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ABSTRACT

Deep image forgeries powered by deep learning models, e.g., deepfakes, are in-
creasingly challenging the belief that seeing is believing. The image privacy and
security threats raised by deep image forgery, such as misleading information on

social media, have become a major concern in the security community. Effective coun-
termeasures are impelling. A common countermeasure is developing detection systems
to distinguish fake images from real ones. Despite a series of forensic detectors having
been proposed, there are still several open challenges, such as the cross-domain general-
ization ability and the robustness against attacks. Also, the countermeasures should be
constantly updated given the continuous technical advances behind deep image forgery.
These challenges can be further understood and facilitated from two rival technical
perspectives: forensics and anti-forensics. The forensic direction aims to develop more
robust and generalized detection systems that can deal with forgeries in complex or
unknown environments. The anti-forensic direction aims to reveal the vulnerability and
weakness of a detection system by designing possible attacks to enable forged images to
bypass the detection.

In this thesis, we study the deep image forgery detection problem with a focus on
resolving the open challenges newly emerging in this field. We investigate the problem
from both forensic and anti-forensic perspectives to provide comprehensive solutions.
Regarding the forensic direction, we have proposed two forgery detection methods: one
exploits multi-level GAN model fingerprinting to enable task-specific forensics, and the
other uses a multi-view reconstruction-classification learning framework for generalized
and robust detection. Regarding the anti-forensic direction, we have designed a novel
black-box attack specific to deep image forgery detection systems, called the trace removal
attack. In addition, we have provided a closer look at the generalization and robustness
issues of deep image forgery detection from a frequency perspective, which link the
forensic and anti-forensic research with a novel frequency alignment method benefiting
both directions. For each proposed method, we have conducted extensive experimental
evaluations where multiple datasets and security scenarios are involved. We also compare
the methods with state-of-the-art baselines to demonstrate their superiority.
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INTRODUCTION

1.1 Background

Today we are living in a digital world where digital information has become an

indispensable strategic asset for almost every entity. Recently, the rapid develop-

ment of Internet technologies, as well as the unprecedented prevalence of mobile

camera devices have dramatically advanced the acquisition and exchange of digital

data, such as images, videos, and audios, making it possible anytime and anywhere.

Among these types of data, digital images, as an important and convenient medium

for information presentation, storage, and communication, have become ubiquitous in

our daily lives, playing crucial roles in many areas, such as journalism, judiciary, social

networks, arts, and business [90].

The increasing popularity and value of digital images make image security and

privacy a critical and enduring concern for society and the research community. Im-

age forgery is a long-lasting problem challenging digital security [11, 70, 143]. Taking

advantage of advanced automated image processing techniques, attackers are able to

manipulate the real content of the original image, leading to severe challenges to the

authenticity and originality of the images. Especially, some image forgeries with political

conspiracy or commercial interests will seriously threaten social, economic, and political

security. Incidents that caused public uproars due to image manipulation have occurred

frequently world-wide [12, 80, 104].

Since around the year 2016, image forgery technology has entered a new era thanks
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CHAPTER 1. INTRODUCTION

to the revolutionary progress brought about by deep learning in computer vision. A

new type of image forgery powered by deep learning-based generative and rendering

models emerges, which we refer to as "deep image forgery" in this thesis. The main deep

learning methods used for deep image forgery involve training generative neural network

architectures, such as autoencoder [50], or generative adversarial network (GAN) [45].

Deep image forgery came into the public’s consciousness along with the release of some

famous programs, such as Face2Face [135] and "Synthesizing Obama" [130] (as shown

in Figure 1.1), and the coining of the term "DeepFakes" which describes synthetic face-

exchanged media [13]. Due to the continuous improvements in the artificial intelligence

techniques behind deep image forgery, it now becomes more intelligent, automated, and

easy to implement. In addition, the forged images are high-fidelity and high-quality,

which are easily deceptive to human eyes. For example, Figure 1.2 shows some non-

existent fake faces created by one of the latest deep generative models, StyleGAN2[69].

The images look surprisingly photorealistic, even at high resolution. As a result, the

pertinent technologies have quickly attracted widespread attention regarding their

potential use in the production of, e.g., child sexual abuse material, celebrity pornographic

media, fake news, bullying, financial fraud, and biometric spoofing [2, 62, 121, 125]. These

significant security threats have elicited responses from industry, academia, and the

government to fight against deep image forgery.

(a) Face2Face result (b) “Synthesizing Obama” result
!"#$%& '($)&* !"#$%& '($)&*

Figure 1.1: (a) The Face2Face result. The source person’s facial expression is modified in
accordance with the target person’s facial expression, which is called facial expression
reenactment. Image credit to [139]. (b) The "Synthesizing Obama" result. Given an input
Obama audio and a reference video, the system can synthesize photorealistic, lip-synced
video of Obama speaking those words. Image credit to [131].

Recently, academic research has been focusing on countering deep image forgery,

particularly images manipulated or automatically generated by GANs. GAN-generated

images have sparked unprecedented public concern regarding deep image forgery. This

concern arises from GANs outperforming traditional image processing-based forgery
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1.1. BACKGROUND

Figure 1.2: Four fake face images imagined by a StyleGAN2 model. Images are at a high
resolution of 1024×1024.

models. GANs achieve this by pushing the fidelity of generated images to higher limits,

significantly reducing forgery costs through a fully automatic pipeline. Moreover, expert

knowledge in image processing is no longer a prerequisite. Existing research in this field

can be typically divided into two opposite directions: forensics and anti-forensics.

• Forensic research aims to develop automated tools to verify the authenticity of

suspicious images [115]. The possible directions include 1) detecting whether an

image is forged or not, 2) attributing the source of digital images, and 3) identifying

and localizing the tempered region of the images. Among these directions, GAN-

generated image detection and attribution have received a surge of interest [63,

112]. An accurate detector can provide a precaution to prevent users from being

jeopardized by deep image forgery. For example, it enables a filtering mechanism

integrated with online services that can alert users about the risk of fakeness and

raise users’ awareness of security breaches caused by deep image forgery in the

case that the forged images are imperceptible to humans.

• Anti-forensic research aims to investigate the countermeasures from an adver-

sary’s perspective [63, 117]. The investigators want to reveal the vulnerabilities

and weaknesses of the target forensic systems, in most cases machine learning-

based forgery detectors, in a complex context, for example, under unanticipated

or malicious attacks. In anti-forensic studies, it may be necessary to conduct a

security analysis with some strong, specific attacks to see how far the target forgery

detectors can be pushed in the worst possible conditions. In this way, the knowledge

gained from anti-forensic research can inversely help further perfect the forgery de-

tectors. In a nutshell, forensic and anti-forensic research on deep image forgery are

forming a long-term active battleground to promote the countermeasures against

deep image forgery in this field, as shown in Figure 1.3.
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Figure 1.3: Forensic and anti-forensic research on deep image forgery are forming a
long-lasting battleground where many open challenges exist for both sides.

1.2 Motivation

Even though there have been a number of groundbreaking studies that have obtained

impressive achievements in both the forensic or anti-forensic directions, there are still

some problems that need to be further solved on both sides. We identify some significant

concerns from literature [63, 105], shown as follows.

Open challenges for forensic research:

• Accurate detection. The detection technology should be continuously upgraded to

maintain high detection accuracy to deal with the fast iteration of deep generative

techniques behind deep image forgery.

• Generalization. The detector is desired to generalize across various conditions, such

as different semantic domains, image formats, or out-of-distribution and unseen

source GAN classes.

• Robustness. The detector is desired to be robust against complex online envi-

ronments or malicious attacks, where the test samples may be contaminated by

different noise perturbations.

Open challenges for anti-forensic research:

• Attack fraudulence. The attack model should maintain a high attack success rate

to fool the target detectors, including the latest and most sophisticated detectors.

• Attack transferability. The attack model is desired to be transferable to different

detectors, even if it is optimized based on one specific detector.
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• Black-box attack. The attack model is desired to be effective against black-box

detectors, where the attacker does not require knowledge of or access to the target

detector.

• Stealthiness. The attack model should cause negligible changes or invisible noises

to the original fake samples so as to bypass human inspection.

Furthermore, there is a lack of a high-level theoretical understanding in the current

literature that is capable of fully explaining the existing challenges in this field and

linking the forensic and anti-forensic research on deep image forgery [63]. Figure 1.3 sum-

marizes the major concerns to be resolved. There are also several design principle-related

challenges that should be considered in developing forensic or anti-forensic techniques,

such as lightweight design, low computational overhead, and good compatibility with

other image-based services or online applications.

All of the above challenges motivate us to seek out novel forensic or anti-forensic

techniques to contribute to winning the enduring battle against deep image forgery.

1.3 Research Objectives

In this thesis, our ultimate research goal is to address the focusing challenges demon-

strated in Figure 1.3. Concretely, the research objectives include:

• We will investigate the deep image forgery problem from the forensic perspective,

including the development of different detection models, frameworks, or algorithms

to satisfy the requirements of forensic detectors discussed above. We will also

demonstrate the effectiveness of the proposed methods in extensive experiments,

and try to provide theoretical explanations if available.

• We will investigate the deep image forgery problem from anti-forensic perspectives.

We will try to develop different novel attack models or algorithms to satisfy the

requirements of anti-forensic attacks discussed above. We will also demonstrate

the effectiveness of the proposed methods in extensive experiments, and try to

provide a unified theoretical framework to connect the forensic and anti-forensic

research.
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1.4 Major contributions of this thesis

This thesis provides the following four major contributions lying in two directions:

1.4.1 Forensic techniques

In the forensic direction, we proposed two techniques to overcome the key forensic

challenges highlighted in Figure 1.3. The first one explores the intrinsic fingerprint

mechanism of GAN, which allows a fingerprint-based detection model for accurate identi-

fication of GAN-generated images and can also be used for model copyright protection and

GAN model attack. The second one involves a multi-view reconstruction-classification

framework, a strong feature representation method that aims at the generalization

ability and robustness of GAN-generated image forensics.

1.4.1.1 A GAN fingerprint-based model

We explore the forensic solution based on detecting the tell-tale marks GANs leave

behind in an image, known as GAN fingerprints. We are the first to focus on the problem

that different image forensics tasks may require different distinguishability levels, and

propose a task-specific GAN fingerprinting framework that supports flexible operation

at different forensic levels. Concretely, we perform an in-depth analysis of GAN fin-

gerprint dependency, providing theoretical and empirical evidence on the existence of

architecture-level and instance-level GAN fingerprints in the spatial and frequency

domains, respectively. From this finding, we proposed a decoupling representation frame-

work to separate and extract the two levels of GAN fingerprints from different domains.

Then we devise different implementations of the two levels of GAN fingerprints for task-

specific fingerprinting in three typical forensics tasks, including fake image detection,

model intellectual property protection, and fingerprinting attack and defense.

1.4.1.2 A multi-view reconstruction-classification framework

We focus on the generalized and robust detection of GAN-generated images. We draw

attention to the fact that while existing detectors tend to overfit unstable features in

the training set, which in turn causes failures when dealing with out-of-distribution

GANs or unknown perturbation attacks. To overcome the issue, we propose a novel

representation framework for GAN-generated image detection based on multi-view

reconstruction classification learning. The framework first learns multiple view-to-image
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reconstructors to model a variety of genuine image distributions. Features represented

from the distributional discrepancies characterized by the reconstructors are stable and

robust for detecting unknown fake patterns. Then, a multi-view classification is devised

with several novel modules and learning strategies to enhance intra-view and cross-view

feature representations. The generalization and robustness of the proposed framework

are confirmed through extensive experimental evaluations.

1.4.2 Anti-forensic techniques

In this direction, we proposed two novel anti-forensic attacks that satisfy the attack

requirements highlighted in Figure 1.3. The first attack takes advantage of adversarial

learning, by which the model can remove detectable traces from GAN-generated images

to make them bypass detectors. The second one dives into the frequency domain, making

fake images undetectable by calibrating their frequency distribution to that of real

images. Both proposed attacks can achieve high fraudulence and transferability, rely

little on the knowledge of detectors so that they can be launched in a black-box manner,

and induce negligible degradation of image quality.

1.4.2.1 A trace removal attack model

We provide a universal, black-box and detector-agnostic attack called trace removal

attack to evade image forgery detectors. We find that previous attacks, such as adver-

sarial attacks, have typical detector-specific designs, which require prior knowledge

about the detector, leading to poor transferability. Furthermore, these attacks only take

into account basic security scenarios. It is less clear how effective they are in complex

situations where the detector’s defense or the attacker’s knowledge may vary. The trace

removal attack, in contrast, looks into the original DeepFake creation pipeline and

makes an effort to remove all traces of DeepFakes in order to make the fake images

appear more "authentic." The attack is more effective against arbitrary or even unknown

detectors thanks to such a detector-agnostic design. The attack is implemented in the

following steps. We first carry out a thorough DeepFake trace discovery, which identifies

different types of distinguishable traces. Then, an adversarial learning framework with

a single generator and multiple discriminators is proposed, where each discriminator is

responsible for one individual trace removal task. These multiple discriminators are ar-

ranged in parallel, which prompts the generator to remove various traces simultaneously.

We evaluate the efficacy of the attack in heterogeneous security scenarios where the
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detectors were embedded with different levels of defense and the attackers’ background

knowledge of data varies.

1.4.2.2 A win-win frequency alignment algorithm

We provide a closer look at the forensic and anti-forensic challenges in this field from a

frequency perspective, which links the two sides, and propose a novel image processing

algorithm to benefit both sides simultaneously. Specifically, we explore the root causes and

connections between the generalizability and robustness issues of forgery detectors. We

established a comprehensive, unified frequency analysis framework for GAN-generated

image detection. Through the analysis, we confirm the frequency bias of DNN-based

detectors, which can be used to fundamentally explain a number of unresolved issues

associated with the robustness and generalizability of DNN-based detectors. Based on

the discovery, we propose a two-step frequency alignment algorithm for removing the

frequency discrepancy between real and fake images, which has the following double-

sided advantages: In the anti-forensic aspect, it can be used as a strong black-box attack

against forgery detectors, or, inversely, in the forensic aspect, as a universal defense

to improve the reliability of forgery detectors. We also devise the corresponding attack

and defense implementations, and verified the effects interactively in a wide range of

experimental settings.

1.5 Thesis organization

The reminder of the thesis is organized as follows.

• Chapter 2 gives a brief literature review of the relevant research, where we first

summarize the technical progress of deep image forgery, and then discuss the

recent achievements on forensic and anti-forensic research.

• Chapter 3 introduces preliminaries of the thesis and the formulations of forensic

and anti-forensic problems.

• Chapter 4 and Chapter 5 are the investigations on forensic techniques. Chapter
4 introduces the multi-level GAN fingerprint-based forensic model in detail, and

Chapter 5 describes the how to use the multi-view reconstruction-classification

learning for robust and generalized forgery detection.

10



1.5. THESIS ORGANIZATION

• Chapter 6 and Chapter 7 include the investigations on anti-forensic techniques.

Chapter 6 introduces design and implementation of the trace removal attack, and

Chapter 7 provides a closer look at forensics and anti-forensics from a frequency

perspective, along with the design and applications of the frequency alignment

algorithm.

• Chapter 8 summarizes this thesis with discussions, future insights and a conclu-

sion.
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2
RELATED WORK

2.1 Deep image forgery: an overview of technical
progress

Driven by the enormous potential profit, digital image forgery has a long technical history

and has recently been rapidly renewed. This area can be dated back to the 19th century,

during which time technology steadily improved [37]. When entering the 21st century,

interests burgeoned with the development of computer-aided image processing software,

such as Adobe Photoshop [132] and GNU image manipulation programs (GIMP) [78],

which allow skilled attackers to create sophisticated forgeries manually [56]. However,

manipulating images with these tools is commonly skill-intensive and time-consuming,

while more automation is in demand. Then, recently, we have seen the arrival of fully

automated image forgery techniques powered by artificial intelligence algorithms such as

deep generative models. Deep image forgery techniques have been developed by academic

researchers beginning in the 2010s, and later widely improved, adapted and expanded

by academia and industry in the recent decade [11, 63, 70, 162].

There has not been a standard, explicit classification of deep image forgery technology.

Previous taxonomies tended to be task-oriented. For example, In 2004, Farid [35] outlined

six different image forgery types, i.e., compositing, morphing, re-touching, enhancing,

computer generating and computer painting. More recent surveys on DeepFakes prefer to

divide forgeries into four general types: face synthesis, attribute manipulation, identity
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Figure 2.1: The technical evolution of the backend GAN techniques for deep image
forgery, with highlighted milestones.

swap, and expression swap (also known as face reenactment) [63, 137]. In this thesis,

we provide a simpler, technique-oriented taxonomy from the aspect of forensic focuses,

which can facilitate the forensic and anti-forensic investigations, as follows:

• End-to-end generated forgery. This type of forgery is synthesized by end-to-end

deep generative models, particularly GANs, without any other post-processing

operations. This can be unconditional generations, where non-existent images are

created from random noises, or conditional generations, where additional reference

images and semantic labels may be needed, such as attribute manipulation and

identity swap.

• Phase-in forgery. This type of forgery requires not only a deep generation process

but also several post-processing operations, such as direction alignment, blending,

rendering, denoising, etc., to enable a more smooth, photorealistic composition.

This is a common procedure for identity swap and expression swap. Note that

these post-processing operations can also be completed by deep generative models,

which means the whole process will involve multiple independent deep generative

models.

The reason we define such two types is that the forensic focuses on the two types

of forgery are different since deep generative models and post-processing operations

are likely to lead to significantly different forensic traces, artifacts, or noises. Despite
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the difference, one common thing is that both types employ deep generative models,

particularly GANs, for a high-fidelity generation. Therefore, the detection of GAN-

generated images is a fundamental countermeasure against deep image forgery and,

thus, is the primary focus of this thesis. Figure 2.1 illustrates the technical evolution of

the backend GAN techniques for deep image forgery, with highlighted milestones.

2.2 The forensic research

2.2.1 Forensics against conventional image forgery

In conventional image forensic tasks such as copy-move detection and camera source

identification, A large number of forensic algorithms have been proposed, which can be

divided into two categories: feature engineering-based algorithms and deep learning-

based algorithms. Feature engineering-based algorithms focus on mining forgery features

from image contents including color space, texture and shape. Deep learning-based

forensics algorithms are mainly data-driven, i.e., learning from a large number of data

to automatic recognize of image deep features. In this way, more abundant features can

be extracted, and the forensic effect will also be improved significantly. Currently, deep

learning-based forensics algorithms have been widely recognized and applied.

2.2.1.1 Feature engineering-based algorithms

Kot et al. [75] pointed out that feature engineering-based algorithms can be modeled

as a classification problem in the field of machine learning. The complete forensic

framework is shown in Figure 2.2, including the model training process and the forensic

detection process. The model training process is to supervise the learning of images

from N different sources, including the modules of feature selection, feature extraction

and classifier training. First, selecting features according to the classification purpose.

The candidate features include e.g. image color, texture and shape. Second, extracting

features from the training dataset. Finally, using the extracted features to train the

classifier. The commonly used machine learning classifiers include but not limit to Linear

Discriminant Analysis (LDA), Support Vector Machine (SVM), and Naive Bayes (NB) and

ensemble classifiers. The forensic detection process is to use the well trained classifier

to identify the source of the unknown test image. According to the different features

used by each algorithms, the feature engineering-based algorithms can be divided into
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Figure 2.2: The common framework of feature engineering-based algorithms in conven-
tional image forensic tasks.

three categories: statistical features-based forensics, texture features-based forensics,

and imaging-based forensics.

Statistical features-based forensics Image statistical features refer to statistics

that can be directly calculated from the image pixel values themselves, or from the image

transform domain, such as pixel mean, variance, covariance, correlation coefficient, etc.

[24, 38, 71, 97, 148]

Texture features-based forensics The image texture feature is represented by the

gray distribution of pixels and surrounding neighborhoods, depicting the structural prop-

erties of the object surfaces that change slowly or periodically, such as image residuals,

local binary patterns, contour wave decomposition, edge contours. [15, 16, 30, 84, 86, 87,

136]

Imaging-based forensics The imaging process of a digital image inside the camera is

shown in Figure 2.3, the light reflected by the natural scene is focused by an optical lens,

and first passes through a color filter array (CFA), so that each pixel has only one color

component of red, green and blue. Then it is projected on the camera sensor to convert

the optical signal into an electrical signal. Then the single-channel image is interpolated

into RGB three-channel image by the CFA interpolation algorithm. Finally, a series

of image processing algorithms inside the camera are performed sequentially, such as

white balance, gamma correction, image sharpening and so on. In order to save camera

memory, the processed digital images are usually stored after JPEG compression. Each

operation described above will leave different traces in the image, and digital images

from different sources will definitely produce different structural characteristics during

the imaging process. By extracting and analyzing these characteristics, forensics can be

effectively performed. [1, 8, 23, 28, 36, 95]
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Figure 2.3: Imaging process of a digital image inside the camera

2.2.1.2 Deep learning-based algorithms

Unlike feature engineering-based algorithms, deep learning algorithms integrate feature

extraction and feature classification into the same network structure. Compared with

feature engineering-based algorithms that require sophisticated domain knowledge and

more time consumption, deep learning methods benefit from data-driven representation

learning and pattern recognition, which can learn more accurate and richer represen-

tations of implicit features at different levels autonomously, avoiding the limitations

caused by hand-crafted features. Currently, Convolutional Neural Network (CNN)-based

deep learning algorithms have gradually been widely adopted in the field of image source

forensics. Barofio et al. [140] initially tried to use AlexNet [76] to identify the source of

the device, which achieved the second price in the camera detection task as a part of the

IEEE‚Äôs Signal Processing Camera identification Challenge. Bayar et al. [6, 7] proposed

a self-learning restricted convolution structure to replace the high-pass filtering residual

kernel and further improve the effectiveness of the model. Their method can detect

multiple different image editing operations with up to 99.97% accuracy. Yang et al. [152]

proposed an algorithm using a Laplace filter to enhance the noise signal introduced by

the re-capturing. The proposed method achieved detection accuracy above 95% on four

kinds of small-size image databases. Ye et al. [155] proposed a camera source forensics

algorithm based on CNN, which adds high-pass filtering residual processing to the front

of CNN to enhance the signal-to-noise ratio of the relevant signals. They proved that

adding high-pass filter can achieve better results than no high-pass filter. Edmar et al.

[119] proposed a transfer learning scheme to obtain an effective forensic model. The

proposed method is able to distinguish computer-generated images or natural photos

with an accuracy higher than 94%.

17



CHAPTER 2. RELATED WORK

2.2.2 Forensics against deep image forgery

2.2.2.1 Normal detection methods

Normal detectors aim for high detection accuracy when identifying GAN-generated

images in a known dataset. The recent technology can be divided into two mainstreams:

Spatial-based detection and Frequency-based detection [105].

Spatial-based detection The image-domain detectors typically extract detectable

traces from the image pixel information. Earlier research tended to train a DNN-based

classifier to learn deep representative features from the images directly [99, 134]. In

contrast, more current works chose to combine heuristic feature mining or a specific

learning pattern with DNN classifiers to improve detection accuracy. For example,

Nataraj et al. [108] and Barni et al. [5] proposed to use the co-occurrence matrices on

different color channels for GAN-generated image detection. McCloskey et al. [103]

revealed the difference between a GAN and a camera in forming color, resulting in a

detection model based on the saturated and underexposed pixels. Hu et al. [51] show that

GAN-synthesized faces are exposed with the inconsistent corneal specular highlights

between two eyes, which can be exploited for detection. Some researchers pointed out

that, similar to camera fingerprints, GANs will leave unique model fingerprints in the

generated images, which can be leveraged to identify the source of the fake images. GAN

fingerprints can be extracted as noise residuals from image pixels [100], or encoded from

global image representations by a DNN [158]. There are also several works improving

on the network architecture or learning pattern of the detector. For example, Marra et al.

[101] designed an incremental learning framework to continuously evolve the detection

models as new types of generated data appear. Jeon et al. [57] introduced a lightweight

image-based self-attention module that can be integrated with pre-trained models for

efficient fine-tuning with only small amount of data.

Frequency-based detection The frequency-domain detectors mine features from the

frequency representations of images. These works were motivated by the observation

that statistical frequency discrepancy exists between real and GAN-generated images

and between images generated by two different GANs. Previous studies have explored

the feasibility of exploiting the frequency discrepancy for forgery detection [32, 33, 39].

Images are normally transformed in a particular spectral representation, such as the

Fourier spectrum and the Discrete Cosine Transform (DCT) coefficients, to enable the

detector to learn the frequency discrepancy. [39] have pointed out that, a simple classifier,
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for example a shallow CNN, is able to achieve a high detection accuracy with the DCT

spectral inputs. [33] and [32] proposed to simplify the input spectral representation by

transforming the 2D Fast Fourier Transform (FFT) magnitude into 1D spectral profile

for a lightweight detection. [91] found that the spectral discrepancy is more significant

in the phase spectrum than in the amplitude spectrum, and accordingly proposed to

combine image pixel and phase spectrum for detection. However, despite the frequency

features being highly distinguishable, some recent studies further pointed out that

these frequency features are unstable and easy to be perturbed [31, 32, 53, 64]. As a

result, the detectors heavily relying on the frequency features are vulnerable and weakly

generalized.

In addition, there is a branch of detectors that target sophisticated deep forgeries

involving not just GANs but also post-processing procedures such as face alignment,

rendering, and compression. The fundamental detection techniques are similar to the

methods outlined above, also relying on features extracted from the image domain,

frequency domain, or a combination of both. This paper is particularly concentrated on

the problem of detecting end-to-end GAN-generated face forgeries.

2.2.2.2 Generalized and robust detection methods

Besides the demand for high detection accuracy, there forms a surge of interest in

the generalization ability and robustness of GAN-generated image forgery detection.

Existing studies mostly rely on developing more complex detectors or feature engineering

techniques to learn more generalized and robust feature representations. Chai et al.

[19] investigated what semantic properties of fake images make them detectable and

identified what generalizes across different GANs. They also proposed a patch-based

classifier with limited receptive fields to focus on local patches that are more generalized

than global structure. Zhang et al. [159] proposed AutoGAN, a generator that can

simulate the common spectral artifacts of GAN-generated images. A generalized detector

can be trained using the simulated fake samples. Wang et al. [146] investigated the

best combination of different augmentation strategies, such as JPEG compression and

Gaussian blurring, for improving the generalizability and robustness of DNN detectors.

Jeong et al. [58] proposed a bilateral high-pass filter-based preprocessing method for fake

images, which strengthens the representations of common frequency-domain artifacts

shared by different GANs. Bui et al. [14] proposed a representation mix-up training

strategy and a novel loss to make the detector invariant to semantic changes and

improve its robustness to common image transformations changing in quality, resolution,
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shape, etc. Jeong et al. [59] designed a frequency-level adversarial perturbation (FLAP)

learning framework that can suppress the unstable GAN-specific frequency artifacts

in the training samples during the training of the detector. He et al. [49] proposed a

re-synthesis residual (RSR)-based detection method. A re-synthesis model pre-trained

with real images is applied to real and fake images to obtain distinguishable re-synthesis

residuals, which contain robust features.

2.2.2.3 Proactive detection methods

The spatial-based and frequency-based detection methods discussed above are all passive

detection methods. There are also a few studies investigated proactive detection methods

which involve a watermarking mechanism. An invisible watermark that is fragile to

forgery manipulation is initially injected into the original image before sharing. A decoder

is equipped to verify the integrity of the watermark to determine whether or not the

image has been forged. For example, Yang et al. [154] and Neekhara et al. [110] proposed

deep-learning-based watermarking methods which are robust to normal image post-

processing but fragile to deepfake manipulation. Wang et al. [145] devised FaceTagger,

a simple yet effective encoder and decoder design along with channel coding to embed

recoverable message to the facial image to track DeepFake provenance. Zhao et al. [161]

proposed to embed watermarks as anti-Deepfake labels into the facial identity features

disentangled with attribute features to further improve the robustness of watermarks

against conventional image modifications.

2.3 The anti-forensic research

Anti-forensic research in this realm aims to understand the robustness issues of a GAN-

generated forgery detector by actively exposing the target detector to possible attacks.

In most cases, a security analysis is required to assess the vulnerability of the target

detectors, where different scenarios such as black-box and white-box tests and some

novel attack methods are involved.

