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ABSTRACT

H
eterogeneous federated learning without assuming any structure is chal-

lenging due to the conflicts among non-identical data distributions of clients.

In practice, clients often comprise near-homogeneous clusters so training a

server-side model per cluster mitigates the conflicts, which is called clustered FL. With

new insights and perspectives, we propose a unified bi-level optimization framework for

clustered FL methodologies.

Based on this, we present a fundamental method called Weighted Clustered Federated

Learning (WeCFL). Additionally, we introduce a novel theoretical analysis framework for

its convergence analysis. This framework factors in the clusterability among clients to

measure the effects of intra-cluster non-IIDness, and a linear convergence rate of O(1/T)

is achieved.

To enhance the robustness of clustering, we propose a methodology termed Clustered

FL with Contrastive Learning (CFL-CON), which can be integrated into our previously

proposed clustered FL frameworks and many other clustered FL methods. We propose

two variants based on the space of representation and parameters respectively.

To address the lack of knowledge sharing due to robust clustering and to improve

performance, we propose another generic add-on technique, Clustered FL with Clustered

Knowledge Sharing (CFL-CKS). We conduct a theoretical analysis of the term’s simplifi-

cation, convergence, and interpretation, providing a comprehensive understanding.

Furthermore, to bridge the trade-off between these two add-ons, we propose Clustered

iv



FL with Contrastive Learning and Clustered Knowledge Sharing (CFL-CON&CKS).

This method applies contrastive learning to the head of the neural network to create

distance, and knowledge sharing to the backbone of the neural network to facilitate

knowledge sharing.

Lastly, to address the problem of clustering collapse and to stabilize clustered FL,

we propose Clustered Additive Modeling (CAM). This method applies a globally shared

model along with the cluster-wise models. The global model captures the features shared

by all clusters, so cluster-wise models are enforced to focus on the differences among

clusters. The asymptotic convergence rate of O(1/
p

T ) is proved.

Experimental simulations also demonstrate the superiority of our methods in terms

of robustness, stability of clustering, effectiveness in mitigating clustering collapse and

performance. All methods are implemented with unified datasets, non-IID settings,

models, optimizers, baselines, as detailed in the appendix, to ensure consistency. The

code framework, FedBase, has been open-sourced via PyPI * and GitHub †.

Keywords: Federated Learning, Clustering structure, Unified framework, Convergence analysis,

Contrastvie learning, Knowledge sharing, Additive modeling.

*https://pypi.org/project/fedbase
†https://github.com/jie-ma-ai/FedBase

v



LIST OF PUBLICATIONS

Conference

1. Ma, J., Xie, M., & Long, G. (2022, November). Personalized Federated Learning

with Robust Clustering Against Model Poisoning. In Advanced Data Mining and

Applications: 18th International Conference, ADMA 2022, Brisbane, QLD, Australia,

November 28-30, 2022, Proceedings, Part II (pp. 238-252). Cham: Springer Nature

Switzerland. (Best Paper Award of ADMA 2022).

2. Xie, M.∗, MA, J.*, Long, G., & Zhang, C. (2023, February). Robust Clustered

Federated Learning with Bootstrap Median-of-Means. In Web and Big Data: 6th

International Joint Conference, APWeb-WAIM 2022, Nanjing, China, November

25-27, 2022, Proceedings, Part I (pp. 237-250). Cham: Springer Nature Switzerland.

(APWEB-WAIM 2022).

3. Ma, J., Zhou, T., Long, G., Jiang, J., & Zhang, C. (2023) Structured Federated

Learning through Clustered Additive Modeling. (NeurIPS-2023).

4. Ma, J., Long, G., Jiang, J., & Zhang, C. (2023) Enhancing Clustered Federated

Learning: An Add-On Leveraging Contrastive Learning and Knowledge Sharing.

(To be submitted to IJCAI-PRICAI-2024).

*Equal contributions.

vi



5. Yang, Y., Jiang, J., Zhou, T., Ma, J., & Shi, Y. (2021). Pareto policy pool for model-

based offline reinforcement learning. In International Conference on Learning

Representations. (ICLR-2022).

6. Tan, Y., Long, G., Ma, J., Liu, L., Zhou, T., & Jiang, J. (2022). Federated learn-

ing from pre-trained models: A contrastive learning approach. arXiv preprint

arXiv:2209.10083. (NeurIPS-2022).

Journal

1. Ma, J., Long, G., Zhou, T., Jiang, J., & Zhang, C. (2022). On the convergence of

clustered federated learning. arXiv preprint arXiv:2202.06187. (Under revision of

TNNLS).

vii



TABLE OF CONTENTS

List of Publications vi

List of Figures xii

List of Tables xv

Abbreviation xviii

Notations xx

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Clustered FL with non-IID . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Taxonomy of Clustered FL . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 More Challenges in Clustered FL . . . . . . . . . . . . . . . . . . . . 8

1.2 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 17

2.1 Formulation of FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 FL with Non-IID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Convergence Analysis of FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Robust Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



TABLE OF CONTENTS

2.5 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Multi-task Learning in FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Additive modeling in FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 A Unified Framework of Clustered Federated Learning 25

3.1 A New Perspective for Clustered FL . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 A Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Convergence Analysis of C . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Convergence Analysis of F . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Datasets and Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Baseline and system settings . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Comparison study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.3 Clustering study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Clustered Federated Learning with Robustness: a Contrastive Learn-

ing Approach 48

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



TABLE OF CONTENTS

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Clustered Federated Learning with Improved Performance: a Knowl-

edge Sharing Approach 58

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Equality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.5 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Bridging the trade-off between Contrastive Learning and Knowledge

Sharing within Clustered Federated Learning 73

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4.2 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



TABLE OF CONTENTS

7 Clustered Additive Modeling for More Stable Clustered Federated

Learning 83

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Clustered Additive Modeling (CAM) . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 IFCA-CAM: model performance-driven clustering . . . . . . . . . . 86

7.2.2 FeSEM-CAM: parameter similarity-based clustering . . . . . . . . 88

7.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.2 Main Results and Comparisons . . . . . . . . . . . . . . . . . . . . . 96

7.4.3 Visualization: CAM combats clustering collapse . . . . . . . . . . . 99

7.4.4 Comparison with Ensemble Mehtods . . . . . . . . . . . . . . . . . . 101

7.4.5 Ablation Study of Warmup and Cost . . . . . . . . . . . . . . . . . . 103

7.4.6 More Clustering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Conclusion and Future works 108

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Appendix 112

A.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2 Dataset Partition Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3 Details of Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 118

xi



LIST OF FIGURES

FIGURE Page

1.1 The hierarchical structure of FL to Clustered FL. . . . . . . . . . . . . . . . . . . . . 2

1.2 A toy example of client-wise and cluster-wise non-IID settings. Color labels represent

ten classes, and the length of the bar represents the # of instances. . . . . . . . . . . 6

1.3 An example of clustering collapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Mapping of research problems to methods. . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The framework and processes of WeCFL. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Convergence of clustered FL methods on CIFAR-10 under the (3,2)-class cluster-

wise non-IID setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Convergence of WeCFL on Fashion-MNIST under the α= (0.1,10) cluster-wise

non-IID setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Cosine similarity heatmap of 10 clusters’ centroids (left) and 20 clients in a

cluster (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 T-SNE visualization of clustering results on the Fashion-MNIST in the first four

communication rounds under the α= (0.1,10) cluster-wise non-IID setting, generated

by 200 clients across K = 10 clusters. Different colors represent different cluster

labels. The order is left-to-right then top-to-bottom. . . . . . . . . . . . . . . . . . . . 45

xii



LIST OF FIGURES

3.6 T-SNE visualization of clustering results in the first four communication rounds on

the Fashion-MNIST under the α= (0.1,10) cluster-wise non-IID setting, generated by

200 clients across K = 3 clusters. Different colors represent different cluster labels.

The order is left-to-right then top-to-bottom. . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 A schematic diagram that shows how contrastive learning works in clustered FL,

which enhances the intra-cluster similarity shown by inward arrows and inter-cluster

dissimilarity shown by outward arrows. . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 A toy example of CKS. The grey and green bidirectional arrows represent Term 5.5

and 5.6, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 A toy example of Assumption 5.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 The framework of CFL-CON&CKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Test accuracy and macro-F1 (mean±std) of IFCA/FeSEM (w/o CAM) and IFCA/FeSEM

(CAM) in cluster non-IID settings on CIFAR-10 dataset. “IFCA(5)” represents IFCA

with K = 5 clusters. CAM consistently brings substantial improvement to

IFCA/FeSEM on both metrics and in both settings. . . . . . . . . . . . . . . . . 98

7.2 Test accuracy and macro-F1 (mean±std) of IFCA/FeSEM (w/o CAM) and IFCA/FeSEM

(CAM) in client-wise non-IID settings on CIFAR-10 dataset. “IFCA(5)” represents

IFCA with K = 5 clusters. CAM consistently brings substantial improvement

to IFCA/FeSEM on both metrics and in both settings. . . . . . . . . . . . . . . 100

7.3 Cluster sizes during IFCA vs. IFCA+CAM in client/cluster-wise non-IID settings

on CIFAR-10. Legend: cluster ID (cluster size) in the last round. CAM effectively

mitigates clustering collapse/imbalance. . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Cluster sizes during FeSEM vs. FeSEM+CAM in client/cluster-wise non-IID settings

on CIFAR-10. Legend: cluster ID (cluster size) in the last round. CAM effectively

mitigates clustering collapse/imbalance. . . . . . . . . . . . . . . . . . . . . . . 102

xiii



LIST OF FIGURES

7.5 A Clustering change example for IFCA-CAM with client-wise non-IID and K = 10 on

CIFAR-10. Note that there are 200 lines in this graph, and each represents a client.

The bold line in this figure is the combination of lines of clients within one cluster.

After five rounds, the clustering remains stable. . . . . . . . . . . . . . . . . . 105

7.6 A skewed non-IID setting example on CIFAR-10. Legends represent labels of the

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.7 In the context of the highly-skewed clustering scenario depicted in Figure 7.6, the

differences between IFCA-CAM’s clustering and the actual ground truth remain

minimal. Conversely, the clustering of IFCA easily collapses into a single cluster. The

right y-axis indicates the cluster id. The color represents the ground truth, while the

lines indicate the transition from the original ground truth to the clustering through

CAM. Notably, CAM also demonstrates its capability to alleviate clustering

collapse and imbalance in skewed clustering settings successfully. . . . . . . 107

A.1 An example visualization of non-IID partitioning methods of client-wise non-IID by

Dirichlet distribution (α= 0.1) on the Fashion-MNIST. . . . . . . . . . . . . . . . . . 114

A.2 An example visualization of non-IID partitioning methods of cluster-wise non-IID by

Dirichlet distribution (α= (0.1,10)) on the Fashion-MNIST. . . . . . . . . . . . . . . 115

A.3 An example visualization of non-IID partitioning methods of client-wise non-IID by

n-class (2) on the Fashion-MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4 An example visualization of non-IID partitioning methods of cluster-wise non-IID by

n-class (3, 2) on the Fashion-MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xiv



LIST OF TABLES

TABLE Page

1.1 Taxonomy of Clustered FL based on its characteristics g . . . . . . . . . . . . . 8

3.1 Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Test results (mean±std) in client-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Test results (mean±std) in client-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xv



LIST OF TABLES

5.1 Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Test results (mean±std) in client-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Test results (mean±std) in client-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1 Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST

& CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Test results (mean±std) in client-wise non-IID settings on PathMNIST &

TissueMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 More comparison, CIFAR-10 cluster-wise non-IID (Dirichlet), K = 10 . . . . . 103

xvi



LIST OF TABLES

7.6 Ablation study of warmup round numbers for performance and cost using

“FedAvg” as the measuring unit (Other settings: CIFAR-10 dataset, IFCA [30],

client-wise non-IID with Dirichlet distribution α= 0.1, Cluster number K = 10).105

A.1 Detailed structure of the CNN for Fashion-MNIST. . . . . . . . . . . . . . . . . 114

A.2 Detailed structure of the CNN for CIFAR-10. . . . . . . . . . . . . . . . . . . . . 115

A.3 Detailed structure of the CNN for PathMNIST. . . . . . . . . . . . . . . . . . . 116

A.4 Detailed structure of the CNN for TissueMNIST. . . . . . . . . . . . . . . . . . 117

xvii



ABBREVIATION

FL Federated Learning

GFL Generic federated learning

HFL Horizontal federated learning

VFL Vertical federated learning

FTL Federated transfer learning

PFL General personalized Federated Learning methods

Clustered FL General clustered Federated Learning methods

CFL One clustered FL method proposed by [74]

IID Independent and identically distributed

non-IID Not independent and identically distributed

CNN Convolutional neural network

SGD Stochastic gradient descent

FMTL Federated multi-task leraning

MOM Median-of-means

KL divergence Kullback-Leibler divergence

FedAvg First FL algorithm proposed by Google [67]

FedProx A FL algorithm proposed by [51]

DCFL Dynamic Clustering Federated Learning [12]

FLSC Federated Learning with Soft Clustering [48]

IFCA Iterative Federated Clustering Algorithm proposed by [30]

xviii



ABBREVIATION

FeSEM One clustered FL method called Federated Stochastic Expec-

tation Maximization proposed by [94]

WeCFL Weighted Clustered Federated Learning framework proposed

by [62]

CFL-CON, CON A contrastive learning method in clustered FL proposed in

Chapter 4

CFL-CON-rep A contrastive learning method based on representations in

clustered FL proposed in Chapter 4

CFL-CON-para A contrastive learning method based on model parameters in

clustered FL proposed in Chapter 4

CFL-CKS, CKS A clustered Knowledge Sharing method in clustered FL pro-

posed in Chapter 5

CFL-CON&CKS A method combining CFL-CON and CFL-CKS in clustered FL

proposed in Chapter 6

CAM Clustered Additive Modelling

AFL Additive FL

LLM Large Language Model

LOF Local outlier factor

xix



NOTATIONS

General Notations

{·} A set

R The set of real numbers

A\B Set subtraction. Set of elements in A but not in B.

E[·] Expectation

d(·, ·) The general form of distance function

∥ ·∥p Lp norm

∇x f Gradient of f with respect to x

ϵ The error bound

· The dot product

FL Notations

m Number of clients in FL system

D i The dataset Client i

X The Features space of FL system

Y The label space of FL system

I The sample ID space of FL system

|D i| The dataset size of Client i

ξ, (X ,Y ) A random sample drawn from D i

hi Hypothesis or model of Client i

xx



NOTATIONS

H Global hypothesis or model with no subscripts

θi Parameters of hi

Θg The parameters of global model in FL

ℓi Loss function of Client i

L Global Loss function with no subscripts

ψi The importance weight of Client i, and
∑

i∈k ψi = 1

Q Number of local update steps

T Number of communication rounds

η(t)
i The learning rate for Client i in Communication Round t

g i General form of characteristics of Client i depending on hi, θi, D i,

etc.

F The overall objective to optimize of FL

U The bound of gradient defined in Assumption 3.4.1

B The clusterability measure defined in Definition 3.4.7

x(t,E) The state of x at the Expecation step of Round t in Algorithm 1

x(t,M) The state of x at the Maximization step of Round t in Algorithm 1

x(t,L) The state of x at the Local update step of Round t in Algorithm 1

Clustering Notations

K Number of clusters

r i,k ∈Rm∗K The assignment matrix, r i,k = 1 if i ∈ k else r i,k = 0

i ∈ k Client i belongs to Cluster k

Hk Hypothesis or model of Cluster k

Θk Parameters of Hk

Lk Loss function of Cluster k

xxi



NOTATIONS

Gk General form of characteristics of Cluster k depending on Hk, Θk,

etc.

C The overall objective to optimize of the clustering

CFL-CON Notations

T The function of the contrastive loss

µ The coefficient of Contrastive loss

τ The temperature of Contrastive loss

CFL-CKS Notations

S A penalty term to share knowledge, a.k.a. the CKS loss

λ The coefficient of CKS loss

CFL-CON&CKS Notations

θi,r The subscript of r represents the parameters of representation

layers or the backbone.

θi,p The subscript of p represents the parameters of projection layers

or the head.

CAM Notations

f The globally shared model for CAM.

ni The dataset size of Client i and equals |D i|.
n Sum of dataset size of all clients.

θ0 Parameters of local models for updating the global model of CAM.

c(i) The cluster label of Client i.

Ck The set of clients in Cluster k.

xxii



NOTATIONS

w Number of warmup rounds.

β Level of function smoothness.

nk Number of clients of Cluster k.

s Sample size of all clients.

sk Sample size of clients in Cluster k.

xxiii



C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Background

1.1.1 Federated Learning

D
eep learning [44] has experienced significant growth since 2015, but with

the increase in data, training times have also become longer. To address this

issue, Distributed Learning (DL) was proposed, which involves distributing

data across multiple devices to optimize training time. However, traditional DL in-

volves centralizing the data, which can raise concerns about privacy and communication

efficiency.

To address these concerns, Federated Learning (FL) [67] was introduced in 2017

as a cutting-edge distributed or collaborative machine learning framework. FL allows

for training machine learning models without requiring the data to be centralized

or transferred to a central server. Instead, models are trained locally on each device,

and only model updates (i.e., gradients) are transmitted and aggregated by a central
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server, thereby reducing the risk of exposing raw data to other devices. FL has become

increasingly important as data privacy and communication efficiency have become top

priorities. Since its propose, FL has evolved into a new-generation collaborative machine

learning framework with applications in a range of scenarios, including Google’s Gboard

on Android [67], Apple’s Siri [23], computer visions [33, 37, 61], smart cities [108], finance

[60], weather forecasting [13] and healthcare [59, 73, 97]. And the hierarchical structure

and development history of FL to Clustered FL is demonstrated in Figure 1.1.

Figure 1.1: The hierarchical structure of FL to Clustered FL.

Given the complexities inherent in a distributed system, there are various applica-

tions for FL. One way to classify FL is based on the number and type of participating

clients, dividing it into two categories: cross-device FL and cross-silo FL, as outlined by
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Huang et al. [36]. In cross-device FL, the clients consist of smaller distributed entities

such as smartphones, wearables, and edge devices, each of which likely possesses only a

modest amount of local data. Consequently, successful cross-device FL typically requires

the participation of a vast number of edge devices, potentially up to millions, in the train-

ing process. Conversely, in cross-silo FL, the clients are larger entities, like companies or

organizations, including hospitals and banks. Here, the number of participating clients

is significantly smaller, ranging from just two to a hundred, but each client is expected

to be actively involved throughout the entire training process.

FL can also be categorized based on the variability in the training datasets across

different clients. In the FL system with m clients, the comprehensive training dataset D

can be represented as (X ,Y ,I ), which encompasses feature spaces, label spaces, and

sample ID spaces, as per Yang et al. [102]. For cross-device FL, the ID spaces typically

differ across clients, while the feature spaces and label spaces remain constant.

(1.1) Xi =X j,Yi =Y j,Ii ̸=I j,∀i ̸= j,

Which is called Horizontal FL (HFL). For cross-silo FL, the scenarios are more complex,

while the Vertical FL (VFL) has the following property,

(1.2) Xi ̸=X j,Yi ̸=Y j,Ii =I j,∀i ̸= j,

and Federated Transfer Learning (FTL) has the following property,

(1.3) Xi ̸=X j,Yi ̸=Y j,Ii ̸=I j,∀i ̸= j.

Cross-device FL is commonly referred to as HFL, while cross-silo FL can be HFL,

VFL and FTL. This thesis will focus on the HFL in the setting of cross-device, named

cross-device HFL, in which privacy is the top priority, and most people will be beneficial.

HFL has numerous real-world applications, including Google’s Gboard for Android [67],
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Apple’s Siri [23], computer vision tasks [33, 37, 61], smart city initiatives [108], and

healthcare systems [59, 73, 97].

Cross-device HFL faces several core challenges that need to be addressed [51]. These

challenges can be summarized as follows:

1. Expensive Communication: The first challenge is the cost of communication be-

tween devices. In a cross-device HFL setting, there may be millions of devices

involved in the training process, and the model updates need to be transmitted

and aggregated at a central server. The cost of communication can be significant,

especially if the devices are geographically distributed or have limited bandwidth.

2. Systems Heterogeneity: The second challenge is the heterogeneity of the systems

and devices involved in the FL process. Devices can vary in terms of hardware,

operating systems, and software versions, which can create compatibility issues

and affect the quality of the model updates.

3. Statistical Heterogeneity: The third challenge is the statistical heterogeneity of

the data on the different devices. The data distributions and features can differ

across devices, which can lead to biased or inconsistent model updates and lower

model accuracy.

4. Privacy Concerns: The fourth challenge is privacy. In a cross-device HFL setting,

data is distributed across multiple devices, and privacy concerns arise when per-

sonal or sensitive information is involved. To ensure data privacy, techniques such

as differential privacy and secure multi-party computation can be used.

1.1.2 Clustered FL with non-IID

Addressing the inherent challenges is crucial for the successful implementation of cross-

device HFL. Active research is underway to devise effective solutions that enhance
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communication efficiency, ensure system compatibility, alleviate statistical heterogeneity,

and maintain data privacy. HFL trains a global model across distributed clients while

upholding data localization. That is, the data remain local for model training on the

client side, and the server periodically averages the weights of client models to update

a global model, which is then disseminated to all clients. When identical local data

distributions are present across clients, a single global model suffices to cater to all

clients [67]. However, in practical FL scenarios, it’s more common to encounter non-

identical or non-IID (non-independent and identically distributed) data distributions

across clients, leading to conflicts between global and local objectives. An ideal approach

in non-IID settings would be to train an individual local model per client without

any interference. However, local data are often insufficient, making a global model

trained on heterogeneous clients valuable as it leverages all their data. Thus, non-IID

FL methods [27, 51, 109] aim to strike a balance between global consensus and local

personalization. Without any assumptions about the structure among clients, a global

model may be influenced by all clients’ conflicts and may offer limited guidance to their

local training.

This dissertation primarily focuses on addressing the challenge of statistical hetero-

geneity or non-IIDness, a relatively straightforward concept to simulate that has been

extensively benchmarked [109]. Consequently, Personalized FL (PFL) is proposed. PFL

involves models personalized to mitigate the non-IIDness of clients, as opposed to generic

FL that generates a single global model for all clients.

Most existing PFL research focuses on client-wise non-IID settings that do not assume

any complicated structure. For example, using Dirichlet distribution with hyperparame-

ter α to simulate the non-IID data generation or partition across clients [35]. However,

cluster-wise data is a more common scenario in real applications, such as segmenting

users by demographic features, including gender, age, location, etc. Moreover, there is
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a general assumption that clients with similar backgrounds are very likely to make

similar decisions, thus generating data with similar distributions. Conversely, users

with different backgrounds are likely to have very different actions when encountering

the same scenarios. This assumption is widely applied to population-based marketing

strategy and cohort-based user behavior analytics.

Figure 1.2: A toy example of client-wise and cluster-wise non-IID settings. Color labels represent
ten classes, and the length of the bar represents the # of instances.

As outlined by [39], non-IID data can be classified into feature distribution skew,

label distribution skew, concept drift, and quantity skew. However, it’s noteworthy that

non-IID clients in practice often exhibit rich structures that most existing FL methods

have yet to explore fully. One such prevalent structure involves clusters; that is, hetero-

geneous clients can be grouped into several near-homogeneous clusters, each comprising

clients with similar distributions. In real-world scenarios, these clusters may correlate

with geographical, age, or income groups, affiliations, and so on. In this paper, we extend
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the taxonomy of non-IID data by introducing another dimension: client-wise non-IID

and cluster-wise non-IID. As depicted in Figure 1.2, client-wise non-IID is characterized

by significant variance in label distributions across different clients, while cluster-wise

non-IID exhibits a large variance across inter-cluster clients but minimal variance within

the same cluster (intra-cluster clients). Generally, clustered FL performs optimally with

cluster-wise non-IID data. Even in a client-wise non-IID scenario, clustered FL meth-

ods can outperform those based on a single model by leveraging multiple cluster-wise

personalized models to mitigate the non-IID issue. Furthermore, clustered FL presents

a competitive solution capable of balancing model personalization and generalization.

In contrast, client-wise personalized FL is often susceptible to overfitting during local

fine-tuning.

1.1.3 Taxonomy of Clustered FL

There are various existing clustered FL methods [30, 66, 74, 94]. However, the cluster-

ability of clients is not well studied in the existing clustered FL methods, which usually

treat clustering as an add-on component for the FedAvg framework [67]. Moreover, a

few fundamental problems still need further study, such as how to represent a client

and measure distance in a clustering procedure in the FL context, and how to measure

the clusterability and clustering quality, which should be integrated with the learning

objective of the FL system.

Choosing the appropriate metrics to describe the characteristics of a client and a

cluster has been a notable challenge. For a single client, the information that can be lever-

aged for clustering is limited to its data and model. Owing to the privacy preservation

aspect of FL, we can only utilize high-level information about the data. This may involve

using the data’s distribution or the discrepancies in distributions to characterize the data.

On the other hand, the model, specifically its parameters or updates (gradients), are
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Table 1.1: Taxonomy of Clustered FL based on its characteristics g

Taxonomy Advantages Disadvantages Examples

Data

• Low dimension.

• Easy to cluster.

• Unavoidable privacy
concern.

• Additional communica-
tion cost.

• DCFL [12]

• Label-wise cluster-
ing [45]

Model

• Perserved privacy.

• Almost no additional
communication cost.

• Almost no additional
computation cost.

• High dimensional
space.

• FeSEM [94]

• WeCFL [62]

• CFL [74]

Hybrid of
data and
model

• Most information used.

• Low dimension.

• Privacy concern.

• May difficult to cluster
(loss-based).

• High communication
and computation cost.

• HypCluster [66]

• IFCA [30]

• FLSC [48]

freely available for use since they are communicated to the server. Another approach is

to combine data and models to utilize their representations, such as the loss, embeddings,

or prototype. With these considerations in mind, we can categorize clustered FL into

three groups based on characteristics g, as shown in Table 1.1.

1.1.4 More Challenges in Clustered FL

Although clustered FL represents a step forward in dealing with non-IID data, it comes

with its own set of challenges. Compared to the general non-IID assumption, the assump-
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tion within clustered FL might be excessively restrictive as it disallows inter-cluster

knowledge sharing and mandates that each cluster-wise model’s training depends solely

on a select group of clients. This contradicts the widely acknowledged strategy wherein

different tasks or domains can reap benefits from sharing low-level or partial representa-

tions.

The crux of the issue lies in the gap between the assumption of "clustered data

distributions" and the algorithms that are "clustering models" (represented by loss

vectors or model weights). The two are not identical, and the latter is more restrictive.

To put it differently, clients from different clusters can still benefit from sharing features

or parameters.

