same on all datasets. This shows that the par-

allelization scheme of GANNS does not change the quality of results. (2) High

recall values (larger than 0.95) can be achieved on all datasets except GloVe200.

For instance, the highest recall on the hard dataset GIST is 0.97 while the high-

est recall values on some datasets like UKBench and UQ V are close to 1. This

validates the superior search accuracy of the graph-based search methods. (3)

GANNS consistently outperforms SONG on all datasets. When the recall is not

very high (around 0.8), GANNS is 1.5-5 times faster than SONG. (a) On some

datasets, GANNS can achieve about 5x speedup. For instance, the throughput

3https://github.com/nmslib/nmslib

78

https://github.com/nmslib/nmslib

4.4.1 Search performance Chapter 4

GANNS SONG

2x10
3

10
4

8x10
4

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(a) NYTimes

5x10
3

10
4

10
5

10
6

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(b) Notre

10
3

10
4

10
5

2x10
5

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(c) MSong

10
3

10
4

10
5

3x10
5

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(d) GIST

10
4

10
5

10
6

3x10
6

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(e) SIFT1M

5x10
3

10
4

10
5

5x10
5

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(f) UKBench

2x10
3

10
4

2x10
4

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(g) GloVe200

5x10
3

10
4

10
5

5x10
5

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(h) UQ V

10
4

10
5

10
6

2x10
6

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(i) DEEP

3x10
3

10
4

10
5

2x10
5

0 0.2 0.4 0.6 0.8 1.0

Q
u

er
ie

s
P

er
 S

ec
o

n
d

Recall

(j) SIFT10M

Figure 4.4: Throughput on di↵erent recall

of GANNS is 458.5k queries per second on SIFT1M when the recall is 0.795. By

contrast, the throughput of SONG is 88.5k queries per second while achieving

the same recall. (b) On the hard datasets with moderate dimension NYTimes

and GloVe200, the speedup is reduced to around 2. (c) For the hard dataset

GIST with a high dimension, GANNS achieves around 1.5x speedup.

A time breakdown of GANNS and SONG is presented in Figure 4.5 when

the recall is around 0.8. It demonstrates that compared with SONG, the cost of

data maintenance of GANNS decreases. This is consistent with Figure 4.4. In

particular, on hard datasets, the cost of data maintenance of GANNS is little

higher than that on other datasets. This is because more vertices as candidates

need to be maintained on hard datasets.

E↵ect of Parameters. We evaluate the impact of the number k of returned

79

Chapter 4 4.4.1 Search performance

0.25

0.50

0.75

1.00

SIF
T1M

G
IS

T

G
lo

V
e2

00

N
Y

Tim
es

U
K

Ben
ch

M
Son

g

N
ot

re

U
Q

_V

D
EEP

SIF
T10

M

P
ro

p
o

rt
io

n
 o

f
to

ta
l

ti
m

e

Bulk Distance Computation Data Structure Operation

Figure 4.5: Execution time breakdown of GANNS (left) and SONG (right)

GANNS SONG

0

200,000

400,000

600,000

1 10 30 50 100

Q
u

er
ie

s
P

er
 S

ec
o

n
d

k

(a) SIFT1M

5,000

15,000

25,000

35,000

1 10 30 50 100

Q
u

er
ie

s
P

er
 S

ec
o

n
d

k

(b) GIST

Figure 4.6: Throughput on di↵erent parameter k

10
3

10
4

10
5

10
6

960 480 240 120 60

Q
u
er

ie
s

P
er

 S
ec

o
n
d

Dimension

GANNS SONG

Figure 4.7: The e↵ect of nd

0

40

80

120

160

200

240

4 8 16 32A
v

g
.

q
u

er
y

 p
ro

ce
ss

in
g

 t
im

e
(m

s)

Number of threads

Bulk Distance Computation
Data Structure Operation

Figure 4.8: The e↵ect of nt

vertices and the number nd of dimension.

Varying k. Fixing recall = 0.8, we vary k from 1 to 100. We report the results on

80

4.4.1 Search performance Chapter 4

SIFT1M and GIST here. As shown in Figure 4.6, the speedup remains relatively

stable as k increases. On SIFT1M, the largest speedup is 5.3, and the smallest

speedup is about 5; On GIST, the largest speedup is 2, and the smallest speedup

is 1.5.

Varying nd. Fixing k = 10, we vary nd from 960 to 60 on dataset GIST to demon-

strate the e↵ect of dimension on query performance of GANNS and SONG. Here,

we report throughput when recall = 0.8. As shown in Figure 4.7, query perfor-

mance of both algorithms improve when the dimensionality nd decreases mainly

because the cost of bulk distance computation becomes low for low dimensional

data. It is shown that the performance gap between GANNS and SONG becomes

more significant when the dimensionality is low, e.g., the speedup enlarges from

1.5x to 6x as dimension nd decreases from 960 to 60. This is because the percent-

age of the data structure operation cost becomes larger when the dimensionality

decreases, and SONG cannot take advantages of the parallelism of GPU for this

cost within a thread block.

Parallelism. To evaluate parallelism of GANNS and SONG, we vary the num-

ber of threads in each thread block (i.e., query) from 4 to 32, and report the

average distance computation time and data structure operation time of two

algorithms, SONG and GANNS, on SIFT1M dataset in Figure 4.8. Regarding

the distance computation, two algorithms take similar time and both enjoy a

significant speedup. For instance, they spend around 100 ms and 24 ms when

the number of thread is 4 and 32, respectively. Regarding the data structure

operation, GANNS still demonstrates a good speedup, e.g., takes around 71 ms

and 12.3 ms when the number of threads is 4 and 32 respectively, while SONG

cannot take advantage of the parallelism within the thread block.

81

Chapter 4 4.4.2 Construction performance

1

5

10

50

100

500

SIFT1M
GIST

NYTimes

GloVe200
UQ_V

MSong
Notre

UKBench
DEEP

SIFT10M

C
o

n
st

ru
ct

io
n

 t
im

e
(s

)

GGraphConGANNS GGraphConSONG GNaiveParallel

Figure 4.9: Graph construction time

4.4.2 Construction performance

Parallelization scheme. We evaluate our GPU-based graph construction. The

upper bound dmax and the lower bound dmin are fixed as 32 and 16, respectively,

unless otherwise stated. CPU algorithms run in a single thread.

E�ciency. We compare the running time of GGraphConGANNS,

GGraphConSONG, GNaiveParallel and GSerial. As shown in Figure 4.9,

(1) Given the same search kernel, the straightforward method GNaiveParallel

only slightly outperforms our proposed scheme GGraphConSONG. This shows

that the overhead of our scheme is minor, which is derived from considering

links between vertices in the same batch. (2) The search process dominates

graph construction. By using GANNS, GGraphConGANNS achieves the apparent

speedup over GGraphConSONG. On some datasets, GGraphConGANNS has a

2x-3.3x speedup. For instance, the running time of GGraphConGANNS on UQ V

is only 43s, while GGraphConSONG needs to spend 145s. On hard datasets,

the speedup is between 1.4-2.2. (3) We also conduct experiments to evaluate

GSerial. The result tells us that its running time is very long, e.g. 3810s on

SIFT1M (not shown).

For reference, we also compare with GraphConNSW. The results are

reported in Table 4.2 (GGC denotes GGraphCon). GGraphConGANNS

82

4.4.2 Construction performance Chapter 4

Table 4.2: Comparison with CPU algorithm (NSW)

Dataset GraphConNSW GGCGANNS GGCSONG

SIFT1M 355s 8.5s (41.8x) 23s (15.4x)
GIST 1335s 27s (49.4x) 38s (35.1x)

NYTimes 249s 3s (83x) 8s (31.1x)
GloVe200 531s 13s (41x) 31.5s (16.9x)
UQ V 1720s 43s (40x) 145s (11.9x)
MSong 620s 14s (44.3x) 28s (22.1x)
Notre 87s 3s (29x) 7s (12.4x)

UKBench 375s 10s (37.5x) 27s (13.9x)
DEEP 4135s 49.5s (83.5x) 224s (18.5x)

SIFT10M 2986s 48s (62x) 222s (13.5x)

GNaiveParal GGraphCon GraphConNSW

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

Size

(a) SIFT1M

0.5

0.6

0.7

0.8

0.9

1.0

 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

Size

(b) UKBench

Figure 4.10: Graph quality

and GGraphConSONG both have significant speedup. In particular,

GGraphConGANNS could achieve 40-50x speedup on most datasets.

Quality. We evaluate the quality of proximity graphs from the straightforward

parallelization scheme GNaiveParallel, our proposed scheme GGraphCon and

the serial CPU method GraphConNSW. We report the results on SIFT1M and

UKBench. We form the following observations from Figure 4.10. (1) The recall

achieved on the graph by GNaiveParallel is much lower than that of other graphs.