2.3.1 Adversarial attacks

The majority of anti-forensic research prefers adversarial attacks for security analysis

since most forgery detectors are machine learning models. A successful adversarial

example is created by embedding imperceptible noise perturbations into the original
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fake image to evade the detector. Commonly, the noises are crafted based on the learning

gradients of machine learning detectors. Thus, adversarial attacks are a powerful white-

box attack and have potential black-box transferability. Several classic adversarial attack

methods, such as Fast Gradient Sign Method (FGSM) [46], iterative FGSM [77], Carlini

and Wagner l2-norm Attack [18], DeepFool [107] and Projected Gradient Descent (PGD)

[98], are explored to attack GAN-generated forgery detectors in both white- and black-box

scenarios [4, 17, 34, 42, 55, 109, 160]. Liao et al. [88] improved the efficacy of adversarial

attack by adding perturbations to the key regions of the forged samples instead of

the entire image. Wang et al. [147] found that the addition of adversarial noise to a

transformed color space mitigates the perceptual degradation of the raw forged image.

2.3.2 Reconstruction attacks

In addition to adversarial attacks, some recent studies have designed novel attacks

specific to GAN-generated forgery detectors. Most of them require a generative recon-

struction process to re-synthesize the forgery samples and alter their forgery traces

in order to reduce the degree of fakeness. For example, Huang et al. [53] proposed

FakePolisher, a dictionary learning-based reconstruction model, to project DeepFake

images onto the manifold learned from real images to reduce their spectral artifacts.

Neves et al. [111] proposed GANprintR, a convolutional autoencoder that learns the

reconstruction-related representation from real images. Then, the learned autoencoder

can be used to remove the GAN fingerprints contained in the forged images. Ding et

al. [29] proposed an adversarial learning framework that re-synthesizes face-swapping

images with narrowing down the distributional gap between real and fake faces. Peng

et al. [114] proposed a bidirectional conversion between GAN-generated and natural

facial images based on a GAN composed of noise encoding and content encoding for

anti-forensics. Liu et al. [89] proposed the trace removal attack (TR-Net), an adversarial

learning network that can simultaneously remove multiple forgery traces from the fake

images to evade detection.

2.4 Frequency analysis of DNNs’ behavior

Some pioneering studies have shed light on the behaviors of generic DNNs in learning

natural images through frequency analysis. For example, Xu et al. [151], Wang et al. [144]

and Rahaman et al. [118] have pointed out that DNNs have a bias in learning information
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at different frequency bands, and investigated the influence of the frequency bias in

generalizing to out-of-distribution images. Yin et al. [156] explored DNNs’ robustness

to adversarial attacks from a frequency perspective. Despite these existing advances in

natural image classification, the frequency-level understanding of detecting machine-

generated images has yet to be fully explored. The frequency patterns of GAN-generated

images are significantly different from those of natural images, making it impractical to

apply previous findings directly. Moreover, the connection between the generalization

and robustness of GAN-generated forgery detectors is unclear.
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PRELIMINARY

In this chapter, we will briefly introduce some preliminary knowledge of this thesis,

including the basic structure and workflow of deep learning classifiers, deep generative

models such as autoencoder and generative adversarial network (GAN), adversarial

attack, image frequency-domain transformation. We will also introduce the formulation

of DeepFake forensic and anti-forensic problems.

3.1 Deep learning classifiers

Nowadays, deep image forgery detectors are mostly deep learning classifiers. A deep

learning classifier refers to a deep neural network (DNN) comprising multiple layers

with a large number of computational neurons and nonlinear activation functions [79].

The workflow of a typical deep learning classifier includes two phases: the training phase

and the inference phase. In the training phase, the parameters of the DNN are updated

continuously through iterative forward and backward propagations. Specifically, given

a input space X and a label space Y , the DNN fθ with parameters θ are expected to

minimize the loss function L on the training dataset (X ,Y ), which can be defined as:

argmin
θ

∑
xi∈X ,yi∈Y

L ( fθ(xi), yi),

where fθ is the DNN model to be trained; xi is a training sample, and yi and fθ(xi)

are the corresponding ground-truth label and the predicted label, respectively. In the

inference phase, the optimal models f ⋆
θ

with fixed optimal parameters θ⋆ are applied to
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A low-dimensional latent feature space

Figure 3.1: The sketch of a basic autoencoder.

provide decisions on test samples that are not included in the training dataset. Given an

unseen input x j, its predicted label can be computed through a single-step forwarding

yj = f ⋆
θ

(x j).

3.2 Deep generative models and adversarial learning

There are two main types of deep generative models adopted for creating deep image

forgeries, namely autoencoder and generative adversarial network.

Autoencoder is an unsupervised artificial neural network that learns to translate

the original high-dimension input into the latent low-dimensional code, then learns to

recover the data back from the encoded representation [50]. A basic autoencoder consists

of two parametrized networks, the encoder Eφ : X → Z parametrized by φ and the

decoder Dθ : Z → X parametrized by θ, where X and Z indicate the data space and

the latent feature space, respectively. The encoder Eφ and decoder Dθ are in together

trained in a reconstruction task, which can be denoted as:

argmin
φ,θ

∑
xi∈X

L (xi,Dθ(Eφ(xi)),

Figure 3.1 shows the sketch of an autoencoder.

GAN is another unsupervised artificial neural network consists of two networks:

a generator G and a discriminator D [44]. In an image generation task, G learns to

map a target distribution pdata of the given images X from a noise space Z , while D
distinguishes the candidates produced by the generator from the true distribution. This
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Figure 3.2: The sketch of a basic generative adversarial network.

learning process is constructed as a dynamic contest, where a min-max game between

between G and D is played. The learning pattern is also known as adversarial learning.

Learning alternates between G and D by optimising the following adversarial loss

function:

(3.1) min
G

max
D

Ladv(D,G)= Exi∼pdata [logD(xi)]+Ez∼pz [log(1−D(G(z)))],

where G(·) and D(·) are the outputs of G and D, respectively. Ireal is the real image, z is

the random input seed of G, pdata and pz are the distributions of X and Z , respectively.

When the training converges to the point where D is successfully ’fooled’ by the images

G has generated, i.e., D(G(z)) reaches approximately 0.5, G is able to generate images

within the target distribution, i.e., G(z)∼ pdata . Then the well-trained G can be applied

as the desired generative model for future image generation. Figure 3.2 shows the sketch

of a GAN.

In addition, if an extra control is imposed over the modes of the data to be generated,

such as adding an attribute label y as prior guidance for supervision, a conditional GAN

will be created then.

3.3 Adversarial attack

Adversarial attacks are a common type of attack against machine learning classifiers

and have been exploited to attack deep learning-based forgery detectors in previous
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anti-forensic research. In an adversarial attack, the attacker often crafts adversarial

examples originating from the original forged images. Szegedy et al. [133] first introduced

the concept of adversarial examples, which can mislead the target machine learning

classifiers with a high success rate in the inference phase. The primitive method is to

search for the minimally distorted adversarial examples with the targeted label through

Equation 3.2.

(3.2) min
∥∥x′− x

∥∥2
2 s.t. f (x′)= t and x′ ∈ [0,1]m

Through this equation, attackers can find the closest x′ which has a minimal distance

with benign sample x by minimizing
∥∥x′− x

∥∥2
2 and would be misclassified as targeted

label t by the condition of f (x′) = t. This problem can be further formulated to the

optimization problem in Equation 3.3:

(3.3) min c
∥∥x′− x

∥∥2
2 +L ( f (x′), t) s.t. x′ ∈ [0,1]m

3.4 Image frequency-domain transformation

Some of our proposed methods require transforming images from the spatial domain to

the frequency domain. The spatial domain contains visual information and is normally

represented as 8-bit pixels in RGB color mode (i.e., three values within the range [0,255]).

The frequency domain can be depicted as the frequency spectrum transformed from

the spatial information by discrete Fourier transformation (DFT) or discrete cosine

transformation (DCT) [43]. Given an image I ∈ RM×N , the DFT is computed via a two

dimensional transformation that maps the value of each pixel to a frequency value

F (u,v):

(3.4)
F (I)(u,v)=

M−1∑
m=0

N−1∑
n=0

I(m,n) · e−2πi· um
M e−2πi· vn

N

for m = 0,1, . . . , M−1, n = 0,1, . . . , N −1

In practice, DCT, a variant of DFT, is more widely used for frequency transformation

[43] given it compacts the real part of DFT information and avoids the imaginary part.

The DCT for an image is normally computed as:

(3.5) D(I)(u,v)= C(u)C(v)
M−1∑
m=0

N−1∑
n=0

I(m,n) ·cos
[
πu
M

(
m+ 1

2

)]
cos

[
πv
N

(
n+ 1

2

)]
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where for ∀u = 0,1, . . . , N −1, C(0)=p
1/N and C(u > 0)=p

2/N to ensure the orthonor-

mality. The DCT spectrum is typically depicted as a coefficient heatmap, where the

magnitude of each coefficient measures the contribution of the corresponding frequency

component to the overall image. The top left area of the heatmap indicates lower frequen-

cies, which represent the major visual information of an image, while the right bottom

area corresponds to higher frequencies, which reflect the spatial information associated

with edges, structural details, and noises.

3.5 Problem formulation

The DeepFake forensic is commonly formulated as a real/fake detection problem. For-

mally, let D= {I+, I−} be a dataset consisting of real images I+ and fake images I−. A binary

machine learning classifier C trained with D is able to predict the correct real/fake labels

for a given unseen test sample, i.e.,:

(3.6) p
(
C (I+test)= ‘real’

)≈ 1, and p
(
C (I−test)= ‘fake’

)≈ 1

Oppositely, in DeepFake anti-forensic tasks, the attacker aims to develop an attack

model A to perturb the original DeepFake samples, resulting in attack samples that can

evade the target detector C t. In addition, the perturbation is desired to be imperceptible,

which means an attack sample is visually indistinguishable from its source DeepFake

sample. Specifically, given an arbitrary DeepFake sample I−test, the anti-forensic goal can

be described as:

(3.7) p
(
C t(A (I−test)) ̸= ‘fake’

)≈ 1, and d
(
A (I−test), I−test

)≤ ϵ

where d(·, ·) is a visual distance measurement.
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4
TASK-SPECIFIC FORENSICS BY MULTI-LEVEL GAN

FINGERPRINTING

Recent advancements in image generation by Generative Adversarial Networks (GANs)

have introduced new security challenges in image forensics. One promising solution

involves detecting tell-tale marks left by GANs in images, commonly referred to as

GAN fingerprints. Existing methods for GAN fingerprinting often focus on a single

forensics task, relying on noisy post-processing or exhibiting pixel bias in their extrac-

tion methods. In this chapter, we delve into the next evolution of image forensics in

this battleground, specifically identifying and applying GAN fingerprints for practical

forensics against GAN-generated images. We are the first to focus on the problem of

different distinguishability levels required by different image forensics tasks and propose

a task-specific GAN fingerprinting framework to deal with the problem. Our research

began by exploring GAN fingerprint dependency across two image signal domains, which

revealed two distinct levels of fingerprints, including the instance-level fingerprint in the

spatial domain and the architecture-level fingerprint in the frequency domain. From this

finding, we proposed an explicit decoupling representation framework to separate and

extract the two types of GAN fingerprints from different domains. An adversarial data

augmentation strategy plus a transformation-invariant loss is added to the extraction

pipeline to enhance the robustness of fingerprints to image perturbations. Then we

elaborated on how to leverage the two types of GAN fingerprints to perform task-specific

fingerprinting in three typical forensics tasks, including fake image detection, model

intellectual property protection, and fingerprinting attack and defence. Extensive experi-
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ments have verified our dependency analysis, and the effectiveness and robustness of the

proposed fingerprint extraction framework were well demonstrated in a benchmark test.

The task-specific fingerprinting methods were tested in real-world or simulation-based

scenarios.

4.1 Background

Like many other areas of computer science, deep learning has been responsible for

significant advancements in the field of image and signal processing [79]. Among these,

the generative adversarial network (GAN) [44], a typical deep generative model, has seen

substantial development in automated image generation, synthesis, and editing. However,

alongside this success, new privacy and security risks are rising continuously. For

example, DeepFake, an emerging face forgery technique driven by GANs, can seamlessly

synthesize fake image or video records according to victims’ faces [138]. On the other

hand, nowadays, both the well-trained GAN models and the images created by these

GANs are increasingly deemed as valuable digital assets given the significant costs

in training a GAN model [158]. These types of intellectual property (IP) needs to be

carefully protected from theft or plagiarism.

Image forensics, a cluster of techniques that can determine whether the image content

is authentic or modified, or identify the true source of an image, helps to alleviate these

concerns [40]. Despite most current GAN-generated image forensics methods considering

different tasks such as DeepFake image detection and model IP protection individually,

an intriguing question is raised: Is there a universal mechanism to deal with different

forensics tasks simultaneously? Model fingerprinting, which detects the intrinsic clues

already in the image that might hint at its source model [96], offers a promising direction

for this problem. Unlike conventional camera fingerprints that have been extensively

explored, the research on GAN fingerprints is just at its beginning.

Currently, there are only a few GAN fingerprinting studies. For example, Marra et al.

[100] estimated GAN fingerprints as average image noise residuals and Yu et al. [158]

used Deep convolutional neural network (CNN) features to represent GAN fingerprints.

These pioneering studies tend to focus on how to extract GAN fingerprints only, lacking

further exploration of how to apply the extracted fingerprints in different forensic tasks.

More critically, none considered the problem of different distinguishability levels required

by different image forensics tasks, which is a crucial concern in practice. A fingerprinting

method that can flexibly operate at different distinguishability levels specific to different
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Figure 4.1: Overview of multi-level GAN fingerprinting for task-specific forensics.

tasks can be highly preferable (see detailed analysis in Section 4.2 and 4.4). Meanwhile,

existing fingerprint extraction methods both involve noisy post-processing operations for

explicit fingerprint representation, which can compromise the visualization performance.

Another issue is that previous GAN fingerprints were extracted directly from the pixel

information, which are easily biased by visual content and may be vulnerable to common

image perturbations such as cropping or compressing.

In this chapter, we present a novel multi-level model fingerprinting method for task-

specific forensics on GAN-generated images and make a step further in this fledgling area

by addressing the above issues. Our work revolves around solving three key problems:

• RQ1. How to extract GAN fingerprints with different levels of distinguishability?

• RQ2. How to make results of the GAN fingerprint extraction process more effective

and robust?

• RQ3. How to perform task-specific GAN fingerprinting in practical image forensics

tasks?

For RQ1 and RQ2, we first demonstrate, both theoretically and empirically, GAN

fingerprints have different dependencies in the spatial and frequency domains, resulting

in fingerprints with architecture-level distinguishability and instance-level distinguisha-

bility (In this chapter, architecture-level distinguishability means the fingerprints can

differentiate two GANs with different network architectures (e.g., ProGAN [66] versus
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StarGAN [26]); Instance-level distinguishability means the fingerprints can differentiate

any two GAN instances resulted from two individual training processes, irrespective of

their architectural similarity). Then, based on the analysis, a decoupling representation

framework is proposed to extract the two levels of fingerprints separately from the two

signal domains to provide different levels of distinguishability required in real-world

tasks. The framework involves an end-to-end mechanism for explicit fingerprint represen-

tation to avoid any noisy post-processing operations. An adversarial data augmentation

strategy combining a transformation-invariant loss is additionally proposed to enhance

the robustness of fingerprints to common image perturbations. For RQ3, we elaborate

three typical downstream image forensics tasks including fake image detection, model

IP protection, and fingerprinting attack and defence, and show how to leverage the two

levels of GAN fingerprints to perform task-specific fingerprinting. The overview of our

work is shown in Figure 4.1.

To the best of our knowledge, we are the first to consider the distinguishability level

required in practical GAN image forensics tasks, and propose a task-specific model

fingerprinting method which supports flexible operation at different distinguishability

levels. Our contributions are as follows:

• We performed an in-depth analysis of GAN fingerprint dependency, providing theo-

retical and empirical evidence on the existence of architecture-level and instance-

level GAN fingerprints in the spatial and frequency domains respectively (RQ1).

• We developed an explicit decoupling representation framework that can separate

and extract the two levels of GAN fingerprints from the two domains (RQ2).

• We explored the applicability and usefulness of the two levels of GAN fingerprints

for task-specific fingerprinting in multiple image forensics tasks (RQ3).

4.2 GAN fingerprint dependency

We undertook an analysis of the root dependencies of GAN fingerprints, which have

not yet been fully revealed in previous GAN fingerprinting studies. Importantly, we

theorised the differences between real images and GAN-generated images, as well as

between images generated by two GANs in the spatial domain and the frequency domain,

respectively. The experiments in Section 4.5.2 provide empirical supports to the analysis.

Through the analysis, we identify a cause of GAN fingerprints for each domain, sparking
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the idea that decoupling the fingerprint representation via domain transformation might

offer different distinguishability levels required in practice.

4.2.1 Dependence on GAN architecture

GANs are known to leave distinguishable quasi-periodic spectral artifacts in the high

frequency domain[39, 146, 159], which are supposed to be one possible origin of GAN

fingerprints. For example, Figure 4.2.a-b shows the average discrete Fourier transforma-

tion (DFT) DFT spectra of 1,000 real images and of 1,000 images generated by StarGAN

[26]. The quasi-periodic spectral artifact in the StarGAN spectrum is obvious.

a b c d
Figure 4.2: The differences between real images and GAN-generated images in the
frequency and spatial domains.

We theorised that the GAN fingerprints derived from spectral artifacts are GAN-

architecture-dependent, more specifically, being associated with the upsampling units

sitting in the generator G of GAN. The upsampling units are necessary elements in

GAN’s generator responsible for constructing higher-dimensional data/features (e.g.,

an image I) from low-dimensional ones (e.g., an input seed z). There are two common

types of upsampling units in GAN, namely interpolation upsampling and transposed

convolution. As shown in Figure 4.3, both can be formulated as a similar pipeline [159]:

the input tensor is first upscaled by zero-padding interpolation that pads the raw values

with zeros (indicated as white grids) and then convolved with a filter kernel (indicated

as grey grids). The only difference is that in interpolation upsampling the convolution

kernel is fixed, while in transposed convolution the convolution kernel is learnable.

To demonstrate the dependence of GAN fingerprints on upsampling unit, we need

to reveal the relations between the spectral artifacts and the upsampling units. Zhang

et al. [159] proved it in a special two-time upsampling case, and we extend their proof

to a general upsampling case with an upscale factor of s. DFT is used to compute the
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Figure 4.3: Schematic of two upsampling units: transposed convolution (up) and interpo-
lation upsampling (down). In this example a 2×2 feature is upsampled to 4×4.

natural frequency spectrum. We first consider the common zero padding interpolation

process in the above-mentioned upsampling pipeline in the one-dimensional case. Let

f (n),n = 0,1, ..., N −1 be a one-dimensional signal and its DFT is

(4.1) F (u)=
N−1∑
n=0

f (n)exp
(
−2πi

un
N

)
u = 0,1, ..., N −1

By zero-padding with a scaling factor s, the spatial signal is expanded to an sN-point

signal f ′(m),m = 0,1, ..., sN −1:

(4.2) f ′(m)=
{

f (m/s) m = sn
0 m ̸= sn

From the standpoint of sampling theory, Eq. 4.2 can be recasted as:

(4.3) f ′(m)=
∞∑

t=−∞
f (

m
s

) ·δ(m− st) m = 0,1, ..., sN −1

where δ(·) indicates the Dirac impulse comb.

The DFT of f (m/s) is computed first, denoted as F ′(v):

(4.4) F ′(v)=
sN−1∑
m=0

f (
m
s

)exp
(
−2πi

vm
N

)
Let m′ = m/s, and we have:

(4.5) F ′(v)=
N−1∑
m′=0

f (m′)exp
(
−2πi

svm′

N

)
=F (sv)
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The final equality indicates that the frequency spectrum of f (m/s) is a scaled replica of

the frequency spectrum of f (n) by a factor of 1/s within the region of [0, N−1
s ]. Now let us

consider the DFT of f ′(m), denoted as F (̂v). Assuming a periodic signal and applying

the convolution theorem in [43] to Eq. 4.3, we have:

(4.6)

F (̂v)=
∞∑

τ=−∞
F ′(τ) · 1

s

∞∑
t=−∞

δ(v−τ− t
s

)

= 1
s

∞∑
t=−∞

∞∑
τ=−∞

F ′(τ)δ(v−τ− t
s

)

= 1
s

∞∑
t=−∞

F ′(v− t
s

)= 1
s

∞∑
t=−∞

F (sv− t)

which is equivalent to a periodic sampling of the scaled replicas of the frequency spectrum

of f (n) in the new frequency spectrum. Therefore, in the one-dimensional case, all

frequencies beyond (N −1)/s will be potential artifacts. When generalised to the two-

dimensional case, the replicas in the horizontal and vertical directions of the high-

frequency space will be superimposed onto each other, resulting in periodic artifacts.

Then, with both transposed convolution upsampling and interpolation upsampling, the

zero-padding interpolation is connected to a convolution kernel. However, neither a

learnable kernel nor a fixed one can act as an ideal filter to completely eliminate these

high-frequency artifacts. Thus, the final result is the periodic artifacts in the spectrum

of the generated image, yielding an architecture-dependent GAN fingerprint in the

frequency domain.

4.2.2 Dependence on training randomness

We now demonstrate the existence of another GAN fingerprint which is independent

of the GAN’s architecture information. We suppose this kind of GAN fingerprint is

associated with the randomness in its own training process.

Essentially, a GAN model is a machine learning model that learns to approximate

a target distribution pdata from real-world images. According to the "No Free Lunch

(NFL)" theorem [150], no prior distinction exists between any two models. Therefore, for

a given task, if the generators G in all the GANs were able to converge on the perfect

optimum G⋆, it would be possible to arrive at ∀G, pdata ≡ pG⋆ . This equivalence suggests

that, ideally, the images generated by different GANs should each be identical to the real

image without any difference. However, in reality, training a GAN model is often subject

to the limitations of dataset and model. For example, it is highly improbable that the

sampled data will cover the full target distribution pdata, and the model’s capacity will
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inevitably be bounded by factors such as data noise and neuron amount. As a result, the

optimisation process often falls into a random local optimum, leading to random bias in

different GAN instances.

A typical example is the visual defect phenomenon. Some sub-optimal GAN instances

will leave visual defects in the spatial content of their generated images, which may

present in possible forms of distortion, deformity, dissonance, incompleteness or inconsis-

tency [54, 163]. These defects can occur with any of the visual information from low-level

regional details or noise patterns to high-level semantic content. Figure 4.2.c-d show a

real image and a ProGAN-generated image with distortions in the hair and background

and inconsistency in the two eyes. Previous studies have shown that distinguishable

features can be extracted from these visual defects (even the defects are nearly invisible

to human eyes) to identify GAN sources [54, 163]. The findings imply that unique GAN

fingerprints could be associated with the visual defects which are a result of the training

randomness.

Generally, the training randomness of a GAN instance is dependent with the following

specific factors: 1) the semantic information of the training data of GAN; 2) the differences

in the training settings, such as the sample size, the convergence point, the initialisation

parameters, etc. Accordingly, the representation of the GAN fingerprints derived from

the random bias should be directly influenced by these factors.

4.2.3 Architecture-level and instance-level GAN fingerprints

The multi-level distinguishability problem. In practice, model fingerprints for

different image forensics tasks often necessitate different levels of distinguishability.

For example, a DeepFake creator is likely to update their models regularly with new

data while keeping the model architecture invariant. As a countermeasure, in DeepFake

image detection, the fingerprints identified in images from the same DeepFake source

should generalize well among GANs with the same architecture, and insensitive to model

parameter changes. By comparison, in a GAN IP protection task, the model owner may

desire to build a unique signature for the GAN instance in hand. Therefore, the model

fingerprint for this use should ensure an exclusive directing to the current source GAN

instance, i.e., any two GAN instances resulted from different training processes should

have distinct fingerprints, even if their architectures are identical.

Through the analysis of GAN fingerprint dependency, we identified upsampling bias

in the frequency domain and random bias in the spatial domain as two origins of GAN

fingerprints. The GAN fingerprints depend on the two biases can exhibit different levels
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of distinguishability that we desire: Upsampling bias is closely associated with GAN’s

architecture information. Hence, the resulting fingerprints should be distinguishable

for GANs with different architectures, while share a similar pattern for GANs with the

same architecture. We refer to these fingerprints as architecture-level. In comparison,

random bias is highly related to a GAN’s training process and independent with its

architecture. Hence, the resulting fingerprint corresponding to any one GAN instance

should be unique. We refer to these fingerprints as instance-level. The architecture-level

and instance-level GAN fingerprints are perfectly applicable to resolving the multi-level

distinguishability problem. Another benefit is that the architecture-level fingerprints

are more applicable to black-box fingerprinting scenarios since it can be obtained from

publicly-available GAN substitutes whose architectures are the same as the target one,

while the instance-level ones requiring the knowledge of a GAN instance’s training

details are more applicable to white-box scenarios.

4.3 GAN fingerprint extraction

With the insights into GAN fingerprint dependency, the next challenge is how to decouple

and extract the architecture-level and instance-level GAN fingerprints. Taking practical

applicability into consideration, an effective extraction method should:

• be able to decouple instance-level GAN fingerprints in the spatial domain and

architecture-level GAN fingerprints in the frequency domain;

• represent GAN fingerprints in a 2D view that is human-interpretable in line with

the prior GAN fingerprinting studies [100, 158], but in an end-to-end way without

any extra post-processing; and

• be robust against common image processing approaches.

The above requirements are the objectives of designing our fingerprint extraction method.

4.3.1 Fingerprint decoupling

GAN fingerprint is a unique and stable feature that can be extracted from the spatial

domain or the frequency domain of a GAN-generated I to indicate its origin. Thus, the

extraction can be formulated as feature representation learned in an image attribution

task [158]. The successful attribution of a GAN-generated image Ig is defined as an
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exclusive match between the image and the GAN instance Gi that originally generated

it, i.e., Ig →Gi. A practical assumption is that the candidate sources for a test sample I
belong to a finite set G= {G0,G1,G2, ...,Gn}. For ease, we use G0 to indicate the sample is

a real-world image, and Gi (i ̸= 0) is a GAN instance. The problem can be formulated as

a multi-classification task where the distinguishable patterns are recognised to classify

the image to the correct source.

The GAN fingerprints can be represented implicitly as the distinguishable and

unique features encoded from the given image in the latent feature space [158]. And

the decoupling of multi-level distinguishability can be performed in the latent feature

space accordingly. To this end, we designed a CNN encoder, which learns the features

in the above classification task. The CNN involves four convolution layers with a 3×3

kernel size, two max pooling layers with a 2×2 kernel size, a flatten layer and a dense

connection layer. Table 4.1 shows the specifications of the encoder.

Table 4.1: The details of the CNN-based fingerprint encoder.

Layer name Kernel size&depth

Input -
Convolution (3, 3, 3)
Convolution (3, 3, 8)
Max Pooling (2, 2)
Convolution (3, 3, 16)
Max Pooling (2, 2)
Convolution (3, 3, 32)

Flatten -
Dense -

4.3.1.1 Instance-level fingerprint learning

According to the root cause analysis in Section 4.2, the instance-level fingerprints are

derived from the random bias, which can occur in any visual content of the image.

Therefore, learning such fingerprints requires that all the information in the spatial

domain be taken into account. Hence, the CNN encoder is trained on image-source pairs

{(I,G )} in a supervised manner, where I ∈RN×N is the original RGB image sampled from

the training dataset and G ∈G denotes the ground-truth source. This approach ensures

the CNN learns the overall spatial information directly from the raw RGB pixels. Figure

4.4 shows the learning workflow of the instance-level fingerprint encoder (indicated by

the red arrows) and a schematic overview of decoupling in the latent feature space.
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Figure 4.4: The workflow of GAN fingerprint decouple learning, with a schematic showing
feature decoupling in the latent feature space. The red and green arrows are the learn-
ing flows of instance-level fingerprints and architecture-level fingerprints, respectively.
Shapes of the same colour indicate GAN instances with the same model architecture.
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The latent feature space is represented as the features output by the last convo-

lutional layer of the CNN. In the latent feature space, it is preferable for the encoder

to separate each class with equivalent probability. This can be done by minimising a

cross-entropy classification loss in optimization:

(4.7) Lcls(I)=− ∑
Gi∈G

Gi log(pi(I)) ,

where Gi ∈G denotes the source class and pi(I) is the probability output by the softmax

function in the final layer of the CNN encoder given an image I.