Furthermore, clustered FL frequently grapples with optimization instability. The

dynamics of changing models can violate the static clustering assumption, leading

to imbalanced cluster assignments that impact future Θ1:K and local training. More

specifically:

• Dynamic clustering: While the clustering in clustered FL is usually based on

dynamic measures, such as loss and gradients, the clustering results may change

continuously during the training process, which does not align to the ground truth.

Therefore achieving robust clustering is an important issue in clustered FL.

• Lack of knowledge sharing: When the clustering is fixed, clustered FL can be seen

training K FL programs simultaneously, and this will lead to the lack of know

sharing and lower the overall performance. Furthermore, solving lack of knowledge

sharing could lead to less robust clustering.

• Clustering collapse: This is a scenario where the number of clients assigned to

one cluster keeps increasing, making "the rich richer (i.e., the cluster-wise model

stronger)", until the situation devolves to single-model FL, as demonstrated in
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Figure 1.3: An example of clustering collapse.

Figure 1.3. This tends to occur because most clients initially learn shared features

before focusing on client-specific ones.

• Fragility to outliers: The presence of outliers, such as malicious clients, can domi-

nate some clusters, forcing all other benign ones into one or a few clusters.

• Sensitivity to initialization: The clustering process heavily relies on initial and

early cluster assignments as these determine which clients’ local training starts

from the same model.

To address these challenges, we propose some methods in following chapters, as

demonstrated in Figure 1.4.
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Figure 1.4: Mapping of research problems to methods.

1.2 Outline of this Thesis

Remaining of the thesis is as the following structure:

Chapter 2 This chapter provides an extensive literature review pertinent to the scope

of this dissertation. It commences with the formulation of the basic FL model, explaining

its inherent design and fundamental principles. Subsequently, the challenges of FL

with non-IID data are presented, emphasizing the difficulties that emerge when the

assumption of identical data distribution among clients is violated.

The chapter then dives into the convergence analysis of FL, elaborating on the theo-

retical principles that guide the learning efficiency and model stability of FL algorithms.

This includes discussions on Stochastic Gradient Descent (SGD), the foundation of most

FL optimization techniques, and an analysis of convergence rate and its dependencies.

The essential principles of clustering, a central concept for this dissertation, are

also discussed. This includes the mathematical formulation of clustering objectives, and

the notions of hard and soft clustering. The chapter further explores robust clustering,

an extension of traditional clustering, aiming to enhance the resilience of clustering
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outcomes against outliers.

Contrastive learning, a strategy widely employed in supervised and unsupervised

learning scenarios, is also examined. Recent developments in contrastive learning, specif-

ically in the context of FL, are underscored, emphasizing its significant role in enhancing

model performance in FL environments.

Lastly, the chapter presents multi-task learning in FL, a technique that capitalizes

on shared knowledge across multiple tasks or distributed clients to enhance learning

efficiency and model performance. It encompasses both hard and soft parameter sharing

methods and explores their relevance and applications in FL. The chapter also introduces

additive modeling in FL, which involves training multiple models and aggregating their

outputs for prediction.

By outlining these key concepts and their interrelations, this chapter sets the stage

for subsequent discussions and analyses in this dissertation.

Chapter 3 The first work in Chapter 3 aims to take a definitive step towards resolving

the challenges outlined above. We initiate this effort by revisiting current clustered FL

methods, and formulating them into a comprehensive bi-level optimization problem.

From this foundation, we propose a novel Weighted Clustered Federated Learning

(WeCFL) framework that signifies each client by their model parameters and gauges

their distance via the Euclidean distance in parameter space. Additionally, WeCFL

aligns with the concept of weighted loss in FL by incorporating weighted clients into the

clustering process. These elements are amalgamated into a learning process set within a

cluster-wise non-IID federated setting, where we explore the clusterability among FL

clients. We also develop a new theoretical framework for conducting convergence analysis

on FL with non-IID data.

The major contributions of this work can be summarized as follows:

• We introduce the first cluster-wise non-IID setting in FL, providing a more realistic
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reflection of real-world scenarios.

• We restructure the clustered FL problem into a unified bi-level optimization frame-

work and introduce a novel algorithm, WeCFL, to solve this complex optimization

problem.

• We present a new theoretical framework for performing convergence analysis in

clustered FL, considering a fresh clusterability measure B for our proposed unified

framework.

• Our experimental simulations validate the superior performance of WeCFL, demon-

strating its practical effectiveness.

Chapter 4 While the clustering in clustered FL is usually based on dynamic measures,

such as gradients, achieving more robust clustering is an important issue. The second

study in Chapter 4 is driven by the shared philosophy of clustering and contrastive

learning, to maximize inter-cluster distance and minimize intra-cluster distance. We

introduce a simple yet effective contrastive learning methodology, which can be integrated

into most clustered FL frameworks, named CFL-CON. Depending on the space in which it

operates, it can be modified based on the representation, or based on the parameter space.

The experimental simulations substantiate the superior performance and robustness of

CFL-CON, demonstrating its practical viability.

Chapter 5 The third research in Chapter 5 revisits the necessity of stable clustering

in clustered FL and its pitfalls, lack of knowledge sharing across clusters. Inspired by

this observation, along with frameworks such as multi-task learning, FedProx, and regu-

larization, we introduce a straightforward yet effective supplement termed CFL-CKS,

designed to facilitate knowledge sharing among clusters. This method can also be effort-
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lessly integrated with the majority of current clustered FL algorithms. Subsequently, we

refine it into a simple, elegant term.

The primary contributions of this research are summarized as follows:

• We propose a straightforward yet potent method based on knowledge sharing,

which can supplement most clustered FL approaches.

• We conduct a theoretical analysis of the term’s simplification, convergence, and

interpretation, providing a comprehensive understanding of our proposed method.

• Our experimental simulation results reveal CFL-CKS’s superior performance,

demonstrating its practical effectiveness.

Chapter 6 While the philosophy of contrastive learning and knowledge sharing is

opposite, we need to find a trade-off between these two methods. The fourth research in

Chapter 6 aims to combine the contrastive learning method Chapter 4 and the clustered

knowledge sharing method from Chapter 5 to further enhance the performance and

robustness of clustered FL. The biggest challenge lies in the fundamentally contrasting

philosophies of the two methods. If we simply add them together in a clustered FL

method, their effects could cancel each other out. To overcome this challenge, we propose

CFL-CON&CKS, a state-of-the-art method that applies CFL-CON to the head of the

neural network to create distance, and CFL-CKS to the backbone of the neural network

to facilitate knowledge sharing.

The primary contributions of this research are summarized as follows:

• We effectively combine contrastive learning and clustered knowledge sharing,

leveraging the advantages of both to create CFL-CON&CKS.

• Our experimental simulation results reveal the superior performance of proposed

method over baselines, demonstrating its practical effectiveness.
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Chapter 7 In this chapter, in order to address issues associated with clustered FL,

such as clustering collapse, vulnerability to outliers, and sensitivity to initialization,

we propose a novel clustered FL model called “Clustered Additive Modeling (CAM)”. In

addition, we develop an efficient algorithmic framework, Fed-CAM, to tackle non-IID FL

challenges with a clustering structure. It is adept at capturing more generalized non-IID

structures and fostering global knowledge sharing among clients, thus overcoming key

limitations of clustered FL. The main contributions of this research are summarized as

follows:

• We propose a versatile, model-agnostic tool, CAM, that can enhance a wide variety

of existing non-IID FL methods with any structure.

• From a theoretical perspective, we prove that Fed-CAM can achieve an asymptotic

convergence rate of O(1/
p

T ).

• Our comprehensive experimental results demonstrate that CAM provides signif-

icant enhancements to existing clustered FL methods, by effectively improving

cluster balance and mitigating clustering collapse.

Chapter 8 In this chapter, we summarized the primary work of this thesis, which

includes the development of a unified framework for Weighted Clustered Federated

Learning (WeCFL), and three add-on enhancements: CFL-CON, CFL-CKS, and CFL-

CON&CKS. We also explored potential avenues for future research. These include

exploiting the structure of clustering, exploring more non-IID scenarios, tackling practical

problems in application, and integrating with Large Language Models (LLMs), among

others.

Appendix A This appendix covers various general experimental settings. Initially,

it provides a thorough introduction of benchmark datasets, including Fashion-MNIST,
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CIFAR-10, PathMNIST, and TissueMNIST, followed by an in-depth description of all

four non-IID partitioning methods, which include two cluster-wise and two client-wise

non-IID variants. Subsequently, it outlines the specific structures of the Convolutional

Neural Network (CNN) models utilized for all four datasets.
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2
RELATED WORK

2.1 Formulation of FL

A
s demonstrated in Figure 1.1, this thesis will focus on the stream of clustered

FL, which can originate from cross-device FL. A cross-device FL system usually

includes m clients and one server. For Client i, its loss function can be defined

as below:

(2.1) ℓi = Eξ=(X ,Y )∼D iℓi(hi(θi, X ),Y ),

in which ξ or (X ,Y ) is the sampled instance from the dataset of Client i, D i, and ℓi, hi,

θi represent the loss function, model structure or hypothesis, model parameter of Client

i, respectively.

Then it is natural to aggregate the loss function of all clients to form the loss function

of FL. And the weight of Client i in aggregation is usually defined as

(2.2) ψi = 1
m

,
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or by their dataset size,

(2.3) ψi = |D i|∑m
j=1 |D j|

,

while ψi has to satisfy,

(2.4)
m∑

i=1
ψi = 1.

There are also some other choices of ψ or client sampling probabilities, including [26, 78,

90], which will not be addressed in this dissertation. Then the loss function or objective

function to minimize FL F can be defined as below,

(2.5) minimize
Θg

F =
m∑

i=1
ψiℓi(Θg,D i),

in which each client shares the same model and model parameters Θg. Depending on the

algorithm of vanilla FL, FedAvg [67], Θg is aggregated by the parameter of each client in

every communication round as follows,

(2.6) Θg =
m∑

i=1
ψiθi.

2.2 FL with Non-IID

FL with non-IID aims to tackle statistical heterogeneity across clients. FedAvg[67] is

designed for the IID setting, so it suffers from client drift and slow convergence with non-

IID clients [39]. To address this challenge, FedDANE [52] proposed a federated Newton-

type optimization method by adapting a method for classical distributed optimization,

i.e., DANE, to the FL setting. Instead of synchronizing all clients’ models to be the same

global model periodically, FedProx [51] only adds a proximal term to the local training

objective that discourages the local model from drifting away from the global model

and thus preserves the heterogeneity. [72] applies adaptive learning rates to clients

and [38] conducts attention-based adaptive weighting to aggregate clients’ models. [53]
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studies the convergence of the FedAvg in non-IID scenarios. Recent work also studies

client-wise personalized FL [17, 20, 25, 77, 79, 82, 83], which aim to address the non-IID

challenge by training a personalized model per client with the help of the shared global

model. FedICON [84] addresses the test-time shift problem, which refers to intra-client

heterogeneity during test phase. Their objectives focus on training local models rather

than the server-side model.

Cluster-wise PFL also known as Clustered FL, assumes that non-IID clients can be

partitioned into several groups and clients in each group share a cluster-wise model.

It jointly optimizes the cluster assignments and the clusters’ models. K-means-based

methods [94] assign clusters to clients according to their model parameters’ distance.

CFL [74] divides clients into two partitions based on the cosine similarity between client

gradients and then checks whether a partition is congruent according to the gradient

norm. IFCA [30] and HypCluster [66] assign to each client the cluster whose model

achieves the minimum loss on the client’s data. Few-shot clustering has been introduced

to clustered FL by [5, 21]. FedP2P [16] allows communication between clients in the

same cluster. [88] uses cluster-based contexts to enhance the fine-tuning of personalized

FL models. [62] proposes the first cluster-wise non-IID setting and a bi-level optimization

framework unifying most clustered FL methods. [64] proposes a general model-agnostic

method called clustered additive modeling (CAM) to enhance existing clustered FL

methods.

Client-wise PFL assumes that each client’s data distribution is unique, necessitating

personalized models on each device. A straightforward PFL method learns a global

model at the server while conducting local fine-tuning on each client [15, 25]. Ditto

[50] proposes a bi-level optimization framework for PFL that includes a regularization

term to constrain the distance between local and global models. The Model-Agnostic
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Meta-Learning (MAML) framework is also investigated for personalizing clients [25].

One study [82] uses Moreau envelopes as clients’ regularized loss functions to optimize

a bi-level problem for PFL. FedRep [17] learns a globally shared representation and

a locally personalized head for each client. Research by [11, 77] aims to train a global

hyper-network or meta-learner, which is then sent to clients for local optimization.

SCAFFOLD [40] learns personalized control variates that correct the local model as

needed. Layer-wise personalization [3, 55] and representation-wise personalization [85]

are two simple yet effective PFL solutions. Hermes [46], and LotterFL [47] are two

PFL methods considering communication efficiency for mobile clients. SFL [10] uses

personalization to address FL problems on the graph. Work [105] proposes a novel

personalized federated recommendation framework called PFedRec. Work [98] focuses

on disentangling global knowledge and personal knowledge using a novel federated dual

variational autoencoder (FedDVA).

2.3 Convergence Analysis of FL

There are indeed few studies on the convergence analysis of Clustered FL on non-IID

data. However, many studies focus on the convergence analysis of FL on non-IID data.

These works often build upon the convergence analysis of local stochastic gradient

descent (SGD) [41, 81], as most FL algorithms employ SGD for optimization. Local SGD

differs from FedAvg in terms of local update epochs and specific settings, such as non-IID,

stragglers, and privacy attacks. The convergence analysis of FL is usually based on

the SGD convergence analysis framework. In work by Li et al. [53], the convergence of

FedAvg on non-IID data and partial participation is analyzed in detail. The convergence

rate is O( 1
T ), where T is the number of communication rounds. The study also discusses

the impact of some hyperparameters, such as local epochs. A guide by Wang et al. [89]

provides recommendations and guidelines on formulating, designing, evaluating, and
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analyzing FL optimization algorithms, with a separate section dedicated to convergence

analysis. Some recent works [50, 96] model client-wise Personalized Federated Learning

(PFL) tasks using a bi-level optimization framework and then conduct convergence

analysis. Although these works focus on PFL rather than Clustered FL, they provide

valuable insights into the convergence behavior of FL algorithms under non-IID settings.

Research by [62] could extend these methodologies and insights to the convergence

analysis of Clustered FL on non-IID data, paving the way for a deeper understanding of

Clustered FL’s convergence properties in real-world scenarios.

2.4 Robust Clustering

The objective of clustering is to group similar objects together and separate dissimilar

objects into distinct clusters. This goal can be achieved by minimizing intra-cluster

distances while maximizing inter-cluster distances. For a typical clustering problem, its

objective C can be defined as follows,

(2.7) minimize
r i,k

C :
K∑

k=1

m∑
i=1

r i,kd(g i,Gk),

where g i represents the m data points, Gk represents the cluster centroids (with

a total of K), and d is the distance function. This function can be an L2-norm, cosine

similarity, or a density distance like LOF [6], depending on the scenario. The variable to

optimize, r i,k, is the assignment matrix. In hard clustering, r i,k can only be 0 or 1, while

in soft clustering, it can represent probabilities.

If each data point is assigned a weight or importance ψ, we get a weighted clustering

problem, which can be formulated as:

(2.8) minimize
r i,k

C :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψid(g i,Gk).
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Since r i,k can be seen as a latent variable, Expectation Maximization (EM) algorithms

[19] or k-means [65] are often used to solve the clustering problem. To avoid the potential

pitfalls of poor clusterings found by the standard k-means algorithm, k-means++ [4] is a

better initialization method that is often employed.

Robust clustering aims to enhance the robustness of clustering results against outliers

[29]. Numerous works have been conducted in this area, including [22], [69]. Vanilla

robust clustering methods include mixture modeling [100] and trimming approach

[28]. Recently, a number of works in robust clustering have been studied by [2, 18, 28,

31, 100, 101]. These methods address various challenges in robust clustering, such as

outlier detection, similarity metrics, and noise handling. The work [8] researches K-

means with the bootstrap of median-of-means (MOM). The MOM estimator can mitigate

the influence of outliers, whereas the estimator of mean is not good at addressing

outliers. The bootstrap of MOM (bMOM) enhances the robustness against outliers and

thus achieves a better breakdown point, which is a measure to quantify the toleration

of outliers. Then [95] uses bMOM to create more robust clustering in FL to against

outliers. [63] uses a robust density-based clustering method Local outlier factor (LOF) to

address model poisoning issues in FL. In summary, robust clustering aims to improve the

clustering results by increasing the tolerance to outliers and noise. A variety of methods

have been proposed to achieve this goal, such as mixture modeling, trimming approaches,

and the bootstrap of MOM. These techniques have demonstrated their effectiveness in

handling outliers and providing more accurate and robust clustering results in various

scenarios.

2.5 Contrastive Learning

Contrastive learning shares a similar philosophy with Triplet loss [75, 76], as they both

have definitions of anchor, negative, and positive instances. In recent years, contrastive
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learning has been widely applied in supervised [42] and unsupervised learning, achieving

state-of-the-art performance in the unsupervised training of deep image models [56,

93] and graph models [57, 58, 107]. Numerous works focus on learning an encoder

that pulls the embeddings of the same sample closer and pushes those of different

samples apart [14, 34, 104, 106]. The work of [42] extends contrastive learning from

self-supervised settings to fully supervised settings, enabling better exploitation of label

information with contrastive learning. This advancement has provided new insights into

how contrastive learning can be used more effectively across various learning scenarios.

Furthermore, some researchers have incorporated contrastive learning into FL to assist

local training in achieving higher model performance [49, 68, 86, 106]. These studies

have explored the potential benefits of combining contrastive learning with FL in the

context of FL, leading to more efficient and robust solutions. In summary, contrastive

learning has demonstrated significant success and versatility in various learning settings,

from unsupervised and supervised to FL. By integrating contrastive learning into FL,

researchers have further expanded the possibilities for improving model performance.

2.6 Multi-task Learning in FL

Multi-task learning and FL both aim to learn shared knowledge from multiple tasks or

distributed clients. Integrating multi-task learning and FL can enable a more effective

learning process and enhance performance by leveraging the shared knowledge across

tasks or clients. Hard parameter sharing [9] and soft parameter sharing [24, 103] are

the most commonly used methods in multi-task learning to share knowledge across

tasks. It is natural to combine multi-task learning and FL together, as they both focus on

learning from multiple sources and have similar objectives. MOCHA [80] uses distributed

multi-task learning to address the non-IID challenge in FL. High communication cost,

stragglers, and fault tolerance are also considered, both theoretically and experimentally.
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MOCHA demonstrates that combining the principles of multi-task learning with FL can

lead to improved performance and increased robustness in a federated setting. Similarly,

Clustered Federated Learning (CFL) [74] employs the Federated Multi-Task Learning

(FMTL) framework to exploit the relationships across clients and group clients together

based on their data distributions. By leveraging the shared knowledge among clients

and addressing non-IID challenges, CFL can achieve better performance and robustness

compared to traditional FL methods. In summary, combining multi-task learning and FL

can enhance the overall learning process by leveraging shared knowledge across tasks or

clients. Various methods have been proposed to integrate these two learning paradigms,

such as MOCHA and CFL, demonstrating the potential of this combination in addressing

the non-IID challenge and improving the performance of FL systems.

2.7 Additive modeling in FL

Additive FL trains multiple models and adds their outputs together as its prediction.

It was introduced to FL very recently. In the FL setting, how to define and choose two

models are varied. To tackle the non-IID challenge, [66] proposed a model interpolation

method by adding the global cluster model and a local model in additive modeling.

Federated residual learning [1] proposed an FL algorithm to train an additive model for

regression tasks. [70] applies additive modeling to combining the outputs of a shared

model and a local model in a partial model personalization framework, which only shares

part of the model parameters while preserving the rest for personalization. [54] proposed

additive matrix factorization to solve federated recommendation task. However, additive

modeling has not been studied for clustered FL.
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A UNIFIED FRAMEWORK OF CLUSTERED FEDERATED

LEARNING

3.1 A New Perspective for Clustered FL

E
xisting clustered FL methods focus on the learning process in a federated

setting. Thus, the clustering components are an add-on part of the overall

learning process in the FL system. We will rethink the clustered FL from a

clustering perspective while considering the FL contexts. To conduct clustering in the FL

system, several major challenges need to be resolved.

• Challenge 1: How to represent an FL client in an instance or point in clustering?

• Challenge 2: How to measure the distance or similarity for FL clients?

• Challenge 3: How to evaluate the quality of clustering by considering the FL’s

objective?
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• Challenge 4: How to choose a clustering algorithm to be integrated with the FL?

For Challenge 1, existing Clustered FL methods usually use client-specific models

to represent the client in a clustering. Using model parameters will be a straightforward

solution that is consistent with the setting of FL. An alternative option is to use tech-

nology, e.g., federated generative adversarial learning [71] and federated representation

learning [49, 106], to transform the client-specific dataset or distribution into a vector to

represent the client. However, the operation of embedding datasets usually causes extra

privacy concerns for end-users. Thus it will be a controversial topic in practice.

For Challenge 2, the selection of distance and similarity metrics is highly reliant

on the selection of client-specific representation - the solution of Challenge 1. With a

given representation vector, some clustered FL reuse the classical distance and similarity

measurements, such as Euclidean distance [94], cosine similarity [74] and KL divergence

[45]. Moreover, a key issue for this challenge is to ensure clusterablity for the clients

with the given representation space and distance metric.

For Challenge 3, a basic rule of evaluation is that a “good” clustering result should also

lead to a “good” learning result for the FL system. The widely used objective function of

FL is a weighted sum loss of all clients, e.g., FedAvg[67]. Therefore, the client-specific

weights are important indicators to design clustering evaluation criteria in the FL

context.

For Challenge 4, selecting clustering algorithms depends on the design of client-

specific representation, distance metrics, and evaluation criteria. Due to the complexity of

the FL system requiring efficient communication and computation, a simple clustering

algorithm is a preferred choice, such as K-means [94] or hierarchical clustering [7].

26



CHAPTER 3. A UNIFIED FRAMEWORK OF CLUSTERED FEDERATED LEARNING

3.2 A Unified Framework

An FL system is usually composed of m clients where each client needs to train an

intelligent task using its own dataset D i.

In particular, we can reformulate HypCluster [66] and IFCA [30] as a bi-level opti-

mization problem:

minimize
{Hk}

1
m

K∑
k=1

m∑
i=1

r i,kL (Hk,D i)(3.1a)

s.t. {r i,k}= argmin
{r i,k}

L (Hk,D i).(3.1b)

We also reformulate the FeSEM [94] from a loss function with regularization into a

bi-level optimization framework.

minimize
{Θk}

1
m

K∑
k=1

m∑
i=1

r i,kL (Θk,D i)(3.2a)

s.t. {r i,k}= argmin
{r i,k}

1
m

K∑
k=1

m∑
i=1

r i,k∥θi −Θk∥2
2.(3.2b)

where Θk = 1∑
i∈k r i,k

∑
i∈k θi is the centroid of the cluster k.

As mentioned in Section 3.1, the client-wise importance weights are important

indicators for clustering to be consistent with the loss function in FL. Therefore, we

design a unified framework of the objective function for the clustered FL problem, which

is a bi-level optimization problem. The previous works could be special cases of our

proposed framework.

minimize
{Θk}

F :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψiLk(D i)(3.3a)

s.t. {r i,k}= argmin
{r i,k}

C :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψid(g i,Gk).(3.3b)

3.3 Algorithm

Based on our proposed unified framework above, the upper-level objective 3.3a is an

FL problem that is usually optimized by the FedAvg algorithm, whereas the lower-level

27



CHAPTER 3. A UNIFIED FRAMEWORK OF CLUSTERED FEDERATED LEARNING

Figure 3.1: The framework and processes of WeCFL.

objective 3.3b is a clustering problem that is usually optimized by the EM algorithm

[19]. It is a straightforward solution to combine these two algorithms into one and

then iteratively solve the objective. So Algorithm 1 called weighted clustered federated

learning (WeCFL) is proposed to solve this bi-level optimization problem, which is simple

but effective. The framework and algorithm are demonstrated in Figure 3.1.
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Algorithm 1: Weighted Clustered FL (WeCFL)
1: Input: K , {D1,D2, . . . ,Dm}, {ℓ1,ℓ2, . . . ,ℓm}

2: Initialize: Randomly initialize {H1,H2, . . . ,HK }

3: repeat

4: Expectation step: Assign Client i to Cluster k by

k = argmin
k

ψid(g i,Gk).

5: Maximization / Aggregation step: Compute cluster center Hk by minimizing

C = 1∑m
j=1 ψ j

K∑
k=1

m∑
i=1

r i,kψid(g i,Gk).

6: Distribution step: Send Hk to clients in Cluster k.

7: Local update step: Run Gradient Descent Q steps using local data D i to minimize

F = 1∑m
j=1 ψ j

K∑
k=1

m∑
i=1

r i,kψiLk(Hk,D i).

8: until convergence condition satisfied

9: Output: {r i,k}, {H1,H2, . . . ,HK }.

Algorithm 1 illustrates the procedure of WeCFL to solve the proposed bi-level opti-

mization problem in Eq. 3.3 by four main steps in every iteration. The first two steps

correspond to an EM algorithm solving the clustering problem: the E-step assigns clients

to the nearest cluster, and the M-step calculates the centroid of each cluster, which is

equivalent to the model aggregation step of FedAvg [67]. Unlike normal clustering, here

the representation of each client keeps being updated by the following two steps: the

server broadcasts the aggregated model for each cluster to its clients; once the cluster

model is received, each client applies local updates to it by minimizing the loss for its

local data D i and the resulting local model is the client’s new representation for the next

iteration.
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3.4 Convergence Analysis

For the convergence of optimization problem 3.1, which is used by HypCluster [66] and

IFCA [30], the convergence is easy to analyze. We separate the algorithm into two steps:

the assignment step, and the local update step. In the assignment step, it is always best

to assign the least loss function to the clients, so the Objective 3.1a will not increase.

In the local update step, which uses a gradient descent algorithm, by choosing the

proper learning rate under Assumption 3.4.9, the Objective 3.1a will not increase either.

Moreover, the Objective 3.1a will monotonously decrease, proving convergence.

For the convergence of the optimization problem in Eq. 3.2 and 3.3, we consider a

special case of Problem in Eq. 3.3 that also covers Problem in Eq. 3.2, in which the client

representation g is the parameter of the hypothesis of Client i, and the distance function

is Euclidean norm square ∥ ·∥2
2. Then the objective function to minimize is as follows:

minimize
{Θk}

F :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψiL (Θk,D i)

s.t. {r i,k}= argmin
{r i,k}

C :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψi∥θi −Θk∥2
2.

(3.4)

3.4.1 Convergence Analysis of C

To analyze the convergence of the optimization problem 3.4 above, both C and F should

be considered. We will first analyze the clustering objective C :

Assumption 3.4.1. (Unbiased gradient estimator and bounded gradients). The expecta-

tion of stochastic gradient ∇l(θi,ξ) is an unbiased estimator of the local gradient for each

client:

Eξi∼D i [∇l(θi,ξ)]=∇l(θi).

and expectation of L2 norm of ∇l(θi,ξ) is bounded by a constant U:

Eξi∼D i [∥∇l(θi,ξ)∥2]≤U .
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It is also applied for L and {Lk}.

