

iVFC: A proactive methodology for
task offloading in VFC

by Aisha Muhammad Ahmad Hamdi

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Farookh Hussain

University of Technology Sydney
Faculty of Engineering and Information Technology (FEIT)

July 2023

Certificate of Original Authorship

I, Aisha Hamdi declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Engineering and Informa-

tion Technology in the school of Computer Science at the University of Technology

Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature:

Date: 31/07/2023

ABSTRACT

The Internet of Things plays an important role in the development of the Inter-

net of Vehicles (IoV), where vehicles have become more connected and intelligent

through equipment of various functional and more advanced technologies. This has

led to the emergence of many vehicular applications such as augmented reality (AR)

and self-driving applications. However, these applications require a large number

of computational resources and generate a huge number of tasks and complex data

that requires a large amount of computation and storage capacity. As a result, the

demand for more computational and communication resources from these vehicles

has increased, however this increasing demand for computational resources from

such applications has not been met. To meet the increasing demand for enhanced

computation and communication capacities in IoV, the common solution is to pro-

cess these tasks using the high-capacity servers remotely located in the cloud to

reduce energy consumption and provide high storage capacity for vehicles. How-

ever, the cloud is not an ideal solution due to the long transmission distance and

latency between the source vehicles and the cloud servers, which leads to an increase

in latency and network congestion. Therefore, vehicular fog computing (VFC) has

been proposed as a promising solution to address the limitations of traditional cloud

computing.

In VFC, the idle resources of moving and parked vehicles can be used for com-

putation purposes to minimize the processing delay of compute-intensive vehicular

applications by offloading tasks from the edge servers or vehicles to nearby fog node

vehicles for execution. However, the offloading decision is a complicated process and

the selection of an appropriate target node is a crucial decision that the source node

has to make.

After studying the recent literature on task offloading in VFC, we found that

many solutions have been proposed in the literature to handle the task offloading

process, however, most solutions are reactive-based. This means that each fog node

vehicle will offload its computation tasks when it consumes all of its resources and

becomes overloaded, which slows down the task execution process and affects the

performance of the VFC network.

This thesis presents a novel and intelligent methodology for task offloading in

VFC. The novelty of the proposed methodology lies in its proactive nature. By lever-

aging prior utilization-based prediction techniques, our methodology can proactively

determine the need to offload a task to a target fog node vehicle based on the prior

utilization-based prediction technique. Particularly, under the proposed methodol-

ogy, the vehicle’s need for computational resources in the next time slot is intelli-

gently predicted and this prediction is used as the criterion for target node selection

and task offloading. Furthermore, the proposed methodology includes an incentive

mechanism to motivate fog node vehicles (FNvs) to accept an incoming task.

By emphasizing predictive decision-making and incentivized collaboration, our

approach ensures that task offloading process is efficient, real-time, and responsive

to satisfy the requirements of IoV applications.

Acknowledgements

At the end of my scientific journey, during which I faced numerous challenges, I begin

by expressing with my heartfelt thanks to Allah, who guided me along the path,

illuminating my way with hope to achieve my goals and granting me the patience

to relish the sweetness of success upon arrival.

I am grateful to myself for overcoming obstacles and maintaining focus on the re-

search objectives, even during moments of doubt, for the countless hours of research

and analysis to explore new ideas and pushing the boundaries of my knowledge in

the field, for my insistence on continuing and not giving up despite the difficulties I

faced.

I extend my deepest appreciation to Professor Farookh Hussain who was not only a

supervisor, but also as a steadfast supporter and an inspiring mentor. His unwaver-

ing guidance, patience, and willingness to lend a helping hand during challenging

moments were instrumental in my journey. I am indebted to him for the abundance

of success I now celebrate.

Furthermore, my heartfelt appreciation goes to my parents, my husband, and my

two beloved daughters, Tala and Diala, who have been my constant inspiration

and motivation throughout this thesis journey. To my friends, whose unwavering

support and encouragement have been the cornerstone of this endeavour. Without

their collective backing, this accomplishment would not have been possible.

I would like to express my sincere gratitude to Bitbrains IT Services Inc. for gra-

ciously providing the GWA-T-12 Bitbrains dataset. This dataset has been invaluable

to my research and I appreciate the opportunity to utilize it in my work. In accor-

dance with the copyright note provided by Bitbrains IT Services Inc., I acknowledge

the source of the data and comply with their request. I also extend my thanks to

the authors of the ”CCGrid 2015 paper” and the Grid Workloads Archive for their

contributions to this dataset.

Lastly, I am immensely grateful to Jazan University for granting me the opportu-

nity to finish my Ph.D., Saudi Arabian Cultural Mission (SACM) in Australia for

supporting me during my Ph.D. journey, and the University of Technology Sydney

(UTS) for granting me the opportunity to pursue my studies within its nurturing

environment, which became a second home to me.

v

List of Publications

The following is a list of my research papers during my PhD study.

Journal Papers

1. Hamdi, Aisha Muhammad A., Farookh Khadeer Hussain, and Omar

K. Hussain ”Task offloading in vehicular fog computing: State-of-the-art

and open issues.” Future Generation Computer Syatems, Elsevier, (JCR Q1

Journal).

2. Hamdi, Aisha Muhammad A., Farookh Khadeer Hussain, and Omar

K. Hussain ”iVFC: An intelligent framework for task offloading in vehicular

fog computing” (submitted)

3. Hamdi, Aisha Muhammad A.and Farookh Khadeer Hussain, ”An

incentive mechanism for task offloading in VFC: A Stackelberg game-based

approach”, (under preparation)

Table of contents

Certificate i

Abstract ii

Acknowledgments iv

List of Publications vi

List of Figures xiv

List of Tables xvii

Abbreviation xix

1 Introduction 1

1.1 Introduction . 1

1.2 The potential of IoT in the internet of vehicles (IoV) 2

1.3 IoV and the emergence of vehicular fog computing (VFC) 4

1.4 The concept of vehicular fog computing (VFC) 5

1.4.1 Vehicular fog computing architecture 7

1.4.2 Resource management in VFC 7

1.5 Task offloading in VFC and its related issues 10

1.6 Aim of this Thesis . 13

1.7 Scope of this thesis . 14

1.8 Significance of the thesis . 14

1.8.1 Scientific contributions . 15

1.8.2 Social contributions . 15

Table of contents

1.9 Plan of the thesis . 16

1.10 Conclusion . 18

2 A Systematic Literature Review 20

2.1 Introduction . 20

2.2 SLR contributions . 20

2.3 Key requirements needed to form an SLA during the task offloading

process . 22

2.4 Systematic review protocol . 24

2.4.1 Searching the literature . 24

2.4.2 Defining the inclusion and exclusion criteria 26

2.4.3 Quality assessment of the shortlisted articles 27

2.4.4 Shortlisted papers for the SLR and their classification into

the broad areas . 31

2.5 Analysis of the shortlisted papers against the requirements of task

offloading in VFC . 31

2.5.1 Analysis of papers in the category of task offloading in VFC . 31

2.5.2 Analysis of papers in the category of fog node selection 34

2.5.3 Analysis of papers in the category of QoS assessment 49

2.6 Open research issues . 60

2.7 Limitations of this SLR . 62

2.8 Conclusion . 62

3 Problem Definition 63

3.1 Introduction . 63

3.2 Key definitions . 63

ix

Table of contents

3.3 Problem definition . 66

3.4 Research Questions . 67

3.4.1 Research Question 1 (RQ1) 68

3.4.2 Research Question 2 (RQ2) 68

3.4.3 Research Question 3 (RQ3) 68

3.4.4 Research Question 4 (RQ4) 68

3.5 Research objectives . 68

3.5.1 Research Objective 1 . 68

3.5.2 Research Objective 2 . 69

3.5.3 Research Objective 3 . 69

3.5.4 Research Objective 4 . 70

3.6 Conclusion . 70

4 Research Methodology and Solution Overview 71

4.1 Introduction . 71

4.2 Key definitions . 71

4.3 Selected Research Methodology . 73

4.4 Overview of the proposed iVFC solution 76

4.4.1 Architecture of the iVFC . 76

4.4.2 Overview of the proposed iVFC framework 78

4.5 Overview of the solution for research objective 1 (RO1) 82

4.6 Overview of the solution for research objective 2 (RO2) 85

4.7 Overview of the solution for the research objective 3 (RO3) 87

4.8 Evaluation and validation of the proposed iVFC solution (RO 4) . . . 87

x

Table of contents

4.8.1 The validation steps for the solution to research objective 1

(RO1) . 88

4.8.2 The validation steps for the solution to research objective 2

(RO2) . 90

4.8.3 The validation steps for the solution to research objective 3

(RO3) . 91

4.9 Conclusion . 93

5 A proactive-based task offloading in VFC using machine

learning prediction techniques 94

5.1 Introduction . 94

5.2 The proposed framework of the iVFC-predictive analytic module . . . 95

5.2.1 Workload observation . 96

5.2.2 Workload prediction . 96

5.2.3 The overloading decision . 97

5.3 Evaluation of the proposed iVFC-predictive analytic module 97

5.3.1 Dataset . 97

5.3.2 The experimental setup and implementation 99

5.3.3 Evaluation metrics . 114

5.4 Results and discussion . 116

5.5 Conclusion . 121

6 An incentive-based framework for task offloading in VFC122

6.1 Introduction . 122

6.2 The proposed framework of the iVFC-incentive module 122

xi

Table of contents

6.3 Mathematical formulation of the solution for the proposed

iVFC-incentive module using Stackelberg game theory 126

6.4 Evaluation of the proposed iVFC-incentive module 129

6.4.1 Dataset . 129

6.4.2 The selected implementation platform 129

6.4.3 The experimental setup and implementation 130

6.4.4 Evaluation metrics . 136

6.5 Results and discussion . 136

6.6 Conclusion . 146

7 An intelligent framework for target node vehicle

selection in the iVFC system 148

7.1 Introduction . 148

7.2 The proposed framework of the iVFC-TNv selection module 149

7.3 Evaluation of the proposed iVFC-TNv selection module 150

7.3.1 Dataset . 150

7.3.2 The selected implementation platform 151

7.3.3 The experimental set up and implementation 152

7.3.4 Evaluation metrics . 174

7.4 Results and discussion . 175

7.4.1 Evaluation of the TOPSIS method 175

7.4.2 Evaluation of the XGBoost method 177

7.4.3 Evaluation of the DNNs method 180

7.4.4 Comparison of the three methods used to develop the

iVFC-TNv selection module 181

xii

Table of contents

7.5 Conclusion . 184

8 Conclusion and future work 187

8.1 Introduction . 187

8.2 Problems addressed in this thesis . 188

8.3 Contributions to the existing literature 188

8.3.1 Systematic literature review (SLR) 189

8.3.2 Development of a novel framework called iVFC for task

offloading in VFC . 189

8.3.3 Evaluation and validation of the proposed framework 191

8.4 Conclusion and future work . 191

xiii

List of Figures

1.1 IoT in relation to IoV and VFC . 6

1.2 Visual description of VFC environment 6

1.3 Thesis structure . 19

4.1 The proposed Design Science Research Methodology 76

4.2 The architecture of the proposed iVFC system 78

4.3 Overview of the iVFC framework . 81

4.4 Working steps of the proposed iVFC-predictive analytic module . . . 83

4.5 Framework of the proposed iVFC-predictive analytic module 84

4.6 Working steps of the proposed iVFC-incentive module 86

4.7 Working steps of the proposed iVFC-TNv selection module 88

4.8 The proposed framework of the iVFC-TNv selection module 89

5.1 The proposed framework of the iVFC-predictive analytic module . . . 98

5.2 Snapshot of the dataset used to train the prediction models 100

5.3 CPU utilization prediction experiment on Azure portal 103

5.4 Memory usage prediction experiment on Azure portal 104

5.5 Fuzzy logic model for predicting the workload of FNvs 108

5.6 The fuzzy sets for the CPU utilization input variables 110

5.7 The fuzzy sets for the memory usage input variables 111

List of Figures

5.8 The fuzzy sets for the overloading decision input variables 112

5.9 The fuzzy logic model rules to obtain the offloading decision outputs . 113

5.10 Predicted vs. true for the exponential smoothing algorithm for CPU

utilization prediction . 118

5.11 Residuals histogram for the exponential smoothing algorithm for

CPU utilization prediction . 119

5.12 Predicted vs. true for the exponential smoothing algorithm for

memory usage prediction . 119

5.13 Residuals histogram for the exponential smoothing model for

memory usage prediction . 120

5.14 Snapshot of the calculations of the accuracy of the fuzzy logic model

using Excel . 120

6.1 Working steps of the proposed iVFC-incentive module 125

6.2 Effect of using the proposed Stackelberg game-based incentive

mechanism on the participation level of FNvs (attempt 1, FNvs

=10, TNvs =5) . 138

6.3 Snapshot of the implementation of proposed the Stackelberg

game-based incentive mechanism in Google Collab., attempt 1 139

6.4 Effect of using the proposed Stackelberg game-based incentive

mechanism on the participation level of FNvs (attempt 2, FNvs

=15, TNvs =10) . 140

6.5 Snapshot of the implementation of proposed the Stackelberg

game-based incentive mechanism in Google Collab., attempt 2 141

6.6 Effect of using the proposed Stackelberg game-based incentive

mechanism on the participation level of FNvs (attempt 3, FNvs

=20, TNvs =13) . 142

xv

List of Figures

6.7 Snapshot of the implementation of proposed the Stackelberg

game-based incentive mechanism in Google Collab., attempt 3 143

6.8 Non-incentive scenario (attempt 1, FNvs =10, TNvs =8) 143

6.9 Snapshot of the implementation of the non-incentive scenario in

Google Collab., attempt 1 . 144

6.10 Non-incentive scenario (attempt 2, FNvs =15, TNvs =13) 144

6.11 Snapshot of the implementation of the non-incentive mechanism in

Google Collab., attempt 2 . 145

6.12 Non-incentive scenario (attempt 3, FNvs =20, TNvs =17) 145

6.13 Snapshot of the implementation of the non-incentive mechanism in

Google Collab., attempt 3 . 146

7.1 Framework of the iVFC-TNv selection module 150

7.2 Hierarchical structure for AHP method 155

7.3 Snapshot of the accuracy calculations of TOPSIS method using Excel 177

7.4 XGBoost method ranking compared to the actual ranking of the

top-30 nodes . 179

7.5 XGBoost method ranking compared to the actual ranking of the

whole dataset . 179

7.6 Prediction results for the training dataset using DNNs with four layers182

7.7 Prediction results for the testing dataset using DNNs with four layers 182

7.8 Prediction results for the top-30 testing dataset using DNNs with

four layers . 183

7.9 Comparing the different ranking methods based on MAE 185

7.10 Comparing the different ranking methods based on run time in seconds185

xvi

List of Tables

2.1 Search terms . 25

2.2 Paper selection stages. 27

2.3 Quality assessment criteria used. 28

2.4 Assessment of the studies against the four criteria. 28

2.5 Papers that meet the quality evaluation criteria from Step 3 of the

selection process. 36

2.6 Comparison of the selected papers against requirements R1-R3 for

efficient task offloading. 51

5.1 ML time series prediction experiments to build and train the

prediction models . 102

5.2 The parameters used in the time series prediction experiments 102

5.3 Prediction values for an interval of 15 minutes for CPU utilization

and memory usage of the 100 FNvs 105

5.4 Comparison of the top-10 ML algorithms applied on experiment 2 . . 117

5.5 Calculations of the evaluation metrics of the fuzzy logic model 118

6.1 Comparison of Experiments: Stackelberg Game theory-based

incentive vs. Non-incentive Scenario 137

7.1 AHP decision matrix . 154

List of Tables

7.2 Weighted percentage of the fundamental scale used for AHP method . 156

7.3 The pair-wise matrix for AHP method 157

7.4 Sum of the pair-wise matrix for AHP method 158

7.5 The normalized pair-wise matrix for AHP method 158

7.6 Criteria weights using AHP method 158

7.7 Consistency calculations for AHP method, step 1 159

7.8 Consistency calculations for AHP method, step 2 159

7.9 Consistency calculations for AHP method, step 3 160

7.10 The random index of a randomly generated pair-wise matrix 160

7.11 Experiments of implementing artificial neural network to rank the

list of TNvs . 170

7.12 Experiments of implementing deep neural networks with three

hidden layers to rank the list of TNvs 172

7.13 Experiments of implementing deep neural networks with four hidden

layers to rank the list of TNvs . 173

7.14 Experiments of implementing deep neural networks with five hidden

layers to rank the list of TNvs . 174

7.15 The top-30 ranked TNvs according to the TOPSIS method

compared to the actual ranking . 176

7.16 Experiments using XGBoost for ranking the list of the TNvs 178

7.17 Summary of the experiments using DNNs with varying numbers of

hidden layers . 180

7.18 MAE and run time for the three methods for TNv selection 184

xviii

Abbreviation

AI Artificial Intelligence

AHP Analytic Hierarchy Process

ANN Artificial Neural Network

AR Augmented Reality

C.I Consistency Index

CPU Central Processing Unit

DL Deep Learning

DNNs Deep Neural Networks

DSRM Design Science Research Methodology

FNv Fog Node Vehicle

FP False Positive

FSC Fog Service Consortium

FSP Fog Service Provider

FSN Fog Server Node

FR Fog Repository

GPS Global Positioning Systems

IA Ideal Alternative

IoT Internet of Things

IoV Internet of Vehicles

MCDM Multi-Criteria Decision-Making

MAE Mean Absolute Error

ML Machine Learning

Abbreviations

NE Nash Equilibrium Game Theory

NRMSE Normalized Root Mean Square Error

QoS Quality of Service

RAM Random Access Memory

RI Random Index

RSU Roadside Units

SLA Service Level Agreement

SLR Systematic Literature Review

SNv Source Node Vehicle

TN True Negative

TNv Target Node Vehicle

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TP True Positive

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VEC Vehicular Edge Computing

VFC Vehicular Fog Computing

VMs Virtual Machines

XGBoost Extreme Gradient Boosting

xx

1

Chapter 1

Introduction

1.1 Introduction

With the development and increased adoption of fog technologies in the future, vehi-

cles might seamlessly communicate with each other, making intelligent decisions and

enhancing various aspects of daily life. This interconnected reality is made possible

through the Internet of Vehicles (IoV), an extension of the broader concept of the In-

ternet of Things (IoT) specifically designed for the automotive industry. As vehicles

become more connected and intelligent, they generate an enormous amount of data

and computational tasks that demand high computation and storage capacities [1].

This growing demand has led to the emergence of vehicular fog computing (VFC) as

a promising solution to address the limitations of traditional cloud computing where

vehicles can serve as fog nodes to process tasks for other resource-limited vehicles

or fog servers. But how does this innovative computing paradigm change the way

tasks are processed and offloaded in vehicular environments?

By exploring the complexities of resource management in the VFC environment

and how to benefit from the computation resources available in today’s advanced

vehicles, this thesis explores the optimal utilization of fog node vehicles (FNvs) and

the challenges associated with making intelligent offloading decisions among vehicles.

This chapter is organized as follows. Section 1.2 introduces IoV as one significant

application of IoT. Section 1.3 introduces the emergence of VFC. Section 1.4 intro-

duces the concept of VFC and outlines the related issues. Section 1.5 addresses task

offloading issues in VFC. Section 1.6 identifies the research objective. Section 1.7

Chapter 1: Introduction

defines the scope of this study by specifying its boundaries. Section 1.8 highlights

the significance of this thesis and its contributions. Section 1.9 provides an overview

of the structure of this thesis and section 1.10 concludes this chapter.

1.2 The potential of IoT in the internet of vehicles (IoV)

In today’s connected world, information systems play an essential role in collect-

ing, processing, and disseminating data for diverse uses. An information system

is a structured and interconnected group of components that work together within

an organisation to gather, process, store, and distribute data and information [2].

It includes both the technological infrastructure and the people, processes, and

procedures involved in data management and utilization for decision-making and

accomplishing organisational goals. With the presence of the IoT, the environment

of information systems has expanded, allowing for integrating physical objects with

digital networks [2].

The IoT concept refers to a network of physically connected objects equipped

with sensors, software, and connection capabilities [1]. With the IoT, a vast num-

ber of devices are able to communicate with each other via the Internet to gather

and exchange data with each other, communicate, make intelligent decisions, and

perform actions to enhance various aspects of daily life [1].

IoT plays an important role in the development of information and commu-

nication technologies [3]. One aspect where IoT helps in expanding communica-

tion mechanisms is the IoV. The IoV extends the concept of IoT by including to

the domain of vehicles. It involves equipping vehicles with sensors, connectivity,

and computing capabilities to enable communication and data exchange between

vehicles, roadside infrastructure, and other entities. The IoV depends on a num-

ber of technologies such as wireless communication, vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) communication, sensors and global positioning sys-

2

Chapter 1: Introduction

tems (GPS). These technologies allow for the smooth integration of vehicles into the

larger IoT ecosystem, which creates a connected and intelligent vehicular network

[3].

We list some of the common applications of IoT in the Internet of Vehicles

as follows [3]:

a) Connected Car Services: IoT makes it possible for vehicles to be connected,

opening the door to a range of features like infotainment, navigation, and re-

mote diagnostics. Vehicles can be connected to the internet, giving users access

to real-time traffic updates, weather reports, and entertainment alternatives.

b) Intelligent Traffic Management: To collect real-time traffic information, IoT

sensors and communication networks can be installed at intersections and on

roads to help in managing congestion, streamlining traffic, and improving over-

all transportation efficiency.

c) Vehicle-to-Vehicle (V2V) Communication: IoT makes it possible for vehicles

to interact with one another and share details like speed, location, and intent.

d) Vehicle-to-Infrastructure (V2I) Communication: IoT enables vehicles to com-

municate with various infrastructure components, including traffic lights, park-

ing metres, and toll booths. This communication enables efficient toll collec-

tion, intelligent parking guidance, and optimised traffic light timing.

e) Autonomous Vehicles: IoT technology is essential in enabling autonomous driv-

ing. IoT sensors, including LiDAR, radar, and cameras, gather information

from the environment around the vehicle, enabling perception and decision-

making algorithms to move through and interact with it.

3

Chapter 1: Introduction

1.3 IoV and the emergence of vehicular fog computing (VFC)

With the development brought by IoT into the IoV, vehicles have become more con-

nected and intelligent through different functional equipment and more advanced

technologies. This has led to the emergence of many vehicular applications, rang-

ing from entertainment applications such as gaming to augmented reality (AR) and

self-driving applications [4]. However, these applications require a large number

of computational resources (such as computational power or memory) and gener-

ate a huge number of tasks and complex data that require high computation and

storage capacity [5]. Moreover, some applications are delay-sensitive and must be

processed within specified time constraints, particularly those applications dealing

with emergency and natural disaster applications [6]. As a result, the demand for

more computational and communication resources from these vehicles has increased,

while vehicles have been unable to satisfy this increasing demand for computational

resources from such applications [7]. To meet the increasing demand for high com-

putation and communication capacities in IoV, a common solution was to process

these tasks using the high-capacity servers remotely located in the cloud to reduce

energy consumption and provide high storage capacity for vehicles [7].

However, even though the cloud is rich in computation and communication re-

sources, it is not an ideal solution due to the long transmission distance and latency

between the source vehicles and the cloud servers. Moreover, offloading to the cloud

leads to an increase in latency and network congestions, particularly when the cloud

servers are in different geographical regions [8]. Therefore, to reduce the transmis-

sion distance and alleviate the heavy burden on the cloud, the notion of vehicular

edge computing (VEC) has been proposed as a possible solution to enhance task

offloading-related issues [9].

The notion of VEC has brought computational resources available in the cloud

4

Chapter 1: Introduction

closer to end users (vehicles) and has enabled vehicles to process their computation

tasks using the available resources of edge servers [8]. VEC plays an important role

in providing edge services (in the form of computational resources) with lower delay

and higher bandwidth to the vehicles [9]. In VEC, vehicles act as communication,

computation, and storage resource providers while the roadside units (RSU) are

the edge servers that are deployed close to vehicles to gather, process and store

data in a timely manner. In VEC, when there is not enough capacity in the form

of computational resources in the source vehicles, it can offload their computation

tasks to RSUs for processing and obtain the execution results [9]. However, VEC

suffers from the high load on the edge servers during peak hours and the high cost of

the deployment of extra servers (RSU) to cover a wider range of geographical areas

[8]. To overcome the limitations of edge computing, VFC has been proposed as a

promising solution [5], [10].

VFC expands the concept of fog computing by focusing primarily on the automo-

tive industry. By integrating fog computing to the automotive sector, VFC expands

the capabilities of IoT and IoV. It entails embedding fog computing resources within

vehicles and their surrounding infrastructure, enabling efficient data processing and

communication [10].

Figure 1.1 shows a visual description of the relation between IoT, IoV and VFC.

1.4 The concept of vehicular fog computing (VFC)

VFC can be defined as communication between a group of smart vehicles located

near each other and connected through a peer-to-peer model of communication

[11]. In VFC, the idle resources of moving and parked vehicles can be used for

computation purposes to minimize the processing delay of the compute-intensive

vehicular applications [12] [5]. The basic premise of VFC is to offload the tasks from

5

Chapter 1: Introduction

Figure 1.1 : IoT in relation to IoV and VFC

the edge servers or vehicles to nearby fog node vehicles for execution [8]. Figure 1.2

shows a visual description of the VFC environment.

Figure 1.2 : Visual description of VFC environment [13]

6

Chapter 1: Introduction

1.4.1 Vehicular fog computing architecture

Generally speaking, VFC consists of three layers: the cloud computing layer, the

fog computing layer and the vehicular computing layer [14].

The fog computing layer is located at the edge of the network and provides

local services for end-users. These services are offered with shorter latency and

broader bandwidth. The cloud computing layer enhances the ability of fog comput-

ing through pre-scheduling the required resources and providing further data pro-

cessing and permanent data storage. The vehicular computing layer communicates

directly with fog computing layer in a wireless manner to provide more computing

and communication capabilities.

1.4.2 Resource management in VFC

VFC is a platform that provides local data processing and storage capabilities in

a distributed manner instead of sending them to the remote cloud. VFC supports

additional geo-distributed applications that cater to user engagement demands, en-

tertainment and social needs, and improved communication services for people [14].

Due to the geographical distribution of VFC, it is necessary to organize and man-

age all vehicular fog nodes efficiently in the practice of VFC deployment. Therefore,

resources in VFC environment have to be managed effectively to ensure that re-

sources are utilized optimally to achieve the quality of service (QoS).

Resource management is the process of planning, allocating, and optimizing dif-

ferent types of resources within a system in order to successfully accomplish the

desired objectives [14]. In VFC, resource management includes the efficient alloca-

tion and utilization of computing, storage, and network resources in a VFC envi-

ronment. Therefore, resource management issue arises as a challenge in the process

of organizing and managing vehicular fog nodes [14].

7

Chapter 1: Introduction

Recently, several researchers have focused on proposing innovative solutions for

resource management in VFC. For example, Zhu et al. [15] addressed two prob-

lems that resource management approaches need to tackle. First, one vehicle may

be within the contact range of several vehicular fog nodes. In this scenario, it is

a matter of how to select the most appropriate fog node. Second, the intensive

distribution of vehicular fog nodes may result in difficulties in providing direct com-

munication between vehicles due to the long distance. Therefore, installing resource

management systems on cellular fog nodes is more feasible. Ghobaei-Arani et al. [16]

classified resource management issues into six categories: application placement, re-

source scheduling, task offloading, load balancing, resource allocation, and resource

provisioning.

Managing resources in the VFC environment involves different aspects where

each aspect has its related problems and issues.

In the following, weoutline and discuss some of the key issues related to

resource management in VFC [4], [14], [16], [17]:

a) Task Offloading: Resource management is primarily concerned with determin-

ing which computational tasks should be offloaded from one vehicle to another

vehicle or fog server. The decision of task offloading is typically based on fac-

tors such as task characteristics (e.g., computation intensity, data size), vehi-

cle conditions (e.g., battery level, available resources), and network conditions

(e.g., latency, bandwidth). Offloading decisions can be made by the vehicles

themselves or by a central controller.

b) Reactive vs. proactive offloading: Making an offloading decision when the source

node vehicle’s capacity is full or has hit capacity thresholds is known as re-

active offloading. However, an offloading decision can be more efficient if the

need for offloading can be determined a priori by the source node. The pro-

8

Chapter 1: Introduction

cess of determining the need to offload tasks in advance is known as proactive

offloading

c) Resource Allocation: When a vehicle decides to offload a task, resource man-

agement involves allocating the different resources needed to process the task

such as computing, storage, and network at the chosen target node vehicle

(TNv) to handle this task. This includes determining the optimal TNv to

execute the tasks based on factors such as proximity, resource availability, and

load balancing. The allocation process should consider the rapid changes in

the availability of fog node vehicles that occur due to the dynamic nature in

the VFC environment.

d) Quality of Service (QoS) Management: It is important to consider QoS re-

quirements for the offloaded tasks in resource management in VFC. Depending

on the task, QoS requirements may differ in terms of response time, reliabil-

ity, and throughput. To meet the desired QoS targets, resource management

techniques must prioritize the tasks accordingly.

e) Mobility Management: In VFC, vehicles are mobile, adding an additional chal-

lenge to resource management. The connectivity of vehicles to fog nodes may

change as they move, making it necessary to have resource management tech-

niques that can handle this seamlessly as vehicles move.

f) Energy efficiency: In resource management, energy efficiency is a crucial con-

sideration due to the limited energy resources of vehicles. Different techniques

such as dynamic power management, task scheduling, and resource alloca-

tion can be used to optimize energy consumption to meet the computational

demands of the offloaded tasks.

g) Security and Privacy: Resource management in VFC should also include se-

curity and privacy aspects. When offloading tasks between vehicles in the

9

Chapter 1: Introduction

VFC environment, it is important to have appropriate security mechanisms

in place to protect against unauthorized access, data breaches, and malicious

attacks. Privacy-preserving techniques can be employed to protect sensitive

information during task offloading and resource allocation.

This research focuses on the task offloading aspect of resource management in

VFC and explores the different issues associated with offloading tasks between

vehicles and fog nodes within the VFC environment.

1.5 Task offloading in VFC and its related issues

Task offloading is a technique that solves the problem of resource constraints in

distributed computing by enabling a resource-limited edge server/vehicle to execute

its computation tasks. This is achieved by offloading them to nearby resource-rich

fog-node vehicles to improve the system performance and reduce energy consumption

and execution delay. [16]. In VFC, the source nodes (vehicles) are mobile nodes

with intensive computation tasks that need to be executed within time constraints.

The execution of these tasks locally is difficult due to the resource limitation of

the source vehicle and the time constraints of the job. Therefore, offloading tasks

to another fog-node vehicle can solve such an issue [18]. The offloading decision

is a complicated process that has three main stakeholders: the mobile vehicle (i.e.,

source node vehicle (SNv)) with the intensive computation tasks, the communication

link used to transfer the signal, and the fog node (i.e., target node vehicle (TNv))

that executes the offloaded tasks and returns the execution results. The SNv is

responsible for the following activities:

a) identifying the need to offload a given task or tasks;

b) identifying an appropriate TNv;

c) communicating and negotiating with the TNv in relation to the task being

10

Chapter 1: Introduction

offloaded and the reward offered for resource sharing ;

d) offloading the task to the TNv; and

e) receiving the completed task from the TNv.

The offloading decision and the selection of an appropriate TNv considering con-

straints (such as but not limited to latency and QoS) is a crucial decision that the

source node has to make.

Latency refers to the delay which occurs in transmitting data from the SNv to

the TNv and receiving a response. This can be due to the distance between the

requester SNv and the fog server that receives the offloading requests. Latency

plays an important role in determining the overall performance of the system. To

ensure optimal latency, the SNv needs to identify a TNv that can minimize the

transmission delay.

It is also important for the SNv to evaluate the QoS requirements for the specific

task or application being offloaded. QoS includes several metrics, including reliabil-

ity, availability, throughput, and response time, and the SNv needs to ensure that

the selected TNv can meet these requirements. For example, for applications that

require real-time data processing or time-sensitive tasks such as video streaming or

autonomous vehicle control, low latency and high QoS are required. The SNv must

identify a TNv that not only offers low latency but also has sufficient computational

resources to handle the workload while guaranteeing QoS.

Concomitant with the issue of offloading in VFC, three pertinent and pressing

questions arise that require further investigation. The first question is when does

the node have to offload the task. The second question is how much workload can

the node offload, taking into account the capacity of the selected TNv to process

the task. The third question is where to offload the task i.e., determining to which

11

Chapter 1: Introduction

TNv to offload the task [19]. The right decision of when, how much and where to

offload the task will determine the effectiveness of the task offloading decision.