4.3.1.2 Architecture-level fingerprint learning

Recall that architecture-level fingerprints are typically located in the high-frequency

bands of the image. Decoupling these fingerprints can be done by a two-step frequency

transformation of the image before feeding the image to the encoder. First, low-frequency

signals are removed from the original image with a high-pass filter H(·) to result in "more

pure" architecture-level fingerprints in the frequency domain. This is because the low

frequency signals represent the major visual information which is typically associated

with the image content rather than the GAN architecture information. We apply a

Gaussian high-pass filter H(u,v)= 1− exp(−b2(u,v)
2b2

thre
) on the centre-shifted DFT spectrum,

where b denotes the spectrum radius from the point (u,v) to the spectrum centre, and

bthre is the band threshold for filtering. The filtered DFT spectrum is then transformed

back into the spatial image. Second, the filtered images are transformed from raw

RGB pixels into two-dimensional discrete cosine transformation (DCT) coefficients. The

reason we perform DCT instead of DFT is that, the DFT coefficients contain imaginary

components incompatible with the CNN encoder, while DCT coefficients are all real

numbers. The use the spectral coefficients as input ensures the frequency information to

directly influence the representation of the architecture-level fingerprints. In this way,

the learning of the CNN encoder is supervised by the pairs {Î,G )}, where Î =D(H (I),

D(·) indicates the DCT transformation and H (·) indicates the high pass filter. The green

arrows in Figure 4.4 demonstrate the workflow of the learning process.

Alongside the image domain transformation at the encoder’s input side, disentan-

gling the features in the latent space is additionally performed to further strengthen

the decoupling representation of multi-level fingerprints. Since the major difference

between the architecture-level fingerprints and instance-level fingerprints is the GAN

architecture-dependency, the idea is to enhance the ability of the architecture-level
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fingerprint encoder in recognizing the patterns associated with the architecture infor-

mation. As shown in the schematic overview of the latent feature space in Figure 4.4,

compared with the instance-level fingerprint learning which seeks to equally separate

every GAN instance, the architecture-level fingerprint learning is desired to accurately

cluster the GAN instances having the same architecture. This can be done by imposing

an architecture-invariant regularisation Lreg on the original classification loss, which

can enforce to minimize the inner-class distance while maximize the inter-class distance

at the architectural level.

Suppose there are C types of GAN architecture in G. For each type of architecture,

there are K GAN instances with the same architecture, e.g., {G c
0 ,G c

1 , ...,G c
K }. Then, given

an input pair (Î,G c
k ), Lreg can be denoted as:

(4.8) Lreg(Î)= ∥A(Î)− (Ac)∥2

where ∥ ·∥2 is the Euclidean distance, and A is the encoded feature in the latent feature

space (i.e., the output of the last convolutional layer of the CNN). Ac is the mean feature

vector of K GAN instances having the same architecture c, computed as an empirical

estimation over the whole training set:

(4.9) Ac = E
{Î c}

A(Î c)= 1
K

K∑
k=0

A(ÎG c
k )

where ÎG c
k indicates the input Î belongs to the source G c

k .

4.3.1.3 Robust representation

In practice, GAN-generated images are often distributed online and may undergo sev-

eral unknown perturbations, such as compression and noise-adding for communica-

tion convenience. Thus reliable fingerprints for forensics are desired to be robust to

these perturbations. We propose an adversarial augmentation strategy along with a

transformation-invariant loss regularisation to meet the need of robustness.

The adversarial augmentation strategy performed on the training dataset includes

six empirical online image transformation models:

• Flipping the image horizontally or vertically with a probability of 50%.

• Blurring the image using a Gaussian filter with kernel size randomly selected

from {1,3,5,7,9}.
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• Compressing the image using JPEG compression with the quality factor randomly

sampled from [10,75].

• Cropping the image along a random axis with percentage sampled from [5%,20%],

then resizing the cropped image back to the original resolution.

• Rotating the image with an angle randomly sampled from {45◦,90◦,135◦,180◦,225◦,
270◦,315◦}.

• Noise adds i.i.d. Gaussian noise with a Gaussian variance randomly sampled from

[5.0,20.0].

These transformation models are combined in the above order and executed with a

probability p = 0.5 for each during the augmentation. For each training sample I, we

repeat the combined transformation T for T times, i.e., T = {T1,T2, ...,TT}. Additionally,

since whatever the transformation is, it cannot change the true source information of

the image, we add a transformation-invariant loss regularisation. This loss is to ensure

the images from the same source to get closer to each other at the fingerprint level in the

presence of transformations, denoted as:

(4.10) L tra(x)= ∥A(x)− 1
T

T∑
t=0

A(xt)∥2,

where for instance-level fingerprint encoder, x = I and xt =T (I); for architecture-level

fingerprint encoder, x = Î and xt =D(H (T (I)).

The final optimisation objectives for the spatial and spectral fingerprint encoders are

(4.11)
minE

I
(Lcls +λ1L tra),

minE
I
(Lcls +λ1L tra +λ2Lreg)

respectively, where λ1 and λ2 are the balancing weights. After training, the encoded

feature vector A can be used as the implicit fingerprint.

4.3.2 Explicit fingerprint representation

The implicit fingerprints learned in the latent feature space are difficult to interpret.

According to Yu et al. [158], explicit exposure of the fingerprint in either the spatial or

frequency domains with a scale-consistent localisation mechanism is more rational and

feasible. That is to say, with both pixel input I ∈RN×N and DCT spectrum input Î ∈RN×N ,
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the fingerprint should have a visible 2D view with the scale N × N. Inspired by the

Gradient-weighted Class Activation Mapping (Grad-CAM) mechanism for deep neural

network interpretation [127], we proposed a Grad-CAM-based fingerprint representation

method. Compared with the existing GAN fingerprint models [100, 153, 158] which

require noisy post-processing or reconstruction operations, our implementation utilizes

the inherent attention map of a CNN, where no extra noise is introduced and the

computational overhead is lower.

Flatten

ReLU

CNN
encoder

Normalization

Input
Dense 

connection

Figure 4.5: The end-to-end mechanism that creates the localisation mask M f inal for
the explicit fingerprint representations from the latent feature space. The orange arrow
indicates the data flow associated with the class-specific localisation map Mloc. The blue
arrow indicates the data flow for the back-propagation activation map Mact. ⊗ denotes
element-wise multiplication, and ⊕ denotes a weighted linear combination.

As shown in Figure 4.5, a class-specific localisation map Mloc is computed first, which

can indicate the feature importance regarding the given target class in the latent feature

space. Formally, given a target class G T of a GAN instance, let Y G T
be the predicted

class score vector of G T before the softmax function in the forward propagation of the

CNN encoder, and A has a length of S. The localization map MG T

loc can be computed as a

rectified partial linear combination of A, weighted by the back-propagation gradients:

(4.12) MG T

loc =ReLU
(∑

s
αG T

s As
)
, s ∈ [1,S]

(4.13) αG T

s = 1
Z

∑
i

∑
j

∂Y G T

∂Ak
i j

where the weight αG T

k is a global average of the gradients of Y G T
with respect to each

point (i, j) in the k-th feature map of Ak, and Z is the normalisation constant. ReLU(·)
is the rectification function that forces the map to focus on the features with a positive

influence over the class of interest.
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The class-specific localisation map Mloc can only highlight a rough region of interest

for a particular class. Hence, the map is fused with a back-propagation activation map

Mact to obtain fine-grained importance of the fingerprint response at each entry of the

input. The activation map Mact is computed via Guided Back-propagation [129], which

inverts the data flow of the current CNN, i.e., backward passing the gradients through

the network to reconstruct a point-wise max activation map from the input data. Given

G T and the l-th layer of the CNN encoder, the guided back-propagation from the l-th
layer to the prior l−1-th layer is formulated as:

(4.14) RG T

l−1 =
(
f G T

l−1 > 0
)
·
(
RG T

l > 0
)
·RG T

l

(4.15) RG T

l = ∂A

∂f G T

l

, f G T

l =ReLU
(
f G T

l−1

)
where f l is the activated feature vector output by the l-th layer in the forward

propagation. When the computation is propagated to the first layer, i.e., l = 1, the max

activation map MG T

act = RG T

0 results. Mloc and Mact are then fused through point-wise

multiplication and normalised to obtain the final localization mask:

(4.16) M f inal =N (Mloc ⊗Mact)

where N (·) is a zero-mean normalisation function to scale each entry of the mask into

the range [0,1], and ⊗ denotes the point-wise multiplication. Note that the raw scale of

Mloc is the same as that of the feature map in A and should be rescaled to N ×N before

fusion. The rescaling will not inject extra noise as Mloc only represents the localization

information.

Finally, the final localisation mask reveals a visible 2D fingerprint. For a target GAN

class G T and an image I, the explicit two levels of fingerprints are:

(4.17)
F ins =M f inal(I)⊗ I, F ins ∈RN×N

Farc =M f inal(Î)⊗ Î, Farc ∈RN×N

4.4 Task-specific forensics

Once the architecture-level and instance-level GAN fingerprints have been extracted,

a challenge is that how to perform task-specific fingerprinting with the two levels of
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fingerprints in practice. We elaborate three typical GAN-generated image forensics

scenarios and the corresponding fingerprinting methods. Table 4.2 shows the threat

models and related assumptions in practice of the three scenarios.

Table 4.2: Threat models of three typical GAN-generated image forensics scenarios.

Task Subject role Subject’s target Subject’s knowledge

Black-box fake image detection DeepFake forensic in-
vestigator

Detect malicious fake
images

zero knowledge of the source
GAN; only have real images

Model IP protection GAN model owner Prevent GANs from
pirate by unique fin-
gerprint

full access to the source GAN;

Fingerprinting attack and defense
Fingerprinting at-
tacker

Model inversion at-
tack using fingerprint
approximation

zero knowledge of the source
GAN

Defender/model
owner

Anonymize GAN fin-
gerprint

full access to the source GAN
and the training process;

4.4.1 Black-box fake image detection

The architecture-level fingerprint is more applicable than the instance-level one in fake

image detection tasks. The reason is that, in reality, a DeepFake attacker can incremen-

tally refine the back-end GAN with new data, without changing the model architecture.

Compared with the instance-level fingerprints, the architecture-level fingerprints can

generalize well for GANs with the same architecture, which would not lose the forensics

efficacy after the DeepFake GAN has got updated.

The major challenge in this task is that the detection is often performed in black-box

where the source DeepFake GAN is inaccessible. In this way, training a fingerprint

encoder to obtain the DeepFake GAN’s fingerprint is no longer available. We propose

to formulate this problem as a one-class anomaly detection problem where only real

images are regarded as "normal", and use the architecture-level fingerprints with the

assistance of auxiliary background knowledge to detect anomalies. First, we sample

sufficient real and GAN-generated images from publicly available databases and train a

CNN encoder with a great ability in identifying real images. Once trained, the encoder is

embedded into the proposed extraction workflow of architecture-level fingerprints to act

as an extractor of the "fingerprints" associated with the real image class. In the detection

phase, given an unseen sample, we first search its top-q most visually similar images

from a real image dataset. Then the authenticity of the test sample can be identified by

measuring the fingerprint correlation:
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(4.18) C =N (F
real
arc )⊙N (F test

arc )

where F
real
arc denotes the mean architecture-level fingerprint averaging over the q

real-world images, which acts as a ground truth of the "real" class, F test
arc denotes the

architecture-level fingerprint of the test sample, and ⊙ indicates inner product.

4.4.2 Model IP protection

GAN fingerprints can be used as an intrinsic and intentional signature embedded in

its products to prevent theft and plagiarism. Since the model owner obviously has

full access to and knowledge of their own technology, this application is a white-box

attribution scenario. As such, instance-level fingerprinting may be more appropriate

than architecture-level protection because the instance-level fingerprints can precisely

differentiate between any two GAN instances trained in settings with even subtle

differences, irrespective of whether they have the same architecture. The same cannot

be said of architecture-level fingerprints (see Section 4.2). The fingerprinting process is

as follows: First, the model owner pretrains an instance-level fingerprint encoder f ins(θ)

with parameters θ using the images generated by the owned GAN model. Then the

owner queries a batch of images Itest from the suspicious target GAN and perform an

classification f ins(Itest|θ) to verify whether the target GAN is a plagiarism.

Note that the proposed fingerprint representation method is independent of the

encoder’s network topology, and thus is compatible with arbitrary CNN configurations.

In this way, the model owner can hold the parameter of the encoder θ as a unique

private key Key(θ) to secure the fingerprinting process, i.e., f ins(Itest|θ,Key(θ)). Others

without the correct encoder cannot perform the fingerprinting, which ensures high-level

protection.

4.4.3 Fingerprinting attack and defence

We also identify that the architecture-level GAN fingerprinting can be exploited as a

black-box attack to steal the model information of a GAN service. Given enough queries

to a GAN API, an attacker could perform architecture-level fingerprinting to obtain

the fingerprint distribution, and thus can infer the exact architecture by distribution

matching with pre-trained GAN models.
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The architecture information should be protected because once the attacker knows the

architecture, they can 1) perform direct reverse engineering of the back-end model at a

low cost [3]; or 2) be possible to build a shadow model to launch a member inference attack

[22]. To defend against the fingerprinting attack, we propose to anonymize architecture

information by manipulating the architecture-level GAN fingerprint during the training

process of GAN via adding an additional fingerprint anonymization loss to the general

generator loss:

(4.19) L (G(z))= log(1−D(G(z))︸ ︷︷ ︸
original generator loss

+ β · ∥F̂real
arc −FG(z)

arc ∥1︸ ︷︷ ︸
fingerprint anonymisation loss

where FG(z)
arc is the architecture-level fingerprint extracted from the output image G(z) of

the generator. F̂real
arc is the architecture-level fingerprint averaged over a number of real

images randomly sampled from a real-world dataset at each training iteration. ∥·∥ is the

element-wise ℓ1-norm and β is the parameter to balance weight.

The regularisation loss enforces a minimum distance between the fingerprints in

generated images versus real ones. Alternatively, the loss could be extended to anonymise

the current fingerprint by mimicking another GAN architecture. This could be done by

simply changing the samples for averaging the target fingerprint from real images to

ones generated by another GAN.

4.5 Experimental evaluation

The experiments we conducted are designed with three goals: 1) to verify our theoretical

analysis of GAN fingerprint dependency; 2) to evaluate the performance and robustness

of the proposed GAN fingerprint extraction method; and 3) to estimate the practical

usefulness of fingerprint decoupling in real-world image forensic tasks.

4.5.1 General settings

4.5.1.1 Datasets

Two datasets of real images are used:

• The CelebA dataset [93], which consists of 202,599 images of celebrity face sized

178×218×3.
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• The LSUN dataset [157], which consists of more than 3 million 256× 256× 3

pictures of bedroom scenes.

All images are center-cropped or resized down to a size of 128×128×3 to facilitate

the training of different GAN models. The experiments involve six different GAN ar-

chitectures, among which four are popular GANs for image generation: ProGAN [66],

SNGAN [106], CramerGAN [9], MMDGAN [10], and two are widely-used GANs for

image-to-image translation: CycleGAN [164] and StarGAN [26].

4.5.1.2 Encoder setup

The input data for the instance-level fingerprint encoder is RGB pixel values, rescaled

down to [0,1] with a rescaling factor of 1/255. The band threshold bthre of the high-

pass filter H (·) for the architecture-level fingerprint encoder is set to 40 for the CelebA
images and 70 for the LSUN images. The filtered images are then transformed into DCT

spectra and used as the input data. The coefficients in the spectrum are log-scaled and

normalised via zero-mean normalisation. The weight λ1 and λ2 in Eq.4.11 are set to 1

and 0.1 respectively. An Adam optimiser [72] with a learning rate of 0.001 and a training

batch size of 128 are used to optimise both encoders. The maximum number of iteration

epochs is 50.

4.5.1.3 Evaluation metrics

• F1 score. Since the source attribution task is formulated as a classification problem,

we report the F1 score for each individual class, computed as F1 = 2×P×R
P+R , where P

and R are the precision and recall values. We also use Macro F1 scores (mF1) to

measure the overall performance, which is the average F1 over all classes.

• AP score. When the attribution task is narrowed down to a binary classification

problem, We use AP instead of F1 scores as the measurement, which is computed

as AP =∑
t (Rt −Rt−1)Pt, where Pt and Rt are the precision and recall at the t-th

threshold.

4.5.2 Verification of GAN fingerprint dependency

To verify the theories that outline GAN fingerprint dependency in Section 4.2, we conduct

several evaluations with a particular focus on the correspondences between upsampling
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bias and architecture-level fingerprinting (Farc), as well as between random bias and

instance-level fingerprinting (F ins).

4.5.2.1 Upsampling bias

This experiment involves performing a series of source attribution tests on images

generated by GANs with different upsampling units. The GANs tested are:

• StarGAN-V0: A standard StarGAN consisting of two transposed convolution-based

upsampling layers with a kernel size of 4 in the generator [26]. We used the official

pre-trained StarGAN release 1.

• CycleGAN: A standard CycleGAN whose generator architecture is similar to Star-

GAN. We used the pre-trained CycleGAN in [159].

• StarGAN-V1: A modified version of the standard StarGAN with the transposed con-

volution units in the first upsampling layer replaced by interpolated up-convolution

units. This model was trained from scratch.

• StarGAN-V2: A modified version of the standard StarGAN with interpolated up-

convolution units to replace the transposed convolution units in both upsampling

layers. This model was also trained from scratch.

• StarGAN-V3: Another modified version of standard StarGAN with the kernel size

in the first upsampling layer reduced to 2 and duplicated to act as the first two

layers in the sequence ‚Äì again, trained from scratch.

All GANs are pre-trained or trained from scratch with the CelebA dataset and act as

candidate sources. The fingerprint encoders are trained with 10,000 images generated by

the standard StarGAN (StarGAN-V0) and 10,000 real images from CelebA, with the data

samples split into training and validation sets at a ratio of 4/1. The sample size (10,000

per class) and ratio of training/validation sets (4/1) are also applied in the subsequent

experiments unless otherwise specified. We independently query 1,500 images per source

to build a testing dataset.

The results for this series of experiments, reported as AP scores, are shown in Table

4.3. Both Farc and F ins perform source attribution well on the StarGAN-V0 samples.

Additionally, Farc generalizes better than F ins with the samples from CycleGAN, which

has a similar architecture to StarGAN-V0. In contrast, the AP scores for Farc drop
1https://github.com/yunjey/stargan
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significantly with the modified versions of StarGAN than for F ins. This result confirms

that architecture-level fingerprinting is more sensitive to changes in the upsampling

unit than instance-level fingerprinting.

Table 4.3: The AP(%) scores of Farc and F ins from a source attribution test for GANs
with different upsampling units.

StarGAN-V0 CycleGAN StarGAN-V1 StarGAN-V2 StarGAN-V3

Farc 100.00 87.55 38.11 21.76 31.61
F ins 99.83 58.78 67.08 55.71 60.40

4.5.2.2 Random bias

As mentioned in Section 4.2, there are two main factors that influence random bias:

• the semantic information in the training set;

• the differences in the training settings.

Hence, in this next set of experiments, we test each of the two factors in turn.

Bias from semantic information Here, we take six officially released CycleGAN

models 2 which were previously pre-trained for three paired image-to-image translation

tasks, each belonging to a different semantic domain: horse (H) ⇔ zebra (Z), summer (S)

⇔ winter (W) and apple (A) ⇔ orange (O). F ins and Farc encoders are trained for binary

attribution (’real’ versus ’CycleGAN’) tasks for the H, A and S categories, and tested on

all categories. Figure 4.6 shows the results.

Unsurprisingly, in cases that the testing samples belong to the same or very similar

semantic domain with the training samples, e.g., horse versus zebra, both fingerprints

return high AP scores. However, in other domains, the AP scores for F ins are signif-

icantly lower in comparison to those for Farc. In addition, F ins generalizes relatively

better across H, Z, S and W domains than the A and O ones. One possible reason is that

images in the first four domains all have landscapes as backgrounds, which is quite dif-

ferent from the ones in the latter two domains. These results suggest that instance-level

fingerprinting is much more sensitive to semantic information than architecture-level

fingerprinting. And the latter one has a pronounced ability in generalising to source

GANs that have the same architecture (e.g., CycleGAN), despite that they are trained in

different domains.
2https://junyanz.github.io/CycleGAN/
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Figure 4.6: Bias in semantic information for two different fingerprints, evaluated in
terms of AP. Three encoders were trained for each fingerprint with the real and GAN-
generated images in the horse (H), apple (A) and summer (S) domains, then tested in
the H, A, S, zebra (Z), winter (W) and orange (O) domains.

Bias from the training settings Here, we train several ProGANs from scratch

varying only one of three variables at a time as follows:

• Var #1 Sample size: varies between 40%, 60%, 80% and 99% of 150,000 randomly

sampled CelebA images.

• Var #2 Convergence point: five instances trained with the base dataset that each

converges at a different (sub-optimum) point.

• Var #3 Initialisation seeds: five instances, each with a different number of random

seeds specified for the weight initialisation.

The mF1 scores of these tests appear in Table 4.4. Remarkably, F ins outperforms

Farc in all tasks, indicating that F ins is highly sensitive to different training settings.

Even a minor difference, such as a 1% difference in the number of training samples,

leads to distinguishable instance-level fingerprinting. By contrast, Farc is much less

sensitive to the training settings, especially the convergence points and initialisation

weights. One reason may be that changes in the frequency domain resulting from weight

settings are filtered by the convolution kernels during training.

Table 4.4: mF1(%) scores for two fingerprinting models in three tasks with different
settings.

Var #1 Var #2 Var #3

F ins 99.24 96.11 97.53
Farc 84.19 69.92 64.09
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4.5.3 GAN attribution performance and robustness

We compare the source attribution effectiveness of the proposed fingerprints with five

state-of-the-art source attribution methods, including the deep CNN-based method

(CNN) [146], the spectral distribution-based method (SD) [32], the DCT spectrum-

based method (DCTA) [39], and other two GAN fingerprint models: the residual-based

fingerprints (RF) [100] and the learning-based fingerprints (LF) [158]. All baselines are

configured with the hyper-parameters recommended in the original papers.

The assigned benchmark task is an five-source image attribution task described in

both [158] and [39]. The goal is to attribute images from the CelebA and LSUN datasets

to one of five candidate sources: real, ProGAN, SNGAN, CramerGAN, and MMDGAN.

Hence, we randomly sample 10,000 images as the real class, then use the pre-trained

GAN instances in [158] to generate 10,000 image samples for each GAN source class.

The generated samples are then divided into 7,500 training, 1,500 validation, and 1,500

test images, resulting in a combined set of 37,500 training, 7,500 validation and 7,500

test images, for each dataset. Source attribution is performed using CNN encoders to

create fingerprint representations at the instance and model levels.

4.5.3.1 GAN source attribution performance

Table 4.5 shows F1 score results. Generally, all methods perform better with the CelebA
dataset than the LSUN dataset. This is not surprising as the LSUN images (of bedroom

scenes) are more complex and diverse than the face images in CelebA.

With high overall F1 scores, the proposed architecture-level fingerprinting and

instance-level fingerprinting are both highly effective (98.00% versus 99.64% in the

CelebA dataset and 96.24% versus 97.73% in the LSUN dataset) at identifying the

correct source. The architecture-level fingerprinting Farc which is performed directly

in the DCT spectrum shows the comparable or superior performance than the state-

of-the-art baselines, on almost all sources in both datasets. This result illustrates the

feasibility of extracting distinguishable GAN fingerprints from the frequency domain.

The instance-level fingerprinting method F ins deliveres comparable performance to LF.

This is not unexpected as both techniques learn fingerprints through a similar pipeline

of RGB pixels fed into a CNN encoder. Of all the seven methods, RF’s performance is

the inferior. The reason is that RF is estimated by a statistical averaging process that

is prone to stochastic errors and, thus, is less precise. The other three techniques all

incorporate learning processes that support the automated discovery of fine-grained
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Table 4.5: F1 scores (mF1(%)) evaluated in the five-source benchmark attribution task in
the CelebA and LSUN datasets. Best performances per source are highlighted in bold.

Real ProGAN SNGAN CramerGAN MMDGAN Overall (mF1)

CelebA

CNND [146] 96.09 97.45 95.59 92.39 92.94 94.89
SD [32] 96.90 98.18 97.61 96.37 96.03 97.02
RF [100] 53.03 79.63 93.94 71.80 67.30 73.14
DCTA [39] 99.85 99.49 99.78 98.18 99.09 99.60
LF [158] 98.70 98.85 99.18 97.86 97.53 98.42
F ins (ours) 98.19 98.58 98.81 97.35 97.07 98.00
Fmod (ours) 99.60 99.33 99.79 98.64 99.67 99.64

LSUN

CNND [146] 97.62 98.53 90.96 76.80 74.22 87.62
SD [32] 87.72 86.63 95.64 92.07 91.52 90.71
DCTA [39] 99.79 98.51 98.70 93.82 93.35 96.83
RF [100] 62.38 66.08 63.72 77.93 76.59 69.34
LF [158] 98.70 98.60 99.82 93.00 92.20 96.46
F ins (ours) 98.58 98.61 99.79 91.84 92.40 96.24
Fmod (ours) 99.09 98.91 94.74 99.85 94.56 97.43

fingerprint features.

4.5.3.2 Explicit representation performance

Figure 4.7 shows some of the explicit representations produced by F ins and Farc from the

CelebA and LSUN datasets. The results are presented as an original-fingerprint pair for

each GAN source. All examples are averaged over 256 samples for better interpretability.

The brighter areas in the fingerprints correspond to the components of the original input

that make a more significant contribution to the final source attribution. F ins and Farc

each reveales significantly different patterns in terms of location and intensity, providing

greater insight into why some models are better at correctly identifying GAN-generated

images than others.

In discussing the efficacy of F ins, we largely focus on the examples from CelebA since

the faces and fingerprints are more discernible in these images than in the LSUN ones.

As can be seen, the fingerprints of ProGAN, SNGAN, and CramerGAN are centralised

around the eyes, nose, and mouth, while the fingerprints of MMDGAN are more global.

These relationships add evidence to the analysis that F ins is closely associated with the

semantic information in visual content.

In terms of Farc, the fingerprints directly point out which frequency components

contribute remarkably in source attribution. From the figure, we can see that Farc

was able to capture quasi-periodic artifacts in the high-frequency space, especially for
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CelebA

LSUN

ProGAN SNGAN CramerGAN MMDGAN

Figure 4.7: Explicit representations of the instance-level fingerprints in the spatial
domain and the architecture-level fingerprints in the frequency domain for four GAN
sources from two datasets. Each red box shows the input-fingerprint pair. Both were
averaged over 256 samples for better interpretability.

SNGAN. Furthermore, the fingerprints left by models with the same architecture but

trained on different datasets share a certain similarity. For example, the architecture-

level fingerprints left by MMDGAN in either dataset are both notably centralised in the

high-frequency domain, and the ones left by CramerGAN are dispersed over the global

spectrum.

4.5.3.3 Robustness

We evaluate the robustness of the proposed fingerprints against image perturbations

with/without the strategy described in Section 4.3.1.3. Besides the six aforementioned

image perturbations, we also consider a mixture perturbation which randomly combines

two or more of the six perturbations. This is because images are not uncommon to

undergo multiple perturbations in practice.

This evaluation is also made through the above benchmark attribution task on both

datasets and in comparison to RF and LF. Table 4.6 provides the final results as mF1

scores. The labels w/. and w/o. indicate whether the fingerprint encoders are trained

with the robustness-enhancing strategy or not. It should come as no surprise that the

mF1 scores for all were significantly lower in this exercise than the last in Table 4.5.

Farc demonstrates generally better robustness than the other methods against most
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treatments except for blurring and noise. This exception is because blurring and noise

usually lead to considerable changes directly in the high-frequency components of an

image. After adopting the data augmentation strategy and transformation-invariant loss

regularisation, both F ins and Farc show a significant improvement in their ability to

withstand perturbation.

Table 4.6: Macro F1 scores (mF1(%)) reflecting the robustness of four GAN fingerprinting
methods to common image perturbations. The highest value is highlighted in bold. w/
and w/o indicate whether the fingerprint encoders are trained with the robustness-
enhancing strategy or not.