For instance, on SIFT1M, the recall of GNaiveParallel is only 0.7 even though

83

Chapter 4 4.4.2 Construction performance

GGraphConGANNS GGGraphConSONG

0

50

100

150

200

0 32 64 128

C
o

n
st

ru
ct

io
n

 t
im

e
(s

)

dmax

(a) GloVe200

0

50

100

150

0 32 64 128

C
o

n
st

ru
ct

io
n

 t
im

e
(s

)

dmax

(b) UKBench

Figure 4.11: Construction time by varying dmax

0

40

80

120

160

200

240

50 100 200 400 800

C
o

n
st

ru
ct

io
n

 t
im

e
(s

)

Number of thread blocks

Bulk Distance Computation
Data Structure Operation

Figure 4.12: Performance scaling of GGCGANNS (left) and GGCSONG (right)
while varying the number of thread blocks

e increases to 100, whereas recalls of the other two algorithms could be 0.92.

This demonstrates that the graph quality constructed by GNaiveParallel is poor.

(2) The graph quality produced by GGraphCon is almost the same as that by

GraphConNSW among all values of e on two datasets. This shows that the quality

of the graph from GGraphCon is as good as the graph from the serial algorithm.

The result is consistent with our analysis in Section 4.3.3.

Scalability. We evaluate the scalability of our proposed scheme GGraphCon.

We vary the bound dmax from 32 to 128. Correspondingly, dmin varies from 16

84

4.4.2 Construction performance Chapter 4

Table 4.3: Comparison with CPU algorithm (HNSW)

Dataset GraphConHNSW GGCGANNS GGCSONG

SIFT1M 313s 11s (28.5x) 37s (8.5x)
GIST 2138s 48s (44.5x) 68s (31.4x)

NYTimes 324s 4s (81x) 12s (27x)
GloVe200 5255s 17s (309x) 52s (101x)
UQ V 1737s 47s (37x) 215s (8x)
MSong 823s 20s (41x) 48s (17.1x)
Notre 85s 3.2s (26.6x) 11s (7.7x)

UKBench 342s 11s (31.1x) 38s (9x)
DEEP 4550s 70.2s (65x) 308s (15x)

SIFT10M 2823s 82s (34.4x) 338s (8.4x)

to 64. We report the results on GloVe200 and UKBench here. The results are

shown in Figure 4.11. The running time gently increase when increasing dmax.

The increase of running times of GGraphConGANNS and GGraphConSONG are

both almost linear.

Parallelism. We evaluate parallelism of GGraphConGANNS and

GGraphConSONG on the dataset SIFT1M. Setting dmax and dmin to 32

and 16 respectively, we vary the number of thread blocks from 50 to 800 for the

construction of NSW graphs where the number of threads per thread block is

set to the default value (32). Here, we report the graph construction time of

two algorithms: GGraphConGANNS and GGraphConSONG. It includes distance

computation time and data structure operation time. As shown in Figure 4.12,

Though we still cannot achieve the theoretical maximal speedup, it is reported

that around 10x-13x speedup can be achieved for the distance computation and

data structure operations of two algorithms when the number of thread blocks

grows from 50 to 800 (i.e., 16x speedup theoretically). Note that although

SONG cannot utilize the parallelism of the threads within the thread blocks,

it can immediately take advantage of multiple thread blocks since the search

85

Chapter 4 4.5. CONCLUSION

processes are independent to each other.

Extension. We show that our proposed scheme can be extended to construct

graphs with other formats. Here, we implement the construction of HNSW where

dmax and dmin are 32 and 16 respectively. The running time is shown in Table 4.3

(GGC denotes GGraphCon). The result is consistent with Table 4.2.

4.5 Conclusion

In this chapter, we present a graph-based method for the k nearest neighbors

search problem on the GPU.

We find that data structure operations emerge as the new bottleneck when

distance calculations are accelerated on the GPU. Building on this observation,

we employ a simple yet GPU-friendly data structure lists instead of heaps that

are challenging to parallelize on the GPU. Leveraging lists, we parallelize all steps

of the search process. Additionally, we propose a divide-and-conquer approach

for e�cient graph construction on the GPU.

Experimental findings reveal that our search method accelerates data struc-

ture operations and achieves a performance boost of 1.5 to 5 times compared to

SONG at a high recall level (recall = 0.8). Moreover, due to the parallelization

of the search process, our method exhibits near-linear scalability with respect to

the number of threads and dimensions. Extensive experiments also demonstrate

that our graph construction algorithm delivers a 40 to 60 times performance

improvement over the single-thread CPU implementation and scales well with

the size of graphs.

When the search progresses along a single long path, the e�ciency gains of

our data structure operations diminish relative to heap updates. This may occur

when dealing with especially complex datasets.

86

Chapter 5

Subgraph Matching

In this chapter, we introduce the methodological details about our approach to

subgraph matching along with the experimental results.

5.1 Preliminaries

In this section, we define subgraph matching problem and present the state-of-

the-art solution.

5.1.1 Problem definition

We start with basic notations.

Labeled Graph. Assume an infinite label set ⌃, a graph g = (V,E,L) is a

vertex-labeled graph if

� V is a finite set of vertices.

� E ✓ V ⇥ V is a finite set of edges.

� there is a label function L that associates the vertex u 2 V with a label

l 2 ⌃.

We present the definition of subgraph isomorphism.

87

Chapter 5 5.1.1 Problem definition

Subgraph Isomorphism. Given a query graph q = (Vq, Eq,L) and a data

graph G = (VG, EG,L) that are both vertex-labeled graphs, a subgraph isomor-

phism of q in G is an injective function f that maps Vq to VG such that

� 8u 2 Vq,L(u) = L(f(u)).

� 8(u, u0) 2 Eq, (f(u), f(u0)) 2 EG.

For brevity, a subgraph isomorphism of q in G is also called a match of q in

G. When the context is clear, we may directly write a partial match (the length

is less than |Vq|) as a match.

We formulate subgraph matching problem.

Problem Statement. Given a query graph q and a data graph G, subgraph

matching is to find all subgraph isomorphisms M of q in G.

Due to significance of subgraph matching problem, there are many existing

works in the literature. In these works, some notations are widely used, which

can be introduced as follows. For readability, the frequently used notations are

summarized in Table 5.1.

Matching Order. A matching order ' of a graph g is a permutation of its

vertex set V . To specify vertices in ', we denote by '[i] the ith vertex in '.

Similarly, '[i : j] is a set of vertices the index of which in ' is between i and j

(1  i  j  |V |).

Backward/Forward Neighbors. Given a graph g and a matching order ' of

g, the backward neighbors N'
+(u) of vertex u 2 V are the neighbors of u located

before u in '. Likewise, the forward neighbors N'
�(u) of vertex u 2 V are the

neighbors of u located after u in '.

Induced Subgraph. Given a graph g = (V,E) and a subset V 0 ⇢ V , the

induced subgraph g[V 0] of g on V 0 consists of the vertex set V 0 and the edge

set E 0 = {(u, u0) | u, u0 2 V, (u, u0) 2 E}. Given a matching order ' of graph

g, there exist a sequence of induced subgraphs {gi} where gi = g['[1 : i]] and

88

5.1.1 Problem definition Chapter 5

A

B C

B

u1

u2 u3

u4

A

B C

AA

B B

BC

B

B

B

v1 v2 v3

v4

v6
v8

v5

v7

v9

v10

v11
v12

Figure 5.1: An example of query graph q and data graph G

1  i  |V |.

Candidate Vertex Set. Given a query graph q = (Vq, Eq,L) and a data graph

G = (VG, EG,L), a candidate vertex set C(u) of u 2 Vq on G is a subset of VG,

excluding data vertices in VG that cannot be mapped to u. Generally, heuristic

strategies are applied to generate candidate vertex sets {C(u)} for all u 2 Vq.

Neighbor Label Frequency Filtering. A common heuristic strategy to gen-

erate candidate vertex sets is neighbor label frequency filtering (NLF). 8u 2 Vq,

v 2 VG, NLF produces C(u) by excluding data vertices that violate either of the

following two criteria where N(u, l) denotes the set {u0 2 N(u) | L(u0) = l}:

� |N(v, l)| � |N(u, l)|, 8l 2 L.

� L(u) = L(v).

Example 6. Given the query graph q and the data graph G in Figure 5.1, the

candidate vertex set C(u1) generated by NLF is {v1, v2, v3} because their neigh-

bors contains vertex v5 and vertex v4(v10). other candidate vertex sets are as

follows: C(u2) = {v4, v10}; C(u3) = {v5}; C(u4) = {v4, v6, v7, v10}.

89

Chapter 5 5.1.2 State-of-the-art GPU solution

Table 5.1: The summary of notations

Notation Description
g, q and G graph, query graph and data graph
V , E and L vertex set, edge set and label set
d(u), N(u) and L(u) degree, neighbors and labels of u
g[V] vertex-induced subgraph of g on V
C(u) candidate vertex set of query vertex u
f and ' match and matching order
N'

+(u)/N
'
�(u) backward/forward neighbors of u given '

M/Mi the set of matches/partial matches with length i

5.1.2 State-of-the-art GPU solution

We introduce GSI [116], which is the state-of-the-art GPU solution to subgraph

matching.