Furthermore, while a timely decision regarding these three questions is critical,

the complexity of the decision-making process is compounded due to the temporal

variations of VFC system mobility, uncertainty in the resulting offloading latency,

and unknown traffic statistics [19].

The task offloading process is confronted by several critical challenges, which

could negatively affect the efficiency of task completion. We list the most pertinent

ones and discuss them as follows:

The first issue is that all the recent proposed task offloading methods are

reactive, which means that offloading the task is carried out when the SNv’s capacity

is full or has hit the capacity thresholds. However, the offloading decision can be

more efficient if the need for offloading can be determined a priori by the SNv. We

term the process of determining the need to offload tasks in advance as proactive

offloading. The prior utilization profile of the source node can be used for this

purpose to intelligently predict a prior need to offload rather than offloading after

the need has become apparent.

The second issue is the lack of information of the available FNvs to host the

offloaded tasks and their capacity (i.e., uncertainty) is a crucial determinant of the

task offloading process. The lack of relevant information about available host nodes

and their suitability to host tasks leads to uncertainty in which the SNv is uncertain

about where to offload its task and what is the capacity of the available TNvs, and

this needs to be modelled. The prior knowledge of these information can help the

overloaded SNv to select the optimal TNv to which to offload the task [5].

The third issue pertains to minimising the total time in the selection of the

best TNvs for offloading the task. Therefore, task offloading can be implemented

12

Chapter 1: Introduction

efficiently if and only if an effective TNv selection technique is used. The employment

of predictive offloading, which can be used to further reduce latency and improve

QoS, will contribute to efficient decision making.

The fourth issue is how to motivate FNvs to share their idle resources and

participate in the task offloading process to guarantee an availability of sufficient

resources at the time of task offloading to process the task.

To address the aforementioned four research challenges, in this thesis, we pro-

pose a proactive task offloading methodology that will consider a TNv selection

mechanism to minimize the total delay and reduce uncertainty and an incentive

mechanism to ensure task offloading acceptance and efficient task completion.

1.6 Aim of this Thesis

In this thesis, we present an intelligent methodology for task offloading in VFC.

The methodology can proactively determine the need to offload a task to a target

fog node vehicle (TNv) based on the prior utilization-based prediction technique.

Particularly, under the proposed methodology, we intelligently estimate the vehicle’s

need for computational resources in the next time slot and use this prediction as

the criterion for TNv selection and tasks offloading. Furthermore, our methodology

considers the selection of TNv based on its available workload information to mini-

mize uncertainty and to enhance the delay performance of the VFC system. Finally,

an incentive mechanism is used in our methodology to motivate FNvs to take an

incoming task.

The task offloading solution proposed by our methodology contributes to enhance

the process of task offloading in VFC to satisfy the requirements of IoV applications.

These requirements include delay minimization and efficient task completion. The

benefits of our methodology include the optimal selection of TNv for offloading

13

Chapter 1: Introduction

the task and the efficient motivation for FNvs for resource sharing to guarantee

offloading acceptance and efficient task completion.

1.7 Scope of this thesis

This thesis develops an intelligent methodology for task offloading in VFC envi-

ronments. The scope of this thesis is as follows:

1. Workload prediction: The methodology utilizes a prior utilization-based pre-

diction technique to proactively determine the need for task offloading to a

TNv. It involves the conceptualisation and development of a predictive algo-

rithm to predict the vehicle’s future workload based on its current workload

(i.e., their CPU utilization and memory usage) to determine when it is going

to be overloaded.

2. TNv Selection: The proposed methodology incorporates the predicted work-

load as the criterion for intelligently selecting the optimal TNv that can effi-

ciently handle the offloaded task.

3. Incentive Mechanism: An incentive mechanism is included in the methodology

to motivate FNvs to accept incoming tasks and participate in resource sharing.

The scope of this thesis also includes the development of a prototype system to

validate and evaluate the proposed algorithms.

1.8 Significance of the thesis

This thesis develops an intelligent framework to handle the task offloading process

in VFC in a proactive manner that utilizes the idle computation resources available

in the advanced smart vehicles in a more efficient way. This is achieved by applying

intelligent methods and schemes that will help resource-limited fog nodes to execute

14

Chapter 1: Introduction

their tasks within an appropriate time frame while guaranteeing the QoS provided

by fog service provider nodes.

Therefore, in this thesis, we propose, develop and evaluate an iVFC: an intelligent

framework for task offloading in VFC to address the gaps identified in the literature.

The contributions of this thesis are divided into scientific contributions and social

contributions, which are outlined in the following subsections.

1.8.1 Scientific contributions

The scientific significance of this thesis is as follows:

a) This research is the first of its type to propose a predictive mechanism for

task offloading. Previous research (refer to chapter 2) focuses on reactive

mechanisms only.

b) This research proposes a workload-based TNv selection approach for making

a reliable judgement and selection of the best possible TNv to which to offload

the task.

c) This research proposes the use of an incentive mechanism to encourage FNvs

to participate in the VFC system.

d) This research proposes and develops an innovative proactive offloading-based

approach for use in VFCs. Such an approach will minimise the time taken

for task offloading and helps in selecting a reliable target node for executing

tasks.

1.8.2 Social contributions

The Social significance of this thesis is as follows:

a) The outcomes from this research will contribute to the adoption and roll out

of the VFC and its use in smart vehicles.

15

Chapter 1: Introduction

b) As Saudi Arabia is now in the phase of building advanced smart cities as part

of Vision 2030, this research will contribute to the roll out of smart vehicles

as a rich resource to meet the demand of computation and communication

capacities within these smart cities.

c) The proposed framework can help to develop intelligent mechanisms to gen-

erate carbon credits from smart vehicles. This can be done by focusing on

reducing the emissions associated with vehicle usage by using energy-efficient

vehicles that have lower emissions or by enabling vehicle-to-grid (V2G) tech-

nology that allows the vehicles to provide energy back to the grid during peak

demand periods.

1.9 Plan of the thesis

This thesis provides an overall methodology to develop an intelligent framework for

task offloading in a VFC system. To develop the proposed framework, intelligent

mechanisms using machine learning methods are applied to develop three modules:

a predictive analytic module to help the overloaded source node vehicle (SNv) make

the offloading decision, a TNv selection module to assist the overloaded SNv select

the most optimal TNv to handle the offloaded task, and an incentive mechanism to

encourage FNvs to participate in the task offloading process by sharing their idle

resources. To achieve these objectives, this thesis is divided into eight chapters as

detailed in Figure 1.3, and is organized as follows:

Chapter 1: This chapter introduces this thesis by presenting the concept of

VFC and its emergence. It also highlights the issue of managing resources within

a VFC environment. Then, it focuses on the task offloading issue and presents the

different problems associated with offloading a task from one node to another, which

formulates the objective of this thesis. Then it defines the thesis objective followed

by the thesis scope. In addition, it outlines the various contributions of this research.

16

Chapter 1: Introduction

Chapter 2: This chapter gives a detailed explanation of the systematic liter-

ature review that was conducted to cover the recent literature on task offloading

in VFC. The purpose of conducting an SLR is to identify the research gaps that

this thesis addresses and clarifies the research gaps which have not been previously

addressed by any other research.

Chapter 3: Based on the research gaps identified in Chapter 2, Chapter 3

identifies the research problem and the main research question and then it outlines

the formulated research sub-questions. Then, it identifies the research objectives.

Chapter 4: In Chapter 4, the research methodology is explained in detail. This

methodology addresses the research gaps that have been identified in the literature

review. Chapter 5 also includes an overview of the proposed solution and how each

research question is addressed.

Chapter 5: This chapter includes the different steps involved in developing a

proactive-based framework for task offloading in VFC, corresponding to research ob-

jective 1. The purpose of this framework is to facilitate the proactive-based handling

of task offloading for the VFC system in which the workload of each FNv is pre-

dicted to monitor and control its overloading condition. This framework comprises

three phases, which are discussed in detail in Chapter 4. Chapter 4 also includes

the steps to validate and evaluate the proposed predictive framework to answer the

first part of research objective 4, which is validation of research objective 1.

Chapter 6: Chapter 6 overviews the steps involved in building an incentive-

based framework for task offloading in VFC using a game theory approach, corre-

sponding to research objective 2. The purpose of this framework is to encourage

FNvs to participate in the task offloading process by sharing their idle computation

resources. The aim of this framework is to increase the level of participation of FNvs

in the VFC environment. Chapter 6 also includes the steps to validate and evaluate

17

Chapter 1: Introduction

the proposed selection framework to answer the second part of research objective 4,

which is the validation of the research objective 2.

Chapter 7: Chapter 7 identifies the different steps involved in building a fog

service provider selection framework for task offloading in VFC using three different

methods, corresponding to research objective 3. The purpose of this framework is to

assist the overloaded SNv to find the most optimal TNv that can efficiently handle

its task. Chapter 7 also includes the steps to validate and evaluate the proposed

selection framework to answer the last part of the research objective 4, which is to

validate research objective 3.

Chapter 8: Chapter 8 concludes this thesis by summarising what has been

achieved in this thesis and the work that will be conducted in the future to extend

this research.

1.10 Conclusion

This chapter introduced the emergence of the VFC paradigm and discussed VFC

from different aspects related to resource management. Then, it defined the research

objective and gave an outline of the research scope. In addition, it identified the

different contributions of this research.

In the next chapter, a detailed explanation of the systematic literature review

that was conducted to cover the recent literature on task offloading in VFC is pro-

vided. The purpose of this SLR is to identify the research gaps that this thesis

addresses and to clarify that these research gaps have not been previously addressed

by any other research.

18

Chapter 1: Introduction

Figure 1.3 : Thesis structure

19

20

Chapter 2

A Systematic Literature Review

2.1 Introduction

The previous chapter overviewed the problem addressed in this thesis. Building on

the previous chapter, this chapter provides a detailed explanation of the systematic

literature review (SLR) that was conducted to cover the literature on task offloading

in VFC.

This chapter is organized as follows. Section 2.2 outlines the contributions made

by this SLR. Section 2.3 highlights the key requirements used to formulate this

SLR. Section 2.4 discusses the protocol used to shortlist the papers chosen for this

SLR, including the inclusion and exclusion criteria used for searching the literature.

Section 2.5 includes an analysis of the shortlisted papers against the requirements

of task offloading in VFC. Section 2.6 highlights the open gaps found in the selected

literature. Section 2.7 outlines the limitations associated with this SLR and section

2.8 concludes this chapter.

The contents of this chapter have been published in the Future Generation Computer

System journal, which is currently ranked in the top quartile of journals (JCR Q1).

The contents of this SLR are available at the following link: https://doi.org/10

.1016/j.future.2022.03.019.

2.2 SLR contributions

In VFC, the idle resources of moving and parked vehicles can be used for com-

putation purposes to minimize the processing delay of compute-intensive or time-

https://doi.org/10.1016/j.future.2022.03.019
https://doi.org/10.1016/j.future.2022.03.019

Chapter 2: A Systematic Literature Review

critical vehicular applications [20][21]. The basic premise of VFC is to offload tasks

from the edge servers or vehicles to nearby fog nodes (vehicles) for execution [22].

However, the offloading decision is a complicated process in which there is a requester

or source node vehicle (SNv) with intensive computation tasks, and a receiver or tar-

get node vehicle (TNv) that executes the offloaded tasks and returns the execution

results.

Furthermore, due to the dynamicity in VFC, the location of the SNv and TNv

is not constantly fixed [23]. Hence, the SNv may need to offload to a TNv with

no past offloading history. This chapter argues that the selection process should

broadly follow the steps needed to form a service level agreement (SLA) to ensure

that the right TNv is selected by managing the different constraints.

To address this gap, an SLR on task offloading is conducted to identify whether

the examined literature considers the requirements identified in R1–R3. We then

discuss the open gaps and areas of future research directions based on our analysis.

The key contributions of this SLR to the literature are as follows:

• It argues that the process of selecting target fog nodes in VFC should broadly

follow the steps needed to form an SLA.

• Specific to task offloading in VFC, it defines the three requirements (R1–R3)

that need to be considered to ensure that the right target fog node is selected

by managing the different constraints

• It identifies the existing approaches from the literature in the context of task

offloading in VFC and determines their shortcomings from the perspective of

forming an informed SLA.

• It identifies the gaps in the existing approaches and introduces these as open

issues and future research directions.

21

Chapter 2: A Systematic Literature Review

2.3 Key requirements needed to form an SLA during the

task offloading process

Specific to VFC, the stages in forming an informed SLA to determine to which fog

node to offload the task are as follows:

1. Proactively determining when a source node vehicle needs to offload its task

(hereafter considered as Requirement 1-R1)

As previously mentioned, VFC deals with compute-intensive and time-critical

applications. To ensure that such applications are processed promptly, the

SNv has to proactively determine when it will overload, which task/s will

need to be processed when, and thus which task/s need to be offloaded [24].

These are important considerations that the SNv needs to determine before

deciding to which TNv it should offload. The ability of a SNv to meet this

requirement will depend on its ability to implement intelligent approaches and

algorithms that use prior knowledge and predict its own workload, which in

turn assists in reliable offloading decision making in terms of how much and

when to offload [23], [25], [26].

2. Incentivizing the fog node vehicles (FNvs) to share information in various

criteria that will enable a source node vehicle (SNv) to make an informed

selection decision (hereafter considered as Requirement 2 - R2)

Before a task can be offloaded, a reliable TNv must be selected. In VFC, many

factors such as the availability of resources at the TNv at the time of offloading,

TNv mobility, and their trustworthiness inform this selection process. The

availability of computing resources in the TNvs will ensure that the task is

executed per the required QoS [27]. A vehicle’s mobility too will determine if

the target node is present within the vicinity of the requester node to process

22

Chapter 2: A Systematic Literature Review

its application [20]. Hence, there is a need for a mechanism that can provide

either real-time or semi-real time information about the potential TNv in the

above criteria, which will assist the SNv in the selection process. In other

words, there is a need to incentivize TNvs to provide information that will

assist them in participating in VFC. This leads to the following requirement

of an intelligent mechanism aggregating a TNv’s values in the required metrics

and making recommendations to the SNv concerning the selection of the best

TNv from the available ones.

3. The source node vehicle (SNv) uses the reputation of the target node vehicle

(TNv) as a feedback mechanism to decide whether to form a future offloading

request with it or not (hereafter considered as Requirement 3 - R3)

As the SNv depends on the TNv to complete its offloaded tasks, it needs to

ensure that it forms an SLA only with nodes that have a record of committing

to the offloaded tasks. This distinguishes a malicious TNv from a reliable

or trusted node to reduce offloading failures. It is also essential to consider

the high mobility of vehicles in the VFC network, as fog nodes may leave the

system before the task is completed, interrupting the execution process [28].

One way of doing this is to determine the social reputation of the TNv after

the task offloading process, which represents the extent of the commitment to

the formed SLA within the prescribed deadline [29]. This assessment will help

other SNvs select the appropriate TNv. The objective of this requirement is

to compute this reputation value.

Thus, the task offloading process in VFC needs to address different require-

ments or else it could negatively affect the efficiency of task completion.

23

Chapter 2: A Systematic Literature Review

2.4 Systematic review protocol

This section explains the various steps used to identify the relevant papers which

will be chosen for this SLR. By following the guidelines presented by Keele et al.

[30], the following four-step process was conducted:

Step 1: Searching the literature: This step includes identifying the main data

sources, defining the different search terms and the search procedures used to col-

lect the relevant studies in the existing literature that address the aforementioned

requirements R1–R3.

Step 2: Defining the inclusion and exclusion criteria: This step defines and uses the

inclusion and exclusion criteria to guide the selection of the most relevant papers

from the shortlisted ones.

Step 3: Undertaking a quality assessment of the shortlisted articles: In this step,

four criteria (QA.1 – QA.4) were developed and applied to review each of the short-

listed articles.

Step 4: Shortlisting papers for the SLR and classifying them into three broad areas.

2.4.1 Searching the literature

The details of this step are as follows:

• Database used in the search process: The search process in this SLR was con-

ducted based on the following literature sources:

1. IEEE Xplore Digital Library (http://ieeexplore.ieee.org).

2. Scopus database (https://www.scopus.com).

3. ProQuest Science and Technology (www.proquest.com/).

4. Web of Science database (www.webofknowledge.com).

24

http://ieeexplore.ieee.org
https://www.scopus.com
www.proquest.com/
www.webofknowledge.com

Chapter 2: A Systematic Literature Review

These databases were selected primarily because they provide enough coverage

of the literature that is relevant for this SLR.

• Search terms used: Key terms were used to search for the literature from the

databases. These terms relate to capturing the relevant information from the

research questions. Table 2.1 shows the main categories and keywords used in

this SLR.

Table 2.1 : Search terms

Search category Keywords

Vehicular Fog Computing VFC, vehicular networks, vehicular fog networks

Task offloading computation offloading, task offloading, task assignment

The final search term is formulated using the Boolean operators (AND, OR)

to connect the keywords. To capture the relevant texts from the literature,

quotation marks were used in the search query as follows:

(“Vehicular fog computing” OR “VFC” OR “vehicular networks” OR “vehic-

ular fog networks”) AND (“task offloading” OR “computation offloading” OR

“task assignment”).

• Search period and results:

Search period and results: The search was carried out on 13th June 2023. The

search terms were used on each database to select journals and conference pa-

pers published between 2015–2023 as there was very little consideration given

to the task offloading process in VFC before this period. The initial search

process on the databases resulted in 791 papers being shortlisted. These pa-

pers were further filtered based on the inclusion and exclusion criteria defined

in the next step.

25

Chapter 2: A Systematic Literature Review

2.4.2 Defining the inclusion and exclusion criteria

The details of this step are as follows:

• Paper selection criteria: To determine whether the paper must be included in,

or excluded from the SLR, the following inclusion and exclusion criteria were

applied to the initial search results.

Inclusion criteria: For a paper to be included in the SLR, it needs to meet

the following inclusion criteria:

Criterion 1: It must have been published between 2015–2023.

Criterion 2: The paper’s primarily focuses must be on VFC.

Exclusion criteria: If the paper meets the following criteria, it will be excluded

from the SLR process:

Criterion 1: The paper is written in a language other than English.

Criterion 2: It is a thesis, book, or a book chapter.

Criterion 3: It does not focus on the algorithmic design of the task to assist

in the offloading problem in VFC.

Criterion 4: It primarily focuses on cloud computing, fog or edge computing

and does not differentiate it from VFC.

Criterion 5: It is a duplicate of similar studies.

• Paper selection procedure: Paper selection procedure: After applying the in-

clusion criterion related to the publication date, the total number of papers

was reduced from 791 to 781. Of the shortlisted papers, 656 were from IEEE,

107 were from ProQuest, 15 were from Scopus and three were from Web of

Science. Endnote was used to export the details of the shortlisted articles to

26

Chapter 2: A Systematic Literature Review

filter them further and remove duplicates. Then, three filtration stages were

conducted:

In the first stage, the title and keywords of all the 781 studies were read, and

the unrelated articles were excluded. In the case of an unclear title, the articles

were moved to the second stage. This resulted in 131 articles being transferred

to the second stage.

In the second stage, the abstracts of the papers were read, and those which

matched the study’s aim were moved to the third stage. This resulted in 85

articles being moved to the third stage.

In the final stage, the full texts of the shortlisted 85 papers were read and

only 54 articles were chosen as relevant papers to our SLR. The paper selec-

tion stages are presented in Table 2.2.

Table 2.2 : Paper selection stages.

Database
Number of

papers

Papers after

title and keyword

exclusion

Papers after

reading abstrac

Final number

of papers

IEEE 656 115 71 47

ProQuest 107 10 8 4

Scopus 15 5 5 3

Web of science 3 1 1 0

Total 781 131 85 54

2.4.3 Quality assessment of the shortlisted articles

In this step, four criteria (QA.1 – QA.4) were developed and applied to review

each of the shortlisted articles. Table 2.3 presents the quality assessment criteria

27

Chapter 2: A Systematic Literature Review

used to assess each shortlisted article. If a paper met a quality assessment criterion,

it was given a score of 1. Otherwise, it was given 0. Only those articles that met

at least three criteria (i.e., received at least a score of 3 out of 4) were selected for

further analysis. Table 2.4 shows the score of the shortlisted 54 articles in each of

the quality assessment criteria. As seen from the table, 47 articles met the required

score in the quality assessment criteria and were chosen for further analysis in the

SLR.

Table 2.3 : Quality assessment criteria used.

QA.1 Does the paper cover relevant work and explore the research topics comprehensively?

QA.2 Is the algorithm\methodology used in the selected paper explained clearly?

QA.3 Does the paper describe and evaluate the results and applications clearly?

QA.4 Does the paper provide clear findings with justifiable results and conclusions?

Table 2.4 : Assessment of the studies against the four criteria.

Paper QA.1 QA.2 QA.3 QA.4 Points

[31] ✓ ✓ ✓ ✓ 4

[27] ✓ ✓ ✓ ✓ 4

[20] ✓ ✓ ✓ ✓ 4

[32] ✓ ✓ ✓ ✓ 4

[22] ✓ ✗ ✗ ✓ 2

[33] ✓ ✓ ✓ ✗ 3

[34] ✓ ✓ ✓ ✓ 4

[28] ✓ ✓ ✓ ✓ 4

[21] ✓ ✓ ✓ ✓ 4

Continued on the next page

28

Chapter 2: A Systematic Literature Review

Table 2.4 (Continued)

Paper QA.1 QA.2 QA.3 QA.4 Points

[35] ✓ ✓ ✓ ✓ 4

[36] ✓ ✓ ✓ ✓ 4

[25] ✓ ✓ ✓ ✓ 4

[26] ✓ ✓ ✓ ✓ 4

[37] ✓ ✓ ✓ ✓ 4

[38] ✓ ✓ ✓ ✓ 4

[39] ✓ ✓ ✓ ✓ 4

[40] ✗ ✓ ✗ ✓ 2

[41] ✗ ✓ ✓ ✗ 2

[42] ✓ ✓ ✓ ✓ 4

[43] ✓ ✓ ✓ ✓ 4

[44] ✓ ✓ ✓ ✓ 4

[45] ✓ ✓ ✓ ✓ 4

[23] ✓ ✓ ✓ ✓ 4

[46] ✗ ✗ ✓ ✓ 2

[47] ✓ ✓ ✓ ✓ 4

[48] ✓ ✓ ✓ ✓ 4

[49] ✓ ✓ ✓ ✓ 4

[50] ✗ ✓ ✓ ✗ 2

[29] ✓ ✓ ✓ ✓ 4

[51] ✓ ✓ ✓ ✓ 4

[52] ✓ ✓ ✓ ✓ 4

[53] ✓ ✓ ✓ ✓ 4

Continued on the next page

29

Chapter 2: A Systematic Literature Review

Table 2.4 (Continued)

Paper QA.1 QA.2 QA.3 QA.4 Points

[54] ✗ ✗ ✓ ✓ 2

[11] ✗ ✗ ✓ ✓ 2

[55] ✓ ✓ ✓ ✓ 4

[56] ✓ ✓ ✓ ✓ 4

[57] ✓ ✓ ✓ ✓ 4

[58] ✓ ✓ ✓ ✓ 4

[59] ✓ ✓ ✓ ✓ 4

[60] ✓ ✓ ✓ ✓ 4

[61] ✓ ✓ ✓ ✓ 4

[62] ✓ ✓ ✓ ✓ 4

[63] ✓ ✓ ✓ ✓ 4

[64] ✓ ✓ ✓ ✓ 4

[65] ✓ ✓ ✓ ✓ 4

[66] ✓ ✓ ✓ ✓ 4

[67] ✓ ✓ ✓ ✓ 4

[68] ✓ ✓ ✓ ✓ 4

[69] ✓ ✓ ✓ ✓ 4

[70] ✓ ✓ ✓ ✓ 4

[71] ✓ ✓ ✓ ✓ 4

[72] ✓ ✓ ✓ ✓ 4

[73] ✓ ✓ ✓ ✓ 4

[74] ✓ ✓ ✓ ✓ 4

End of Table 2.4

30

Chapter 2: A Systematic Literature Review

2.4.4 Shortlisted papers for the SLR and their classification into the

broad areas

Table 6 shows the 47 shortlisted articles that are analyzed further against require-

ments R1–R3. These papers are grouped under one of three categories, namely task

offloading in VFC, fog node selection and QoS assessment after execution. Sections

2.5.1 - 2.5.3 discuss the papers that fall under each category.

2.5 Analysis of the shortlisted papers against the require-

ments of task offloading in VFC

2.5.1 Analysis of papers in the category of task offloading in VFC

For efficient task offloading in VFC, the fog node needs to predetermine when

it is going to be overloaded and needs to offload its task. Furthermore, it also

needs to know how much workload and to whom it should offload its tasks. It is

challenging for a fog node to answer these questions as it needs to predict its own

workload, however these are key considerations in making timely offloading decisions

[24]. Different methods have been proposed in the literature to handle offloading

decisions. One method is to use learning-based offloading, where a fog node learns

the behaviour of future interaction. Ning et al. [45] proposed a deep reinforcement

learning model based on the queuing theory to handle offloading decisions. Factors

such as the arrival rate of moving vehicles, the arrival rate of offloading task flows

and the number of parked vehicles are considered. Based on this, they proposed

a redirection model to balance offloading task flows between the different nodes.

Lee and Lee [23] proposed an offloading scheme using a deep learning neural net-

work to study the mobility patterns of different vehicles to predict the availability

of resources for future offloading decisions. In this proposed approach, the proximal

policy optimization algorithm, which is one of the most recent deep reinforcement

31

Chapter 2: A Systematic Literature Review

learning methods, is used by integrating the recurrent neural network into the deep

neural network. This is used to study previous trends in allocating the available

resources in the VFC environment. Liao et al. [58] proposed an online learning-

based framework for intelligent task offloading in which vehicles learn to find the

optimal task offloading strategy with the least delay. The learning process is based

on queuing delay, handover cost, and the trustworthiness of the available vehicular

fog nodes. Kazmi et al. [69] proposed a framework that utilizes a deep reinforcement

learning mechanism. In the proposed deep reinforcement learning-based framework,

an agent interacts with its environment and learns to take actions based on the ob-

served states within this environment. The agent is trained to make decisions on how

to offload, schedule tasks, and allocate resources based on factors such as available

computational resources, energy constraints, and network conditions. Sarkar and

Kumar [70] proposed a delay-aware intelligent task offloading strategy for vehicular

fog computing networks. The proposed strategy uses deep reinforcement learning

and Markov decision processes to make intelligent task offloading decisions based on

the current state of the network. Vehicle mobility and communication bandwidth

constraints are considered in the proposed strategy to minimize the overall network

latency. Wei et al. [71] proposed a multi-agent deep reinforcement learning approach

to improve resource utilization in the VFC environment. The proposed approach

addresses the challenges of many-to-many task offloading in dynamic vehicular envi-

ronments using a partially observable Markov decision process (POMDP) to formu-

late the offloading process. Gao et al. [72] used a multi-agent reinforcement learning

approach to address the problem of task offloading and resource allocation in het-

erogeneous vehicular fog computing environments where multiple intelligent agents,

representing vehicles, learn to make collaboratively offloading decisions based on

their local observations and interactions with neighbouring agents. In the proposed

approach, a Transformer-based long sequence forecasting network (TLSFN) is used

32

Chapter 2: A Systematic Literature Review

to predict the current and future task queuing delay of the edge servers to manage

the future task processing competition information. In [73], the authors used deep

reinforcement learning (DRL) algorithms to propose a federated learning framework

to provide a decentralized task allocation. Using the proposed approach, there is

no need for a central entity and each vehicle can learn and make independent de-

cisions based on its local observations and interactions with the environment. The

proposed framework consists of two main components: the local learner that em-

bedded within each vehicle to employ DRL techniques to help the vehicle learn an

optimal task allocation policy based on its observations, and the coordinator that

acts as a communication medium among vehicles to facilitate knowledge sharing and

coordination without the need to access the data of each vehicle directly.

Other methods are proposed to enable a fog node to offload its computation

tasks when it reaches its capacity limit. For example, Lin et al. [39] proposed an

offloading scheme based on the workload and capacity of the available fog nodes using

a greedy algorithm. In the proposed approach, the edge node will offload its task

to the available vehicular nodes when there is no more capacity to execute the task

locally. Wang et al. [37] and Ye et al. [49] proposed resource allocation algorithms

to allocate the available resources of fog nodes during task offloading. Wu et al.

[28] and Wu et al. [21] handled the offloading issue using a discounted semi-Markov

decision process (SMDP and an iterative algorithm. While such algorithms assist

in offloading tasks, a key drawback of learning-based studies is that the offloading

decision focuses on predicting the fog nodes’ mobility to help the overloaded fog

node decide where to offload its tasks. While this is beneficial, it does not assist the

overloaded fog node in determining beforehand when it will be overloaded and thus

enable it to make proactive decisions. Liu et al. [66] proposed a distributed algorithm

using a combination of fog computing and cloud computing to efficiently offload tasks

in vehicular networks. Based on network conditions and resource availability, the

33

Chapter 2: A Systematic Literature Review

algorithm optimizes task execution by offloading tasks to fog nodes or cloud servers.

The existing approaches adopt a reactive-based offloading process. The requester

node will not start to offload its computation task until no more resources are

available to execute the task locally. This will increase the latency and offloading

cost in the case of an overload. To avoid this, prior knowledge of when a node will

offload is needed which will also assist in reducing other metrics such as cost and

energy consumption. Such an approach has not been proposed in the literature.

2.5.2 Analysis of papers in the category of fog node selection

Selecting the most appropriate target fog node will determine how efficient the

execution result will be. Different mechanisms are proposed in the selected literature

to choose the most appropriate target fog node for task offloading.

Using different selection criteria to select a fog node

Approaches in this category select a fog node based on criteria such as their

distance from the requester node, availability in the area or the time needed to

execute the tasks. For example, Zhu et al. [31] proposed a dynamic task allocation

solution called Folo for task allocation across stationary and mobile fog nodes. In the

proposed approach, selecting the target fog node depends on estimating the service

time by the infrastructure fog node and choosing the fog node with the shortest

service time. In [27], the authors proposed a distributed task offloading scheme called

Chameleon. The proposed approach based on fog node workload observations takes

high-resolution images within specific latency constraints. Selecting which target

fog node to offload depends on choosing the node with the shortest path and the

observed node workload at the end of each offloading process. Rahman et al. [38]

proposed a context-aware opportunistic offloading scheme in which the most suitable

vehicle to execute the task is selected based on the direction, speed and delay of

34

Chapter 2: A Systematic Literature Review

all vehicles available in the requester range. These proposed selection mechanisms

assume that fog node vehicles are available at any time to execute the offloaded

tasks. This assumption may be impractical in a real-world scenario as some fog

nodes may be available but unwilling to accept and complete offloaded tasks. In Liu

et al. [66], the neighbour selection phase was one of the three phases of the proposed

algorithm for efficient task offloading. In this phase, vehicles identify nearby fog

nodes and exchange information to build a neighbour table, which contains the

details of neighbouring fog nodes and their associated attributes. In [70], the authors

proposed a delay-aware task offloading strategy that considers the available resources

of individual fog nodes and allocates them to requesting client vehicles in proximity.

Learning-based mechanisms are also used to propose a selection mechanism for

task offloading. For example, Rejiba et al. [44] proposed an advice-based learning

method in which the best performing vehicles are selected based on learning their

performance from a neighbour RSU who already knows those vehicles. Zhao et al.

[33] used the deep reinforcement learning (DRL) method to allocate vehicles’ re-

sources based on their incentive mechanisms to reduce task offloading conflicts that

occur due to the simultaneous offloading decisions. In their proposed approach, a

queuing model is used to sort offloading choices according to the accumulated re-

wards won by those vehicles as incentives for executing other vehicles’ tasks. Lee

and Lee [23] combined a heuristic algorithm with reinforcement learning (RL) to

allocate fog resources to vehicles’ applications. They use a deep recurrent neural

network to get the patterns of the availability of vehicles and RSU resources and

then use these patterns to select fog nodes that can handle the offloaded task.

35

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.5 : Papers that meet the quality evaluation criteria from Step 3 of the selection process.