Flipping Blurring Compression Cropping Rotation Noise Mixture
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

CelebA
RF[100] 70.34 − 38.70 − 41.64 − 31.97 − 41.19 − 56.12 − 43.70 −
LF[158] 81.68 93.18 69.39 88.40 52.02 74.73 74.03 95.76 57.17 95.96 76.45 95.22 50.66 67.82
F ins 80.26 94.27 61.42 88.41 51.16 70.23 72.46 90.47 57.30 92.42 75.44 92.17 49.79 86.95
Farc 87.32 95.74 52.15 87.91 60.49 89.59 77.13 96.75 76.32 96.90 55.83 85.37 57.54 89.52

LSUN
RF[100] 63.42 − 31.78 − 33.86 − 35.14 − 34.87 − 55.63 − 42.49 −
LF[158] 75.62 92.67 69.29 79.34 53.96 73.76 66.26 91.20 52.27 93.55 71.93 88.49 45.72 74.18
F ins 70.15 90.53 67.27 75.88 52.25 67.04 63.03 88.12 48.61 91.74 68.48 84.67 53.14 85.85
Farc 76.11 93.33 64.01 80.20 61.73 80.71 76.16 90.37 82.29 93.70 53.40 91.67 49.60 90.59

4.5.4 Task-specific fingerprinting

4.5.4.1 Black-box fake image detection

To create the simulation of a black-box detection scenario, we use two GAN-based online

image generation tools (https://generated.photos/, denoted as Tool #1, and https:

//thispersondoesnotexist.com, denoted as Tool #2). Both can generate 1024×1024×3

RGB fake face images. Neither site publishes details of its back-end GAN model, save

that the images are "imagined by" StyleGAN (Dec 2018, which we traced back to [69].

We assume the images from Tool #1 are available and we already know they are

generated by GAN. The goal of the task we design is to leverage these images plus

real-world images to detect a fake image generated by Tool #2. To this end, we sample

9,000 real images from the CelebA-HQ dataset [66] (a 1024×1024×3-resolution version

of the CelebA dataset and generate 9,000 fake images from Tool #1. We use these to

train a binary Farc encoder. We then sample/generate another 1,000 images each from

CelebA-HQ and Tool #2 for testing, applying the detection method outlined in Section

4.4.1 to test each sample. The parameter q is set to 100. The results are shown in Figure

4.8. The two distributions are well separated, allowing for reliable discrimination. The

fake test samples centre around zero, meaning that there is little correlation with the
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real samples even though, visually, they may be very realistic. In this simulation, we are

able to reach a mF1 score of 92.10% with a simple cut-off-based rule.

0.0 0.1 0.2 0.3 0.4 0.5
Correlation

0

100

200

300 GAN-generated images
CelebA images

Figure 4.8: The correlation distribution of the test sample fingerprints with the ground
truth fingerprints. Blue indicates the fake test samples from Tool #2; Green indicates
the real samples from CelebA-HQ.

4.5.4.2 Model IP protection

We do not conduct a specific simulation for this scenario, since the key features can

be substantially verified in the previous experiments: The experimental results in

Section 4.5.2.2 show that, two GAN instances resulting from any two slightly different

training settings, such as different sample sizes or converge points, are well differentiable

using the instance-level fingerprints. And the instance-level fingerprinting efficacy is

significantly superior than using the architecture-level fingerprints.

4.5.4.3 Fingerprinting attack and defence

For the simulation to test the scenario in Section 4.4.3, we train the encoders for a binary

classification task using CelebA images and the images queried from the pre-trained

ProGAN in [158]. All the same setting for training a ProGAN as in [158] are followed

except that we apply the fingerprint anonymisation loss (Eq. 4.19) to train a new ProGAN

model from scratch with anonymised fingerprints. The parameter β is set to 1.0. We test

the attribution model with 1,000 CelebA images, 1,000 original ProGAN images and

1,000 anonymised ProGAN images.

Figure 4.9 illustrates the confusion matrix of the classification. The fingerprint

distinguishes the original ProGAN images accurately from the real images with the mF1

score of 99.80%. However, after the ProGAN fingerprints have been anonymised, the

fingerprinting model fails to make correct decisions with 946 more ProGAN images being

misclassified as real CelebA images and the mF1 score decreasing to 5.40%. The result

confirms the anonymisation effectiveness.
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Figure 4.9: The confusion matrices of binary detection between CelebA images and
original ProGAN images, as well as CelebA images and anonymised ProGAN images.

4.6 Summary

In this chapter, we explored the use of GAN fingerprints as an image forensics tool. In

practice, different image forensics tasks may require the GAN fingerprinting to perform

at different levels of distinguishability. From a dependency analysis of GAN fingerprints,

we found out that GANs leave instance-level fingerprints in the spatial domain and

model-level fingerprints in the frequency domain. Based on this finding, we designed a

fingerprint decouple learning method that offers distinguishability at these granularities.

The method also improves fingerprinting over the status quo with an end-to-end explicit

representation mechanism. A data augmentation strategy plus transformation-invariant

loss regularisation helps improve the robustness of GAN fingerprints to common image

perturbations. In a benchmark source attribution test, the proposed method achieves

better performance than its two predecessors, e.g., 36.23% and 1.23% improvement on

RF and LF, respectively, in terms of the mF1 score in the CelebA dataset. Furthermore,

three different but common image forensics case studies illustrate the usefulness of

multi-level GAN fingerprinting.
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5
ROBUST DETECTION VIA MULTI-VIEW

RECONSTRUCTION-CLASSIFICATION LEARNING

Images manipulated using deep generative models, also known as deepfakes, have posed

great threats to the trustworthiness of visual media. Detecting GAN-generated images

now becomes a critical task to prevent malicious deepfakes. Although many detectors

have shown high detection accuracy on specific GANs, the success is largely attributed

to overfitting unstable frequency features, which in turn leads to failures when facing

unknown GANs or perturbation attacks. To overcome the issue, in this chapter, we

propose a novel detection framework based on multi-view reconstruction classification

learning. The framework first learns multiple view-to-image reconstructors to model

diverse distributions of genuine images. Frequency-irrelevant features can be learned

from the view-specific distributional discrepancies characterized by the reconstructors,

which are stable and robust for detecting unknown fake patterns. Then, a multi-view

classification is devised with specific intra-view and intra-view learning strategies to

enhance view-specific feature representation and cross-view feature aggregation, res-

pectively. We evaluated the generalization of our framework across six popular GANs

at different resolutions and the robustness against a broad range of perturbation at-

tacks. The results show the improved effectiveness, generalization, and robustness of

our method compared with various baseline detectors.
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5.1 Background

Deepfakes are an emerging type of machine-synthesized media. The image generation

and manipulation techniques behind deepfakes are constantly evolving thanks to the

continuous advances in generative adversarial networks (GANs) [44]. The quality and

fidelity of the generated images have reached a photo-realistic level that is indistin-

guishable from real images by human eyes. Alongside the technical advance, society

is raising significant concerns regarding the abuse of these techniques to create and

spread misleading information, which will cause the trust crisis that "seeing is no longer

believing". To tackle the issues, the research community has been dedicated to developing

powerful forensics tools against malicious deepfakes. One crucial and promising direction

is detecting GAN-generated fake images considering the ubiquitous applications of GANs

in image manipulation tasks.

Recent detection methods typically train CNN classifiers to learn specific features

to distinguish GAN-generated fake images from real ones [32, 33, 39, 51, 94, 100],

which can work perfectly in detecting clean test samples from the same GAN models

used in training. However, their performances will dramatically decrease when facing

samples generated by unknown GANs or noisy samples, leading to limited applicability

in practice [39, 146, 158]. One primary reason is that a deep CNN classifier may easily

overfit unstable GAN-specific features of the training samples, particularly the low-

level frequency artifacts in the generated images. Previous studies have proved that

conspicuous artifacts exist in the spectra of GAN-generated images. Despite being easily

identified by classifiers, these artifact patterns are inconsistent, varying significantly

among different GAN models or perturbations [39, 146]. As a result, the classifier

overfitting a specific frequency pattern will lead to weak generalization ability and

robustness in detecting other frequency patterns.

Based on the understanding of the overfitting issue, we are motivated to design

a more generalized and robust detection model with two requirements: 1) reduce the

dependency on unstable low-level frequency features; and 2) learn a robust feature

representation from other types of information, such as regional consistency, color, or

textural details of images. Instead of directly learning traceable features from fake

images, which potentially leads to the frequency overfitting problem, we propose a novel

detection framework that incorporates a multi-view reconstruction learning process and

a cross-view classification learning process, as sketched in Fig. 5.1. The framework can

learn a strong and stable feature representation from diverse frequency-independent,
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view-specific information, resulting in outperforming generalization and robustness

facing unknown GANs or perturbations.

Raw
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Feature extraction
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Figure 5.1: Instead of learning specific forgery features directly from fake images which
may lead to overfitting, our framework incorporates multi-view reconstruction and
classification to learn diverse distributional discrepancies between real and fake images,
which can generalize to unknown deepfake patterns.

In the multi-view reconstruction process, multiple view-to-image reconstructors are

learned with real images only and then used to characterize diverse distributional

discrepancies between real and fake images. In contrast to overfitting specific DeepFake

patterns, the compact distributions of the view-missing characteristics modeled from

real images are more likely to distinguish unknown DeepFakes from real images [124].

In addition, the reconstruction can align the frequency patterns of different fake samples

to that of real images, which helps reduce frequency dependency. Then, in the cross-view

classification, the real and fake samples reconstructed from each view are fed into an

independent classifier to learn fake detection. A multi-scale feature pyramid and a

residual-guided attention module are devised to strengthen the classifier’s ability to

mine rich intra-view features. The independent classifiers are finally combined using an

adaptive loss fusion strategy to enhance the learning from cross-view information. Our

contributions are highlighted as follows:
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• We propose a novel DeepFake detection framework using multi-view reconstruction

classification learning to build a robust and generalized feature representation for

detecting unknown GANs and perturbations.

• We devise several novel modules and learning strategies that effectively benefit

the model’s ability to capture and incorporate diverse view-specific features.

• We perform extensive evaluations which validate the significantly improved gener-

alization and robustness of our framework in a wide range of settings varying in

image resolutions, GAN types, and perturbation methods.

5.2 The proposed framework

We design the Multi-view Reconstruction-Classification Learning (MRCL) to learn a

novel multi-view, frequency-independent feature representation for generalized and

robust detection of GAN-generated images. As shown in Figure 5.2, the framework

jointly trains a set of reconstructors and classifiers. The reconstructors are trained with

real images only, and each learns to recover the full image from one particular sub-view.

Then, both real and fake images are processed by each reconstructor through the same

view-to-image pipeline. Since the missing information is restored according to the real

images’ characteristics, the distributional difference between the reconstructed real and

fake images can be reflected in the restored information. Then, a classifier is trained

based on the reconstructed samples to capture the distributional discrepancy specific

to each view. We combine the multi-scale features encoded by different layers of each

reconstructor’s decoder with the restored image as the classifier’s input. A low-frequency

residual guided attention module is employed at the entry of the classifier to highlight the

stable visual difference between real and fake images. A self-adaptive loss fusion module

is additionally designed to combine the decisions of multiple classifiers to facilitate

inter-view learning.

5.2.1 Multi-view reconstruction learning

Several independent encoder-decoder-based reconstructors R = {Rv}N
v=1 are trained to

recover the full image from different partial views. Particularly, the reconstructors are

trained only on real images, such that the recovery is governed by the characteristics

of real images. We consider three reconstruction tasks: Masked Image Modeling, Gray-
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Real
images

Masked  image modeling

Gray-to-RGB
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Real/Fake
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Cross-view classification learning

Figure 5.2: The overview of our framework. Several reconstructors first learn different
distributions of real images via view-to-image reconstruction learning. Then for each
view, a classifier captures the view-specific distributional discrepancy between real and
fake images via intra-view learning. The classifiers are finally fused to perform inter-view
learning for robust detection.

to-RGB, and Edge-to-RGB, where the missing regional details, color information, and

textural information are learned by the reconstructors, respectively.

• Masked Image Modeling (MIM) is an emerging approach for visual represen-

tation learning [47], which masks a portion of an image and predicts the masked

area. We employ MIM to model the regional consistency of natural images. The

masking strategy is that, given an image X ∈ Rw×h×3, we randomly mask 50%

non-overlapping patches with a patch size of ( w
16 , h

16 ).

• Gray-to-RGB aims to learn the color information from real images. We first

transform the RGB image into the gray-scale version, and then predict the raw

RGB pixel values from the gray input.
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• Edge-to-RGB aims to learn the textural information from real images. We first

extract the binary edge sketch from the RGB image using the Canny edge detector,

and then predict the raw RGB pixel values from the edge input. Figure 5.3 shows

an example of different views.

Raw Mask Gray Edge

Figure 5.3: Three partial views used for reconstruction.

Mathematically, given an image X and an individual view X v, the reconstruction is

formulated as X̃ v =Rv(X v). The training of Rv is supervised by a pixel-level regression

loss

(5.1) Lpix = ||X − X̃ v||1 = ||X −Rv(X v)||1.

In addition to the pixel loss, a frequency loss is employed to further enhance the

ability of Rv in learning the frequency property of real images [60]:

(5.2) L f re = ||F (X )−F (X̃ v)||22,

which computes the element-wise Euclidean distance between the 2D FFT spectra of

original and reconstructed images. F (·) denotes the 2D FFT function.

5.2.2 Intra-view classification learning

After training Rv with real images, both real and fake images are processed by Rv via

the same view-to-image reconstruction workflow to enable the subsequent classification

learning. In order to mine more generalized and frequency-irrelevant features from

each view’s pathway, we propose a multi-scale feature pyramid and a residual-guided

attention module to improve intra-view feature representation, as shown in Figure 5.4.
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Low-pass Filter
1x1 Conv
x2 Upsampling
3x3 Conv
Concatenation
Element-wise
Multiplication

Absolute Difference

Residual-guided attention

Multi-scale feature pyramid

Figure 5.4: The details of the residual-guided attention and multi-scale feature pyramid
modules.

5.2.2.1 Multi-scale feature pyramid

Since Rv is an encoder-decoder consisting of multiple layers, during the reconstruction,

the missing information of the original image is progressively recovered by the layers

stacked in Rv’s decoder. Thus, the useful features for distinguishing real and fake

images are embedded not only in the final output image, but also in every intermediate

feature map of the decoder. To this end, we build a feature pyramid to incorporate the

intermediate features at different scales. For a decoder of Rv with a total of S layers, let

fs be the feature map of the s-th layer, then the s-th feature of the pyramid is computed

as:

(5.3) zs =
Conv3 (Concat(Conv1( fs),Up(zs−1))) , s ≥ 2

Conv1( fs), s = 1

where Up(·) is a upsampling layer with a scaling factor of 2 to align the scales between

two feature maps; Conv1(·) is a 1×1 convolutional layer to reduce channel dimensions;

Conv3(·) is a 3×3 convolutional layer to suppress the aliasing effect of upsampling;
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Concat(·) indicates the concatenation of two tensors. Finally, the last layer of the feature

pyramid zS is combined with the reconstructed image X̃ to get the enhanced feature F
in the following way:

(5.4) F =Concat
(
Conv3(X̃ ),Conv3(zS)

)
5.2.2.2 Residual-guided attention

The distinguishable features are contained in the restored regional, color, and textural

information of the image. Thus, it is possible to leverage the reconstruction residual

to provide spatial attention to improve intra-view learning. However, one challenge is

that, since the original image X is involved in computing the residual, both stable and

unstable features in the original image potentially remain in the residual. As discussed

earlier, unstable features that are detrimental to generalization and robustness should

be avoided. Prior studies have found that these unstable features are low-level artifacts

that mainly cluster in high-frequency components [32, 39]. Thus, we propose only using

the low-frequency residual to guide the classifier to focus on more stable features. Given

an image X and its reconstructed version X̃ , the low-frequency residual is:

(5.5) M = |H (X )−H (X̃ )|,
where H (·) is the first-order low-pass Butterworth filter and | · | is the absolute func-

tion. An attention mechanism is then devised to exploit the low-frequency residual.

A functional network is used to process M to get the attention map, i.e., M̂ = G (M),

where G (·) consists of a 7×7 convolutional layer, an average pooling layer and a sigmoid

function. The attention map is applied to the enhanced feature F in Eq. 5.4 to obtain the

residual-guided feature:

(5.6) F̂ = M̂⊗Conv3(F),

where ⊗ indicates the element-wise multiplication.

5.2.3 Inter-view classification learning

When the intra-view feature enhancement is ready, we can get a set of features {F̂v}N
v=1

corresponding to different views. For each view, an independent neural network classifier

C v is trained on the feature F̂v. Since the features provide view-specific information, the

classifiers will learn diverse representations and contribute differently facing the same

data instance. To ensure the complementarity and interactivity across different views

during training, we propose a self-adaptive cross-view loss fusion strategy.
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5.2.3.1 Self-adaptive loss fusion

The self-adaptive loss fusion strategy aims to combine the losses of different classifiers

using adaptive weights, such that the importance of each view-specific representation

can be estimated and respected in the final decision. The weights are learned and

autonomously adjusted during training.

Formally, given a view-specific feature instance F̂v and the corresponding label y
(y= 0 if the the sample is a real image, otherwise 1), let pv be the probability that the

sample is fake predicted by C v. The training of C v is supervised by the cross-entropy

loss:

(5.7) Lv
ce =−[y log(pv)+ (1− y) log(1− pv)].

The self-adaptive loss fusion strategy can be denoted as a minimization problem with

respect to the weights β:

(5.8) min
β

N∑
v=1

βτ
vLv

ce s.t. β⊤1= 1,βv ≥ 0,

where τ> 1 is the power exponent parameter to avoid the trivial solution of β during the

classification.

5.2.3.2 Optimization

The components of MRCL that require optimization include the parameters of {Rv}N
v=1,

{C v}N
v=1 and several building blocks for intra-view learning (for simplicity, the latter

two are denoted in together as {C v}N
v=1), as well as the self-adaptive loss weights β. The

optimization is performed in the following alternative way:

• Update network parameters. The reconstruction and classification networks

with respect to different views are updated independently in parallel. For the view v,

Rv and C v can be updated in an end-to-end mode by optimizing the following objective

function:

(5.9) minLv
ce +λ1Lv

pix +λ2Lv
f re,

where λ1 and λ2 are weights to balance different losses. During the optimization, the

loss weights β are fixed.

• Update loss weights β. Next, we fix the parameters of {Rv}N
v=1 and {C v}N

v=1, and

update β by solving Eq. 5.8. To satisfy the constraints in Eq. 5.8, the Lagrangian function
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of Eq. 5.8 is

(5.10) L (β,ζ)=
N∑

v=1
βτ

vLv
ce −ζ

(
N∑

v=1
βv −1

)

where ζ is the Lagrange multiplier. By derivation of Eq. 5.10 with respect to βv and ζ,

the optimal solution of Eq. 5.8 is:

(5.11) βv = (Lv
ce)

1
1−τ /

N∑
n=1

(Ln
ce)

1
1−τ

5.3 Experiments

5.3.1 Datasets

Real images Our experiments are conducted on facial images, given that the human

face is the primary target of deepfake. We choose the large-scale facial image dataset

CelebA [93] and its high-quality version CelebA-HQ [67] to perform evaluations at

different resolutions. The image resolution is 128×128 in CelebA while 1024×1024 in

CelebA-HQ.

GAN-generated images A total of six popular GAN types are considered, includ-

ing ProGAN [67], CramerGAN [9], SNGAN [106], MMDGAN [81], StyleGAN [68] and

StyleGAN2 [69]. In the low-resolution setting, we follow the setting in [158], using the

pre-trained ProGAN, CramerGAN, SNGAN, and MMDGAN models 1 to generate fake

faces. All the four GANs are pre-trained with CelebA. In the high-resolution setting,

we adopt the dataset released by [49] 2, which includes images generated by ProGAN,

StyleGAN, and StyleGAN2. Note that the ProGAN and StyleGAN are pre-trained with

CelebA-HQ while the StyleGAN2 with another facial image dataset FFHQ [68]. Since

FFHQ has a larger variety in facial attributes compared with CelebA-HQ, StyleGAN2 is

included for cross-domain evaluation. Table 5.1 shows the details of dataset setting.

5.3.2 Implementation Details

The reconstructors and classifiers are implemented based on U-Net [120] and Xception

[27], respectively. The U-Net we use has five skip connection blocks (i.e., S = 5), and their

1https://github.com/ningyu1991/GANFingerprints
2https://github.com/SSAW14/BeyondtheSpectrum
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Table 5.1: The details of the experimental dataset setting.

128x128 CelebA ProGAN CramerGAN SNGAN MMDGAN

Training 60,000 60,000 − − −
Test 6,000 6,000 6,000 6,000 6,000

1024x1024 CelebA-HQ ProGAN StyleGAN StyleGAN2∗

Training 25,000 25,000 25,000 −
Test 2,500 2,500 2,500 2,500

* Pre-trained in a different real image dataset FFHQ

output feature maps are employed to build the feature pyramid. We train the whole

framework with a batch size of 80 using the Adam optimizer [73]. The initial learning

rate is 1e-3, and we reduce it to half after every ten epochs. τ in Eq. 5.8, and λ1 and λ1 in

Eq. 5.9 are empirically set to 4, 0.1, 1, respectively. We also use random Gaussian noise,

color jitter, and blurring for data augmentation at the reconstructor side.

5.3.3 Baseline Detection Models

We compare our method with two representative general detectors, including an image-

domain detector using GAN fingerprints (GAN-FP) [158] and a frequency-domain de-

tector based on 2D DCT coefficients (2d-DCT) [39], as well as three state-of-the-art

detection methods specific to improve generalization and robustness, including the data

augmentation-based method (DA) [146], frequency-level perturbation (FLP) [59], and

super-resolution re-synthesis (SRR) [49]. To evaluate the detection performance, we

report the classification accuracy (Acc.) and the average precision score (A.P.) commonly

used in related studies [59, 146].

5.3.4 Results of Generalization

5.3.4.1 Low-resolution setting

In the low-resolution setting, we train the detection model with the CelebA images and

the corresponding 128×128 ProGAN images and test it with the ProGAN, CramerGAN,

SNGAN, and MMDGAN images to evaluate the cross-GAN generalization ability. The

results with comparison to five baselines are listed in Table 5.2. We conclude that: 1)

The general detectors, GAN-FP and 2d-DCT, are highly accurate for within-distribution

detection, but performance degrades significantly for cross-GAN detection, implying the
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risk of overfitting to unstable features; 2) By augmenting or perturbing the original

frequency distribution of training images, the other four detectors all get the cross-GAN

detection performance improved. By comparison, the proposed method MRCL achieves

the best or second-best results for all GANs, thanks to the multi-view representation

enriching the robust features.

Table 5.2: The results of cross-GAN detection in the 128×128 setting. Bold indicates the
best score in each column.

ProGAN CramerGAN SNGAN MMDGAN

Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

GAN-FP 99.5 99.8 52.1 55.4 53.6 70.4 48.2 53.2
2d-DCT 98.9 99.1 70.2 67.1 61.9 73.5 56.0 73.1
DA 99.5 99.9 72.1 78.3 63.1 70.0 54.7 71.7
FLP 95.1 98.3 81.3 81.7 83.6 80.1 70.2 82.0
SRR 100. 100. 88.2 95.1 70.3 81.5 77.7 84.5
MRCL (Ours) 100. 100. 91.1 89.2 80.2 83.3 85.4 86.1

5.3.4.2 High-resolution setting

We conduct the high-resolution detection test following the setting in [49]: a ProGAN

detector and a StyleGAN detector are trained with CelebA-HQ and the corresponding

GAN images independently. Then we test the two detectors with ProGAN, StyleGAN,

and StyleGAN2 test samples to evaluate the within-distribution, cross-GAN and cross-

domain performances, respectively. The results are summarized in Table 5.3. Similar to

the results in the low-resolution setting, all detectors perform well for within-distribution

detection. In the cross-GAN group, we notice that 2d-DCT becomes more generalized

when detecting high-resolution images. The reason may be that with the resolution

increasing, low-frequency visual information becomes richer while high-frequency noise

changes less. Thus, 2d-DCT trained directly with the spectrum input can capture more

stable low-frequency features. We can also see that FLP, SRR, and MRCL improve more

significantly than DA in this group because they reduce unstable frequency features

in a learnable way. Regarding the cross-GAN & cross-domain group, which is the most

challenging, our method remarkably outperforms all baseline methods in both sub-groups,

indicating great applicability to difficult detection scenarios.
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Table 5.3: The results of cross-GAN detection in the 1024×1024 setting. Bold indicates
the best-in-column. P, S, S2 are short for ProGAN, StyleGAN and StyleGAN2, respectively.
The right and left sides of → indicate the training and test sets, respectively.

Within-distribution Cross-GAN Cross-GAN & Cross-domain

P→P S→S P→S S→P P→S2 S→S2
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

GAN-FP 99.9 99.9 99.4 99.6 51.1 71.0 49.3 68.8 44.3 47.6 48.0 46.9
2d-DCT 99.9 99.9 99.8 99.9 90.1 91.5 93.0 92.1 62.1 60.0 93.8 90.2
DA 97.6 96.6 98.3 97.8 73.2 87.7 78.1 73.1 66.1 79.1 80.7 84.4
FLP 98.9 99.0 99.1 98.9 95.0 97.1 94.3 86.3 80.8 88.0 92.4 93.1
SRR 100. 100. 99.9 99.9 99.1 99.4 98.2 98.1 88.2 80.3 91.5 91.1
MRCL (Ours) 100. 100. 100. 100. 98.1 95.5 99.2 98.9 95.3 90.0 97.7 96.0

5.3.5 Results of Robustness

We evaluate the robustness against perturbations using the 128×128 ProGAN detectors.

We train detectors with the CelebA and ProGAN images, and test them with perturbed

ProGAN samples. Unlike prior work mainly concerning common image manipulations

[39, 146, 158], we investigate a broader range of perturbations as follows:

• Common manipulations including Blurring, Cropping, Compression, Noising and a

mix of all. We follow the setting in [39] to created the perturbations.

• Adversarial attacks including FGSM [46] and PGD [98]. The adversarial example

are crafted based on a vanilla Xception detector with the noise amount ϵ= 8/255.

• Spectrum Difference Normalization (SDN) [31], an attack specific to GAN-generated

images that calibrates the spectra of fake images according to real images.

An example of samples modified by different perturbations is shown in Figure 5.5.

Table 5.4 shows the results. Since most perturbations significantly modify the original

frequency distribution of fake samples, the performance of general detectors degrades

rapidly, while the other four are relatively more resistant given the reduction of fre-

quency overfitting. Among the four robust methods, our method achieves the best results

regarding all perturbations except for the A.P. scores for blurring and compression. In

addition, it is worth noting that for much more challenging perturbations such as the

adversarial attacks FGSM and PGD and the specific attack SDN, the Acc. and A.P. scores

of our method are notably higher than other baselines.
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CelebA ProGAN CramerGAN MMDGANSNGAN Blurring Compression Noise Cropping Mix FGSM PGD SDN

Figure 5.5: The visualization of different deepfake samples (the 1st row) and the average
FFT spectra before (the 2nd row) and after (the 3rd row) the Edge-to-RGB reconstruction.

Table 5.4: The results of robustness against 8 perturbation methods. Bold indicates the
best score in each column.

Clean Blurring Cropping Compression Noise Mix FGSM PGD SDN

Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

GAN-FP 99.5 99.8 49.6 67.4 44.9 77.5 8.7 45.8 9.0 49.1 19.3 66.6 11.1 15.5 8.1 22.1 13.4 45.0
2d-DCT 98.9 99.1 60.4 77.7 80.5 76.1 67.4 80.2 46.7 74.3 61.3 61.8 34.0 45.3 23.1 41.3 21.8 56.1
DA 99.5 99.9 83.2 98.9 51.8 64.1 84.0 97.3 74.3 80.2 85.5 91.0 43.4 66.7 40.1 54.4 56.7 67.0
FLP 95.1 98.3 96.1 90.2 71.6 77.0 80.3 74.3 90.9 91.1 84.7 89.9 56.1 60.7 49.4 67.0 43.2 60.1
SRR 100. 100. 92.1 93.0 97.9 96.1 90.7 93.3 92.0 88.8 89.6 90.6 67.1 75.2 64.8 77.1 87.2 91.1
MRCL (Ours) 100. 100. 96.4 98.5 98.2 99.1 93.8 96.9 94.7 94.4 91.3 94.4 81.6 80.3 81.3 81.9 93.2 95.6

5.3.6 Discussion

5.3.6.1 Ablation study

Two ablation studies are performed to show the effects of different views and different

devised modules, respectively. Evaluations are conducted using the 128×128 ProGAN

detectors, and we report the average Acc. (mAcc.) and A.P. (mA.P.) scores for cross-

model and cross-perturbation performance. Table 5.5 shows the results under different

conditions. Regarding different view settings, it shows that by adding only one view, the

generalization and robustness increase significantly compared with using a single view.