GSI follows the filtering-and-enumeration framework. The filtering phase of

GSI is a lightweight NLF method. It encodes the neighborhood structure and

label information of a vertex v as a bit-vector signature S(v). To further save

memory, GSI utilizes a hash function H to transform the labels of neighbors of

v such that the size of the neighborhood structure can be bounded. That is, l is

replaced by H(l) when calculating neighbor frequency. For each frequency, its

state S(v, l) is denoted by two bits as follows:

S(v, l) =

8
>>><

>>>:

00 |N(v,H(l))| = 0

01 |N(v,H(l))| = 1

11 |N(v,H(l))| > 1

Combining label information and neighborhood structure, S(v) becomes a

fixed-length vector as illustrated in Figure 5.2. After encoding all vertices in Vq

and VG, GSI uses the bitwise AND operation & to filter out data vertex v for

query vertex u if S(u)&S(v) 6= S(u).

90

5.1.2 State-of-the-art GPU solution Chapter 5

01 00 11 01 11 11…001 101…

vertex label neighbors

S(v, l1)
H(l1)

Figure 5.2: A bit-vector signature S

During the enumeration, GSI adopts a BFS-based method that extends all

matches Mi of the induced subgraph qi of q in G to all matches Mi+1 of the

induced subgraph qi+1 of q in G. To improve the performance of enumeration,

GSI proposes two optimization techniques.

The first technique is the Prealloc-Combine strategy. Due to that dynamic

structures are not supported on the GPU, the memory storing matches Mi+1

must be allocated before matches Mi+1 are written. GSI pre-allocates the mem-

ory of Mi+1 based on the upper bound of Mi+1, which is computed as follows:

X

8f2Mi,v=f(u)

|N(v,L('[i+ 1]))|

where u is a chosen backward neighbor of '[i+1]. Consequently, the redundant

computation of two-phase output scheme can be avoided.

The second technique is the PCSR structure. It is used to save memory

when there are tons of labels in graphs. It divides the data graph G into several

partitions P (G, l) for all l 2 LE . In each partition, edges with label l are re-

organised, and the index is stored into a hash table. PCSR can avoid memory

consumption caused by a large number of empty neighbor lists in CSR.

91

Chapter 5 5.2. FRAMEWORK

5.2 Framework

In this section, we elaborate on our motivations and develop our method. Fol-

lowing this, an overview is given.

5.2.1 Motivation

As a lightweight method, the filtering of GSI can be easily parallelized. This

makes it friendly to the GPU. At the same time, GSI can prune numerous search

branches on data graphs with tons of labels. However, it experiences a decrease

in the pruning ability when the number of labels in the data graph is moderate.

Specifically, it can only identify three states (i.e., 0, 1 and others). This leads that

it cannot distinguish between di↵erent cases when |N(v, l)| > 1. For example,

a data vertex v cannot be excluded from C(u) by GSI if |N(v, l)| = 2 and

|N(u, l)| = 3 because the states of S(u, l) and S(v, l) are both 11. However,

N(v, l) > 1 of a vertex v is common on real-world graphs.

We examine the pruning ability of GSI and NLF on the dataset US Patents.

The result is shown as Figure 5.3. It can be observed that the pruning ability of

GSI in comparison to NLF degrades when the number of labels decreases. This is

because its accuracy is limited. Extensive experiments [96, 63] have shown that

methods with strong pruning ability can achieve superior performance. This

motivates us to develop a method with high pruning e�ciency on the GPU.

The Prealloc-Combine strategy allows GSI to reduce computation, thereby

improving the performance of enumeration. Meanwhile, we notice that the num-

ber of matches grows sharply when the depth of the search tree increases. The

size of M can be up to 1012 while |Vq| = 8. As a result, this involves a significant

number of memory transactions. However, GSI overlooks this aspect, leading

to uncoalesced memory transactions during the writing of Mi+1. This results in

92

5.2.2 Solution Chapter 5

NLF GSI

10
0

10
1

10
2

10
3

10
4

10
5

10
6

400 200 100 50 20
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

S
iz

e

R
at

io

Number of Labels

Figure 5.3: Pruning Ability Comparison

ine�ciencies in memory throughput and reduces occupancy. Inspired by this,

we intend to design an e�cient output scheme.

Though GSI proposes PCSR structure to save memory consumption, the

memory required to store Mi can be substantial, making it infeasible to fit into

the global memory. It is necessary to propose a method that can e�ciently

manage global memory such that the scalability is enhanced. Otherwise, the

number of solved queries on the GPU will be limited. Therefore, we intend to

propose a solution to alleviate this issue.

5.2.2 Solution

Filtering methods aims to save computation of enumeration by pre-processing

the data graph. Therefore. we start with delving into the enumeration compu-

tation for seeking avenues to reduce the computational overhead. During the

enumeration, the extension of a match can be formulated as follows:

Equation 1. For a match fi, enumeration extends it to a set of matches {fi+1}

93

Chapter 5 5.2.2 Solution

as follows:

{fi, ('[i+ 1], v) | v 2
\

u2N'
+('[i+1])

N(fi(u)) ^ v 6= fi(u), 8u 2 '[1 : i]} (5.1)

The intersection in Equation 5.1 is related with lists N(f(u)) for all u 2

N'
+('[i+1]). This may lead that the computation of enumeration of two di↵erent

matches fi, f 0
i is the same when the following case happens:

8u 2 N'
+('[i+ 1]), fi(u) = f 0

i(u) ^ 9u 2 '[1 : i] \N'
+('[i+ 1]), fi(u) 6= f 0

i(u)

That is, the projections of fi and f 0
i on the set N'

+('[i+1]) are the same. This

consequently ensures that the intersection in Equation 5.1 is the same for fi and

f 0
i . Due to the explosive growth of matches when being extended, a lot of same

computation is naturally conducted during the enumeration. This presents an

opportunity for the optimization. An instant idea is to store intersection results

such that repetitive computation can be avoided. However, it is infeasible to

store all intersection results on the GPU due to its large size. As a reference,

one can observe the number of triangles in a data graph, which represents the size

of intersection results of two lists [114]. Therefore, a trade-o↵ between e�ciency

and memory consumption is required. This leads us to focus on the following

situation:
\

u2N'
+('[i+1]

N(fi(u)) = ; (5.2)

The case of Equation 5.2 bypasses the storage of neighbor lists, significantly

reducing memory consumption. We only need to maintain the set of data vertices

{v | v = fi(u)^u 2 N'
+('[i+1]} for a match fi. However, the size of the recorded

set is not fixed for di↵erent matches, which makes it challenging to store and

access on the GPU. To alleviate this issue, we first generate candidate vertex

94

5.2.2 Solution Chapter 5

sets {C(u)} by NLF. Then, the following computation is conducted:

8u 2 N'
+('[i+ 1]), N(fi(u)) \ C('[i+ 1]) (5.3)

If the result of Equation 5.3 is empty, we can remove fi(u) from C(u) such

that some redundant computation can be avoided. This can be shown in Exam-

ple 7.

Example 7. Consider the query graph q and the data graph G in Fig-

ure 5.1, if the matching order ' is (u1, u2, u3, u4), the match f3 =

{(u1, v2), (u2, v10), (u3, v5)} finds that C(u4)\N(v10) = ;. Hence, v10 is excluded

from C(u2). The match f 0
3 = {(u1, v3), (u2, v10), (u3, v5)} is no longer generated,

thereby avoiding the computation C(u4) \N(v10) of f 0
3.

Compared with the previous idea, this method only involves simple data

structure, i.e., a few arrays of {C(u)}. This makes it concise to maintain and

parallelize. Thus far, we have carved out a preliminary solution. But there

are still two underlying issues that should be discussed. The first one is that

the candidate vertex set C(u0) could be a↵ected when C(u) changes where u0 2

N'
+(u). The second problem is that the current idea we have considered so far is

built upon an existing matching order '. To solve these problems, we propose

an iterative filtering method where the computation of Equation 5.3 is applied

to N(u) for all u 2 Vq to consider all possible matching orders.

In addition to the filtering phase, we also design some optimization tech-

niques for the enumeration phase. Remind the issues of write throughput and

scalability mentioned in Section 5.2.1. We propose 1⇤-phase output scheme that

increases coalesced memory transactions by utilizing shared memory for higher

write throughput. In terms of superior scalability, we design a pipeline method

that can split Mi the extension Mi+1 of which cannot fit into global memory

95

Chapter 5 5.2.3 Overview

Algorithm 6: FSIG (q, G, tmax)

1 {C0(u)} NLF (q, G);
2 for t 1 to tmax do
3 {Ct(u)} Filter ({Ct�1(u)}, q, G);

4 A Collect ({Ctmax(u)}, q, G);
5 ' GetOrder (A, q);
6 M Enumeration (', Ctmax('[1]), A, q);
7 return M ;

into several blocks such that we can switch from BFS to DFS to continue the

computation.

5.2.3 Overview

We briefly introduce our method Filtered Subgraph Isomorphism on the GPU

(FSIG). As shown in Algorithm 6, FSIG follows the filtering-and-enumeration

framework.

We first generate the initial candidate vertex sets {C0(u)} by NLF in line 1.

Each candidate vertex set C0(u) is stored in the form of a bitmap. Then, we

conduct our filtering method for tmax rounds to shrink candidate vertex sets in

lines 2-3 where tmax is a pre-defined value. In line 4, edges (v, v0) are collected

for all (u, u0) 2 Eq and v 2 C(u) ^ v0 2 C(u0). Afterwards, these edges are

re-organized to form an auxiliary structure A. A(u, u0) keeps the data edges

corresponding to the query edge (u, u0) 2 Eq in the form of CSR (O↵sets, Edges).