Paper Paper title Category

[31] Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing Fog node selection

[27] Chameleon: Latency and Resolution Aware Task Offloading for Visual-Based Assisted Driving Fog node selection

[20]
Task Offloading for Vehicular Fog Computing under Information Uncertainty: A Matching

Learning approach
Fog node selection

[32]
Reliable Task Offloading for Vehicular Fog Computing Under Information Asymmetry and

Information Uncertainty
Fog node selection

[33]
Contract-Based Computing Resource Management via Deep Reinforcement Learning in

Vehicular Fog Computing
Fog node selection

[34]
Computation Resource Allocation and Task Assignment Optimization in Vehicular Fog

Computing: A Contract Matching Approach
Fog node selection

[28] A Task Offloading Scheme in Vehicular Fog and Cloud Computing System Task offloading decision

[21] Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems Task offloading decision

[35] Efficient Task Completion for Parallel Offloading in Vehicular Fog Computing Fog node selection

Continued on the next page

36

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.5 (Continued)

Paper Paper title Category

[36]
Exploiting Moving Intelligence: Delay-Optimized Computation Offloading in Vehicular

Fog Networks
Fog node selection

[25]
Optimal Task Allocation in Vehicular Fog Networks Requiring URLLC: An Energy-Aware

Perspective
Fog node selection

[26] Toward Dynamic Computation Offloading for Data Processing in Vehicular Fog based F-RAN Fog node selection

[37] Application-Aware Offloading Policy Using SMDP in Vehicular Fog Computing Systems Task offloading decision

[38] Context-aware opportunistic computing in vehicle-to-vehicle networks Fog node selection

[39]
Cost Minimization with Offloading to Vehicles in Two-tier Federated Edge and Vehicular-Fog

Systems
Task offloading decision

[42] A Low-Latency and Massive-Connectivity Vehicular Fog Computing Framework for 5G Fog node selection

[43]
Securing Parked Vehicle Assisted Fog Computing With Blockchain and Optimal Smart

Contract Design

Fog node selection

QoS assessment

Continued on the next page

37

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.5 (Continued)

Paper Paper title Category

[44]
Computation Task Assignment in Vehicular Fog Computing: A Learning Approach via

Neighbour Advice
Fog node selection

[45]
Deep Reinforcement Learning for Intelligent Internet of Vehicles: An Energy-Efficient

Computational Offloading Scheme
Task offloading decision

[23]
Resource Allocation for Vehicular Fog Computing using Reinforcement Learning Combined

with Heuristic Information
Task offloading decision

[47]
Mobility Prediction-Based Joint Task Assignment and Resource Allocation in Vehicular Fog

Computing
Fog node selection

[48] Multi-Destination Computation Offloading in Vehicular Networks Fog node selection

[49]
Processing capability and QoE driven optimized computation offloading scheme in vehicular

fog based F-RAN

Fog node selection

Task offloading decision

[29]
Blockchain-Based Reputation Management for Task Offloading in Micro-Level Vehicular Fog

Network

Fog node selection

QoS assessment

Continued on the next page

38

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.5 (Continued)

Paper Paper title Category

[51] VFC-Based Cooperative UAV Computation Task Offloading for Post-disaster Rescue Fog node selection

[52]
Fog Computing Model and Efficient Algorithms for Directional Vehicle Mobility in

Vehicular Network
Fog node selection

[53] Mobile Vehicles As Fog Nodes For Latency Optimization In Smart Cities Fog node selection

[55] A Deadline-Aware Offloading Scheme for Vehicular Fog Computing at Signalized Intersection Fog node selection

[56] Adaptive Offloading for Time-critical Tasks in Heterogeneous Internet of Vehicles Fog node selection

[57]
An Infrastructure-Assisted Workload Scheduling for Computational Resources Exploitation

in the Fog-Enabled Vehicular Network
Fog node selection

[58]
Blockchain and Learning-Based Secure and Intelligent Task Offloading for Vehicular Fog

Computing

Fog node selection

Task offloading decision

QoS assessment

[59]
A Novel Contract Theory-Based Incentive Mechanism for Cooperative Task-Offloading in

Electrical Vehicular Networks

Fog node selection

Task offloading decision

Continued on the next page

39

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.5 (Continued)

Paper Paper title Category

[60]
An Incentive Mechanism for Computing Resource Allocation in Vehicular Fog Computing

Environment

Fog node selection

Task offloading decision

[61] Energy-Latency Tradeoff for Dynamic Computation Offloading in Vehicular Fog Computing
Fog node selection

Task offloading decision

[62]
Mobility Aware Blockchain Enabled Offloading and Scheduling in Vehicular Fog Cloud

Computing

Fog node selection

Task offloading decision

[63]
Priority-Aware Task Offloading in Vehicular Fog Computing Based on Deep Reinforcement

Learning

Fog node selection

Task offloading decision

[64]
Real-time Task Offloading for Data and Computation Intensive Services in Vehicular Fog

Computing Environments

Fog node selection

Task offloading decision

[65] Fuzzy Reinforcement Learning for energy efficient task offloading in VFC Fog node selection

[66]
A Distributed Algorithm for Task Offloading in Vehicular Networks with Hybrid Fog/Cloud

Computing

Fog node selection

Task offloading decision

Continued on the next page

40

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.5 (Continued)

Paper Paper title Category

[67] Adaptive-Learning-Based Vehicle-to-Vehicle Opportunistic Resource-Sharing Framework Fog node selection

[68]
ARTNet: Ai-Based Resource Allocation and Task Offloading in a Reconfigurable Internet of

Vehicular Networks
Fog node selection

[69] Computing on Wheels: A Deep Reinforcement Learning-Based Approach Task offloading decision

[70] Delay-aware Intelligent Task Offloading Strategy in Vehicular Fog Computing Task offloading decision

[71]
Fast Adaptive Task Offloading and Resource Allocation via Multiagent Reinforcement

Learning in Heterogeneous Vehicular Fog Computing

Fog node selection

Task offloading decision

[72] Dynamic Many-to-Many Task Offloading in VFC: A Multi-Agent DRL Approach Task offloading decision

[73] Federated Deep Reinforcement Learning-Based Task Allocation in Vehicular Fog Computing
Fog node selection

Task offloading decision

[74]
Joint Offloading Decision and Resource Allocation for Vehicular Fog-Edge Computing

Networks: A Contract-Stackelberg Approach

Fog node selection

Task offloading decision

End of Table 2.5

41

Chapter 2: A Systematic Literature Review

Similarly, Vemireddy and Rout [65] combined RL with the fuzzy logic-based

heuristic algorithm to propose an allocation approach to enhance the selection pro-

cess of fog nodes. Fuzzy logic is used to calculate vehicles weights, and the agent

uses reinforcement learning to learn vehicle scheduling policy. Reinforcement learn-

ing is also used by Gao et al. [72] to propose a decentralized task offloading method

based on a transformer and policy decoupling-based multiagent actor–critic where

each mobile vehicle agent can select the optimal computing node and allocate the

corresponding resources for the arrival task.Ning et al. [45] used DRL based on

queuing theory to comprise the arrival rate of both moving vehicles and offloading

tasks with the number of parked vehicles. They then take the offloading decision

based on those variables. Huang et al. [43] and Liao et al. [58] proposed learning-

based intelligent task offloading frameworks where all vehicles are pre-registered on

a blockchain-based VFC system. The available vehicle is selected by executing a

smart contract with it. Iqbal et al. [29] used a blockchain to maintain reputation

scores to choose the best vehicle to handle the offloaded task. Zhou et al. [36] pro-

posed an adaptive learning-based task offloading algorithm. The authors developed

an optimal policy for task assignment using task replication to handle incomplete

tasks and allocate the available computing resources to them in the VFC system.

In [67], the authors used an extended version of the multi-armed bandit algorithm

with additional features, such as input aware, occurrence, location, and direction

aware to propose an adaptive-learning-based task offloading mechanism that selects

the most suitable vehicle to handle the task within the collaborative environment.

The selection of the most suitable vehicle is based on speed, direction, and reward.

The reward is calculated based on the offloading delay and the available CPU fre-

quency of the candidate vehicles. The proposed algorithm allows vehicles to learn

the performance of nearby vehicles without an explicit exchange of control messages

and to learn from the mistakes made in the previous task offloading decision cycle.

42

Chapter 2: A Systematic Literature Review

In [68], the Markov decision process is used to select a suitable fog node for task

offloading based on the current state of the fog nodes and the size of the task follow-

ing each node task arrival. An approximate next state is obtained by computing the

appropriate reward value for selecting a fog node for task computation. POMDP is

used in [71] to formulate the trading process during many-to-many task offloading.

Other studies such as [20], [32], [34], [42], [51] and [52] used a matching algorithm

to select the target node based on the preference list of the requester. However, such

selection mechanisms may delay the process of task offloading when no matching

nodes are available to carry out the offloaded tasks.

Prediction methods were used by Wu et al. [47] and Yang et al. [55] to predict

vehicles’ mobility to select a proper target fog node based on its future mobility.

While this assists the nodes to guarantee their availability at the time of execu-

tion, it does not help in assuring that the available fog nodes will have sufficient

computational resources to carry out the offloaded tasks.

Researchers have used classification and scheduling techniques to schedule the

different tasks coming from other vehicles and find suitable vehicles in the required

range that have enough resources to process these tasks within a minimal completion

time [39], [48], [53], [56], [62] and [64].

Other types of approaches use allocation schemes based on different algorithms

to select a node. For example, Wu et al. [21] proposed an allocation scheme to

allocate the resource units (RUs) of vehicles for the offloading tasks based on SMDP

solved by an iterative algorithm. Similarly, the Markov decision process (MDP) was

used by Shi et al. [63] to handle the problem of task allocation in a dynamic VFC

environment where a DRL method based on a soft actor critic was used to solve

this problem. In their proposed task allocation scheme, a service vehicle is selected

based on task priority and the service availability of vehicles. Liu et al. [25] studied

43

Chapter 2: A Systematic Literature Review

the energy-aware task allocation problem in vehicular networks. They developed

a strategy to choose the best receiver fog node by calculating their capacities and

comparing them with the required computation task. This information is used to

select the optimal fog node that satisfies either energy efficiency or consumption. Ye

et al. [26] proposed a resource allocation strategy for F-RAN to choose the optimal

fog node by reducing the processing duration of the offloaded task. Wang et al. [37]

proposed an application-aware allocation strategy that considers the delay require-

ments and priority of the computation task while selecting the target fog server. The

proposed model uses a value iteration algorithm to maximize the long-term reward

of the VFC system during the selection process. Ye et al. [49] proposed a hybrid fog

architecture to combine F-RAN with VFC to handle the problem of resource con-

straints in eRRHs in IoV and then proposed an optimization algorithm for resource

allocation to decrease task execution time during the offloading process. In the pro-

posed scheme, deep learning methods enhance a heuristic algorithm to allocate the

available resources of vehicles for the offloading process. Heuristic-based resource

allocation was used by Yadav et al. [61] to propose an energy-efficient dynamic com-

putation offloading and resource allocation scheme to address the issue of energy

consumption and service latency in VFC systems. This proposed scheme is used

to find the most efficient vehicular node to handle the offloading tasks. Contract

theory is another method used by Kazmi et al. [59] for fog node selection, where

RUS selects the available vehicle that matches its preferences outlined in the con-

tract. Nazih et al. [60] also used contract theory to allocate vehicles’ resources and

manage the relationship between service operators and vehicles. Other methods,

such as the bi-dimensional selection framework [35], are proposed using the hid-

den Markov model (HMM) to ensure the availability of fog resources by estimating

the association states and the communication rate of vehicles. Then, the computa-

tion perception is completed using the Markov chain method. In [74], the authors

44

Chapter 2: A Systematic Literature Review

proposed an algorithm based on Stackelberg game and contract mechanism that

involves two stages: an offloading decision stage and a resource allocation stage. As

part of the offloading decision stage, the mobile user determines whether to offload

tasks to the fog or edge servers according to their associated costs, and the optimal

fog nodes are then selected according to these costs. During the resource allocation

stage, the service provider tries to maximize its revenue by allocating computing

resources while considering fairness among multiple users.

While the approaches detailed above assist in finding the target fog node, they

assume that the available target fog nodes will have enough resources to execute

the offloaded tasks. They do not propose mechanisms to guarantee or check if the

available fog nodes are reliable and have sufficient computation resources to complete

the intended tasks.

Approaches to deal with missing information in in relation to the cri-

teria required to select a fog node

In the VFC network, due to their mobile nature, the status of fog node vehicles,

such as their available resources, vary with time. When there is no prior knowledge of

the available fog nodes that are ready to share their idle resources, the uncertainty,

complexity and time in selecting target fog nodes increases, conflicting with the

latency constraints [31]. Only a few approaches have been proposed in the selected

literature to assist in making an offloading decision when there is a lack of operational

information about fog nodes.

Some approaches use learning-based methods to handle the uncertainty issue.

For example, Liao et al. [20] and Zhou et al. [32] proposed a learning-based match-

ing algorithm using the multiarmed bandit (MAB) framework to motivate vehicular

fog servers (VFSs) to share their resources under the condition of information uncer-

tainty where the side information of VFSs is unknown to user vehicle (UV). In the

45

Chapter 2: A Systematic Literature Review

proposed method, each UV sends its preference list to the edge server when offload-

ing, which searches for any VFS that matches the list. Liao et al. [58] developed a

learning-based intelligent offloading scheme named QUOTA-UCB for task offloading

where queuing-delay awareness, handover cost awareness, and trustfulness awareness

are achieved without proper knowledge of the fog node vehicles’ information. A

learning-based approach is also used in [67] and [69] to handle the uncertainty of fog

nodes during the task offloading process.[44] adopted multi-armed bandit (MAB)

models in which RSU learns the behaviour of vehicles passing its range. It then

advises other RSUs that do not have enough information and helps them make their

offloading decision. Xie et al. [35] used the hidden Markov model (HMM) and the

Markov chain to deal with the incomplete information of fog nodes. HMM is used

to estimate the association states and communication rate when fog node vehicles

are in the coverage range of the RSU, and the Markov chain is used to complete

computation perception. In [68], the Markov decision process is used to identify the

current state of the fog nodes and the size of the task during each offloading process.

Yang et al. [55] handled the uncertainty problem by developing a method to predict

the future location of vehicles. This method assists them in selecting the proper

fog service provider that will achieve a maximum success rate of offloading. Kazmi

et al. [59] proposed a framework for task offloading under information asymmetry.

In the proposed approach, RSU offers a collection of contracts for vehicles that seek

to share their resources while their preference lists are unknown.

Even though several solutions have been proposed in the selected literature to

handle the uncertainty issue during task offloading, these solutions do not provide

prior information about the trustworthiness of the fog nodes that will be available

at the time of offloading with enough resources to handle incoming tasks. Having

previous knowledge of such information will help reduce the latency and build trust

between nodes during task offloading.

46

Chapter 2: A Systematic Literature Review

Approaches that encourage nodes to be a part of the selection process

In the VFC system, vehicles sharing idle computation resources with other

resource-poor vehicles do not occur unconditionally and need specific incentives

[33]. Therefore, to ensure the availability of target fog nodes at the time of task

offloading, incentive mechanisms have been proposed by several studies to motivate

fog nodes to share their idle resources and receive rewards. For example, Zhou et al.

[32] proposed an approach to increase the expected utility of fog service provider

nodes in which different contracts are formed according to the various resource shar-

ing capabilities of fog service provider vehicles. Zhao et al. [33] and Zhou et al. [34]

use contract theory to incentivize the different fog nodes to participate in task of-

floading where a contract is designed for each fog node that agrees to participate

in the VFC system. This contract contains additional contract items, including the

number of resources to be shared with the corresponding rewards. Kazmi et al.

[59] also used contract theory to design an incentive mechanism framework for task

offloading to handle the problem of selfish nodes and deal with vehicles’ mobility. In

their proposed approach, the RSU offers a reward to encourage vehicles to synchro-

nize their moving speed in respect to each other during the task offloading process to

avoid the interruption of task offloading that might occur due to vehicles mobility.

Nazih et al. [60] combined the Stackelberg game with contract theory to design an

incentive mechanism. The Stackelberg game manages the price given for resource

sharing, and the contract theory is used to design contracts with different items for

the participating vehicles.

Other approaches were proposed by researchers in the literature using other tech-

niques such as the approach proposed in [71] that develops an incentive mechanism

based on the coalitional game and mid-market-rate pricing mechanism to allow

vehicles to organize steady and well-defined coalitions for resource orchestration.

During the offloading process, the proposed mechanism aims to take into account

47

Chapter 2: A Systematic Literature Review

the individual rationality of each vehicle. The approach in [73] is to design a novel

reward function that considers both the performance of the individual vehicle and

the overall performance of the system. This reward function is designed to encour-

age vehicles to optimize their local task allocation and to collaborate with other

vehicles to achieve a globally optimal solution.

Other researchers utilize the smart contract technique to provide incentive mech-

anisms for fog nodes. For example, [43] proposed parked vehicle assisted fog com-

puting (PVFC), in which the resources of parked vehicles are used to process the

required tasks of other vehicles. PVFC utilizes blockchain technology to record

and audit the communication between the vehicle nodes to address the security and

privacy challenges arising from a centralized environment. Based on the recorded in-

formation, smart contracts are used to trigger activities that facilitate the formation

and execution of offloading tasks between the service requester and service provider

vehicles. Smart contract analysis is then undertaken to determine the payment to

the node for processing the offloaded task using the Stackelberg game framework.

[58] also utilized smart contracts to provide an incentive mechanism where the dif-

ferent fog nodes earn rewards for sharing their resources. In their proposed scheme,

smart contracts ensure automatic task offloading where the transactions between

vehicular nodes are settled based on identified vehicular behaviours. [29] proposed

blockchain-based reputation management for task offloading, where an incentive is

given to a fog node when it executes the offloaded task within predetermined dead-

line. The reward is given as a reputation value in the proposed incentive mechanism

which is used in the next selection process. Another method was also introduced by

[63] to incentivize vehicles to share their resources using a dynamic pricing scheme.

The service price is determined at the time of selecting the service vehicle.

Game theory was also one of the approaches utilized to propose an incentive

mechanism such as the mechanism proposed in [74] in which the authors combine the

48

Chapter 2: A Systematic Literature Review

Stackelberg game approach with the contract mechanism and proposed an approach

that models the interaction between a mobile user (the leader) and a service provider

(the follower). The mobile user aims to minimize its offloading cost and latency,

while the service provider aims to maximize its revenue by allocating resources to

multiple users effectively. A contract mechanism is designed to establish a win-win

situation to ensure that both players, the leader and the follower, benefit from their

interaction.

Although researchers have used incentive mechanisms, they lack detail on what

rewards will be given to the nodes. Furthermore, they do not focus on defining what

penalties should be given to a node if it fails to commit to the promised tasks. We

discuss this issue in Section 6.3 as an open research gap that needs to be addressed.

2.5.3 Analysis of papers in the category of QoS assessment

In the VFC network, the requester fog node uses the available resources of the

different target fog node vehicles. To assist the requester fog node in making an

informed decision, it should know the trustworthiness of the target fog nodes to

avoid offloading their tasks to selfish nodes. This can be achieved by adopting

an assessment feedback mechanism after the task offloading process in which the

requester fog node evaluates the target fog node’s commitment to the promised

QoS factors. In the selected literature, only three studies have used an assessment

mechanism to evaluate the execution result of the offloaded task. Liao et al. [58]

proposed a smart contract-based offloading method. A Merkle tree-based proof-of-

computing check mechanism is used to verify the computation results where the

transaction is automatically ended in the case of improper execution. Huang et al.

[43] designed a smart contract to handle the different offloading processes for parked

vehicles in VFC. A third-party method is selected to evaluate the execution result

and determine whether the associated computation work is qualified. However,

49

Chapter 2: A Systematic Literature Review

the assessment proposed in this method will not help future offloading decisions as

no assessment scores are given to fog service provider vehicles for future fog node

selection decisions. While Iqbal et al. [29] give a reputation value as an incentive

for a node to complete an offloaded task, this value is computed based on the

historical performance of fog node vehicles by measuring the previous rewards given

to this node after each successful execution of the offloaded task. However, using

the reputation technique as an assessment mechanism to score the executed task

and using this score for future fog node selection has not been widely covered in the

selected literature.

Table 2.6 summarizes the selected studies. In the next section, we analyze the

papers against the requirements defined in Section 1 and identify the gaps as open

issues of future work.

50

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Table 2.6 : Comparison of the selected papers against requirements R1-R3 for efficient task offloading.

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[31] ✓ NA

Estimate the service time

by the infrastructure fog

node and choose the fog

node with the shortest

service time

NA NA

[27] ✓ NA
Choose the nearest fog

node to the client vehicle
NA NA

[20] ✓
Ml-based algorithm

MV-UCB

Pricing-based matching

algorithm
NA NA

[32] ✓
ML mechanism using

MAB framework

Pricing-based matching

algorithm

Contract Theory using

convex-concave

procedure CCP

NA

Continued on the next page

51

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[33] ✓ NA DRL Contract Theory-based NA

[34] ✓ NA
Pricing-based matching

algorithm
Contract Theory-based NA

[28] ✓ NA NA NA NA

[21] ✓ NA

Resource allocation using

Semi-Markov decision

process (SMDP)

NA NA

[35] ✓ HMM Markov chain

A bi-dimensional selection

principle using HMM and

Markov chain

NA NA

[36] ✓ NA
Learning-based using task

replication
NA NA

Continued on the next page

52

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[25] ✓ NA
By the proposed task

allocation mechanism
NA NA

[26] ✓ NA
By the proposed task

allocation mechanism
NA NA

[37] ✓ NA
By the proposed task

allocation mechanism
NA NA

[38] ✓ NA
Device selection and

offloading module
NA NA

[39] ✓ NA

Greedy scheduling

algorithm using queuing

model

NA NA

[42] ✓ NA
Pricing-based matching

approach
NA NA

Continued on the next page

53

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[43] ✓ NA Smart contract
Game theory and smart

contract
Smart contract

[44] ✓ MAB Online learning NA NA

[45] ✓ NA Learning-based NA NA

[23] ✓ NA RL-based NA NA

[47] ✓ NA
Min-Max rule,

prediction-based
NA NA

[48] ✓ NA
Scheduling-based task

assignment mechanism
NA NA

[49] ✓ NA

Resource allocation

mechanism using heuristic

algorithm enhance by DL

methods

NA NA

Continued on the next page

54

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[29] ✓ NA Reputation-based Reputation-based Reputation-based

[51] ✓ NA Matching-based NA NA

[52] ✓ NA
Greedy-algorithm-based

matching approach
NA NA

[53] ✓ NA

Task allocation mechanism

using heuristic task

scheduling strategy

NA NA

[55] ✓ Prediction-based
Mobility-prediction,

Replication-based
NA NA

[56] ✓ NA

Delay-Driven classification

policy and resource driven

division policy

NA NA

Continued on the next page

55

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[57] ✓ NA
Greedy scheduling

algorithm
NA NA

[58] ✓ Learning-based
Learning-based and smart

contract
Smart contract

Merkle Tree-based

proof-of-computing

check mechanism

[59] ✓ Contract theory-based Contract theory-based Contract Theory-based NA

[60] ✓ NA
Contract theory with

Stackelberg game

Task allocation using

Contract Theory
NA

[61] ✓ NA
Heuristic-based resource

allocation
NA NA

[62] ✓ NA Task scheduling NA NA

Continued on the next page

56

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[63] ✓ NA

MDP based on task

priority and service

availability

Dynamic pricing scheme NA

[64] ✓ NA

Task classification using

resource-driven division

policy

NA NA

[65] ✓ NA

RL-based scheduling

algorithm combined with

fuzzy logic based greedy

heuristic

NA NA

Continued on the next page

57

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[66] ✓ NA

Vehicles identify nearby

fog nodes and exchange

information to build a

neighbour table

NA NA

[67] ✓ Learning-based Learning-based NA NA

[68] ✓
Markov decision

process
Markov decision process NA NA

[69] ✓ Learning-based NA NA NA

[70] ✓ DRL-based

Allocating computing

resources to service nodes

based on their availability

and proximity to client

vehicle

NA NA

Continued on the next page

58

C
h
ap

ter
2:

A
S
y
stem

atic
L
iteratu

re
R
ev
iew

Continuation of Table 2.6

Offloading decision Fog node selection

Paper
Reactive Proactive Uncertainty-driven

Fog node selection

mechanism
Incentive mechanism

After offloading

assessment

[71] ✓ DRL

A partially observable

Markov decision process

(POMDP)

Coalitional game and

mid-market-rate pricing

mechanism

NA

[72] ✓ RL

Multiagent reinforcement

learning (transformer and

policy decoupling based

multiagent actor–critic

NA NA

[73] ✓ RL Reinforcement Learning Reward function NA

[74] ✓ Contract mechanism

A cost-based decision

process using Stackelberg

game and contract

mechanism

Stackelberg game and

contract mechanism
NA

End of Table 2.6

59

Chapter 2: A Systematic Literature Review

2.6 Open research issues

From the discussion and analysis presented in Table 2.6, it can be seen that while

many approaches address the issue of task offloading in VFC, the existing solutions

still have gaps and open issues. Further work needs to be done in the following areas

to address these gaps:

1. The source node vehicle (SNv) proactively determines when to of-

fload the task

Table 2.6 shows that none of the approaches determine in a proactive way

when the SNv needs to offload a task. Existing approaches consider a reactive

approach which does not guarantee the timely processing of the tasks nor

the availability of TNvs with the required resources. To have a proactive

approach, prior knowledge of the future workload of the SNv is needed, which

will ascertain when it will be overloaded and what task/s it needs to offload.

Future research in this area should use workload prediction for the intelligent

handling of the offloading decision and alleviate issues related to latency and

timeliness completion constraints in the VFC environment.

2. Dynamic update of information in a registry that assists source node

vehicles (SNv) in the offloading process

Due to the high mobility of vehicle nodes, there is a need for a registry that

updates dynamically and assists the SNv to accurately know the specifics of the

available fog nodes to which it can offload its tasks. While existing approaches

in the literature select a fog node based on criteria such as their distance,

pricing-based matching, learning-based mechanism, etc., they assume that the

available fog nodes will agree to carry out the offloaded task.

In a real-world scenario, this may not always be possible. For example, even

60

Chapter 2: A Systematic Literature Review

though a fog node vehicle may have the available resources, it may not want

to share these, which will affect the offloading efficiency and the time required

to decide. This can be addressed by a registry that dynamically updates

itself with the information needed by the requester node to make an informed

offloading decision.

3. Providing incentives to target node vehicles (TNvs) to be a part of

the selection pool

An essential factor for the success of the offloading process is the availability of

computing resources in the form of fog node vehicles (FNvs) that can process

the required tasks. One way this can be guaranteed is to incentivize the

available nodes to participate in the offloading process. From Table 2.6, it can

be seen that most of the existing approaches do not use incentive mechanisms

and assume that fog nodes will be available at offloading and ready to take

incoming tasks. Furthermore, while incentivizing, it is also essential to monitor

any malicious behaviour exhibited by nodes to obtain rewards and introduce

penalties if a node does not complete the offloaded tasks as promised. For

example, Liao et al. [58] proposed an incentive mechanism that gives a coin

as a reward for executing another node’s tasks. However, this may lead to

malicious behaviour among nodes to compete to obtain coins but not complete

the tasks they have taken from the previous nodes.

To successfully handle the incentive issue in the VFC environment, researchers

should look at utilizing game theory. Game theory can decide on incentives

as task offloading is considered a multiplayer decision problem. The FNvs

are competing to maximize their benefits. This approach can also be used to

determine if FNvs are acting selfishly or in a malicious way and prevent this

from occurring.

61

Chapter 2: A Systematic Literature Review

2.7 Limitations of this SLR

This SLR has several limitations that should be considered when viewing this

chapter. Firstly, the selected studies were obtained from only four data sources,

which are well-known databases in Engineering and IT. Secondly, the search strings

used in this chapter are limited due to the time constraints of this research project,

which may result in some related studies being missed. Thirdly, some issues re-

lated to task offloading in VFC were not covered in this SLR, including, but not

limited to, security and privacy, load balancing, and service interruption during the

offloading process. Finally, task offloading has applications in other domains such

as fog computing [75]. As this chapter focuses only on VFC, we only consider those

articles that match our inclusion criteria. Thus, it excludes research that discusses

task offloading but is not related to VFC.

2.8 Conclusion

This SLR proposes three essential requirements that should be considered in the

task offloading process in VFC. After a thorough review of the existing literature,

this SLR analyses the selected literature against these three requirements and is

the first attempt to address the issues observed in task offloading in a VFC system

related to these requirements.

Based on the result of the analysis of the selected literature, the next chapter

identifies the research problem, identifies the research question and formulates the

research objectives.

62

63

Chapter 3

Problem Definition

3.1 Introduction

In the previous chapter, a comprehensive systematic literature review was conducted

to identify the research gaps. Based on these identified research gaps, this chapter

defines the research problem and identifies the research questions as well as the

research objectives.

This chapter is organized as follows: Section 3.2 identifies the key terms and concepts

used in this thesis. Section 3.3 identifies the research problem. Section 3.4 outlines

the research questions and section 3.5 identifies the research objectives. Section 3.6

concludes this chapter.

3.2 Key definitions

In this section, the definitions of the key terms and concepts used in this thesis are

as follows:

a) Fog node vehicle (FNv): We define a FNv as any interested vehicle which

downloads the iVFC application and completes the registration process to

become an iVFC client and identify as a FNv.

b) Source node vehicle (SNv): We define an SNv as one with a computationally

intensive task or latency-sensitive task that needs to be offloaded to a fog-node

vehicle for its execution.

c) Target node vehicle (TNv): We define a TNv vehicle as one that has idle or

Chapter 3: Problem Definition

unused computation resources (such as compute or memory) and can share its

idle computing resources to execute the other vehicle’s tasks.

d) Load or utilization capacity: We define the load or utilization capacity as the

past utilization profile or capacity of a vehicle (in terms of its computational

resources). The past load or utilization capacity profile can be used to make

intelligent judgements about the future need for offloading.

e) Task offloading: This is the process of transferring a task from a resource-

constrained SNv to a more powerful device (such as a cloud server or TNv)

that can handle the task more efficiently [16].

f) Task: We define the term “task” in the task offloading process as a specific

unit of computation or processing that needs to be performed by a FNv in

the VFC system. This task can be any kind of computation, such as data

processing, data analysis, or data storage, and can be initiated by any client

node in the VFC system.

g) Reactive-based task offloading: This is a strategy where tasks are offloaded to

a TNv in response to a specific event. In this approach, the decision to offload

a task is made when a need arises. For example, the client node vehicle decides

to offload a task when it reaches its capacity and is unable to execute its tasks

locally [13].

h) Proactive-based task offloading: This is a strategy where tasks are offloaded

based on future events or requirements. In this approach, the decision to

offload a task to a suitable TNv is made proactively, based on predicted work-

load, where the SNv is a priori aware that it is going to be overloaded in the

future. Proactive-based task offloading is typically planned ahead of time and

is based on the expected future system state [13].

64

Chapter 3: Problem Definition

i) Target node selection: We define target node selection as the process of choos-

ing the most optimal TNv from a group of available fog nodes in a VFC system

to offload a particular task. A target node is a physical vehicular-node that

provides computing, networking, and storage services in a VFC system. Tar-

get node selection involves considering various factors, such as the computing

capacity of the fog nodes (its CPU utilization and memory usage), and their

proximity to the devices generating the tasks. The goal of target node selec-

tion is to find the best possible TNv that can perform the task efficiently and

effectively.

j) Incentive-mechanisms: These are mechanisms designed to encourage and moti-

vate FNvs to participate in the VFC system during task offloading. Incentives

involve offering participants rewards or benefits for their contributions. [17].

k) Smart cars: These are vehicles that are equipped with advanced technology

and connectivity features such as sensors, communication systems, and com-

puting power to enable them to communicate with each other and with the

environment to collect and process data to enhance safety, efficiency, and over-

all driving experience [76].

l) Machine learning (ML): This is an artificial intelligence (AI) subfield that en-

ables computer systems to automatically learn from and make predictions or

decisions based on data by applying algorithms and statistical models, without

the need for explicit instructions from humans [77].

m) Deep Learning (DL): This is a subset of machine learning that involves learn-

ing and representing complex patterns in data using artificial neural networks

with multiple layers. It allows the network to learn hierarchical representations

of features [78].

65

Chapter 3: Problem Definition

n) Fuzzy logic: This is a mathematical framework that deals with reasoning and

decision making in situations that involve uncertainty, ambiguity, and impre-

cision. It is a form of logic that allows for degrees of truth instead of the usual

binary true or false values in classical logic [79].

o) Time-series: This is a set of observations or data points collected at regular

intervals over time. The data points can be collected at equal or unequal time

intervals [80].

3.3 Problem definition

In the context of VFC, the SNvs are mobile nodes with intensive computation tasks

that need to be executed within a specified time frame. Executing these tasks locally

on the source node is challenging due to the resource limitations of the node and the

time constraints of the job. Therefore, offloading these tasks to another fog node can

solve such problems. However, the offloading decision-making process is a complex

task that initiates an agreement between the SNv with the computation tasks and

the TNv that executes the offloaded tasks. The SNv is responsible for identifying

the need to offload, identifying an appropriate TNv, communicating and negotiating

with the TNv, offloading the task to the TNv, and receiving the completed task from

the TNv.