In general, increasing the number and diversity of views will constantly improve the

detection performance, indicating that the model is able to capture and fuse different

types of view-specific features for generalized and robust detection. A similar trend can

be observed in the ablation study of different modules. With activating more modules, the

learning capacity of the model improves, enabling more effective feature representation.

In addition, we highlight that the proposed framework is fully flexible and extensible with

regard to the view settings, which means that it is possible to incorporate more quantities

and types of views within the framework to enable stronger feature representations.
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Table 5.5: The results of ablation studies with different views or modules. MFP: Multi-
scale Feature Pyramid. RGA: Residual-guided Attention. ALF: Adaptive Loss Fusion.

Within-distribution Cross-GAN Cross-perturbation

Acc. A.P. mAcc. mA.P. mAcc. mA.P.

Masked Gray Edge
✓ 99.1 99.3 67.2 72.1 71.1 77.0
✓ ✓ 100.0 100.0 78.9 83.4 88.8 90.1
✓ ✓ ✓ 100.0 100.0 85.6 86.2 91.3 92.6

MFP RGA ALF
✓ 95.1 97.3 79.1 73.0 86.8 79.9
✓ ✓ 97.5 98.9 81.2 76.1 90.5 82.3
✓ ✓ ✓ 100.0 100.0 85.6 86.2 91.3 92.6

5.3.6.2 Frequency Analysis

One advantage of multi-view reconstruction learning is that it helps reduce the classifier’s

reliance on unstable frequency patterns by aligning the frequency distributions between

real and fake samples. This is because the low-level frequency artifacts of fake samples

are prior removed in the partial views. Then during reconstruction, along with the

restoration of the view-missing information, the frequency pattern is calibrated according

to real images. We provide a spectral analysis to confirm the effect of frequency alignment.

The azimuthal integration over each radial frequency of the center-shifted 2d-FFT

spectrum [32] is used to estimate the spectral distribution. Figure 5.6 shows the averaged

azimuthal integration curves of real images and images generated by different GANs

before and after reconstruction. It can be observed that the original distributions differ

significantly between real and fake images and between different GANs. Thus, a CNN

classifier easily overfits one specific frequency pattern for detection and can not generalize

to another. After reconstruction, the gaps between different frequency patterns are

much closer regarding all views. The alignment is more thorough in the edge-to-RGB

reconstruction than in the other two due to edge sketches containing far less information

than masked and gray views. These frequency-aligned training samples will force the

classifier to focus on more stable, generalized, and frequency-insensitive discernible

features. Figure 5.5 additionally provides a visualization of the averaged FFT spectra

of different samples before and after the edge-to-RGB reconstruction. The difference

between real images and all types of fake images becomes smaller after reconstruction,

except for the clipping, which changes more in semantic contents than in frequency.
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Raw Image Masked Image Modelling

Gray-to-RGB Edge-to-RGB

Figure 5.6: The spectral distributions of real images and fake images generated by
different GANs. The distributions are successfully aligned in all reconstruction tasks.

5.3.6.3 Residual Analysis

One assumption of the low-pass residual-guided attention module of intra-view classi-

fication learning is that discriminative features are contained in the restored regional,

color, and textural information of the image, which can be potentially reflected in the

low-frequency reconstruction residuals. In addition to the evidence confirmed in the

main experiments, we conduct a residual analysis interpreting the residual differences

between real and fake images to verify the assumption. Figure 5.7 provides several

visualization examples resulting from the three image completion tasks. We can see

that the reconstruction residuals differ significantly between real and fake images with

regard to all reconstruction models. Moreover, we compute the histograms of the average

spatial amounts of reconstruction residuals of real and ProGAN images, as shown in

Figure 5.8. Clear distributional gaps exist in reconstruction residuals between real and

ProGAN images, which further confirms the assumption.
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(a) Masked Image Modeling (b) Gray-to-RGB (c) Edge-to-RGB

Figure 5.7: Visualization examples of residual differences between real (green box) and
fake (red box) images generated by ProGAN for the three reconstruction models. From
first to last row: original images, reconstructed images, and the corresponding residuals.

Figure 5.8: Histograms of the average spatial amounts of reconstruction residuals on
CelebA. Clear margins exist between distributions of real and fake (ProGAN) images.

5.4 Summary

The generalization and robustness of detecting GAN-generated images are two critical

challenges when countering unknown deepfakes outside the training dataset. Prior

methods relying on unstable GAN-specific frequency features fail to generalize to other

deepfake patterns. We proposed a novel detection framework, which jointly learns a

reconstruction and classification streams for a robust multi-view feature representation

from diverse frequency-irrelevant, view-specific distributional disparities between real

and fake images. Numerous experiments with varying cross-resolution, cross-GAN, and

cross-perturbation settings validated the outperforming generalization and robustness

of our proposed framework compared with the current state-of-the-art detectors. We

also confirmed the effect of reducing frequency reliance in deepfake detection, offering a

potential route for future designs of robust deepfake detection.
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THE TRACE REMOVAL ATTACK

DeepFakes are raising significant social concerns. Although various DeepFake detectors

have been developed as forensic countermeasures, these detectors are still vulnerable

to attacks. Recently, a few attacks, principally adversarial attacks, have succeeded in

cloaking DeepFake images to evade detection. However, these attacks have typical

detector-specific designs, which require prior knowledge about the detector, leading to

poor transferability. Moreover, these attacks only consider simple security scenarios. Less

is known about how effective they are in high-level scenarios where either the detector’s

defensive capability or the attacker’s knowledge varies. In this chapter, we aim to solve

the above challenges with presenting a novel attack pattern for DeepFake anti-forensics,

namely, the trace removal attack. Instead of investigating the detector side, this trace

removal attack looks into the original DeepFake creation pipeline, attempting to remove

all detectable natural DeepFake traces to render the fake images more "authentic". This

detector-agnostic design benefits the attack to be effective against arbitrary or even

unknown detectors. To implement this attack, we first perform an in-depth DeepFake

trace discovery, which identifies three discernible traces: spatial anomalies, spectral

disparities, and noise fingerprints. Then a trace removal network (TR-Net) is proposed

based on an adversarial learning framework that involves one generator and multiple

discriminators. Each discriminator is responsible for one individual trace representation

to avoid cross-trace interference. These multiple discriminators are arranged in parallel,

which prompts the generator to remove various traces simultaneously. To evaluate the

efficacy of the attack, we crafted heterogeneous security scenarios where the detectors
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were embedded with different levels of defense and the attackers’ background knowledge

of data varies. The experimental results show that the proposed attack can significantly

compromise the detection accuracy of six state-of-the-art DeepFake detectors while

causing only a negligible loss in visual quality for the original DeepFake samples.

6.1 Background

Along with the recent progress in automated digital face manipulation techniques based

on deep learning, deep face forgeries, also known as DeepFakes, are raising serious social

concerns for information security [149]. Accordingly, the research community is dedi-

cated to developing forensic countermeasures against DeepFakes, and many DeepFake

detectors have been developed that can successfully distinguish DeepFake images from

real ones [137]. However, the robustness of these detectors against malicious attacks

is still in the early stages. To further understand the vulnerability of DeepFake detec-

tors, researchers have and must continue to engage in anti-forensics against DeepFake

detection [17, 29, 34, 42, 52, 53, 55, 88, 109, 111, 147]. Each novel anti-forensic attack

exposed can help us to analyze these detectors more comprehensively.

Most existing attacks are based on adversarial attacks that embed imperceptible

adversarial perturbations into DeepFake samples to fool machine learning-based de-

tectors [17, 34, 42, 55, 88, 109, 147]. The development of this type of attack relies on

the background knowledge of the detectors, such as the queried outputs and the de-

tector’s parameters. Even in a universal black-box attack scenario, information from

surrogate detectors is always needed to imitate the behavior of the target detector. These

detector-specific designs lead to poor transferability and a lack of stability across different

detectors or unknown detectors [4, 160]. For example, the attack success rate of a typical

adversarial attack FGSM will decrease significantly from 100% to only 0.8% when the

target detector changes, as proved by Barni et al. [4]. Other attacks emerging in this

field generally require reconstructing DeepFake samples to modify the distribution of

feature-of-interest of the target detector to evade detection [29, 52, 53, 111]. This is also a

detector-specific design, which means that these attacks are less transferable to detectors

interested in different forgery features. Moreover, these attacks only pay attention to

a single type of feature. Their efficacy may deteriorate significantly against advanced

detectors that operate on hybrid features.

Another weakness of these attacks is that their studies tend to oversimplify the

security scenarios. On the one hand, the attacks are often implemented and evaluated
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Figure 6.1: The proposed trace removal attack utilizes the universal trace knowledge
distilled from the common DeepFake pipeline instead of detector-specific knowledge.
Thus it is detector-agnostic and can transfer across arbitrary black-box detectors.

with ideal assumptions, e.g., the attacker has unlimited access to the target detector (or

at least the surrogates) or the attacker has all the required background knowledge of

the training data. On the other hand, the target detectors are often assumed to be as

naked as possible, while some common and easy-to-implement defenses are left out of

consideration.

In this chapter, we propose a novel attack pattern for DeepFake anti-forensics, called

the trace removal attack, that addresses the above weaknesses. Unlike the detector-

specific designs, we offer a novel detector-agnostic perspective. As shown in Figure 6.1,

we pay full attention to the original pipeline of DeepFake image creation, identifying

the discernible manufacturing traces in the DeepFake images. The DeepFake images

are then refined by removing all these traces, resulting in images (i.e., attack samples)

that are able to bypass any arbitrary detector. Our attack requires zero knowledge of the

target detector, operating exclusively on the DeepFake images without any additional

interactions with the target detector. In contrast to adding extra adversarial noise or

modifying the feature distribution, removing the intrinsic detectable traces makes the

DeepFake images essentially much closer to the real ones, i.e., the DeepFake images

become more natural and perceptually "authentic". In this sense, the proposed method

can be seen as a universal black-box attack.
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To implement the trace removal attack, the first step is to conduct empirical trace

discovery to thoroughly investigate what discernible manufacturing traces are naturally

maintained in DeepFake images. An adversarial learning-based trace removal network

(TR-Net) then removes the traces found. However, unlike a normal adversarial learning

network with one generator and one discriminator, TR-Net contains a single generator

and multiple discriminators, where each discriminator is responsible for distinguishing

one particular type of trace. This "one-versus-multiple" structure can prompt the gen-

erator to reconstruct DeepFake images by removing all possible traces synchronously.

Considering that the identified traces could exist in different signal domains, using

multiple discriminators allows the representation of these traces to be effectively decou-

pled. We construct several heterogeneous threat scenarios to assess the efficacy of the

attack, where the detectors are reinforced through various defensive strategies, and the

attackers have different data background knowledge. We then evaluate the attack on

a wide range of representative detectors to ensure that this detector-agnostic attack is

truly universal and transferable.

Our contributions are as follows:

• We perform an in-depth DeepFake trace discovery, identifying three universal

traces responsible for DeepFake images’ tractability.

• We propose a novel attack concept against DeepFake detectors, namely, the trace

removal attack. Benefiting from a detector-agnostic design, our attack can defeat

arbitrary unknown detectors and detectors equipped with defenses. The attack is

implemented via a "one-versus-multiple" adversarial learning network that erases

all traces synchronously.

• The attack is tested in heterogeneous threat scenarios, where the detector’s de-

fensive capability ranges from weak to strong and the attacker’s data knowledge

is limited. Furthermore, performance is evaluated on a wide range of detectors,

and a dataset is developed covering all typical DeepFake types to benchmark our

evaluation.

6.2 DeepFake trace discovery

In this section, we investigate the original process that creates DeepFakes to provide

insights into the root causes that make DeepFakes detectable. In this way, the universal

forgery traces can be identified empirically.
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6.2.1 The common DeepFake pipeline

DeepFakes are generated in roughly one of three ways: face synthesis, facial attribute

editing, or face replacement [137]. Face synthesis means creating an entire non-existent

face from random noise with an unconditional GAN, such as ProGAN [67] and StyleGAN

[68]. With facial attribute editing, an image’s attributes are altered. Either the appear-

ance attributes (e.g., hair color, makeup, skin color, etc.) or the soft biometric attributes

(e.g., identity, gender, age, etc.) can be modified. Conditional GANs, such as StarGAN [26]

and STGAN [92], are widely employed for such tasks. Here, the target attribute serves

as the extra label y in training a conditional GAN. Face replacement swaps the face of a

target image with that of a source image. Factors that need to be considered include the

alignment of the face in terms of size, pose, and direction. A deep rendering process then

ensures the resulting image looks natural and seamless. In addition, these methods can

be combined to produce high-level DeepFakes, like high-fidelity facial reenactments for

fake videos.

Source

Face
extraction

Deep Face
creation

Deep
rendering

Result

Target

Figure 6.2: The fundamental DeepFake pipeline.

The top-level design of a DeepFake generator may vary, but underneath there is a

common pipeline for producing DeepFake images that consists of three core stages: face

extraction, fake face creation, and deep rendering, as shown in Figure 6.2. In the first

stage, the facial region is localized and extracted from the source image. This process

can be accomplished without a GAN. Next, a fake face is generated by a specific GAN

or a model template according to the target face. In most cases, creating a fake face is

conditioned upon some knowledge of the target face, such as the identity or attributes.

In the last stage, the generated face is aligned to the source face and composed back onto

the source image. Usually, a GAN or some post-processing operations are employed to
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render the final image to make it more natural.

This pipeline is applicable to all the aforementioned methods of generating a Deep-

Fake, either partially or entirely. For example, end-to-end facial synthesis and attribute

editing with DeepFake models are de facto productions from the second stage of the

pipeline, while more sophisticated DeepFake models are equipped with a deep rendering

process at the end of the pipeline.

6.2.2 What make DeepFakes detectable?

6.2.2.1 Model traces in fake face creation

Face replacement
DeepfakeTIMIT

Facial attribute 
editing 
STGAN

Face synthesis 
ProGAN

Figure 6.3: Spatial anomalies revealed by the spatial attention maps of a Xception
detector. For each DeepFake type, the green box shows two random DeepFake examples
and the red box shows the average results of 2000 samples.

Spatial anomalies. DeepFakes rely on deep generative models, such as GANs, to

synthesize faces from real face images. Ideally, the generated faces should be visually

indistinguishable from real ones. However, due to some practical limitations e.g., with the

dataset or the model’s capability, the fake faces may be imperfect which may show spatial

abnormalities. Although the latest GANs have seen a significant improvement in visual

quality over their predecessors, some subtle unnatural traces such as inconsistencies

in texture or contextual discrepancies can still occur [21, 82, 94, 102, 113]. Spatial

anomalies can also be found in faces generated by model templates. This can be a result

of manufacturing failures during the template alignment or rendering [83, 85].
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Notably, since the subtle spatial anomalies may be imperceptible to humans but can

be captured by machines, we demonstrate their existence and spatial distributions in

the RGB color space with the spatial attention map (SAM) of a toy Xception detector.

Grad-CAM [126] is used to calculate the SAMs regarding different DeepFake types

(details of these DeepFake types and the Xception detector are introduced in Section 6.4).

As shown in Figure 6.3, there are evident detectable traces in the RGB space, and their

distributions exhibit certain stable semantic-dependency: the ProGAN and STGAN’s

anomalies are around the middle-right face region, while DeepfakeTIMIT images expose

traces concentrated in the nose area. These results can be seen more clearly in the

averaged faces.

Figure 6.4: The averaged spectra of both the real images and the corresponding fake
images of different DeepFake types. Each spectrum is averaged on 2000 samples. The
last row shows the differences between the spectra of the real and fake images.

Spectral disparity. Detectable traces can also be revealed in the frequency domain.
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This is because that CNN-based generative models, typically GANs, will create disparities

in the spectra of the generated images. Some past studies attribute this phenomenon

to the transposed convolution operation, a widely-used upsampling unit in CNN-based

generative models for increasing feature dimensionality [20, 32, 39, 91, 159].

Claim 6.1 (1). The transposed convolution operation in upsampling layers leads to quasi-
periodic high-frequency artifacts in the resulting feature maps. (The proof is in Chapter
4.)

An illustration of the disparity between the averaged spectra of real and fake images

is provided in Figure 6.4. All three types of DeepFake images have significant differences

from the real ones. The disparity patterns in the DeepfakeTIMIT images are not similar

to the other two because face replacement involves post-processing procedures that

further change the spectral distribution.

6.2.2.2 Model traces in deep rendering

Noise fingerprint. A DeepFake may retain two types of manufacturing fingerprints

through the deep rendering phase, one being the GAN fingerprint, the other one the

post-processing fingerprint. The deep rendering phase usually involves a GAN-based

rendering model and some post-processing operations, such as landmark alignment, color

correction, splicing, and blending. It has been pointed out that GANs maintain unique

and stable fingerprints in their generated images. Likewise, post-processing operations

will also introduce fingerprints, due to the characteristic discrepancies in the noise space

brought about through tampering the regions.

To show the fingerprints in the noise space, we estimate the fingerprints of different

DeepFake types using the average noise residual. Specifically, the noise fingerprint of a

DeepFake model M can be formulated as:

(6.1) FM = 1
N

N∑
i=1

(IM
i −W(IM

i )),

where IM
i is a sample generated by M , W(·) is a Wiener denoising filter and N = 2000

in our case. For comparison, we also used the same approach to calculate the average

noise residual of an equal quantity of real images, as shown in Figure 6.5. For all

DeepFake types, the patterns of the average noise residuals between the real and fake

samples are significantly different. Those of the real images have generally a smoother
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response than those of the fake images, which corroborates the fact that extra noise

discrepancies are introduced into DeepFakes during their production. A distributional

difference can also be demonstrated by calculating the normalized cross-correlation

(NCC) between the average noise residual and the individual noise residuals from

another 2000 real/fake samples:

(6.2) ρM
i = < FM ,RM

i >
‖FM‖ ·‖RM

i ‖ ,

where < ·, · > and ‖·‖ denote the inner product and l2-norm respectively; Ri = IM
i −W(IM

i ).

Figure 6.6 shows histograms of the individual correlations. For all DeepFake types, the

NCC scores between the noise residuals of the real samples and the fingerprints of

the DeepFakes are distributed around zero. This indicates that little correlation exists.

By contrast, the NCC scores between the noise residuals of the fake samples and the

fingerprints of the DeepFakes are remarkably larger than zero, testifying to a significant

correlation with the corresponding fingerprint.

Figure 6.5: The empirical noise fingerprints of different DeepFake types estimated by
average noise residual. The average noise residuals of the corresponding real images are
also provided for comparison.
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Figure 6.6: The distributions of correlations between individual samples and the noise
fingerprints for different DeepFake types.

6.2.3 Discussion

The above model trace analysis identifies three typical model traces throughout the

DeepFake pipeline. The interplay of these traces distinguishes DeepFake images from

real ones. Hence, a solid and universal trace removal attack should be able to eliminate

all these possible traces at once. In this way, the distribution of the modified DeepFake

images becomes much closer to that of the real images, enabling the evasion of arbitrary

detectors. Since the knowledge of DeepFake traces is derived from the fundamental

pipeline shared by different DeepFake types, the trace removal attack to be presented

next is applicable to all these DeepFake types.

6.3 TR-Net: trace removal attack

6.3.1 Threat model

6.3.1.1 Victim model

Assume the target victim model is an arbitrary DeepFake detector C , which is a machine

learning classifier that distinguishes trace features between real and DeepFake images.

C takes an image I or its hand-crafted features as input and outputs a binary decision

of {Real,Fake}.

6.3.1.2 Victim detector’s capability

The attack is designed to defeat an arbitrary DeepFake detector C . Therefore, there

are few restrictions on C ’s capabilities. The developer of C can use discretionary model

designs and feature engineering, and also sufficient training data. C is allowed to be

trained with fake images from multiple DeepFake generation methods rather than a

single one, so as to achieve better cross-task generalization and robustness.
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In addition, more robust detectors are considered that have been embedded with

defenses. As suggested in [39, 158], training data augmentation with perturbed images

can significantly improve a detector’s robustness against common attacks. Hence, C is

strengthened during its training phase with two augmentation strategies that confer

two different levels of defense.

Weak defense: Empirical augmentation. This method adds perturbed samples from

four empirical perturbation models following the settings in [39]:

• Blurring: images are blurred with a Gaussian filter with a kernel size randomly

sampled from (3,5,7,9).

• Cropping: images are cropped along both sides with a random percentage sampled

from U(5,20) and then resized back to the original resolution.

• Compression: images are compressed with JPEG protocol with a quality factor

randomly sampled from U(10,75).

• Noising: i.i.d Gaussian noise is introduced into the images with a Gaussian variance

randomly sampled from U(5.0,20.0).

C ’s training set was augmented with a combination of these different perturbations in

the order of: blurring, cropping, compression, noise. Each strategy was applied with a

probability of 50%.

Strong defense: Adversarial augmentation. This method assumed that the developer

of C had full knowledge of the attack model and could use the attack samples directly to

augment the training set. This strategy was applied with a probability of 50% as well.

6.3.1.3 Attacker’s background knowledge

The proposed attack requires little knowledge of C , i.e., the attacker does not need to

know the model architecture, parameters, or the features of C ’s interest. As such, there

is no need to access the detector, its training set, or the query outputs.

To train the attack model, the attacker is assumed to have an auxiliary dataset

containing real and fake images. Although this is a mild assumption given that there

are plenty of ready-to-use DeepFake image datasets and models freely available to the

public, some additional restrictions are still imposed on the attacker’s data availability

to simulate the worst-case scenarios:
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• Limited dataset size. The attacker has limited resources with which to collect

public data and, thus, the resulting dataset size is relatively small.

• Out-of-distribution DeepFake. The attacker can only collect fake images generated

by some particular DeepFake methods, which means the auxiliary dataset will not

include all types of DeepFakes.

6.3.1.4 Attack goals

A successful attack means that the target detector C will be misled into classifying the

attack samples as ’Real’. Meanwhile, the attacker may expect the attack to be stealthy

with preserving the visual utility of the original DeepFake image. Therefore, the visual

difference between the original DeepFake image and the attack sample is required to be

small enough that it would not be perceived by humans.

Formally, let I+ and I− be the sets of real images and DeepFake images, respectively.

Given a DeepFake image I− ∈ I−, the attack model learns a mapping A : I− 7→ I∗. The

attacking sample I∗ satisfied the following attack goals:

(1) Fraudulence. The attack sample successfully deceives an arbitrary detector:

∀C , p(C (I∗)=C (I+))≈ 1;

(2) Stealthiness. The attack sample is perceptually indistinguishable from the

original DeepFake image: ∀I−, d(I−, I∗)≤ ϵ, where d(·, ·) is a distance function.

6.3.2 TR-Net

Our trace removal attack is implemented with a trace removal network (TR-Net) based

on adversarial learning. As shown in Figure 6.7, TR-Net consists of a generator G
and a set of discriminators D : {D1,D2,D3}. G takes the original DeepFake images as

inputs and reconstructs them to evade trace recognition by the discriminators. Each

discriminator in D is devised for a specific auxiliary trace recognition task. Joint training

on D adversarially impels G to remove different traces concurrently. After the adversarial

learning reaches Nash equilibrium, the optimal generator G⋆ is adopted as the attack

model A , i.e., A =G⋆. Then, given a test DeepFake image I−o , the corresponding attack

sample is I⋆o = A(I−o ).

6.3.2.1 Generator

The generator G is a deep auto-encoder that learns to generate trace-free samples from

the original DeepFake samples with an unchanged image size. The backbone of G is a
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Figure 6.7: Framework overview of the trace removal network.

u-shaped network (U-Net) [120] given its remarkable capacity to reconstruct high-quality

images. As shown in Figure 6.8, G consists of an encoder path and a decoder path. The

encoder involves repeated convolutional layers (with 3∗3 kernels) and max pooling layers

(with 2∗2 kernels), capturing features at different scales of the images while compacting

the spatial information. The decoder path is a symmetric expanding counterpart. In

each decoding block, the feature map is upsampled to double size while the number of

features is halved. Each decoder block also concatenates the output features with the

high-resolution features from the corresponding encoder block, such that the feature and

spatial information can be preserved for efficient reconstruction.

An additional challenge is that, as discussed in Section 6.2, G is a CNN-based

generative model. Thus, it might produce its own model traces, which may interfere

with the trace removal process. The loss functions proposed in the subsequent sections
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effectively suppress this intrinsic noise brought about by G. In addition, we also made

two structural improvements as suggested in [32] and [20] to mitigate this problem.

First, we replaced the transposed convolution-based upsampling in the original U-Net

with bi-linear interpolation-based upsampling. Second, we added a feature scaling layer

before the last convolutional layer of G.

32

64

128

256

128

64

32

3

3x3 Conv, ReLU, Batch normalization 2x2 Max pooling

x2 Bilinear UpsamplingSkip connection and concatenation

Feature scaling

1x1 Conv.

Figure 6.8: The network structure of the generator G.

6.3.2.2 Discriminators

Discriminator D impels G to produce trace-free attack samples via adversarial learning.

As a result, D needs to be able to recognize accurate DeepFake trace patterns by learning

to classify real and fake images in the trace space. According to our trace discovery, three

types of traces are revealed in different domains, each with a unique representation.

The inter-domain interference across traces makes a single discriminator learned in one

feature subspace impractical to represent all traces accurately. To this end, we propose

employing a set of parallel discriminators D : {D1,D2,D3} to disentangle different trace

representations. As shown in Figure 6.9, each discriminator is responsible for one partic-

ular input trace representation. All the discriminators have the same network structure

built on a five-layer CNN. Note that using a complicated structure for the discriminator

is unnecessary. In addition to extra computational cost, a complicated discriminator leads

to an imbalance between the generator and discriminators during training. A shallow

CNN is sufficient to capture these traces accurately in our experiments.
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Figure 6.9: The network of the discriminators D : {D1,D2,D3}. The three discriminators
have the same shallow structure while only differing in the input feature space.

Spatial discriminator D1 D1 captures potential spatial anomalies in the spatial

domain, including distortions, inconsistencies, disharmony, etc. Similar to the original

discriminator in a normal GAN, D1 is trained directly with the RGB pixel values, and

thus can be seen as an incremental refinement on the raw DeepFake images in terms of

visual quality.

Spectral discriminator D2 D2 learns to recognize the spectral disparities between

the real and attack samples. Unlike D1, D2 takes the frequency spectrum instead of

RGB pixels as its input. The frequency spectrum is transformed from the pixel values by

two-dimensional Discrete Fourier Transform (2D-DFT). Given a natural image I ∈RM×N ,

the 2D-DFT maps each pixel value of the gray-scale component of I to a frequency value

F (u,v) ∈RM×N :

(6.3) F (I)(u,v)=
M−1∑
m=0

N−1∑
n=0

I(m,n) · e−2πi·( um
M + vn

N ).

As the imaginary part is incompatible with a CNN for calculating gradients, directly

applying the 2D-DFT F (I) to D2 is impractical. Instead, we decompose the complex-

valued matrix of F (I) into its amplitude response Fam(I) and phase response Fph(I).

Let the complex form of F (I) be F (I)= a+bi, and we have:
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(6.4)
Fam(I)= |F (u,v)| =

√
a2 +b2

Fph(I)=∠F (u,v)= arctan
b
a

.

Then, the two components are concatenated as a 2-channel real-valued matrix as the

input of D2, denoted as Î = [Fam(I),Fph(I)].

Fingerprint discriminator D3 D3 targets the DeepFake’s model fingerprint in the

noise space. A reliable fingerprint encoder is required to disentangle accurate fingerprint

traces in the input feature space. Existing DeepFake fingerprint encoders include a

noise-based method [100] and a learning-based method [158]. We propose to combine

the two insights for a more accurate representation. First, a residual noise extraction

is performed to represent the noise-level fingerprints. An SRM filter is adopted for this

purpose given its effectiveness in estimating local noise distributions for image forensics

[41]. The SRM filter has three layers with the following kernels:

k1 = 1
4



0 0 0 0 0

0−1 2−1 0

0 2 4 2 0

0−1 2−1 0

0 0 0 0 0

,k2 = 1
12



−1 2 −2 2 −1

2 −6 8 −6 2

−2 8 −12 8 2

2 −6 8 −6 2

−1 2 −2 2 −1

,k3 = 1
2



0 0 0 0 0

0 0 0 0 0

0 1−2 1 0

0 0 0 0 0

0 0 0 0 0


The input to D3 is then denoted as Ĩ =SRM(I). Then, by training D3 in the "real v.s.

fake" binary classification task, fine-grained fingerprint representations can be obtained

from the noise-level fingerprints.