Notice that the size of the array o↵sets is |VG|. Though it has numerous same

values, this implementation allows us to directly access the index of the neighbor

list of a vertex in the array Edges by its vertex id.

Based on the strong pruning ability of our filtering method, we can obtain a

decent matching order ' by the auxiliary structure A, which contains |C(u)| for

all query vertices and the size of the array Edges for all query edges. Here, we

96

5.3. IMPLEMENTATION Chapter 5

employ the strategy of CFL [15] to generate ', which follows a core-forest-leaf

order. Last, our enumeration method is performed to find all matches M in line

6. The details of Filter and Enumeration will be given in later sections.

5.3 Implementation

In this section, we present the details of our implementation.

5.3.1 Filtering

We show the implementation of our filtering method, as demonstrated in Algo-

rithm 7.

In lines 1-3, the required structure is initialized. For each u 2 Vq, we store

two copies of the bitmap C(u) as an array C 0(u) and a bitmap C̄(u). To generate

C 0(u), the prefix sum of C(u) is computed by an exclusive scan. Then, for all

v 2 C(u), they are written into C 0(u) based on the index indicated by the prefix

sum and its value in C(u).

In lines 4-5, the computation of Equation 5.3 is conducted, and the result

is written into C̄(u). For all u 2 Vq, C 0(u) is utilized to guarantee that each

warp can be assigned to an available data vertex. For a vertex u 2 Vq, the

computation of a warp is as follows. (1) N(v) is read from global memory into

registers; (2) For each neighbor u0 2 N(u), the intersection between N(v) and

C(u0) is performed. Notice that C(u0) is a bitmap. As a result, the computation

of intersection can be accelerated; (3) If 9u0 2 N(u), N(v)\C(u0) = ;, the state

of v in C̄(u) is set to 0. The reason that we cannot write the state of v into C(u)

is that C(u) can be accessed by a data vertex v0 where v0 2 C(u0). This leads

inconsistent results arising from read-write conflicts.

It can be seen that both critical kernels can achieve full parallelism, i.e.,

97

Chapter 5 5.3.2 1*-phase output scheme

Algorithm 7: Filter ({C(u)}, q, G)

1 for u 2 Vq do in parallel
2 C 0(u) Compact (C(u));
3 C̄(u) C(u);

4 for u 2 Vq do in parallel
5 Check (C(u), C 0(u), C̄(u), q);

6 return C̄(u);

intra-kernel level and inter-kernel level, by the support from the CUDA stream

mechanism.

5.3.2 1*-phase output scheme

We propose 1⇤-phase output scheme to reduce the extra memory consumption

of the Prealloc-Combine strategy and enhance the write throughput.

The Prealloc-Combine strategy proposed in [116] can avoid the redundant

computation of two-phase output scheme at the cost of extra memory cost be-

cause it allocates space for extended matches according to a upper bound. When

the gap between the bound and the actual memory cost is significant, the pre-

allocated space could exceed the memory limitation. Though the data transfer

between CPU and GPU can solve this problem, the additional expense can result

in a decrease in performance.

To alleviate the issue, we derive a tighter upper bound to pre-allocate memory

for extended matches Mi+1. GSI utilizes the following equation to determine the

upper bound where u is a backward neighbor of '[i+ 1]:

X

fi2Mi

|N(fi(u),L('[i+ 1]))| (5.4)

98

5.3.2 1*-phase output scheme Chapter 5

we establish an upper bound as follows:

X

fi2Mi

|A(u,'[i+ 1], fi(u))| (5.5)

where u is a backward neighbor of '[i + 1] and A(u,'[i + 1], fi(u)) represents

the list Edges of fi(u) in A(u,'[i+ 1]). It can be proven that the upper bound

derived from Equation 5.5 is tighter than Equation 5.4.

Proof. Let fi(u) be v, imagine that S is the set {w | L(w) = L('[i + 1])}, it

is clear that S \ N(v) = N(v,L('[i + 1])). Let C⇤('[i + 1]) be the initial set

that contains data vertices after the NLF, C⇤('[i+ 1]) ✓ S. At the same time,

C('[i + 1]) ✓ C⇤('[i + 1]) because some data vertices may be removed after

filtering. It can be inferred that C('[i + 1]) \ N(v) ✓ C⇤('[i + 1]) \ N(v) ✓

S \N(v) = N(v,L('[i+ 1])).

Hence,
P

fi2Mi
|A(u,'[i + 1], fi(u))| =

P
fi2Mi

|C('[i + 1]) \ N(fi(u))| 
P

fi2Mi
|N(fi(u),L('[i+ 1]))|.

In addition, the write throughput of GSI is limited because its output scheme.

As shown in Figure 5.4, a warp is responsible for the extension of a match

fi 2 Mi. When locating the intersection results res by arrays ub and cnt, the

warp distributes the write tasks among the threads. For each thread, it is respon-

sible for writing an extended match fi+1 of fi. This leads uncoalesced memory

transactions as illustrated in the bottom-left part of Figure 5.4. To improve the

write throughput, we load the intersection results and the match fi in the shared

memory. Then, we assign the write tasks to threads in a consecutive manner

as illustrated in the bottom-right part of Figure 5.4. That is, multiple threads

collaborate to write extended matches. The value that a thread should write

into Mi+1 can be computed by the thread id and the length i+1 and read from

shared memory.

99

Chapter 5 5.3.2 1*-phase output scheme

… … ……

f i1 f i2 f in

v2 v5 v3 v2 v5 v4 v99 v102 v100

…warp 0 warp 1 warp n-1

Mi

2 3 …cnt

…v6 v8res

0 3 …ub

v9

…v2 v5 v3 v6 …v2 v5 v3 v8Mi+1

f i+11

thread 0
f i+12

thread 1

… …v2 v5 v3 v6 …v2 v5 v3 v8Mi+1

f i+11 f i+12

…

… …thread 0-31

GSI 1*-phase

Figure 5.4: An example of output scheme

We present our enumeration method in Algorithm 8. M1 is initialized as an

array of the bitmap Ctmax('[1]) in line 1. Afterwards, M1 is iteratively extended

until M is generated in lines 2-12. In each round, Mi�1 is extended to Mi. A

backward neighbor w of u = '[i] with the smallest |A(w, u)| is selected in lines

3-4. In lines 5-7, the upper bound ub of Mi is computed based on Equation 5.5,

and the array cnt that records the size of intersection results is initialized. The

array res that stores intersection is allocated based on the upper bound and lists

in A(w, u) are written into res in line 8. Here, neighbors in list that have existed

in fi are removed, and cnt is updated.

Then, the intersection continues to be performed for other backward neigh-

bors of u in lines 9-10. res and cnt are updated. In line 11, the size of Mi is

computed based on cnt. And, matches in Mi�1 are extended to matches in Mi

in line 12 as shown in Figure 5.4. During the process, match fi, neighbor list,

and intersection result res are all loaded into shared memory. The intersection

for other backward neighbors in line 10 is implemented in the form of parallel

binary search.

100

5.3.3 Scalability Chapter 5

Algorithm 8: Enumeration (', Ctmax('[1]), A, q)

1 M1 Compact (Ctmax('[1]));
2 for i 2 to |Vq| do
3 u '[i];
4 w SelectBN (N'

+(u));
5 ub ComputeUB (w, A(w, u), Mi�1);
6 cnt ub;
7 ub ExclusiveScan (ub);
8 res, cnt Load (w, ub, A(w, u), Mi�1);
9 for w0 2 N'

+(u) \ {w} do
10 res, cnt Intersect (w0, res, A(w0, u), Mi�1);

11 cnt ExclusiveScan (cnt);
12 Mi Extend (res, cnt, ub, Mi�1);

13 return M ;

5.3.3 Scalability

We propose a pipeline method to enhance the scalability. As shown in Figure 5.5.

We divide global memory into two parts, which have the same space in our

implementation. The first part stores Mi�1 and all auxiliary arrays, and the

second part stores Mi and its array ub0. We notice that the size of auxiliary

array ub that pre-allocates memory can be large. Instead of dividing Mi�1 and

auxiliary arrays after finishing all computation, we determine to first split Mi�1

and ub into several blocks such as B1, B2 and other blocks.

To split Mi�1, we intend to estimate the memory cost of Mi such that all

structures in a block during the computation can fit into global memory. The

estimation of memory cost ES of Mi is as follows:

ES(Mi) = 2⇥ |Mi�1|+ UB ⇥ (1 + ↵⇥ (i+ 1)) (5.6)

where |Mi| is the number of matches in Mi and UB is the upper bound derived

from the array ub. Here, we need to consider the memory consumption of three

101

Chapter 5 5.3.3 Scalability

…

v2, v5,…
v2, v5,……

0
3…

Mi-1 ub
…
…
…
…

Mi

v2, v5,…
v2, v5,…

0
3

…
…

.

.
…

…
M

Main memory

Global memory

B1 B2

Figure 5.5: Pipeline Framework

auxiliary structures ub, cnt and res and matches Mi. Notice that Mi�1 is not

required to consider because it has been on the global memory. As a comparison,

the segments of ub in blocks is required to rewrite for re-locate positions of res

in blocks, though it is also on the global memory.