Lemma 3.4.2. In the Expecation step of communication round t+1, fix θ,Θ, and assign

r i,k = 1 if

k = argmin
k

∥θi −Θk∥2
2,

then we can prove that:

(3.5) C (t+1,E) ≤C (t,L).

Proof. r(t+1)
i,k = 1 is to find the right k for Client i to minimize ∥θi −Θk∥2, which means to

find the shortest Euclidean distance from each Θ1,Θ2, . . . ,ΘK to θi, so for every i,

ψi∥θi −Θ
(t+1,E)
k ∥2

2 ≤ψi∥θi −Θ
(t,L)
k ∥2

2,

then sum it with from i = 1 to m, we can easily get:

C (t+1,E) ≤C (t,L).

■

Lemma 3.4.3. In the Maximization step of communication round t, fix r,θ, define:

(3.6) Θ
(t,M)
k = ∑

i∈k

ψi∑
j∈k ψ j

θi,

then we can prove that:

(3.7) C (t,M) ≤C (t,E).

Proof. For an arbitrary Client i in Cluster k, the loss square is :

ψi∥θi −Θ
(t,E)
k ∥2

2

=ψi∥θi −Θ
(t,M)
k +Θ

(t,M)
k −Θ

(t,E)
k ∥2

2

=ψi∥θi −Θ
(t,M)
k ∥2

2 +ψi∥Θ(t,M)
k −Θ

(t,E)
k ∥2

2

+2ψi〈θi −
∑
i∈k

ψi∑
j∈k ψ j

θi,
∑
i∈k

ψi∑
j∈k ψ j

θi −Θ
(t,E)
k 〉,

(3.8)
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then sum all the clients in Cluster k together:

∑
i∈k

ψi∥θi −Θ
(t,E)
k ∥2

2

=∑
i∈k

ψi∥θi −Θ
(t,M)
k ∥2

2 +
∑
i∈k

ψi∥Θ(t,M)
k −Θ

(t,E)
k ∥2

2

+2〈∑
i∈k

ψiθi −
∑
i∈k

ψi
∑
i∈k

ψi∑
j∈k ψ j

θi,
∑
i∈k

ψi∑
j∈k ψ j

θi −Θ
(t,E)
k 〉

=∑
i∈k

ψi∥θi −Θ
(t,M)
k ∥2

2 +
∑
i∈k

ψi∥Θ(t,M)
k −Θ

(t,E)
k ∥2

2.

(3.9)

So sum all loss functions of all clusters, we can get:

(3.10) C (t,M) −C (t,E) =− 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi∥Θ(t,M)
k −Θ

(t,E)
k ∥2

2 ≤ 0.

■

Lemma 3.4.4. Under Assumption 3.4.1, in the Distribution step of communicaiton round

t+1, we get θi∈k =Θk. In the Local update step of communicaiton round t+1, fix r;Θ, after

Q steps, define:

(3.11) θ1
i = θ0

i −η(t)
i ∗∇l i(θ0

i ,D i),

so

θ(n+1)
i =Θk −η(t)

i ∇l i(θ0
i ,D i)−·· ·−η(t)

i ∇l i(θ
Q−1
i ,D i).(3.12)

If η(t)
i ≤ ∥θ(t)

i −Θk∥2
QU , we can prove that:

(3.13) C (t,L) ≤C (t,M).

Proof.

∥θ(n+1)
i −Θk∥2

=∥Θk −η(t)
i ∇l i(θ0

i ,D i)−·· ·−η(t)
i ∇l i(θ

Q−1
i ,D i)−Θk∥2

=η(t)
i ∥∇l i(θ0

i ,D i)+·· ·+∇l i(θ
Q−1
i ,D i)∥2.

(3.14)

32



CHAPTER 3. A UNIFIED FRAMEWORK OF CLUSTERED FEDERATED LEARNING

So if we want to:

∥θ(n+1)
i −Θk∥2

2

=η(t)
i ∥∇l i(θ0

i ,D i)+·· ·+∇l i(θ
Q−1
i ,D i)∥2

2

≤(η(t)
i QU)2

≤∥θ(t)
i −Θk∥2

2,

(3.15)

η should satisfy:

(3.16) η(t)
i ≤ ∥θ(t)

i −Θk∥2

QU
.

In particular, if ∥θ(t)
i −Θk∥ = 0, then η(t)

i = 0, θi does not change, or if ∥∇l i∥ equals 0, it

means θi has been to the local minimum. ■

Theorem 3.4.5. (Convergence of clustering problem C ). Under Assumption 3.4.1, for

arbitrary communication round t, if η(t)
i ≤ ∥θ(t)

i −Θk∥
QU , C converges.

Remark 3.4.6. (Clustering stability guarantee). It is important to make sure C converges,

which means the clustering results are stable. We also conduct detailed experimental

analysis on clustering in Section 3.6.3.

Proof. In communication round t+1, use Lemma 3.4.2 3.4.3 3.4.4, it is easy to get:

(3.17) C (t+1,L) ≤C (t,L),

which also means C (t+1) ≤ C (t), because C must be non-negative, and there are finite

steps for this minimization, then according to monotone convergence theorem for se-

quences, {C (t)} converges with finite iterations, which means for an arbitrary ϵ, we can

find a specific N, for any n > N,C (t) −C ⋆ < ϵ. ■
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3.4.2 Convergence Analysis of F

Definition 3.4.7. (Clusterability measure). For arbitrary Client i in Cluster k, if its

gradient obeys:

∥∑
p∈k

ψp∇ℓ(θp,Dp)∑
z∈k ψz

−∇ℓ(θi,D i)∥2

∥∑
p∈k

ψp∇ℓ(θp,Dp)∑
z∈k ψz

∥2

≤ B,(3.18)

we define the clusterability of Cluster k to be B. If B = 0, it means the same data

distribution among clients. The larger B, the less clusterability of Cluster k. It will even

lead to divergence if B is too large.

Assumption 3.4.8. (Convexity). Each loss function ℓi or L is convex. Then we will have

(3.19) ℓ(y)≥ ℓ(x)+〈∇ℓ(x), y− x〉.

Assumption 3.4.9. (Lipschitz Smooth). Each loss function ℓi or L is β-smooth. Then

we will have

(3.20) ℓ(y)≤ ℓ(x)+〈∇ℓ(x), y− x〉+ β

2
∥y− x∥2

2.

Assumption 3.4.10. (Bounded gradient variance). The variance of stochastic gradient

∇ℓ(θi,ξ) is bounded by σ2:

Eξi∼D i [∥∇ℓ(θi,ξ)−∇ℓ(θi)∥2
2]

=E[∥∇ℓ(θi,ξ)∥2
2]−∥∇ℓ(θi)∥2

2 ≤σ2.
(3.21)

It is also applied for L.

Lemma 3.4.11. Under Assumption 3.4.1 and 3.4.8, from the Expectation step to the

Maximization step in arbitrary communication round, F M ≤F E +ηBQU2.

Proof.

F M −F E = 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi(L (ΘM
k ,D i)−L (θi,D i)),(3.22)
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in which

ΘM
k = ∑

p∈k

ψp∑
z∈k ψz

θp.(3.23)

According to Assumption 3.4.8 and Equation 3.19, for arbitrary cluster, using Cauchy‚ÄìSchwarz

for Equation 3.26 and Assumption 3.4.1 for Equation 3.27, we have

∑
i∈k

ψi(L (
∑
p∈k

ψp∑
z∈k ψz

θp,D i)−L (θi,D i))(3.24)

≤∑
i∈k

ψi(〈∇L (ΘM
k ,D i),

∑
p∈k

ψp∑
z∈k ψz

θp −θi〉)(3.25)

≤∑
i∈k

ψi∥∇L (ΘM
k ,D i)∥2 · ∥

∑
p∈k

ψp∑
z∈k ψz

θp −θi∥2(3.26)

≤∑
i∈k

ψiU∥ ∑
p∈k

ψp∑
z∈k ψz

θp −θi∥2.(3.27)

According to Equation 3.12,

θi =Θk −η∇ℓi(θ0
i ,D i)−·· ·−η∇ℓi(θ

Q−1
i ,D i).(3.28)

So we can get below inequality depending on Definition 3.4.7:

∑
i∈k

ψiU∥ ∑
p∈k

ψp∑
z∈k ψz

θp −θi∥2 ≤
∑
i∈k

ψiηBQU2.(3.29)

Finally, we can get:

F M ≤F E +ηBQU2.(3.30)

■

Lemma 3.4.12. Under Assumption 3.4.9 and 3.4.10, from the Maximization step to the

Local update step in arbitrary communication round, we have

E[F L]−F M

≤ 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi

Q−1∑
q=0

((
βη2

q

2
−ηq)E[∥∇L (Θ(M,q)

k )∥2
2]+

βη2
q

2
σ2)
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Proof.

F L −F M = 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi(L (ΘL
k ,D i)−L (ΘM

k ,D i)).(3.31)

For arbitrary Client i, using Gradient Descent,

L (ΘL
k ,D i)−L (ΘM

k ,D i)=
Q−1∑
q=0

(L (Θ(M,q+1)
k ,D i)−L (Θ(M,q)

k ,D i)).

Under Assumption 3.4.9,

L (Θ(M,q+1)
k )−L (Θ(M,q)

k )

≤〈∇L (Θ(M,q)
k ),Θ(M,q+1)

k −Θ
(M,q)
k 〉+ β

2
∥Θ(M,q+1)

k −Θ
(M,q)
k ∥2

2

=−η〈∇L (Θ(M,q)
k ),∇L (Θ(M,q)

k ,ξe
i )〉+

βη2

2
∥∇L (Θ(M,q)

k ,ξe
i )∥2

2,

take expectation on both sides for random selected batch ξe
i under Assumption 3.4.10,

E[L (Θ(M,q+1)
k )]−L (Θ(M,q)

k )≤ (
βη2

2
−η)∥∇L (Θ(M,q)

k )∥2
2 +

βη2

2
σ2,

take expectation on both sides again on random variable Θ
(M,q)
k , and do telescoping, we

can get,

E[L (ΘL
k ,D i)]−L (ΘM

k ,D i)

=
Q−1∑
q=0

(E[L (Θ(M,q+1)
k ,D i)]−L (Θ(M,q)

k ,D i))

≤
Q−1∑
q=0

((
βη2

q

2
−ηq)E[∥∇L (Θ(M,q)

k )∥2
2]+

βη2
q

2
σ2).

(3.32)

Finally,

E[F L]−F M

≤ 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi

Q−1∑
q=0

((
βη2

q

2
−ηq)E[∥∇L (Θ(M,q)

k )∥2
2]+

βη2
q

2
σ2).

■
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Theorem 3.4.13. (Convergence of WeCFL). Let Assumptions 3.4.1, 3.4.8, 3.4.9 and

3.4.10 hold, when η(t,q) < min{
∥θ(t)

i −Θk∥2
QU ,

E[∥∇F (Θ(t,M,q)
1:K )∥2

2]−BU2

E[∥∇F (Θ(t,M,q)
1:K )∥2

2]+σ2
· 2
β

}, the EM loss function C

converges, and the FL loss function F decreases monotonically, thus the WeCFL converges.

Proof. From the local distribution step in communication round t-1 to the Expectation

step in communication round t, what is changed in the loss function of WeCFL F is the

rk
i , but the L (Θk,D i) does not change, so we can get

F (t−1,L) =F (t,E),(3.33)

then according to Lemma 3.4.11 and 3.4.12, we can get,

E[F (t,L)]−F (t−1,L)

≤ηBQU2 + 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi

Q−1∑
q=0

((
βη2

(t,q)

2
−η(t,q))E[∥∇L (Θ(t,M,q)

k )∥2
2]+

βη2
(t,q)

2
σ2)

= 1∑m
j=1ψ j

K∑
k=1

∑
i∈k

ψi

Q−1∑
q=0

((
βη2

(t,q)

2
−η(t,q))E[∥∇L (Θ(t,M,q)

k )∥2
2]+

βη2
(t,q)

2
σ2 +η(t,q)BU2)

=
Q−1∑
q=0

((
βη2

(t,q)

2
−η(t,q))E[∥∇F (Θ(t,M,q)

1:K )∥2
2]+

βη2
(t,q)

2
σ2 +η(t,q)BU2),

(3.34)

then when

(3.35) η(t,q) < min{
∥θ(t)

i −Θk∥
QU

,
E[∥∇F (Θ(t,M,q)

1:K )∥2
2]−BU2

E[∥∇F (Θ(t,M,q)
1:K )∥2

2]+σ2
· 2
β

},

the right term of Equation 3.34 is always negative. So we can ensure that the EM loss

function C converges, and the FL loss function F decreases monotonically. Thus the

WeCFL converges. ■

Theorem 3.4.14. (Liner convergence rate of WeCFL). Let Assumptions 3.4.1, 3.4.8, 3.4.9

and 3.4.10 hold, and ∆=F0 −F∗, given any ϵ> 0, after

(3.36) T ≥ ∆

Q(ϵ(η− βη2

2 )− βη2

2 σ2 −ηBU2)
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communication rounds of WeCFL, we have

(3.37)
1

TQ

T−1∑
t=0

Q−1∑
q=0

E[∥∇F (Θ(t,M,q)
1:K )∥2

2]≤ ϵ.

Remark 3.4.15. (Linear convergence rate of WeCFL). According to Equation 3.36, with

a proper learning rate, the convergence rate of WeCFL is O(1/T), which achieves a

state-of-the-art rate similar to SGD and [53]. And bigger K or smaller non-IIDness,

smaller B, better convergence rate, but less marginal benefit.

Proof. Take expectation of Equation 3.34 on the parameter, then do telescoping from 0

to T, we can get

∆≥F (0,L) −E[F (T,L)]

≥
K∑

k=1

∑
i∈k

T−1∑
t=0

Q−1∑
q=0

ψi∑m
j=1ψ j

((η(t,q) −
βη2

(t,q)

2
)E[∥∇L (Θ(t,M,q)

k )∥2
2]−

βη2
(t,q)

2
σ2 −η(t,q)BU2)

=
T−1∑
t=0

Q−1∑
q=0

((η(t,q) −
βη2

(t,q)

2
)E[∥∇F (Θ(t,M,q)

1:K )∥2
2]−

βη2
(t,q)

2
σ2 −η(t,q)BU2).

(3.38)

If

1
TQ

T−1∑
t=0

Q−1∑
q=0

E[∥∇F (Θ(t,M,q)
1:K )∥2

2]≤ ϵ,(3.39)

then

T ≥ ∆

Q(ϵ(η− βη2

2 )− βη2

2 σ2 −ηBU2)
.(3.40)

■
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3.5 Experimental settings

3.5.1 Datasets and Partitioning

For details about the benchmark datasets and partition methods, please refer to Section

A.1 and Section A.2, respectively, in Appendix A.

3.5.2 Baseline and system settings

Baseline For single model-based FL, we choose FedAvg [67] and FedProx [51] with

ψ= 0.95 as the baselines. For clustered FL methods, FeSEM [94] and IFCA [30], which

is similar to HypCluster are chosen as the baselines. We also propose FedAvg+ and

FedProx+ by training FedAvg and FedProx K times, and then learn an ensemble model

via soft voting to serve all clients.

System settings We generate 200 clients to simulate a relatively large-scale FL

system. We use the convolutional neural network (CNN) [44] as the basic model for

each client. We evaluate the performance using both micro accuracy (%) and macro

F1-score on the client-wise test datasets due to high non-IID degrees. The standard

deviation is estimated from five repeats of the experiment with different random seeds,

and the mean is obtained from the last three rounds out of the total 100 communication

rounds.

Optimization settings For the training model, we use small CNNs with two convolu-

tional layers for Fashion-MNIST, CIFAR-10, PathMNIST and TissueMNIST as shown in

Table A.1, A.2, A.3 and A.4 of Appendix , respectively. For the optimization, SGD with a

learning rate of 0.001 and momentum of 0.9 is used to train the model, and the batch

size is 32.
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FL settings For the FL settings, we run 100 global communication rounds, and the

local steps in each communication are 10. For the clustering process, we use flattened

parameters of the fully-connected layers of CNNs as data points and weighted K-Means

as the clustering algorithm. The coding framework called fedbase is used, which can be

accessed via the PyPI repository * or GitHub †.

Table 3.1: Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST
& CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class
K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1
FedAvg 86.08±0.70 57.24±2.26 86.33±0.44 46.09±1.08 24.38±3.30 11.69±3.15 21.33±3.83 9.0±0.58
FedProx 86.32±0.78 58.03±3.19 86.42±0.63 45.86±1.42 24.73±3.68 11.28±2.35 22.66±1.13 9.23±0.78

5

FedAvg+ 87.61 59.48 86.95 65.61 25.97 12.16 24.35 9.06
FedProx+ 87.94 59.83 86.52 65.73 26.05 12.53 24.83 9.31
IFCA 84.60±2.22 62.03±3.01 84.94±2.54 66.50±4.43 34.1±4.79 22.12±2.21 29.80±4.49 17.90±2.08
FeSEM 94.64±1.54 82.90±2.38 94.20±1.96 77.07±6.05 59.06±3.24 32.33±7.25 58.76±3.35 35.75±2.54
WeCFL 94.64±1.02 84.4±1.31 94.97±1.43 77.36±3.94 59.26±3.32 32.26±3.46 62.44±2.53 38.55±1.76

10

FedAvg+ 89.42 67.83 86.91 63.01 28.45 13.79 27.28 9.81
FedProx+ 89.55 68.02 86.73 63.42 28.33 13.64 26.94 9.64
IFCA 82.10±5.40 62.62±8.22 86.58±4.97 66.22±5.69 34.84±5.82 22.76±3.99 34.06±2.60 18.7±1.31
FeSEM 95.73±1.28 89.34±1.57 95.54±0.74 84.43±2.38 66.89±2.18 38.35±4.24 71.76±2.23 49.72±3.84
WeCFL 95.88±0.85 89.81±1.59 97.10±0.51 88.96±1.36 70.95±3.57 40.19±2.88 72.13±1.88 50.65±2.15

Table 3.2: Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class
K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1
FedAvg 31.38±8.58 14.47±4.27 21.36±5.48 11.49±2.38 49.96±3.39 18.31±4.31 53.46±2.21 15.28±1.36
FedProx 27.6±6.15 14.07±3.42 25.7±8.48 11.62±1.08 49.78±2.64 17.85±3.81 54.92±3.7 15.15±1.47

5

FedAvg+ 35.84 17.01 25.51 12.14 49.52 17.59 54.98 15.12
FedProx+ 27.57 15.74 29.7 13.05 48.88 17.08 52.24 15.54
IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
FeSEM 59.85±1.45 33.5±4.08 66.37±7.19 41.34±4.12 72.38±1.81 36.79±1.06 70.62±2.41 28.43±2.54
WeCFL 68.79±0.18 38.94±0.97 66.84±5.22 41.8±2.43 72.88±1.11 37.19±1.7 73.5±1.63 34.02±4.97

10

FedAvg+ 33.19 19.98 24.82 13.73 49.5 18.03 54.78 13.23
FedProx+ 28.21 16.17 35.62 15.95 46.57 16.47 53.47 14.88
IFCA 42.34±2.73 29.1±1.52 37.22±4.23 20.2±2.04 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
FeSEM 79.31±0.72 48.14±0.23 71.37±1.5 53.78±2.21 77.12±1.68 47.69±3.1 77.92±1.53 45.68±6.71
WeCFL 81.88±2.43 50.17±1.05 73.19±2.0 55.53±3.51 77.37±1.12 48.5±4.1 78.32±1.5 48.58±5.28

*https://pypi.org/project/fedbase/
†https://github.com/jie-ma-ai/FedBase
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Table 3.3: Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST &
CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= 0.1 2−class α= 0.1 2−class
K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 85.9±0.46 54.52±2.66 86.17±0.25 44.88±1.24 25.62±3.47 11.38±2.02 24.3±3.53 8.56±0.64
FedProx 86.03±0.58 54.69±3.32 86.47±0.23 44.89±1.38 25.72±3.29 11.14±1.49 24.19±2.45 8.69±0.74

5

FedAvg+ 86.12 61.07 86.5 45.39 25.71 12.45 24.83 8.74
FedProx+ 86.39 56.56 86.15 45.43 25.58 12.43 25.88 8.55
IFCA 90.13±6.81 68.47±5.23 91.54±5.04 72.3±5.32 47.21± 10.28 22.67±1.48 46.54±12.8 17.78±1.29
FeSEM 91.51±2.9 73.78±9.88 91.83±1.24 71.05±8.63 54.3±4.58 24.78±6.01 55.55±4.83 32.8±4.18
WeCFL 91.59±0.82 74.45±10.53 91.76±1.53 69.47±5.04 55.09±5.1 27.29±8.37 55.89±5.92 33.12±5.0

10

FedAvg+ 86.81 60.43 86.91 47.12 27.83 13.65 27.71 9.65
FedProx+ 86.24 56.2 86.78 42.83 25.86 12.84 26.16 9.94
IFCA 91.04±4.33 68.6±6.77 91.42±5.16 72.29±5.8 47.62±10.15 23.36±2.48 47.96±10.59 17.88±1.04
FeSEM 93.3±2.0 80.47±11.05 93.75±1.53 79.39±6.57 67±1.57 31.69±8.52 63.64±6.51 42.97±6.08
WeCFL 94.21±1.67 79.31±11.02 94.05±1.67 81.41±5.7 69.47±4.16 34.1±7.79 66.8±6.39 45.61±5.9

Table 3.4: Test results (mean±std) in client-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= 0.1 2−class α= 0.1 2−class
K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 26.41±9.15 14.29±3.08 26.11±8.51 13.05±2.33 52.42±4.04 16.23±3.81 54.11±2.28 14.51±1.28
FedProx 27.61±7.38 13.97±2.6 28.77±8.33 12.16±2.27 53.42±4.29 15.84±3.41 54.51±3.26 14.43±1.36

5

FedAvg+ 32.68 15.03 29.8 13.02 53.15 16.51 54.63 14.57
FedProx+ 33.19 15.66 30.51 13.49 53.56 17.89 55.03 14.78
IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
FeSEM 59.85±1.45 33.5±4.08 64.46±6.12 38.41±3.19 72.88±1.11 33.19±1.7 70.62±2.41 28.43±2.54
WeCFL 67.91±1.35 41.08±3.13 66.37±7.19 41.34±4.12 75.58±4.78 37.02±0.93 72.93±1.72 31.83±5.73

10

FedAvg+ 29.83 16.75 28.35 13.49 53.5 18.03 54.58 13.46
FedProx+ 29.36 16.55 29.07 13.63 54.69 17.36 56.03 15.21
IFCA 51.88±13.67 27.81±2.21 37.22±4.23 20.2±2.04 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
FeSEM 78.93±4.27 52.94±5.42 70.93±4.27 52.94±5.42 78.85±2.29 52.32±7.59 77.92±1.53 45.68±6.71
WeCFL 80.27±3.01 52.63±3.59 71.37±1.5 53.78±2.21 79.05±3.06 52.67±6.2 78.62±1.77 46.86±5.46

3.6 Experimental analysis

3.6.1 Comparison study

Cluster-wise non-IID results Table 3.1 and 3.2 show the performance comparison

of the methods under the cluster-wise non-IID setting. Measured by cluster-wise test

dataset-based micro accuracy and macro F1-score, WeCFL outperforms almost all base-

lines on Fashion-MNIST, CIFAR-10, PathMNIST and TissueMNIST datasets. IFCA

shows a relatively poor performance on all datasets. One of the main reasons for this is

IFCA’s unstable clustering capability. IFCA’s clustering procedure is not a standard clus-
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tering algorithm with a well-defined distance or similarity metric. Specifically, in IFCA’s

clustering procedure, the similarity metric is based on how the cluster-specific model

performs on the client’s local dataset. This kind of metric is unlike other classic distance

and similarity metrics that have demonstrated good characteristics from geometry and

algebra perspectives.

Within a proper interval, larger K leads to better performance. As shown in Table 3.1

and 3.2, when K is increased from 5 to 10, the performance of all methods is improved.

However, IFCA’s performance sometimes decreases due to its unstable clustering capabil-

ity. FedAvg and FedProx perform poorly on CIFAR-10, which demonstrates their inability

to tackle cluster-wise non-IID data. Their ensemble extensions, FedAvg+ and FedProx+,

slightly increase the performance in most datasets because the model’s generalization

has been improved by leveraging ensemble learning. It is noteworthy that FedAvg+ and

FedProx+ are very stable due to assembling multiple models; thus we didn’t measure the

variance of these ensemble models.

Client-wise non-IID results Table 3.3 and 3.4 demonstrate the experiment results

under the client-wise non-IID setting. The results show that WeCFL outperforms almost

all baselines. The statistical heterogeneity of CIFAR-10, PathMNIST and TissueMNIST

is much higher than Fashion-MNIST or other MNIST dataset families. Therefore, WeCFL

demonstrates superior performance improvements in CIFAR-10, PathMNIST and Tis-

sueMNIST than in Fashion-MNIST. Within a proper interval, larger K will lead to better

performance. As shown in the tables, when K is increased from 5 to 10, almost all meth-

ods’ performance increases. Furthermore, with a higher K , the performance of WeCFL

improves more in CIFAR-10, PathMNIST and TissueMNIST than in Fashion-MNIST.
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Figure 3.2: Convergence of clustered FL methods on CIFAR-10 under the (3,2)-class cluster-
wise non-IID setting

Figure 3.3: Convergence of WeCFL on Fashion-MNIST under the α= (0.1,10) cluster-wise
non-IID setting

3.6.2 Convergence analysis

Comparison of baselines Figure 3.2 shows the convergence curves of three clustered

FL methods: IFCA, FeSEM and WeCFL in the cluster-wise non-IID setting. The left-

and right-hand panels show the methods’ performances in test accuracy and macro F1,

respectively. The experimental dataset is derived from CIFAR-10 by preprocessing the

dataset with a cluster-wise non-IID setting. Specifically, the non-IID of (3,2)-class assigns

three classes to each cluster while assigning two classes to each client. As shown in
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Figure 3.2, WeCFL converges faster than others.

Different K Figure 3.3 demonstrates that WeCFL can convergence in different K. The

experimental dataset is derived from Fashion-MNIST using the Dirichlet-based cluster-

wise non-IID preprocessing method with α = 0.1,10. Specifically, we use a Dirichlet

distribution with α= 0.1 to control the inter-cluster non-IID with large variance, and

then use another Dirichlet distribution with α= 10 to control intra-cluster client-wise

non-IID with small variance. The figures demonstrate that a larger K is more likely to

lead to better performance on both test accuracy and macro F1 score.