6.3.2.3 Loss functions

We design an adversarial loss to supervise both G and D of the TR-Net, which can

enable trace removal so as to realize the attacking goal of fraudulence. Regarding

the goal of stealthiness, a visual similarity loss is imposed on G to ensure that the

semantic information of the original DeepFake samples are perfectly preserved in the

corresponding attack samples. In addition to achieving these attack goals, one technical

challenge is that an ideal trace removal attack requires simultaneously closing the

distribution gap between: the attack samples and the real samples at the trace level;

and between the attack samples and the DeepFake samples at the semantic level (see

Figure 6.10). However, due to the information continuity in an image, the trace features
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inevitably overlap the semantic features in the latent space, leading to a potential conflict

in feature migration directions during optimization. Our loss function design mitigates

this nontrivial problem, as shown next.

Semantic feature

Trace feature

DeepFake samples

Attack samples

Real samples

Figure 6.10: The diagram of the changes in the latent feature space of TR-Net during
optimization. A conflict in feature migration directions occurs owing to the overlap of
trace features and semantic features.

Adversarial loss The adversarial learning of TR-Net is performed with the input data

pairs in the form of (I+, I−). The discriminators continuously learn to distinguish the

generator’s output G(I−) from I+ in different feature spaces, while the generator tries

to mislead the discriminators’ judgements about G(I−). Conventionally, I+ and I− are

randomly sampled from I+ and I− respectively. However, the random sampling is less

practical for TR-Net’s optimization considering the conflicts between semantic features

and trace features. The visual information between I+ and I− should be as consistent

as possible to enforce the discriminators to focus on purer trace features while reducing

their bias to semantic features. Thus, the semantically-closest pairs are constructed to

supervise discriminators. If a fake sample is produced by a method where a real source

image exists, such as facial attribute editing or face replacement, the source image is

applied straightforwardly as the semantically-closest counterpart. For a face synthesis

sample created out of nowhere, its nearest neighbor is retrieved from the real image set

I+ as a counterpart.

With the semantically-closest pair (I+, I−) in hand, the adversarial loss for jointly

training the "one-versus-multiple" framework is denoted as:

(6.5) Ladv(G,D1,D2,D3)=λ1L (G,D1)+λ2L (G,D2)+λ3L (G,D3),
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where

(6.6) L (G,D i)= Ex+,x−[log(D i(x+))+ log(1−D i(G(x−)))],

The input x varies for different discriminators, i.e., x = I for D1, x = Î for D2 and x = Ĩ
for D3. λ1, λ2, λ3 are weights to balance the contribution of three discriminators, subject

to λ1 +λ2 +λ3 = 1.

Visual similarity loss To satisfy the stealthiness goal, a visual similarity loss is

additionally imposed on the generator G. The commonly-used pixel-wise distance ||I−−
G(I−)||2 is not particularly applicable to our method as it will typically lead to overfitting

the visual information. In turn, this will exacerbate the conflict between the semantic

features and the trace features, thus compromising the trace removal. Moreover, despite

having D2 to encourage spectra matching from the attack samples to the real images,

we experimentally find that only a D2 is insufficient to well match high-frequency

components. This is because in natural images, information tends to be centralized in

lower-frequency components.

Instead, we propose a novel visual similarity loss plus a power spectral density (PSD)

regularization to cope with the above problem. Given an image I, first, a filter is applied

to its center-shifted DFT spectrum. This decomposes I into its low frequency components

I l and high frequency components Ih:

(6.7)

{
I l =F−1(H (u,v) ·F (u,v))

Ih =F−1(1−H (u,v) ·F (u,v))
,

where F−1 is the reverse DFT, H (u,v) = exp(−u2+v2

2σ2 ) is a Gaussian filter. Then the

visual similarity loss between a source fake image I− and its reconstructed version G(I−)

is computed as the VGG perceptual loss [61] on the low frequency components:

(6.8) Lsim(G)= 1
W ∗H

∥∥VGGk
(
I−l

)−VGGk (G(I−)l)
∥∥2

2 ,

where W and H are the dimensions of the respective feature maps within the VGG

network [128] and VGGk denotes the features extracted at VGG’s k-th layer.

Additionally, a PSD regularization is added to the visual similarity loss to enforce the

mapping of frequency information between the attack samples and the real images. The

PSD of an image I can be represented as a one-dimensional profile of the center-shifted

power spectrum resulting from an azimuthal integration over each radial frequency θ:
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(6.9)
PSD(ωk)=

∫2π

0
∥F (I) (ωk ·cos(θ),ωk ·sin(θ))∥2 dθ

for k = 0, . . . , M/2−1.

Benefiting from the semantically-closest pair (I+, I−) where the lower frequency compo-

nents are close to each other, the PSD regularization can operate on the high frequency

components merely, which is computed as the Euclidean distance between the PSDs of

I+h and G(I−)h:

(6.10) Lreg(G)= 1
M/2−1

∥∥PSD(I+h )−PSD(G(I−)h)
∥∥2

2

The final training objective of the TR-Net is:

(6.11) T = arg min
{G,D3}

max
{D1,D2,D3}

{
Ladv +Lsim +Lreg

}
6.3.3 Comparison with previous attacks

To date, the published adversarial attacks have had some limitations. First, searching

for the optimal adversarial noise perturbations to a target detector typically requires a

certain level of information about the detector itself, such as the parameters, network

structure, or the outputs. Thus, there will be a transferability issue, i.e., the attacks

crafted based on a specific target detector cannot work when facing another unknown

or black-box detector [4, 160]. Second, the feasibility of an adversarial attack on some

advanced detectors which involve sophisticated network designs will be problematic.

Under these circumstances, it becomes difficult, if not impossible, to search for the

optimal perturbations that will maintain a high attack success rate while being largely

imperceptible.

Regarding the reconstruction-based attacks, our method is analogous to this genre of

attacks, but fundamental differences exist. Similar to adversarial attacks, reconstruction-

based attacks are performed in a "detector-specific" way. The attacker is assumed to

know what type of forgery features are of prime interest to the target detector. What

is worse, these attacks solely focused on an individual feature type in a single signal

domain, irrespective of the fact that various traces exist in different domains.

By contrast, our method improves on anti-forensic attacks by removing multiple

forgery traces at the same time. Additionally, they are removed in a way that is agnostic

to the detector. The result is better transferablity to an unknown detector. Technically,
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this is more challenging than dealing with a single trace feature given the interplay

between traces and the inter-domain interference, yet the proposed TR-Net is competent

to meet the challenge.

6.4 Experimental Evaluations

We evaluate the proposed trace removal attack in heterogeneous security scenarios where

the attacker has different background data knowledge, and the detectors’ defensive

capability varies. In each scenario, the attack effectiveness is assessed by verifying

whether the goals of fraudulence and stealthiness have been satisfied. We also provide a

closer look into the trace removal result from different dimensions to further justify its

success.

6.4.1 Evaluation metrics

(1) The fraudulence goal is verified in terms of detection accuracy, calculated as the

proportion of correctly classified samples out of all the samples in a single class. Attack

samples with higher fraudulence result in lower detection accuracy of the test detector.

(2) The stealthiness goal is verified by assessing the visual quality loss in attack samples.

We used peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) between

an original DeepFake image and its corresponding attack sample to evaluate the visual

quality loss. PSNR quantifies the ratio between the maximum possible power of a signal

and the power of corrupting noise that affects the fidelity of its representation. SSIM is

a common metric for measuring the similarity between two images. A larger value in

either PSNR or SSIM indicates a smaller loss in visual quality, which equates to better

stealthiness of the attack sample.

6.4.2 Datasets

The proposed trace removal attack is applicable to all DeepFake types including face

synthesis, facial attribute editing, face replacement. To the best of our knowledge, existing

publicly-available DeepFake detection datasets fail to cover all these methods. Thus, we

create a new DeepFake dataset called All-in-One-DF for a thorough evaluation, which

consists of 66,000 semantically-closest pairs of real and fake images (i.e., 132,000 images

in total) from four sources.
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(1) CelebA: A large-scale dataset containing more than 200k real face images. The

images are cropped and aligned to the size of 128∗128∗3 with the face in the centre.

(2) Face synthesis: We employ ProGAN, one of the most popular unconditional GANs

to synthesize non-existing face images. We utilize the ProGAN instance pre-trained with

CelebA [158] to generate 22,000 fake images. Then we retrieve their corresponding 1-

nearest-neighbor similar counterparts from the CelebA dataset to construct semantically-

closest pairs.

(3) Facial attribute editing: We select STGAN, a state-of-the-art facial attribute

editing GAN for this use. We randomly sample 22,000 real images from the remaining

CelebA dataset and apply the official STGAN instance [92] to modify either the soft-

biometric attribute (facial age) or the appearance attribute (hair colour), resulting in

22,000 fake samples.

(4) Face replacement: DeepfakeTIMIT [74] is a human video dataset where faces

are swapped and rendered using GAN-based approaches. There are 320 pairs of source

videos and their face-swapped counterparts in DeepfakeTIMIT. We randomly select

22,000 frames from all videos on either side, followed by face-centered cropping to the

size of 128∗128∗3.

Figure 6.11 provides some pairwise examples from the All-in-One-DF dataset.

Real

STGAN DeepfakeTIMITProGAN

Fake

Figure 6.11: Examples of semantically-closest pairs from three different DeepFake types.
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6.4.3 Selected Victim Detectors

To show the efficacy of the proposed attack model in attacking arbitrary detectors, we

select six recently proposed representative DeepFake detectors, which evenly cover the

three detector categories outlined in Section 2.2.2.

Spatial-based detectors: Xception [122] is a deep CNN widely adopted as the back-

bone network in face forgery forensics tasks. It has achieved leading performance in

some benchmark datasets by learning directly from RGB pixel inputs. Patch-CNN [19]
focuses on the local properties in semantic regions rather than on global semantics. It

aggregates the decisions of a set of truncated Xceptions learned from image patches for

the final binary decision.

Frequency-based detectors: DCTA [39] is a shallow CNN classifier learned from

the 2D-DCT spectra of images. F3-Net [116] is one of the state-of-the-arts in DeepFake

detection. It involves a two-stream collaborative network that combines frequency-aware

decomposition and local frequency statistics to learn frequency-aware clues.

Fingerprint-based detectors: LF [158] is a deep CNN that learns GAN fingerprints

in a multi-source identification task. The original multi-classification results are further

divided into the "real-or-fake" binary decisions. NF [100] is a non-trainable method

that differentiates GAN images from real ones via a cross correlation score of the noise

residual-based fingerprints.

In addition, we also use ensemble learning to fuse the three categories of detectors

into a stronger one, denoted as Ensemble. Xception, DCTA and LF are selected as the

base detectors and a random forest classifier is trained based on the features output by

the final pooling layers of the base detectors.

6.4.4 Settings

The All-in-One-DF dataset is randomly partitioned into a training set with 60,000

semantically-closest pairs and an evaluation set with 6,000 pairs. For all detectors,

we follow the training settings recommended in the original papers. The detectors are

trained on the training set with a 9 : 1 training-validation ratio. Regarding the training

of TR-Net, we set the batch size to 150. Both the generator and discriminators are

optimized using the RMSprop optimizer [123] with initial learning rates of 1.6e−3 and

1.6e−4, respectively, plus a scheduler with a decay rate of 0.5. The scheduler is executed

at the end of a training epoch if the loss stopped decreasing. There are 8 training epochs

in total. The weight set {λ1,λ2,λ3} is set to {0.2,0.6,0.2}. The weight decision process is
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detailed in Section 6.5. After training, the checkpoint with the minimal generator loss in

the last epoch is nominated as the attack model and applied to the 6,000 fake images in

the evaluation set to craft attack samples.

6.4.5 Attacking with unlimited background knowledge

We first evaluate the attack performance in the scenario where the attacker has no

limits on the background knowledge of data, i.e., the whole training set is available for

training the attack model. For a comprehensive evaluation, the proposed trace removal

attack is compared with several baseline attack methods. Also the detectors with varying

abilities are considered, i.e., detectors without defense, with weak defense, and with

strong defense.

6.4.5.1 Baseline attacking methods

We select four other attack methods to demonstrate baseline performance, including

adding random noise (Noise), two classic adversarial attacks FGSM [77] and PGD [98],

and a reconstruction-based attack GANprintR [111]. The Noise operation is the same

as the "noising" perturbation described in Section 6.3.1.2. Both the FGSM and PGD
attacks are optimized based on the Xception detector and then apply to all detectors so

as to assess the white-box and black-box attack capacities simultaneously. The maximum

perturbation ϵ is set as 0.003 for both attacks. For GANprintR, we follow the setting in

the original paper.

6.4.5.2 Evaluating fraudulence

Attacking detectors without defense Table 6.1 details the attack results against

detectors without defense. The first column shows the detection accuracy on the original

clean fake samples. All detectors achieve high accuracy over 90.00%, except for the non-

trainable detector NF. After attack, the accuracy of all detectors decreases, indicating

that the state-of-the-art detectors are still vulnerable to attacks. The frequency-based

detectors, especially F3-Net, are relatively more robust than other individual detectors.

The reason may be that all attacks lead to more significant changes in the frequency

domain than in the pixel domain. In addition, the ensemble detector targeting all traces,

unsurprisingly, outperforms any individual detector targeting a single trace in terms of

robustness.
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Regarding the attacks, the two adversarial attack methods, FGSM and PGD, are

particularly destructive to Xception. This is not surprising because these two attacks

are optimized based on Xception in a white-box manner. They also showed good trans-

ferability on Patch-CNN which has similar structural blocks to Xception. However,

as earlier discussed, this detector-specific design leads to poor transferability on other

unknown types of detectors. By comparison, TR-Net takes advantage of the detector-

agnostic design, achieving competitive or superior results in attacking all six detectors.

After the trace removal attack, the classification accuracy of all detectors has decreased

markedly, and the average accuracy of the six has dropped from 92.16% to 22.85%. The

results indicate the proposed trace removal attack is universal and well transferable

across different detectors.

Table 6.1: Performances of five attack methods against seven detectors without defense.
The bold value indicates the best attack result in each row.

Accuracy(%) Clean Noise FGSM PGD GANprintR TR-Net

Xception 99.86 65.44 4.43 0.01 58.53 17.90
Patch-CNN 92.13 53.91 12.36 9.81 57.31 13.06
DCTA 90.66 51.59 33.18 25.37 70.24 20.21
F3-Net 99.97 85.41 49.62 45.73 80.73 31.10
LF 91.55 37.12 16.00 15.55 64.76 14.75
NF 71.12 42.65 28.21 25.70 31.88 22.74
Ensemble 99.80 81.23 50.11 47.20 83.33 40.21
Average 92.16 59.62 27.70 24.20 63.83 22.85

Attacking detectors with defenses Next, we test the attacks in the cases that the

detectors are embedded with varying defenses as described in Section 6.3.1.2. Detectors

with the weak defense, i.e., the empirical augmentation strategy, are denoted as {model
name}(+) and those with the strong adversarial augmentation defense are denoted as

{model name}(++).
Weak defense. Table 6.2 shows the classification accuracy of detectors embedded

with the empirical data augmentation strategy. The high accuracy values in the first

column indicate that all detectors still maintain stable detection capability on clean

samples after defense.

We can see that after being strengthened with empirical data augmentation, the

robustness of all detectors were improved against all attack methods. Regarding the
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attack methods, the Noise attack is barely misled the detectors, and the attacking speci-

ficity of FGSM and PGD on Xception(+) and Patch-CNN(+) was no longer significant.

Comparatively, the TR-Net maintained satisfactory, degrading the classification accu-

racy of almost all detectors to lower than random guess, except for F3-Net(+). Moreover,

TR-Net surpassed all baseline attack methods in five out of the six detector groups.

Table 6.2: Performances of five attack methods against seven detectors with weak defense.
The bold value indicates the best attack result in each row.

Accuracy(%) Clean Noise FGSM PGD GANprintR TR-Net

Xception(+) 98.86 98.00 34.73 33.35 73.37 30.13
Patch-CNN(+) 90.66 90.01 58.47 42.19 79.65 33.21
DCTA(+) 94.99 95.77 46.94 45.44 84.80 40.56
F3-Net(+) 99.64 96.87 55.79 56.16 91.75 61.03
LF(+) 94.63 82.70 48.68 39.91 76.54 38.60
NF(+) 75.54 74.99 59.71 56.62 58.70 40.21
Ensemble(+) 99.97 99.01 66.21 64.32 92.01 59.03
Average 93.47 91.05 52.93 48.28 79.55 43.25

Strong defense. Table 6.3 shows the classification accuracy of the detectors em-

bedded with the adversarial data augmentation strategy. Note that the adversarial

augmentation strategy is specific to each attack method, thus, the results on clean (cle) /

attacked (att) DeepFake samples are reported individually for each attack method.

From the table, we can see that the adversarial data augmentation strategy substan-

tially improved the robustness of all detectors against the four baseline attack methods.

Take PGD, the best baseline attack method in our experiments as an example, the

average accuracy of strongly defended detectors only degrades from 92.19% to 73.54%,

whereas the corresponding result for the weakly-defended detector is 93.47% down to

48.28%, and 92.16% down to 24.20% for the naked detector. However, the strong defense

only makes a relatively small impact on our attack method. The average detection accu-

racy on the TR-Net samples is 59.74%, much lower than the accuracy on other attack

samples, at merely a little higher than a random guess.

We also observe an intriguing phenomenon that unlike other augmentations, ad-

versarial augmentation with the TR-Net samples can significantly compromise the

detectors’ ability to classify clean fake samples. The reason may be that the samples

after trace removal are inherently closer to the real samples, which can confuse the

detector during training. This reveals the potential to use trace removal attack to poison
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a DeepFake detection dataset, which remains future investigation.

Table 6.3: Performances of five attack methods against seven detectors with strong
defense. The detection accuracy on clean (cle) and attacked (att) samples are shown
individually for each attack. The bold value indicates the best attack result in each row.

Accuracy(%) Noise FGSM PGD GANprintR TR-Net
cle att cle att cle att cle att cle att

Xception(++) 99.37 99.64 97.69 71.22 97.36 59.32 98.34 98.37 60.17 46.71
Patch-CNN(++) 94.83 94.36 93.51 82.29 92.96 76.26 96.25 95.86 55.53 43.17
DCTA(++) 93.08 91.20 93.53 77.87 92.88 78.91 94.65 96.32 77.45 70.12
F3-Net(++) 99.51 99.88 96.36 84.18 95.50 81.85 99.54 98.53 88.44 78.01
LF(++) 94.09 88.61 93.82 69.45 90.61 66.20 97.78 95.58 53.44 44.86
NF(++) 73.29 71.67 73.51 67.41 78.00 67.11 79.64 68.89 65.98 60.76
Ensemble(++) 99.63 99.74 98.21 90.12 98.00 85.13 99.66 99.01 88.12 73.90
Average 93.40 92.16 92.38 77.51 92.19 73.54 95.12 93.22 69.88 59.65

Discussion Figure 6.12 offers an intuitive comparison of five attack methods in three

defense strategy groups. The trace removal attack is the most effective in all groups.

In the circumstances where detectors are defended with data augmentation strategies,

especially the adversarial augmentation strategy, the baseline attack methods generally

undergo a considerable loss of efficacy, while TR-Net continues to pose a threat, and

the threat is even more serious than the white-box adversarial attacks. In addition,

as shown in Tables 6.1-6.3, The trace removal attack shows superior transferablity

across different detectors compared to the baselines. Again, we emphasize that, unlike

the baseline attacks, our attack was implemented upon all detectors being completely

unknown during training. In conclusion, the attacking goal of fraudulence is well satisfied
by the proposed trace removal attack.

6.4.5.3 Evaluating stealthiness

As mentioned, this goal was evaluated based on visual quality. To be considered stealthy,

a given attack sample was required to be perceptually indistinguishable from the corre-

sponding DeepFake image.

Table 6.4 demonstrates the visual quality differences between DeepFake samples

and attack samples in the evaluation set in terms of the average PSNR and SSIM

scores. TR-Net achieved the highest PSNR (35.16±3.32db) and SSIM (0.988±0.004)

scores, indicating that attack samples generated by TR-Net contain less noise and have

a visual quality closer to the original DeepFake samples. Figure 6.13 also provides a
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Figure 6.12: The average detection accuracy under five attack methods in three defensive
strategy groups.

qualitative view of the examples of three types of DeepFake images and the corresponding

attack samples from different attack methods. As shown in the figure, the methods that

add noise, including including Noise, FGSM and PGD, bring perceptual noise or a

blurriness to the attack samples that may have be potentially screened out by the

forensic investigators. By contrast, the reconstruction-based methods, especially TR-Net,

generated high-fidelity attack samples that were perceptually similar to the original

ones. Thus, we can conclude that the goal of stealthiness is well satisfied as well.

Table 6.4: The visual quality comparison of different attack samples in terms of the
average PSNR and SSIM scores. The bold value indicates the best result in each row.

Noise FGSM PGD GANprintR TR-Net (ours)

PSNR (db) 26.86±3.24 30.13±0.08 32.23±0.20 25.80±2.58 35.16±3.32
SSIM 0.634±0.149 0.764±0.059 0.836±0.041 0.924±0.050 0.988±0.004

6.4.6 Attacking with limited background knowledge

The next evaluation scenario imposes restrictions on the attacker’s background knowl-

edge of data. Here, only the Xception and F3-Net detectors are tested considering their

generally better detection ability than other detectors.
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Figure 6.13: Examples of three types of DeepFake images and the corresponding attack
samples from different attack methods.
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6.4.6.1 Limited dataset size

To simulate that the attacker only has access to a limited dataset, we randomly sampled

six subsets from the full training set, containing 1%, 5%, 10%, 25%, 50%, 75% and 100%

of data (i.e., for 1% that equates to a total of 660 semantically-closest pairs of real and

fake images). Then we trained TR-Net from scratch on each subset individually and

evaluated our results on the same evaluation dataset as in the previous scenario.

Figure 6.14.a and 6.14.b illustrates the detection accuracy and PSNR and SSIM scores

for each subset. From the results, it appears there is a threshold for the dataset size that

is within 10%−25%, under which both the accuracy and visual quality are affected. This

is unsurprising since attack methods based on GAN learning are essentially data-driven.

However, when the training set size equates to more than a quarter of the original data

set, all metrics increase rapidly and remain relatively stable at a satisfactory level. The

results indicate that TR-Net fits well even with a relatively small amount of training

samples which are easily collected. This weak data volume-dependency makes TR-Net

practically feasible.

6.4.6.2 Out-of-distribution DeepFake

We also assessed TR-Net’s performance on out-of-distribution DeepFakes to demonstrate

its domain independence. In this scenario, the attacker was restricted to train the

model with only two types of DeepFake images. Yet the evaluation set still contained all

three DeepFake types. Here, for example, "P+S" (short for "ProGAN+STGAN") indicates

training with ProGAN and STGAN samples.

Figure 6.14.c and 6.14.d show the results for detection accuracy and visual quality

when trained with different training groups. What is shown is that, when implementing

the attack on the samples generated by an unknown DeepFake method that is not

included in the training set, the resulting attack samples suffer from a decrease in

both detection-evasive ability and visual quality. For instance, comparing the ProGAN

results in the "P+S" group (where ProGAN is included in the training set) with those

in the "S+D" group (where ProGAN is not included in the training set), the Xception’s

detection accuracy increases from 36.12% to 40.21% and the F3-Net’s detection accuracy

increases from 20.14% to 30.90% (Figure 6.14.c). Also, the PSNR scores decreased from

34.36db to 31.33db and the SSIM scores decreased from 98.50% to 95.12% (Figure 6.14.d).

The performance degradation was much more significant for unknown DeepfakeTIMIT

samples than that for unknown ProGAN and STGAN samples. The reason is that both
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Figure 6.14: Attacking performance in the settings where the attacker is imposed with
different restrictions on data accessibility. P: ProGAN; S: STGAN; D: DeepfakeTIMIT

the source ProGAN and STGAN models were pre-trained with the CelebA dataset, while

the source DeepfakeTIMIT model is developed with another dataset where a domain

inconsistency exists. Our findings suggest that fine-tuning TR-Net in a domain to be

consistent with the target detector helps to improve the efficacy of the attack.

6.4.7 A closer look into trace removal

In this section, we offer a closer look at the trace removal to justify the DeepFake trace

discovery outlined in Section 6.2. This examination helps us to understand why and how

TR-Net removes all traces.

6.4.7.1 Explanation in the feature space

The representations of different DeepFake traces are well learned by a set of discrim-

inators, thus, we analyzed the geometrical shifting of trace features encoded by each
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discriminator in the latent feature space. Since that the generator and discriminators are

trained in parallel, the discriminators D∗ resulting from the same checkpoints of the opti-

mal generator G∗ are adopted as the trace feature descriptors. The trace features output

by the last 512∗4∗4 convolutional layer of D∗ are analyzed. t-SNE [141] is performed to

reduce feature dimensionality, so as to obtain an interpretable two-dimensional view of

geometrical shifting.

Figure 6.15: Trace features in the latent spaces learned by, from left to right, the spatial
discriminator D1, the spectral discriminator D2 and the fingerprint discriminator D3.
t-SNE is used to project the representations of features from each discriminator’s last
convolutional layer onto its two principal components. • indicates real sample; • indicates
fake sample; × indicates attack sample;

The result from each discriminator is shown individually in Figure 6.15. Each dis-

criminator corresponds to a single trace type. We can see that there is a distinct trend

that the attack samples’ trace features are transferring towards the the real images’

features. The result confirms our conjecture that TR-Net can reduce the distribution gap

between the attack samples and the real samples at the trace feature level via adversar-

ial learning. In addition, the spectral traces from D1 and the fingerprint traces from D3

have a more significant migration than the spectral traces from D2. This occurs because

of the aforementioned optimization conflict between the semantic features and the trace

features in latent space. Since the frequency components are closely correlated with both

the trace and semantic information where no distinct boundary applies, weakening the

trace representations of the DeepFake samples while retaining their visual information

must lead to a sub-optimum. Even so, the attack efficacy is barely affected as shown in

previous experiments.

6.4.7.2 Explanation in the frequency and noise spaces

Then, we explain the trace removal in the frequency and noise space to further justify the

trace removal success. First, we compare the PSD distributions of real, DeepFake and

attack samples. Figure 6.16 shows the average PSD distribution along with standard
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deviation for different DeepFake types. The results show that for all DeepFake types, the

distribution gaps between attack and real samples are significantly smaller than those

between attack and fake samples. The result again showcases the wide applicability

of the trace removal attack to various DeepFake types. Meanwhile, the gaps between

attack and real samples are slighter in the STGAN and DeepfakeTIMIT groups than in

the ProGAN group. We suppose the reason is associated with the semantically-closest

pairs. For the semantically-closest pairs in both the STGAN and DeepfakeTIMIT groups,

each fake sample has an exact source real image as a counterpart. In contrast, the fake

samples in the ProGAN’s semantically-closest pairs correspond to their nearest-neighbor

similar real images where a larger visual difference exists, leading to under-fitting in

the frequency domain.

We also provide some qualitative results as complementary evidence. Figure 6.17

illustrates the average spectra and noise residual differences between the real and source

fake samples and between the real and attack samples. A brighter entry indicates a

larger difference. As shown in the figure, the differences between the real and source

fake samples are much more significant than those between the real samples and the

attack samples. This result further highlights the fact that successful trace removal will

refine the DeepFake images to be closer to the real ones, which they can deceive arbitrary

detectors.

6.4.7.3 The effect of individual traces

We further investigate the effect of removing each individual trace instead of all. For this

purpose, we evaluate three partial versions of TR-Net where only an independent dis-

criminator is considered for each, namely TR-Net-D1, TR-Net-D2 and TR-Net-D3. The

partial versions are compared with the original TR-Net following the setting described in

Section 6.4.5.2. Table 6.5 shows the detection accuracy and visual quality results. We can

see that the DeepFake samples with an individual trace being removed will particularly

succeed in evading the corresponding type of detectors. They can also defeat other types

of detectors, but the effect becomes weaker. In comparison, the TR-Net-D2 samples show

better transferability across different detector types than the TR-Net-D1 and TR-Net-
D3 samples, implying that the spectral disparity may be the most significant feature

differing DeepFakes from real images. However, the good transferability of TR-Net-D2

is achieved at the cost of visual quality due to the overfitting in the frequency domain

will lead to visual distortion. Compared to these partial versions, TR-Net removing all

traces at once can result in the best trade-off between transferability and visual quality.
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(a) The ProGAN group

(b) The STGAN group

(c) The DeepfakeTIMIT group

Figure 6.16: The power spectral density distributions of real, DeepFake and attack
samples for three DeepFake types. The zoom in box highlights the main areas of high-
frequency spectral distributional gaps.
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Figure 6.17: The average spectra and noise residual differences for three DeepFake types.
The first two columns are spectrum differences between real and source fake samples and
between real and attack samples, respectively; The last two columns are noise residual
differences between real and source fake samples and between real and attack samples,
respectively. A brighter entry means a bigger difference.