In Equation 5.6, 2⇥ |Mi�1| is the memory cost of arrays ub and cnt. UB is

the memory cost of array res. UB ⇥ ↵ ⇥ i is the memory cost of matches Mi.

↵ is a pre-defined parameter, which represents the ratio between |Mi| and UB.

UB ⇥ ↵ is the memory cost of ub0 in the next round.

When ES(Mi) exceeds available memory, we separate them into blocks such

that ES(Bi) satisfy the following conditions: (1) ES(Bi) is less than available

memory. (2) The first part that includes ub, cnt and res and the second part

that contains Mi and ub0 both consume under half of the global memory. This

can avoid that matches in the next round is split into too many blocks with

small size.

102

5.4. EXPERIMENTS Chapter 5

After the segmentation is completed, these blocks and subsequent blocks are

computed in the depth-first order. That is, B1 resides on the GPU, and the

remaining segments such as B2 are temporarily transferred to main memory.

After all matches related to B1 are found, other segments are loaded into global

memory and computed in turn. To enhance robustness, we allocate unified

memory when the size of a structure slightly exceeds the available memory in

the implementation.

5.4 Experiments

In this section, we would evaluate the e↵ectiveness and e�ciency of our proposed

method FSIG by conducting extensive experiments.

5.4.1 Experimental Setup

Baselines. To evaluate the performance of our proposed approach, GSI [116]

serves as the baseline that is the state-of-the-art GPU-based solution for sub-

graph matching on labeled graphs. The implementation of GSI1 is from its

original authors. We modify it to support undirected labeled graphs.

Datasets and Queries. In the experiments, we use six common real-world

datasets [63, 15, 96]2. The details of datasets are shown in Table 5.2. hu is a

protein interaction network [63]. wn is a lexical network of words3. db, yt , and

up are from SNAP [65]. eu is a network of webs [4].

Following previous works [14, 38, 15, 39], we generate query sets by randomly

extracting subgraphs from each dataset. For all datasets, their query sets contain

100 generated queries. For db, yt , and up, the size |Vq| of each query is 10. For

1https://github.com/pkumod/GSI
2https://github.com/RapidsAtHKUST/SubgraphMatching
3http://vlado.fmf.uni-lj.si/pub/networks/data/

103

Chapter 5 5.4.2 Overall Performance

Table 5.2: Properties of datasets

Dataset abbr. |V| |E| |L| Dmax D
Human hu 4,674 86,282 44 771 36.9
WordNet wn 76,583 120,399 5 543 3.1
DBLP db 317,080 1,049,866 15 343 6.6

Youtube yt 1,134,890 2,987,624 25 28,754 5.3
US Patents up 3,774,768 16,518,947 20 793 8.8
Eu2005 eu 862,664 16,138,468 40 68,963 37.4

* Dmax and D denote maximum degree and average degree respectively.

hu, wn, and eu, the size |Vq| of each query is 8 because it is more challenging

to solve subgraph matching problem on these datasets. Specifically, hu and eu

both have high average degree, and most vertices in wn have the same label.

Metrics and Parameters. To evaluate the performance, we consider running

time. It is measured in seconds (s). We set the maximal running time to a

reasonable value, i.e., 105s. For unsolved queries, running times are regarded as

the maximal running time. The parameter ↵ is set to 0.6 on db, yt , and up. For

hu, wn, and eu, ↵ is set to 0.9. The default value of t is 3.

Experimental Environment. Experiments are conducted on a machine

equipped with 88GB main memory, one NVIDIA Quadro RTX 5000 GPU (16GB

device memory), and one Intel Xeon Gold 6238R CPU processor (2.2GHz, 26

cores). Two programs are both compiled with -O2 flag.

5.4.2 Overall Performance

In this subsection, we showcase the e�ciency of FSIG in comparison with

GSI. Figure 5.6 captures the performance of our method against GSI across

all datasets. For each dataset, the average running time of all 100 queries is

reported. Evidently, our method consistently outperforms the baseline.

From Figure 5.6, we can draw several key insights. FSIG achieves the most

104

5.4.3 Filtering Performance Chapter 5

FSIG GSI

10
0

10
1

10
2

10
3

10
4

hu wn db yt up eu
1

2

3

4

5
R

u
n
n
in

g
 T

im
e

(s
)

S
p
ee

d
u
p

Figure 5.6: Overall Performance

significant lead on the dataset db. In comparison to the average running time

813.5s of GSI, the average running time of FSIG is around 200s. This shows a

4x speedup. Even in the worst-case scenario (e.g., up), our method maintains

a discernible edge over the baseline. Our method demonstrates a 1.9x accel-

eration. This is attributed to the easy-to-handle characteristic of the dataset.

Even with a higher number of vertices included in the candidate vertex set C, a

significant number of branches can be still pruned when the depth of the search

tree increases. In terms of other datasets, an around 3x speedup is achieved on

hu, wn, and yt , while a 2.1x speedup is observed on eu.

Given the consistent performance on various datasets, it is clear that our

approach presents tangible performance gains compared to the existing work.

5.4.3 Filtering Performance

In this subsection, we evaluate the e↵ectiveness of the filtering technique that

we propose. Figure 5.7(a) and Figure 5.7(b) show the performance.

Figure 5.7(a) reports the running time of FSIG and GSI in the filtering

phase. Note that the y-axis scale is in milliseconds. As shown in the figure,

the filtering times for our method and GSI both increase with the size of VG.

105

Chapter 5 5.4.4 Enumeration Performance

Compared with GSI, the filtering time of our method increases. The maximum

value can be 31.5ms on up. FSIG accesses the adjacency lists of vertices in

candidate vertex sets, which leads to random memory reads. This diminishes the

memory read e�ciency of our method. As a comparison, GSI performs bitwise

operations between vectors, which significantly boosts its e�ciency. Notice that

this increase is negligible when considering the overall running time that spans

seconds.

Figure 5.7(b) demonstrates the pruning ability of FSIG and GSI. It can be

seen that our method can obtain a smaller |C| across all datasets. On db, yt , and

up, we can observe a substantial decrease in the size of C ranging from 3-fold

to 10-fold. Even on challenging datasets hu, wn, and eu, the size of C is still

reduced by 25 � 35%. This highlights that our filtering method, compared to

the lightweight approach of GSI, can e↵ectively avoid the traversal of redundant

search branches (albeit not entirely), thereby leading to superior performance.

In summary, it can be indicated that the slight delay of our method in the

filtering phase is a negligible cost of the gains in e�cient pruning of the search

tree.

5.4.4 Enumeration Performance

In this subsection, we report the performance of enumeration. The results are

displayed in Figure 5.8.

Figure 5.8(a) reports the memory usage in the Pre-alloc phase. It can be

seen that our method consistently consumes less memory than GSI. Compared

to GSI, our method conserves around half the memory on datasets wn, yt , and

eu. This can be up to around 420GB on eu. Similarly, the memory consump-

tion of our method is slightly less than that of GSI, i.e., 5 � 10%, on other

datasets. E�cient memory usage enables FSIG to support larger datasets and

106

5.4.4 Enumeration Performance Chapter 5

FSIG GSI

0

10

20

30

40

hu wn db yt up eu

R
u
n
n
in

g
 T

im
e

(m
s)

(a) Filtering Time

100

101

102

103

104

105

hu wn db yt up eu

|C−
|

(b) Pruning Ability

Figure 5.7: Filtering Performance
⇤ |C| denotes the average size of C of all query vertices

more intricate queries, which can enhance scalability performance.

Figure 5.8(b) evaluates the e↵ectiveness of our optimization technique in

the enumeration. It depicts the write throughput of FSIG anf GSI during the

enumeration phase. It can be observed that FSIG exhibits a better write perfor-

mance. FSIG o↵ers a speedup of 2.5 to 3 times over GSI on datasets wn, yt , and

eu. For example, the write throughput of FSIG is 122.89GB/s on eu while the

write performance of GSI is 43.512GB/s. On other datasets, our method also

has better performance, which exhibits a writing speed increment of 3�23GB/s.

Such enhancement in write throughput ensures that we can traverse the search

tree more e�ciently.

Conclusively, the empirical results reinforce the superiority of FSIG against

GSI in memory conservation and write throughput during the enumeration

phase.

107

Chapter 5 5.4.5 Scalability

FSIG GSI

10
0

10
1

10
2

10
3

hu wn db yt up eu

P
re

-a
ll

o
ca

te
d
 M

em
o
ry

(G
B

)

(a) Pre-allocated Memory Size

0

50

100

150

200

hu wn db yt up eu

W
ri

te
 T

h
ro

u
g
h
p
u
t

(G
B

/s
)

(b) Write Throughput

Figure 5.8: 1⇤-phase output scheme

5.4.5 Scalability

In this subsection, we evaluate the scalability of our method in contrast to GSI,

Figure 5.9(a) and Figure 5.9(b) show the performance.

Figure 5.9(a) presents the comparison of FSIG against GSI in terms of the

number of solved queries. It can be seen that our method consistently outper-

forms the baseline. We can glean several observations from Figure 5.9(a). (1)

FSIG solves all queries on datasets db and up. (2) FSIG solves around 90 queries

on yt while GSI finishes 48 queries. (3) FSIG addresses 70� 80 queries, whereas

GSI solves only around 30. The reasons FSIG falls short with a handful of

queries include timeouts caused by their inherent complexity and the restriction

of available host memory. However, GSI faces di�culties because of its inability

to e�ciently manage GPU memory and the ”out of time” issue.