One of the major challenges in task offloading is the decision as to where, how

much, and when to offload tasks. The decision as to where to offload tasks involves

determining the best TNv to offload the task to. The decision as to how much

workload to offload is crucial in managing resource utilization, while the decision

as to when to offload the task is critical in meeting the job’s time constraints. The

effectiveness of the task offloading decision depends on the accuracy of these decisions

as well as the availability of fog nodes that are ready to share their computation

resources.

66

Chapter 3: Problem Definition

However, the existing literature fails to provide intelligent approaches or mech-

anisms for carrying out the offloading decision-making process. Therefore, there is

a need for intelligent approaches and mechanisms to improve the decision-making

process in task offloading. These approaches should include a predictive mechanism

to support the SNv to priori determine the future offloading decision, a TNv se-

lection mechanism to help the overloaded SNv to select an optimal TNv for task

offloading, and an incentive mechanism to encourage fog nodes to participate in the

task offloading process.

In this thesis, to address the research gaps that were identified in the existing lit-

erature, we propose an intelligent framework for handling the task offloading process

in a VFC system. This framework will help the SNv in the VFC system to priori

identify the need to offload its next task, select the most optimal TNv to carry out

the task and to incentivise fog nodes to participate in the task offloading process.

Based on the discussion above, the research problem that is addressed in this thesis

is:

How to develop a framework that can intelligently handle the decision-

making problem during task offloading in a VFC system to reduce la-

tency and increase the quality of service (QoS)?

3.4 Research Questions

Based on the systematic literature review reported in chapter two and the research

problem identified in section 3.2, the main research question is identified as:

How can the source node vehicle (SNv) proactively offload a task to the

most optimal target node vehicle (TNv) to minimize execution delay in

VFC?

The main research question is divided into the following research sub-questions:

67

Chapter 3: Problem Definition

3.4.1 Research Question 1 (RQ1)

How can we use the prior load of the source node to proactively predict the need to

carry out task offloading in VFC?

3.4.2 Research Question 2 (RQ2)

How can incentive mechanisms be used to motivate fog node vehicles (FNvs) to take

the incoming task while guaranteeing that the required level of participation is met?

3.4.3 Research Question 3 (RQ3)

How to best select the most optimal target node vehicle (TNv) for task offloading

in which execution delay will be minimized?

3.4.4 Research Question 4 (RQ4)

How to evaluate and validate the effectiveness of our proposed method based on

simulation results?

3.5 Research objectives

On the basis of the above research question and sub-questions, the research objec-

tives are formulated as follows:

3.5.1 Research Objective 1

To develop a proactive-based task offloading methodology based on predictive tech-

niques and the prior utilization-profile of the fog node vehicle (FNv).

To achieve this objective, we develop a predictive analytic model using machine

learning methods (ML) to predict the future utilization capacity (i.e., the CPU

utilization and the memory usage) of each FNv based on its prior CPU utilization

and memory usage to help the node to have prior knowledge of when it is going

68

Chapter 3: Problem Definition

to be overloaded and when it needs to offload its next task. Due to the dynamic

nature of fog nodes in the VFC environment, the workload of FNvs varies with time

(i.e., time series workload). Therefore, we propose a framework that can handle the

dynamic nature of time series data efficiently. Based on the predicted workload,

each FNv will be able to proactively predict when it is going to be overloaded in the

future.

3.5.2 Research Objective 2

To develop an incentive mechanism that considers a reward to motivate fog node

vehicles (FNvs) to take the incoming task and a penalty to ensure that the required

level of participation is met.

To achieve this objective, we develop a game theory-based incentive mechanism to

encourage fog nodes to participate in the VFC system. The incentive mechanism

helps to increase the level of participation in the VFC system. To develop our

proposed incentive module, we choose game theory as the incentive mechanism to

be used in our framework. Due to the selfishness and rationality of the vehicles that

intend to increase their outcomes in the VFC environment, the VFC environment is

considered to be a non-cooperative game. Therefore, in our framework, we consider

vehicles as players in the game and we follow the solution concept of the Stackelberg

Nash equilibrium game theory.

3.5.3 Research Objective 3

To develop an effective mechanism for the SNv to intelligently select an optimal

TNv to handle the task.

To achieve this objective, we build a TNv selection model using three methods, sta-

tistical methods, a machine learning (ML) method and deep learning (DL) methods.

Of the statistical methods, we use the analytic hierarchy process (AHP) method to

69

Chapter 3: Problem Definition

calculate the weights of the criteria of the TNvs (CPU utilization and memory usage)

and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

method for ranking the different TNvs based on their criteria. This ranking is based

on the relative closeness of a particular alternative to the ideal solution. we use

other methods, namely the ML method and the DL methods to compare the result

with TOPSIS to choose the best performing method for selecting the most optimal

TNv.

3.5.4 Research Objective 4

To validate and evaluate the developed methods using simulation experiments.

To achieve this objective, our proposed framework is validated by building a pro-

totype software of the framework and implementing the approaches proposed to

achieve objectives (1-3). This is done by conducting different experiments to test

the effectiveness of our research objectives (research objective 1 to research objective

3) in addressing our research questions (research question 1 to research question 3).

3.6 Conclusion

In this chapter, the research problem is identified and the main research question and

research sub-questions are presented. Based on the identified research problem and

the outlined research questions, four research objectives are identified. This chapter

also presented the definitions of the main key terms used through this thesis.

In the next chapter, an overview of the proposed solution to address the outlined

research objectives (research objective 1 to research objective 4) is presented along

with a detailed description of the research methodology used to design and develop

the proposed solution.

70

71

Chapter 4

Research Methodology and Solution Overview

4.1 Introduction

In this chapter, the research methodology applied in this thesis is explained in detail.

This methodology addresses the research gaps that were identified in the literature

review in chapter two. This chapter also includes an overview of the proposed

solution and how each research question is addressed.

This chapter is organized as follows: section 4.2 provides the definitions of the

key terms used in the proposed solution. Section 4.3 gives an overview of the research

methodology used to develop the proposed framework. A step-by-step overview of

the proposed iVFC prototype is given in section 4.4. Solutions for research questions

(RQ1-RQ4) are presented in sections 4.5, 4.6, 4.7 and 4.8, respectively. Finally,

section 4.9 concludes the chapter.

4.2 Key definitions

In our iVFC proposed framework, we use the following key terms:

a) Fog Server Node (FSN): a node that is part of the iVFC infrastructure and is

specifically designed to provide computing and storage resources to vehicles

and other devices on the road. It is typically located at the road side unit

(RSU) and can communicate with nearby vehicles and devices using short-

range wireless communication technologies like Wi-Fi or Bluetooth. It can

provide various services, such as data caching, data processing, and data fil-

tering, to improve the performance of the iVFC system.

Chapter 4: Research Methodology and Solution Overview

b) Fog Service Providers (FSPs):): a number of different fog service nodes (also

known as road side units (RSUs) in our proposed framework). Each one of

these fog service nodes is part of the fog service consortium (FSC) and all of

these fog service nodes collaborate and coordinate with each other and act as

FSPs. Their job is to collect all the data originating from the vehicles and

store them (and subsequently process them through the AI layer).

c) Fog Service Consortium (FSC): is a subset of the iVFC fog service providers

(FSPs). The primary purpose of the FSC is to provide a distributed approach

for managing all the FSPs which are geographically dispersed. The FSC is

responsible for activities such as adding a new fog node to the FSC, removing

an existing fog node from the FSC, managing all the iVFCs such as enrolling a

new iVFC and managing iVFC’s access to the distributed fog repository. FSC

works on the basis of consensus and decisions are arrived at based on majority

vote.

d) Fog Repository (FR): a storage system that is designed to store and manage

data and applications that are used by fog node vehicles (FNvs) and devices.

The FR provides a central location for storing and distributing data, software,

and other resources, which can be accessed by FNvs and devices in the network.

It is typically located in a centralized data centre and is connected to the FNVs

and devices through high-speed networks. It can be managed and configured

by the iVFC computing system administrators, who can control access and

permissions for the stored data and applications.

e) Roadside Units (RSUs): RSU in our proposed framework are the edge servers

that are deployed close to vehicles to gather, process and store data in a timely

manner.

f) CPU utilization of FNv: : represents the percentage of processing power that

72

Chapter 4: Research Methodology and Solution Overview

is being used by a FNv’s CPU at any given time. CPU utilization is an im-

portant metric for evaluating the performance and efficiency of a FNv, as it

indicates how much of the available processing power is being utilized by the

system. High CPU utilization can indicate that the FNv is processing a large

amount of data or running complex computations and is about to become over-

loaded, which can lead to increased latency and decreased performance. On

the other hand, low CPU utilization can indicate that the FNv is underutilized

and has idle resources that can be used to process other FVvs’ tasks.

g) Memory usage of FNv: represents how much of a FNv’s RAM is being used

at any given time. Memory usage is considered an important metric to eval-

uate the performance and efficiency of a FNv. It indicates how much of the

available memory resources are being used by the vehicular fog computing

(VFC) system. High memory usage can indicate that the FNv is processing

a large amount of data or running complex applications that require a signif-

icant amount of memory and is about to become overloaded. On the other

hand, low memory usage can indicate that the FNv is not fully utilizing the

available memory resources and has idle resources that can be used to process

other FNvs’ tasks.

4.3 Selected Research Methodology

To achieve the research objectives identified in chapter 3, the design science research

methodology (DSRM) is used in our research. The DSRM approach is a widely used

research methodology for validating and testing a newly designed prototype system

[81].

The objective of this research is to develop an intelligent framework on top of

VFC for task offloading. Subsequently, in our proposed framework, we propose a

novel algorithm to provide proactive-based task offloading by developing three mod-

73

Chapter 4: Research Methodology and Solution Overview

ules: predictive analytic, target fog-node selection and incentives for participation.

To validate our proposed framework, we develop a prototype system using various

software frameworks. Using the developed software framework, we simulate the

VFC network and evaluate the algorithms that are proposed in this research to de-

termine if the initial prototype system addresses the identified research objectives.

This process will be iterated until the identified research objectives are achieved.

Non of the existing research methodologies, except DSRM, are suited to develop a

prototype or a system as proof of concept. furthermore, non of the exiting research

methodologies, except DSRM, carry out lab-based testing as an approach to validate

the developed proof of concept. Hence, we used DSRM in our research.

Given the focus of this research is on the development of a software framework,

and the simulation and evaluation of VFC using the software framework, the DSRM

is the most appropriate methodology to be used.

Based on the DSRM, our proposed solution implements the following steps in a

nominal sequence. These steps are presented in Figure 4.1.

1. Problem identification and motivation: During this step, we conducted

an initial literature review on VFC and related issues on resource manage-

ment to build knowledge and to identify the research problem and motivation.

Specifically, task offloading was identified as one of the resource management

issues of VFC.

2. Literature review: In this step, we conducted a systematic literature review

(SLR) based on the problem identified in the initial literature review. This

SLR aims to identify the research gaps by conducting a critical analysis of

the existing works that have been proposed in the literature to address the

problem of task offloading in VFC. This step is documented in chapter 2 of

this thesis.

74

Chapter 4: Research Methodology and Solution Overview

3. Objective of the solution: In this step, we identified the research questions

and objectives based on the outcomes from steps one and two. The main

objective of this research is to develop an intelligent framework on top of

VFC for task offloading. To achieve this objective, we proposed iVFC: a

proactive-based framework for task offloading in VFC by developing three

modules: a predictive analytic module to assist the participating FNvs in

the VFC environment to have prior knowledge of the overloading decision, a

target node vehicle (TNv) selection module to select the most optimal TNv

to efficiently handle the offloaded task, and an incentive module to encourage

FNvs to participate in the task offloading process to guarantee the availability

of TNvs at the time of task offloading to handle the offloaded task. This

framework helps to reduce execution delay during the task offloading process

and improves the performance of the VFC system. This step is documented

in chapter 3 of this thesis.

4. Design and development: In this step, the iVFC framework is built using

various artificial intelligent methods. These artificial intelligent schemes are

used to develop the solutions to research questions one to four. This step is

documented in chapter five, six, and seven of this thesis.

5. Demonstration: In this step, the efficiency of the designed iVFC solution

is demonstrated through the development of a prototype system to achieve

each objective (research objective one to research objective three) to check

the efficiency of the proposed iVFC solution in solving the problem identified

in step 1. This step is documented in chapters four, five, and six as part of

research objectives one to three.

6. Evaluation: In this phase, we evaluate and validate our proposed iVFC so-

lution by conducting experiments and a number of metrics are used to decide

75

Chapter 4: Research Methodology and Solution Overview

whether to continue to the next step or to go back to step three to improve the

effectiveness of our proposed solution. This corresponds to research question

four. This step is documented in the validation section in chapters four to six

to evaluate and validate research objectives one to three.

7. Communication: In this step, the outcomes of the previous steps are dissem-

inated through publications in peer-reviewed journals and conferences. This

step is iterated during this thesis.

Figure 4.1 : The proposed Design Science Research Methodology

4.4 Overview of the proposed iVFC solution

This section discusses the overall solution of the proposed iVFC system that is

developed to provide an intelligent framework on top of VFC for the task offloading

process to achieve the research objectives identified in chapter 3.

4.4.1 Architecture of the iVFC

iVFC is an intelligent framework to support fog nodes during the task offloading

process in the VFC environment. The architecture of the proposed iVFC, as shown

76

Chapter 4: Research Methodology and Solution Overview

in Figure 4.2, consists of the following three layers:

Data collection Layer: This is the base layer that is responsible for collecting data

from the different vehicular fog nodes and passing it to the nearest iVFC FSP. When

each vehicle installs the iVFC application, the data layer is installed as well. There

can be a number of FSPs within the iVFC FSP layer.

iVFC Fog Service Providers (FSPs) layer: This layer comprises a number of fog ser-

vice nodes (also known as road side units (RSU) in our proposed framework). Each

of these fog service nodes is part of the (FSC) and all of these fog service nodes

collaborate and coordinate with each other and act as FSPs. Their job is to collect

all the data originating from the vehicles and store them (and subsequently process

them through the AI layer). In our research, the iVFC FSPs store all the informa-

tion in the distributed FR. The AI intelligent modules and algorithms are run on

the FSC.

FSC may be defined as:

FSC = FN1, FN2, FN3, FN4, . . . FNn ,where FN denotes as a Fog Node.

In the iVFC layer, there are many different FSPs, and FSC is a subset of FSPs

which manages the membership of these FSPs such as their registration to the

iVFC system, execution of the AI modules on top of their frameworks and so on.

This means the FSC will manage the whole network of the FSPs.

AI layer: is used for performing the following three AI modules:

• Predictive analytic module to predict the need for offloading (corresponding

to research question 1 (RQ1)).

• Incentives module for participation (corresponding to research question 2 (RQ2)).

• TNv selection module to determine which target node vehicle to select (corre-

sponding to research question 3 (RQ3)).

77

Chapter 4: Research Methodology and Solution Overview

Once the data is collected, it is processed in these three modules to obtain analyti-

cal insights. Figure 4.3 overviews the proposed iVFC conceptual framework where

all vehicular fog nodes that become part of the iVFC (that is, they complete the

registration process) are known as FNvs. Any node that needs to offload a task is

known as a source node vehicle (SNv) and the node which agrees to receive and

process the offloaded task is known as a target node vehicle (TNv).

Figure 4.2 : The architecture of the proposed iVFC system

4.4.2 Overview of the proposed iVFC framework

The solution steps of the proposed iVFC and its working are as follows:

Step 1: Each interested vehicle downloads the iVFC application (becoming an

78

Chapter 4: Research Methodology and Solution Overview

iVFC client and is identified as an FNv) and completes the registration process. The

iVFC application is given access to the vehicles’ global positioning system (GPS)

coordinates. The following parameters are provided during the registration process:

vehicle’s ID, vehicle’s actual CPU and memory, and the resources that the FNv is

willing to share. Subsequently, the Client ID is generated by the FSP and is unique

across all iVFC clients. The information of the registered FNvs is stored in the FR

of the FSC.

Step 2: Once the registered vehicle becomes an iVFC client, its historical CPU

utilization and memory usage is recorded periodically by the iVFC FSN and stored

and periodically updated in the FR of the FSC. This historical data is used by the

predictive analytic module to predict future CPU utilization and the future memory

usage of each FNv to predict the overloading condition of FNvs to facilitate the

proactive handling of task overloading.

Step 3: The iVFC fog server nodes constantly monitor the iVFC nodes to proac-

tively and intelligently determine when they will be overloaded. When the iVFC fog

server nodes identify that a FNv is about to be overloaded, they contact the vehicle

on the iVFC client and the following information on the requested service is pro-

vided: the ID of the vehicle, service start time, service finish time, and the resources

needed for the task. This information is uploaded through the iVFC system to the

nearest FSN (which is the RSU in our proposed framework) and stored in the FR.

The overloaded FNv is then known as a SNv after this step.

Step 4: The offloading request is handled by the FSN in the incentive module

through the iVFC system to obtain the list of the TNvs that agreed to participate

in the task offloading process. The incentive module works in parallel with the other

modules (predictive analytic module and TNv selection module) to encourage fog

nodes to participate in the task offloading process by offering them a reputation

79

Chapter 4: Research Methodology and Solution Overview

value for participating and sharing their resources to execute other FNVs’ tasks. In

this step, when an offloading request is received, the FSN contacts all the available

FNvs and provides information of the task execution time and the needed resources

and offers them a reputation for sharing their resources.

Step 5: The FNvs which accepted the offered reputation value and agreed to par-

ticipate are known as TNvs and a list of all the TNv is prepared by the incentive

module and sent to the selection module for ranking.

Step 6: The selection of the most suitable TNv for handling the task occurs in

the selection module after receiving the TNvs list. The service provider selection

method is applied to rank the TNvs list based on their current CPU utilization and

memory usage and the top TNvs is ranked from the lowest to the highest workload.

Step 7: From the selected TNv list, the most optimal (can be more than one

and is usually the top of the list) TNv is chosen by the FSN to handle the task.

Subsequently, the chosen TNvs will be ready to receive the agreed task via the FSP.

80

C
h
ap

ter
4:

R
esearch

M
eth

o
d
ology

an
d
S
olu

tion
O
verv

iew

Figure 4.3 : Overview of the iVFC framework

81

Chapter 4: Research Methodology and Solution Overview

4.5 Overview of the solution for research objective 1 (RO1)

RO1 is to develop a proactive-based offloading methodology based on a prior utilization-

based prediction technique to accurately predict the various workload metrics (CPU

utilization and memory usage) of FNvs running in a VFC environment. This means

that the future workload of FNvs can be predicted based on historical observation.

To achieve this objective, we develop a predictive analytic module to predict

the future CPU utilization and memory usage of each FNv based on its prior CPU

utilization and memory usage. This prediction will help the node to have prior

knowledge of when it is going to be overloaded and when it needs to offload its

next task. Due to the dynamic nature of fog nodes in the VFC environment, the

workload of the different FNvs varies with time (time series workload). Therefore,

we propose a framework that can handle the dynamic nature of time series data

efficiently. Based on the predicted workload, each FNv will be able to proactively

predict when it is going to be overloaded in the future. Figure 4.4 shows the workflow

of the solution for research objective 1 (the iVFC-predictive analytic module).

The framework of this objective comprises three phases: (1) workload observation

to identify the workload patterns of each FNv (CPU utilization and memory usage);

(2) workload prediction to predict the future workload of FNvs; and (3) overloading

decision, joining the two prediction models to make an overloading decision. Figure

4.4 shows the working steps of the proposed iVFC-predictive analytic module and

Figure 4.5 shows the three phases of the proposed framework.

Further explanation of the development process of the proposed iVFC-predictive

analytic module is given in detail in chapter 5 of this thesis.

82

Chapter 4: Research Methodology and Solution Overview

Figure 4.4 : Working steps of the proposed iVFC-predictive analytic module

83

Chapter 4: Research Methodology and Solution Overview

Figure 4.5 : Framework of the proposed iVFC-predictive analytic module

84

Chapter 4: Research Methodology and Solution Overview

4.6 Overview of the solution for research objective 2 (RO2)

RO2 is to develop an incentive mechanism that considers a reward to motivate FNvs

to take an incoming task and a penalty for declining to participate. The reason for

using incentive mechanisms is to motivate FNvs to share their idle resources and

improve their profitability and productivity as well as increase the participation

level in the VFC environment. We chose game theory as an incentive mechanism to

develop the incentive framework for the following reasons:

• As task offloading in VFC is considered a multiplayer decision problem in

which the SNvs and the TNvs are competing to maximize their own benefits,

this scenario can be viewed as a game [82].

• When the different node vehicles are competing in a task offloading game,

some of them may act selfishly. This can be prevented using game theory

which provides various efficient tools and mechanisms [82].

• Some nodes may not use system resources efficiently. Such cases can be avoided

using the various mechanisms provided by game theory.

There are two types of game theory: cooperative game theory and non-cooperative

game theory. Due to the selfishness and rationality of the vehicles that want to

increase their outcomes in the VFC environment, the VFC environment is considered

to be a non-cooperative game [82]. Therefore, in our framework, we consider vehicles

as players in the game and we follow the solution concept of the Nash equilibrium

(NE) game theory. Figure 4.6 outlines the working steps of the proposed incentive

module. The development process of the proposed incentive module is given in detail

in chapter 6 of this thesis.

85

Chapter 4: Research Methodology and Solution Overview

Figure 4.6 : Working steps of the proposed iVFC-incentive module

86

Chapter 4: Research Methodology and Solution Overview

4.7 Overview of the solution for the research objective 3

(RO3)

RO3 is to develop an effective mechanism for service provider node selection (TNv

selection) in the VFC environment. To achieve this objective, we develop a TNv se-

lection module using three methods, classical method (multi-criteria decision-making

(MCDM) method), machine learning (ML) method and deep learning (DL) method

to compare the results of the three methods and choose the one that gives the best

accuracy. These methods are used to rank the available TNvs that have agreed to

participate in the task offloading process. TNvs raking is based on their current

workload (the percentage of their current CPU utilization and memory usage) from

lowest to highest (the lower the percentage of the TNv current CPU utilization and

memory usage, the higher the ranking of the node).

Figure 4.7 shows the working steps of the iVFC-TNv selection module and Figure

4.8 shows the proposed framework of the iVFC-TNv selection module. A detailed

explanation of the iVFC-TNv selection module is given in chapter 7.

4.8 Evaluation and validation of the proposed iVFC solution

(RO 4)

our proposed framework is validated by building the iVFC prototype system of the

framework and the approaches developed for objectives (1-3). Subsequently, we

use different simulation platforms to test and validate each of the three research

objectives and we apply different evaluation metrics to evaluate the working of the

developed approaches. The validation process for each of our research objectives is

summarized in the following subsections.

87

Chapter 4: Research Methodology and Solution Overview

Figure 4.7 : Working steps of the proposed iVFC-TNv selection module

4.8.1 The validation steps for the solution to research objective 1 (RO1)

To validate the solution to RO1, we choose the Azure platform to fit the prediction

models on our dataset, train and test the model, and choose the best model based

on the evaluation metrics.

To evaluate and validation the solution to RO1 we implement the following steps:

88

Chapter 4: Research Methodology and Solution Overview

Figure 4.8 : The proposed framework of the iVFC-TNv selection module

Step 1: We build two prediction models on the Azure platform using ML time series

prediction methods to predict CPU utilization and memory usage of the TNvs.

Step 2: We evaluate the two prediction models, CPU utilization prediction model

and memory usage prediction model, based on the Normalized Root Mean Squared

Error (NRMSE) metric. The NRMSE metric is a statistical metric that has become

widely used to evaluate the accuracy of certain predictive models and is expressed

as percentage [83]. Further details on the NRMSE metric are given in chapter 5.

Step 3: Using MATLAB (R2021b), we develop a fuzzy logic model to join the two

prediction models, the CPU utilization prediction model and the memory usage

prediction model that were generated in step one to make the overloading decision.

89

Chapter 4: Research Methodology and Solution Overview

Step 4: We evaluate and validate the fuzzy logic model based on the following

metrics: accuracy, precision and recall. These metrics are calculated based on true

positive (TP), false positive (FP), true negative (TN) and false negative (FN) values

obtained from the prediction data. These values are identified based on a comparison

of the workload prediction (CPU utilization and memory usage) resulting from the

fuzzy logic model with those resulting from the ML prediction models.

Chapter 5 includes further details on the evaluation and validation process for

the RO1.

4.8.2 The validation steps for the solution to research objective 2 (RO2)

To validate the solution to RO2, we develop an incentive module using Stackelberg

game theory. We implement Stackelberg game theory on Google Collaboratory.

The validation of the developed iVFC-incentive module includes the following steps:

Step1: Set up two parallel simulation scenarios as follows:

• Scenario A: Using the proposed incentive mechanism. This scenario uses

the proposed incentive mechanism framework presented to address RO2 to

encourage FNvs to participate in the task offloading process by sharing their

idle resources.

• Scenario B: Without using the proposed incentive mechanism. This scenario

runs without using the proposed incentive mechanism.

Step2: We run the simulation in both scenarios for a pre-defined interval of time.

During this interval of time, there is a consortium node which always asks fog nodes

running on the iVFC system to join and take tasks from the overloaded nodes.

Step3: We measure how many times the join request is accepted (i.e., compute the

level of participation of FNvs in both scenarios) using the following formula:

90

Chapter 4: Research Methodology and Solution Overview

Level of Participation =
Number of times the join request is accepted

Total number of join requests
(4.1)

Chapter 6 includes further details on the evaluation and validation of the solution

to RO2.

4.8.3 The validation steps for the solution to research objective 3 (RO3)

To evaluate and validate the solution to RO3, we develop a TNv selection module

based on three methods: a statistical method, a machine learning method (ML),

and a deep learning method (DL). Then, we evaluate the developed models using

different metrics to choose the best working model for selecting the optimal TNvs.

A) Statistical method: multi-criteria decision-making (MCDM) method

MCDM methods have been widely used in cloud and fog computing systems to

solve the problem of service provider (FSP) selection. There are many effective

MCDM methods that have been used by researchers for FSP selection. We

used two of these: the analytic hierarchy process (AHP) method to calculate

the weights of the criteria of the TNvs and the Technique for Order Preference

by Similarity to Ideal Solution (TOPSIS) method for ranking the different

FNvs based on their criteria. [84].

To evaluate the working of the TNv selection module using the TOPSIS

method, we implement TOPSIS using R (RStudio 2022.02.3+492). To mea-

sure the accuracy of the TOPSIS method in selecting the best TNv, we use

the mean absolute error (MAE) metric, which is the absolute value of the dif-

ference between the forecasted value and the actual value. MAE measures the

accuracy of the continuous variables and gives an indication of how large an

error can be expected from the forecast on average [83]. We calculate MAE

91

Chapter 4: Research Methodology and Solution Overview

using the following formula [83]:

MAE =

∑n
i=1(|yi − xi|)

n
(4.2)

where yi is the predicted value, xi is the actual (observed) value and n is the

total number of data points.

B) Machine learning method (ML)

We use the ML method as a second method to compare the ranking result

with the TOPSIS method ranking. We choose a regression XGBoost (Extreme

Gradient Boosting) method which is a popular and efficient open-source im-

plementation of the gradient boosted trees algorithm to accurately predict the

rank variable based on CPU utilization and memory usage variables of the

TNvs [85].

We implement the XGBoost method on Google Collaboratory to predict the

rank variable of the TNvs based on their CPU utilization and memory usage

criteria. We conduct experiments by varying the number of estimators and

learning rates, and we evaluate the performance of the XGBoost model using

the MAE metric.

C) Deep learning (DL) methods

We implement DL methods as a third method to compare the result with the

TOPSIS and XGBoost methods. We implement DNNs on Google Collabora-

tory to predict the rank variable of the TNvs based on their CPU utilization

and memory usage criteria using different hidden layers and varying number

of learning rates and we evaluate the performance of the DNNs model using

the MAE metric. Chapter 7 provides further details on the evaluation and

validation of the solution to RO3.

92

Chapter 4: Research Methodology and Solution Overview

4.9 Conclusion

This chapter overviewed the solutions proposed to address research objectives 1-4

respectively and discussed the methodological approach used in this research, namely

the design science research approach.

Also, this chapter included the different steps to build the proposed iVFC system

and gave a brief overview of the different modules included in the iVFC system.

These modules are the predictive analytic module (to address research objective

1), the incentive module (to address research objective 2), and the TNv selection

module (to address research objective 3). It also gave an overview of the testing and

validation of the proposed solution (to address research objective 4).

The next chapter discusses how the iVFC-predictive analytic module is developed

to assist FNvs running on the iVFC system to make the overloading decision.

93

94

Chapter 5

A proactive-based task offloading in VFC using

machine learning prediction techniques

5.1 Introduction

This chapter overviews the steps involved in developing a proactive-based framework

for task offloading in vehicular fog computing (VFC), corresponding to research ob-

jective one. The purpose of this framework is to enable the proactive-based handling

of task offloading for the VFC system in which the workload of each fog node vehicle

(FNv) is predicted to monitor and control its overloading condition. Predicting the

workload of FNvs to provide a proactive-based handling of the overloading decision

is carried out by a predictive analytic module in our proposed iVFC framework.

This module is responsible for monitoring the workload of the FNvs running on the

VFC environment and this monitored data is used to continually predict the future

overloading condition of the FNvs.

The design and development phases of the predictive analytic module and the

experiment setup to evaluate and validate the proposed framework are explained in

detail in this chapter. The proposed framework of the predictive analytic module

comprises three phases, which are discussed in detail in this chapter.

This chapter is outlined as follows: section 5.2 explains in detail the different

phases involved in developing the proposed framework of the predictive analytic

module. Section 5.3 describes the different steps conducted to evaluate and validate

the proposed predictive analytic module. Section 5.4 discusses the evaluation results

and section 5.5 concludes this chapter and outlines the work be covered in the next

Chapter 5: A proactive-based task offloading in VFC

chapter.

5.2 The proposed framework of the iVFC-predictive analytic

module

The main purpose of the predictive analytic module is to develop a framework to

accurately predict the various workload metrics (i.e., CPU utilization and memory

usage) of the FNvs running in the VFC environment to make a prior overloading

decision (i.e., proactive-based task offloading), which means that the future workload

of FNvs can be predicted based on historical observation. We considered only CPU

utilization and memory usage parameters to address their impact on the system’s

overall performance due to their significant role in determining the computational

and memory capabilities of the system. These parameters were chosen because they

are crucial factors that often contribute to overloading situations in many computing

environments.

Due to the dynamic nature of FNvs in the VFC environment, the workload of

the different FNvs varies with time (time series workload). Therefore, we propose a

framework that can handle the dynamic nature of time series data efficiently. Based

on the predicted workload, each FNv will be able to proactively predict when it is

going to be overloaded in the future.

Figure 5.1 shows the three phases of our proposed iVFC-predictive analytic mod-

ule framework, which are explained in more detail in the next subsections.

The framework of the iVFC-predictive analytic module comprises three phases.

The first phase is the workload observation phase, which identifies the workload

patterns of each FNv by monitoring its CPU utilization and memory usage. The

second phase is the workload prediction phase, which includes predicting the future

workload of FNvs using their historical data obtained from the workload observation

95

Chapter 5: A proactive-based task offloading in VFC

phase to generate two prediction models: one model to predict the CPU utilization

and the other model to predict the memory usage of FNvs. The third phase is

the overloading decision phase, which involves combining the two prediction models

generated in the workload prediction phase to make an overloading decision.

5.2.1 Workload observation

Due to the dynamic nature of the VFC environment, the workload observation of

different FNvs varies with time. Therefore, the data collected from different FNvs

must be in the form of time series data. Once the vehicle has registered as a VFC

client and starts participating as a fog node in the VFC environment, its CPU

utilization and its memory usage data will be recorded and collected periodically

by the nearest fog server node (FSN) and stored in the fog repository. The FSN

in our proposed framework is a node located at the nearest road side unit to this

FNv. This periodic data will be used by the predictive analytic module to predict

the future workload of this FNv in the next time slot (i.e., short-term prediction).

5.2.2 Workload prediction

In this step, the periodic data (i.e., CPU utilization and memory usage) collected in

the workload observation phase is used to predict the future workload of each FNv.

In this step, two prediction models are created for each FNv using machine learning

(ML) time series prediction methods; one model to predict the CPU utilization and

the other model to predict the memory usage for each FNv based on its historical

recorded workload. The workload prediction is generated on a 15-minute basis,

which means the workload of the FNvs is continually predicted to decide their future

overloading states every 15 minutes.