Figure 3.4: Cosine similarity heatmap of 10 clusters’ centroids (left) and 20 clients in a
cluster (right).

3.6.3 Clustering study

Clustering evaluation A good clustering generally satisfies two evaluation criteria:

the clients in the cluster are similar to each other, and the clusters are dissimilar

to each other. We use cosine similarity to measure the differences between clients or

clusters generated by WeCFL. Figure 3.4 visualizes the inter-cluster and intra-cluster

similarities. Specifically, the left panel shows the similarity among 10 clusters’ centroids;
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Figure 3.5: T-SNE visualization of clustering results on the Fashion-MNIST in the first four
communication rounds under the α = (0.1,10) cluster-wise non-IID setting, generated by 200
clients across K = 10 clusters. Different colors represent different cluster labels. The order is
left-to-right then top-to-bottom.

the similarity value is around 0.93, indicating large differences between the clusters.

The right panel is the similarity between 20 intra-cluster clients; all of them are greater

than 0.999. In summary, Figure 3.4 demonstrates that WeCFL can distinct clusters (left

panel) and group similar clients into the same cluster (right panel).

Clustering visualization To verify the effectiveness of the proposed WeCFL method

and whether the clients are clustered properly, we visualize the clustering results using

t-SNE [87] to transform client-wise representations into two-dimensional vectors. All

clustering results are generated by WeCFL. Figure 3.5 and 3.6 demonstrate the changing

clustering results in view of t-SNE for the first four communication rounds on the Fashion-

MNIST for K = 10 and K = 3, respectively, while the non-IID setting is α = (0.1,10)

cluster-wise and the ground truth of cluster number K is ten. Then, the clustering

analysis of WeCFL can be summarized below,
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Figure 3.6: T-SNE visualization of clustering results in the first four communication rounds on
the Fashion-MNIST under the α= (0.1,10) cluster-wise non-IID setting, generated by 200 clients
across K = 3 clusters. Different colors represent different cluster labels. The order is left-to-right
then top-to-bottom.

• The clustering converges very fast. For K = 10, it takes only one communication

round to converge. Even for K = 3, it takes only three communication rounds to

converge. With more communications, the inter-cluster distance becomes larger

and the intra-cluster distance becomes smaller.

• The clustering converges very well. For K = 10, the clustering results exactly match

the initial partition or ground truth. For K = 3 that can not divide 10, the clustering

results keep the initialized clusters and no break up.

• The range of the clusters or intra-cluster distance becomes smaller and smaller

by the communication round for K = 10 and K = 3, which indicates that the

clusterability measure B is better and better.

In general, it takes no more than ten communication rounds to achieve convergence on
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clustering. Once clustering converges, the operations on later communication rounds are

equivalent to conducting a cluster-specific FedAvg.

3.7 Conclusion

This work rethinks the clustered FL from a new perspective on its clustering, and then

proposes a general form for clustered FL. A weighted clustering has been applied to

clustered FL. The most important contribution is the proposal of a new convergence

analysis to the general form of clustered FL. Experiments on both cluster-wise and

client-wise non-IID settings support our claims.
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CLUSTERED FEDERATED LEARNING WITH ROBUSTNESS:

A CONTRASTIVE LEARNING APPROACH

4.1 Motivation

C
lustering is a common technique used for tasks involving static data points.

However, in the context of clustered FL, the data points clustered for each

communication such as loss and gradients are dynamic, while we aim to

obtain a robust clustering result. Hence, the problem can be characterized as seeking

robust clustering results for dynamic clusters, where a gap exists between the clustering

objective C and the FL objective F .

In order to align the clustering objective C with the FL objective F and make them

consistent, contrastive learning is employed in F . Contrastive learning [32] is based

on the philosophy of enhancing both similarity and dissimilarity simultaneously to put

similar data closer together and dissimilar data further away from each other, which is in

line with the objective of clustering, maximizing intra-cluster similarity and inter-cluster
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dissimilarity. Figure 4.1 depicts the schema in which contrastive learning is employed to

improve the stability of clustering for the models of each cluster.

Figure 4.1: A schematic diagram that shows how contrastive learning works in clustered
FL, which enhances the intra-cluster similarity shown by inward arrows and inter-cluster
dissimilarity shown by outward arrows.

4.2 Formulation

For the clustered FL, as mentioned in WeCFL [62], it can be formulated into a bi-level

optimization framework as follows,

minimize
{Θk}

F :
1
m

K∑
k=1

m∑
i=1

ψir i,kL (Hk,D i,Θk)(4.1a)

subject to {r i,k}= argmin
{r i,k}

C :
K∑

k=1

m∑
i=1

ψir i,kd(g i,Gk)(4.1b)
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And we define the new bilevel optimization objective of clustered FL as follows,

minimize
{Θk}

F :
1
m

K∑
k=1

m∑
i=1

ψir i,k[L (Hk,D i,Θk)+µT ({Θk})](4.2a)

subject to {r i,k}= argmin
{r i,k}

C :
K∑

k=1

m∑
i=1

ψir i,kd(g i,Gk).(4.2b)

exp(sim(θi,Θk)/τ)∑K
k′=1 exp(sim(θi,Θ′

k)/τ)
(4.3)

exp(sim(h(θi,D i),H (Θk,D i)/τ)∑K
k′=1 exp(sim(h(θi,D i),H (Θ′

k,D i))/τ)
(4.4)

Since this method can be integrated into any clustered FL algorithms, it is referred to

as CFL-CON, or simply CON in this thesis, shorted for Clustered FL with contrastive

learning. Specifically, for CFL-CON based on parameters and representations, they are

shorted for CFL-CON-para and CFL-CON-rep, respectively.

4.3 Algorithm

Integrating CON into various clustered FL methods, including IFCA, FeSEM, WeCFL,

etc., is a simple process. To implement this approach, the FL loss function should be

augmented with T , and the standard optimization process should be followed. The

primary advantage of using stable clustering is that it requires only a limited number

of shots for the clustering process. This, in turn, significantly reduces the amount

of computational resources required, resulting in faster and more efficient training.

Additionally, stable clustering can mitigate the risk of overfitting, as it reduces the

number of updates needed for the clustering process. Consequently, Algorithm 2 can be

modified in the following manner from Algorithm 1, and T can be Term 4.3 or Term 4.4.
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Algorithm 2: CFL-CON: Clustered FL with Contrastive Learning
1: Input: K , {D1,D2, . . . ,Dm}

2: Initialize: Randomly initialize {Θ1,Θ2, . . . ,ΘK }

3: repeat

4: Expectation step for few shots: Assign Client i to Cluster k by

k = argmin
k

ψid(g i,Gk).

5: Maximization / Aggregation step: Compute cluster center Θk by

1∑m
i=1 ψi

m∑
i=1

r i,kψiθi.

6: Distribution step: Send Hk to clients in Cluster k.

7: Local update step: Run Gradient Descent Q steps using local data D i to minimize

1
m

K∑
k=1

m∑
i=1

ψir i,k[L (Hk,D i,Θk)+µT ({Θk})].

8: until convergence condition satisfied

9: Output: {r i,k}, {Θ1,Θ2, . . . ,ΘK }.

4.4 Experiments

4.4.1 Experimental settings

4.4.1.1 Datasets and partitioning

For details about the benchmark datasets and partition methods, please refer to Section

A.1 and Section A.2, respectively, in Appendix A.
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4.4.1.2 Baselines

For the global model-based FL, we choose FedAvg [67] as the baseline. For clustered FL

methods, we use IFCA [30], FeSEM [94], and WeCFL [62]. IFCA represents clustered FL

methods that utilize minimum loss for clustering, while FeSEM and WeCFL represent

clustered FL methods that employ partial model parameters for clustering. We then

incorporate both CFL-CON-rep and CFL-CON-para into these three clustering methods

to evaluate the effectiveness of the CFL-CON terms. The new baselines are named

accordingly, such as IFCA-CON-rep and IFCA-CON-para, for instance.

4.4.1.3 Simulation settings

Optimization settings For the training model, we use small CNNs [44] with two

convolutional layers for Fashion-MNIST, CIFAR-10, PathMNIST and TissueMNIST as

shown in Table A.1, A.2, A.3 and A.4 in Appendix , respectively. For the optimization, an

optimizer of SGD with a learning rate of 0.001 and momentum of 0.9 is used to train the

model, and the batch size is 32.

Evaluation metrics We evaluate the performance using both micro accuracy (%)

and macro F1-score on the client-wise test datasets due to high non-IID degrees.

The standard deviation is estimated from five repeats of the experiment with different

random seeds, and the mean is obtained from the last three rounds out of the total 100

communication rounds.

Other settings For the FL settings, the local steps in each communication round are

10. For the clustering process, we use flattened parameters of the fully-connected layers of

CNNs as data points and weighted K-Means as the clustering algorithm. The coefficient

of the CFL-CON term µ is chosen from a set of {0.1,0.5,2,5}, and the temperature of

the CFL-CON term τ is chosen from a set of {0.1,1,10} based on the performance. For
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clustered FL with stable clustering, including FeSEM and WeCFL, the number of few

shots is set to 10. For IFCA, where the clustering process is unstable, the clustering and

optimization processes are always intertwined and occur simultaneously. The coding

framework called fedbase is used, which can be accessed via the PyPI repository * or

GitHub †.

4.4.2 Experimental analysis

Cluster-wise non-IID Table 4.1 and 4.2 display the experimental results for four

datasets under the cluster-wise non-IID setting. Firstly, both CFL-CON-para and CFL-

CON-rep considerably enhance the performance of the original clustered FL methods

under the cluster-wise non-IID setting, as evidenced by their accuracy and Macro-F1

scores. WeCFL-CON-para achieves the best performance for both K = 5 and K = 10,

particularly for the Fashion-MNIST and CIFAR-10 datasets. The CFL-CON methods

show lower variance, signifying improved robustness in performance. Secondly, IFCA-

CON attains a more significant marginal gain over IFCA compared to both FeSEM-

CON and WeCFL-CON, primarily due to IFCA’s lower base and greater potential for

improvement. However, there are some exceptions for IFCA, such as PathMNIST with

K = 10 and α= (0.1,10). Thirdly, overall, CON-para outperforms CON-rep when other

conditions remain the same, and it is also more computationally efficient. As a result,

CON-para is recommended for use in cluster-wise non-IID settings.

Client-wise non-IID Table 4.3 and 4.4 present the experimental results for four

datasets under the client-wise non-IID setting. Firstly, it can be concluded that both

CFL-CON-rep and CFL-CON-para significantly improve the performance compared to

the original methods, as evidenced by their accuracy and Macro-F1 scores. Generally,

*https://pypi.org/project/fedbase/
†https://github.com/jie-ma-ai/FedBase
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Table 4.1: Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST
& CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 86.08±0.70 57.24±2.26 86.33±0.44 46.09±1.08 24.38±3.30 11.69±3.15 21.33±3.83 9.0±0.58

5

IFCA 84.60±2.22 62.03±3.01 84.94±2.54 66.50±4.43 34.1±4.79 22.12±2.21 29.80±4.49 17.90±2.08
IFCA-CON-rep 89.86±1.58 67.94±0.87 91.88±2.37 69.1±1.75 41.33±5.63 25.03±4.53 38.06±5.37 23.9±2.8
IFCA-CON-para 90.54±1.27 73.94±0.69 92.88±1.25 71.1±1.08 43.33±3.63 25.87±3.35 40.06±4.56 25.61±3.4
FeSEM 94.64±1.54 82.90±2.38 94.20±1.96 77.07±6.05 59.06±3.24 32.33±7.25 58.76±3.35 35.75±2.54
FeSEM-CON-rep 95.26±0.04 86.62±0.06 92.59±0.09 73.48±0.26 59.93±0.3 32.62±0.14 59.07±0.24 36.4±0.51
FeSEM-CON-para 95.42±0.03 86.04±0.02 94.05±0.02 80.91±0.34 58.39±0.09 33.98±0.15 59.31±0.11 36.97±0.08
WeCFL 94.64±1.02 84.4±1.31 94.97±1.43 77.36±3.94 59.26±3.32 32.26±3.46 62.44±2.53 38.55±1.76
WeCFL-CON-rep 95.43±0.01 85.96±0.08 93.91±0.05 72.25±0.11 59.79±0.26 33.25±0.14 61.0±0.15 38.55±0.07
WeCFL-CON-para 95.42±0.01 89.38±0.06 95.98±0.04 82.41±0.22 61.48±0.21 35.93±0.1 63.24±0.25 40.54±0.31

10

IFCA 82.10±5.40 62.62±8.22 86.58±4.97 66.22±5.69 34.84±5.82 22.76±3.99 34.06±2.60 18.7±1.31
IFCA-CON-rep 91.97±1.69 75.54±2.27 89.15±2.08 57.87±3.02 48.05±5.94 25.53±6.17 42.61±6.57 31.5±3.39
IFCA-CON-para 93.25±1.43 80.54±1.75 89.63±2.59 59.63±3.57 48.65±4.87 27.53±4.71 43.52±5.28 32.0±2.96
FeSEM 95.73±1.28 89.34±1.57 95.54±0.74 84.43±2.38 66.89±2.18 38.35±4.24 71.76±2.23 49.72±3.84
FeSEM-CON-rep 95.72±0.03 89.5±0.09 95.79±0.07 78.96±0.2 68.4±0.05 34.75±0.05 72.68±0.12 47.02±0.11
FeSEM-CON-para 95.78±0.02 89.99±0.16 96.71±0.05 82.55±0.13 69.88±0.07 36.0±0.09 72.92±0.08 48.98±0.15
WeCFL 95.88±0.85 89.81±1.59 97.10±0.51 88.96±1.36 70.95±3.57 40.19±2.88 72.13±1.88 50.65±2.15
WeCFL-CON-rep 96.01±0.03 90.29±0.22 97.12±0.04 90.79±0.2 70.96±0.1 40.9±0.15 72.38±0.03 50.68±0.17
WeCFL-CON-para 96.93±0.04 91.22±0.12 97.18±0.06 91.88±0.32 71.23±0.09 42.34±0.11 72.73±0.05 51.57±0.21

Table 4.2: Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 31.38±8.58 14.47±4.27 21.36±5.48 11.49±2.38 49.96±3.39 18.31±4.31 53.46±2.21 15.28±1.36

5

IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CON-rep 52.02±5.71 32.44±3.53 27.11±2.94 18.75±1.65 49.28±6.65 22.69±3.42 57.67±8.05 27.95±5.21
IFCA-CON-para 56.02±4.32 33.67±3.77 27.11±2.94 18.75±1.65 50.17±2.33 23.8±4.32 57.87±7.51 27.63±4.68
FeSEM 59.85±1.45 33.5±4.08 66.37±7.19 41.34±4.12 72.38±1.81 36.79±1.06 70.62±2.41 28.43±2.54
FeSEM-CON-rep 62.0±0.82 35.92±0.21 67.98±1.17 42.82±0.66 77.79±0.08 40.78±0.11 76.04±0.1 40.69±0.39
FeSEM-CON-para 61.63±0.11 34.03±0.08 67.31±0.43 41.62±0.35 77.72±0.05 41.07±0.13 82.85±0.06 41.41±0.32
WeCFL 68.79±0.18 38.94±0.97 66.84±5.22 41.8±2.43 72.88±1.11 37.19±1.7 73.5±1.63 34.02±4.97
WeCFL-CON-rep 69.76±2.26 42.54±1.72 66.54±0.78 43.42±0.63 77.85±0.03 41.12±0.1 82.96±0.05 41.7±0.26
WeCFL-CON-para 69.2±1.14 43.91±0.54 69.08±0.46 46.68±0.62 77.86±0.06 40.94±0.09 83.99±0.21 43.96±1.07

10

IFCA 42.34±2.73 29.1±1.52 37.22±4.23 20.2±2.04 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CON-rep 42.08±2.67 29.51±2.86 30.02±8.11 17.94±4.48 78.44±9.46 34.95±5.75 54.25±4.25 26.3±2.63
IFCA-CON-para 43.09±1.97 30.25±2.51 30.02±8.11 17.94±4.48 78.69±8.62 35.19±4.75 55.61±3.91 27.1±3.05
FeSEM 79.31±0.72 48.14±0.23 71.37±1.5 53.78±2.21 77.12±1.68 47.69±3.1 77.92±1.53 45.68±6.71
FeSEM-CON-rep 79.36±0.05 47.71±0.09 76.49±0.09 55.78±0.55 87.7±0.07 48.06±0.25 78.73±0.04 54.41±0.31
FeSEM-CON-para 79.45±0.01 48.03±0.0 75.84±0.45 55.94±0.88 87.27±0.1 47.56±0.14 78.81±0.09 53.82±0.35
WeCFL 81.88±2.43 50.17±1.05 73.19±2.0 55.53±3.51 77.37±1.12 48.5±4.1 78.32±1.5 48.58±5.28
WeCFL-CON-rep 81.07±0.13 50.41±0.29 73.41±0.16 52.95±0.45 87.64±0.09 47.87±0.07 79.35±0.12 52.27±0.15
WeCFL-CON-para 81.75±1.14 51.73±1.47 74.67±0.41 52.33±0.49 87.52±0.03 47.36±0.09 79.72±0.13 54.81±0.22

both CFL-CON-rep and CFL-CON-para exhibit lower variance, indicating increased

robustness. Among the three clustered FL methods, IFCA, FeSEM, and WeCFL, WeCFL
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and WeCFL-CON consistently perform the best. Secondly, under the client-wise non-

IID setting, for Fashion-MNIST and CIFAR-10, CFL-CON-para slightly outperforms

CFL-CON-rep, while CFL-CON-rep’s performance is comparable to CFL-CON-para for

PathMNIST and TissueMNIST of the MedMNIST datasets. Overall, CFL-CON-rep

and CFL-CON-para demonstrate similar performance under the client-wise non-IID

setting. Thirdly, IFCA-CON does not show significant improvements for Fashion-MNIST

and CIFAR-10, as the base performance is high enough, leaving little room for further

enhancement. In conclusion, although both CFL-CON-rep and CFL-CON-para offer

marginal benefits and exhibit close performance, CFL-CON-para is still recommended

due to its computational efficiency.

Table 4.3: Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST &
CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= 0.1 2−class α= 0.1 2−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 85.9±0.46 54.52±2.66 86.17±0.25 44.88±1.24 25.62±3.47 11.38±2.02 24.3±3.53 8.56±0.64

5

IFCA 90.13±6.81 68.47±5.23 91.54±5.04 72.3±5.32 47.21± 10.28 22.67±1.48 46.54±12.8 17.78±1.29
IFCA-CON-rep 90.23±2.94 62.83±4.3 90.4±3.04 66.74±3.14 48.76±3.24 24.67±0.31 53.71±2.53 24.26±0.95
IFCA-CON-para 90.89±3.51 65.57±4.91 91.43±2.97 66.15±4.33 49.54±3.92 24.67±1.68 54.09±3.13 23.61±1.18
FeSEM 91.51±2.9 73.78±9.88 91.83±1.24 71.05±8.63 54.3±4.58 24.78±6.01 55.55±4.83 32.8±4.18
FeSEM-CON-rep 91.87±0.07 74.19±0.2 90.61±0.08 71.28±0.21 55.02±0.45 34.78±1.35 55.28±0.81 32.68±1.65
FeSEM-CON-para 91.42±0.11 70.02±0.41 92.0±0.04 72.1±0.17 57.56±1.84 34.31±1.94 56.41±1.76 32.77±0.12
WeCFL 91.59±0.82 74.45±10.53 91.76±1.53 69.47±5.04 55.09±5.1 27.29±8.37 55.89±5.92 33.12±5.0
WeCFL-CON-rep 91.65±0.0 74.78±0.12 91.42±0.05 71.37±0.2 55.42±0.13 33.52±0.41 56.3±1.06 34.0±0.33
WeCFL-CON-para 91.65±0.06 74.79±0.11 92.75±0.04 72.37±0.18 58.69±0.55 36.17±0.55 56.26±1.34 35.07±0.59

10

IFCA 91.04±4.33 68.6±6.77 91.42±5.16 72.29±5.8 47.62±10.15 23.36±2.48 47.96±10.59 17.88±1.04
IFCA-CON-rep 89.94±3.91 55.86±2.89 92.76±4.9 69.61±8.2 48.25±10.57 24.93±4.01 50.6±13.09 26.27±2.85
IFCA-CON-para 91.33±3.61 58.47±4.35 92.88±4.36 71.52±5.91 48.69±8.1 24.55±5.61 51.58±8.31 24.91±3.18
FeSEM 93.3±2.0 80.47±11.05 93.75±1.53 79.39±6.57 67±1.57 31.69±8.52 63.64±6.51 42.97±6.08
FeSEM-CON-rep 94.4±0.05 79.76±0.14 94.1±0.07 80.81±0.17 78.5±0.03 54.95±0.06 64.61±1.27 43.2±0.78
FeSEM-CON-para 94.64±0.03 79.08±0.42 94.78±0.06 80.14±0.33 78.6±0.02 54.96±0.11 64.4±0.49 44.51±0.58
WeCFL 94.21±1.67 79.31±11.02 94.05±1.67 81.41±5.7 69.47±4.16 34.1±7.79 66.8±6.39 45.61±5.9
WeCFL-CON-rep 94.69±0.01 80.04±0.4 95.86±0.1 82.74±0.25 78.53±0.04 54.71±0.11 68.14±0.5 47.12±1.08
WeCFL-CON-para 95.38±0.03 81.7±1.02 95.63±0.15 83.77±0.38 78.85±0.02 55.78±0.1 69.22±0.1 48.68±0.42

Summary

• Both CFL-CON-rep and CFL-CON-para can enhance performance under nearly all

non-IID settings and across all datasets.
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Table 4.4: Test results (mean±std) in client-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= 0.1 2−class α= 0.1 2−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 26.41±9.15 14.29±3.08 26.11±8.51 13.05±2.33 52.42±4.04 16.23±3.81 54.11±2.28 14.51±1.28

5

IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CON-rep 52.02±3.71 25.44±3.53 52.44±3.63 29.05±1.63 66.3±6.7 25.56±5.37 60.54±3.19 21.15±0.61
IFCA-CON-para 53.14±2.88 26.67±2.54 55.68±3.61 30.05±1.24 67.18±4.74 28.52±3.97 61.85±3.19 23.16±0.86
FeSEM 59.85±1.45 33.5±4.08 64.46±6.12 38.41±3.19 72.88±1.11 33.19±1.7 70.62±2.41 28.43±2.54
FeSEM-CON-rep 59.88±0.01 43.74±0.05 66.66±0.65 40.87±0.42 80.68±0.16 35.08±0.34 73.55±0.05 32.99±0.26
FeSEM-CON-para 61.14±0.34 47.27±0.47 67.27±0.14 40.66±0.29 79.28±0.05 32.56±0.51 72.52±0.07 33.44±0.41
WeCFL 67.91±1.35 41.08±3.13 66.37±7.19 41.34±4.12 75.58±4.78 37.02±0.93 72.93±1.72 31.83±5.73
WeCFL-CON-rep 71.53±5.09 51.97±3.79 67.57±2.75 42.36±2.66 83.78±0.08 37.76±0.25 73.39±0.03 30.18±0.11
WeCFL-CON-para 74.09±0.93 48.56±1.13 68.55±0.57 43.53±0.54 83.98±0.11 39.63±0.45 74.0±0.03 34.02±0.26

10

IFCA 51.88±13.67 27.81±2.21 37.22±4.23 20.2±2.04 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CON-rep 59.87±8.61 40.35±3.67 48.01±9.57 30.33±1.62 55.14±7.36 16.59±1.91 72.83±9.91 24.79±3.37
IFCA-CON-para 60.93±8.5 41.13±2.52 50.67±6.91 31.61±3.94 56.33±5.61 17.68±2.33 74.62±8.69 27.79±2.61
FeSEM 78.93±4.27 52.94±5.42 70.93±4.27 52.94±5.42 78.85±2.29 52.32±7.59 77.92±1.53 45.68±6.71
FeSEM-CON-rep 81.14±0.03 62.11±0.06 72.31±0.19 54.97±0.42 85.07±0.04 54.86±0.81 78.23±0.04 47.88±0.46
FeSEM-CON-para 82.05±0.0 62.71±0.0 72.43±0.37 54.99±0.49 84.33±0.08 54.85±0.25 78.55±0.04 46.98±0.47
WeCFL 80.27±3.01 52.63±3.59 71.37±1.5 53.78±2.21 79.05±3.06 52.67±6.2 78.62±1.77 46.86±5.46
WeCFL-CON-rep 82.56±0.44 63.47±0.38 73.21±0.13 54.06±0.61 85.35±0.04 55.33±0.24 79.45±0.1 47.27±0.17
WeCFL-CON-para 83.85±0.14 64.51±0.1 73.02±0.17 55.51±0.47 85.06±0.13 55.01±0.19 79.31±0.08 47.64±0.24

• Generally, the better the performance of the baseline, the better the performance

when combined with CFL-CON. CFL-CON-para outperforms CFL-CON-rep in

more cases. Overall, WeCFL-CON-para demonstrates the best performance.

• IFCA-CON improves IFCA the most due to its lower base and greater potential

for enhancement. However, there are some exceptional cases for IFCA-CON un-

der specific datasets and non-IID settings, which are primarily attributed to its

inherent unstable clustering or mode collapse [91].

4.5 Conclusion

In this study, we tackle the problem of robust clustering in Clustered FL. In line with

the core principles of clustering, which aim to maximize inter-cluster distances and

minimize intra-cluster distances, we propose a contrastive approach. This method can

either be viewed as a regularization term added to the loss function of Clustered FL

methods or as an integral part of the unified framework for Clustered FL presented
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in Chapter 3. We introduce two variants of CFL-CON: CFL-CON-rep and CFL-CON-

para. Experimental results demonstrate significant marginal performance improvements

under both cluster-wise and client-wise non-IID settings.
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CLUSTERED FEDERATED LEARNING WITH IMPROVED

PERFORMANCE: A KNOWLEDGE SHARING APPROACH

5.1 Motivation

A
s addressed in Chapter 3, the unified framework of clustered FL with a bilevel

optimization objective has been proposed. The theoretical analysis and ex-

perimental simulation are both conducted, in which more questions about

clustered FL are raised.

Question 1: Should the clustering structure in FL be stable?

The answer is YES. Theoretically, the clustering results have to converge. Realistically,

clustering is to group clients together based on some specific attitudes. Therefore unless

the client changes, the clustering result should not change. And how to be stable is

related to two challenges:

• How to represent the client or cluster?
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• How to conduct clustering?

For the first challenge, we should use the representation metric that satisfies several

conditions below.

• The metric should be privacy-protective to align with the basics of FL.

• The metric can distinguish clients as designed.

The metrics are mainly divided into two categories, model-based and data-based. Model-

based representation metrics include the loss, partial or full model parameters, etc.