To provide more details, Figure 5.9(b) illustrates the frequency of data trans-

108

5.4.5 Scalability Chapter 5

FSIG GSI

0

20

40

60

80

100

hu wn db yt up eu

N
u
m

b
er

 o
f

S
o
lv

ed
 Q

u
er

ie
s

(a) Number of Solved Queries

0

40

80

120

160

hu wn db yt up eu

N
u
m

b
er

 o
f

L
ea

f
N

o
d
es

(b) Number of Transfers

Figure 5.9: Scalability
⇤ Leaf nodes are leaves of search tree

fers between the GPU and CPU for our method. It is measured by the number

of leaf nodes in the search tree because there is a heightened tendency for search

node to be divided into several blocks when the traversal reaches the deepest

level of the search tree. It can be seen that the number of leaf nodes in the

search tree of FSIG is moderate, i.e., 5 � 150 during the enumeration. For db

and up, the value is around 5. For wn and yt , it is around 25. For hu and eu, the

average numbers of leaf nodes are 134.16 and 151.48 respectively. This shows

the adaptability of our method, which can maintain a manageable search tree

irrespective of the dataset complexities.

In summary, it can be shown that FSIG demonstrates superior scalability

when compared to GSI. This advantage is seen in its capability to handle more

diverse queries and adapt its search tree.

109

Chapter 5 5.5. CONCLUSION

5.5 Conclusion

In this chapter, we propose a backtracking-based approach for the subgraph

matching problem on the GPU.

We note that the existing method compromises its pruning e�ciency due to

the compression of neighborhood information. To devise an e↵ective and highly

parallel filtering method, we discuss scenarios that can expedit enumeration and

select one friendly to memory capacity and memory transaction on the GPU.

We observe a rapid increase in the number of matches throughout the enumer-

ation process, making memory transactions a substantial part of the runtime.

In light of this, we propose a new write scheme that can increase coalesced

memory transactions. Additionally, a pipelining technique is applied to enhance

scalability.

Experimental results validate that our filtering approach e↵ectively reduces

the candidate sets, achieving a performance improvement of 2 to 4 times com-

pared to GSI. Moreover, it realizes up to a threefold increase in memory through-

put during the enumeration process. Meanwhile, extensive experiments demon-

strate that our approach has robust scalability, with the capability to resolve

between 70% to 100% of the queries.

Though our method e↵ectively reduces candidate, there are scenarios where

further pruning is possible as discussed. However, the cost and benefits of such

pruning remain unknown on the GPU, meriting further exploration.

110

Chapter 6

Epilogue

This research endeavor has been driven by the overarching objective to augment

the e�cacy of hardware acceleration for graph data processing. In pursuit of this

aim, we have systematically tackled three interrelated computational challenges:

matrix factorization, k nearest neighbors search, and subgraph matching, each

presenting unique opportunities for performance optimization.

In the realm of matrix factorization detailed in Chapter 3, we demonstrate

that a non-uniform data block allocation strategy improves GPU e�ciency with-

out sacrificing recall. Our proposed cost model and dynamic workload distribu-

tion optimize resource utilization and ensure a balanced load across working

units, thereby enhancing overall system performance.

Continuing our exploration, we present an e�cient graph-based algorithm

designed to address the k nearest neighbors search problem on the GPU in Chap-

ter 4. This approach significantly enhances the search process by parallelizing

data structure operations. Furthermore, we employ a divide-and-conquer strat-

egy that enables the e�cient construction of graphs on the GPU.

Finally, in Chapter 5, we introduce a backtracking-based method for sub-

graph matching on the GPU. This approach surpasses the existing method by

111

Chapter 6

enhancing pruning e�ciency. Additionally, we optimize memory read-write op-

erations to further improve the performance. Impressively, our method shows

remarkable scalability, a�rming its strength in handling large-scale graph data.

Together, these contributions mark a meaningful advancement in applying

hardware acceleration to complex data processing tasks. This thesis emphasizes

the interplay between algorithmic development and hardware capabilities. It not

only enhances current computational performance but also provides a versatile

foundation for diverse applications ranging from big data analytics to artificial

intelligence. Specifically, the matrix factorization techniques could be pivotal in

advancing recommender systems, while our kNN and subgraph matching algo-

rithms may set new benchmarks in pattern recognition and database searching.

Additionally, it is my aspiration that these endeavors will serve as a catalyst for

future research in the realm of hardware acceleration for graph data processing.

Looking ahead, this thesis sets the stage for a range of exciting opportunities

in hardware-accelerated graph data processing. In the area of matrix factoriza-

tion, it is possible to leverage integrated heterogeneous systems equipped with

multiple GPUs to accelerate the processing of large-scale datasets. This intro-

duces a set of novel challenges that warrant further investigation. For the k

nearest neighbors search problem, we are looking at creative ways to process

massive datasets on GPUs, which su↵er from their limited memory. And as for

subgraph matching, we are keen on developing even more e↵ective pruning tech-

niques to speed up the enumeration process. These are real, tangible issues that

the next wave of research will tackle, and we are optimistic that the community

will come together to push these innovations even further.

112

Bibliography

[1] “Insieme compiler runtime framework,” http://insieme-compiler.org.

[2] “MSong,” http://www.ifs.tuwien.ac.at/mir/msd/download.html.

[3] “Notre,” http://phototour.cs.washington.edu/datasets/.

[4] “The webgraph framework i: compression techniques,” in Proceedings of

the 13th international conference on World Wide Web, 2004, pp. 595–602.

[5] “SIFT and GIST,” http://corpus-texmex.irisa.fr/, 2010.

[6] “Proxima,” ”https://www.alibabacloud.com/blog/proxima-a-

vector-retrieval-engine-independently-developed-by-alibaba-damo-

academy 597699”, 2021.

[7] M. T. Al Amin, C. Aggarwal, S. Yao, T. Abdelzaher, and L. Kaplan, “Un-

veiling polarization in social networks: A matrix factorization approach,”

in INFOCOM, 2017, pp. 1–9.

[8] K. Aoyama, K. Saito, H. Sawada, and N. Ueda, “Fast approximate similar-

ity search based on degree-reduced neighborhood graphs,” in Proceedings

of the 17th ACM SIGKDD international conference on Knowledge discov-

ery and data mining, 2011, pp. 1055–1063.

113

http://insieme-compiler.org
http://www.ifs.tuwien.ac.at/mir/msd/download.html
http://phototour.cs.washington.edu/datasets/
http://corpus-texmex.irisa.fr/

[9] A. Atserias, M. Grohe, and D. Marx, “Size bounds and query plans for

relational joins,” in 2008 49th Annual IEEE Symposium on Foundations

of Computer Science. IEEE, 2008, pp. 739–748.

[10] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geomet-

ric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp.

345–405, 1991.

[11] A. Babenko and V. Lempitsky, “Additive quantization for extreme vector

compression,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2014, pp. 931–938.

[12] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the April 30–May 2, 1968, spring joint computer conference, 1968, pp.

307–314.

[13] M. E. Belviranli, L. N. Bhuyan, and R. Gupta, “A dynamic self-scheduling

scheme for heterogeneous multiprocessor architectures,” TACO, vol. 9,

no. 4, p. 57, 2013.

[14] B. Bhattarai, H. Liu, and H. H. Huang, “Ceci: Compact embedding cluster

index for scalable subgraph matching,” in Proceedings of the 2019 Inter-

national Conference on Management of Data, 2019, pp. 1447–1462.

[15] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “E�cient subgraph match-

ing by postponing cartesian products,” in Proceedings of the 2016 Inter-

national Conference on Management of Data, 2016, pp. 1199–1214.

[16] M. Boyer, K. Skadron, S. Che, and N. Jayasena, “Load balancing in a

changing world: dealing with heterogeneity and performance variability,”

in CF, 2013, p. 21.

114

[17] J. Canny and H. Zhao, “Bidmach: Large-scale learning with zero memory

allocation,” in BigLearning, NIPS Workshop, 2013.

[18] W. Chen, J. Chen, F. Zou, Y.-F. Li, P. Lu, and W. Zhao, “Robustiq: A

robust ann search method for billion-scale similarity search on gpus,” in

Proceedings of the 2019 on International Conference on Multimedia Re-

trieval, 2019, pp. 132–140.

[19] Y. Chen, F. Hua, C. Huang, J. Bierema, C. Zhang, and E. Z. Zhang,

“Accelerating concurrent heap on gpus,” arXiv preprint arXiv:1906.06504,

2019.

[20] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, “A learning-rate sched-

ule for stochastic gradient methods to matrix factorization,” in PAKDD,

2015, pp. 442–455.

[21] H. J. Choi, D. O. Son, S. G. Kang, J. M. Kim, H.-H. Lee, and C. H. Kim,

“An e�cient scheduling scheme using estimated execution time for het-

erogeneous computing systems,” The Journal of Supercomputing, vol. 65,

no. 2, pp. 886–902, 2013.

[22] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph

isomorphism algorithm for matching large graphs,” IEEE transactions on

pattern analysis and machine intelligence, vol. 26, no. 10, pp. 1367–1372,

2004.