96

Chapter 5: A proactive-based task offloading in VFC

5.2.3 The overloading decision

In this phase, the output of the two models created in the workload prediction phase

(the CPU utilization prediction model and the memory usage prediction model) are

combined to make the overloading decision. Additional details on the development

of the prediction models as well as the evaluation and validation are explained in

the next section.

5.3 Evaluation of the proposed iVFC-predictive analytic mod-

ule

5.3.1 Dataset

To build the prediction models for our proposed predictive analytic module, a pub-

licly available workload trace, named rnd trace is used. Due to the unavailability of

real vehicle workload datasets, we use a dataset of the observed workload of different

virtual machines (VMs) hosted on the cloud which is collected from a typical data

centre managed by a service provider called Bitbrains which specializes in hosting

and business computation management for enterprises [86] [87]. This dataset com-

prises time series data involving eleven attributes, namely timestamp, CPU cores,

CPU capacity provisioned in MHz, CPU usage in MHz, the percentage of CPU

usage, memory capacity provisioned, memory used, hard disk reading speed, hard

disk writing speed, network received throughput [KB/s] and network transmitted

throughput [KB/s], in frequencies of 5 minutes for an interval of one month. We

modified this dataset to suit our models as follows:

• Some of the attributes have been modified: the timestamp attribute has been

converted from Epoch to datetime and an ID column has been added to be

used as an identifier for each FNv.

97

Chapter 5: A proactive-based task offloading in VFC

Figure 5.1 : The proposed framework of the iVFC-predictive analytic module

98

Chapter 5: A proactive-based task offloading in VFC

• Since our objective is to predict the workload of FNvs, we used only two

columns from the dataseset to train our prediction models, namely the per-

centage of CPU utilization and the memory used. These attributes represent

the workload of the FNvs.

• We use a frequency of 15 minutes instead of 5 minutes as this is the lowest

frequency that can be accepted by the Azure platform to build the prediction

models.

• This dataset is split into two files, the CPU utilization file and the memory

usage file.

• We use VMs as a representation of FNvs in our experiments so we rename the

VMs column to FNvs.

Figure 5.2 shows a snapshot of the dataset that we used to develop our proposed

prediction models. The modified dataset is available at the following GitHub link:

https://github.com/alhamedy/Dataset-used-to-build-the-time-series-p

rediction-models.

5.3.2 The experimental setup and implementation

The platform used to build and train the prediction models

We chose Microsoft Azure as the platform to build the time series prediction models

to predict the CPU utilization and memory usage for each FNv. Azure is a web-

based console that replaces command-line tools with a very flexible graphical user

interface [88]. We chose Azure platform due to its flexibility in accepting the time

series intervals of our dataset and its ability to apply a large number of machine

learning time series prediction algorithms when building the prediction models.

99

https://github.com/alhamedy/Dataset-used-to-build-the-time-series-prediction-models
https://github.com/alhamedy/Dataset-used-to-build-the-time-series-prediction-models

Chapter 5: A proactive-based task offloading in VFC

Figure 5.2 : Snapshot of the dataset used to train the prediction models

100

Chapter 5: A proactive-based task offloading in VFC

Build and train the prediction models

The two files of the dataset (the CPU utilization data file and the memory usage

data file) were exported to the Azure portal on the Azure platform. Then, the two

files were used to build two prediction models, the CPU utilization prediction model

and the memory usage prediction model. To build the prediction models, auto ML

experiments were conducted twice, once to predict the CPU utilization of all FNvs

using the CPU utilization data file and the second to predict the memory usage of

all FNvs using the memory usage data file.

When building the CPU utilization model, the CPU utilization column was cho-

sen as the target column and when building the memory usage model, the memory

usage column was chosen as the target column to be predicted. During each exper-

iment, we choose ML time series prediction as the prediction method to be applied

by Azure to build the prediction models because our dataset varies with time (time

series data). We conducted these experiments three times when building each model

to obtain an accurate prediction using a different number of FNv datasets.

Table 5.1 shows the various Azure Auto ML experiments that were implemented

and Table 5.2 details the parameters used in the experiment evaluation.

As clearly shown in Table 5.1, when we use a dataset of a large number of FNvs

(363 FNvs), the experiment takes longer to execute, at around 6 hours. After 6

hours of training the model with a dataset of 363 FNvs, Azure stops training the

model on the dataset and only 6 ML time series prediction algorithms were applied

in both the CPU utilization prediction experiment and the memory usage prediction

experiment.

Therefore, from the three experiments, we chose to use experiment 2 for the

next step of the workload prediction process as it takes less time to complete the

training and the testing of the models, more ML time series prediction algorithms

101

Chapter 5: A proactive-based task offloading in VFC

were applied when training the model in experiment 2 compared to experiment 3 and

the comparison metric of the best model chosen by Azure (NRMSE, as explained in

the next section) in experiment 2 is better than experiment 1 and experiment 3.

Table 5.1 : ML time series prediction experiments to build and train the prediction

models

Experiment # of FNvs Duration # of ML algorithms
CPU utilization model Memory usage model

Best Model NRMSE Best Model NRMSE

Experiment 1 15 48.37 mins 41 Naive 0.05675 Naive 0.04583

Experiment 2 100 43.67 mins 41 Exponential Smoothing 0.01738 Exponential Smoothing 0.06178

Experiment 3 363 6 hrs 6 Exponential Smoothing 0.274 Exponential Smoothing 0.432

Table 5.2 : The parameters used in the time series prediction experiments

Parameter Definition

of FNvs The number of fog node vehicles in the dataset used in each experiment.

of ML algorithms
The total number of machine learning time series prediction methods applied by

Azure during model training.

Best Model
The best machine learning time series prediction method chosen by Azure after

training the model.

NRMSE

The normalized root mean square error metric which is used to evaluate the

resulting prediction models and select the best performing method in building the

prediction models.

Choosing the best model for workload prediction

During the running of the auto ML experiments, 41 ML time series prediction meth-

ods were applied by Azure to build the workload prediction models on experiments

1 and 2, as shown in Table 5.1. The best model in each experiment is chosen au-

tomatically by Azure according to the NRMSE metric which ranks all models from

lowest to highest (i.e., the lower the NRMSE, the better the model). Further details

102

Chapter 5: A proactive-based task offloading in VFC

about the NRMSE metric are given in section 5.3.3. Figures 5.3 and 5.4 show the

different ML methods applied by Azure in experiment 2.

Figure 5.3 : CPU utilization prediction experiment on Azure portal

Using the chosen model for prediction

After choosing the best CPU utilization prediction model, we downloaded the model

file to my personal device (MacBook Pro 13, version: macOS 13.4) to retrieve the

prediction output for each FNv. The model file is then uploaded to the Jupiter note-

book on the Azure portal to obtain the prediction output. To retrieve the prediction

output, we chose one hour (12:00 – 01:00) for the specific date (01/09/2013) to ob-

103

Chapter 5: A proactive-based task offloading in VFC

Figure 5.4 : Memory usage prediction experiment on Azure portal

tain the prediction output each 15 minutes for CPU utilization then for memory

usage.

The following link is the Python code used on the Jupiter notebook on the Azure

portal to obtain the prediction output from both models, the CPU utilization pre-

diction model and the memory usage prediction model: https://github.com/alh

amedy/Retrieve-prediction-values.

This step resulted to two files containing CPU utilization and memory usage pre-

diction output for the next time slot (the next 15 minutes). Table 5.3 shows a

sample of the prediction values for CPU utilization and memory usage after re-

104

https://github.com/alhamedy/Retrieve-prediction-values
https://github.com/alhamedy/Retrieve-prediction-values

Chapter 5: A proactive-based task offloading in VFC

trieving the values on the Jupiter notebook. The prediction values (CPU uti-

lization and memory usage) of all FNvs that were retrieved from the chosen pre-

diction models using the Jupiter notebook can be found at the following GitHub

link:https://github.com/alhamedy/Predicted-values-dataset.

Table 5.3 : Prediction values for an interval of 15 minutes for CPU utilization and

memory usage of the 100 FNvs

Node-ID Timestamp CPU utilization [%] Memory usage [%]

FNv1 1/9/2013 00:00:00 31.16 0.07

FNv1 1/9/2013 00:00:15 31.16 0.06

FNv1 1/9/2013 00:00:30 31.16 0.01

FNv1 1/9/2013 00:00:45 31.16 0.04

FNv1 1/9/2013 01:00:00 31.16 0.07

FNv2 1/9/2013 00:00:00 30.56 19.46

FNv2 1/9/2013 00:00:15 30.56 19.48

FNv2 1/9/2013 00:00:30 30.56 19.93

FNv2 1/9/2013 00:00:45 30.56 20.14

.

.

.

.

.

.

FNv100 1/9/2013 00:00:15 1.27 0.49

FNv100 1/9/2013 00:00:30 1.27 0.52

FNv100 1/9/2013 00:00:45 1.3 0.68

FNv100 1/9/2013 01:00:00 1.28 0.60

105

 https://github.com/alhamedy/Predicted-values-dataset

Chapter 5: A proactive-based task offloading in VFC

Combining the two prediction models to predict the workload of FNvs

and make the overloading decision

To use the prediction models to predict the workload of a FNv and make the over-

loading decision, the output of the CPU utilization prediction model and the mem-

ory usage prediction model have to be combined. To do so, a fuzzy logic method is

used. Building a fuzzy logic model based on the two time series prediction models

will assist in the accurate prediction of the workload of FNvs. The purpose of us-

ing a fuzzy logic model is to combine the prediction output resulting from training

the CPU utilization and the memory usage prediction models to build one accurate

prediction model that can be used to make the overloading decision for the FNvs.

Fuzzy logic is a computation approach on which the modern computer is based.

Rather than the usual “true or false”, this approach uses “degrees of truth” of the

inputs and produces outputs based on the states of the inputs and the values of

change of these states [89].

The fuzzy logic approach was first introduced by Zedah in the 1960s and this

method has been used in artificial intelligent (AI) systems to imitate human decision

making [89]. This method considers all the available data to solve a problem and

then makes the best decision for the given input.

As shown in Figure 5.5, we use the Mamdani method to design and implement our

fuzzy inference systems. Mamandi is a well-known method introduced by Ebrahim

Mamdani in 1975 and has become one of the most popular approaches in fuzzy logic

control systems [90].

In the Mamdani method, we choose methods for the ”and” operator, ”or” operator,

implication, aggregation, and defuzzification as following:

• ”And” operator: we used the minimum ’min’ operator to capture the least

106

Chapter 5: A proactive-based task offloading in VFC

dominant input, where the minimum value among the fuzzy sets or member-

ship values is selected.

• ”Or” operator: we used the maximum operator ’max’ to capture the most

dominant input where the maximum value among the fuzzy sets or membership

values is selected.

• Implication: we used the minimum operator ’min’ to capture the minimum of

the firing strengths of the antecedent and consequent parts of the rules.

• Aggregation: we used the maximum operator ’max’ to select the maximum

value among the fuzzy outputs.

• Defuzzification: we used the ’centroid’ method to compute the centre of gravity

of the fuzzy output.

We employed fuzzy rules to model the sources from both prediction models.

The rule base consists of linguistic variables and membership functions which

determine how the controller will perform actions based on the if-then rules.

To produce a fuzzy set output, an inference mechanism has to be applied to

the set of if-then rules. In this process, the input fuzzy set is matched with

the premise of the rules, the rules are activated to determine which conclusion

is deduced by each rule and the activated conclusions are combined using the

fuzzy set union to generate the fuzzy set output. We used the CPU utilization

and memory usage prediction values as the input fuzzy set, as discussed below

and shown in Figure 5.5.

• Fuzzify Input and Output Parameters: a fuzzifier is used to map the data

values to the fuzzy sets and then a degree of membership is assigned for each

fuzzy set. CPU utilization and memory usage are the input parameters and

107

Chapter 5: A proactive-based task offloading in VFC

Figure 5.5 : Fuzzy logic model for predicting the workload of FNvs

the overloading decision is the output, each of which is fuzzified to four fuzzy

sets.

• Fuzzify Node Workload Input: The fuzzy sets for the CPU utilization and

memory usage input variables have the following names: Low, Medium, High

and Very High. Hence, CPU utilization is fuzzified between Low= 0-15 %,

Medium= 15-30%, High= 30-60%, and Very High ≥ 60%. Memory usage is

fuzzified between Low= 0-15 %, Medium= 15-30%, High =30-60%, and Very

High ≥ 60%, as shown in Figures 5.6 and 5.7.

• Fuzzify Offloading Decision Output: Fuzzy sets for the overloading output

108

Chapter 5: A proactive-based task offloading in VFC

variables have the following names: Overloaded, Prepare-to-overload, and Not-

overloaded. The offloading decision is fuzzified between Not-overloading= 0-

15 %, Prepare-to-overload= 15-49.9 %, and Overloaded= 50-95%, as shown in

Figure 5.8.

• Fuzzy Rules and Fuzzy Inference: we propose eight fuzzy rules to be used

by the fuzzy inference to map the fuzzy input sets: Low, Medium, High, Very

High (V-high), and the fuzzy output sets: Not-overloaded, Prepare-to-overload

and Overloaded, as shown in Figure 5.9

– Rule 1: IF (CPU utilization is low) and (memory usage is low) THEN

the overloading decision is: not-overloaded.

– Rule 2: IF (CPU utilization is low) and (memory usage is medium) THEN

the offloading decision is: not-overloaded.

– Rule 3: IF (CPU utilization is medium) and (memory usage is low) THEN

the offloading decision is: not-overloaded.

– Rule 4: IF (CPU utilization is medium) and (memory usage is medium)

THEN the offloading decision is: not-overloaded.

– Rule 5: IF (CPU utilization is high) and (memory usage is high) THEN

the offloading decision is: prepare-to-overload.

– Rule 6: IF (CPU utilization is high) or (memory usage is high) THEN

the offloading decision is: prepare-to-overload.

– Rule 7: IF (CPU utilization is V-high) or (memory usage is V-high)

THEN the offloading-decision is: overloaded.

– Rule 8: IF (CPU utilization is V-high) and (memory usage is V-high)

THEN the offloading decision is: overloaded.

The fuzzy inference process evaluates all eight fuzzy rules (RULE 1 to RULE 8) and

109

Chapter 5: A proactive-based task offloading in VFC

finds their antecedent part firing strength and then applies this firing strength to the

consequent part of the rules. Finally, the weighted average defuzzification method

is applied to obtain a single offloading decision output.

Figure 5.6 : The fuzzy sets for the CPU utilization input variables

110

Chapter 5: A proactive-based task offloading in VFC

Figure 5.7 : The fuzzy sets for the memory usage input variables

After building a fuzzy logic prediction model, the fuzzy logic model file must be

saved in the same folder along with the prediction output files retrieved from the

prediction models (the CPU utilization and the memory usage prediction models).

Then, we used Version (R2021b) of MATLAB to obtain the prediction output using

the developed fuzzy logic model. The MATLAB code used to obtain the prediction

output from the developed fuzzy logic model can be accessed via the following

GitHub link: https://github.com/alhamedy/MATLAB-code-for-fuzzy-output.

After obtaining the prediction output from the developed fuzzy logic model,

we compare the prediction output obtained from the time series prediction models

(the CPU utilization and the memory usage prediction models) detailed in section

5.3.2 with the fuzzy logic prediction output, as shown in Figure 5.14, to obtain

the confusion matrix table. The confusion matrix is a square matrix in which the

111

https://github.com/alhamedy/MATLAB-code-for-fuzzy-output

Chapter 5: A proactive-based task offloading in VFC

Figure 5.8 : The fuzzy sets for the overloading decision input variables

rows represent the actual values and the columns represent the predicted values [91].

The confusion matrix reports the number of true positive (TP), false positive (FP),

true negative (TN) and false negative (FN) parameters. The goal is to evaluate the

performance of the fuzzy logic model in predicting the overloading status of FNvs

based on their workload (i.e., their CPU utilization and their memory usage).

Based on the prediction output obtained from the time series prediction mod-

els for the CPU utilization and for the memory usage, we manually recorded the

overloading status of each FNv based on its predicted CPU utilization and memory

usage as follows:

• If the CPU utilization is low (from 0 to < 60%) AND the memory usage is

low (from 0 to < 60%), then the decision is that the node is not overloaded.

• If the CPU utilization is high (≥ 60%) AND the memory usage is high (≥

112

Chapter 5: A proactive-based task offloading in VFC

Figure 5.9 : The fuzzy logic model rules to obtain the offloading decision outputs

60%), the decision is that the node is overloaded.

• If the CPU utilization is high (≥ 60%) OR the memory usage is high (≥

60%), the decision is that the node is overloaded.

Which are the same values assumed to fuzzify the node workload input when building

the fuzzy logic model. Then we compare the manually recorded predictions with

predictions obtained from the fuzzy logic model to calculate the values of the true

positive (TP), false positive (FP), true negative (TN) and false negative (FN) as

follows:

• A TP is the number of outcomes where the model correctly predicts the CPU

utilization and the memory usage of the FNv (i.e., correctly predicts that the

node is overloaded).

113

Chapter 5: A proactive-based task offloading in VFC

• A TN is the number of outcomes where the model correctly predicts the neg-

ative CPU utilization and memory usage of the FNv (i.e., correctly predicts

that the node is not overloaded).

• A FP is the number of outcomes where the model incorrectly predicts the CPU

utilization and the memory usage of the FNv (i.e., incorrectly predicting the

nodes as being overloaded).

• A FN is the number of outcomes where the model incorrectly predicts the

negative CPU utilization and memory usage of the FNv (i.e., incorrectly pre-

dicting the nodes as not overloaded).

Then we use the recorded TP, TN, FP and FN values to evaluate the performance of

the developed fuzzy logic model in predicting the overloading status of FNvs based

on their workload as shown in the next section.

5.3.3 Evaluation metrics

To evaluate the two prediction models generated from the proposed predictive ana-

lytic module, we use the following metrics:

Normalized root mean square error (NRMSE) metric

NRMSE is calculated by taking the square root of the average squared difference

between the predicted and the actual values, dividing it by the range of the actual

values, and multiplying the result by 100 [83].

NRMSE is calculated using the following formula:

NRMSE =

∑
(Si −Oi)

2∑
O2

i

(5.1)

where Oi are the observed (i.e., actual) values and Si are the predicted values. The

closer the NRMSE value is to zero, the more accurate the model.

114

Chapter 5: A proactive-based task offloading in VFC

Predicted vs true

The predicted vs. true chart illustrates the relation between the target feature

(actual values) and the predictions made by the model [88]. On the x-axis, the true

values are categorized into bins. A plot with error bars shows the average predicted

value for each bin to detect any bias in the model’s predictions. Shaded areas

represent the variance of predictions around the average, and the line represents the

overall average prediction. The model tends to make accurate predictions for the

true value that commonly occurs in the dataset. Additionally, the lower variance

(or spread) of these predictions is indicating a higher level of consistency. In regions

with fewer true values, the distance between the trend line and the ideal y = x line

is a good indicator of the model performance on outliers [88]. An outlier is a point

of data that deviates significantly from the overall pattern or distribution of the

dataset.

Residuals chart

The residuals chart is a histogram of the prediction errors (residuals) generated

for the prediction experiments. These residuals are obtained by subtracting the

predicted values from the true values for each sample [88]. To validate the fuzzy

logic model, we used the following metrics:

1. Accuracy is calculated using the following formula:

Accuray =
TN + TP

total number of prediction values
(5.2)

2. Precision is the proportion of instances that correctly predict the node as an

overloaded node out of all the nodes that are predicted as overloaded nodes.

Precision is calculated using the following formula:

Precision =
TP

(TP + FP)
(5.3)

115

Chapter 5: A proactive-based task offloading in VFC

3. Recall is the proportion of instances that correctly predict the node as not

an overloaded node out of all the nodes that are predicted as not overloaded

nodes. Recall is calculated using the following formula:

Recall =
TP

(TP + FN)
(5.4)

These metrics are calculated based on the TP, FP, TN and FN values obtained from

the prediction data. These values are obtained based on the comparison that was

reported in section 5.3.2, as shown in Figure 5.14.

5.4 Results and discussion

Table 5.4 shows the top 10 ML time series prediction methods applied by Azure

to build the prediction models for the CPU utilization and the memory usage that

we reported in section 5.3.2 in relation to experiment 2, ranked according to the

NRMSE metric where the best prediction model for CPU utilization and memory

usage is chosen based on the NRMSE metrics in which the closer the NRMSE value

is to zero, the more accurate the model.

Table 5.4 shows that the exponential smoothing algorithm has the lowest NRMSE

for both models, hence we choose it for the prediction for both experiments (CPU

utilization and memory usage prediction). Figures 5.10, 5.11, 5.12 and 5.13 show

the metric charts of the best model (exponential smoothing) for both the CPU

utilization and the memory usage models.

Based on the residuals histogram shown in Figures 5.11 and 5.13, the CPU uti-

lization prediction model and the memory usage prediction model are considered

good models as both have a residuals distribution that peaks at zero with few resid-

uals at the extremes.

By analysing the trend line’s distance from the ideal line in the outlier regions

of the predicted vs. true chart presented in Figures 5.10 and 5.12, we can see that

116

Chapter 5: A proactive-based task offloading in VFC

Table 5.4 : Comparison of the top-10 ML algorithms applied on experiment 2

CPU utilization prediction experiment Memory usage prediction experiment

Algorithm name NRMSE Algorithm name NRMSE

ExponentialSmoothing 0.01738 ExponentialSmoothing 0.06178

AutoArima 0.01917 VotingEnsemble 0.06323

SeasonalAverage 0.02053 AutoArima 0.06412

SeasonalNaive 0.02245 StandardScalerWrapper, XGBoostRegressor 0.06463

Naive 0.02286 ProphetModel 0.06820

ProphetModel 0.02720 SeasonalAverage 0.07217

VotingEnsemble 0.04090 StandardScalerWrapper, LightGBM 0.08112

StandardScalerWrapper, XGBoostRegressor 0.05958 SeasonalNaive 0.08440

Average 0.07056 Naive 0.08730

StandardScalerWrapper, LightGBM 0.013184 Average 0.09234

the trend line almost aligns perfectly with the diagonal line y = x, which means the

model’s predictions almost match the exact true values.

Table 5.5 and Figure 5.14 show the accuracy, precision and recall calculations of

the fuzzy logic model that was detailed in section 5.3.2. As can be seen, the fuzzy

logic model achieves excellent accuracy (94.4%) which indicates that the overall

performance of the model is good and the model can be used to predict the future

workload of vehicular fog nodes.

The precision of the model is 93%, which means that of all the predictions where

the model classifies a node as overloaded, 93% are actually true. This is a good

result, as it indicates that the model is able to correctly identify an overloaded node

with a high degree of confidence.

The recall of the model is 62%, which means that the model only correctly pre-

dicted 62% of nodes as not being overloaded. This low score may be due to difficulty

in correctly predicting the workload of FNvs that belong to the not overloaded FNv

category. This could be due to a range of factors, such as a lack of sufficient training

117

Chapter 5: A proactive-based task offloading in VFC

data or the need to pre-process data.

Figure 5.10 : Predicted vs. true for the exponential smoothing algorithm for CPU

utilization prediction

Table 5.5 : Calculations of the evaluation metrics of the fuzzy logic model

Total prediction values TN TP FN FP

500 432 40 25 3

Accuracy 432+40/500= 94.4%

Precision 40/(40+3) = 40/43 = 0.93 (93%)

Recall 40/(40+25) = 0.62 (62%)

118

Chapter 5: A proactive-based task offloading in VFC

Figure 5.11 : Residuals histogram for the exponential smoothing algorithm for

CPU utilization prediction

Figure 5.12 : Predicted vs. true for the exponential smoothing algorithm for

memory usage prediction

119

Chapter 5: A proactive-based task offloading in VFC

Figure 5.13 : Residuals histogram for the exponential smoothing model for mem-

ory usage prediction

Figure 5.14 : Snapshot of the calculations of the accuracy of the fuzzy logic model

using Excel

120

Chapter 5: A proactive-based task offloading in VFC

5.5 Conclusion

This chapter provides details on the two time-series prediction models that were

built to predict the future CPU utilization and memory usage of FNv using ML

time series prediction algorithms. The two models are combined using the fuzzy

logic model to predict the future workload of the participating FNvs to help those

nodes have prior knowledge of when they are going to be overloaded and when they

need to offload their next task. Our fuzzy logic model achieves an accuracy of 96%,

indicating that the model can be used for future workload prediction.

In the next chapter, the prediction output of FNvs obtained from the prediction

models detailed in this chapter are used as input data to develop an incentive module,

which is detailed in the next chapter.

The next chapter details the development of an incentive mechanism to encourage

fog nodes to participate in the VFC system by sharing their resources to help other

resource-constrained fog nodes. The incentive mechanism includes a reward for

participation and a penalty for declining to participate. This mechanism helps to

increase the number of participating FNvs in the VFC environment and guarantees

the availability of sufficient fog nodes at the time of task offloading with enough

resources to process the offloaded task.

121

122

Chapter 6

An incentive-based framework for task offloading

in VFC

6.1 Introduction

Ensuring the availability of a sufficient number of target node vehicles (TNvs) at

the time of task offloading is important to ensure the successful execution of the

task and to provide a satisfactory level of quality of service (QoS).

Therefore, this chapter details the development of an incentive module to en-

courage fog node vehicles (FNvs) to participate in the task offloading process. The

purpose of the incentive module is to increase the level of participation of FNvs in

the task offloading process. This is to ensure the availability of a sufficient number

of TNvs that have computation resources and are ready to share their idle resources

to execute another vehicle’s task

This chapter is outlined as follows: section 6.2 details the proposed iVFC-

incentive module. Section 6.3 includes the mathematical formulation of the proposed

iVFC-incentive module. Section 6.4 demonstrates the evaluation and validation of

the proposed iVFC-incentive module. Section 6.5 discusses the experiments results

and section 6.6 concludes this chapter and outlines the work be covered in the next

chapter.

6.2 The proposed framework of the iVFC-incentive module

When an overloaded source node vehicle (SNv) decides to offload its task, it sends

the offloading request to the nearest fog server node (FSN) through the iVFC system.

Chapter 6: An incentive-based framework for task offloading in VFC

The request contains information related to the task (such as task type, service start

time, service end time and needed resources to execute the task). The offloaded

task is a specific unit of computation or processing that needs to be performed by

a FNv in the iVFC system. This task can be any kind of computation, such as

data processing, data analysis, or data storage. The FSN receives the offloading

request from the overloaded SNv through the iVFC system, and the following steps

are implemented by the corresponding FSN in the incentive module to encourage

FNvs that are running on the iVFC system at the time of the offloading request to

participate in the task offloading process:

Step 1: The FSN checks the request received from the overloading SNv to determine

the computation resources (i.e., the number of the TNvs) needed to process the task

based on the information of the task provided in the request.

Step 2: The FSN sets the optimal number of the TNvs needed and determines the

range of the reputation value (rewards and penalties) to be offered to the FNvs to

encourage them to participate. The offered reputation value is in a form of a reward

and penalty formed within a predefined range. We assumed that the optimal number

of TNvs determined by the FSN will be more than the actual number of TNvs needed

to process the task to guarantee the availability of enough computation resources to

process the task.

Step 3: The FSN contacts the FNvs that are available in the system at the time of

the offloading request through the iVFC system and offers them the determined rep-

utation (a positive reputation as a reward for agreeing to participate and a negative

reputation or zero as a penalty for declining to participate).

Step 4: The FNv checks the offered reputation and calculates its payoff (its new

reputation using the offered reputation reward).

Step 5: If the new reputation is greater than or equal to its old reputation, the

123

Chapter 6: An incentive-based framework for task offloading in VFC

FNv agrees with the offered reputation and responds to the FSN request with an

approval throughout the iVFC system. A FNv that agrees to participate is known

as a TNv after this step. Otherwise, the FNv rejects the participation request and

receives the offered penalty.

Step 6: The FSN continues incentivising the FNvs to participate by offering them

a different combination of rewards and penalties within the predefined ranges each

time until it reaches the optimal number of participating TNvs needed to process

the offloaded task.

Step 7: When the FSN reaches the required resources, it prepares a list of all the

TNvs that agree to participate and forwards this list to the selection module in

preparation for the ranking process.

Figure 6.1 shows the working steps of the proposed iVFC-incentive module. To

develop our proposed incentive module, we choose game theory as the incentive

mechanism to be used in our framework. There are two types of game theory: co-

operative game theory and non-cooperative game theory [82]. Due to the selfishness

and rationality of the vehicles that intend to increase their outcomes in the VFC

environment, the VFC environment is considered to be a non-cooperative game.

Therefore, in our framework, we consider vehicles as players in the game and we

follow the solution concept of the Stackelberg Nash equilibrium game theory. The

next section presents the mathematical formulation of the proposed incentive mod-

ule using Stackelberg game theory.

124

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.1 : Working steps of the proposed iVFC-incentive module

125

Chapter 6: An incentive-based framework for task offloading in VFC

6.3 Mathematical formulation of the solution for the pro-

posed iVFC-incentive module using Stackelberg game

theory

To formulate the mathematical model for the proposed Stackelberg game-based

incentive module, we need to define the following:

1. Decision Variables:

a) Number of participating TNvs: denoted as ni, where n is the number of

participants needed to execute task i and can range from 0 to the total

number of needed TNvs.

b) The offered reputation value: denoted as r for reward and p for penalty,

where r is a positive value and p can be 0 or negative.

2. Objective function:

a) Leader (FSN): The objective of the leader is to minimize the total cost

of the task offloading process, which includes the reputation rewards and

penalties offered to the participating TNvs. The leader aims to set the

reputation value in a way that maximizes the number of participating

TNvs.

b) Followers (FNvs): The objective of the followers is to maximize their own

reputation value. They will decide to participate if the offered reputation

value will increase their current reputation value or reject otherwise.

3. Constraints:

a) The number of participating TNvs cannot exceed the total number of

FNvs available in the system at the time of task offloading.

126

Chapter 6: An incentive-based framework for task offloading in VFC

b) The reputation value offered by the leader as a reward cannot be negative,

as it is a reward for participation.

c) The reputation value received by the participating TNv cannot exceed a

maximum value, denoted as r max.

d) The reputation value offered by the leader as a penalty for rejection is a

negative value or 0.

With these definitions, we write the mathematical formulation for the Stackelberg

game as follows:

1. Leader’s decision:

a) The leader (FSN) decides on the reputation value to offer to the par-

ticipating TNvs as following: r for the offered reward, p for the offered

penalty.

b) The leader aims to minimize the total cost of the task offloading process,

which can be expressed as follows:

• Cost = n * r, where n is the number of the required participating

TNvs and r is the reputation value offered by the leader.

• The leader aims to minimize the cost by maximizing the number of

participating TNvs.

• The leader’s decision can be expressed as follows:

• min n*r

• s.t. 0 < n ≤ total number of FNvs

• 1 < r < 6

• r ≤ r max

• - 1 ≤ p ≤ 0

127

Chapter 6: An incentive-based framework for task offloading in VFC

2. The Follower’s decision:

a) Each follower decides to participate or not based on the offered reputation

value and their current reputation value. Each follower calculates its new

reputation score based on its old reputation score and the current offered

reward using the following formula:

new score = min(old score ∗ 0.8 + reward ∗ 0.2, 6) (6.1)

,where the new score does not exceed 6.

To calculate the new reputation score, we use one common approach,

which is using a weighted average based on the relative importance of

the old and new reputation score [92]. We assign weights for the old

and new reputation scores, which can be subjective and depends on the

specific system. We assume we assign a weight of 0.8 to the old reputation

score and a weight of 0.2 to the new reputation score.

b) The follower’s decision can be expressed as follows:

• If the new reputation value ≥ current reputation value, then partic-

ipate.

• Otherwise, reject.

3. Equilibrium:

a) The equilibrium of the Stackelberg game can be found by solving the

leader’s decision problem and the follower’s decision problem simultane-

ously.

b) The equilibrium is reached when the leader’s decision and the follower’s

decisions are mutually consistent.

c) In other words, the leader’s decision results in the maximum number of

participating TNvs, and each participating TNv has accepted the offered

128

Chapter 6: An incentive-based framework for task offloading in VFC

reputation value. The Nash equilibrium can be expressed as (r, p) where

r is the optimal reward and p is the optimal penalty offered by the FSN

and gives the optimal number of TNvs.

6.4 Evaluation of the proposed iVFC-incentive module

To evaluate and validate the proposed framework of the incentive module, we im-

plement two scenarios in Google Collaboratory [93]; one scenario using the proposed

Stackelberg game-based incentive mechanism to incentivise FNvs to participate, and

the other scenario without using the proposed incentive mechanism. We run both

scenarios and calculate the level of participation in each scenario for comparison.

The following sections explain the different steps involved in the experimental setups

for both scenarios and the evaluation of the two scenarios to validate the working

of the proposed iVFC-incentive module.