Data-based metrics are usually related to the distribution of clients’ data. For the

metrics above, the loss is privacy-protective but not distinguishable. The distribution is

distinguishable but may leak data privacy easily. The metrics based on model parameters

are not absolutely secure, but they are at the same level of security as the trivial FL

communicating with gradients. And they can cluster quickly and stably, according to the

experiments.

And solutions to the second challenge depend highly on the metrics in the first

challenge. For metrics in the format of vectors, classic clustering methods based on the

angle or distance, such as K-means and its variants can be used. Specifically, the KL

divergence or Wasserstein distance is more suitable for distribution-related metrics.

Question 2: If clustering is stable, FL for clients across clusters will be separate, then

should clusters share knowledge with each other?

The answer is YES. As answered in the first question, the clustering results have

to be stable in FL. For the hard clustering widely used in FL, one client belongs to

only one cluster. Then clients in FL with clustering structures will be separated into

several clusters with no relationships after a few communications. Although the overall

performance is usually better than most FL methods with one globally-shared model
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or even some personalized FL methods, as it is like doing several FL training based on

homogeneous clients in one cluster, we argue that the performance can be significantly

better with knowledge sharing across the clusters. This argument is one of the main

advantages of FL, and the main motivation for this work as well.

Question 3: If inter-cluster knowledge has to be shared, which method should be used

appropriately?

As claimed in the second question, inter-cluster knowledge sharing can contribute

significantly to FL methods with clustering structures. This is not a new concept, espe-

cially in transfer learning, meta-learning, and distributed training such as multi-task

learning (MTL) and FL. Many techniques have been developed to adapt to different

methods, such as hard parameter sharing and soft parameter sharing, in which some are

generic and others are specific. In conclusion, we can choose specific knowledge-sharing

techniques for an assigned FL method. But in this paper, we try to propose a general

method that can be an add-on to almost all FL methods with clustering structures to

improve its performance or generalization ability. Then an inter-cluster regularization

term is proposed.

5.2 Methodology

5.2.1 Formulation

For general FL, its objective can be formulated as below,

min
Θg

m∑
i=1

ψiL (H ,D i,Θg).(5.1)

In FedAvg, the global model Θg is aggregated from the local models,

Θg =
m∑

i=1

ψi∑m
j=1ψ j

θi(5.2)
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For the clustered FL, as mentioned in WeCFL [62], it can be formulated into a bi-level

optimization framework as follows,

minimize
{Θk}

F :
1
m

K∑
k=1

m∑
i=1

ψir i,kL (Hk,D i,Θk)(5.3a)

subject to {r i,k}= argmin
{r i,k}

C :
K∑

k=1

m∑
i=1

ψir i,kd(g i,Gk)(5.3b)

As illustrated in Section 5.1, a well-performing federated learning (FL) algorithm for

clustering should exhibit convergence or stability in its clustering results. However, this

raises a concern regarding the extent to which the learned models utilize the knowledge

of all clients or whether they learn sufficiently. This serves as the main motivation behind

this paper, which proposes a straightforward yet effective approach to sharing knowledge

across clusters. Specifically, a penalty term denoted by S with respect to Θk is added to

the loss function of clustered FL, as depicted in equation 5.3a,

minimize
{Θk}

F :
1
m

K∑
k=1

m∑
i=1

ψir i,k[L (Hk,D i,Θk)+ λk

2
S ({Θk})](5.4a)

subject to {r i,k}= argmin
{r i,k}

C :
K∑

k=1

m∑
i=1

ψir i,kd(g i,Gk).(5.4b)

And a typical P to share knowledge across the clusters can be defined as,

∑
k′∈{K}\{k}

∑m
i=1 r i,k′ψi∑m

i=1ψi
∥Θk −Θk′∥2

2.(5.5)

In order to simplify the formulation and reduce computational costs, it is possible to

employ an approximation according to Theorem 5.2.4, which yields:

∥Θk −Θg∥2
2,(5.6)

which is easy to train. Since this method can be integrated into any clustered FL

algorithms, it is referred to as CFL-CKS, or simply CKS in this thesis, shorted for
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clustered FL with clustered knowledge sharing. As depicted in Figure 5.1, the models

situated at the three corners denote the cluster model Θk, while the central model

corresponds to the global model Θg. The grey bidirectional arrows depict the mode of

knowledge sharing in Term 5.5. On the other hand, the green bidirectional arrows portray

the mode of knowledge sharing in Term 5.6. These two modes of knowledge sharing are

somewhat similar.

Figure 5.1: A toy example of CKS. The grey and green bidirectional arrows represent Term 5.5
and 5.6, respectively.

5.2.2 Theoretical Analysis

5.2.3 Equality Analysis

To analyze the equality of Term 5.5 and Term 5.6, for simplification, we use two assump-

tions below to simplify the analysis of Term 5.5.

Assumption 5.2.1. (Equal weight across clusters). Each cluster has the same sum of

weights, which is 1
K .

Assumption 5.2.2. (Equal distance across clusters and proportional with the distance

to the center). The distance of each pair of clusters is equal as below and proportional to
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the distance to the center for different k,k1,k2 ∈ {1, ...,K},

∥Θk −Θk1∥2 = ∥Θk −Θk2∥2(5.7)

∝∥Θk −Θg∥2.(5.8)

Remark 5.2.3. Assumption 5.2.2 can be deemed as empirically observable and readily

attainable. This is exemplified by Figure 5.2, which serves as a suitable illustration. The

figure portrays a regular tetrahedron wherein the four vertices correspond to the four

cluster centroids, while its barycenter denotes the global model.

Figure 5.2: A toy example of Assumption 5.2.2.

Theorem 5.2.4. (Proportionality of Term 5.5 and Term 5.6). Under Assumptions 5.2.1

and 5.2.2, Term 5.5 is proporitonal to Term 5.6.

∑
k′∈{K}\{k}

∑m
i=1 r i,k′ψi∑m

i=1ψi
∥Θk −Θk′∥2

2 ∝∥Θk −Θg∥2
2.(5.9)
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Proof. Under Assumptions 5.2.1 and 5.2.2,

∑
k′∈{K}\{k}

∑m
i=1 r i,k′ψi∑m

i=1ψi
∥Θk −Θk′∥2

2(5.10)

= ∑
k′∈{K}

∑m
i=1 r i,k′ψi∑m

i=1ψi
∥Θk −Θk′∥2

2(5.11)

= 1
K

∑
k′∈{K}

∥Θk −Θk′∥2
2(5.12)

∝ 1
K

∥KΘk −∑
k′∈{K}Θk′∥2

2

K
(5.13)

∝ 1
K

K2∥Θk − 1
K

∑
k′∈{K}Θk′∥2

2

K
(5.14)

∝∥Θk −Θg∥2
2.(5.15)

■

Remark 5.2.5. Transforming Term 5.5 to Term 5.6 is a computationally efficient and

straightforward process. Moreover, the ratio between the two terms can be approximately

equal to one.

5.2.4 Convergence Analysis

The complexity of analyzing the convergence of CFL-CKS arises from its integration with

a bilevel optimization problem. Therefore, we reformulate Equation 5.4 to accommodate

a more usual or specific scenario.

minimize
{Θk}

F :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψi[L (Θk,D i)+ λk

2
∥Θk −Θg∥2

2]

s.t. {r i,k}= argmin
{r i,k}

C :
1∑m

j=1ψ j

K∑
k=1

m∑
i=1

r i,kψi∥θi −Θk∥2
2.

(5.16)

Theorem 5.2.6. (Convergence rate of CFL-CKS). Let Assumptions 3.4.1, 3.4.8, 3.4.9 and

3.4.10 hold, and ∆=F0 −F∗, given any ϵ> 0, after

(5.17) T ≥ ∆

Q(ϵ(η− βη2

2 )− βη2

2 σ2 −ηBU2)
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communication rounds, we have

(5.18)
1

TQ

T−1∑
t=0

Q−1∑
q=0

E[∥∇F (Θ(t,M,q)
1:K )∥2

2]≤ ϵ.

Remark 5.2.7. (Linear convergence rate of CFL-CKS). The integration of CKS does not

affect the assumptions and convergence results of the bilevel optimization problem 5.16

still hold. As stated in Equation 5.17, given an appropriate learning rate, the convergence

rate of CFL-CKS is O(1/T), attaining a cutting-edge rate comparable to that of SGD

and as described in [53]. Additionally, a larger K or reduced non-IIDness, along with a

smaller B, results in an improved convergence rate but with diminishing returns.

Proof. Due to the convexity of CFL-CKS as follows,

(5.19)
λk

2
∥Θk −Θg∥2

2,

if we include this term into L and let Assumptions 3.4.1, 3.4.8, 3.4.9 and 3.4.10 still

hold, The same results of Theorem 3.4.14 are achieved. ■

5.2.5 Interpretations

Regularization Regarding clustered FL as K independent tasks, while the clustering

is stale in a few shots, each task can use regularization to alleviate overfitting and

improve generalization ability. Unlike a traditional L2 norm to drag the parameters to

zero, we use Term 5.6 to drag Θk to Θg.

FedProx [51] By regarding each cluster as a client and adding term 5.6, Objective 5.4

can be seen the clustered version of FedProx, which can be viewed as a generalization

and re-parametrization of WeCFL [62]. And it can address the heterogeneous across

clusters much better, and allows more robust convergence than WeCFL for realistic FL

applications.
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Multi-task Learning CKS in clustered FL can also be regarded as the soft parameter

sharing in multi-task learning to some extent. Thus CKS can make one cluster gain

benefits from other tasks or clusters.

5.3 Algorithm

The integration of CKS into clustered FL methods, such as IFCA, FeSEM, WeCFL,

etc., is straightforward. Simply add Equation 5.6 to the FL loss function and follow

the standard optimization process. The benefit of using stable clustering is that it only

requires a limited number of shots for the clustering process. Then stable clustering can

significantly reduce the amount of computational resources needed, leading to faster and

more efficient training. Furthermore, stable clustering also helps to mitigate the risk of

overfitting, as it reduces the number of updates needed for the clustering process. Thus,

the algorithm can be modified as in Algorithm 3.
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Algorithm 3: CFL-CKS: Clustered FL with Clustered Knowledge Sharing
1: Input: K , {D1,D2, . . . ,Dm}

2: Initialize: Randomly initialize {Θ1,Θ2, . . . ,ΘK }

3: repeat

4: Expectation step for few shots: Assign Client i to Cluster k by

k = argmin
k

ψid(g i,Gk).

5: Maximization / Aggregation step: Compute cluster center Θk by

1∑m
i=1 ψi

m∑
i=1

r i,kψiθi.

6: Distribution step: Send Hk to clients in Cluster k.

7: Local update step: Run Gradient Descent Q steps using local data D i to minimize

1
m

K∑
k=1

m∑
i=1

ψir i,k[L (Hk,D i,Θk)+ λk

2
P ({Θk})].

8: until convergence condition satisfied

9: Output: {r i,k}, {Θ1,Θ2, . . . ,ΘK }.

5.4 Experiments

5.4.1 Experimental settings

5.4.1.1 Datasets and partitioning

For details about the benchmark datasets and partition methods, please refer to Section

A.1 and Section A.2, respectively, in Appendix A.
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5.4.1.2 Baselines

For the global model-based FL, we choose FedAvg [67] as the baseline. For clustered FL

methods, IFCA [30], FeSEM [94], WeCFL [62] are used. To evaluate the effectiveness

of our proposed method, CFL-CKS are combined with these three baselines as three

new baselines. The new baselines are named accordingly, such as WeCFL-CKS and

WeCFL-CKS, for instance.

5.4.1.3 Simulation settings

Optimization settings For the training model, we use small CNNs [44] with two

convolutional layers for Fashion-MNIST, CIFAR-10, PathMNIST and TissueMNIST as

shown in Table A.1, A.2, A.3 and A.4 in Appendix , respectively. For the optimization, an

optimizer of SGD with a learning rate of 0.001 and momentum of 0.9 is used to train the

model, and the batch size is 32.

Evaluation metrics We evaluate the performance using both micro accuracy (%)

and macro F1-score on the client-wise test datasets due to high non-IID degrees.

The standard deviation is estimated from five repeats of the experiment with different

random seeds, and the mean is obtained from the last three rounds out of the total 100

communication rounds.

Other settings For the FL settings, the local steps in each communication round

are 10. For the clustering process, we use flattened parameters of the fully-connected

layers of CNNs as data points and weighted K-Means as the clustering algorithm. The

coefficient of the CFL-CKS term λ is chosen from a set of {1,0.1,0.01,0.001} based

on the performance. For clustered FL with stable clustering, including FeSEM and

WeCFL, the number of few shots is set to 10. For IFCA, where the clustering process is

unstable, the clustering and optimization processes are always intertwined and occur
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simultaneously. The coding framework called fedbase is used, which can be accessed via

the PyPI repository * or GitHub †.

5.4.2 Experimental Analysis

Cluster-wise non-IID results analysis Table 5.1 and Table 5.2 demonstrate the

comparison results under the cluster-wise non-IID setting over four datasets. For each

baseline under different datasets and non-IID settings, CFL-CKS can improve the

performance either in accuracy or macro-F1 in almost all cases. And usually, the better

the performance of the original baseline, the better the performance of the baseline with

CFL-CKS. For WeCFL, it performs the best, almost under all the settings. For IFCA, a

clustering FL method that suffers from the problem of unstable clustering and "mode

collapse" [91], CFL-CKS is difficult to improve its performance, will even decrease the

performance especially under the non-IID setting with n-class method. It may reflect

that there is little or waste knowledge being shared across the clusters of IFCA under

the cluster-wise non-IID setting.

Client-wise non-IID results analysis Table 5.3 and Table 5.4 demonstrates the

comparison results under the client-wise non-IID setting over four datasets. CFL-CKS

can benefit all the baselines under various datasets and non-IID settings. For FeSEM

and WeCFL, better original performance will usually lead to better performance with

CFL-CKS. IFCA under the client-wise non-IID setting is an exceptional case. CFL-CKS

can boost its performance so much, even to the best. It may be due to the fact that

knowledge sharing is more easy or more efficient under the client-wise non-IID setting

than the cluster-wise non-IID setting.

Summary
*https://pypi.org/project/fedbase/
†https://github.com/jie-ma-ai/FedBase
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Table 5.1: Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST
& CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 86.08±0.70 57.24±2.26 86.33±0.44 46.09±1.08 24.38±3.30 11.69±3.15 21.33±3.83 9.0±0.58

5

IFCA 84.60±2.22 62.03±3.01 84.94±2.54 66.50±4.43 34.1±4.79 22.12±2.21 29.80±4.49 17.90±2.08
IFCA-CKS 85.14±2.46 62.82±0.45 80.74±5.28 60.31±3.14 33.54±8.76 19.46±4.38 32.69±4.32 19.35±1.26
FeSEM 94.64±1.54 82.90±2.38 94.20±1.96 77.07±6.05 59.06±3.24 32.33±7.25 58.76±3.35 35.75±2.54
FeSEM-CKS 95.74±0.26 85.86±1.0 95.35±2.0 77.62±6.28 60.38±7.47 29.99±6.03 62.83±0.11 42.6±0.96
WeCFL 94.64±1.02 84.4±1.31 94.97±1.43 77.36±3.94 59.26±3.32 32.26±3.46 62.44±2.53 38.55±1.76
WeCFL-CKS 95.83±0.32 86.0±0.71 95.89±0.95 79.24±3.07 63.17±1.33 33.07±1.49 64.0±1.24 44.04±2.3

10

IFCA 82.10±5.40 62.62±8.22 86.58±4.97 66.22±5.69 34.84±5.82 22.76±3.99 34.06±2.60 18.7±1.31
IFCA-CKS 86.47±2.07 66.35±2.35 86.4±1.31 62.95±2.34 23.5±3.03 15.6±0.87 29.38±4.48 18.52±2.07
FeSEM 95.73±1.28 89.34±1.57 95.54±0.74 84.43±2.38 66.89±2.18 38.35±4.24 71.76±2.23 49.72±3.84
FeSEM-CKS 96.65±1.28 90.92±3.03 96.16±0.84 84.96±3.87 69.36±2.68 48.27±1.71 71.16±1.24 49.52±3.07
WeCFL 95.88±0.85 89.81±1.59 97.10±0.51 88.96±1.36 70.95±3.57 40.19±2.88 72.13±1.88 50.65±2.15
WeCFL-CKS 96.62±1.08 91.36±3.41 97.24±0.97 90.95±3.52 71.5±2.46 48.49±1.41 72.68±0.51 50.04±1.49

Table 5.2: Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 31.38±8.58 14.47±4.27 21.36±5.48 11.49±2.38 49.96±3.39 18.31±4.31 53.46±2.21 15.28±1.36

5

IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CKS 39.82±6.85 27.06±2.33 38.71±1.24 23.05±0.5 25.9±3.86 14.47±2.19 55.33±1.02 23.98±1.25
FeSEM 59.85±1.45 33.5±4.08 66.37±7.19 41.34±4.12 72.38±1.81 36.79±1.06 70.62±2.41 28.43±2.54
FeSEM-CKS 74.77±1.96 39.35±5.21 65.25±0.71 42.76±1.32 79.98±3.8 35.1±3.31 75.1±8.37 35.83±3.28
WeCFL 68.79±0.18 38.94±0.97 66.84±5.22 41.8±2.43 72.88±1.11 37.19±1.7 73.5±1.63 34.02±4.97
WeCFL-CKS 75.58±1.37 41.26±5.31 67.36±0.29 43.05±1.95 80.96±3.32 41.81±5.22 78.47±4.14 35.26±3.64

10

IFCA 42.34±2.73 29.1±1.52 37.22±4.23 20.2±2.04 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CKS 44.17±3.25 31.28±4.61 52.57±0.21 30.39±0.08 34.54±26.08 14.91±8.19 43.64±0.99 20.9±1.56
FeSEM 79.31±0.72 48.14±0.23 71.37±1.5 53.78±2.21 77.12±1.68 47.69±3.1 77.92±1.53 45.68±6.71
FeSEM-CKS 80.26±1.08 50.07±1.57 74.29±0.03 61.08±0.03 78.6±0.07 42.52±0.1 80.81±0.86 55.98±2.21
WeCFL 81.88±2.43 50.17±1.05 73.19±2.0 55.53±3.51 77.37±1.12 48.5±4.1 78.32±1.5 48.58±5.28
WeCFL-CKS 83.06±1.96 53.43±2.15 74.34±0.48 59.44±0.53 84.14±1.04 52.27±0.24 80.28±0.45 55.08±3.05

• CFL-CKS can enhance the performance of original clustered FL methods under

almost all non-IID settings and across all datasets.

• Generally, the better the performance of the baseline, the better the performance

when combined with CFL-CKS. Overall, WeCFL-CKS demonstrates the best per-

formance.
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Table 5.3: Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST &
CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= 0.1 2−class α= 0.1 2−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 85.9±0.46 54.52±2.66 86.17±0.25 44.88±1.24 25.62±3.47 11.38±2.02 24.3±3.53 8.56±0.64

5

IFCA 90.13±6.81 68.47±5.23 91.54±5.04 72.3±5.32 47.21± 10.28 22.67±1.48 46.54±12.8 17.78±1.29
IFCA-CKS 93.0±0.14 72.05±1.08 93.95±0.06 76.74±0.19 53.85±0.22 26.87±0.11 56.72±0.87 28.56±0.5
FeSEM 91.51±2.9 73.78±9.88 91.83±1.24 71.05±8.63 54.3±4.58 24.78±6.01 55.55±4.83 32.8±4.18
FeSEM-CKS 93.99±0.02 73.97±0.23 91.38±0.03 68.67±0.05 57.74±0.28 32.35±0.5 51.32±0.24 28.03±0.49
WeCFL 91.59±0.82 74.45±10.53 91.76±1.53 69.47±5.04 55.09±5.1 27.29±8.37 55.89±5.92 33.12±5.0
WeCFL-CKS 94.21±1.03 75.73±1.16 92.72±1.05 71.52±0.23 57.59±0.01 33.36±0.16 57.51±0.97 35.83±1.42

10

IFCA 91.04±4.33 68.6±6.77 91.42±5.16 72.29±5.8 47.62±10.15 23.36±2.48 47.96±10.59 17.88±1.04
IFCA-CKS 93.21±0.03 71.72±0.29 95.52±0.51 86.08±0.59 51.54±0.07 15.21±0.09 56.48±0.5 18.01±0.42
FeSEM 93.3±2.0 80.47±11.05 93.75±1.53 79.39±6.57 67±1.57 31.69±8.52 63.64±6.51 42.97±6.08
FeSEM-CKS 95.07±0.03 77.8±0.76 92.59±0.2 75.89±0.76 77.28±0.05 55.62±0.07 65.87±1.7 42.32±2.36
WeCFL 94.21±1.67 79.31±11.02 94.05±1.67 81.41±5.7 69.47±4.16 34.1±7.79 66.8±6.39 45.61±5.9
WeCFL-CKS 95.28±1.03 80.93±2.3 94.02±0.19 82.71±0.7 76.22±1.78 55.77±2.11 68.92±1.26 48.7±2.0

Table 5.4: Test results (mean±std) in client-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= 0.1 2−class α= 0.1 2−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 26.41±9.15 14.29±3.08 26.11±8.51 13.05±2.33 52.42±4.04 16.23±3.81 54.11±2.28 14.51±1.28

5

IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CKS 66.77±0.07 23.4±0.24 73.54±1.08 37.9±0.43 80.22±1.04 27.01±0.81 74.24±1.03 24.56±0.65
FeSEM 59.85±1.45 33.5±4.08 64.46±6.12 38.41±3.19 72.88±1.11 33.19±1.7 70.62±2.41 28.43±2.54
FeSEM-CKS 60.95±1.79 43.37±0.92 65.93±0.83 39.48±1.0 80.14±0.72 37.56±1.76 74.41±0.54 30.87±0.25
WeCFL 67.91±1.35 41.08±3.13 66.37±7.19 41.34±4.12 75.58±4.78 37.02±0.93 72.93±1.72 31.83±5.73
WeCFL-CKS 69.16±0.91 45.35±0.37 68.83±1.75 42.1±0.42 83.48±0.32 42.28±0.91 75.32±1.48 32.01±3.0

10

IFCA 51.88±13.67 27.81±2.21 37.22±4.23 20.2±2.04 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CKS 71.65±0.16 24.74±0.1 69.13±3.0 27.44±0.68 82.58±1.13 29.53±1.63 80.31±2.51 33.53±0.12
FeSEM 78.93±4.27 52.94±5.42 70.93±4.27 52.94±5.42 78.85±2.29 52.32±7.59 77.92±1.53 45.68±6.71
FeSEM-CKS 79.07±1.07 57.56±2.13 71.45±1.61 50.74±0.23 87.69±0.72 55.06±1.09 78.4±1.26 46.96±2.42
WeCFL 80.27±3.01 52.63±3.59 71.37±1.5 53.78±2.21 79.05±3.06 52.67±6.2 78.62±1.77 46.86±5.46
WeCFL-CKS 80.76±1.01 59.8±2.61 72.94±1.29 54.93±2.18 88.24±1.27 53.89±1.73 79.41±1.58 47.84±2.29

• IFCA-CKS improves IFCA the most due to its lower base and greater potential for

enhancement. An exceptional case is that CFL-CKS can boost IFCA to the best

level under the client-wise non-IID setting, but decrease its performance under the

cluster-wise non-IID setting.
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5.5 Conclusion

In this study, inspired by the nature of stable clustering in Clustered FL, we propose a

clustered knowledge sharing method called CON-CKS. A simplified term, accompanied

by a theoretical proof, is provided. This term can be incorporated into any loss function

of Clustered FL methods or integrated into the unified framework presented in Chapter

3, while maintaining the linear convergence rate. Substantial performance improvement

is demonstrated through extensive experiments, and the effectiveness of the approach is

explained from three different perspectives.
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BRIDGING THE TRADE-OFF BETWEEN CONTRASTIVE

LEARNING AND KNOWLEDGE SHARING WITHIN

CLUSTERED FEDERATED LEARNING

6.1 Motivation

T
he CFL-CON of Chapter 4 and CFL-CKS of Chapter 5 techniques can both

enhance the performance of Clustered FL but are rooted in divergent ideas.

CFL-CON aims to increase the inter-cluster distance, whereas CFL-CKS aims

to reduce it to facilitate knowledge sharing. Despite this contradiction, both approaches

can improve performance. While both CFL-CON and CFL-CKS are additional techniques

for clustered FL, this raises the question of whether we can find a way to combine and

leverage the advantages of both methods simultaneously. After examining the problem,

we divided the model parameters into two parts: the backbone and the head (or encoder

and decoder). We concluded that sharing knowledge between the backbone of the clusters
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is necessary, following the philosophy of Multi-task Learning, and that it is also important

to maximize the inter-cluster distance of the head, following the philosophy of clustering.

Overall, we integrated CFL-CON and CFL-CKS into CFL-CON&CKS, as depicted in

Figure 6.1, where each network represents a cluster. The blue portion of the model

denotes the backbone parameters, while the red portion denotes the head parameters.

CFL-CKS is used to share knowledge between the blue portions, while CFL-CON is used

to maximize the distance between the red portions.

Figure 6.1: The framework of CFL-CON&CKS.

6.2 Methodology

The CFL-CON&CKS framework, illustrated in Figure 6.1, aims to improve the per-

formance of Clustered Federated Learning by integrating the concepts of Contrastive

Learning and Knowledge Sharing. To establish a precise and rigorous formulation for

this approach, we first draw on the unified framework presented in Chapter 3. Then,

we incorporate the specific formulations for CFL-CON and CFL-CKS, as outlined in

Chapters 4 and 5, respectively.

CFL-CON is designed to increase the inter-cluster distance to improve performance,

while CFL-CKS aims to reduce the distance to enable knowledge sharing across clusters.
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Despite these seemingly contradictory objectives, we identify that it is essential to

share knowledge between the encoders of clusters, while also maximizing the inter-

cluster distance of the decoders, consistent with the principles of Multi-task Learning. To

integrate these approaches, we define CFL-CON&CKS as Equation 6.1, outlined below.

minimize
{Θk}

F :
1
m

K∑
k=1

m∑
i=1

ψir i,k[L (Hk,D i,Θk)+µT ({Θk,p})+ λk

2
S ({Θk,r})](6.1a)

subject to {r i,k}= argmin
{r i,k}

C :
K∑

k=1

m∑
i=1

ψir i,kd(g i,Gk).(6.1b)

Overall, the CFL-CON&CKS framework provides a comprehensive approach to

enhance the performance of Clustered FL, by leveraging the benefits of both Contrastive

Learning and Knowledge Sharing.

6.3 Algorithm

The integration of CFL-CON&CKS into standard clustered FL methods is straightfor-

ward, similar to the inclusion of CFL-CON and CFL-CKS. By employing the WeCFL

framework, we incorporate the CFL-CON&CKS term into the FL loss function, denoted

as F , as shown in Algorithm 4.