The above findings on the effect of each discriminator can be summarized as:

• The removals of spatial anomalies and noise fingerprint show similar attack per-

formance, meaning that D1 and D3 may have equivalent importance;

• The removal of spectral disparity leads to the best attack performance, indicating

that it is the most significant feature differing DeepFakes from real images, and

thus D2 should be strengthened during training.

• The removal of spectral disparity also leads to lower visual quality. Thus, a trade-off

between attack success and visual quality should be concerned in deciding the best

weights.
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Table 6.5: The effect of individual trace removal

Accuracy(%) TR-Net-D1 TR-Net-D2 TR-Net-D3 TR-Net

Spatial Xception 20.11 40.01 24.87 17.90
detectors Patch-CNN 27.02 45.10 29.00 13.06

Frequency DCTA 71.32 14.31 67.52 20.21
detectors F3-Net 77.94 28.99 66.66 31.10

Fingerprint LF 45.17 40.23 43.10 14.75
detectors NF 35.90 38.71 40.79 22.74
Visual PRNR (db) 37.01 33.12 36.67 35.16
quality SSIM 0.991 0.954 0.993 0.988

6.5 Weight selection for discriminators

The weights {λ1,λ2,λ3} are imposed on the adversarial loss of the discriminators to

balance the contribution of each discriminator, such that the three trace patterns can be

removed in parallel. The method of weight selection is as follows:

Based on these findings on the effect of individual traces, we therefore test λ2 in the

range of [0.1,0.9] subject to λ1 +λ2 +λ3 = 1 and λ1 = λ3. Figure 6.18 shows the results

of detection accuracy and visual quality in terms of 1−Accuracy and SSIM scores. Note

that we report the average accuracy over seven detectors in the "no defense" scenario.

We can see that the best trade-off is achieved around λ2 = 0.6. Thus, the final weight set

{λ1,λ2,λ3} is set to {0.2,0.6,0.2}.

6.6 Summary

In this chapter, we focused on proposing an anti-forensics attack against DeepFake

detectors. We presented a novel detector-agnostic attack, called a trace removal attack,

that is capable of refining DeepFake images by removing all possible DeepFake traces

via an one-versus-multiple adversarial learning network. The refined DeepFake images

are closer to the real images and can therefore bypass arbitrary and even unknown

detectors. We assessed the efficacy of the trace removal attack against a wide range

of state-of-the-art detectors in heterogeneous high-level security scenarios where the

detectors were embedded with various defensive strategies and the attacker’s knowledge

of data was limited. Our findings reveal that, the proposed trace removal attack achieves

the highest attack effectiveness while introducing minimal visual quality loss compared
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Figure 6.18: Weight selection for discriminators.

with contemporary adversarial and reconstruction-based attacks.

116



C
H

A
P

T
E

R

7
FREQUENCY ALIGNMENT: A CLOSER LOOK AT

FORENSICS AND ANTI-FORENSICS

As deep image forgery powered by GANs keeps challenging today’s digital world, de-

tecting GAN-generated forgeries has become a vital security topic. Generalizability and

robustness are two critical concerns of a forgery detector, which in together determine the

real-world reliability of a detector facing out-of-distribution forgery samples. However,

the cause of the two problems has not been fully explored, and the link in between

is unclear. Moreover, despite the recent achievements on the two problems from the

forensic or anti-forensic aspect, a universal method that can simultaneously contribute

to both sides is practically significant yet unavailable. In this chapter, we provide a

fundamental explanation of the two problems from a frequency perspective. We reveal

that the frequency bias of a DNN forgery detector is one dominant factor influencing

generalizability and robustness. Based on the finding, we propose a two-step frequency

alignment method for removing the frequency discrepancy between real and fake images,

which has double-sided benefits: It can be used as a strong black-box attack against

forgery detectors in the anti-forensic aspect or, inversely, in the forensic aspect, as a

universal defense to improve detectors’ reliability. The corresponding attack and defense

implementations are also developed, and their performances, as well as the effect of

frequency alignment, are evaluated in a variety of experimental settings involving ten

detectors, eight forgery models, and five metrics.
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7.1 Background

The recent progress in deep generative models, particularly generative adversarial net-

work (GAN) [45], has remarkably advanced automated image processing techniques.

Alongside the success, deep face forgery technologies powered by cutting-edge GAN

models, such as DeepFake [135], are raising serious security concerns about individuals’

safety [90, 112]. Research on countering forged face images has become a focus among

security communities. One promising solution is developing deep learning-based detec-

tors that can distinguish GAN-generated forged images from real ones [112]. Reliability

is always a critical concern in developing a forgery detector, which determines whether

or not the detector can apply to broader and real-world scenarios. The reliability of a de-

tector is commonly assessed by two properties: the generalization ability to detect forged

images created by unknown GANs; and the robustness against arbitrary perturbation

attacks [49, 59, 146].

Existing achievements on the generalization and robustness problems can be divided

into forensic and anti-forensic directions. The current forensic studies typically rely on

designing sophisticated detector networks or feature engineering methods to improve

on the two properties [14, 19, 49, 58, 59, 146, 159]. However, this kind of effort is incre-

mental, outcome-driven, and case-by-case, which is insufficient to provide a fundamental

solution and thus will become laborious and difficult as the technologies behind forgery

GANs and perturbation attacks are continuously upgraded. The anti-forensic studies

often conduct security analyses, some of which may design novel attacks, to reveal the

robustness issues of a detector under attacks [4, 17, 34, 42, 55, 109, 160]. These works

often end with empirical observations, underestimating the root cause of the vulner-

ability; and they focus solely on robustness. Moreover, the proposed attacks are often

task-specific, requiring knowledge of the target detector, and poorly transferable across

different detectors.

Revisiting the above challenges from both forensic and anti-forensic sides, we argue

that one critical concern is that there has not been a high-level understanding that can

fundamentally explain why deep neural network (DNN)-based forgery detectors easily

suffer from generalization and robustness issues despite their outstanding learning capa-

bility, and it is unclear whether there is an intrinsic connection between generalizability

and robustness. This knowledge, intriguingly, can benefit forensic and anti-forensic

research simultaneously. For example, it could inspire a universal method to improve

both the generalizability and robustness of a detector, or facilitate the design of a novel
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attack to evade arbitrary detectors.

To resolve the above problems, in this chapter, we step further toward the rationale

underlying the detection problem of GAN-powered forgeries. First, we provide a fun-

damental explanation of the generalizability and robustness of GAN-generated image

detectors from a frequency perspective. We establish an in-depth frequency analysis re-

garding the two properties, with which we point out that a specific frequency discrepancy

between real images and forged images in the training dataset will lead to the frequency
bias of DNN-based forgery detectors. The frequency bias is one dominant factor affecting

generalizability and robustness and intrinsically concatenates the two properties: The

frequency bias is principally associated with the higher-frequency components of the

training images, making detectors much more sensitive to changes in high-frequency

bands. As a result, a detector with significant frequency bias struggles to detect unknown

GAN samples or attack samples, because both unknown GANs and attacks manifest

different high-frequency patterns that are outside the frequency distribution of the

training dataset.

Furthermore, based on the findings on the frequency bias, we propose a frequency

alignment method to reduce the frequency discrepancy between an arbitrary type of

forged images and real images, which can concurrently benefit the forensic and anti-

forensic research on the generalization and robustness problems. The key idea of the

frequency alignment method is to calibrate the frequency pattern of fake images accord-

ing to real images. The method consists of two algorithms that enable a coarse-to-fine

alignment. Spectral Magnitude Rescaling (SMR), the first algorithm, modifies the spec-

tra of fake images by rescaling the magnitudes of their high-frequency components

based on the estimated spectral distribution of real images. The second, Reconstructive

Dual-domain Calibration (RDC), learns a functional model that maps the frequency

pattern of fake images onto the real images’ manifold via denoising reconstruction. The

denoising reconstruction model is a self-supervised auto-encoder trained with only real

images, with both image- and frequency-domain constraints to model the pixel and

frequency distributions in latent space. The forensic and anti-forensic benefits of the

method are demonstrated from attack and defence views respectively: It can be exploited

directly as a strong black-box attack against forgery detectors. The frequency-aligned

fake images are inherently closer to real images, thus they can effectively evade arbitrary
detectors without accessing the target detector; Inversely, this method can serve as a uni-

versal defense for improving detectors‚Äô generalizability and robustness via reducing

their frequency bias. We accordingly devise three defense implementations based on the
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frequency-aligned samples, including pre-processing, data augmentation, and a novel

hybrid defense, all of which are free from detector-side modifications and thus compatible
with various detectors.

The contributions of this chapter are as follows:

• We established a comprehensive, unified frequency analysis framework for GAN-

generated image detection. Through the analysis, we confirmed the frequency bias

of DNN-based detectors, which can fundamentally explain several open problems

related to the generalizability and robustness of DNN-based detectors.

• We proposed a universal two-step frequency alignment method for refining GAN-

generated images by removing their frequency discrepancy from real images. The

method can apply to fake images created by diverse forgery models, including

different GANs and different perturbation attacks.

• The frequency alignment method can benefit the community from both forensic

and anti-forensic sides. We proposed the corresponding attack and defense imple-

mentations, respectively, and verified the effects interactively in a wide range of

settings. Ten baseline detectors, eight baseline forgery models, and five metrics are

considered in the evaluation.

7.2 Frequency analysis of forgery detectors

This section presents an empirical analysis of the generalization ability and robustness of

GAN-generated image forgery detection from the frequency perspective. GAN-generated

forgery detection is commonly formulated as a binary "real/fake" classification problem

[112]. The generalization defines the cross-GAN detection ability of the detector, i.e.,

whether the detector can predict accurately facing test fake samples generated by unseen

GANs not included in the training set D. The robustness measures the reliability of the

detector in detecting noisy fake samples manipulated by certain perturbation attacks.

7.2.1 Frequency Analysis tools

Fourier transformation We adopt the 2D discrete Fourier transform (DFT) for image

frequency analysis. Given an image I ∈ RM×N , the frequency responses F (u,v) are

computed as:

120



7.2. FREQUENCY ANALYSIS OF FORGERY DETECTORS

(7.1)
F (I)(u,v)=

M−1∑
x=0

N−1∑
y=0

I(x, y) · e−2πi· ux
M e−2πi· vy

N

for x = 0,1, . . . , M−1, y= 0,1, . . . , N −1

This transform is reversible and we denote the inverse DFT that transforms spectrum

back to image as F−1(·). The DFT spectrum is typically visualized in a form of center-

shifted magnitude heatmap, where lower frequency components are closer to the center

of the spectrum while higher frequency components are farther from.

Frequency decomposition Our frequency analysis requires to decompose an image I
into the low-frequency and high-frequency components, i.e., I = {IL, IH}. This can be done

by applying a filter to the center-shifted DFT spectrum of the image. We use a circular

mask-based ideal filter τ(r0) with a predefined radius r0 for decomposition, denoted as :

(7.2)

 IL =F−1 (τ(r0)⊗F (I))

IH =F−1 ((1−τ(r0))⊗F (I))

where ⊗ is element-wise multiplication and each element in τ(r0) is defined as:

(7.3)
τ(r0)u,v =

1, if
√

(u−u0)2 + (v−v0)2 ≤ r0,

0, otherwise,

for u = 0,1, . . . , M/2−1, v = 0,1, . . . , N/2−1

where (u0,v0) is the coordinate of the centroid. Figure 7.1 shows the decomposition of an

image example with a certain radius.

Frequency distribution In order to straightforward observe the frequency discrep-

ancy in a statistical view, we estimate the frequency distribution of a DFT spectrum.

Given the rotation invariance of a the center-shifted DFT spectrum, the frequency dis-

tribution can be represented as a one-dimensional profile via azimuthally integrating

the spectral magnitudes over the radial frequencies θ [32]. Assuming a square image

I ∈RN×N , its one-dimensional profile is:

(7.4) FD(rk)= C0

∫2π

0
|F (rk,θ)| dθ for k = 0,1, ..., N/2−1,

where C0 is a normalization constant, (rk,θ) is the polar coordinate transformed from

(u,v): rk =
p

u2 +v2 , θ = atan2(v,u). For ease we normalize rk into the range of [0,1]

using the factor 1√
1
2 N2

, and use a log-scaled spectrum instead of the raw spectrum.
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Figure 7.1: The process of frequnecy decomposition.

Figure 7.2: Visualization of the average DFT spectra of real images, GAN-generated
images and the attack examples crafted based on ProGAN images. Specific discrepancy
between real and each forgery type can be observed.
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7.2.2 Visualization of frequency discrepancy

We first provide the spectral visualizations of different forgery models, including dif-

ferent GANs and different perturbations, to empirically figure out how the frequency

discrepancies present. This information is helpful to the next analysis of detectors‚Äô

generalization and robustness. The evaluations are conducted based on two popular

GANs (ProGAN [65] and SNGAN [106]) and three representative perturbations crafted

on ProGAN samples (Compression, Noising, and an adversarial attack FGSM (ϵ= 4/255)).

The settings are detailed in Section 7.4.1.

Figure 7.2 depicts the average DFT spectra of various forgery patterns. The average

frequency distributions, as computed by Eq 7.4, are shown in Figure 7.3. Combining

the two figures, the spectral discrepancies between real and fake images are clearly

observed, along with two key findings: 1) Each forgery model has its specific frequency

pattern, resulting in a unique spectral discrepancy from real images; 2) The spectral

discrepancies generally become larger in higher frequency components, e.g., rk > 0.1

for ProGAN. Notably, the findings hold for both GAN-generated samples and perturbed

samples, implying a potential theoretical connection between generalization ability and

robustness from the frequency standpoint.

7.2.3 Frequency bias of detectors

We next try to establish a unified explanation of the generalization and robustness

problems of forgery detectors with the following hypothesis:

Finding 7.1 (The frequency bias of forgery detectors). A CNN detector easily overfits
the specific high-frequency discrepancy between the forgery images and real images in
the training set, and thus fails to detect test forgery samples with a different frequency
discrepancy.

The frequency bias hypothesis can simultaneously explain the generalization and

robustness problems. This is because, whether the unseen forgery samples are generated

by a different GAN or post-crafted by a perturbation attack, they consistently exhibit a

specific frequency pattern distinct from the ones in the training set. As a result, if the

hypothesis holds, a biased detector that has overfitted one specific pattern of frequency

discrepancy will unsurprisingly fail to identify unseen forgery models with different

frequency patterns. We provide two validations of the hypothesis.
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Figure 7.3: Visualization of the 1D spectral profiles real images, GAN-generated images
and the attack examples crafted based on ProGAN images. The distributional gaps
between real and each forgery type confirms the specific frequency discrepancy.

Validation 1: According to the observation of the high-frequency distributional

characteristic of spectral discrepancy in Section 7.2.2, we aim to evaluate the responses

of forgery detectors to different frequency components. Concretely, we decompose images

into a set of pairs of I = {IL, IH}r0 by changing r0 following Eq 7.2. Then we discard the

high-frequency component IH where the spectral discrepancies are likely to concentrate

upon, and train and test the detectors with only the low-frequency components IL. Two

widely-used CNN-based forgery detector backbones, ResNet18 [48] and Xception [27],

are evaluated. All detectors are trained with real and clean ProGAN images and tested

on different forgery models. The settings are detailed in Section 7.4.1.

Figure 7.4 shows the results. When evaluating the raw images with full frequency

information (i.e., no filter), the intra-dataset tests on the same forgery model ProGAN

achieve high accuracy, while the generalization to SNGAN and the robustness against

perturbations are poor. In the low-frequency groups, with decreasing the radius of the

filter, which means more high-frequency components are excluded, the intra-dataset

performances drop unsurprisingly due to information loss. However, the generalization
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Figure 7.4: The generalization and robustness of two DNN detectors trained and tested
on different frequency bands.

and robustness increase significantly for both ResNet18 and Xception, which means the

detectors behave more stably after reducing the reliance on high-frequency discrepancy.

The results confirm the frequency bias.

Validation 2: We further verify the hypothesis with integrating the Frequency

Principle Theory of CNN classifiers.

Theorem 7.1 (Frequency Principle Theory of CNN). DNNs often fit target functions from
low to high frequencies during the training process [151].

The theory describes a CNN classifier’s tendency to first pick up low-frequency

information and then overfit high-frequency information when learning natural images
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Figure 7.5: The generalization and robustness of the same DNN detector picked at
different training epochs.

[144]. Applying the theory to forgery detectors, it can be deduced that detectors will

exhibit a more severe frequency bias as training progresses. This is because frequency

discrepancies primarily occur in higher frequency components which are mostly captured

in later training phases. As a result, by evaluating the performance of the same detector

at varying degrees of convergence, the influence of frequency bias can be verified.

To this end, we train a shallow CNN forgery detector using real and clean ProGAN

images and test it with all forgery types at the end of each training epoch. Each epoch

represents a certain convergence degree ranging from underfitting to overfitting. Figure

7.5 shows the results. Before the detector converges (i.e., epoch≤ 6), its test performances

on unseen GANs or perturbations continue to improve. However, in later epochs, when

the detector overfits more high-frequency information, the generalization ability and

robustness both deteriorate remarkably. The outcomes again confirm the frequency bias.

7.2.4 Discussion

Through frequency analysis, we confirm the impacts of frequency discrepancy on de-

tectors’ generalization ability and robustness. The findings motivate us to rethink the

forgery detection problem and develop a method to process fake images with eliminating

their frequency discrepancy from real images, which will benefit forgery detection from

the following opposing aspects:

The anti-forensic aspect: This method can be used as a strong black-box attack

to evade forgery detectors. Unlike previous attacks fooling detectors by changing the
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frequency pattern of the original fake images, removing the frequency discrepancy of fake

images makes them intrinsically closer to real ones. When serving as attack samples, the

modified fake images will have better attack transferability across different detectors.

The forensic aspect: The method can also be used to improve detectors’ generaliza-

tion and robustness by retraining detectors with frequency-aligned samples. Since the

frequency discrepancies are removed, the retrained detectors will become less dependent

on unstable frequency patterns, reducing the frequency bias and alternatively focusing

on learning more generic features.

7.3 The Frequency Alignment Method

7.3.1 Problem formulation

In this section, we propose the Frequency Alignment Method to eliminate the frequency

discrepancy between real and fake images by aligning their frequency distributions. The

problem can be formally formulated as follows:

Let I+, I− be the original real and fake image datasets, respectively. We want a

function F : I∗ = F(I−) that can modify a given fake sample I− ∈ I− to I∗ with satisfying

the following goal:

(7.5) minD(q(I∗)||p(I+)), s.t. ∀I− ∈ I−, ||I−− I∗|| ≤ ϵ

where q(I∗) and p(I+) indicate the frequency distributions of fake and real samples,

respectively, and D() is the divergence measurement. The constraint term ensures that

the modification of the original fake sample by F is small enough so that no perceptual

image quality degradation is caused.

To solve the problem, we propose a two-step method to achieve a coarse-to-fine

alignment. Figure 7.6 illustrates the overview. The first step is called Spectral Magnitude

Rescaling (SMR). We rescale the spectral magnitudes of fake samples based on the

estimated fitting function of real images’ frequency distribution. The second step is called

Reconstructive Dual-domain Calibration (RDC), where a denoising auto-encoder is first

learned with only real images to model both the pixel and frequency distributions of real

images. Then the rescaled fake samples generated by Step 1 are reconstructed by the

auto-encoder with a dual-domain calibration to real images in the latent feature space.
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Figure 7.6: Overview of the proposed frequency alignment method and its different
usages in attack and defense scenarios.

7.3.2 Spectral Magnitude Rescaling

The SMR algorithm aims to reduce the high-frequency gap between real and fake sam-

ples by rescaling fake samples’ spectral magnitudes. The rescaling factor is adaptively

computed at each frequency band according to the ratio of the empirical frequency distri-

butions of real and fake images. To this end, we need to model the frequency distribution

with an estimated parametric equation. As previous studies have pointed out that the

spectra of natural images distribute following a power law [142], the expectation with

respect to the frequency distribution can be modeled using a power law function:

(7.6) E(FD(rk))≈ a · rb
k

where the parameter a represents the spectral magnitude at the position rk, and b
represents the decay rate of the spectrum. The two parameters can be estimated by

fitting the power law function with a number of images’ one-dimensional spectral profiles

FD(rk). Then, the spectrum of a given fake sample I− can be rescaled as follows:

(7.7) F̂ (I−)(rk,θ)=F (I−)(rk,θ)
[

a+

a− (rk)b+−b−
]

where (a+,b+) and (a−,b−) are the parameters estimated from real images and fake

images, respectively.
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However, there remain two practical challenges. First, the visual contents of the given

fake sample, such as facial details (e.g., profile, direction, and size), backgrounds, and

color information, may significantly differ from the images sampled for fitting, leading to

large visual distortions in the resulting fake sample. Second, considering the frequency

discrepancy largely resides in high-frequency components, the rescaling is preferred

to be performed specifically on high-frequency bands to reduce visual artifacts and

computational overhead.

To overcome the challenges, we have two improvements to the algorithm. First,

instead of randomly sampling image samples for fitting the function, we retrieve top-K
similar samples that are visually close to the given fake sample from the real and fake

image datasets individually. The retrieval is based on the Structural Similarity Index

(SSIM) score. Second, we impose a threshold and smoothing factor to adjust the rescaling

function in Eq.7.7:

(7.8)

F̂ (I−)(rk,θ)=F (I−)(rk,θ)
[
1+

(
a+

a− (rk)b+−b− −1
)

S(rk)
]

,

S(rk)=


1

1+ e−(rk−rT ) , rk ≥ rT ,

0, rk < rT ,

where rT defines a fixed threshold frequency band above which the rescaling is performed

to enforce the low-frequency bands unaffected, S(rk) is a sigmoid function when rk ≥ rT

to smooth the rescaling. The entire SMR algorithm is shown in Algorithm 1 and the

workflow is shown in Figure 7.7:

Algorithm 1 Spectral Magnitude Rescaling

Require: The real image dataset I+; The fake image dataset I−; Sampling number K ;
Frequency threshold rT ; A given fake sample I−;

Ensure: The spectrum-rescaled fake sample Î−

1. Retrieving the K samples most similar to I− from I+ and I− independently
2. Computing the 1D spectral profile FD(rk) for all selected samples ▷ following Eq.
7.4
3. Estimating the parameters (a+,b+) and (a−,b−) by fitting a power law function on
the sampled real and fake samples, respectively
4. Transforming I− to its spectrum F (I−)
5. Rescaling F (I−) to F̂ (I−) ▷ following Eq. 7.8
6. Transform F̂ (I−) back to the image domain: Î− = F−1 (

F̂ (I−)
)
.
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Figure 7.7: The workflow of the Spectral Magnitude Rescaling algorithm.

7.3.3 Reconstructive Dual-domain Calibration

Although the SMR algorithm can reduce the high-frequency gap between real and fake

samples, it will still remain several high-frequency artifacts. The reasons include that

the visual contents of the real and fake samples selected for fitting do not exactly match,

and the estimation of the fitting function is an empirical approximation. In order to

further align the frequency patterns while satisfying the constraint of visual quality

in Eq. 7.5, a more fine-grained calibration is needed. We propose the Reconstructive

Dual-domain Calibration (RDC) algorithm. The key idea is to simulate both the pixel

and frequency distributions of real images via a learnable model, and then use the model

to calibrate the fake images resulting from the SMR algorithm in both the image and

frequency domains.

7.3.3.1 Self-supervised denoising

We formulate the simulation of real images as a learning-based denoising process, i.e.,

try to reconstruct the original real image from its noised version by an auto-encoder

A(·). As shown in Figure 7.8, the auto-encoder is trained with the real image dataset I+

only. The correct pixel and high-frequency distributions of real images are then captured

by the auto-encoder through reconstruction learning. In the inference phase, the well-

trained A∗(·) is applied to reconstruct a given fake sample. The dual-domain calibration

is completed in the latent feature space formed by A∗(·).
To ensure an accurate calibration from the spectrum-rescaled fake samples to the real

images, the noised real images, i.e., the inputs of A(·), should be initialized to a similar
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Figure 7.8: The workflow of the Reconstructive Dual-domain Calibration algorithm. In
the training phase, a self-supervised denoising auto-encoder A is trained with only
real images, learning to model the distribution of real images in both the image and
frequency domains. In the inference phase, the well-trained A∗ is applied to fake samples
to calibrate the frequency patterns.

pattern as the spectrum-rescaled fake samples. However, the SMR algorithm cannot be

applied directly to real images because real images themselves are the ground-truth

reference for power law fitting. As an alternative, we propose an approximation method

to imitate the effect of SMR. Given a real image I+, we compute its noised version Î+ as

follows:

(7.9)
F̂ (I+)(rk,θ)=F (I+)(rk,θ)

[
1+

(
a′(rk)b′ −1

)
S(rk)

]
,

Î+ =F−1 (
F̂ (I+)

)
.

where S(rk) is the same as in Eq. 7.8. a′ and b′ are randomly sampled from [1/2,2] and

[−4,4] respectively to simulate the rescaling factor in Eq. 7.8. Then, A(·) can be trained

in a self-supervised reconstruction task, as shown in Figure 7.8.

7.3.3.2 Network and Losses

We adopt a U-shape encoder-decoder [120] as the backbone of A(·), given its remarkable

capacity to reconstruct high-quality images. As shown in Figure 7.9, the U-Net we use

has an encoder and an decoder with the same number of building blocks. The encoder

comprises repeated convolutional layers (with 3∗3 kernels) and max pooling layers (with

2∗2 kernels), which can learn features at different scales while compacting the spatial

information. The decoder is an expanding symmetric counterpart of the encoder. Besides
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Figure 7.9: The network of the denoising auto-encoder A.

forwarding the feature fro one layer to the next layer, the encoder and the decoder are

also connected via skip connection, where the upstream feature of each encoder’s layer is

also concentrated with the downstream feature of the corresponding decoder’s layer. The

skip connection strengthens feature representation and preserve spatial information to

facilitate reconstruction.

The loss function supervises A(·) to reconstruct I+ from Î+. For our dual-domain

reconstruction task, the conventional pixel-to-pixel reconstruction loss, ||I+− A(Î+)||, is

impractical. As the majority of pixel information in a natural image is associated with

low-frequency bands, the pixel-to-pixel loss can easily lead to a suboptimum that overfits

the low-frequency component. Moreover, it fails to solve the issue of spectral artifacts

caused by upsampling [32]. We approach this problem by decomposing images into low-

and high-frequency components and addressing each component separately, detailed as

follows:

Given the original sample I+ and its reconstructed version I◦ = A(Î+), following Eq.

7.2, we decompose them into (I+L, I+H)r and (I◦L, I◦H)r respectively, with a random radius

threshold r. With regard to the low-frequency components, we compute the perceptual

loss [61] to measure the pixel similarity:

(7.10) LP = 1
K

K−1∑
k=0

∥∥VGGk(I+L)−VGGk(I◦L))
∥∥ ,
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where VGGk(·) is the respective feature obtained by the k-th convolutional layer of a

total of K convolutional layers within a pre-trained VGG classification network. The

perceptual loss can better recover the low-frequency visual details that correlate with

the human visual system compared with the pixel-to-pixel loss. For the high-frequency

components, we transform them into DFT spectra and compute the focal frequency loss

[60] to measure the frequency similarity:

(7.11)
LF = 1

MN

M−1∑
u=0

N−1∑
v=0

w(u,v)
∣∣F (I+H)(u,v)−F (I◦H)(u,v)

∣∣2
w(u,v)= ∣∣F (I+H)(u,v)−F (I◦H)(u,v)

∣∣
where w(u,v) is a self-adaptive weight to force the model to focus more on higher

frequency. The final training objective function is:

(7.12) minL =LP +λLF ,

In the inference phase, the optimal model A∗(·) is applied to the spectrum-rescaled

fake samples to create the final frequency-aligned samples with dual-domain calibration,

denoted as:

(7.13) I∗ = A∗(Î−)

7.3.4 Compared with other methods

Compared with low-pass filter. The low-pass filter is a straightforward way to remove

the frequency discrepancies, given that the discrepancies heavily rely on high-frequency

components. However, in most cases, the filter has a fixed kernel that fails to support

sample-specific alignments. Also, filtering will cause unnecessary loss of high-frequency

information. In contrast, our method involves a coarse-to-fine alignment based on learn-

ing the frequency pattern of real images, which is more flexible and smoother and can

perfectly preserve the full-band information.