6.4.1 Dataset

The incentive module in this chapter relies on the reputation values of FNvs to

determine their decision to accept or reject the offered reward. We assigned a random

reputation value to each FNv ranges from 0 to 6, with 6 representing the highest

reputation and 0 the lowest. To incorporate this information into the dataset, an

additional column is added to include the reputation value for each FNv. This

dataset is derived from the workload prediction data of the 100 FNvs generated by

the predictive analytic module discussed in Chapter 5.

6.4.2 The selected implementation platform

We implement our experiments on Google Collaboratory. Google Collaboratory is a

cloud-based Jupyter notebook environment provided by Google. It allows users to

write and execute Python code directly in their web browsers without the need for

129

Chapter 6: An incentive-based framework for task offloading in VFC

local installations. We chose Google Collaboratory to implement our experiments

due to its ease of use and accessibility. Google Collaboratory provides a free GPU

or TPU (tensor processing unit) runtime, which can significantly speed up compu-

tations for machine learning tasks [94]. It also provides an interactive and dynamic

environment for executing code and documenting our experiment steps. The seam-

less integration of Google Collaboratory with Google Drive allows our notebooks and

datasets to be stored and accessed, which simplifies data management and helps to

back up and access our work from anywhere [94].

6.4.3 The experimental setup and implementation

In Google Collaboratory, we implemented two simulation scenarios. In both scenar-

ios, we use ‘import pandas as pd’ to imports the pandas library and assign it the

name pd. Pandas is a powerful library in Python used for data manipulation and

analysis [94]. we also use the ‘random’ module from the Python standard library

to randomly generate a range of numbers and choose random elements from these

ranges.

The first scenario: This scenario uses the proposed incentive mechanism to

motivate the FNvs to participate. We implement this scenario using Stackelberg

game theory where there is a leader that interacts with a group of followers.

We implement this scenario as follows:

• The leader is the FSN that receives the offloading request, and the followers

are the FNvs that are registered in the iVFC system and are available at the

time of the offloading request.

• The leader offers a certain reputation for the FNvs, and the followers have

their own reputation scores. The goal is to find the optimal combination of

reward and penalty values that maximize the number of followers that accept

130

Chapter 6: An incentive-based framework for task offloading in VFC

the leader’s offer.

• We assume that the number of the FNvs available at the time of the offloading

request are m and the number of TNvs needed to execute the offloaded task

i are ni, where n can be set as required based on the computation resources

needed for processing the offloaded task.

• We assume that the leader offers a reputation value in the range (1.0, 6.0) as

a reward for the FNv that agrees to participate in the task execution process.

We also assume that the leader offers a reputation value in the range (-1.0,

0.0) as a penalty for the FNv that declines to participate.

• We define the desired number of followers to execute the task as the optimal

participants, where the optimal participants = ni.

• We define the maximum number of iterations the model will run as 100 times.

The code initializes the number of participants to 0 and creates empty lists

to store the results of rewards, penalties, number of accepts, and behaviours

(i.e., the behaviours are the reactions of the FNvs in response to the offered

reputation, behaviours are: accept or reject).

• A loop is set up to iterate max iterations times or until the optimal number

of participants is reached. Inside the loop, a new reward and penalty score for

the leader are randomly generated within the ranges specified in the fourth

step.

• The behaviour of each follower is determined based on their current reputation

score and the offered reward/penalty values. The behaviour is stored in the

behaviours list, and the updated reputation scores are stored in the new scores

list.

131

Chapter 6: An incentive-based framework for task offloading in VFC

• After the loop, the results (reward, penalty, and number of accepts) for each

iteration are appended to their respective lists (rewards, penalties, nu accepts).

• If the optimal number of participants is reached (i.e., the number of accepts is

greater than or equal to optimal participants) or the final iteration is reached,

the loop breaks and the optimal combination of reward and penalty that gave

the optimal number of TNvs is printed.

In summary, the code runs a simulation to find the optimal reward and penalty

values that maximize the number of followers accepting the leader’s offer.

The code of the incentive-based scenario using Stackelberg game can be accessed

using the following link: https://github.com/alhamedy/Stackelberg-game-bas

ed-incentive-scenario.

Algorithm 6.1 shows the logical steps of the simulation for the first scenario using

Stackelberg game theory.

The second scenario: This scenario runs without using the proposed incentive

mechanism. In Google Collaboratory, we implement another scenario without using

rewards and penalties to incentivize the FNvs to participate. Instead, the followers’

acceptance is solely based on their reputation score, where a FNv with a score of

4-6 represents acceptance, and a FNv with a score of less than 4 and greater than 0

represents rejection. The followers with different reputation scores make decisions

(accept or reject) based on their scores. The goal is to find the optimal number of

participants by iterating until the desired number is reached or a maximum number

of iterations is reached. Depending on the old score, the behaviour of the FNvs is

determined as follows:

• If 4 ≤ old score ≤ 6, the behaviour is set to ”accept”.

• If 0 ≤ old score < 4, the behaviour is set to ”reject”.

132

https://github.com/alhamedy/Stackelberg-game-based-incentive-scenario
https://github.com/alhamedy/Stackelberg-game-based-incentive-scenario

Chapter 6: An incentive-based framework for task offloading in VFC

Algorithm 6.1 Simulation scenario using Stackelberg game theory-based incentive

mechanism

Require: number of FNvs: m, minimum reputation:0, maximum reputation:6,

reward range:(1.0, 6.0), penalty range:(−1.0, 0.0), optimal participants:ni,

iterations:100

Ensure: Optimal participants, Nash equilibrium (Reward, Penalty)

1: Initialize num participants, rewards, penalties, num accepts, behaviours

2: for i in range(max iterations) do

3: reward = random.uniform(*reward range)

4: penalty = random.uniform(*penalty range)

5: end for

6: reputation scores = [0, 1, 5, ..., m]

7: for j in range(num participants) do

8: old score = reputation scores[j]

9: new score = min(old score * 0.8 + reward * 0.2, 6)

10: new scores.append(new score)

11: if new score ≥ old score then

12: behaviour is ”accept”

13: else

14: behaviour is ”reject”

15: end if

16: end for

17: num accept = behaviours.count(”accept”)

18: rewards.append(reward)

19: penalties.append(penalty)

20: num accepts.append(num accept)

21: if num accept ≥ optimal participants then

22: num participants = num accept

133

Chapter 6: An incentive-based framework for task offloading in VFC

Simulation scenario using Stackelberg game theory-based incentive mechanism (con-

tinued)

23: print(”Reward =”, reward, ”and Penalty =”, penalty, ”is the optimal”)

24: break

25: else if num participants < num accept then

26: num participants = num accept

27: end if

28: print(”Optimal participants:”, num participants)

29: for i in range(len(num accepts)) do

30: if num accepts[i] == num participants then

31: print(”Reward =”, ”:.2f”.format(rewards[i]), ”and Penalty =”,

”:.2f”.format(penalties[i]))

32: end if

33: end for

We assume the number of available FNvs at the time of the offloading request

are m and the number of TNvs needed to execute the offloaded task i are ni, where

n can be set as required. We define the desired number of followers to execute the

task as the optimal-participants. We define the maximum number of iterations the

model will run as 100 times.

In summary, the code runs a simulation to find the optimal number of followers

accepting to participate.

The code of the non-incentive scenario can be accessed using the following link:

https://github.com/alhamedy/non-incentive-scenario.

Algorithm 6.2 shows the logical steps of the simulation for the second scenario

without using the incentive mechanism.

134

https://github.com/alhamedy/non-incentive-scenario

Chapter 6: An incentive-based framework for task offloading in VFC

Algorithm 6.2 Simulation scenario without using the proposed incentive mecha-

nism

Require: number of FNvs:m, reputation scores :r = [0, 1, 2, . . . , rm], optimal

participants:n, iterations: 100

Ensure: The optimal number of participants n

1: Initialize num participants: 0, num accepts: empty list, behaviours: empty list

2: for i in range(max iterations) do

3: behaviours = []

4: for j in range(num participants) do

5: old score = reputation scores[j]

6: if old score ≥ 4 then

7: behaviour is ”accept”

8: else

9: behaviour is ”reject”

10: end if

11: behaviours.append(behaviour)

12: end for

13: num accept = behaviours.count(”accept”)

14: num accepts.append(num accept)

15: if num accept ≥ optimal participants then

16: num participants = num accept

17: break

18: else if num participants < num accept then

19: num participants = num accept

20: end if

21: end for

22: print(”Optimal participants: num participants”)

135

Chapter 6: An incentive-based framework for task offloading in VFC

6.4.4 Evaluation metrics

To evaluate the working of the proposed Stackelberg game-based incentive module,

we implement the following steps:

Step 1: We calculate the level of participation in the first scenario that applies

the proposed incentive module to encourage FNvs to participate and share their

resources to execute the offloaded task. We use the following formula to calculate

the level of participation.

Level of Participation =
Number of times the join request is accepted

Total number of join requests
(6.2)

Step 2: We calculate the level of participation in the second scenario that does not

apply any incentive mechanism to encourage the FNvs to participate using Formula

6.2.

Step 3: We compare the level of participation in both scenarios to evaluate the

effectiveness of the proposed Stackelberg game-based incentive module.

6.5 Results and discussion

Table 6.1 summarises the different experiments of the two scenarios that were im-

plemented on Google Collaboratory, the incentive-based scenario using Stackelberg

game theory and the non-incentive scenario. We attempted each scenario three

times using a different number of m variables (FNvs) and n variables (TNvs) to

calculate the level of participation in each scenario using Formula 6.2.

Additionally, Nash equilibrium values are provided for each attempt, indicating

the optimal combination of reward and penalty that gives the optimal number of

participants.

In the incentive-based scenario, we employed the proposed Stackelberg game-

based incentive mechanism. This mechanism aims to encourage FNvs to participate

136

Chapter 6: An incentive-based framework for task offloading in VFC

Table 6.1 : Comparison of Experiments: Stackelberg Game theory-based incentive

vs. Non-incentive Scenario

Scenario 1: Stackelberg game-based incentive Scenario 2: non-incentive mechanism

Experiment attempts Attempt 1 Attempt 2 Attempt 3 Attempt 1 Attempt 2 Attempt 3

The number of available FNvs (m) 10 15 20 10 15 20

The optimal number of needed TNvs (n) 8 13 17 8 13 17

Reward range (1, 6) (1, 6) (1, 6) NA NA NA

Penalty range (-0.1, 0) (-0.1, 0) (-0.1, 0) NA NA NA

The number of iterations to run the model 100 100 100 100 100 100

Iteration when the optimal number of needed TNvs is reached TNvs 3rd 6th 4th 100th 100th 100th

The number of FNvs that agree to participate 8 13 17 3 7 6

The number of the FNvs that decline to participate 2 2 3 7 8 14

Nash equilibrium (optimal reward, optimal penalty) (2.92, -0.95) (4.10, -0.74) (4.92, -0.55) NA NA NA

Level of participation 100% 100% 100% 37.50 % 53.85% 58.82%

in the network by offering them rewards and penalties.

Initially, in the first attempt, we assumed that there are 10 available FNvs at

the time of task offloading with a requirement of 8 TNvs for task processing. Upon

running the code, random combinations of reward and penalty, within the prede-

termined range of reward (1 to 6) and penalty (-0.1 to 0), were generated in each

iteration and the number of participants was calculated using these combinations

for the purpose of reaching the optimal number of participants. We obtained the

optimal number of participants in the third iteration with reward =2.92 and penalty

= -0.95, as shown in Figure 6.2 and Figure 6.3. From these figures, it is clear that

increasing the reward consistently leads to an increase in the number of participants.

However, increasing the penalty also has an impact on participation, causing a re-

duction in the optimal number of participants. In the first attempt, as shown in

Figure 6.2, the reward decreased while the penalty increased in the first iteration,

which caused in a reduction in the number of participants. Then, in the second it-

eration, when the penalty decreased, the reward increased, which caused to increase

the number of participants. The number of participants continued to increase until

137

Chapter 6: An incentive-based framework for task offloading in VFC

reaching the optimal participants at the beginning of the third iteration.

Figure 6.2 : Effect of using the proposed Stackelberg game-based incentive mech-

anism on the participation level of FNvs (attempt 1, FNvs =10, TNvs =5)

Subsequently, in the second attempt, we increased the number of FNvs to 15 and the

number of TNvs needed to process the task to 13. In this case, the optimal number

of TNvs was reached by the fourth iteration at a reward = 4.10 and a penalty =

-0.74, as shown in Figure 6.4 and Figure 6.5, which gives 100% participation.

Based on Figures 6.4 and 6.5, it is evident that decreasing the reward consis-

tently leads to a reduction in the number of participants, as is clear from the first

iteration. Then, when the reward started to increase during the second iteration

and the penalty was almost stable, the number of participants increased to more

than 14 participants. However, as the reward almost stabilized during the third

and the fourth iteration, with a slight reduction in the penalty range, the level of

participation also stabilized. Ultimately, in the beginning of iteration 5, the reward

started to increase, which resulted to an increase in the participation level. The

138

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.3 : Snapshot of the implementation of proposed the Stackelberg game-

based incentive mechanism in Google Collab., attempt 1

optimal number of participants was achieved in the beginning of iteration 6, with a

reward = 4.10 and a penalty = -0.74, which gives 100% participation.

In our final attempt, we further increased the number of available FNvs to 20

and the number of TNvs needed to process the task to 17. In this attempt, the

number of optimal TNvs was reached at iteration 4 with a reward = 4.92 and a

penalty = -0.55, as shown in Figure 6.6 and Figure 6.7.

In this attempt, the reward initially increased during the first iteration while

the penalty remained relatively constant, resulting in an increase in the number of

participants. During the second iteration, both the reward and penalty were almost

stabilized, leading to a stabilization of the level of participation. During the third

iteration, there was an increase in the reward and penalty, which resulted in an

increase in the level of participation. Ultimately, at the beginning of iteration 4, the

139

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.4 : Effect of using the proposed Stackelberg game-based incentive mech-

anism on the participation level of FNvs (attempt 2, FNvs =15, TNvs =10)

optimal number of participants was achieved, with a reward = 4.92 and a penalty

= -0.55 with 100% participation.

As shown in Table 6.1 and Figures 6.2 to 6.7, it is clear that applying the

incentive mechanism positively affects the level of participation. Using a different

number of FNvs and TNvs with different combination of rewards and penalties, our

proposed incentive-based mechanism has proven its effectiveness in incentivising the

required number of participants to process the offloaded task and achieving a level

of participation = 100% in all experiments.

In the second scenario, the proposed Stackelberg game based-incentive mecha-

nism is not used, which means that the FNvs do not have any incentive to partic-

ipate. In this scenario, the participation of the FNvs is based on their reputation

value where the nodes that have a high reputation value in the network will always

140

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.5 : Snapshot of the implementation of proposed the Stackelberg game-

based incentive mechanism in Google Collab., attempt 2

participate, while other nodes with a very low reputation mostly declined to partic-

ipate. We implement this scenario using the same number of FNvs and TNvs that

we assumed in the incentive-based scenario without any offered rewards or penalties.

As shown in Table 6.1, it can be clearly seen that we did not reach the optimal num-

ber of participants at any attempts and the level of participation changed according

to the reputation score of the available FNvs. That is, if the reputation score of the

FNv is high, the node always agrees to participate. On the other hand, the nodes

with low reputation scores declines to participate.

As shown in Figures 6.8 to 6.13, the number of participants remains the same in

all iterations for all 3 attempts. the optimal number of participants was not reached

in any iteration for any attempt.

Overall, in the incentive scenario, the optimal number of needed TNvs is reached

141

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.6 : Effect of using the proposed Stackelberg game-based incentive mech-

anism on the participation level of FNvs (attempt 3, FNvs =20, TNvs =13)

in all attempts. Generally speaking, the proposed incentive mechanism motivates

FNvs to join the network, resulting in a 100% participation rate. On the other hand,

the level of participation in the second scenario that does not have an incentive

mechanism is mostly low as it depends on the reputation score of the FNvs, where

only the nodes that have a high reputation value in the network will always agree

to participate and share their resources.

142

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.7 : Snapshot of the implementation of proposed the Stackelberg game-

based incentive mechanism in Google Collab., attempt 3

Figure 6.8 : Non-incentive scenario (attempt 1, FNvs =10, TNvs =8)

143

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.9 : Snapshot of the implementation of the non-incentive scenario in

Google Collab., attempt 1

Figure 6.10 : Non-incentive scenario (attempt 2, FNvs =15, TNvs =13)

144

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.11 : Snapshot of the implementation of the non-incentive mechanism in

Google Collab., attempt 2

Figure 6.12 : Non-incentive scenario (attempt 3, FNvs =20, TNvs =17)

145

Chapter 6: An incentive-based framework for task offloading in VFC

Figure 6.13 : Snapshot of the implementation of the non-incentive mechanism in

Google Collab., attempt 3

6.6 Conclusion

In this chapter, a Stackelberg game-based incentive module is developed to encour-

age FNvs to participate in the task offloading process. The purpose of the incentive

module is to increase the level of participation of FNvs in the task offloading pro-

cess. To evaluate the working of the proposed incentive module in achieving the

required number of participants during the task offloading process, we implemented

two scenarios: one scenario utilised the proposed incentive mechanism and the other

scenario did not use incentives to encourage FNvs to participate and their participa-

tion is based on their reputation value where the nodes that have a high reputation

value in the network will always participate, while the other nodes with a very low

reputation mostly decline to participate. After conducting various experiments in

both scenarios, we concluded that the proposed Stackelberg game-based incentive

146

Chapter 6: An incentive-based framework for task offloading in VFC

mechanism contributes to motivate FNvs to join the network, resulting in a 100%

participation rate.

The next chapter details a target node vehicle (TNv) selection mechanism to

help the overloaded source node vehicle (SNv) to find the most optimal TNv that

can handle the task effectively. The purpose of the developed selection mechanism

is to rank the list of TNvs that agree to participate in the task offloading process

based on their workload variables (CPU utilization and memory usage). This list is

prepared by the incentive module that was described in this chapter to encourage

FNvs to serve as fog nodes to participate in the task offloading process.

147

148

Chapter 7

An intelligent framework for target node vehicle

selection in the iVFC system

7.1 Introduction

Ensuring the successful execution of an offloaded task and maintaining the desired

quality of service (QoS) requires a robust selection method to identify the most

optimal service provider node that can handle the task effectively. Therefore, our

second research objective is to develop an effective mechanism for target node vehicle

(TNv) selection to help the overloaded node select the most optimal TNv to carry

out the offloaded task successfully.

This chapter overviews the steps involved in developing a fog service provider

selection (TNv selection) framework for task offloading in vehicular fog computing

(VFC) using three methods to address research objective 3. The purpose of this

framework is to assist the overloaded source node vehicle (SNv) to find the most

optimal TNv that can efficiently handle the offloaded task. This framework com-

prises three phases, which are discussed in detail in this chapter. This chapter also

includes the validation steps of the proposed framework to address the second part

of research objective 4, which validates the solution to research objective 3.

This chapter is organised as follows: Section 7.2 explains the steps followed in

developing the TNv selection module using three methods. Section 7.3 describes the

experiments to evaluate and validate the selection module. Section 7.4 discusses the

results and section 7.5 concludes this chapter and outlines the work be covered in

the next chapter.

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

7.2 The proposed framework of the iVFC-TNv selection mod-

ule

When an SNv becomes overloaded and decides to offload its task to another fog

node in the iVFC system for execution, it will send the offloading request to the

nearest fog server node (FSN) including all the information related to task type

and the resources required to execute the task. The corresponding FSN receives the

offloading request from the overloaded SNv and processes the request in the incentive

module to obtain a list of all the TNvs in the system that agreed to participate

(Chapter 6 gives a detailed explanation as to how the request is processed in the

incentive module). Then, the following steps are implemented by the corresponding

FSN in the selection module through the iVFC system to select the most optimal

TNv to handle the task:

Step 1: The FSN retrieves the list of all the TNvs from the incentive module

and redirects the list to the selection module. This list contains information on each

TNv including their current CPU utilization and memory usage which is continually

updated by the prediction module.

Step 2: In the selection module, the ranking algorithm is applied to rank the TNvs

according to their current CPU utilization and memory usage data from lowest to

highest (the TNv that has less CPU utilization and has used less memory will have

a higher ranking).

Step 3: The list is stored in the optimal TNvs’ data file and the FSN chooses

the most optimal TNv/TNvs from the list to handle the task (usually this is the

top TNvs on the list). Figure 7.1 shows the proposed framework of the iVFC-TNv

selection module.

149

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Figure 7.1 : Framework of the iVFC-TNv selection module

7.3 Evaluation of the proposed iVFC-TNv selection module

7.3.1 Dataset

The dataset used to develop the TNv selection module is the workload prediction

data of the FNvs that were generated from the predictive analytic module discussed

in Chapter 5. This dataset includes the predicted CPU utilization and the predicted

memory usage of 100 FNvs generated for an interval of one hour at a frequency of

150

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

15 minutes, which generates 5 predicted values for each FNv. Of the five predicted

values for each FNv, we choose one for the implementation of the TNv selection

module.

As we utilize both ML methods and DL methods in the implementation of the

selection module, which needs a large dataset to train and test the model, we gen-

erate a synthetic dataset from the dataset of 100 FNvs to increase it to 2000 rows

using Python.

The Python code used to generate the synthetic data can be found at the following

GitHub link:https://github.com/alhamedy/Synthetic-data-generation.

The dataset can be accessed at the following GitHub link: https://github.com/a

lhamedy/DL-dataset.

Furthermore, using Microsoft Excel, we sorted the dataset in ascending order, from

lowest CPU utilization and memory usage to highest. The primary objective behind

this ranking is to establish a reliable benchmark, serving as the ground truth for

ML (Machine Learning) and DL (Deep Learning) ranking methods.

7.3.2 The selected implementation platform

We implement our experiments on Google Collaboratory, which is a cloud-based

Jupyter notebook environment provided by Google. It allows users to write and

execute Python code directly in their web browsers without the need for any local

installations [94].

We chose Google Collaboratory to implement our experiments due to its ease

of use and accessibility. Google Collaboratory provides free GPU or TPU (Ten-

sor Processing Unit) runtime, which can help to implement machine learning tasks

much faster [94]. It also provides an interactive and dynamic environment for ex-

ecuting code and documenting the experiment steps. The integration of Google

151

https://github.com/alhamedy/Synthetic-data-generation
https://github.com/alhamedy/DL-dataset
https://github.com/alhamedy/DL-dataset

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Collaboratory with Google Drive enables our notebooks and datasets to be stored

and accessed, it simplifies data management and ensures that our work is backed

up and accessible from anywhere [94].

Google Collaboratory provides a wide range of pre-installed libraries and pack-

ages that provide powerful tools and functions for machine learning and data analysis

tasks, such as sklearn library, which facilitates the implementation of our ML and

DL experiments [94].

7.3.3 The experimental set up and implementation

To evaluate and validate the proposed framework of the iVFC-TNv selection mod-

ule, we implement two statistical methods, one machine learning (ML) method,

and four deep learning (DL) methods. The following sections provide a detailed

explanation of the implementation of the three methods used to develop the TNv

selection module and analyse the evaluation metrics used to evaluate and validate

each method.

Statistical methods: Multi-Criteria Decision-Making (MCDM) methods

Multi-criteria decision-making (MCDM) methods have been widely used in cloud

and fog computing systems to solve the problem of service provider selection in the

case of multi-criteria decision making [95]. In our proposed TNv selection module,

two MCDMmethods are used to rank the list of the TNvs that agreed to participate.

The purpose of ranking the TNvs is to help the overloaded SNv to find the most

optimal TNv that can handle the task effectively. Choosing the most optimal TNv

from the available TNvs is based on multiple criteria (CPU utilization percentage

and memory used) of the TNv, which is considered a MCDM problem. Therefore,

MCDM methods are used in our proposed framework to select the most optimal

TNv from the available alternatives to handle the offloaded task.

152

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Of the many effective MCDM methods that have been used by researchers for fog

service provider selection, we use two, namely the analytic hierarchy process (AHP)

method to calculate the weights of the criteria of the TNvs and the Technique for

Order Preference by Similarity to Ideal Solution (TOPSIS) method for ranking the

different TNvs based on their criteria.

AHP is a popular multi-criteria decision-making method that helps to make

complex decisions. It can be used to solve a wide range of problems and it provides a

structured approach to decision making. It allows decision makers to make decisions

based on multiple criteria and to balance conflicting objectives [96].

The TOPSIS method is based on the concept that the best alternative should

have the shortest distance, namely Euclidean distance, from the ideal solution [97].

Since TOPSIS ranks alternatives according to how closely they resemble the worst

and best solution, it makes it easier and more logical to compare alternatives. This

is why we chose it over other MCDM approaches. TOPSIS is straightforward, easily

comprehensible, widely favoured, and has a low level of computational complexity.

As there is no restriction on the number of possibilities and criteria, it also offers

more consistency [98].

To implement the TOPSIS method to find the best alternative to handle the

offloaded task, we need to have the weights of all the criteria of the TNvs and then

use these weights to rank the different TNvs based on the QoS parameters (CPU

utilization and memory usage). This ranking is based on the relative closeness of a

particular alternative to the ideal solution.

We assume that the weights of the criteria can be chosen according to user

preferences, where each weight must be a decimal value between 0 and 1 and the

sum of all the criteria weights must be 1. Therefore, we use AHP to calculate the

weights of the TNvs criteria, namely CPU utilization and memory usage.

153

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

A) Analytic Hierarchy Process (AHP)

Table 7.1 shows our decision matrix with the two criteria that we use for

the AHP to calculate the weights of the criteria, namely CPU utilization and

memory usage of 100 nodes where CPU utilization and memory usage are

obtained from the same time interval of the prediction values resulting from

the solution to Objective 1. Each node has its own criteria values associated

with it. The following steps are undertaken to calculate the weights of the

Table 7.1 : AHP decision matrix

Node-ID CPU-Utilization Memory-Usage

TNv-1 31.2 0.1

TNv-2 30.6 19.5

TNv-3 73.5 91.7

TNv-4 67.1 81.4

TNv-5 57.2 57.7

TNv-6 0.0 8.8

TNv-7 0.0 12.7

TNv-8 47.5 50.4

TNv-9 0.0 63.5

TNv-10 0.0 12.1

— — —

— — —

— — —

TNv-100 — —

criteria of the TNvs, namely CPU utilization and memory usage, using AHP,

based on [96]:

154

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Step 1: Develop a hierarchical structure with a goal at the top level, the

attributes/criteria at the second level and the alternatives (Node-IDs) at the

third level, as shown in Figure 7.2.

Figure 7.2 : Hierarchical structure for AHP method

Step 2: Create a pair-wise comparison matrix to determine the relative im-

portance of the different attributes/criteria with respect to the goal.

To create this matrix, we need to determine the importance of each criterion,

with respect to the other criteria, to achieve the goal, for example, how im-

portant is the CPU utilization criterion in raking the TNvs. To determine the

importance of each attribute, we used the following scale for relative impor-

tance: for AHP, we use a scale from 1-9 to represent the weighted percentage

where 1 indicates equal importance when two activities contribute equally to

the objective. Table 7.2 details all the weighted percentages of the scale.

155

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Table 7.2 : Weighted percentage of the fundamental scale used for AHP method

[96]

Intensity of

importance

on an absolute

scale

Definition Explanation

1 Equal Importance Two activities contribute equally to the objective

3 Moderate Importance
Experience and judgment slightly favour one activity

over another

5
Essential or strong

importance

Experience and judgment strongly favour one activity

over another

7 Very strong importance
An activity is strongly favoured and its dominance is

demonstrated in practice

9 Extreme importance
The evidence favouring one activity over another is

of the highest possible order of affirmation

2,4,6,8

Intermediate values

between the two

adjacent judgments

When compromise is needed

1/2, 1/3, 1/4, 1/5, 1/7, 1/9 Values for inverse comparison

The length of the pairwise matrix is equivalent to the number of criteria used in

the decision-making process. As there are two criteria, namely CPU utilization

and memory usage, we will have a 2x2 matrix. The values in the pairwise

matrix depend on the decision maker or the node that has a task which needs

to be offloaded to another node for execution.

Step 3: Identify the relative importance of each criterion in the decision-

making process for ranking the TNvs list.

As we assumed that the weights of the criteria are assigned based on the

preferences of the decision maker (i.e., the overloaded SNv), there will be

different scenarios where the overloaded SNvs identify the relative importance

of each criterion and with each scenario, hence the resulting weights of the

156

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

criteria using AHP will be different. We use one scenario in which the SNv with

a computation task to be offloaded to another node might consider the “CPU

utilization” and “memory usage” criteria as having almost equal to moderate

importance when selecting the optimal TNv for task execution. This SNv

considers that the importance of the “CPU utilization” compared to “memory

usage” criteria falls between ”equally important” and “moderately important”.

Therefore, we assigned it a value of 2. “Memory usage” compared to “CPU

utilization” =1/2, which is the value for the inverse comparison as shown in

Table 7.2. The value 1 in Table 7.3 indicates a comparison between the same

criteria, which is equal importance (i.e., CPU utilization compared to CPU

utilization = 1 and memory usage compared to memory usage =1).

Based on this scenario and the fundamental scale in Table 7.2, we have the

following pair-wise matrix shown in Table 7.3:

Table 7.3 : The pair-wise matrix for AHP method

CPU utilization Memory usage

CPU utilization 1 2

Memory usage 1/2 1

Step 4: Convert the fractional values into decimal values and calculate the

sum of each column, as shown in Table 7.4.

157

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Table 7.4 : Sum of the pair-wise matrix for AHP method

CPU utilization Memory usage

CPU utilization 1 2

Memory usage 0.5 1

Sum 1.5 3

Then, the normalized pair-wise matrix is calculated by dividing each value in

each column by the sum of the values of that column. This gives the following

normalized pair-wise matrix shown in Table 7.5

Table 7.5 : The normalized pair-wise matrix for AHP method

CPU utilization Memory usage

CPU utilization 0.667 0.667

Memory usage 0.333 0.333

Step 5: Calculate the criteria weight by averaging all of the elements in each

row, as shown in Table 7.6.

Table 7.6 : Criteria weights using AHP method

CPU utilization Memory usage Criteria weight

CPU utilization 0.667 0.667 0.667

Memory usage 0.333 0.333 0.333

Step 6: Calculate the consistency to check whether the calculated criteria

weights are correct and can be used for decision making or not.

158

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

To calculate the consistency, the first step is to take the same comparison

matrix, which is not normalized, and multiply each value in the column with

the criteria weight, as shown in Table 7.7.

Table 7.7 : Consistency calculations for AHP method, step 1

Criteria weight 0.667 0.333

CPU utilization Memory usage

CPU utilization 1 * 0.667 2 * 0.667

Memory usage 1/2 * 0.333 1 * 0.333

Then, the second step to calculate the consistency is to obtain the weighted

sum matrix by to calculating the sum of each row, as shown in Table 7.8.

Table 7.8 : Consistency calculations for AHP method, step 2

CPU utilization Memory usage Weighted sum value

CPU utilization 0.667 0.666 1.333

Memory usage 0.334 0.333 0.667

Then the third step is to calculate the ratio of each weighted sum value and

criteria weight using the following formula:

Ratio =
weighted sum value

criteria weight
(7.1)

As shown in Table 7.9.

The fourth step is to calculate λmax average using the following formula [96]:

λmaxaverage = ratio/number of criteria (7.2)

=(1.999 + 2.003)/2 = 2.001

159

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Table 7.9 : Consistency calculations for AHP method, step 3

CPU utilization Memory usage Weighted sum value Criteria weight Ratio

CPU utilization 0.667 0.666 1.333 0.667 1.999

Memory usage 0.334 0.333 0.667 0.333 2.003

The fifth step is to calculate the consistency index (C.I) using the following

formula [96]:

Consistency Index(C.I) = (max− n)/(n− 1) (7.3)

where n is the number of criteria.

C.I = 2.001-2/2-1= 0.001

Finally, the last step is to calculate the consistency ratio using the following

formula [96]:

Consistency Ratio = Consistency Index(C.I)/RI (7.4)

where RI is the random index. Random index is the consistency index of a

randomly generated pair-wise matrix. The random index is calculated based

on the number of criteria being compared [96].

Table 7.10 shows a pre-determined random index for up to 10 criteria.

Table 7.10 : The random index of a randomly generated pair-wise matrix [96]

n 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

In our dataset, the number of criteria =2 so n=2. Based on Table 7.10, for

a 2-criteria matrix, the random index is 0, which means that the pairwise

160

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

comparison matrix is consistent and the CR is not applicable. Therefore, we

do not need to calculate the CR for a 2-criteria matrix since the RI is zero and

the matrix is consistent.