First, initialize the centroids of clusters Θ1,Θ2, . . . ,ΘK . Next, iteratively optimize the

clustering loss function C and the FL loss function F until the convergence criteria are

met. This process ensures seamless integration of CFL-CON&CKS, ultimately improving

the overall performance of clustered FL methods.
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Algorithm 4: CFL-CON&CKS: Integrate Contrastive Learning and Knowledge

Sharing within Clustered FL
1: Input: K , {D1,D2, . . . ,Dm}

2: Initialize: Randomly initialize {Θ1,Θ2, . . . ,ΘK }

3: repeat

4: Expectation step for few shots: Assign Client i to Cluster k by

k = argmin
k

ψid(g i,Gk).

5: Maximization / Aggregation step: Compute cluster center Θk by

1∑m
i=1 ψi

m∑
i=1

r i,kψiθi.

6: Distribution step: Send Hk to clients in Cluster k.

7: Local update step: Run Gradient Descent Q steps using local data D i to minimize

1
m

K∑
k=1

m∑
i=1

ψir i,k[L (Hk,D i,Θk)+µT ({Θk,p})+ λk

2
S ({Θk,r})].

8: until convergence condition satisfied

9: Output: {r i,k}, {Θ1,Θ2, . . . ,ΘK }.

6.4 Experiment

6.4.1 Experimental settings

6.4.1.1 Datasets and partitioning

For details about the benchmark datasets and partition methods, please refer to Section

A.1 and Section A.2, respectively, in Appendix A.
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6.4.1.2 Baselines

For the global model-based FL, we choose FedAvg [67] as the baseline. For clustered FL

methods, we use IFCA [30], FeSEM [94], and WeCFL [62]. IFCA represents clustered FL

methods that utilize minimum loss for clustering, while FeSEM and WeCFL represent

clustered FL methods that employ partial model parameters for clustering. We then

incorporate CFL-CON-para (shortened to CFL-CON), CFL-CKS, and CFL-CON&CKS

into these three clustering methods to evaluate their effectiveness. The new baselines

are named accordingly, such as FeSEM-CON, FeSEM-CKS, and FeSEM-CON&CKS, for

instance.

6.4.1.3 Simulation settings

Optimization settings For the training model, we use small CNNs [44] with two

convolutional layers for Fashion-MNIST, CIFAR-10, PathMNIST and TissueMNIST as

shown in Table A.1, A.2, A.3 and A.4 in Appendix A, respectively. For the optimization,

an optimizer of SGD with a learning rate of 0.001 and momentum of 0.9 is used to train

the model, and the batch size is 32.

Evaluation metrics We evaluate the performance using both micro accuracy (%)

and macro F1-score on the client-wise test datasets due to high non-IID degrees.

The standard deviation is estimated from five repeats of the experiment with different

random seeds, and the mean is obtained from the last three rounds out of the total 100

communication rounds.

Other settings For the FL settings, we perform ten local steps in each communication

round. In the clustering process, we use flattened parameters of the fully-connected layers

of CNNs as data points and employ weighted K-Means as the clustering algorithm. The

coefficient of CFL-CKS λ is chosen from a set of {1,0.1,0.01,0.001}, while the coefficient
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of the CFL-CON term µ is selected from a set of {0.1,0.5,2,5}, and the temperature of the

CFL-CON term τ is chosen from a set of {0.1,1,10} based on performance. For clustered

FL methods with stable clustering, including FeSEM and WeCFL, we set the number

of a few shots to 10. For IFCA, where the clustering process is unstable, the clustering

and optimization processes are always intertwined and occur simultaneously. The coding

framework called fedbase is used, which can be accessed via the PyPI repository * or

GitHub †.

6.4.2 Experimental analysis

Cluster-wise non-IID Table 6.1 and 6.2 present the test results, including the mean

and standard deviation of accuracy and Macro-F1 score for Fashion-MNIST, CIFAR-

10, PathMNIST, and TissueMNIST under two cluster-wise non-IID settings. Evidently,

CON&CKS exhibits improved performance compared to base methods and base methods

employing either CON or CKS, particularly for distance-based clustered FL methods

like FeSEM and WeCFL. For minloss-based clustered FL methods such as IFCA on

Fashion-MNIST, IFCA-CON&CKS doesn’t outperform IFCA-CON, potentially due to

inconsistencies in the parameter space. As for FeSEM and WeCFL, CON&CKS doesn’t ex-

hibit a substantial improvement over CON and CKS, with most gains around 1%, though

the improvement remains significant. This suggests that CON&CKS is an effective

amalgamation of CON and CKS, capable of outperforming both individually.

Client-wise non-IID Table 6.3 and 6.4 present the test results for Fashion-MNIST,

CIFAR-10, PathMNIST, and TissueMNIST under two client-wise non-IID settings, in-

cluding both the mean and standard deviation of accuracy and Macro-F1 score. Despite

the lack of a general clustering structure in the data, CON&CKS continues to exhibit

*https://pypi.org/project/fedbase/
†https://github.com/jie-ma-ai/FedBase
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Table 6.1: Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST
& CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 86.08±0.70 57.24±2.26 86.33±0.44 46.09±1.08 24.38±3.30 11.69±3.15 21.33±3.83 9.0±0.58

5

IFCA 84.60±2.22 62.03±3.01 84.94±2.54 66.50±4.43 34.1±4.79 22.12±2.21 29.80±4.49 17.90±2.08
IFCA-CON 90.54±1.27 73.94±0.69 92.88±1.25 71.1±1.08 43.33±3.63 25.87±3.35 40.06±4.56 25.61±3.4
IFCA-CKS 85.14±2.46 62.82±0.45 80.74±5.28 60.31±3.14 33.54±8.76 19.46±4.38 32.69±4.32 19.35±1.26
IFCA-CON&CKS 88.93±3.06 68.32±2.16 88.76±4.98 60.36±2.74 47.07±5.92 26.25±3.33 40.27±5.27 16.62±1.43
FeSEM 94.64±1.54 82.90±2.38 94.20±1.96 77.07±6.05 59.06±3.24 32.33±7.25 58.76±3.35 35.75±2.54
FeSEM-CON 95.42±0.03 86.04±0.02 94.05±0.02 80.91±0.34 58.39±0.09 33.98±0.15 59.31±0.11 36.97±0.08
FeSEM-CKS 95.74±0.26 85.86±1.0 95.35±2.0 77.62±6.28 60.38±7.47 29.99±6.03 62.83±0.11 42.6±0.96
FeSEM-CON&CKS 96.24±1.49 89.29±1.15 93.9±0.6 76.98±1.93 60.82±1.59 34.06±0.41 63.24±2.17 43.33±1.04
WeCFL 94.64±1.02 84.4±1.31 94.97±1.43 77.36±3.94 59.26±3.32 32.26±3.46 62.44±2.53 38.55±1.76
WeCFL-CON 95.42±0.01 89.38±0.06 95.98±0.04 82.41±0.22 61.48±0.21 35.93±0.1 63.24±0.25 40.54±0.31
WeCFL-CKS 95.83±0.32 86.0±0.71 95.89±0.95 79.24±3.07 63.17±1.33 33.07±1.49 64.0±1.24 44.04±2.3
WeCFL-CON&CKS 96.24±1.29 90.2±2.39 96.26±1.04 80.57±2.68 63.96±3.41 36.82±2.02 64.42±2.96 45.99±3.24

10

IFCA 82.10±5.40 62.62±8.22 86.58±4.97 66.22±5.69 34.84±5.82 22.76±3.99 34.06±2.60 18.7±1.31
IFCA-CON 93.25±1.43 80.54±1.75 89.63±2.59 59.63±3.57 48.65±4.87 27.53±4.71 43.52±5.28 32.0±2.96
IFCA-CKS 86.47±2.07 66.35±2.35 86.4±1.31 62.95±2.34 23.5±3.03 15.6±0.87 29.38±4.48 18.52±2.07
IFCA-CON&CKS 87.66±2.44 65.33±2.36 88.94±7.96 69.91±8.51 61.99±9.84 41.41±7.3 28.32±1.74 15.24±1.37
FeSEM 95.73±1.28 89.34±1.57 95.54±0.74 84.43±2.38 66.89±2.18 38.35±4.24 71.76±2.23 49.72±3.84
FeSEM-CON 95.78±0.02 89.99±0.16 96.71±0.05 82.55±0.13 69.88±0.07 36.0±0.09 72.92±0.08 48.98±0.15
FeSEM-CKS 96.65±1.28 90.92±3.03 96.16±0.84 84.96±3.87 69.36±2.68 48.27±1.71 71.16±1.24 49.52±3.07
FeSEM-CON&CKS 96.85±0.49 90.41±1.24 97.34±0.89 91.95±0.84 70.39±3.46 49.28±4.15 71.6±0.07 50.32±0.12
WeCFL 95.88±0.85 89.81±1.59 97.10±0.51 88.96±1.36 70.95±3.57 40.19±2.88 72.13±1.88 50.65±2.15
WeCFL-CON 96.93±0.04 91.22±0.12 97.18±0.06 91.88±0.32 71.23±0.09 42.34±0.11 72.73±0.05 51.57±0.21
WeCFL-CKS 96.62±1.08 91.36±3.41 97.24±0.97 90.95±3.52 71.5±2.46 48.49±1.41 72.68±0.51 50.04±1.49
WeCFL-CON&CKS 97.71±0.58 91.88±1.36 97.31±0.29 90.9±0.96 72.31±4.8 49.98±7.27 73.18±0.4 52.15±0.8

superior performance compared to the base methods and base methods enhanced with ei-

ther CON or CKS alone. The transition from CON or CKS to CON&CKS brings a modest

yet significant improvement. However, there are more instances where CON&CKS does

not perform the best compared to its performance under cluster-wise non-IID settings.

For instance, WeCFL-CKS outperforms CON&CKS in terms of the Macro-F1 score in

α= 0.1 on Fashion-MNIST, and IFCA-CKS surpasses CON&CKS in terms of accuracy

in the 2− class setting on PathMNIST. This can be attributed to the lack of a well-

defined clustering structure in client-wise non-IID data, making it more challenging to

achieve efficient clustering. Nevertheless, the overall performance of CON&CKS remains

commendable across different non-IID settings.

Summary
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Table 6.2: Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 31.38±8.58 14.47±4.27 21.36±5.48 11.49±2.38 49.96±3.39 18.31±4.31 53.46±2.21 15.28±1.36

5

IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CON 56.02±4.32 33.67±3.77 27.11±2.94 18.75±1.65 50.17±2.33 23.8±4.32 57.87±7.51 27.63±4.68
IFCA-CKS 39.82±6.85 27.06±2.33 38.71±1.24 23.05±0.5 25.9±3.86 14.47±2.19 55.33±1.02 23.98±1.25
IFCA-CON&CKS 53.77±6.8 33.29±2.37 51.52±7.08 22.66±3.11 34.72±3.63 20.22±3.01 56.52±9.54 26.14±2.35
FeSEM 59.85±1.45 33.5±4.08 66.37±7.19 41.34±4.12 72.38±1.81 36.79±1.06 70.62±2.41 28.43±2.54
FeSEM-CON 61.63±0.11 34.03±0.08 67.31±0.43 41.62±0.35 77.72±0.05 41.07±0.13 82.85±0.06 41.41±0.32
FeSEM-CKS 74.77±1.96 39.35±5.21 65.25±0.71 42.76±1.32 79.98±3.8 35.1±3.31 75.1±8.37 35.83±3.28
FeSEM-CON&CKS 75.67±1.37 40.91±1.98 67.03±0.72 44.89±1.84 80.26±0.31 41.21±0.2 81.77±3.61 41.01±2.0
WeCFL 68.79±0.18 38.94±0.97 66.84±5.22 41.8±2.43 72.88±1.11 37.19±1.7 73.5±1.63 34.02±4.97
WeCFL-CON 69.2±1.14 43.91±0.54 69.08±0.46 46.68±0.62 77.86±0.06 40.94±0.09 83.99±0.21 43.96±1.07
WeCFL-CKS 77.58±1.37 45.26±5.31 67.36±0.29 43.05±1.95 80.96±3.32 41.81±5.22 78.47±4.14 35.26±3.64
WeCFL-CON&CKS 77.93±1.7 46.46±1.34 70.78±1.51 47.13±1.43 81.27±0.31 54.39±4.98 84.42±2.44 45.52±2.62

10

IFCA 42.34±2.73 29.1±1.52 37.22±4.23 20.2±2.04 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CON 43.09±1.97 30.25±2.51 30.02±8.11 17.94±4.48 78.69±8.62 35.19±4.75 55.61±3.91 27.1±3.05
IFCA-CKS 44.17±3.25 31.28±4.61 52.57±0.21 30.39±0.08 34.54±26.08 14.91±8.19 43.64±0.99 20.9±1.56
IFCA-CON&CKS 55.36±9.85 41.45±7.97 36.15±3.41 25.5±2.95 74.66±5.73 38.25±2.9 55.18±7.26 29.59±1.63
FeSEM 79.31±0.72 48.14±0.23 71.37±1.5 53.78±2.21 77.12±1.68 47.69±3.1 77.92±1.53 45.68±6.71
FeSEM-CON 79.45±0.01 48.03±0.0 75.84±0.45 55.94±0.88 87.27±0.1 47.56±0.14 78.81±0.09 53.82±0.35
FeSEM-CKS 80.26±1.08 50.07±1.57 74.29±0.03 61.08±0.03 78.6±0.07 42.52±0.1 80.81±0.86 55.98±2.21
FeSEM-CON&CKS 80.8±1.53 51.01±1.08 76.94±1.64 63.69±1.7 88.97±0.04 50.76±0.15 81.11±0.05 55.39±0.2
WeCFL 81.88±2.43 50.17±1.05 73.19±2.0 55.53±3.51 77.37±1.12 48.5±4.1 78.32±1.5 48.58±5.28
WeCFL-CON 81.75±1.14 51.73±1.47 74.67±0.41 52.33±0.49 87.52±0.03 47.36±0.09 79.72±0.13 54.81±0.22
WeCFL-CKS 83.06±1.96 53.43±2.15 74.34±0.48 59.44±0.53 84.14±1.04 52.27±0.24 80.28±0.45 55.08±3.05
WeCFL-CON&CKS 85.45±1.87 55.92±1.58 75.1±0.43 60.64±1.26 88.48±0.87 50.61±2.19 81.37±0.44 57.19±3.95

• In general, CFL-CON&CKS outperforms the base methods as well as the base

methods enhanced with CFL-CON or CFL-CKS, in terms of both accuracy and

Macro-F1 score across various datasets and non-IID settings.

• Although the improvement brought about by CFL-CON&CKS over CFL-CON and

CFL-CKS individually may be small, it is nonetheless significant, confirming its

efficiency as a combination of the two.

• CFL-CON&CKS exhibits slightly better performance in cluster-wise non-IID set-

tings compared to client-wise non-IID settings, which could be attributed to the

presence or absence of a clear clustering structure.

80



CHAPTER 6. BRIDGING THE TRADE-OFF BETWEEN CONTRASTIVE LEARNING
AND KNOWLEDGE SHARING WITHIN CLUSTERED FEDERATED LEARNING

Table 6.3: Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST &
CIFAR-10.

Datasets Fashion-MNIST CIFAR-10
Non-IID setting α= 0.1 2−class α= 0.1 2−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 85.9±0.46 54.52±2.66 86.17±0.25 44.88±1.24 25.62±3.47 11.38±2.02 24.3±3.53 8.56±0.64

5

IFCA 90.13±6.81 68.47±5.23 91.54±5.04 72.3±5.32 47.21± 10.28 22.67±1.48 46.54±12.8 17.78±1.29
IFCA-CON 90.89±3.51 65.57±4.91 91.43±2.97 66.15±4.33 49.54±3.92 24.67±1.68 54.09±3.13 23.61±1.18
IFCA-CKS 93.0±0.14 72.05±1.08 93.95±0.06 76.74±0.19 53.85±0.22 26.87±0.11 56.72±0.87 28.56±0.5
IFCA-CON&CKS 92.5±1.92 56.96±1.04 93.01±5.25 62.13±3.66 54.5±2.97 24.15±1.73 58.16±2.01 26.88±0.8
FeSEM 91.51±2.9 73.78±9.88 91.83±1.24 71.05±8.63 54.3±4.58 24.78±6.01 55.55±4.83 32.8±4.18
FeSEM-CON 91.42±0.11 70.02±0.41 92.0±0.04 72.1±0.17 57.56±1.84 34.31±1.94 56.41±1.76 32.77±0.12
FeSEM-CKS 93.99±0.02 73.97±0.23 91.38±0.03 68.67±0.05 57.74±0.28 32.35±0.5 51.32±0.24 28.03±0.49
FeSEM-CON&CKS 94.75±0.06 75.24±0.41 93.78±0.03 72.68±0.23 61.76±0.25 35.16±0.19 56.2±0.89 33.09±1.23
WeCFL 91.59±0.82 74.45±10.53 91.76±1.53 69.47±5.04 55.09±5.1 27.29±8.37 55.89±5.92 33.12±5.0
WeCFL-CON 91.65±0.06 74.79±0.11 92.75±0.04 72.37±0.18 58.69±0.55 36.17±0.55 56.26±1.34 35.07±0.59
WeCFL-CKS 94.21±1.03 75.73±1.16 92.72±1.05 71.52±0.23 57.59±0.01 33.36±0.16 57.51±0.97 35.83±1.42
WeCFL-CON&CKS 94.43±0.08 75.27±0.14 94.38±0.06 74.03±0.13 61.8±0.43 36.69±0.2 59.24±1.47 36.06±1.37

10

IFCA 91.04±4.33 68.6±6.77 91.42±5.16 72.29±5.8 47.62±10.15 23.36±2.48 47.96±10.59 17.88±1.04
IFCA-CON 86.36±5.41 51.5±3.25 91.4±4.91 59.06±5.81 33.98±7.08 12.14±0.78 40.67±4.77 13.45±0.46
IFCA-CKS 93.21±0.03 71.72±0.29 95.52±0.51 86.08±0.59 51.54±0.07 15.21±0.09 56.48±0.5 18.01±0.42
IFCA-CON&CKS 93.33±3.61 72.47±4.35 92.88±4.36 71.52±5.91 48.69±8.1 24.55±5.61 57.58±2.31 24.91±1.18
FeSEM 93.3±2.0 80.47±11.05 93.75±1.53 79.39±6.57 67±1.57 31.69±8.52 63.64±6.51 42.97±6.08
FeSEM-CON 94.64±0.03 79.08±0.42 94.78±0.06 80.14±0.33 78.6±0.02 54.96±0.11 64.4±0.49 44.51±0.58
FeSEM-CKS 95.07±0.03 77.8±0.76 92.59±0.2 75.89±0.76 77.28±0.05 55.62±0.07 65.87±1.7 42.32±2.36
FeSEM-CON&CKS 95.94±0.03 80.45±0.32 95.09±0.1 80.61±0.21 78.91±0.07 56.31±0.31 68.68±0.04 47.39±0.13
WeCFL 94.21±1.67 79.31±11.02 94.05±1.67 81.41±5.7 69.47±4.16 34.1±7.79 66.8±6.39 45.61±5.9
WeCFL-CON 95.38±0.03 81.7±1.02 95.63±0.15 83.77±0.38 78.85±0.02 55.78±0.1 69.22±0.1 48.68±0.42
WeCFL-CKS 95.28±1.03 80.93±2.3 94.02±0.19 82.71±0.7 76.22±1.78 55.77±2.11 68.92±1.26 48.7±2.0
WeCFL-CON&CKS 95.02±0.11 80.27±0.17 96.41±0.07 84.37±0.19 78.64±0.04 58.29±0.05 70.16±0.13 49.05±0.2

6.5 Conclusion

In this study, we compare two methods, CFL-CKS and CFL-CON, which can both be

integrated into the unified framework of Clustered FL. Despite sharing the same objective

of enhancing CFL, their underlying philosophies are fundamentally different, even

opposite, implying that they may not be directly combined to improve the performance

of CFL. To address this challenge, we conduct a detailed examination of both methods

and the neural network structure. Consequently, we apply CFL-CKS to the backbone of

the neural network and CFL-CON to the head. This results in a new hybrid approach,

CFL-CON&CKS, which combines the advantages of both methods for clustered FL.

Experimental outcomes reveal significant marginal improvements in performance and

robustness under both cluster-wise and client-wise non-IID settings.
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Table 6.4: Test results (mean±std) in client-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST
Non-IID setting α= 0.1 2−class α= 0.1 2−class

K Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
1 FedAvg 26.41±9.15 14.29±3.08 26.11±8.51 13.05±2.33 52.42±4.04 16.23±3.81 54.11±2.28 14.51±1.28

5

IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CON 53.14±2.88 26.67±2.54 55.68±3.61 30.05±1.24 67.18±4.74 28.52±3.97 61.85±3.19 23.16±0.86
IFCA-CKS 66.77±0.07 23.4±0.24 73.54±1.08 37.9±0.43 80.22±1.04 27.01±0.81 74.24±1.03 24.56±0.65
IFCA-CON&CKS 59.51±3.28 28.33±3.49 67.34±3.41 33.46±2.09 80.19±3.62 33.25±3.76 70.67±6.13 23.36±1.29
FeSEM 59.85±1.45 33.5±4.08 64.46±6.12 38.41±3.19 72.88±1.11 33.19±1.7 70.62±2.41 28.43±2.54
FeSEM-CON 61.14±0.34 47.27±0.47 67.27±0.14 40.66±0.29 79.28±0.05 32.56±0.51 72.52±0.07 33.44±0.41
FeSEM-CKS 60.95±1.79 43.37±0.92 65.93±0.83 39.48±1.0 80.14±0.72 37.56±1.76 74.41±0.54 30.87±0.25
FeSEM-CON&CKS 63.23±2.11 48.96±1.69 68.56±0.55 41.92±0.64 83.18±0.15 39.68±0.5 74.58±0.03 35.69±0.09
WeCFL 67.91±1.35 41.08±3.13 66.37±7.19 41.34±4.12 75.58±4.78 37.02±0.93 72.93±1.72 31.83±5.73
WeCFL-CON 74.09±0.93 48.56±1.13 68.55±0.57 43.53±0.54 83.98±0.11 39.63±0.45 74.0±0.03 34.02±0.26
WeCFL-CKS 69.16±0.91 45.35±0.37 68.83±1.75 42.1±0.42 83.48±0.32 42.28±0.91 75.32±1.48 32.01±3.0
WeCFL-CON&CKS 76.45±1.6 51.17±0.94 69.33±0.56 44.94±0.5 84.32±0.28 45.58±0.84 75.55±0.04 35.46±0.29

10

IFCA 51.88±13.67 27.81±2.21 37.22±4.23 20.2±2.04 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CON 60.93±8.5 41.13±2.52 50.67±6.91 31.61±3.94 56.33±5.61 17.68±2.33 74.62±8.69 27.79±2.61
IFCA-CKS 71.65±0.16 24.74±0.1 69.13±3.0 27.44±0.68 82.58±1.13 29.53±1.63 80.31±2.51 33.53±0.12
IFCA-CON&CKS 69.73±7.96 38.82±2.08 62.2±5.33 29.41±2.75 77.48±8.72 34.13±5.98 82.14±4.91 37.03±2.0
FeSEM 78.93±4.27 52.94±5.42 70.93±4.27 52.94±5.42 78.85±2.29 52.32±7.59 77.92±1.53 45.68±6.71
FeSEM-CON 82.05±0.0 62.71±0.0 72.43±0.37 54.99±0.49 84.33±0.08 54.85±0.25 78.55±0.04 46.98±0.47
FeSEM-CKS 79.07±1.07 57.56±2.13 71.45±1.61 50.74±0.23 87.69±0.72 55.06±1.09 78.4±1.26 46.96±2.42
FeSEM-CON&CKS 84.23±0.21 64.08±0.3 73.54±0.22 57.91±0.39 88.03±0.08 58.48±0.58 79.75±0.06 48.69±0.23
WeCFL 80.27±3.01 52.63±3.59 71.37±1.5 53.78±2.21 79.05±3.06 52.67±6.2 78.62±1.77 46.86±5.46
WeCFL-CON 83.85±0.14 64.51±0.1 73.02±0.17 55.51±0.47 85.06±0.13 55.01±0.19 79.31±0.08 47.64±0.24
WeCFL-CKS 80.76±1.01 59.8±2.61 72.94±1.29 54.93±2.18 88.24±1.27 53.89±1.73 79.41±1.58 47.84±2.29
WeCFL-CON&CKS 84.29±0.01 65.79±0.03 74.5±0.14 55.87±0.26 89.14±0.09 57.78±0.32 79.59±0.03 48.65±0.18
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7
CLUSTERED ADDITIVE MODELING FOR MORE STABLE

CLUSTERED FEDERATED LEARNING

7.1 Motivation

A
s the biggest challenge in FL, non-IID clients in practice usually have rich

structures that have not been explored by most existing FL methods. A com-

mon structure is clusters, i.e., heterogeneous clients can be grouped into

several near-homogeneous clusters each composed of clients with similar distributions.

In practice, clusters might be associated with geographic/age/income groups, affiliations,

etc. Hence, we can train a server-side model for each cluster, hence mitigating the con-

flicts caused by heterogeneity. Unfortunately, clients’ cluster memberships are usually

undefined or inaccessible due to sensitive/private information and have to be jointly

optimized with cluster-wise models, as recent clustered FL [30, 62, 66, 94] approaches do.

They maintain K models Θ1:K for K clusters and assigns one Θk to each client-i (with

local data X i and local model θi), e.g., by min-loss (Θk with the minimum loss on X i) or
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K-means (the nearest Θk to θi) criterion. Hence, 1 ≤ K ≤ m models can accommodate

more heterogeneity than single-model FL but also allows knowledge sharing among

similar clients, which is lacking if training m client models independently. Hence, it may

reach a better trade-off between global consensus and local personalization in non-IID

settings.

However, compared to the general non-IID assumption, clustered FL’s assumption

might be too restrictive since it prohibits inter-cluster knowledge sharing and enforces

every cluster-wise model’s training to only depend on a few clients. This is contradictory

to the widely studied strategy that different tasks or domains can benefit from sharing

low-level or partial representations. It is due to the gap between the assumption of

“clustered data distributions” and the algorithms of “clustering models (represented by

loss vectors or model weights)”: they are not equal, and the latter is more restrictive. In

other words, clients of different clusters can still benefit from feature/parameter sharing.

Moreover, clustered FL usually suffers from optimization instability because dynami-

cally changing models can violate the static clustering assumption and lead to imbalanced

cluster assignment, which affects Θ1:K and local training in the future. In particular: (1)

Clustering collapse, i.e., the clients assigned to one cluster keeps growing so “the rich

becomes richer (i.e., the cluster-wise model becomes even stronger)” until reducing to

single-model FL, as shown in Figure 1.3. This happens because most clients tend to first

learn shared features before focusing on client-specific ones; (2) Fragile to outliers such

as malicious clients that may dominate some clusters and push all other benign ones to

one or a few clusters; (3) Sensitive to initialization. The process highly depends on initial

and earlier cluster assignments since they determine which clients’ local training starts

from the same model.