[23] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”

TKDE, vol. 31, no. 5, pp. 833–852, 2019.

[24] V. Dodeja, M. Almasri, R. Nagi, J. Xiong, and W.-m. Hwu, “Parsec: Par-

allel subgraph enumeration in cuda,” in 2022 IEEE International Parallel

115

and Distributed Processing Symposium (IPDPS). IEEE, 2022, pp. 168–

178.

[25] W. Dong, C. Moses, and K. Li, “E�cient k-nearest neighbor graph con-

struction for generic similarity measures,” in Proceedings of the 20th inter-

national conference on World wide web, 2011, pp. 577–586.

[26] D. Dua and C. Gra↵, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[27] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ.

Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[28] C. Fu and D. Cai, “Efanna: An extremely fast approximate near-

est neighbor search algorithm based on knn graph,” arXiv preprint

arXiv:1609.07228, 2016.

[29] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest neighbor

search with the navigating spreading-out graph,” Proceedings of the VLDB

Endowment, vol. 12, no. 5.

[30] S. Funk, “Netflix update: Try this at home,” https://sifter.org/⇠simon/

journal/20061211.html, 2006.

[31] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,” IEEE

transactions on pattern analysis and machine intelligence, vol. 36, no. 4,

pp. 744–755, 2013.

[32] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix

factorization with distributed stochastic gradient descent,” in KDD, 2011,

pp. 69–77.

116

http://archive.ics.uci.edu/ml
https://sifter.org/~simon/journal/20061211.html
https://sifter.org/~simon/journal/20061211.html

[33] A. Ghose, S. Dey, P. Mitra, and M. Chaudhuri, “Divergence aware auto-

mated partitioning of opencl workloads,” in ISEC, 2016, pp. 131–135.

[34] L. Gong, H. Wang, M. Ogihara, and J. Xu, “idec: indexable distance

estimating codes for approximate nearest neighbor search,” Proceedings of

the VLDB Endowment, vol. 13, no. 9, pp. 1483–1497, 2020.

[35] D. Grewe and M. F. O’Boyle, “A static task partitioning approach for

heterogeneous systems using opencl,” in CC, 2011, pp. 286–305.

[36] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-accelerated

subgraph enumeration on partitioned graphs,” in Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data, 2020,

pp. 1067–1082.

[37] W. Guo, Y. Li, and K.-L. Tan, “Exploiting reuse for gpu subgraph enu-

meration,” IEEE Transactions on Knowledge and Data Engineering, 2020.

[38] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “E�cient subgraph

matching: Harmonizing dynamic programming, adaptive matching order,

and failing set together,” in Proceedings of the 2019 International Confer-

ence on Management of Data, 2019, pp. 1429–1446.

[39] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: towards ultrafast and robust

subgraph isomorphism search in large graph databases,” in Proceedings

of the 2013 ACM SIGMOD International Conference on Management of

Data, 2013, pp. 337–348.

[40] B. Harwood and T. Drummond, “Fanng: Fast approximate nearest neigh-

bour graphs,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 5713–5722.

117

[41] T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, “Matrix completion and

low-rank svd via fast alternating least squares,” The Journal of Machine

Learning Research, vol. 16, no. 1, pp. 3367–3402, 2015.

[42] H. He and A. K. Singh, “Graphs-at-a-time: query language and access

methods for graph databases,” in Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, 2008, pp. 405–418.

[43] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization

for online recommendation with implicit feedback,” in SIGIR, 2016, pp.

549–558.

[44] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-aware locality-

sensitive hashing for approximate nearest neighbor search,” Proceedings of

the VLDB Endowment, vol. 9, no. 1, pp. 1–12, 2015.

[45] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards re-

moving the curse of dimensionality,” in Proceedings of the thirtieth annual

ACM symposium on Theory of computing, 1998, pp. 604–613.

[46] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest

neighbor search,” IEEE transactions on pattern analysis and machine in-

telligence, vol. 33, no. 1, pp. 117–128, 2010.

[47] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “Gpu register file

virtualization,” in Proceedings of the 48th International Symposium on

Microarchitecture, 2015, pp. 420–432.

[48] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the

nvidia volta gpu architecture via microbenchmarking,” arXiv preprint

arXiv:1804.06826, 2018.

118

[49] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro,

“Predictive runtime code scheduling for heterogeneous architectures,” in

HiPEAC, 2009, pp. 19–33.

[50] J. Jin, S. Lai, S. Hu, J. Lin, and X. Lin, “Gpusgd: A gpu-accelerated

stochastic gradient descent algorithm for matrix factorization,” Concur-

rency and Computation: Practice and Experience, vol. 28, no. 14, pp.

3844–3865, 2016.

[51] Z. Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE trans-

actions on cybernetics, vol. 44, no. 8, pp. 1362–1371, 2013.

[52] D. S. Johnson and M. R. Garey, Computers and intractability: A guide to

the theory of NP-completeness. WH Freeman, 1979.

[53] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with

gpus,” IEEE Transactions on Big Data, 2019.

[54] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization for

approximate nearest neighbor search,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2014, pp. 2321–2328.

[55] R. Kaleem, R. Barik, T. Shpeisman, C. Hu, B. T. Lewis, and K. Pin-

gali, “Adaptive heterogeneous scheduling for integrated gpus,” in PACT.

IEEE, 2014, pp. 151–162.

[56] J. Kleinberg, “The small-world phenomenon: An algorithmic perspective,”

in Proceedings of the thirty-second annual ACM symposium on Theory of

computing, 2000, pp. 163–170.

119

[57] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic input-

sensitive approach for heterogeneous task partitioning,” in ICS, 2013, pp.

149–160.

[58] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[59] L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph enumeration

in mapreduce,” Proceedings of the VLDB Endowment, vol. 8, no. 10, pp.

974–985, 2015.

[60] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang, “Scalable dis-

tributed subgraph enumeration,” Proceedings of the VLDB Endowment,

vol. 10, no. 3, pp. 217–228, 2016.

[61] L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao, X. Lin, L. Qin,

W. Zhang et al., “A survey and experimental analysis of distributed sub-

graph matching,” arXiv preprint arXiv:1906.11518, 2019.

[62] J. Lee, M. Samadi, and S. Mahlke, “Orchestrating multiple data-parallel

kernels on multiple devices,” in PACT, 2015, pp. 355–366.

[63] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison

of subgraph isomorphism algorithms in graph databases,” Proceedings of

the VLDB Endowment, vol. 6, no. 2, pp. 133–144, 2012.

[64] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven paral-

lelism: a numa-aware query evaluation framework for the many-core age,”

in SIGMOD, 2014, pp. 743–754.

[65] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset

collection,” http://snap.stanford.edu/data, Jun. 2014.

120

http://snap.stanford.edu/data

[66] B. Lessley and H. Childs, “Data-parallel hashing techniques for gpu archi-

tectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,

no. 1, pp. 237–250, 2019.

[67] B. Li, S. Tata, and Y. Sismanis, “Sparkler: Supporting large-scale matrix

factorization,” in EDBT, 2013, pp. 625–636.

[68] S. Li, J. Kawale, and Y. Fu, “Predicting user behavior in display adver-

tising via dynamic collective matrix factorization,” in SIGIR, 2015, pp.

875–878.

[69] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin, “Ap-

proximate nearest neighbor search on high dimensional data—experiments,

analyses, and improvement,” IEEE Transactions on Knowledge and Data

Engineering, vol. 32, no. 8, pp. 1475–1488, 2019.

[70] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui, “Geomf: joint

geographical modeling and matrix factorization for point-of-interest rec-

ommendation,” in KDD, 2014, pp. 831–840.

[71] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” in

Proceedings of the 27th International Conference on Neural Information

Processing Systems-Volume 2, 2014, pp. 3419–3427.

[72] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on het-

erogeneous multiprocessors with adaptive mapping,” in MICRO, 2009, pp.

45–55.

[73] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate

nearest neighbor algorithm based on navigable small world graphs,” Infor-

mation Systems, vol. 45, pp. 61–68, 2014.

121

[74] Y. A. Malkov and D. A. Yashunin, “E�cient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs,”

IEEE transactions on pattern analysis and machine intelligence, 2018.

[75] J. Martinez, J. Clement, H. H. Hoos, and J. J. Little, “Revisiting additive

quantization,” in European Conference on Computer Vision. Springer,

2016, pp. 137–153.

[76] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing

techniques,” CSUR, vol. 47, no. 4, p. 69, 2015.

[77] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case optimal join

algorithms,” in Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of Database Systems, 2012, pp. 37–48.

[78] H. Q. Ngo, C. Ré, and A. Rudra, “Skew strikes back: New developments

in the theory of join algorithms,” ACM SIGMOD Record, vol. 42, no. 4,

pp. 5–16, 2014.

[79] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,”

in 2006 IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’06), vol. 2. Ieee, 2006, pp. 2161–2168.

[80] J. Oh, W.-S. Han, H. Yu, and X. Jiang, “Fast and robust parallel sgd

matrix factorization,” in KDD, 2015, pp. 865–874.

[81] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution

of opencl programs on multiple heterogeneous devices,” in CGO. ACM,

2014, p. 273.