Based on the previous scenario to identify the weights of the TNv criterion

using the AHP method, the criteria weights that we use for the implementation

of the TOPSIS method to rank the list of TNvs are 0.667 for CPU utilization

and 0.333 for memory usage.

The next section explains how these weights are used to rank the list of TNvs

using the TOPSIS method.

B) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

method

We implement TOPSIS method through the following steps:

We assume that there are n fog nodes and each fog node has m criteria. This

results in a m x n matrix called the evaluation matrix, let’s say matrix p.

Evaluation matrix p is normalized to form matrix X.

Step 1: Identify the criteria that will be used to evaluate the alternatives.

We evaluate the alternatives (TNvs) using two criteria (CPU utilization and

memory usage), which are considered to be quantitative criteria.

Step 2: Normalize the decision matrix: Convert the raw data for each crite-

rion into a dimensionless scale, such as a scale from 0 to 1, to eliminate the

units of measurement and make the criteria comparable. To do so, we calcu-

late the weighted normalized decision matrix using the following formula to

obtain the performance value of each cell [97].

X =
Xij√∑n
j=1 X

2
ij

, where

n∑
j=1

X2
ij = 1 (7.5)

161

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Step 3: Determine the weighted normalized decision matrix. Assign the cri-

teria weights that were identified using AHP in section A to each criterion to

reflect its relative importance. Then, multiply each normalized value by its

corresponding weight. The weights of the criteria according to AHP are 0.667

for CPU utilization and 0.333 for memory usage.

Step 4: Calculate the ideal best and the ideal worst value (ideal alternative

(AI) and the non-ideal alternative (AN)) for every QoS parameter.

The ideal best solution is the maximum value for a beneficial criterion and

the minimum value for a non-beneficial criterion. The ideal worst solution

is the minimum value for a beneficial criterion and the maximum value for

a non-beneficial criterion. Beneficial criteria are the evaluation criteria that

represent the desirable characteristics of the alternatives where the higher the

value of the beneficial criteria, the better the performance of the alternatives.

Non-beneficial criteria are the evaluation criteria that represent undesirable or

negative characteristics of the alternatives. In this case, the lower the value of

the non-beneficial criteria, the better the performance of the alternatives [98].

Our criteria (CPU utilization and memory usage) are considered non-beneficial

criteria, hence a lower value is preferred. This means the lower the value of

CPU utilization and memory usage, the better the performance of the TNv.

Step 5: Calculate the Euclidean distance from the ideal best and the ideal

worst value to obtain the separation measures of each alternative from the

ideal best using the following formulas [98]:

S+
i =

√√√√ n∑
j=1

(Vij − V +
j)2 (7.6)

S−
i =

√√√√ n∑
j=1

(Vij − V −
j)2 (7.7)

162

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Step 6: Calculate the relative closeness to the ideal best solution.

Calculate the relative closeness of each alternative to the ideal best solution by

dividing the distance to the ideal worst solution by the sum of the distances to

the ideal best and the ideal worst solutions. That is, calculate the performance

score using the following formula[98]:

pi =
S−
i

S+
i + S−

i

(7.8)

Step 7: Rank the alternatives: we rank the TNvs based on their relative

closeness to the ideal solution, where the TNv with the highest relative close-

ness is the best TNv. Based on the performance score from step 6, we rank

our alternatives from 1-n to select the best one which is ranked 1 in the list.

Using the same weights of the criteria that we generated using AHP, which was

explained in section 7.3.3, we implement TOPSIS using R (RStudio 2022.02.3+492)

to rank the TNvs based on their criteria.

To implement TOPSIS, we define the criteria and their corresponding weights

that will be used in the TOPSIS method, then, we use ’topsis’ function to rank the

TNvs based on the defined criteria.

The code of implementing the TOPSIS method using R can be accessed using the

following link: https://github.com/alhamedy/TOPSIS-R-code/tree/main

Machine Learning (ML) method

Of the ML methods, we apply a regression XGBoost (Extreme Gradient Boosting)

as a second approach to rank the list of the TNvs based on their CPU utilization

and memory usage criteria. The purpose of implementing XGBoost method is to

compare the resulting rankings from the XGBoost method with those obtained from

the TOPSIS method.

163

https://github.com/alhamedy/TOPSIS-R-code/tree/main

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

XGBoost method is a popular and efficient open-source implementation of the

gradient boosted trees algorithm to accurately predict the rank variable based on

multiple criteria (i.e., CPU utilization and memory usage in our proposed frame-

work) [85].

We choose the XGBoost method to rank the TNVs for the following reasons: [85]:

• Given that the prediction of the rank variable of the TNvs relies on multiple

criteria, specifically CPU utilization and memory usage, XGBoost is regarded

as a fitting approach to predict the ranking of the TNvs.

• XGBoost is able to handle different types of data, which makes it a very flexible

method to rank TNvs based on multiple criteria.

• It is highly accurate and reliable in ranking fog servive providers based on

their criteria.

• It is robust against overfitting as it uses regularization techniques to prevent

overfitting that occurs when the model performs well on the training data but

performs poorly when testing new data

These reasons make XGBoost a good choice for ranking TNvs based on their criteria.

Using Google Collaboratory, we conduct a number of experiments using a regression

XGBoost method to predict the rank variable for the list of TNvs based on their

CPU utilization and memory usage variables using the following libraries [85]:

• Pandas: which is a powerful data manipulation and analysis library in Python.

• The scikit-learn library (also known as sklearn) to split our dataset into train-

ing and testing subsets.

• XGBRegressor class from the XGBoost library, which is an optimized gradient

boosting algorithm used for regression tasks.

164

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

• XGBoost to import the entire XGBoost module to be able to access all the

functionality provided by the XGBoost library.

The experiments conducted using varying number of estimators (trees) while using

learning rate =0.1 for all experiments. Then the performance of the model in each

experiment is evaluated based on the Mean Absolute Error (MAE) metric on the

training, testing and the top-30 testing datasets.

n estimator represents the number of estimators or decision trees used in the

gradient boosting ensemble in each experiment [85]. The experiment includes testing

five different values for estimators: 100, 200, 300, 400, and 500.

Learning rate is a hyperparameter used to control the step size at each itera-

tion during the gradient boosting process [85]. We use this parameter to prevent

overfitting of the model. In all experiments we use a learning rate of 0.1.

The code of implementing the XGBoost method to rank the list of TNvs can be

accessed using the following link: https://github.com/alhamedy/ML-model-for

-ranking-service-providers-/blob/main/XGBoost.ipynb

Algorithm 7.1 shows the steps of the XGBoost method used to rank the list of

TNvs.

Deep Learning (DL) Method

We implement deep neural networks (DNNs) as a third method to compare the

result with the TOPSIS and XGBoost methods. The purpose of using DNNs is

to predict the rank variable for the list of TNvs based on their workload variables

(CPU utilization and memory usage).

We choose deep neural networks (DNN) to rank the TNvs based on their workload

for the following reasons: [78]:

165

https://github.com/alhamedy/ML-model-for-ranking-service-providers-/blob/main/XGBoost.ipynb
https://github.com/alhamedy/ML-model-for-ranking-service-providers-/blob/main/XGBoost.ipynb

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Algorithm 7.1 XGBoost method to rank TNvs

Require: The list of TNvs

Ensure: The ranked list of TNvs

1: Step 1: Load the data (the list of TNvs)

2: Step 2: Split the data into training, testing, and top-30 sets

3: Step 3: Define the XGBoost model hyperparameters (number of estimators and

learning rate)

4: Step 4: Train the model on the training data using the XGBoost algorithm:

5: a. Initialize the model

6: b. Iterate over the specified number of trees:

7: i. Compute the gradient of the loss function

8: ii. Construct a decision tree that minimizes the loss function using the

gradient

9: iii. Add the decision tree to the ensemble of trees in the model

10: Step 5: Compute the final predictions for the ranking of the training data by

summing the predictions of all the trees in the ensemble

11: Step 6: Evaluate the model on the testing data by computing MAE

12: Step 7: Evaluate the model on the top-30 testing data by computing MAE

166

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

• DNN can capture the relationships in the data used to rank the TNvs to

determine whether it is able to deal with the different workload criteria of the

TNvs.

• DNN is able to learn from large datasets which is important for ranking TNvs

based on their workload because there may be a large number of nodes and a

large amount of workload data.

In Google Collaboratory, we train a neural network model using TensorFlow and

Keras by importing the following libraries:

• Numpy for numerical computations.

• Pandas for data manipulation and analysis.

• Tensorflow to build and train neural networks.

• Matplotlib.pyplot for data visualization.

• Various modules and functions from tensorflow.keras for building and config-

uring the neural network model.

The number of nodes (neurons) in each hidden layers determine using the ker-

nel initializer=’normal’, which means that the weights of the hidden layers are ran-

domly sampled from a Gaussian distribution.

We use the mean absolute error as the loss function and the Adam optimizer

with a learning rate of 0.0001 to compile the model. The model’s performance

is evaluated on the training, validation, and testing datasets using the ‘evaluate’

method based on the mean absolute error (MAE) metric. We split the dataset into

70% for training the model, 15% for evaluating the model and 15% for testing using

the DataFrame ‘decision’.

167

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

We implement DNNs with one, three, four and five hidden layers. These neural

networks consist of one input layer, one, three, four and five hidden layers and one

output layer. To enable the model to capture non-linear relationships in datasets,

we increase the number of hidden layers to increase the model’s ability to learn

complex patterns and relationships. In a DNN, each hidden layer learns and ex-

tracts features from the previous layer. A model with more hidden layers can learn

hierarchical representations of input data, which helps to improve its performance.

Also, increasing the hidden layers helps to capture the underfitting or overfitting of

the model on the dataset.

To avoid overfitting of the model, we use the early stopping concept to prevent

the model from continuing to train on the training set when its performance on a

validation set starts to deteriorate, which prevents the model from over-optimizing

the training data [99]. For this purpose, we use ‘callbacks=[cp, logger])’ where ‘cp’

callback is a model checkpoint object to save the best model during training based

on the mean absolute error value and ‘logger’ callback is a CSVLogger object that

saves the training history to a CSV file in the path we specified.

We employ a different number of epochs while using the same learning rate for

all of the DNN experiments. Epochs are the number of times the model is trained

on the training dataset and it has a significant impact on the performance of the

model. At each epoch, the model slowly improves its performance as it optimizes

its parameters based on the training data [99].

The purpose of training our selection model with different numbers of epochs

is to find the best number of epochs to train the model to avoid underfitting or

overfitting of the model. Underfitting of the model occurs when the epoch count is

too low. In this case, the model may not have enough time to learn all the patterns

in the data. On the other hand, overfitting of the model occurs when the epoch

168

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

count is too high. In this case, the model starts to memorize the training data

instead of generalizing to new data [99].

The learning rate is a hyperparameter that determines the step size for updating

the model’s parameters during each iteration [99]. In our DNN experiments, using

a small learning rate helps our model converge more accurately. This means that

the training process of our model has reached a point of stability and the model has

achieved a satisfactory level of optimization and has learned to generalize well on

the training data.

Tables 7.11 to 7.14 show the implementation of DNNs with 1, 3, 4, and 5 hidden

layers respectively, using different numbers of epochs. These tables also show the

mean absolute error (MAE) for the training, validation and testing dataset and also

the MAE for the top 30 nodes.

It is clear from the these tables that increasing the number of epochs improves

the performance of the model in all experiments with a different number of hidden

layers.

A) Artificial Neural Network (one hidden layer)

We implement an artificial neural network (ANN) with one hidden layer on

different datasets (training, validation, testing, and top-30). We add the first

hidden layer to the model, which is a dense layer with 256 nodes (neurons),

using the ReLU activation function. This layer receives the input data and

processes it through 256 nodes.

We use a different number of epochs and the same learning rate for all exper-

iments. As the training progresses, we observe changes in the MAE values for

the training, validation, testing and top-30 datasets, as shown in Table 7.11.

Initially, at epoch 100, the model shows relatively higher MAE values for all

datasets. However, as the training progresses, particularly beyond epoch 1000,

169

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

the MAE values start to decrease, indicating an improvement in the model’s

performance.

By epoch 3000, the model has achieved its best performance, as we can see that

MAE is lower across all datasets. This suggests that the model has learned to

make more accurate predictions. Therefore, we choose this experiment (using

epoch 3000) as the best experiment in the implementation of ANN with one

hidden layer.

The MAE values for the testing dataset and the top-30 subset provides ad-

ditional insights. The decreasing trend of the MAE values indicates that the

model’s performance improves as it learns to generalize better on unseen data

and particularly on the top-30 instances.

The code of the ANN with one hidden layer can be accessed using the following

link: https://github.com/alhamedy/DL-models-for-ranking-the-diffe

rent-service-providers/blob/main/Neural_Network_1_layers.ipynb

Table 7.11 : Experiments of implementing artificial neural network to rank the

list of TNvs

Epoch count Learning rate MAE training MAE validation MAE testing MAE top-30

100 0.0001 58.850 62.887 58.958 11.417

1000 0.0001 15.939 15.311 15.796 5.383

1500 0.0001 15.326 14.096 14.742 3.207

2000 0.0001 13.764 13.594 14.332 1.557

3000 0.0001 11.958 11.954 12.511 1.489

B) Deep neural networks with three hidden layers

Based on the result of previous experiments of the ANN with one hidden layer,

we observed relatively high MAE values for both the validation and testing

170

https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_1_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_1_layers.ipynb

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

dataset. These high MAE values suggest underfitting of the model. To address

this issue, we increase the number of DNN hidden layers to three hidden layers

to add additional complexity and capacity to the model, allowing it to learn

more complex patterns and representations from the input data.

In addition to the first hidden layer, which is a dense layer with 256 nodes

(neurons) , we add s second hidden layer with 128 nodes and a third hidden

layer with 96 nodes.

We use a different number of epochs and the same learning rate for all exper-

iments. As the training progresses, we observe changes in the MAE values for

the training, validation, testing and top-30 datasets.

As shown in Table 7.12, at epoch 100, the model has relatively higher MAE

values for all datasets, indicating its initial performance. However, as the

training continues, particularly beyond epoch 500, the MAE values start to

decrease, suggesting an improvement in the model’s accuracy. The decreasing

trend continues until epoch 2000, indicating that the model is progressively

learning and making better predictions.

By epoch 2000, the model has achieved its best performance, as the MAE val-

ues are low across all datasets. This indicates that the model has effectively

learned from the training data and is capable of making accurate predictions.

Therefore, we choose this experiment (using epoch 2000) as the best experi-

ment in the implementation of DNNs with three hidden layers.

The code of the DNNs with three hidden layers can be accessed using the

following link: https://github.com/alhamedy/DL-models-for-ranking-t

he-different-service-providers/blob/main/Neural_Network_3_layers

.ipynb

C) Deep neural networks with four hidden layers

171

https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_3_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_3_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_3_layers.ipynb

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Table 7.12 : Experiments of implementing deep neural networks with three hidden

layers to rank the list of TNvs

Epoch count Learning rate MAE training MAE validation MAE testing MAE top-30

100 0.0001 46.388 50.266 46.784 10.565

500 0.0001 13.680 13.922 14.029 1.513

600 0.0001 13.136 13.804 14.520 1.361

1000 0.0001 12.582 13.870 14.426 1.129

2000 0.0001 10.067 10.860 10.925 1.337

Based on the result from the previous experiments of the DNN with three

hidden layers, MAE values continue to exhibit higher levels for both the val-

idation and testing datasets. This indicates that the model’s performance is

still not achieving the desired level of accuracy. Therefore, we increase the

number of DNN hidden layers to four hidden layers.

In addition to the first hidden layer, which is a dense layer with 256 nodes

(neurons) , the second hidden layer with 128 nodes and the third hidden layer

with 96 nodes, we add one more layer with 72 nodes to allow it to capture the

complex patterns and representations from the input data.

We use different numbers of epochs and the same learning rate for all experi-

ments. As the training progresses, we observe changes in the MAE values for

the training, validation, testing and top-30 datasets, as shown in Table 7.13.

As in the previous experiment (DNN with three layers), in this experiment,

the model initially exhibits higher MAE values for all datasets at epoch 100,

indicating its initial performance. However, as the training continues, specif-

ically beyond epoch 500, the MAE values start to decrease, indicating an

improvement in the model’s accuracy.

172

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

By epoch 2000, the model has achieved its best performance, as evidenced

by the lowest MAE values across all datasets. Therefore, we choose this ex-

periment (using epoch 2000) as the best experiment in the implementation of

DNNs with four hidden layers.

The code of the DNNs with four hidden layers can be accessed using the

following link: https://github.com/alhamedy/DL-models-for-ranking-t

he-different-service-providers/blob/main/Neural_Network_4_layers

.ipynb

Table 7.13 : Experiments of implementing deep neural networks with four hidden

layers to rank the list of TNvs

Epoch count Learning rate MAE training MAE validation MAE testing MAE top-30

100 0.0001 38.492 43.003 40.700 6.604

500 0.0001 13.554 13.966 14.266 1.902

1000 0.0001 12.211 13.676 13.370 1.002

2000 0.0001 9.688 10.693 10.770 0.826

D) Deep neural networks with five hidden layers

To see if we can further improve the model’s performance, we increase the

DNN hidden layers to five hidden layers by adding one more layer with 64

nodes.

We use different numbers of epochs and the same learning rate for all experi-

ments. As the training progresses, we observe changes in the MAE values for

the training, validation, testing and top-30 datasets, as shown in Table 7.14.

As in the previous two experiments (DNN with three layers and DNN with

four layers), in this experiment, the model initially exhibits higher MAE values

for all datasets at epoch 100, indicating its initial performance. However, as

173

https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_4_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_4_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_4_layers.ipynb

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

the training continues, specifically beyond epoch 500, the MAE values start

to decrease, indicating an improvement in the model’s accuracy.

By epoch 2000, the model has achieved its best performance, as indicated by

the lowest MAE values across all datasets. Therefore, we choose this exper-

iment ((using epoch 2000) as the best experiment in the implementation of

DNNs with five hidden layers.

The code of the DNNs with five hidden layers can be accessed using the fol-

lowing link: https://github.com/alhamedy/DL-models-for-ranking-the

-different-service-providers/blob/main/Neural_Network_5_layers.i

pynb

Table 7.14 : Experiments of implementing deep neural networks with five hidden

layers to rank the list of TNvs

Epoch count Learning rate MAE training MAE validation MAE testing MAE top-30

100 0.0001 38.836 43.082 40.214 7.748

500 0.0001 13.913 14.992 14.803 1.447

600 0.0001 14.039 13.946 14.293 1.290

1000 0.0001 11.163 12.015 12.371 1.057

2000 0.0001 7.990 8.507 8.605 0.859

7.3.4 Evaluation metrics

To evaluate and validate the efficiency of the chosen method in ranking the

list of TNvs to choose the most optimal TNv to carry out the task, we compare

the experiment results of the three methods: TOPSIS, XGBoost and DNNs, using

MAE metric.

MAE is the absolute value of the difference between the predicted value and the

actual value. MAE measures the accuracy of the continuous variables and gives an

174

https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_5_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_5_layers.ipynb
https://github.com/alhamedy/DL-models-for-ranking-the-different-service-providers/blob/main/Neural_Network_5_layers.ipynb

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

indication of how large an error can be expected from the prediction on average.

We calculate MAE using the following formula [83]:

MAE =

∑n
i=1(|yi − xi|)

n
(7.9)

where yi is the predicted value (generated after applying ranking method), xi is

the actual value (actual ranking) and n is the total number of data points (total

number of TNvs).

7.4 Results and discussion

7.4.1 Evaluation of the TOPSIS method

To evaluate the working of the TNv selection module using the TOPSIS method,

we measure the accuracy of the TOPSIS based on MAE metric. Table 7.15 shows the

resulting ranked list of the top-30 nodes using R according to the TOPSIS method

compared to the actual ranking of the dataset.

Figure 7.3 shows a snapshot of the Excel calculations of MAE for the top-30 nodes

resulting from TOPSIS ranking, showing that MAE = 0.963, which means that on

average, the difference between the predicted ranking using the TOPSIS method

and the actual ranking of the TNvs is 0.963. This indicates that the TOPSIS model

is able to accurately predict the ranking of the TNvs based on their CPU utilization

and memory usage criteria.

To evaluate the performance of the TOPSIS method compared to the other

methods (XGBoost and DNNs) in ranking the list of the TNvs, we compare the MAE

of the TOPSIS method with the performance of XGBoost and the DNN methods

in section 7.4.4.

175

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Table 7.15 : The top-30 ranked TNvs according to the TOPSIS method compared

to the actual ranking

Actual Ranking TOPSIS Ranking

Rank Node-ID CPU utilization Memory usage Node-ID CPU utilization Memory usage

1 N30 0 0.18997 N30 0 0.18997

2 N91 0 0.36244 N91 0 0.36244

3 N39 0.00030311 1.0398 N39 0.00030311 1.0398

4 N29 0.0024722 1.5068 N34 0.047836 1.3042

5 N87 0 2.7112 N29 0.0024722 1.5068

6 N34 0.047836 1.3042 N32 0.68068 1.1225

7 N38 0.057987 2.2128 N84 0.17597 2.0505

8 N27 0.13162 2.2212 N800 0.489072653 1.956962869

9 N84 0.17597 2.0505 N38 0.057987 2.2128

10 N86 0.031147 2.8852 N98 1.0843 0.21381

11 N800 0.489072653 1.956962869 N27 0.13162 2.2212

12 N32 0.68068 1.1225 N28 1.0463 0.67013

13 N98 1.0843 0.21381 N99 1.2519 0.47938

14 N37 0.032575 4.8549 N97 1.2484 0.57431

15 N85 0.0000575 5.7733 N100 1.2824 0.59744

16 N28 1.0463 0.67013 N87 0 2.7112

17 N16 0 7.464 N86 0.031147 2.8852

18 N97 1.2484 0.57431 N31 0.71825 2.515

19 N99 1.2519 0.47938 N96 1.5179 0.9131

20 N100 1.2824 0.59744 N61 0.58683 3.5632

21 N31 0.71825 2.515 N33 0.72852 3.9053

22 N14 0 8.125 N37 0.032575 4.8549

23 N61 0.58683 3.5632 N92 2.1339 3.0525

24 N6 0 8.8201 N85 0.0000575 5.7733

25 N96 1.5179 0.9131 N94 2.8939 0.050839

26 N17 0.013336 7.9397 N89 0.57999 6.2918

27 N33 0.72852 3.9053 N88 1.3109 6.4288

28 N82 0.43754 7.2342 N81 0.8263 6.9557

29 N89 0.57999 6.2918 N48 1.994 5.8942

30 N62 0.00057464 9.1825 N82 0.43754 7.2342
176

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Figure 7.3 : Snapshot of the accuracy calculations of TOPSIS method using Excel

7.4.2 Evaluation of the XGBoost method

Table 7.16 summarizes the results of the experiments that were conducted using

the XGBoost method to predict the rank variable based on the CPU utilization and

the memory usage criteria of the TNvs. The experiments were conducted by varying

the number of estimators and learning rates, and the performance of the XGBoost

model was evaluated using the MAE metric for the training, testing and the top-30

nodes data.

177

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Table 7.16 : Experiments using XGBoost for ranking the list of the TNvs

Experiment n estimators Learning rate MAE training MAE testing MAE test-top-30

1 100 0.1 13.962 18.749 6.937

2 200 0.1 10.562 14.945 8.844

3 300 0.1 8.726 13.477 8.618

4 400 0.1 7.594 12.714 8.585

5 500 0.1 6.839 12.408 7.843

The results show that the first experiment with n estimators = 100 and learn-

ing rate = 0.1 achieved the best MAE (MAE= 6.937 for the ranking of the top-30

nodes). The MAE started to increase for the top-30 testing data when we increased

the number of estimators (number of runs that XGBoost will try to learn). This in-

dicates that the model may have overfitted the data, which leads us to conclude that

increasing the number of estimators beyond a certain point might not necessarily

improve XGBoost model performance.

Figures 7.4 and 7.5 depict the predicted ranking of the top-30 nodes using the

XGBoost method with the optimal parameters (parameters of the best performing

experiment) compared to the actual ranking. The figures show how the ranking

results of the XGBoost model are near to the optimal ranking compared to the

actual ranking. This indicates that the XGBoost model is able to accurately predict

the ranking of the TNvs based on their CPU utilization and memory usage criteria.

In conclusion, the XGBoost method is an effective approach for predicting the

ranking of the TNvs. The experiment using the XGBoost method with n estimators

= 100 and learning rate = 0.1 achieved the best performance in terms of the MAE

metric, and the ranking result of the XGBoost model was very close to the opti-

mal ranking. Therefore, we choose this experiment as the best experiment in the

implementation of XGBoost.

178

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Figure 7.4 : XGBoost method ranking compared to the actual ranking of the top-

30 nodes

Figure 7.5 : XGBoost method ranking compared to the actual ranking of the

whole dataset

179

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

7.4.3 Evaluation of the DNNs method

We evaluate the performance of the DNNs model using the MAE metric for the

training, validation, testing, and the top-30 dataset of the TNvs.

Table 7.17 summarizes the results of the experiments using varying numbers of

hidden layers (1, 3, 4 and 5 hidden layers) in the DNNs model. This table includes

the best performing model in each DNNs experiment as discussed in section 7.3.3.

Table 7.17 : Summary of the experiments using DNNs with varying numbers of

hidden layers

Hidden layers Epoch count Learning rate MAE training MAE validation MAE testing MAE-top-30

1 3000 0.0001 11.958 11.954 12.511 1.489

3 2000 0.0001 10.067 10.860 10.925 1.337

4 2000 0.0001 9.688 10.693 10.770 0.826

5 2000 0.0001 7.990 8.507 8.605 0.859

As shown in Table 7.17, increasing the number of hidden layers from 1 to 3, 4,

and 5 has improved the model’s performance. We can also see that the reduction in

the epoch count indicates faster convergence when using more hidden layers.

Additionally, we can see a consistent improvement in MAE for the training,

validation, and testing dataset as the number of hidden layers increases, specifically

for the top 30 predictions.

Table 7.17 shows that DNNs with four layers achieved the best performance in

terms of MAE, with an MAE value of 0.826 for the top-30 nodes dataset. This

indicates that the DNNs model with four hidden layers is better at predicting the

CPU utilization and memory usage percentage for the TNvs than the other models

with a different number of hidden layers.

Furthermore, the results of the experiments also show that the DNN model with

180

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

four hidden layers required 2000 epochs for training, and the learning rate was set to

0.0001. This indicates that the DNNs model required a moderate number of epochs

to achieve optimal performance, and a relatively small learning rate was sufficient

for the model to learn the patterns in the data.

Figures 7.6, 7.7 and 7.8 depict the ranking of the training dataset, testing dataset

and the top-30 nodes predicted by the DNNs model with four hidden layers compared

to the actual ranking, respectively. The figures illustrate that the ranking result of

DNNs with four hidden layers is very close to the optimal ranking. This indicates

that the DNNs model is able to accurately predict the ranking of the FNvs based

on their criteria of CPU utilization and memory usage percentage.

In conclusion, the results of the experiments shown in Table 7.17 indicate that

the DNNs model with four hidden layers is the most effective in predicting the CPU

utilization and memory usage percentage of the TNvs. The DNNs model achieved

the best performance in terms of the MAE metric, and the ranking result of the

DNNs model was very close to the optimal ranking. These findings suggest that the

DNNs model with four hidden layers is a suitable approach for ranking the TNvs

based on the criteria of CPU utilization and memory usage percentage.

7.4.4 Comparison of the three methods used to develop the iVFC-TNv

selection module

After conducting experiments using two MCDM methods (AHP and TOPSIS),

one ML method (XGBoost) and four DL methods (DNNs), and based on the results

shown in Table 7.18 and in Figures 7.9 and 7.10, it is clear that the DNNs with

four layers outperformed the statistical method (TOPSIS) and the ML method

(XGBoost) in terms of the MAE metric. MAE is an important evaluation metric

that measures the average difference between the predicted and actual values. Thus,

a lower MAE value indicates better performance.

181

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Figure 7.6 : Prediction results for the training dataset using DNNs with four layers

Figure 7.7 : Prediction results for the testing dataset using DNNs with four layers

182

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Figure 7.8 : Prediction results for the top-30 testing dataset using DNNs with four

layers

This means that the DNNs with four layers performed better at predicting the

ranking of the TNvs list based on the CPU utilization and memory usage percentage

criteria.

Although the performance of the TOPSIS method was close to the performance

of the DNN method in terms of the MAE metric, it is important to note that

TOPSIS required significantly less run time than the DNNs method. This indicates

that TOPSIS may be more efficient for applications that require faster responses.

However, DNNs perform much faster if they can be trained by optimizing the hy-

perparameters and using more powerful computing resources, such as GPUs.

In comparison to the ML method (XGBoost), the DNNs with four layers sig-

nificantly outperformed it in terms of the MAE metric, however it takes a longer

time to run. In this sense, DNNs are better at capturing complex patterns in data

183

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

than XGBoost. However, it should be noted that the XGBoost method has its own

strengths such as higher accuracy, which may be required for certain types of data

or applications.

Overall, the results indicate that the DNN with four layers was the most effective

method for ranking the different TNvs based on the criteria of CPU utilization and

memory usage percentage, based on the MAE metric. The TOPSIS approach, on

the other hand, may be more efficient for specific applications that require a faster

response time. When choosing the best method for a given application, it is crucial

to take into account both the strengths and weaknesses of the various approaches.

Table 7.18 : MAE and run time for the three methods for TNv selection

Statistical method (TOPSIS)
DL method

(DNN with four layers)

ML method (XGBoost

with learning rate= 0.1

and n estimators = 100)

MAE 0.963 0.826 6.937

Run time 3.26 secs 8 mins 22 secs 0.3 s

7.5 Conclusion

This chapter describes the development of the iVFC-TNv selection module using

three methods, namely statistical methods (AHP and TOPSIS), an ML method

(XGBoost) and DL methods (DNNs). These methods are used to rank the list

of the TNvs that agreed to participate in the task offloading process to help the

overloaded FNv select the most optimal TNv from the list that can carry out the

task effectively.

The performance of the TNv selection module was evaluated based on the MAE

metric, which gives an optimal result of 0.963 using the TOPSIS method and 0.826

184

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

Figure 7.9 : Comparing the different ranking methods based on MAE

Figure 7.10 : Comparing the different ranking methods based on run time in

seconds

185

Chapter 7: An intelligent framework for target node vehicle selection in the iVFC
system

using the DNNs method with four hidden layers, with a slight difference in the exe-

cution time where the TOPSIS method outperforms DNNs in terms of the execution

time. The experiments results indicate that the proposed selection module works

well in selecting the optimal TNv that can handle the task. The experiment results

show that our proposed framework can effectively guarantee the proper selection of

the optimal TNv.

Next chapter will conclude this thesis through summarizing the main points

presented throughout the thesis and outline specific areas for future investigation

and development.

186

187

Chapter 8

Conclusion and future work

8.1 Introduction

This chapter concludes this thesis by summarizing the research findings and provid-

ing recommendations for future work. This thesis developed an intelligent method

for proactive-based task offloading in vehicular fog computing (VFC). While pre-

vious researchers have developed several reactive-based solutions to address task

offloading issues in VFC where the offloading decision occurs when the fog node

vehicle (FNv) consumes all of its computation resources and has no resources to

process its tasks, this thesis differs as it provides a proactive-based method for the

task offloading process where the workload of the FNv is predicted to provide a

future overloading decision. The lack of a solution to provide proactive-based task

offloading in VFC has been proved in chapter 2 where the results of a systematic

literature review and the extensive analysis of prior research are presented. Based

on an analysis of the selected literature, research gaps were identified, leading to

the development of a novel solution called iVFC, a proactive-based methodology for

task offloading in VFC to address the identified research gaps.

This chapter is organized as follows. Section 8.2 discusses the research gaps that

have been addressed in this thesis. Section 8.3 outlines the contributions of this

thesis to the existing literature and 8.4 concludes our thesis and provides recom-

mendations for future work.

Chapter 8: Conclusion and future work

8.2 Problems addressed in this thesis

This thesis primarily focuses on addressing significant gaps in the existing literature

related to task offloading in VFC. Based on the systematic literature review reported

in chapter 2, the following research gaps were identified and addressed in this thesis:

1. All of the task offloading target node vehicle (TNv) selection from the (host)

source node vehicle (SNv) is done on-the-fly, so there are little or no predictive

mechanisms at play for offloading the tasks to a TNv. No method has been

proposed to provide a proactive-based task offloading where the overloading

FNv will have prior knowledge of the overloading status based on its workload.

2. There is no intelligent selection mechanism to help the overloaded SNv to

select an optimal TNv to efficiently handle the offloaded task.