Main Contributions. To overcome the above problems of clustered FL, we propose

a novel clustered FL model termed “Clustered Additive Modeling (CAM)”. Compared

84



CHAPTER 7. CLUSTERED ADDITIVE MODELING FOR MORE STABLE CLUSTERED
FEDERATED LEARNING

to clustered FL, CAM trains a global model Θg on top of the K clusters’ models Θ1:K .

Its prediction for client-i combines the outputs of Θg and the associated cluster c(i)’s

model, i.e., y= f (x;Θg)+H (x;Θc(i)). This simple additive model removes the restriction

of clustered FL by letting all clients share a base model Θg. It enforces Θ1:K to focus on

learning the different features between clusters, hence mitigating “clustering collapse”.

Moreover, CAM tends to learn balanced clusters and determine the number of clusters

automatically (by starting from more clusters and then zeroing out some of them).

Furthermore, CAM is less vulnerable to outliers, which can be mainly captured by Θ1:K

and have less impact on the global model Θg. In addition, interactions between Θ1:K

and Θg make CAM less sensitive to initial cluster assignments since updating Θg also

changes the clustering.

CAM is a general model-agnostic method that can modify any existing clustered FL

methods. As examples, we apply CAM to two representative methods, i.e., IFCA [30] and

FeSEM [94]. In the optimization of CAM, Θ1:K and Θg aim to fit the residual of each

other’s prediction. To this end, we propose an efficiently clustered FL algorithm “Fed-

CAM”, which alternates between cluster assignment (server), local training (clients),

and update of Θ1:K and Θg (server). In experiments on several benchmarks in different

non-IID settings, CAM significantly improves SOTA clustered FL methods. Moreover, we

provide a convergence analysis of Fed-CAM algorithm.

7.2 Clustered Additive Modeling (CAM)

In this section, we introduce clustered additive modeling (CAM), which combines a global

model and cluster-wise model prediction in FL. CAM conducts a joint optimization of the

global and cluster-wise models defined by a cluster assignment criterion. In particular,

we provide two examples of CAM using different cluster assignment criteria, i.e., min-loss

and K-means, which have been adopted respectively by two SOTA clustered-FL methods,
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i.e., IFCA and FeSEM. For each of them, we derive alternating optimization procedures

(i.e., IFCA-CAM and FeSEM-CAM) that can be implemented in the FL setting using

two parallel threads of local model training. At the end of this section, we unify both

algorithms in a clustered FL algorithm Fed-CAM.

Notations. We assume that there are m clients and K clusters, where client-i has ni

examples and all clients have n =∑m
i=1 ni examples. On the server side, we have a global

model Θg and K cluster-wise models Θ1:K . On the client side, we train m cluster models

θ0
1:m used to update the global model Θg in FL and θ1:m used to update the cluster-wise

model Θc(i) assigned to each client-i, where c(i) is its cluster label determined by the

cluster assignment criterion c(·). We further define Ck ≜ {i ∈ [m] : c(i)= k} as the set of

clients in cluster-k. For simplicity, we will use X i and Yi to respectively represent the

local training data on client-i and their ground truths, and ℓ(Yi,H (X i)) denotes the

batch loss of model H (·) on (X i,Yi). A CAM model for client-i can be

(7.1) Fi(·)= f (·;Θg)+H (·;Θc(i))).

For classification, Fi(·) produces logits and we can apply softmax to get the class proba-

bilities.

7.2.1 IFCA-CAM: model performance-driven clustering

We extend the min-loss criterion used in IFCA [30] to CAM for cluster assignment, i.e.,

each client-i is assigned to the cluster-k whose model Θk leads to the minimal loss of

CAM on client-i’s data, i.e.,

(7.2) c(i)= arg min
k∈[K]

ℓ(Yi, f (X i;Θg)+H (X i;Θk)).

IFCA-CAM optimizes Θg and Θ1:K for minimizing the above minimal loss over all the

m clients, i.e.,

(7.3) IFCA-CAM: min
Θg,Θ1:K

m∑
i=1

ni

n
min
k∈[K]

ℓ(Yi, f (X i;Θg)+H (X i;Θk)),
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where the inner minimization performs the min-loss assignment in Eq. (7.2). We solve

Eq. (7.3) by the following alternating minimization of cluster membership, cluster-wise

models, and the global model.

(i) Cluster assignment by applying Eq. (7.2) to the latest Θg and Θ1:K . This yields

c(·) and C1:K .

(ii) Fixing Θg, we can optimize the cluster-wise models Θ1:K by gradient descent:

(7.4) Θk ←Θk −η
∑

i∈Ck

ni

n
∇Θkℓ(Yi, f (X i;Θg)+H (X i;Θk)), ∀ k ∈ [K].

In FL, the gradient can be approximated by aggregating the model updates of local

models θi from clients, whose training on the client side is: (1) initializing θi ←Θc(i); (2)

starting from the initialization, running E local epochs updating θi by

(7.5) θi ← θi −η∇θiℓ(Yi, f (X i;Θg)+H (X i;θi)), ∀ i ∈ [m];

and (3) aggregating the local model update θi −Θk from client i ∈ Ck to update Θk, i.e.,

(7.6) Θk ←
(
1− ∑

i∈Ck

ni∑
j∈Ck n j

)
Θk +

∑
i∈Ck

ni∑
j∈Ck n j

θi.

(iii) Fixing Θ1:K , we can optimize the global model Θg by gradient descent:

(7.7) Θg ←Θg −η
∑

i∈[m]

ni

n
∇Θgℓ(Yi, f (X i;Θg)+H (X i;Θc(i))).

In FL, this gradient step can be approximated by aggregating the local models θ0
i (similar

to FedAvg): (1) initializing θ0
i ←Θg; (2) running E local epochs training θ0

i by

(7.8) θ0
i ← θ0

i −η∇θ0
i
ℓ(Yi, f (X i;θ0

i )+H (X i;Θc(i))), ∀ i ∈ [m];

and (3) aggregating the updated local models θ0
i of all the m clients to update Θg, i.e.,

(7.9) Θg ← 1
m

∑
i∈[m]

ni

n
θ0

i .

We can run two parallel threads of local training for θ0
i and θi for each client-i because

their training in Eq. (7.8) and Eq. (7.5) does not depend on each other (but they both

87



CHAPTER 7. CLUSTERED ADDITIVE MODELING FOR MORE STABLE CLUSTERED
FEDERATED LEARNING

depend on the cluster assignments in (i)). This is analogous to the simultaneous update

algorithm (FedSim) in [70]. One may also consider an alternative update algorithm

(which may enjoy a slightly faster convergence) that iterates (i)→(ii)→(i)→(iii) in each

round. However, it doubles the communication rounds ((i) requires one communication

round) and does not allow parallel local training. Since the alternative update does not

show a significant empirical improvement over FedSim in [70], we mainly focus on the

parallel one in the remainder of this chapter.

7.2.2 FeSEM-CAM: parameter similarity-based clustering

We follow a similar procedure of IFCA-CAM to derive FeSEM-CAM, which applies a

K-means style clustering to the client models θ1:m, whose objective is minimizing the

sum of squares of client-cluster distance, i.e.,

(7.10) min
Θ1:K

m∑
i=1

ni

n
min
j∈[K]

∥θi −Θ j∥2
2.

Hence, similar to FeSEM [94], FeSEM-CAM assigns the nearest cluster-wise model to

each client and updates the cluster-wise models as the cluster centroids (i.e., K-means

algorithm), i.e.,

(7.11) c(i)= arg min
k∈[K]

∥θi −Θk∥2
2, Θk ←

∑
i∈Ck

ni∑
j∈Ck n j

θi.

We iterate the above K-means steps a few times until convergence in practice. FeSEM-

CAM applies the K-means objective in Eq. (7.10) as a regularization to the loss of CAM

model ℓ(Yi, f (X i;Θg)+H (X i;θi)), i.e.,

(7.12) FeSEM-CAM: min
Θg,Θ1:K ,θ1:m

m∑
i=1

ni

n

[
ℓ(Yi, f (X i;Θg)+H (X i;θi))+ λ

2
min
j∈[K]

∥θi −Θ j∥2
2

]
,

where the minimization w.r.t. Θ1:K (with θ1:m fixed) recovers the (weighted) K-means

objective in Eq. (7.10). Unlike IFCA-CAM, where client model θi is an auxiliary/latent

variable for FL not showing in the objective of Eq. (7.3), it is explicitly optimized in
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Eq. (7.12). Similar to IFCA-CAM, we solve Eq. (7.3) by iterating the following alternating

minimization steps (i)-(iii).

(i) K-means clustering that iterates Eq. (7.11) for a few steps until convergence,

which yields c(·), C1:K , and Θ1:K . The update of Θ1:K is analogous to Eq. (7.6).

(ii) Fixing Θg, we optimize θ1:m by client-side local gradient descent:

(7.13) θi ← (1−λ)θi +λΘc(i) −η
ni

n
∇θiℓ(Yi, f (X i;Θg)+H (X i;θi)), ∀ i ∈ [m].

The first two terms in Eq. (7.13) compute a linear interpolation between θi and its

assigned cluster’s model Θc(i). This is a result of the K-means regularization term in

Eq. (7.3) and keeps θi close to Θc(i).

(iii) Fixing θ1:m, we can optimize Θg by gradient descent:

(7.14) Θg ←Θg −η
∑

i∈[m]

ni

n
∇Θgℓ(Yi, f (X i;Θg)+H (X i;θi)).

In FL, this gradient step can be approximated by aggregating the local models θ0
i (similar

to FedAvg): (1) initializing θ0
i ←Θg; (2) running E local epochs training θ0

i by

(7.15) θ0
i ← θ0

i −η∇θ0
i
ℓ(Yi, f (X i;θ0

i )+H (X i;θi)), ∀ i ∈ [m];

and (3) aggregating the updated local models θ0
i of all the m clients to update Θg by

Eq. (7.9).

7.2.3 Algorithm

In Algoirithm 5, we propose a clustered FL algorithm for CAM, i.e., Fed-CAM, which can

unify the derived optimization procedures for IFCA-CAM and FeSEM-CAM and can be

easily extended to other clustered FL and clustering criteria.

Warmup. As an alternating optimization framework, it would be unstable if both Θg

and Θ1:K are randomly initialized and jointly optimized in parallel since they may capture

overlapping information and result in an inefficient competitive game. To encourage
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Algorithm 5: Fed-CAM
initialize :Randomly initialize Θ1:K and Θg.
warmup : (1) w rounds of FedAvg to get an initial Θg (IFCA-CAM) or (2) w epochs of

local training only to get a initial θ1:m (FedSEM-CAM). Broadcast Θg and
Θ1:K to all clients.

1 while not converge do
/* Client (in parallel) */

2 for every selected client i do
3 Model performance-driven clustering (e.g., IFCA-CAM): cluster assignment by

Eq. (7.2);
4 Initialize θi ←Θc(i) and θ0

i ←Θg;
5 Local training of θi for Q epochs: e.g., Eq. (7.5) (IFCA-CAM) or Eq. (7.13)

(FeSEM-CAM);
6 Local training of θ0

i for Q epochs: e.g., Eq. (7.8) (IFCA-CAM) or Eq. (7.15)
(FeSEM-CAM);

7 Upload θi and θ0
i to the server;

/* Server */
8 Update cluster-wise models Θ1:K : e.g., Eq. (7.6) (IFCA-CAM) or Eq. (7.11)

(FeSEM-CAM);
9 Update global model Θg by Eq. (7.9);

10 Broadcast Θg and Θ1:K to all clients;
output :Global model Θg, cluster-wise models Θ1:K and c(i) ∀ i ∈ [m].

them to learn complementary knowledge, warmup training for one of them before the

joint optimization is helpful. For example, a few rounds of FedAvg can produce a “warm”

Θg, whose predictions’ residuals are more informative to train Θ1:K . Another warmup

strategy could be to run a few local training epochs and extract warm Θ1:K by clustering

the lightly-trained local models θ1:m. In Fed-CAM, we can apply the former warmup to

IFCA-CAM and the latter to FeSEM-CAM.

7.3 Convergence Analysis

Based on the convergence analysis presented in [70], which aims to minimize the follow-

ing objective:

(7.16) min
u,V

F (u,V ) := 1
n

m∑
i=1

ℓi(u,vi),
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where u represents the shared parameters and V = v1,v2, · · · ,vm denotes the personalized

parameters. If we map Θg to u, and Θ1:K to V respectively, this appears strikingly similar

to our methods as illustrated in Equations 7.3 and 7.12. Provided that the clustering

remains stable, we can employ the theoretical framework of [70]. And firstly, we make

some standard assumptions for the convergence analysis as below.

Assumption 7.3.1. (Smoothness). For i = 1, · · · ,m, the loss function l is continuously

differentiable, and there exist constants β that ∇Θgℓ(Θg,Θk) is β-Lipschitz with respect

to Θg and Θk, and ∇Θkℓ(Θg,Θk) is L-Lipschitz with respect to Θg and Θk.

Assumption 7.3.2. (Unbiased gradients and bounded variance). The stochastic gradients

are unbiased and have bounded variance. For all Θg and Θk,

E[∇̃Θgℓ(Θg,Θk)]=∇Θgℓ(Θg,Θk), E[∇̃Θkℓ(Θg,Θk)]=∇Θkℓ(Θg,Θk),

and

E[∥∇̃Θgℓ(Θg,Θk)−∇Θgℓ(Θg,Θk)∥2]≤σ2
g, E[∥∇̃Θkℓ(Θg,Θk)−∇Θkℓ(Θg,Θk)∥2]≤σ2

k.

Assumption 7.3.3. (Partial gradient diversity). There exists a constant for all θ0
i and

Θg, θi and Θk,

m∑
i=1

ni

n
∥∇Θgℓ(Θg,θi)−∇Θgℓ(Θg,Θk)∥2 ≤ δ2

∑
i∈Ck

ni∑
j∈Ck n j

∥∇Θkℓ(θ0
i ,Θk)−∇Θkℓ(Θg,Θk)∥2 ≤ δ2.

Assumption 7.3.4. (Convexity of cluster models). Fix Θg, assume ℓ(Θk) is convex.

Claim 1. (Identical data distribution with one cluster for FedSEM-CAM). Assume that

clients clustered into the same cluster have the same data distribution when clustering

is stable, especially in FedSEM-CAM.

Remark 7.3.5. Claim 1 can be validated by experimental analysis of clustering in this

paper easily, as FeSEM-CAM uses the parameters of the last layers for clustering, which

contains label distribution information of clients.
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Theorem 7.3.6. (Convergence of Fed-CAM). Let Assumptions 7.3.1, 7.3.2, 7.3.3 and

7.3.4 hold, and learning rates chosen as η= ζ/(LE) for a ζ depending on the parameters

L,σ2
g,σ2

k,δ2, s,m,T, provided clustering stable, we have (ignoring absolute constants),

1
T

T∑
t=1

(
1
L
E[∥∇ΘgL (Θg,Θk)∥2]+ s

mL
1
m

m∑
i=1

E[∥∇Θc(i)ℓ(Θg,Θc(i))∥2])(7.17)

≤
(△L σ2

sim,1)1/2

T1/2 +
(△2

L
σ2

sim,2)1/3

T2/3 +O(
1
T

),(7.18)

where △L =L0 −L ⋆, and we define effective variance terms,

σ2
sim,1 =

2
L

(δ2(1− s
m

)+
σ2

g

L
+ σ2

ks
m

))(7.19)

σ2
sim,2 =

2
L

(δ2 +σ2
g +σ2

k)(1− 1
E

).(7.20)

Remark 7.3.7. It is straightforward to prove that the clustering of both IFCA-CAM and

FeSEM-CAM converges, as evidenced by Ma et al. (2022). However, proving the stability

of these clustering methods is more challenging due to the oscillation phenomenon

often seen in K-means. The stability of clustering will be further demonstrated through

experimental analysis in Section 7.4.3.

Remark 7.3.8. Besides the clustering structure, there is a distinct difference between

FedSim [70] and Fed-CAM. In Fed-CAM, we need to aggregate both Θg and Θ1:K , while in

FedAlt, only Θg requires aggregation. The σ2
sim,1 and σ2

sim,2 reflect the impact of sample

number s and local steps E. Larger s or smaller E, better convergence rate. According

to the results presented in [70], alternative gradient descent surpasses simultaneous

gradient descent in terms of convergence rate. The asymptotic 1/
p

T rate is achieved

when each device is seen at least once on average, and the 1/T term is dominated by the

1/
p

T term, a situation that occurs when (ignoring absolute constants)

T ≥ △L

σ2
sim,1

max{(1− 1
E

)
m
s

,2}.
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Lemma 7.3.9. (Bounding ϵdistriubte). Under the assumption of convexity of cluster models,

and the claim of dentical data distribution with one cluster for FedSEM-CAM, we can get

ϵdistriubte =L (Θg,Θc(i))−L (Θg,θi, c(i))(7.21)

≤ 0.(7.22)

Proof. For minloss-based methods, it is straightforward to prove that ϵdistriubte ≤ 0.

However, for distance-based methods like FeSEM-CAM, bounding ϵdistriubte may require

the introduction of a new bound in Lemma 4 of work [62]. According to the assumptions

of convexity and identical distribution within one cluster, we have

Et[L (Θg,Θc(i))−L (Θg,θi)](7.23)

=
K∑

k=1

∑
c(i)=k

ni

n
Et[ℓ(Θg,Θc(i))−ℓ(Θg,θi)](7.24)

=
K∑

k=1

nk

n

∑
c(i)=k

ni

nk
Et[ℓ(Θg,

∑
i∈Ck

ni

nk
θi)−ℓ(Θg,θi)](7.25)

≤0,(7.26)

where nk is the number of clients in Cluster k, and
∑K

k=1 nk = n. ■

The proof of Theorem 7.3.6 is as below.

Proof. Firstly, we simplify the objective function to minimize as below,

(7.27) L = 1
m

m∑
i=1

ℓ(Θg,Θc(i)).

Then the proof outline is as follows,

L (Θ(t+1)
g ,Θ(t+1)

c′(i) )−L (Θ(t)
g ,Θ(t)

c(i))(7.28)

=L (Θ(t+1)
g ,θ(t+1)

i , c(i))−L (Θ(t)
g ,Θ(t)

c(i))︸ ︷︷ ︸
ϵ f edsim

+L (Θ(t+1)
g ,θ(t+1)

i , c′(i))−L (Θ(t+1)
g ,θ(t+1)

i , c(i))︸ ︷︷ ︸
ϵcluster

(7.29)

+L (Θ(t+1)
g ,Θ(t+1)

c′(i) )−L (Θ(t+1)
g ,θ(t+1)

i , c′(i))︸ ︷︷ ︸
ϵdistribute

,(7.30)
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where c′(i) represents the assign relationships of round t+1 compared to c(i) of round t

and

(7.31) Θ(t+1)
c′(i) ← ∑

i∈Ck

ni∑
i∈Ck ni

θ(t+1)
i , ∀ c′(i)= k.

Bounding ϵ f edsim. In this process, c(i) does not change. Fed-CAM can be seen doing

parameter sharing for one global and parameter personalization for clients in clusters.

So this process is equal to FedSim [70], then we have,

L (Θ(t+1)
g ,θ(t+1)

i )−L (Θ(t)
g ,Θ(t)

c(i))(7.32)

≤〈∇ΘgL (Θ(t)
g ,Θ(t)

c(i)),Θ
(t+1)
g −Θ(t)

g 〉︸ ︷︷ ︸
ϵ1,g

+
m∑

i=1
〈∇Θkℓ(Θ(t)

g ,Θ(t)
c(i)),θ

(t+1)
i −Θ(t)

c(i)〉︸ ︷︷ ︸
ϵ1,i

(7.33)

+L∥Θ(t+1)
g −Θ(t)

g ∥2︸ ︷︷ ︸
ϵ2,g

+
m∑

i=1
L∥θ(t+1)

i −Θ(t)
c(i)∥2

︸ ︷︷ ︸
ϵ2,i

.(7.34)

By mapping ϵ1,g,ϵ2,g,ϵ1,i,ϵ2,i to τ1,u,τ2,u,τ1,v,τ1,v respectively in the convergence

proof for FedSim, with Claim 14, 15, 16, 17 in [70], we will obtain the same bound.

Bounding ϵcluster. In this bounding step, we assign a new cluster for all clients, but

distribute the cluster model later. Therefore c(i) changes to c′(i), but θi keeps the same.

And we got

(7.35) L (Θ(t+1)
g ,θ(t+1)

i , c′(i))−L (Θ(t+1)
g ,θ(t+1)

i , c(i))= 0

Bounding ϵdistriubte. According to Lemma 7.3.9, we have ϵdistriubte ≤ 0.

Finally, combining ϵ f edsim, ϵcluster, ϵdistribute, taking full expectation and telescoping

over t = 1, . . . ,T, we have the same error bound and convergence rate with FedSim. ■
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7.4 Experiments

7.4.1 Experimental Settings

Benchmark datasets and partitions For details about the benchmark datasets and

partition methods, please refer to Section A.1 and Section A.2, respectively, in Appendix

A.

Baselines We select baseline methods from four categories as follows:

• Single model-based FL: We choose FedAvg [67] and FedProx [51] with a coeffi-

cient of 230 and a regularization of 0.95 as the baselines.

• Ensemble FL: We train FedAvg and FedProx K times and then learn an ensemble

model via soft voting to serve all clients, which are named FedAvg+ and FedProx+,

respectively.

• Clustered FL: We choose FeSEM [94] and IFCA [30], which is similar to HypClus-

ter [66].

• Clustered FL with additive modeling: We integrate CAM with IFCA and

FeSEM, denoting them as IFCA-CAM and FeSEM-CAM, respectively.

Learning-related hyperparameters We use the Convolutional Neural Network

(CNN) [44] as the basic model architecture for each client, as detailed in Appendix A.

For optimization, we employ SGD with a learning rate of 0.001 and momentum of 0.9 to

train the model, and the batch size is 32. We evaluate the performance using both micro

accuracy (%) and macro F1-score (%) on the client-wise test datasets to better capture

the non-IID nature per client.
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FL system settings We conduct 100 global communication rounds in the FL system,

including 30 warmup rounds if applicable. Each communication involves ten local steps.

For the clustering process of FeSEM-CAM, we measure distance on the flattened para-

meters of the fully-connected layers and use K-Means as the clustering algorithm. The

coefficient λ is chosen from 0.001,0.01,0.1 based on the best performance.

7.4.2 Main Results and Comparisons

Cluster-wise non-IID scenarios make the assumption that there are underlying clus-

tering structures among clients. Table 7.1 and 7.2 compare the methods using two

benchmark datasets, namely Fashion-MNIST and CIFAR-10, PathMNIST and TissueM-

NIST, respectively. Figure 7.1 demonstrates the improvement of both accuracy and

macro-f1 score under the β= (0.1,10) cluster-wise non-IID setting using CIFAR-10. Re-

sults using two biomedical datasets are presented in the appendix. The following are

some notable observations and analyses:

• The application of the ensemble mechanism to FedAvg and FedProx yields minor

improvements. This is because the server-side model in FedAvg or FedProx is

already a relatively strong model, while ensemble mechanisms usually excel with

weak models.

• The introduction of CAM significantly enhances the performance of IFCA, which

typically struggles with clustering collapse in cluster-wise non-IID scenarios. No-

tably, CAM decomposes the shared components into a global model and personal-

ized parts into cluster models. Thus, the clustering collapse is mitigated by isolating

the dominant shared knowledge.

• FeSEM generally exhibits robust performance on cluster-wise non-IID without

outliers. Implementing CAM in FeSEM further improves the Macro-F1 perfor-
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mance. The clustering process in FeSEM tends to overfit the label distribution

(imbalanced classes) of clients to achieve higher accuracy. However, the application

of CAM introduces a global model with a balanced label distribution by averag-

ing all clients, thereby boosting the Macro-F1 performance while preserving the

cluster-wise non-IID for high accuracy.

• With an increase in the number of clusters K , the CAM-based methods show

substantial improvements in Macro-F1. The decomposition of shared knowledge

and cluster-wise non-IID characteristics benefit from a reasonably larger K , which

facilitates fine-grained, cluster-wise personalization.

Table 7.1: Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST
& CIFAR-10.