[82] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for

word representation,” in EMNLP, 2014, pp. 1532–1543.

122

[83] M. Pradeep, J. M. Navin, and B. Kannappan, “A review of scheduling

mechanisms for heterogeneous multi-core machines,” International Journal

of Pure and Applied Mathematics, vol. 120, no. 6, pp. 13–24, 2018.

[84] N. Pržulj, D. G. Corneil, and I. Jurisica, “E�cient estimation of graphlet

frequency distributions in protein–protein interaction networks,” Bioinfor-

matics, vol. 22, no. 8, pp. 974–980, 2006.

[85] M. Qiao, H. Zhang, and H. Cheng, “Subgraph matching: on compression

and computation,” Proceedings of the VLDB Endowment, vol. 11, no. 2,

pp. 176–188, 2017.

[86] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding

as matrix factorization: Unifying deepwalk, line, pte, and node2vec,” in

WSDM, 2018, pp. 459–467.

[87] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach

to parallelizing stochastic gradient descent,” in NIPS, 2011, pp. 693–701.

[88] X. Ren and J. Wang, “Exploiting vertex relationships in speeding up sub-

graph isomorphism over large graphs,” Proceedings of the VLDB Endow-

ment, vol. 8, no. 5, pp. 617–628, 2015.

[89] R. A. Rossi and R. Zhou, “Leveraging multiple gpus and cpus for graphlet

counting in large networks,” in CIKM, 2016, pp. 1783–1792.

[90] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness:

an e�cient algorithm for testing subgraph isomorphism,” Proceedings of

the VLDB Endowment, vol. 1, no. 1, pp. 364–375, 2008.

123

[91] T. A. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock, “New

specifications for exponential random graph models,” Sociological method-

ology, vol. 36, no. 1, pp. 99–153, 2006.

[92] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature

hashing for real-time large scale near-duplicate video retrieval,” in Pro-

ceedings of the 19th ACM international conference on Multimedia, 2011,

pp. 423–432.

[93] E. Stehle and H.-A. Jacobsen, “A memory bandwidth-e�cient hybrid radix

sort on gpus,” in SIGMOD, 2017, pp. 417–432.

[94] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming

standard for heterogeneous computing systems,” Computing in science &

engineering, vol. 12, no. 3, p. 66, 2010.

[95] S. J. Subramanya, F. Devvrit, H. Simhadri, R. Krishnawamy, and

R. Kadekodi, “Diskann: Fast accurate billion-point nearest neighbor search

on a single node,” Advances in Neural Information Processing Systems,

vol. 32, pp. 13 771–13 781, 2019.

[96] S. Sun and Q. Luo, “In-memory subgraph matching: An in-depth study,”

in Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, 2020, pp. 1083–1098.

[97] S. Sun, X. Sun, Y. Che, Q. Luo, and B. He, “Rapidmatch: a holistic

approach to subgraph query processing,” Proceedings of the VLDB En-

dowment, vol. 14, no. 2, pp. 176–188, 2020.

[98] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “Srs: solving c-

approximate nearest neighbor queries in high dimensional euclidean space

with a tiny index,” Proceedings of the VLDB Endowment, 2014.

124

[99] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “E�cient subgraph match-

ing on billion node graphs,” arXiv preprint arXiv:1205.6691, 2012.

[100] H.-N. Tran, J.-j. Kim, and B. He, “Fast subgraph matching on large graphs

using graphics processors,” in International Conference on Database Sys-

tems for Advanced Applications. Springer, 2015, pp. 299–315.

[101] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the

ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[102] T. L. Veldhuizen, “Leapfrog triejoin: a worst-case optimal join algorithm,”

arXiv preprint arXiv:1210.0481, 2012.

[103] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and S. Li, “Optimized

cartesian k-means,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 27, no. 1, pp. 180–192, 2014.

[104] M. Wang, X. Xu, Q. Yue, and Y. Wang, “A comprehensive survey and

experimental comparison of graph-based approximate nearest neighbor

search,” arXiv preprint arXiv:2101.12631, 2021.

[105] Z. Wang, L. Zheng, Q. Chen, and M. Guo, “Cap: co-scheduling based on

asymptotic profiling in cpu+ gpu hybrid systems,” in Proceedings of the

2013 International Workshop on Programming Models and Applications

for Multicores and Manycores, 2013, pp. 107–114.

[106] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and perfor-

mance study for similarity-search methods in high-dimensional spaces,” in

VLDB, vol. 98, 1998, pp. 194–205.

125

[107] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for

opencl programs on cpu/gpu heterogeneous platforms,” in HiPC, 2014, pp.

1–10.

[108] P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. Lensch, “E�cient

large-scale approximate nearest neighbor search on the gpu,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 2027–2035.

[109] X. Xie, W. Tan, L. L. Fong, and Y. Liang, “Cumf sgd: Parallelized stochas-

tic gradient descent for matrix factorization on gpus,” in HPDC, 2017, pp.

79–92.

[110] D. Xu, I. W. Tsang, and Y. Zhang, “Online product quantization,” IEEE

Transactions on Knowledge and Data Engineering, vol. 30, no. 11, pp.

2185–2198, 2018.

[111] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-

based approach,” in Proceedings of the 2004 ACM SIGMOD international

conference on Management of data, 2004, pp. 335–346.

[112] A. B. Yandex and V. Lempitsky, “E�cient indexing of billion-scale datasets

of deep descriptors,” in IEEE Conference on Computer Vision & Pattern

Recognition, 2016, pp. 2055–2063.

[113] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon, “Scalable coordinate descent

approaches to parallel matrix factorization for recommender systems,” in

ICDM, 2012, pp. 765–774.

[114] M. Yu, L. Qin, Y. Zhang, W. Zhang, and X. Lin, “Aot: Pushing the

e�ciency boundary of main-memory triangle listing,” in Database Sys-

tems for Advanced Applications: 25th International Conference, DASFAA

126

2020, Jeju, South Korea, September 24–27, 2020, Proceedings, Part II 25.

Springer, 2020, pp. 516–533.

[115] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon, “Nomad:

Non-locking, stochastic multi-machine algorithm for asynchronous and de-

centralized matrix completion,” PVLDB, vol. 7, no. 11, pp. 975–986, 2014.

[116] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “Gsi: Gpu-friendly

subgraph isomorphism,” in 2020 IEEE 36th International Conference on

Data Engineering (ICDE). IEEE, 2020, pp. 1249–1260.

[117] S. Zhang, S. Li, and J. Yang, “Gaddi: distance index based subgraph

matching in biological networks,” in Proceedings of the 12th international

conference on extending database technology: advances in database tech-

nology, 2009, pp. 192–203.

[118] P. Zhao and J. Han, “On graph query optimization in large networks,”

Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 340–351, 2010.

[119] W. Zhao, S. Tan, and P. Li, “Song: Approximate nearest neighbor search

on gpu,” in 2020 IEEE 36th International Conference on Data Engineering

(ICDE). IEEE, 2020, pp. 1033–1044.

[120] E. Zhong, Y. Shi, N. Liu, and S. Rajan, “Scaling factorization machines

with parameter server,” in CIKM, 2016, pp. 1583–1592.

[121] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin, “A fast parallel sgd for

matrix factorization in shared memory systems,” in ACM RecSys, 2013,

pp. 249–256.

127

	TITLE PAGE
	CERTIFICATE OF AUTHORSHIP/ORGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	PUBLICATIONS
	Introduction
	Background
	Matrix factorization
	k nearest neighbors search
	Subgraph matching
	GPU Architecture

	Motivations
	Matrix factorization
	k nearest neighbors search
	Subgraph matching

	Contributions
	Matrix factorization
	k nearest neighbors search
	Subgraph matching

	Roadmap

	Literature Survey
	Matrix factorization
	Multicore SGD-based algorithms
	GPU SGD-based algorithms
	Other related work
	Summary

	k nearest neighbors search
	CPU-based ANN methods
	GPU-based ANN methods
	Summary

	Subgraph matching
	CPU-based subgraph matching methods
	GPU-based subgraph matching methods
	Distributed subgraph matching methods
	Other related work
	Summary

	Matrix Factorization
	Preliminaries
	Matrix factorization
	Stochastic gradient descent

	Our approach
	A straightforward method
	Motivation
	The framework

	Our cost model
	Data preparation and training for CPUs
	Estimating working efficiency of GPUs

	Workload balance in practice
	Dynamic scheduling
	Putting things together

	Experiments
	Overall efficiency
	Training quality
	Matrix division strategy
	Workload balance

	Conclusion

	k Nearest Neighbors Search
	Preliminaries
	Problem definition
	Proximity graph search and construction

	Proximity graph search
	Motivation
	GPU-based proximity graph search
	Analysis

	Proximity graph construction
	Motivation
	GPU-based NSW graph construction
	Analysis
	Extension

	Experiments
	Search performance
	Construction performance

	Conclusion

	Subgraph Matching
	Preliminaries
	Problem definition
	State-of-the-art GPU solution

	Framework
	Motivation
	Solution
	Overview

	Implementation
	Filtering
	1*-phase output scheme
	Scalability

	Experiments
	Experimental Setup
	Overall Performance
	Filtering Performance
	Enumeration Performance
	Scalability

	Conclusion

	Epilogue
	Bibliography