3. There is no existing method to provide an incentive mechanism to encourage

fog nodes to participate in the task offloading process, taking into account

the number of the participants in the VFC environment. Also, in most of

the proposed incentive mechanisms, the nature of incentive or penalty and its

implementation is unclear.

The next section summarizes the contributions of this thesis to the existing litera-

ture.

8.3 Contributions to the existing literature

Based on the research gaps identified in the literature, the main contribution of this

thesis to the existing literature is the development of an intelligent framework called

iVFC for task offloading in VFC. The following sub-sections outline the contributions

of the proposed iVFC framework to the existing literature.

188

Chapter 8: Conclusion and future work

8.3.1 Systematic literature review (SLR)

In this thesis, we carried out an extensive state-of-the-art systematic literature re-

view (SLR) in the area of task offloading in VFC. This SLR is documented in chapter

2 of this thesis. To conduct this SLR, we identified the search terms related to task

offloading in VFC. These terms were input into four prestigious databases to retrieve

relevant papers and the results of the search process were evaluated based on the

inclusion and exclusion criteria to select the relevant studies. The selected studies

were critically reviewed to identify the research gaps in the literature. Based on the

review outcomes, we found that no framework is proposed in the literature to pro-

vide a proactive-based task offloading method in VFC. This SLR was published in

the Future Generation Computer System journal, which is ranked in the top quartile

of journals (JCR Q1). The contents of this SLR are available at the following link:

https://doi.org/10.1016/j.future.2022.03.019

8.3.2 Development of a novel framework called iVFC for task offloading

in VFC

In this thesis, an intelligent framework called iVFC was developed which offers an

intelligent task offloading process in VFC system. This intelligent process comprises

three modules: the predictive analytic module to enable the SNvs to priori know the

future overloading condition, an incentive module to encourage FNvs to participate

in the offloading process and a TNv selection module to help the overloaded SNv to

select the most optimal TNv to efficiently handle the offloaded task. To the best of

our knowledge, no such framework has been proposed in the literature. These three

modules that comprise the intelligent iVFC framework are as follows:

a) A proactive-based framework for task offloading in VFC using ma-

chine learning (ML) time-series prediction methods

189

https://doi.org/10.1016/j.future.2022.03.019

Chapter 8: Conclusion and future work

The first module of the proposed iVFC framework provides a proactive-based

task offloading method in VFC to assist FNvs make future offloading decisions.

To do this, ML time-series prediction methods were used to predict the future

workload of FNvs based on their current workload (i.e., their CPU utilization

and memory usage). Using our proposed proactive-based framework, a FNv

will have prior knowledge of when it will become overloaded and when it needs

to offload its task in the future, which helps to reduce processing delay as the

proactive decision-making process helps to minimize the time spent in making

offloading decisions during runtime.

b) A Stackelberg game-based mechanism for incentivising the vehicular

fog nodes to participate in the iVFC

The second module of the proposed iVFC framework motivates the FNvs on

the network to participate and share their idle resources to process the of-

floaded task by offering them rewards as a reputation value for resource shar-

ing, and in the case they decline the option to participate, the FNvs will

receive a penalty as a negative or zero reputation. To do this, the Stackelberg

game theory was used to provide incentives to FNvs to increase the participa-

tion level of FNvs to guarantee the availability of sufficient nodes to process

the offloaded task. Our proposed incentive mechanism helps in increasing the

participation level of fog nodes within the VFC environment.

c) An intelligent framework for target node (TNv) selection in the

iVFC system

The third module of the proposed iVFC framework helps the overloaded SNv

select the most optimal TNv that can efficiently handle the offloaded task.

To do this, statistical methods, ML method and DL methods were used to

rank the different FNvs based on their available workload (CPU utilization

190

Chapter 8: Conclusion and future work

and memory usage). Based on the ranking results, a list of all FNvs that have

sufficient computation resources, ordered from highest to lowest resources, is

prepared. This list is then used by the fog server node (FSN) to select the

most optimal TNv/TNvs from the list to process the task. Our proposed TNv

selection framework helps the overloaded SNv to intelligently select the most

optimal TNv/TNvs to process its task.

8.3.3 Evaluation and validation of the proposed framework

To evaluate the performance of our proposed solution, we developed a software

prototype. The software prototype comprises three modules, the predictive analytic

module, the incentive module, and the TNv selection module. The performance of

the approaches proposed in this thesis was evaluated and tested based on several

evaluation metrics. Chapters 5, 6 and 7 demonstrate the development and the

evaluation of the three modules, corresponding to research objectives 1, 2 and 3.

8.4 Conclusion and future work

Our proposed research framework is designed to intelligently manage the task of-

floading process within a VFC environment, however, there remain several issues

that can be explored in the future. The following areas will be addressed in our

future research:

a) Developing a registration mechanism to register the vehicular fog

nodes

Our proposed framework assumes that each vehicle has to register with the

iVFC system to become an iVFC client and act as a fog node vehicle. Our

framework does not include a registration mechanism to register vehicles to

the system and store their information in the fog repository. Details on the

vehicle’s registration process are out of this research scope. Future research

191

Chapter 8: Conclusion and future work

can involve a registration mechanism to register any vehicle that requests to

become part of the iVFC system.

b) Using the reputation value as another parameter for optimal TNv

selection

Our proposed TNv selection module ranks the FNvs in the network based

on their current workload parameters (CPU utilization and memory usage).

Future research can include multiple relevant parameters to evaluate FNvs

and select the optimal TNv to process the task. One of the parameters is the

reputation of the FNv. Selecting the optimal TNv based on its reputation will

contribute to guarantee the trustworthiness and reliability of the chosen TNv.

c) Using the reputation value of the TNv as a feedback mechanism to

decide whether to form a future offloading request with it or not

As the SNv depends on the TNv to complete its offloaded tasks, it needs to

ensure that it forms a service level agreement (SLA) only with nodes that have

a record of committing to the offloaded tasks. This distinguishes a malicious

TNv from a reliable or trusted one to reduce offloading failures. One way of

doing this is to determine the social reputation of the TNv after the task of-

floading process, which represents the extent of the commitment to the formed

SLA within the prescribed deadline. This assessment will help other SNvs se-

lect the appropriate TNv. The objective of this requirement is to compute

this reputation value.

d) Predicting the future reputation of FNvs based on their participa-

tion

Currently, we compute reputation based on the offered reward for resource

sharing. In future work, another mechanism can be developed to predict the

future reputation of FNvs. Predicting the future reputation of FNvs will help

192

Chapter 8: Conclusion and future work

those nodes to make a decision on sharing their resources in the future, which

will reduce the delay resulting from the negotiation process on resource sharing.

e) Implementing our proposed iVFC system in a real VFC environment

In this research, we proposed the iVFC framework and developed a software

prototype to evaluate the proposed framework. Future work can build a real

VFC system that uses our proposed framework.

193

194

Bibliography

[1] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, “Urban planning and

building smart cities based on the internet of things using big data analytics,”

Computer Networks, vol. 101, pp. 63–80, 2016, industrial Technologies and

Applications for the Internet of Things.

[2] R. Stair and G. Reynolds, Principles of information systems. Cengage

Learning, 2020.

[3] D. Bandyopadhyay and J. Sen, “Internet of things: Applications and

challenges in technology and standardization,” Wireless personal

communications, vol. 58, pp. 49–69, 2011.

[4] J. Zhao, M. Kong, Q. Li, and X. Sun, “Contract-based computing resource

management via deep reinforcement learning in vehicular fog computing,”

IEEE Access, vol. 8, pp. 3319–3329, 2020.

[5] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog

computing: A viewpoint of vehicles as the infrastructures,” IEEE

Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873, 2016.

[6] C. Tang, C. Zhu, X. Wei, H. Peng, and Y. Wang, “Integration of uav and

fog-enabled vehicle: Application in post-disaster relief,” in 2019 IEEE 25th

International Conference on Parallel and Distributed Systems (ICPADS),

2019, pp. 548–555.

[7] Z. Zhou, H. Liao, X. Zhao, B. Ai, and M. Guizani, “Reliable task offloading

for vehicular fog computing under information asymmetry and information

Chapter 8: Conclusion and future work

uncertainty,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp.

8322–8335, 2019.

[8] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive

learning-based task offloading for vehicular edge computing systems,” IEEE

Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3061–3074, 2019.

[9] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge

computing and networking: A survey,” Mobile networks and applications,

vol. 26, pp. 1145–1168, 2021.

[10] Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,” in

2017 IEEE international conference on pervasive computing and

communications workshops (PerCom workshops). IEEE, 2017, pp. 6–9.

[11] X. Kui, Y. Sun, S. Zhang, and Y. Li, “Characterizing the capability of

vehicular fog computing in large-scale urban environment,” Mobile Networks

and Applications, vol. 23, pp. 1050–1067, 2018.

[12] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling

real-time traffic management for smart cities,” IEEE Wireless

Communications, vol. 26, no. 1, pp. 87–93, 2019.

[13] A. M. A. Hamdi, F. K. Hussain, and O. K. Hussain, “Task offloading in

vehicular fog computing: State-of-the-art and open issues,” Future Generation

Computer Systems, vol. 133, pp. 201–212, 2022.

[14] F. Lin, Y. Zhou, G. Pau, and M. Collotta, “Optimization-oriented resource

allocation management for vehicular fog computing,” IEEE Access, vol. 6, pp.

69 294–69 303, 2018.

[15] C. Zhu, G. Pastor, Y. Xiao, and A. Ylajaaski, “Vehicular fog computing for

195

Chapter 8: Conclusion and future work

video crowdsourcing: Applications, feasibility, and challenges,” IEEE

Communications Magazine, vol. 56, no. 10, pp. 58–63, 2018.

[16] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource management

approaches in fog computing: a comprehensive review,” Journal of Grid

Computing, vol. 18, no. 1, pp. 1–42, 2020.

[17] M. Kong, J. Zhao, X. Sun, and Y. Nie, “Secure and efficient computing

resource management in blockchain-based vehicular fog computing,” China

Communications, vol. 18, no. 4, pp. 115–125, 2021.

[18] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for

iot: Review, enabling technologies, and research opportunities,” Future

Generation Computer Systems, vol. 87, pp. 278–289, 2018.

[19] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, “Pora: Predictive

offloading and resource allocation in dynamic fog computing systems,” IEEE

Internet of Things Journal, vol. 7, no. 1, pp. 72–87, 2020.

[20] H. Liao, Z. Zhou, X. Zhao, B. Ai, and S. Mumtaz, “Task offloading for

vehicular fog computing under information uncertainty: A matching-learning

approach,” in 2019 15th International Wireless Communications & Mobile

Computing Conference (IWCMC). IEEE, 2019, pp. 2001–2006.

[21] Q. Wu, H. Liu, R. Wang, P. Fan, Q. Fan, and Z. Li, “Delay-sensitive task

offloading in the 802.11 p-based vehicular fog computing systems,” IEEE

Internet of Things Journal, vol. 7, no. 1, pp. 773–785, 2019.

[22] Y. Wu, J. Wu, G. Zhou, and L. Chen, “A direction-based vehicular network

model in vehicular fog computing,” in 2018 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computing, Scalable

Computing & Communications, Cloud & Big Data Computing, Internet of

196

Chapter 8: Conclusion and future work

People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018, pp.

585–589.

[23] S.-s. Lee and S. Lee, “Resource allocation for vehicular fog computing using

reinforcement learning combined with heuristic information,” IEEE Internet

of Things Journal, vol. 7, no. 10, pp. 10 450–10 464, 2020.

[24] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, “Pora: Predictive

offloading and resource allocation in dynamic fog computing systems,” IEEE

Internet of Things Journal, vol. 7, no. 1, pp. 72–87, 2019.

[25] T. Liu, J. Li, F. Shu, and Z. Han, “Optimal task allocation in vehicular fog

networks requiring urllc: An energy-aware perspective,” IEEE Transactions

on Network Science and Engineering, vol. 7, no. 3, pp. 1879–1890, 2019.

[26] T. Ye, X. Lin, J. Wu, G. Li, and J. Li, “Toward dynamic computation

offloading for data processing in vehicular fog based f-ran,” in 2019 IEEE

Fourth International Conference on Data Science in Cyberspace (DSC).

IEEE, 2019, pp. 196–201.

[27] C. Zhu, Y.-H. Chiang, A. Mehrabi, Y. Xiao, A. Ylä-Jääski, and Y. Ji,

“Chameleon: Latency and resolution aware task offloading for visual-based

assisted driving,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9,

pp. 9038–9048, 2019.

[28] Q. Wu, H. Ge, H. Liu, Q. Fan, Z. Li, and Z. Wang, “A task offloading scheme

in vehicular fog and cloud computing system,” IEEE Access, vol. 8, pp.

1173–1184, 2019.

[29] S. Iqbal, A. W. Malik, A. U. Rahman, and R. M. Noor, “Blockchain-based

197

Chapter 8: Conclusion and future work

reputation management for task offloading in micro-level vehicular fog

network,” IEEE Access, vol. 8, pp. 52 968–52 980, 2020.

[30] S. Keele et al., “Guidelines for performing systematic literature reviews in

software engineering,” 2007.

[31] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä-Jääski,

“Folo: Latency and quality optimized task allocation in vehicular fog

computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4150–4161,

2018.

[32] Z. Zhou, H. Liao, X. Zhao, B. Ai, and M. Guizani, “Reliable task offloading

for vehicular fog computing under information asymmetry and information

uncertainty,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp.

8322–8335, 2019.

[33] J. Zhao, M. Kong, Q. Li, and X. Sun, “Contract-based computing resource

management via deep reinforcement learning in vehicular fog computing,”

IEEE Access, vol. 8, pp. 3319–3329, 2019.

[34] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez,

“Computation resource allocation and task assignment optimization in

vehicular fog computing: A contract-matching approach,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 4, pp. 3113–3125, 2019.

[35] J. Xie, Y. Jia, Z. Chen, Z. Nan, and L. Liang, “Efficient task completion for

parallel offloading in vehicular fog computing,” China Communications,

vol. 16, no. 11, pp. 42–55, 2019.

[36] S. Zhou, Y. Sun, Z. Jiang, and Z. Niu, “Exploiting moving intelligence:

Delay-optimized computation offloading in vehicular fog networks,” IEEE

Communications Magazine, vol. 57, no. 5, pp. 49–55, 2019.

198

Chapter 8: Conclusion and future work

[37] Z. Wang, Z. Zhong, and M. Ni, “Application-aware offloading policy using

smdp in vehicular fog computing systems,” in 2018 IEEE international

conference on communications workshops (ICC Workshops). IEEE, 2018, pp.

1–6.

[38] A. U. Rahman, A. W. Malik, V. Sati, A. Chopra, and S. D. Ravana,

“Context-aware opportunistic computing in vehicle-to-vehicle networks,”

Vehicular Communications, vol. 24, p. 100236, 2020.

[39] Y.-D. Lin, J.-C. Hu, B. Kar, and L.-H. Yen, “Cost minimization with

offloading to vehicles in two-tier federated edge and vehicular-fog systems,” in

2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). IEEE,

2019, pp. 1–6.

[40] M. Ran and X. Bai, “Vehicle cooperative network model based on hypergraph

in vehicular fog computing,” Sensors, vol. 20, no. 8, p. 2269, 2020.

[41] H. Li, X. Li, and W. Wang, “Joint optimization of computation cost and

delay for task offloading in vehicular fog networks,” Transactions on Emerging

Telecommunications Technologies, vol. 31, no. 2, p. e3818, 2020.

[42] C. Xu, Y. Wang, Z. Zhou, B. Gu, V. Frascolla, and S. Mumtaz, “A

low-latency and massive-connectivity vehicular fog computing framework for

5g,” in 2018 IEEE Globecom Workshops (GC Wkshps). IEEE, 2018, pp. 1–6.

[43] X. Huang, D. Ye, R. Yu, and L. Shu, “Securing parked vehicle assisted fog

computing with blockchain and optimal smart contract design,” IEEE/CAA

Journal of Automatica Sinica, vol. 7, no. 2, pp. 426–441, 2020.

[44] Z. Rejiba, X. Masip-Bruin, and E. Maŕın-Tordera, “Computation task

assignment in vehicular fog computing: A learning approach via neighbor

199

Chapter 8: Conclusion and future work

advice,” in 2019 IEEE 18th International Symposium on Network Computing

and Applications (NCA). IEEE, 2019, pp. 1–5.

[45] Z. Ning, P. Dong, X. Wang, L. Guo, J. J. Rodrigues, X. Kong, J. Huang, and

R. Y. Kwok, “Deep reinforcement learning for intelligent internet of vehicles:

An energy-efficient computational offloading scheme,” IEEE Transactions on

Cognitive Communications and Networking, vol. 5, no. 4, pp. 1060–1072, 2019.

[46] C. Tang, C. Zhu, X. Wei, H. Peng, and Y. Wang, “Integration of uav and

fog-enabled vehicle: application in post-disaster relief,” in 2019 IEEE 25th

international conference on parallel and distributed systems (ICPADS).

IEEE, 2019, pp. 548–555.

[47] X. Wu, S. Zhao, R. Zhang, and L. Yang, “Mobility prediction-based joint task

assignment and resource allocation in vehicular fog computing,” in 2020 IEEE

Wireless Communications and Networking Conference (WCNC). IEEE,

2020, pp. 1–6.

[48] S. Mu, Z. Zhong, and M. Ni, “Multi-destination computation offloading in

vehicular networks,” in 2018 14th International Wireless Communications &

Mobile Computing Conference (IWCMC). IEEE, 2018, pp. 446–451.

[49] T. Ye, X. Lin, J. Wu, G. Li, and J. Li, “Processing capability and qoe driven

optimized computation offloading scheme in vehicular fog based f-ran,” World

Wide Web, vol. 23, pp. 2547–2565, 2020.

[50] T. Halabi and M. Zulkernine, “Reliability-driven task assignment in vehicular

crowdsourcing: A matching game,” in 2019 49th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks Workshops

(DSN-W). IEEE, 2019, pp. 78–85.

200

Chapter 8: Conclusion and future work

[51] W. Chen, Z. Su, Q. Xu, T. H. Luan, and R. Li, “Vfc-based cooperative uav

computation task offloading for post-disaster rescue,” in IEEE INFOCOM

2020-IEEE Conference on Computer Communications. IEEE, 2020, pp.

228–236.

[52] Y. Wu, J. Wu, L. Chen, G. Zhou, and J. Yan, “Fog computing model and

efficient algorithms for directional vehicle mobility in vehicular network,”

IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp.

2599–2614, 2020.

[53] C. Tang, X. Wei, C. Zhu, Y. Wang, and W. Jia, “Mobile vehicles as fog nodes

for latency optimization in smart cities,” IEEE Transactions on Vehicular

Technology, vol. 69, no. 9, pp. 9364–9375, 2020.

[54] C. Liu, K. Liu, H. Ren, Y. Zhou, L. Feng, S. Guo, and V. Lee, “Enabling

safety-critical and computation-intensive iov applications via vehicular fog

computing,” in 2019 15th International Conference on Mobile Ad-Hoc and

Sensor Networks (MSN). IEEE, 2019, pp. 378–383.

[55] B. Yang, M. Sun, X. Hong, and X. Guo, “A deadline-aware offloading scheme

for vehicular fog computing at signalized intersection,” in 2020 IEEE

International Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops). IEEE, 2020, pp. 1–6.

[56] C. Liu, K. Liu, S. Guo, R. Xie, V. C. Lee, and S. H. Son, “Adaptive offloading

for time-critical tasks in heterogeneous internet of vehicles,” IEEE Internet of

Things Journal, vol. 7, no. 9, pp. 7999–8011, 2020.

[57] I. Sorkhoh, D. Ebrahimi, C. Assi, S. Sharafeddine, and M. Khabbaz, “An

infrastructure-assisted workload scheduling for computational resources

201

Chapter 8: Conclusion and future work

exploitation in the fog-enabled vehicular network,” IEEE Internet of Things

Journal, vol. 7, no. 6, pp. 5021–5032, 2020.

[58] H. Liao, Y. Mu, Z. Zhou, M. Sun, Z. Wang, and C. Pan, “Blockchain and

learning-based secure and intelligent task offloading for vehicular fog

computing,” IEEE Transactions on Intelligent Transportation Systems,

vol. 22, no. 7, pp. 4051–4063, 2020.

[59] S. A. Kazmi, T. N. Dang, I. Yaqoob, A. Manzoor, R. Hussain, A. Khan, C. S.

Hong, and K. Salah, “A novel contract theory-based incentive mechanism for

cooperative task-offloading in electrical vehicular networks,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp.

8380–8395, 2021.

[60] O. Nazih, N. Benamar, and A. Addaim, “An incentive mechanism for

computing resource allocation in vehicular fog computing environment,” in

2020 International Conference on Innovation and Intelligence for Informatics,

Computing and Technologies (3ICT). IEEE, 2020, pp. 1–5.

[61] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-latency

tradeoff for dynamic computation offloading in vehicular fog computing,”

IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp.

14 198–14 211, 2020.

[62] A. Lakhan, M. Ahmad, M. Bilal, A. Jolfaei, and R. M. Mehmood, “Mobility

aware blockchain enabled offloading and scheduling in vehicular fog cloud

computing,” IEEE Transactions on Intelligent Transportation Systems,

vol. 22, no. 7, pp. 4212–4223, 2021.

[63] J. Shi, J. Du, J. Wang, J. Wang, and J. Yuan, “Priority-aware task offloading

202

Chapter 8: Conclusion and future work

in vehicular fog computing based on deep reinforcement learning,” IEEE

Transactions on Vehicular Technology, vol. 69, no. 12, pp. 16 067–16 081, 2020.

[64] C. Liu, K. Liu, X. Xu, H. Ren, F. Jin, and S. Guo, “Real-time task offloading

for data and computation intensive services in vehicular fog computing

environments,” in 2020 16th International Conference on Mobility, Sensing

and Networking (MSN). IEEE, 2020, pp. 360–366.

[65] S. Vemireddy and R. R. Rout, “Fuzzy reinforcement learning for energy

efficient task offloading in vehicular fog computing,” Computer Networks, vol.

199, p. 108463, 2021.

[66] Z. Liu, P. Dai, H. Xing, Z. Yu, and W. Zhang, “A distributed algorithm for

task offloading in vehicular networks with hybrid fog/cloud computing,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp.

4388–4401, 2021.

[67] A. Chopra, A. U. Rahman, A. W. Malik, and S. D. Ravana,

“Adaptive-learning-based vehicle-to-vehicle opportunistic resource-sharing

framework,” IEEE Internet of Things Journal, vol. 9, no. 14, pp.

12 497–12 504, 2021.

[68] M. Ibrar, A. Akbar, S. R. U. Jan, M. A. Jan, L. Wang, H. Song, and N. Shah,

“Artnet: Ai-based resource allocation and task offloading in a reconfigurable

internet of vehicular networks,” IEEE Transactions on Network Science and

Engineering, vol. 9, no. 1, pp. 67–77, 2020.

[69] S. A. Kazmi, T. M. Ho, T. T. Nguyen, M. Fahim, A. Khan, M. J. Piran, and

G. Baye, “Computing on wheels: A deep reinforcement learning-based

approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,

no. 11, pp. 22 535–22 548, 2022.

203

Chapter 8: Conclusion and future work

[70] I. Sarkar and S. Kumar, “Delay-aware intelligent task offloading strategy in

vehicular fog computing,” in 2022 International Conference on Connected

Systems & Intelligence (CSI). IEEE, 2022, pp. 1–6.

[71] Z. Wei, B. Li, R. Zhang, X. Cheng, and L. Yang, “Dynamic many-to-many

task offloading in vehicular fog computing: A multi-agent drl approach,” in

GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE,

2022, pp. 6301–6306.

[72] Z. Gao, L. Yang, and Y. Dai, “Fast adaptive task offloading and resource

allocation via multiagent reinforcement learning in heterogeneous vehicular

fog computing,” IEEE Internet of Things Journal, vol. 10, no. 8, pp.

6818–6835, 2022.

[73] J. Shi, J. Du, J. Wang, and J. Yuan, “Federated deep reinforcement

learning-based task allocation in vehicular fog computing,” in 2022 IEEE 95th

Vehicular Technology Conference:(VTC2022-Spring). IEEE, 2022, pp. 1–6.

[74] Y. Li, B. Yang, H. Wu, Q. Han, C. Chen, and X. Guan, “Joint offloading

decision and resource allocation for vehicular fog-edge computing networks: A

contract-stackelberg approach,” IEEE Internet of Things Journal, vol. 9,

no. 17, pp. 15 969–15 982, 2022.

[75] K. Wang, Y. Tan, Z. Shao, S. Ci, and Y. Yang, “Learning-based task

offloading for delay-sensitive applications in dynamic fog networks,” IEEE

Transactions on Vehicular Technology, vol. 68, no. 11, pp. 11 399–11 403, 2019.

[76] F. Arena, G. Pau, and A. Severino, “An overview on the current status and

future perspectives of smart cars,” Infrastructures, vol. 5, no. 7, p. 53, 2020.

[77] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning

204

Chapter 8: Conclusion and future work

for big data processing,” EURASIP Journal on Advances in Signal

Processing, vol. 2016, pp. 1–16, 2016.

[78] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and

H. Arshad, “State-of-the-art in artificial neural network applications: A

survey,” Heliyon, vol. 4, no. 11, 2018.

[79] R. Bělohlávek and G. J. Klir, Concepts and fuzzy logic. MIT press, 2011.

[80] K.-S. Chan and J. D. Cryer, Time series analysis with applications in R.

Springer, 2008.

[81] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design

science research methodology for information systems research,” Journal of

management information systems, vol. 24, no. 3, pp. 45–77, 2007.

[82] S. Noreen and N. Saxena, “A review on game-theoretic incentive mechanisms

for mobile data offloading in heterogeneous networks,” IETE Technical

Review, vol. 34, no. sup1, pp. 15–26, 2017.

[83] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.

Janovsky, V. A. Kamaev et al., “A survey of forecast error measures,” World

applied sciences journal, vol. 24, no. 24, pp. 171–176, 2013.

[84] Z. ur Rehman, O. K. Hussain, and F. K. Hussain, “Iaas cloud selection using

mcdm methods,” in 2012 IEEE Ninth international conference on e-business

engineering. IEEE, 2012, pp. 246–251.

[85] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, 2016, pp. 785–794.

205

Chapter 8: Conclusion and future work

[86] “Gwa-t-12 bitbrains,” http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains,

2015, accessed: 2023-01-30.

[87] S. Shen, V. Van Beek, and A. Iosup, “Statistical characterization of

business-critical workloads hosted in cloud datacenters,” in 2015 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

IEEE, 2015, pp. 465–474.

[88] J. Chilberto, S. Zaal, G. Aroraa, E. Price, J. Chilberto, S. Zaal, G. Aroraa,

and E. Price, “Exploring the azure portal,”

https://doi.org/10.1007/978-1-4842-5437-0 2, 2015.

[89] S. Tarannum and S. Jabin, “A comparative study on fuzzy logic and

intuitionistic fuzzy logic,” in 2018 International Conference on Advances in

Computing, Communication Control and Networking (ICACCCN). IEEE,

2018, pp. 1086–1090.

[90] E. H. Mamdani, “Application of fuzzy algorithms for control of simple

dynamic plant,” in Proceedings of the institution of electrical engineers, vol.

121, no. 12. IET, 1974, pp. 1585–1588.

[91] O. Caelen, “A bayesian interpretation of the confusion matrix,” Annals of

Mathematics and Artificial Intelligence, vol. 81, no. 3-4, pp. 429–450, 2017.

[92] A. Abdel-Hafez, Y. Xu, and A. Jøsang, “A normal-distribution based

reputation model,” in Trust, Privacy, and Security in Digital Business: 11th

International Conference, TrustBus 2014, Munich, Germany, September 2-3,

2014. Proceedings 11. Springer, 2014, pp. 144–155.

[93] “Welcome to Colab!, howpublished = https://colab.research.google.com, note

= Accessed: 2023-07-18.”

206

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
https://doi.org/10.1007/978-1-4842-5437-0_2
https://colab.research.google.com

Chapter 8: Conclusion and future work

[94] E. Bisong and E. Bisong, “Google colaboratory,” Building machine learning

and deep learning models on google cloud platform: a comprehensive guide for

beginners, pp. 59–64, 2019.

[95] A. M. Mostafa, “An mcdm approach for cloud computing service selection

based on best-only method,” IEEE Access, vol. 9, pp. 155 072–155 086, 2021.

[96] T. L. Saaty, “How to make a decision: the analytic hierarchy process,”

European journal of operational research, vol. 48, no. 1, pp. 9–26, 1990.

[97] J. Sidhu and S. Singh, “Improved topsis method based trust evaluation

framework for determining trustworthiness of cloud service providers,”

Journal of Grid Computing, vol. 15, pp. 81–105, 2017.

[98] S. Chakraborty, “Topsis and modified topsis: A comparative analysis,”

Decision Analytics Journal, vol. 2, p. 100021, 2022.

[99] U. Michelucci, Applied Deep Learning with TensorFlow 2: Learn to Implement

Advanced Deep Learning Techniques with Python. Springer, 2022.

207

	Certificate
	Abstract
	Acknowledgments
	List of Publications
	List of Figures
	List of Tables
	Abbreviation
	Introduction
	Introduction
	The potential of IoT in the internet of vehicles (IoV)
	IoV and the emergence of vehicular fog computing (VFC)
	The concept of vehicular fog computing (VFC)
	Vehicular fog computing architecture
	Resource management in VFC

	Task offloading in VFC and its related issues
	Aim of this Thesis
	Scope of this thesis
	Significance of the thesis
	Scientific contributions
	Social contributions

	Plan of the thesis
	Conclusion

	A Systematic Literature Review
	Introduction
	SLR contributions
	Key requirements needed to form an SLA during the task offloading process
	Systematic review protocol
	Searching the literature
	Defining the inclusion and exclusion criteria
	Quality assessment of the shortlisted articles
	Shortlisted papers for the SLR and their classification into the broad areas

	Analysis of the shortlisted papers against the requirements of task offloading in VFC
	Analysis of papers in the category of task offloading in VFC
	Analysis of papers in the category of fog node selection
	Analysis of papers in the category of QoS assessment

	Open research issues
	Limitations of this SLR
	Conclusion

	Problem Definition
	Introduction
	Key definitions
	Problem definition
	Research Questions
	Research Question 1 (RQ1)
	Research Question 2 (RQ2)
	Research Question 3 (RQ3)
	Research Question 4 (RQ4)

	Research objectives
	Research Objective 1
	Research Objective 2
	Research Objective 3
	Research Objective 4

	Conclusion

	Research Methodology and Solution Overview
	Introduction
	Key definitions
	Selected Research Methodology
	Overview of the proposed iVFC solution
	Architecture of the iVFC
	Overview of the proposed iVFC framework

	Overview of the solution for research objective 1 (RO1)
	Overview of the solution for research objective 2 (RO2)
	Overview of the solution for the research objective 3 (RO3)
	Evaluation and validation of the proposed iVFC solution (RO 4)
	The validation steps for the solution to research objective 1 (RO1)
	The validation steps for the solution to research objective 2 (RO2)
	The validation steps for the solution to research objective 3 (RO3)

	Conclusion

	A proactive-based task offloading in VFC using machine learning prediction techniques
	Introduction
	The proposed framework of the iVFC-predictive analytic module
	Workload observation
	Workload prediction
	The overloading decision

	Evaluation of the proposed iVFC-predictive analytic module
	Dataset
	The experimental setup and implementation
	Evaluation metrics

	Results and discussion
	Conclusion

	An incentive-based framework for task offloading in VFC
	Introduction
	The proposed framework of the iVFC-incentive module
	Mathematical formulation of the solution for the proposed iVFC-incentive module using Stackelberg game theory
	Evaluation of the proposed iVFC-incentive module
	Dataset
	The selected implementation platform
	The experimental setup and implementation
	Evaluation metrics

	Results and discussion
	Conclusion

	An intelligent framework for target node vehicle selection in the iVFC system
	Introduction
	The proposed framework of the iVFC-TNv selection module
	Evaluation of the proposed iVFC-TNv selection module
	Dataset
	The selected implementation platform
	The experimental set up and implementation
	Evaluation metrics

	Results and discussion
	Evaluation of the TOPSIS method
	Evaluation of the XGBoost method
	Evaluation of the DNNs method
	Comparison of the three methods used to develop the iVFC-TNv selection module

	Conclusion

	Conclusion and future work
	Introduction
	Problems addressed in this thesis
	Contributions to the existing literature
	Systematic literature review (SLR)
	Development of a novel framework called iVFC for task offloading in VFC
	Evaluation and validation of the proposed framework

	Conclusion and future work