Datasets Fashion-MNIST CIFAR-10

Non-IID setting Dirichlet α= (0.1,10) n-class (3,2) Dirichlet α= (0.1,10) n-class (3,2)

#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 86.08±0.70 57.24±2.26 86.33±0.44 46.09±1.08 24.38±3.30 11.69±3.15 21.33±3.83 9.0±0.58
FedProx 86.32±0.78 58.03±3.19 86.42±0.63 45.86±1.42 24.73±3.68 11.28±2.35 22.66±1.13 9.23±0.78

5

FedAvg+ 87.61 59.48 86.95 65.61 25.97 12.16 24.35 9.06
FedProx+ 87.94 59.83 86.52 65.73 26.05 12.53 24.83 9.31
IFCA 84.60±2.22 62.03±3.01 84.94±2.54 66.50±4.43 34.1±4.79 22.12±2.21 29.80±4.49 17.90±2.08
IFCA-CAM 93.33±0.95 79.64±4.09 95.38±0.49 77.56±1.14 58.13±3.82 28.09±3.68 54.56±3.58 27.27±1.06
FeSEM 94.64±1.54 82.90±2.38 94.20±1.96 77.07±6.05 59.06±3.24 32.33±7.25 58.76±3.35 35.75±2.54
FeSEM-CAM 95.13±1.78 85.1±3.17 95.69±1.05 78.82±1.17 64.35±2.33 38.33±1.77 65.58±1.21 38.63±1.17

10

FedAvg+ 89.42 67.83 86.91 63.01 28.45 13.79 27.28 9.81
FedProx+ 89.55 68.02 86.73 63.42 28.33 13.64 26.94 9.64
IFCA 82.10±5.40 62.62±8.22 86.58±4.97 66.22±5.69 34.84±5.82 22.76±3.99 34.06±2.60 18.7±1.31
IFCA-CAM 95.42±2.54 88.45±5.46 95.09±0.87 82.98±1.16 70.9±1.18 40.03±1.28 68.46±4.08 41.45±4.0
FeSEM 95.73±1.28 89.34±1.57 95.54±0.74 84.43±2.38 66.89±2.18 38.35±4.24 71.76±2.23 49.72±3.84
FeSEM-CAM 96.19±1.2 92.37±1.85 98.07±1.46 92.43±2.7 78.45±1.71 49.5±1.13 75.04±1.97 55.9±2.07

Client-wise non-IID Table 7.3 and 7.4 presents comparative results under client-

wise non-IID scenarios using two benchmark datasets: Fashion-MNIST and CIFAR-10,

PathMNIST and TissueMNIST, respectively. Figure 7.1 demonstrates the improvement

of both accuracy and macro-f1 score under the β= 0.1 client-wise non-IID setting using

CIFAR-10. Interestingly, IFCA maintains stable performance under client-wise non-IID

conditions, primarily because it cannot form a single dominant cluster model - a primary
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Table 7.2: Test results (mean±std) in cluster-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST

Non-IID setting α= (0.1,10) (3,2)−class α= (0.1,10) (3,2)−class

#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 31.38±8.58 14.47±4.27 21.36±5.48 11.49±2.38 49.96±3.39 18.31±4.31 53.46±2.21 15.28±1.36
FedProx 27.6±6.15 14.07±3.42 25.7±8.48 11.62±1.08 49.78±2.64 17.85±3.81 54.92±3.7 15.15±1.47

5

FedAvg+ 35.84 17.01 25.51 12.14 49.52 17.59 54.98 15.12
FedProx+ 27.57 15.74 29.7 13.05 48.88 17.08 52.24 15.54
IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CAM 50.12±0.42 25.22±3.67 68.45±5.83 39.31±1.57 83.08±2.16 39.81±3.7 83.26±6.47 36.03±0.96
FeSEM 59.85±1.45 33.5±4.08 66.37±7.19 41.34±4.12 72.38±1.81 36.79±1.06 70.62±2.41 28.43±2.54
FeSEM-CAM 70.01±1.23 44.09±4.94 71.5±2.2 43.69±2.96 80.28±4.04 34.77±0.49 75.04±4.95 39.33±3.32

10

FedAvg+ 33.19 19.98 24.82 13.73 49.5 18.03 54.78 13.23
FedProx+ 28.21 16.17 35.62 15.95 46.57 16.47 53.47 14.88
IFCA 42.34±2.73 29.1±1.52 37.22±4.23 20.2±2.04 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CAM 66.5±3.46 38.12±2.32 66.22±3.85 40.75±2.2 81.53±7.24 43.88±6.98 88.77±15.23 46.48±4.98
FeSEM 79.31±0.72 48.14±0.23 71.37±1.5 53.78±2.21 77.12±1.68 47.69±3.1 77.92±1.53 45.68±6.71
FeSEM-CAM 85.06±2.62 61.82±5.38 76.41±2.22 64.33±4.92 84.91±2.83 53.08±1.77 90.22±3.03 60.62±2.64

Figure 7.1: Test accuracy and macro-F1 (mean±std) of IFCA/FeSEM (w/o CAM) and IFCA/FeSEM
(CAM) in cluster non-IID settings on CIFAR-10 dataset. “IFCA(5)” represents IFCA with K = 5
clusters. CAM consistently brings substantial improvement to IFCA/FeSEM on both
metrics and in both settings.

cause of clustering collapse - in a highly heterogeneous environment. The application of

CAM to IFCA and FeSEM shows a significant enhancement, particularly on the CIFAR-

10 dataset. This improvement is likely due to FeSEM’s typical restriction on knowledge

sharing across clusters. In contrast, CAM utilizes a global model to capture more useful

common knowledge across clusters, thereby substantially enhancing the generalization

capability of each cluster. Furthermore, CIFAR-10, being a relatively complex dataset
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with a diversity of images, underscores the importance of sharing common knowledge.

Table 7.3: Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST &
CIFAR-10.

Datasets Fashion-MNIST CIFAR-10

Non-IID setting Dirichlet α= 0.1 n-class (2) Dirichlet α= 0.1 n-class (2)

#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 85.9±0.46 54.52±2.66 86.17±0.25 44.88±1.24 25.62±3.47 11.38±2.02 24.3±3.53 8.56±0.64
FedProx 86.03±0.58 54.69±3.32 86.47±0.23 44.89±1.38 25.72±3.29 11.14±1.49 24.19±2.45 8.69±0.74

5

FedAvg+ 86.12 61.07 86.5 45.39 25.71 12.45 24.83 8.74
FedProx+ 86.39 56.56 86.15 45.43 25.58 12.43 25.88 8.55
IFCA 90.13±6.81 68.47±5.23 91.54±5.04 72.3±5.32 47.21± 10.28 22.67±1.48 46.54±12.8 17.78±1.29
IFCA-CAM 93.72±1.34 70.67±1.75 92.24±1.22 70.24±4.33 54.32±1.25 23.48±1.18 54.92±1.51 25.2±1.05
FeSEM 91.51±2.9 73.78±9.88 91.83±1.24 71.05±8.63 54.3±4.58 24.78±6.01 55.55±4.83 32.8±4.18
FeSEM-CAM 94.74±1.04 75.12±5.82 93.14±2.03 76.98±2.17 59.71±2.8 40.45±3.53 56.7±1.68 34.52±1.64

10

FedAvg+ 86.81 60.43 86.91 47.12 27.83 13.65 27.71 9.65
FedProx+ 86.24 56.2 86.78 42.83 25.86 12.84 26.16 9.94
IFCA 91.04±4.33 68.6±6.77 91.42±5.16 72.29±5.8 47.62±10.15 23.36±2.48 47.96±10.59 17.88±1.04
IFCA-CAM 95.7±1.19 79.17±1.91 92.57±2.63 76.31±4.39 72.54±2.7 42.86±4.36 61.01±2.41 31.63±2.17
FeSEM 93.3±2.0 80.47±11.05 93.75±1.53 79.39±6.57 67±1.57 31.69±8.52 63.64±6.51 42.97±6.08
FeSEM-CAM 95.25±1.93 81.5±2.24 95.15±1.48 86.16±3.19 80.11±1.82 59.19±4.67 69.88±1.7 49.5±1.42

Table 7.4: Test results (mean±std) in client-wise non-IID settings on PathMNIST &
TissueMNIST.

Datasets PathMNIST TissueMNIST

Non-IID setting α= 0.1 2−class α= 0.1 2−class

#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 26.41±9.15 14.29±3.08 26.11±8.51 13.05±2.33 52.42±4.04 16.23±3.81 54.11±2.28 14.51±1.28
FedProx 27.61±7.38 13.97±2.6 28.77±8.33 12.16±2.27 53.42±4.29 15.84±3.41 54.51±3.26 14.43±1.36

5

FedAvg+ 32.68 15.03 29.8 13.02 53.15 16.51 54.63 14.57
FedProx+ 33.19 15.66 30.51 13.49 53.56 17.89 55.03 14.78
IFCA 38.13±2.53 25.22±1.74 34.16±3.76 22.52±1.13 38.76±10.94 20.38±2.01 49.31±13.97 21.51±3.68
IFCA-CAM 64.67±6.17 34.86±3.95 62.72±3.54 37.5±4.67 84.72±0.95 41.86±1.38 73.71±0.97 33.02±2.64
FeSEM 59.85±1.45 33.5±4.08 64.46±6.12 38.41±3.19 72.88±1.11 33.19±1.7 70.62±2.41 28.43±2.54
FeSEM-CAM 68.81±1.29 49.22±2.2 68.92±1.13 47.32±1.99 87.88±1.27 45.82±1.54 70.09±0.86 29.49±0.77

10

FedAvg+ 29.83 16.75 28.35 13.49 53.5 18.03 54.58 13.46
FedProx+ 29.36 16.55 29.07 13.63 54.69 17.36 56.03 15.21
IFCA 51.88±13.67 27.81±2.21 37.22±4.23 20.2±2.04 27.44±16.39 16.37±10.45 41.87±20.04 21.59±7.3
IFCA-CAM 77.32±1.0 54.89±3.42 67.91±3.21 40.49±3.58 88.24±1.62 54.12±4.15 74.5±0.89 32.04±1.17
FeSEM 78.93±4.27 52.94±5.42 70.93±4.27 52.94±5.42 78.85±2.29 52.32±7.59 77.92±1.53 45.68±6.71
FeSEM-CAM 82.38±2.6 63.84±2.03 72.95±0.36 54.44±1.05 87.09±1.97 54.77±2.2 80.13±1.6 51.9±2.15

7.4.3 Visualization: CAM combats clustering collapse

Figures 7.3 and 7.4 demonstrate the effectiveness of applying CAM to mitigate clustering

collapse in IFCA and FeSEM under both cluster-wise and client-wise non-IID scenarios,
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Figure 7.2: Test accuracy and macro-F1 (mean±std) of IFCA/FeSEM (w/o CAM) and IFCA/FeSEM
(CAM) in client-wise non-IID settings on CIFAR-10 dataset. “IFCA(5)” represents IFCA with
K = 5 clusters. CAM consistently brings substantial improvement to IFCA/FeSEM on
both metrics and in both settings.

using the CIFAR-10 dataset with K = 10. Each color represents a cluster, and the X-axis

represents the iteration rounds.

In the case of IFCA, we observe a severe clustering collapse issue in cluster-wise

non-IID scenarios. A single cluster can encompass all clients in the client-wise non-

IID setting and up to 50% of clients in the cluster non-IID setting. Furthermore, the

clustering remains unstable throughout the process. However, when CAM is applied in

IFCA-CAM, it quickly identifies some clustering structures within a few rounds, and this

structure closely approximates the ground truth.

As for FeSEM, while the phenomenon of clustering collapse is not as pronounced, a

single cluster can still dominate up to 25% of all clients if there are no outliers. CAM can

expedite the clustering convergence, sometimes achieving it in just one round. Moreover,

under client-wise non-IID settings, the application of CAM results in lower variance and

more uniform cluster size. In the case of cluster-wise non-IID settings, FeSEM-CAM can

easily identify the ground truth.
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Figure 7.3: Cluster sizes during IFCA vs. IFCA+CAM in client/cluster-wise non-IID settings
on CIFAR-10. Legend: cluster ID (cluster size) in the last round. CAM effectively mitigates
clustering collapse/imbalance.

7.4.4 Comparison with Ensemble Mehtods

In Table 7.5, we further analyze CAM under various scenarios. The terms "-Finetune"

and "+" denote finetuning base methods for one additional round and ensembling both

methods via soft voting, respectively. We present a few examples as follows.

• FedAvg+IFCA: Initially, we separately train FedAvg and IFCA on the same

partitioned dataset for 100 rounds, keeping all other hyperparameters identical.

We then ensemble the trained models of FedAvg and IFCA to test on the relevant

clients using soft voting. The inference is carried out using the formula below,
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Figure 7.4: Cluster sizes during FeSEM vs. FeSEM+CAM in client/cluster-wise non-IID settings
on CIFAR-10. Legend: cluster ID (cluster size) in the last round. CAM effectively mitigates
clustering collapse/imbalance.

which aligns with the inference method in Fed-CAM,

(7.36) argmax y= f (x;Θg)+ f (x;Θc(i)).

• FedAvg-Finetune+IFCA-Finetune: Similar to the previous method, we train

FedAvg and IFCA separately on the same partitioned dataset for 100 rounds, and

then finetune each locally for one additional round. Next, we ensemble the trained

models of FedAvg-Finetune and IFCA-Finetune to test the relevant clients using

soft voting.

• IFCA-CAM-Finetune: After obtaining Θg and Θc(i), we finetune both locally for
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Table 7.5: More comparison, CIFAR-10 cluster-wise non-IID (Dirichlet), K = 10

Methods Accuracy Macro-F1

FedAvg 24.38±3.30 11.69±3.15

IFCA 34.84±5.82 22.76±3.99
FedAvg+IFCA 35.62±4.73 24.31±3.65
IFCA-CAM 70.9±1.18 40.03±1.28
FedAvg-Finetune+IFCA-Finetune 65.89± 2.31 39.51±1.94
IFCA-CAM-Finetune 78.97± 1.64 52.3± 2.42

FeSEM 66.89±2.18 38.35±4.24
FedAvg+FeSEM 67.37±1.85 42.03 ±2.45
FeSEM-CAM 78.45±1.71 49.5±1.13
FedAvg-Finetune+FeSEM-Finetune 77.63±1.84 50.34±2.58
FeSEM-CAM-Finetune 81.33± 1.51 57.64± 2.17

one round without aggregation. Then, we use the finetuned models for testing,

applying the same inference method as before.

According to Table 7.5, it is evident that Fed-CAM is not merely an ensemble of CAM

models with base models, even though they share the same loss function. Fed-CAM

significantly outperforms ensemble methods, irrespective of whether the base model is

involved or whether finetuning has been applied. This underscores Fed-CAM’s superior

ability to address non-IID FL challenges with a clustering structure, and demonstrates

the advantages of its clustered FL model over conventional ensemble methods.

7.4.5 Ablation Study of Warmup and Cost

Impact of Warmup Rounds As shown in Table 7.6 below, we gradually increase the

rounds of the warmup stage (from 0 to 50) while keeping the total budget of rounds to 100

(warmup + training), considering the limited capacity of computation and communication

for local devices in FL. The best performance is achieved when the warmup rounds are

set to 20. However, the performance shows minimal variation when the number is set to

10, 20, 30, or 40. It demonstrates that the performance is stable when we choose warmup
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rounds in the area from 10 to 40. The choice of warmup round numbers exhibits low

sensitivity, like on the parameter plateau.

Notably, with no warmup rounds, performance is substantially decreased due to

the impact of worse-performed initial candidates of the FL system. Similarly, when the

warmup rounds are increased to 50, indicating insufficient training, the performance

will drop accordingly. We need to ensure there are enough training rounds with a proper

number of warmup rounds.

In summary, a few warmup rounds can improve the stability of FL optimization

and accuracy-related performance. Given a proper area, choosing warmup rounds is low

sensitivity to performance.

Extra Cost of integrating proposed CAM framework to existing FL methods

For simplicity, we use “FedAvg” as the measuring unit or benchmark for the cost of

storage, communication and computation on local devices. In general, CAM will bring

one extra “FedAvg” cost to the existing FL methods every communication round.

As for IFCA [30], which needs to transmit K cluster-specific models to each client

to compute the clustering, applying our proposed CAM framework with IFCA, we need

to transmit K cluster models and one extra global model to the clients, that is K +1

models in total. The communication cost and storage cost are listed in Table 1. Moreover,

the warmup stage only incurs one “FedAvg” cost. Therefore, integrating CAM can even

reduce the overall cost by increasing the number of warmup rounds.

Lastly, considering the tradeoff between performance and cost, we choose 30 warmup

rounds out of 100 as the default experiment setting.

7.4.6 More Clustering Analysis

Clustering stability Figure 7.5 demonstrates that the clustering results remain

stable after five communication rounds.

104



CHAPTER 7. CLUSTERED ADDITIVE MODELING FOR MORE STABLE CLUSTERED
FEDERATED LEARNING

Table 7.6: Ablation study of warmup round numbers for performance and cost using
“FedAvg” as the measuring unit (Other settings: CIFAR-10 dataset, IFCA [30], client-wise
non-IID with Dirichlet distribution α= 0.1, Cluster number K = 10).

Baseline # Warmup + Training
Performance/% Cost/“FedAvg”

Accuracy Macro-F1 Storage Communication Computation
IFCA 0+100 47.62 23.36 10x 10x 10x

IFCA-CAM

0+100 63.75 32.17 11x 11x 11x
10+90 72.69 41.24 11x 10x 10x
20+80 73.83 44.72 11x 9x 9x
30+70 72.54 42.86 11x 8x 8x
40+60 72.98 42.20 11x 7x 7x
50+50 65.74 26.63 11x 6x 6x

Figure 7.5: A Clustering change example for IFCA-CAM with client-wise non-IID and K = 10 on
CIFAR-10. Note that there are 200 lines in this graph, and each represents a client. The bold line
in this figure is the combination of lines of clients within one cluster. After five rounds, the
clustering remains stable.

Clustering accuracy in highly-skewed cluster-wise non-IID setting Figure 7.6

is an example of highly-skewed cluster-wise non-IID setting with cluster size
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{10,10,10,10,10,20,30,30,70}. Then Figure 7.7 shows the difference between clustering

results when stable and ground truth. Compared with clustering collapse in IFCA, in

which all clients fall into one cluster, IFCA-CAM can reveal most of the clustering ground

truth.

Figure 7.6: A skewed non-IID setting example on CIFAR-10. Legends represent labels of the
dataset.

7.5 Conclusions

We propose a novel clustered FL model “clustered additive modeling (CAM)” and an

efficient FL algorithmic framework Fed-CAM to address non-IID FL challenges with clus-

tering structure. CAM is a general mode-agnostic tool that can improve various existing

non-IID FL methods. It can capture more general non-IID structures with global knowl-

edge sharing among clients than clustered FL and overcome several weaknesses such as

clustering collapse, vulnerability to cluster imbalance/initialization, etc. Theoretically,

Fed-CAM is capable of achieving an asymptotic convergence rate of O(1/
p

T ). Extensive

experiments show that CAM brings substantial improvement to existing clustered FL

methods, improves cluster balance, and effectively mitigates clustering collapse.
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Figure 7.7: In the context of the highly-skewed clustering scenario depicted in Figure 7.6,
the differences between IFCA-CAM’s clustering and the actual ground truth remain minimal.
Conversely, the clustering of IFCA easily collapses into a single cluster. The right y-axis indicates
the cluster id. The color represents the ground truth, while the lines indicate the transition from
the original ground truth to the clustering through CAM. Notably, CAM also demonstrates its
capability to alleviate clustering collapse and imbalance in skewed clustering settings
successfully.
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CONCLUSION AND FUTURE WORKS

8.1 Conclusion

I
n this thesis, we focus on clustered FL, which applies clustering of clients with

simliar data or behaviour into the traditional FL framework to primarily address

the non-IID challenge. Four works have been achieved, with summaries as follows.

First of all, in Chapter 5, we rethink clustered FL from a new perspective on its

clustering and propose a general framework for clustered FL with a bilevel optimization

objective. We then apply weighted clustering to clustered FL. The most important

contribution is the proposal of a new convergence analysis for the general form of

clustered FL. Experiments on both cluster-wise and client-wise non-IID settings support

our claims.

Secondly, we tackle the problem of robust clustering in Clustered FL. In line with

the core principles of clustering, which aim to maximize inter-cluster distances and

minimize intra-cluster distances, we propose a contrastive approach. This method can

108



CHAPTER 8. CONCLUSION AND FUTURE WORKS

either be viewed as a regularization term added to the loss function of Clustered FL

methods or as an integral part of the unified framework for Clustered FL presented

in Chapter 3. We introduce two variants of CFL-CON: CFL-CON-rep and CFL-CON-

para. Experimental results demonstrate significant marginal performance improvements

under both cluster-wise and client-wise non-IID settings.

Thirdly, inspired by the nature of stable clustering in Clustered FL, we propose a

clustered knowledge sharing method called CON-CKS. A simplified term, accompanied

by a theoretical proof, is provided. This term can be incorporated into any loss function

of Clustered FL methods or integrated into the unified framework presented in Chapter

3, while maintaining the linear convergence rate. Substantial performance improvement

is demonstrated through extensive experiments, and the effectiveness of the approach is

explained from three different perspectives.

Furthermore, we compare CFL-CON and CFL-CKS, which can both be integrated

into the unified framework of Clustered FL. Despite sharing the same objective of

enhancing CFL, their underlying philosophies are fundamentally different, even opposite,

implying that they may not be directly combined to improve the performance of CFL.

To address this challenge, we conduct a detailed examination of both methods and the

neural network structure. Consequently, we apply CFL-CKS to the backbone of the

neural network and CFL-CON to the head. This results in a new hybrid approach,

CFL-CON&CKS, which combines the advantages of both methods for clustered FL.

Experimental outcomes reveal significant marginal improvements in performance and

robustness under both cluster-wise and client-wise non-IID settings.

Finally, to address issues inherent in clustered FL, such as clustering collapse, vul-

nerability to outliers, and sensitivity to initialization, we introduce a novel clustered

FL model, called “Clustered Additive Modeling (CAM)”, along with an efficient algorith-

mic framework, Fed-CAM. Designed to handle non-IID FL challenges with clustering
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structure, CAM is a versatile, model-agnostic tool that can enhance a variety of existing

non-IID FL methods. It is capable of capturing more generalized non-IID structures,

fostering global knowledge sharing among clients, while overcoming key shortcomings

associated with clustered FL. Theoretically, Fed-CAM can achieve a linear convergence

rate of O(1/T). Our extensive experimental results demonstrate the substantial enhance-

ments CAM brings to existing clustered FL methods, as it successfully improves cluster

balance and effectively mitigates clustering collapse.

In conclusion, we introduced a unified framework for clustered FL, providing an ac-

companying convergence analysis. Based on this framework, we proposed the Weighted

Clustered FL (WeCFL) algorithm and four complementary enhancements - CFL-CON,

CFL-CKS, CFL-CON&CKS, and Fed-CAM. These innovations are designed to bolster

the robustness and performance of clustered FL. A series of theoretical analysis and com-

prehensive experiments were conducted to substantiate our propositions and findings.

8.2 Future works

There are still many areas to explore and exploit in the field of clustered FL, as it is a

distributed structure with numerous methods that can be applied and researched.

Firstly, the clustering structure in clustered FL can be further improved by inves-

tigating soft or hierarchical clustering. These methods can also be associated with the

global model and personalized models, providing a more comprehensive understanding

of the potential benefits and challenges in this area.

Secondly, more non-IID scenarios can be analyzed to better understand the complexi-

ties of different situations. For example, investigating cases where datasets of clients

have multiple different domains, or when different labels are assigned to the same data

instance due to varying user preferences or multiple choices made by a single user.

Addressing the non-IID challenge remains a critical aspect of FL research.

110



CHAPTER 8. CONCLUSION AND FUTURE WORKS

Thirdly, the deployment, scaling, personalization, and continuous updating of clus-

tered FL models need further exploration, especially in real-world cases. Understanding

the practical implications and requirements for clustered FL in real applications will

help refine and improve these methods.

Lastly, with the emergence of Large Language Models (LLMs), such as ChatGPT, new

challenges arise regarding communication and computation costs in FL, as local devices

typically have limited capabilities. Combining LLMs with FL, especially clustered FL,

requires further research and effort to optimize and balance the trade-offs between model

performance and device constraints.

In summary, the clustered FL field offers numerous opportunities for future research,

including improvements to clustering structures, the analysis of diverse non-IID scenar-

ios, practical applications, and integration with LLMs. These areas of exploration will

continue to advance our understanding and capabilities in clustered FL, leading to more

robust and efficient solutions for FL problems.
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A.1 Benchmark Datasets

T
he proposed methods in this thesis are validated using several benchmark

datasets as below.

• Fashion-MNIST [92] includes 70,000 labeled fashion images (28×28 grayscale) in

10 classes, such as T-shirts, Trouser, and Bag, with others.

• CIFAR-10 [43] consists of 60,000 images (32×32 color) in 10 classes, including

airplane, automobile, bird, and truck, among others. The divergence among classes

in CIFAR-10 is relatively higher than in other datasets from the MNIST family.

• PathMNIST from MedMNIST [99] contains 107,180 images of three channels in

nine classes. These 2D biomedical images are collected from colon pathology.

• TissueMNIST from MedMNIST [99] includes six datasets with 236,386 images

of one channel in eight classes. These 3D biomedical images are collected from the

kidney cortex microscope.

112



APPENDIX A. APPENDIX

A.2 Dataset Partition Settings

Each dataset is split among 200 clients, and we create the following non-IID scenarios:

• Client-wise non-IID via Dirichlet distribution (α= 0.1): This technique uses

the Dirichlet distribution to create a level of randomness in non-IID data, following

the approach proposed by [35] as demonstrated in Figure A.1. This method is

commonly used in most personalized FL techniques, which typically deal with

client-wise non-IID scenarios.

• Cluster-wise non-IID via Dirichlet distribution (α= (0.1,10)): This strategy

partitions the dataset into K clusters using a α = 0.1 setting, thus generating

significant variation in cluster-wise non-IID scenarios. Subsequently, each cluster

is divided into m/K clients using α = 10 to manage the non-IID nature of data

across clients, as demonstrated in Figure A.2.

• Client-wise non-IID via n-class (2): In this method, each client is randomly

assigned n classes from the total classes available in the dataset. Data instances

are then sampled from these classes, following the approach proposed by [67], as

demonstrated in Figure A.3.

• Cluster-wise non-IID via n-class (3, 2): This technique randomly assigns 3

classes to each cluster, ensuring a reasonably balanced distribution of instances

per class, and each cluster is divided into m/K clients. Then, each client within a

cluster is assigned 2 classes from the 3 classes, as demonstrated in Figure A.4.

A.3 Details of Model Structure

The detailed structure of CNN models for Fashion-MNIST, CIFAR-10, PathMNIST and

TissueMNIST in this thesis.
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Figure A.1: An example visualization of non-IID partitioning methods of client-wise non-IID by
Dirichlet distribution (α= 0.1) on the Fashion-MNIST.

Table A.1: Detailed structure of the CNN for Fashion-MNIST.

Layer Details

Convolution

Conv2d(1,16,kernel_size = (5,5), padding = 2)
BatchNorm2d(16)
ReLU()
MaxPool2d(2,2)

Convolution

Conv2d(16,32,kernel_size = (5,5), padding = 2)
BatchNorm2d(16)
ReLU()
MaxPool2d(2,2)

Classifier Linear(7∗7∗32,10)
Loss CrossEntropy()
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Figure A.2: An example visualization of non-IID partitioning methods of cluster-wise non-IID by
Dirichlet distribution (α= (0.1,10)) on the Fashion-MNIST.

Table A.2: Detailed structure of the CNN for CIFAR-10.

Layer Details

Convolution
Conv2d(3,6,kernel_size = (5,5))
ReLU()
MaxPool2d(2,2)

Convolution
Conv2d(6,16,kernel_size = (5,5))
ReLU()
MaxPool2d(2,2)

Linear
Linear(400,120)
ReLU()

Linear
Linear(120,84)
ReLU()

Classifier Linear(84,10)
Loss CrossEntropy()
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Figure A.3: An example visualization of non-IID partitioning methods of client-wise non-IID by
n-class (2) on the Fashion-MNIST.

Table A.3: Detailed structure of the CNN for PathMNIST.

Layer Details

Convolution
Conv2d(3,6,kernel_size = (5,5))
ReLU()
MaxPool2d(2,2)

Convolution
Conv2d(6,16,kernel_size = (5,5))
ReLU()
MaxPool2d(2,2)

Linear
Linear(400,120)
ReLU()

Linear
Linear(120,84)
ReLU()

Classifier Linear(84,9)
Loss CrossEntropy()
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Figure A.4: An example visualization of non-IID partitioning methods of cluster-wise non-IID by
n-class (3, 2) on the Fashion-MNIST.

Table A.4: Detailed structure of the CNN for TissueMNIST.

Layer Details

Convolution
Conv2d(1,16,kernel_size = (5,5))
BatchNorm2d(16)
ReLU()
MaxPool2d(2,2)

Convolution
Conv2d(16,32,kernel_size = (5,5))
BatchNorm2d(32)
ReLU()
MaxPool2d(2,2)

Classifier Linear(7∗7∗32,8)
Loss CrossEntropy()
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