Compared with frequency regularization. Some recent studies have proposed impos-

ing an additional frequency regularization loss [32] or frequency discriminator [25, 64]

on the source GAN to suppress its frequency distortion during training. Unlike our algo-

rithm, which is post-processing and applicable to various forgery models, these methods

only work for one specific GAN, require retraining the source GAN, and cannot be used

to align forgery samples post-processed by perturbation models.

Compared with adversarial learning. Another typical idea recently proposed is to

train a model to directly reconstruct the fake samples via adversarial learning [29, 89].
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Alongside the reconstruction generator, a discriminator is needed to distinguish the

reconstructed fake images from real ones in the frequency domain during training.

Compared with our RDC algorithm trained only on real images, this kind of methods

requires a large number of fake samples from various forgery models for training, which

is hard to acquire in practice. Moreover, the discriminator will also suffer from the

frequency bias [144, 151], resulting in lower visual quality and alignment precision, as

confirmed in our experiments.

7.3.5 Attack and defense implementations

As discussed earlier, the frequency alignment method enables both the anti-forensic

(attack) and forensic (defense) usages. The implementations are as follows:

Attack implementation. Given an arbitrary victim detector C , we perform the fre-

quency alignment method to modify a fake sample I− into I∗. The modified sample I∗ is

much more realistic and can directly serve as an attack sample to evade the detection by

C . Notably, as an attack, our method is detector-independent, requiring zero knowledge

of C . Thus, it works well for challenging black-box scenarios and has good cross-detector

transferability.

Defense implementation. The frequency alignment method can be used to improve

the detector’s generalization ability and robustness by forcing the detector to mine more

generic frequency-irrelevant features while reducing frequency bias. We propose three

implementation methods:

(1) Implementation as a simple data augmentation in the training phase. We set the

probability of a training sample being modified by our method to 0.5.

(2) Implementation as a pre-processing procedure in both the training and inference

phases of the detector.

(3) Hybrid implementation: We pre-process all training and test samples with the

frequency alignment method, and also employ a mix-up augmentation with a probability

of 0.5. The mix-up augmentation is denoted as:

(7.14)

I+aug = I++δ|I−− I∗|
I−aug = I∗+δ|I−− I∗|

The key idea is adding the residual |I−− I∗| to the raw training samples to create hard

learning samples. δ∼N (0,1) is used to scale the residual to enable various degrees of

hardness.
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Note that all the defense methods are free of modifying the detector’s network and

are therefore compatible with various detectors.

7.4 Experiments

In the experiments we aim to

(1) evaluate the performances of the proposed frequency alignment method imple-

mented as attack and defense separately, both in a wide range of settings; and

(2) verify the success of the proposed method in frequency alignment quantitatively

and qualitatively.

7.4.1 Datasets

Real-world face image dataset: The real images are from the CelebA [93], a large-

scale image dataset consisting of more than 200k real-world celebrity face photos. We

randomly sample 22,000 images from CelebA as the real image dataset I+. All these

images are cropped down to the resolution of 128∗128∗3 with the face in the center,

and the face directions are aligned.

GAN-forged face dataset: We select two powerful and representative GANs, ProGAN

and STGAN as the source forgery GAN models to create fake face samples. The two

GANs follow the official implementations and are pre-trained with the entire CelebA

dataset, allowing them to generate high-fidelity forgery samples. For each GAN, we query

22,000 images to construct the fake image dataset I−.

For each class, the 22,000 images are randomly divided into 20,000 and 2,000 as

training set and test set, respectively. The proposed frequency alignment method is

developed with the above datasets.

Perturbed forgery images: We craft different types of perturbed forgery images based

on the 2,000 ProGAN test images as reference attack samples. We consider three common

image processing perturbation [39, 158], a gradient-based adversarial attack FGSM, and

two attacks specific to GAN-generated images, GANprintR [111] and the state-of-the-art

method TR-Net [89] (also see Chapter 6). The configurations are as follows:

(1) Blurring: images are blurred with a Gaussian filter with a kernel size randomly

sampled from {3,5,7,9}.

(2) Compression: images are JPEG-compressed with a quality factor randomly sam-

pled from U(10,75).
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(3) Noising: images are embedded with i.i.d Gaussian noise with a variance randomly

sampled from U(5.0,20.0).

(4) FGSM: the adversarial examples are crafted based on the gradient of a vanilla well-

trained ResNet detector with two sets of noise amount constrains, i.e., ϵ ∈ {4/255,8/255}

(5) GANprintR and TR-Net: we follow the settings in the original papers to generate

attack samples.

7.4.2 Evaluation metrics

Attack performance. Following previous anti-forensics studies [4, 17, 34, 42, 55, 109,

160], we evaluate an attack by error rate (ER) and image quality. The ER score is

computed as the percentage that test fake samples are mis-classified into ’real’ by the

detector. Image quality is measured by two widely-used image quality metrics peak

signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). PSNR

quantifies the amount of noise that affects the fidelity of an image. SSIM measures the

similarity between an original fake image and the corresponding attack sample.

Defense performance. We report the detection accuracy on fake images (Acc) computed

as the percentage that test fake samples are correctly classified to show the performance

of a detector.

Real-referenced Spectral Profile Distance. In order to quantify the average fre-

quency discrepancy between the ground-truth real images and the test (fake) images,

we additionally propose a novel metric called Real-referenced Spectral Profile Distance

(RSPD), defined as follows:

(7.15) RSPD= 1
N/2

(
N/2−1∑

k=0

∣∣∣FD+(rk)−FD test(rk)
∣∣∣) ,

where FD+(rk) and FD test(rk) are the mean 1D spectral profile (Eq. 7.4) averaged over K
real images and K test (fake) images, respectively. A lower RSPD score means a smaller

frequency discrepancy.

7.4.3 Experiment configuration

Regarding the SMR algorithm, we set the sampling number K to 200, and the frequency

threshold rT to 0.2 for all experiments. For the RDC algorithm, we train the auto-encoder

A(·) with the 20,000 CelebA training samples. The batch size is 80. We use the Adam

optimizer [73] with initial learning rates of 1.6e−3 plus a decay rate of 0.5 executed at
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the end of an epoch if the loss stopped decreasing. The loss weight λ is 10. We also use

random Gaussian noise, color jitter, and blurring and rotation for data augmentation for

training A(·).

7.4.4 Results of the attack implementation

7.4.4.1 Victim detectors

To demonstrate the transferablity of the attack, we consider a large variety of victim

detectors:

Normal detectors: We employ three image-domain detectors based on pixel input,

including a ResNet18 and a Xception which are two popular forgery detector backbones,

and the GAN fingerprinting model (GF) [158] which learns model fingerprint for detection.

We also employ three frequency-domain detectors, one trained with the DCT coefficients

(DCT) [39], one with 1D spectral profile (1d-SP) [32], and the Spatial-Phase Shallow

Learning (SPSL) which combines RGB image with phase spectrum [91].

Specific detectors: We also consider four detectors with specific design for improving

generalization ability and robustness, including the spectral artifacts simulation method

(AutoGAN) [159], the data augmentation-based method (DA) [146], the frequency-level

adversarial perturbation method (FLAP) [59], and the re-synthesis residual method

(RSR) [49].

All detectors are trained with 20,000 CelebA and 20,000 ProGAN images and tested

with different types of perturbed ProGAN images (2,000 per type).

7.4.4.2 Attack performance

Table 7.1 illustrates the performances of eight attack methods in terms of ER and RSPD

scores. All detectors except AutoGAN achieve fairly high accuracy in detecting clean

ProGAN samples, while their performances degrade when facing attack samples. In the

group of normal detectors, our attack evades all detectors, with results comparable to

or better than the state-of-the-art attack TR-Net. We also emphasize that the success

of FGSM against ResNet18 is not surprising because the attack samples are crafted

directly based on the gradient of ResNet18.

Compared with the normal detector group, the results in the group of specific detectors

are more encouraging. Although the effects of almost all attacks are diminished against

detectors with strengthened generalization ability and robustness, our attack still leads

to relatively high ER scores for all detectors. Moreover, its superiority over other attacks
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in this group is much more significant than in the normal group. This superiority is

fully explicable from the frequency perspective. In this group, all the strategies used

for enhancing the detectors’ generalization ability and robustness can be interpreted

as a kind of frequency-domain augmentation, which increases the variety of frequency

patterns in the training set and thereby reduces the detector’s frequency bias. For

example, DA augments the training set with JPEG compression and Gaussian noise,

which expands the frequency diversity of the original training samples; FLAP takes

one step further by directly generating adversarial perturbations onto the spectra of

the original training samples. As a result, one attack will be less effective against the

frequency-augmented detectors if it simply modifies the frequency pattern of the original

fake samples rather than eliminating the frequency discrepancy between real and fake

images, as our method does. The phenomenon also confirms our hypothesis of frequency

bias. We additionally show the RSPD scores, which directly measure the frequency gap

between real and fake images, in the last row of Table 7.1 to support the conclusion.

Our attack manifests an RSPD score of 0.22, which is over ten times lower than the

second-best score obtained by the TR-Net attack, confirming the success of frequency

alignment.

Table 7.1: The evaluation of the attack implementation in terms of error rate (ER, %,
↑) and Real-referenced Spectral Profile Distance (RSPD, %, ↓). A total of Eight attack
methods against ten representative detectors are evaluated. The best result in each row
is in bold. Comp.: short for Compression; GR: short for GANprintR.

Clean Blurring Comp. Noise FGSM
(ϵ=4/255)

FGSM
(ϵ=8/255)

GR
[111]

TR-Net
[89]

FA
(ours)

ResNet18 [48] 0.08 54.65 54.15 39.17 98.61 100.00 37.62 80.23 90.10
Xception [27] 0.01 46.31 41.26 50.30 78.85 81.66 25.12 75.50 80.31
GF [158] 0.11 64.20 50.91 47.37 55.55 67.00 40.99 85.12 81.32
DCT [39] 0.06 41.53 43.00 38.46 60.01 66.31 20.13 80.01 87.06
1d-SP [32] 2.63 84.99 61.51 65.03 53.21 54.47 49.52 95.98 100.00
SPSL [91] 0.06 35.17 33.85 29.60 43.60 50.12 28.88 69.51 64.51
Avg. ER #1 0.49 54.48 47.45 44.99 64.97 69.93 33.71 81.06 83.88

AutoGAN [159] 18.13 20.02 31.02 30.21 40.69 45.31 75.96 82.33 88.16
DA [146] 0.03 11.36 3.63 3.21 63.70 68.83 16.34 70.03 72.11
FLAP [59] 1.56 4.33 16.42 10.50 40.98 35.01 11.12 62.21 76.36
RSR [49] 0.01 8.16 10.66 8.19 30.12 29.63 6.89 40.79 67.21
Avg. ER #2 4.93 10.97 15.43 13.03 43.87 44.70 27.58 63.84 75.96

RSPD (%) ↓ 4.44 9.31 4.16 13.51 8.03 12.22 5.31 2.36 0.22
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Table 7.2: The evaluation of image quality of eight attack methods in terms of the SSIM
(↑) and PSNR (↑) scores. The best result in each row is in bold.

Blurring Compression Noise FGSM (ϵ=4/255) FGSM (ϵ=8/255) GANprintR TR-Net FA (ours)

PSNR ↑ 28.21 33.10 30.01 31.21 30.13 27.64 35.11 37.91
SSIM ↑ 0.714 0.886 0.766 0.812 0.760 0.901 0.982 0.976

ProGAN Blurring Compression Noise FGSM( 𝜀 =4/255) FGSM( 𝜀 =8/255) GANprintR TR-Net FA (ours)

Figure 7.10: The visualization of three original ProGAN image examples and the corre-
sponding attack samples created by eight attack methods.

7.4.4.3 Image quality

Another concern about an attack is whether it can maintain the image quality as

high as the original fake sample. Table 7.2 shows the PSNR and SSIM scores of all

attack methods. We can see that, alongside the pronounced attack success, the proposed

method achieves the highest PSNR score (37.91) and the second-best SSIM score (0.976)

compared with other attacks. Figure 7.10 additionally offers several image examples for

explicit visualization. Compared with other attacks, the distortion and noise introduced

to the original fake samples by our method are the smallest, which is imperceptible to

human eyes. We also emphasize the comparison with TR-Net. Even though TR-Net has

a slightly higher SSIM score than our method, we can see in Figure 7.10 that it leads

to visible point-like noises on the attack samples due to the side effect of adversarial

learning discussed in Section 7.3.4.

In summary, the results of attack implementation confirm the feasibility of the

proposed frequency alignment method as a novel black-box attack. The aligned fake

samples are intrinsically closer to real images by removing the frequency discrepancy

while maintaining a high visual quality, resulting in great attack transferability across

various detectors.
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7.4.5 Results of the defense implementation

Next, we evaluate the effectiveness of the frequency alignment method as a defense

strategy for improving a forgery detector’s generalization ability and robustness. We

evaluate the three different implementation protocols of the frequency alignment method

(denoted as FA-P1, FA-P2 and FA-P3, respectively) outlined in Section 7.3.5, plus two

baselines, including training with the original dataset (Original) and training with the

mixture data augmentation method proposed in [146] (MDA). ResNet18 and Xception

are selected as the target detectors. For each detector, we train it from scratch five times,

each time with an individual strategy.

7.4.5.1 Generalization

We first evaluate the generalization ability. The detectors are trained with images from

a single GAN and tested with different GANs. Table 7.3 shows the detection accuracy of

two detectors in different test groups. The right and left sides of the arrow indicate the

sources of training samples and test samples, respectively. For example, "P→S" means

training with ProGAN images and testing with SNGAN images. If the two sides of the

arrow are different, it is a cross-GAN test group.

As shown in Table 7.3, both of the original ResNet18 and Xception can achieve high

detection accuracy in the intra-dataset tests P → P and S → S, even without any defense.

However, when generalized to the cross-GAN tests, their performances drop considerably.

For example, the Acc score of the ResNet18 trained with the ProGAN images decreases

from 99.21% in the P → P group to 12.31% in the P → S group. The results of the original

detectors indicate that a normal DNN can excessively learn the difference between

real images and images generated by a specific GAN, which may lead to overfitting. By

comparison, after implementing a defense strategy, the generalization abilities of both

detectors get highly improved in all cross-GAN tests.

Among the four defense strategies, FA-P2 and FA-P3 are much more effective than

MDA and FA-P1 in enhancing the cross-GAN generalization ability while maintaining

the intra-dataset detection accuracy. One possible reason is that MDA and FA-P1 are

both based on data augmentation, which reduces the frequency bias of the detector by

improving the frequency diversity in the training set only. In contrast, FA-P2 and FA-P3

implement frequency alignment as a pre-processing module for both the training and

test samples. It can pull all samples to the same distribution in the frequency domain

prior to detection, so as to eliminate the frequency bias in detection.
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Table 7.3: The evaluation of generalization ability in the defense implementation in
terms of detection accuracy (Acc, %, ↑). A total of five defense protocols are evaluated in
four test groups. The best result in each column is in bold.

Protocols P→P S→S P→S S→P

ResNet18

Original 99.92 99.19 12.31 31.36
MDA [146] 98.78 98.12 59.21 67.23
FA-P1 (ours) 98.91 98.22 61.41 68.45
FA-P2 (ours) 99.61 100.00 81.13 86.10
FA-P3 (ours) 100.00 100.00 83.20 85.21

Xception

Original 100.00 99.93 32.18 40.77
MDA [146] 98.65 98.55 54.13 73.09
FA-P1 (ours) 98.81 98.23 60.20 72.67
FA-P2 (ours) 99.36 100.00 81.32 82.69
FA-P3 (ours) 100.00 100.00 87.02 84.03

7.4.5.2 Robustness

We next evaluate the robustness against different attacks. The detectors are trained with

the clean ProGAN images and tested with the seven types of attack samples described

in Section 7.4.1. Table 7.4 demonstrates the results in terms of detection accuracy. The

original DNN-based detectors suffering from severe frequency bias are vulnerable to

various perturbation attacks, especially the adversarial attack FGSM, resulting in low

detection accuracy scores. When being strengthened by defenses that can mitigate the

frequency bias, the detectors become more reliable in classifying attack samples.

Regarding different defense strategies, similar to the results of generalization ability

in Table 7.3, FA-P2 and FA-P3 are generally more effective than MDA and FA-P1 when

dealing with all attack types. Note that MDA also performs well in the Compression and

Noise groups. This is because MDA uses compression and noise for data augmentation;

thus, it becomes a de facto white-box defense in the two groups. In comparison, the

proposed FA-P2 and FA-P3 are more practical since they work evenly well for different

attacks without knowing the attack setting.

In summary, the results of defense implementation showcase the potential of the

proposed frequency alignment method being a universal strategy for improving general-

ization and robustness of a forgery detector. It is effective for various unknown forgery

patterns and compatible with different detectors.
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Table 7.4: The evaluation of robustness in the defense implementation in terms of
detection accuracy (Acc, %, ↑). A total of five defense protocols are evaluated against
seven attack methods. The best result in each column is in bold. Comp.: short for
Compression; GR: short for GANprintR.

Protocols Blurring Comp. Noise FGSM
(ϵ=4/255)

FGSM
(ϵ=8/255)

GR
[111]

TR-Net
[89]

ResNet18

Original 45.35 45.85 60.83 1.39 0.00 62.38 19.77
MDA [146] 76.79 90.11 93.68 49.88 49.91 70.43 31.69
FA-P1 (ours) 70.46 74.70 77.01 65.39 60.93 71.12 58.97
FA-P2 (ours) 86.71 87.27 87.45 85.04 84.99 91.78 79.59
FA-P3 (ours) 88.03 90.89 90.39 81.89 85.64 90.55 80.80

Xception

Original 53.69 58.74 49.70 21.15 18.34 74.88 24.50
MDA [146] 80.50 90.88 91.91 43.13 46.74 74.10 51.95
FA-P1 (ours) 68.80 67.56 73.23 70.39 69.46 72.88 58.00
FA-P2 (ours) 89.98 89.69 88.89 83.72 82.97 89.41 75.48
FA-P3 (ours) 88.22 91.37 89.74 87.10 86.19 90.78 83.36

7.4.6 The effect of frequency alignment

7.4.6.1 Visualizations

The key effect of the proposed frequency alignment method is that it can align the

frequency pattern of an arbitrary type of fake image to real images, eliminating the

frequency discrepancy and making fake images intrinsically closer to real ones. We now

provide some visualizations to confirm the effect.

First, we visualize the average DFT spectra and frequency distributions of real and

frequency-aligned fake images. We select the forgery types covered in Section 7.2 for a

straightforward comparison. Figure 7.11 and Figure 7.12 display the average DFT spectra

and the frequency distributions, respectively. We can see that after frequency alignment,

different types of fake images all manifest a spectral pattern similar to the pattern

of real images, compared with Figure 7.2. Furthermore, the frequency distributions of

the aligned fake images now become consistent with real images, in contrast to the

substantial distributional gaps exhibited in Figure 7.3. The results confirm the success of

frequency alignment as well as the broad applicability of the proposed method to various

forgery types.

To further demonstrate that the frequency alignment method enables fake images

to be truly closer to real images, we visualize the changes in DNN detectors’ latent

feature space caused by frequency alignment. Figure 7.13 shows the features of real,

original ProGAN, and frequency-aligned ProGAN images extracted from the last con-
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Figure 7.11: Visualization of the average DFT spectra of real images and different types
of frequency-aligned fake images. A direct comparison can be made with Figure 7.2.

volutional layer of the ResNet18 and Xception detectors. Features are clustered into

a two-dimensional space by T-SNE [141] for visualization. As shown in the figure, the

features of frequency-aligned ProGAN images are entangled with those of real images,

while far away from the features of original ProGAN images. The results also explain

why the frequency-aligned fake images can be used as attack samples to evade detection.

Table 7.5: The PSNR, SSIM and RSPD scores of different frequency alignment methods.

BLF (r0 = 0.2) BLF (r0 = 0.5) BLF (r0 = 0.8) FA-AL FA-SMR FA-RDC FA-Final

PSNR ↑ 28.33 29.39 37.02 36.71 32.17 36.01 37.91
SSIM ↑ 0.721 0.749 0.961 0.959 0.903 0.955 0.976

RSPD ↓ 8.17 5.90 4.92 4.09 1.08 0.62 0.22

143



CHAPTER 7. FREQUENCY ALIGNMENT: A CLOSER LOOK AT FORENSICS AND
ANTI-FORENSICS

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius r_k

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l m

ag
ni

tu
de

Figure 7.12: Visualization of the spectral profiles of real images and different types
of frequency-aligned fake images. The distributional gaps are removed compared with
Figure 7.3.

ResNet18 Xception

Figure 7.13: The features of real, original ProGAN, and frequency-aligned ProGAN
images in the latent spaces of ResNet18 and Xception detectors.
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ProGAN BLF (𝑟! = 0.2) BLF (𝑟! = 0.5) BLF (𝑟! = 0.8) FA-AL FA-SMR FA-RDC FA-Final

Figure 7.14: Examples of the original ProGAN images and the versions modified by
different frequency alignment methods.

7.4.6.2 Comparison and ablation study

We compare the proposed frequency alignment method to other possible methods outlined

in Section 7.3.4. For the low-pass filter method, we test a Butterworth Low-pass Filter

(BLF) with varying cut-off bands r0. Regarding the adversarial learning method, we

redesign our RDC algorithm by adding a frequency discriminator D complement to

the auto-encoder A and train them adversarially, denoted as FA-AL. The frequency

regularization methods require modifying the source GAN, which is not applicable to

this evaluation. We also provide an ablation study that compares the individual SMR

(FA-SMR) and RDC (FA-RDC) algorithms to the final combined version (FA-Final).

We assess these methods based on the frequency alignment and image quality trade-

offs. Table 7.5 shows the results in terms of PSNR, SSIM and RSPD scores. Figure 7.14

depicts some examples of the original ProGAN images and the versions modified by

the above methods. Compared with other learning-based methods, BLF with a fixed

cut-off band is inflexible and fails to align the frequency accurately. Moreover, when the

cut-off band is small, the image quality is readily degraded. Adopting an adversarial

discriminator like in FA-AL raises the SSIM and PSNR scores, but falls short in frequency

alignment in terms of the RSPD score. This is because, as discussed in Section 7.3.4, the

discriminator will also suffer from the frequency bias. In addition, despite the high SSIM

and PSNR scores, the adversarial learning method will leave particular visual speckles

on the output images, such as in the lower-left corner of the image, as shown in Figure

7.14. Comparatively, the frequency alignment effect achieved by the individual SMR or

RDC algorithm surpasses the baselines remarkably. However, the image quality remains

a concern: FA-SMR will produce conspicuous visual artifacts, whilst FA-RDC will cause

color and local texture distortions, confirmed in Figure 7.14. The final combined version

FA-Final, obtains the highest PSNR, SSIM and RSPD scores, indicating the best trade-off
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between frequency alignment and image quality.

7.5 Summary

Deep image forgeries powered by cutting-edge GANs, has become a new threat in this

area due to their high fidelity and full automation. Reliable detection of this type of

forgery is impelling. The generalization ability and robustness of the detector are critical

concerns that determine the real-world reliability of the detector but have yet to be fully

explored. In this chapter, we have taken a step further to fundamentally explain the

two concerns and link them together from a frequency perspective. We discovered that

the specific frequency discrepancy between real and fake images causes the frequency

bias of DNN-based forgery detectors, which influences the detectors’ generalization

ability and robustness. Then, we proposed a two-step frequency alignment method to

eliminate the frequency discrepancy between real and fake images. The method provides

easy-to-implement solutions to benefit both forensic and anti-forensic research: it can

be exploited as a strong black-box attack to evade forgery detectors; or be used as a

universal defense to reduce the frequency bias of forgery detectors so as to improve their

generalization ability and robustness. We also proposed the corresponding attack and

defense implementations and experimentally demonstrated their effectiveness as well as

the frequency alignment effect in a variety of tests. Our study lays the foundation for the

reliability of deep forgery detectors.
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CONCLUSION

8.1 Discussion and future directions

In this thesis, we investigate the deep image forgery problem from both the forensic and

anti-forensic perspectives. From Chapter 4 to Chapter 7, four novel technical solutions

are presented to mitigate existing challenges in this field. Revisiting the challenges

identified in Chapter 1, we would like to emphasize that, based on our best knowledge,

there are four imperative ones necessitating unremitting future research attention, which

are the generalization and robustness of forensic techniques and the transferability and

black-box feasibility of anti-forensic techniques.

• Generalization. The cross-model generalization is a vital property determining

the reliability of the forgery detectors in practice because, in most real-world cases,

the forged samples are from unknown GAN models that are not included in the

training dataset. More importantly, the generalization ability shapes the bottleneck

of overcoming the future technical update on image forgery models. In addition,

although in this thesis we primarily focus on human face images as a face is a

significant biometric, the generalization ability across different semantic domains

is also very important, considering the wide applicability of GANs.

• Robustness. The robustness against perturbation attacks is another crucial prop-

erty for the in-the-wild reliability of forgery detection because forged images are

mostly propagated on the Internet, where they may undergo unknown pertur-
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bations such as compression and resizing for communication needs. Moreover,

robustness is a key requirement to defend against smarter attackers who are able

to implement some attacks to make the forgeries evasive against detectors.

• Transferability. Regarding the anti-forensic attacks, their transferability is a

dominant concern. Similar to the generalization ability of forgery detectors, trans-

ferability defines the capability of an attack against the latest detectors. Meanwhile,

an attack with good transferability can help reveal the common shortcomings of

different detectors rather than detector-specific weaknesses. Good transferability

can also enable the anti-forensic investigation to be cost-effective if a lot of detectors

can be covered at once.

• Black-box feasibility. In most cases, black-box attacks are more helpful in ex-

posing the common, fundamental weakness of detectors compared with white-box

attacks. Also, black-box attacks are more practical since no knowledge of the tar-

get detector is needed; thus, they can also reduce the cost of the anti-forensic

investigation.

In addition, this thesis mainly focuses on detecting GAN-generated images, while in

practice, many DeepFake services also involve post-processing such as video compression

and rendering. Detection of GAN-generated images is the first and foundation step

of DeepFake detection, but may not be able to cover all post-processed DeepFakes.

Although the performances of the proposed methods are demonstrated theoretically and

experimentally, we must be aware that there is still a long way to go in combating deep

image forgery, given the rapid, persistent technical iterations on deep image forgery. As

mentioned earlier, this is a long-lasting battleground for the security community.

8.2 Conclusion

The widespread use of AI-generated deep image forgeries is putting the age-old adage

"seeing is believing" to the test. Deep image forgery has become a major social concern

due to the privacy and security threats it poses, such as misleading information spread

online. Forgery detection systems that can tell fake from real images are powerful

countermeasures. As the technology behind deep image forgery evolves, so must the

countermeasures. With the help of two competing branches of technology, forensics and

anti-forensics, we can better understand and address existing challenges in developing

reliable detection systems.
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In this thesis, we investigate the problem of deep image forgery detection and attempt

to address some of the outstanding issues that have recently arisen in this area. To offer

comprehensive solutions, we conduct research into the issue from both forensic and anti-

forensic vantage points. In the forensics realm, we propose two forgery detection methods,

one of which uses multi-level GAN model fingerprinting to enable task-specific forensics.

The other employs a multi-view reconstruction and classification learning framework for

generalized and robust detection. When it comes to anti-forensic investigation, we have

developed a new black-box attack, the trace removal attack, to deceive forgery detection

systems. We have also provided a frequency-based analysis of the generalization and

robustness problems in deep image forgery detection, which bridges the gap between

forensic and anti-forensic studies by means of a novel frequency alignment technique.

We hope the thesis can offer some new insights into the deep image forgery problem

and help raise research awareness of the highlighted challenges, including the gener-

alization and robustness of forensic techniques and the transferability and black-box

feasibility of anti-forensic techniques, to further perfect the countermeasures against

deep image forgery. Our aspiration is to eventually win the cat-and-mouse game, so as to

build a forgery-free, mutually trusted online environment.
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