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Abstract

Computationally efficient and robust data fusion algorithms are valuable in navigation

(or localisation) applications using low-cost sensors. This thesis considers the problem of

enhancing the robustness and efficiency for 6-DoF (Degree of Freedom) underwater IMU

(inertial measurement unit)-vision based navigation (or localisation). The emphasis is

placed on algorithms that are robust and operate efficiently using low-cost inertial-visual

sensors in underwater environment where it is vulnerable to outlier measurements. Such

capability is desirable for autonomous underwater navigation.

One major factor that degrades the navigation accuracy are outlier measurements. In

particular, inertial-visual underwater navigation is susceptible to wrong observation mea-

surements. As a result, online and constant time robust state estimation techniques are

valuable to provide the smoothed and enhanced vehicle trajectory. Existing solutions have

mainly focused on increasing the robustness of the (extended) Kalman filter ((E)KF). They

often require tuning the motion and prediction model noise covariance matrices that are

fairly involved.

The contributions of this thesis arise from proposing a robust Biswas-Mahalanobis Fixed

lag smoother (BMFLS) by utilising EKF, and a robust sliding window filter (RSWF) using

the nonlinear least-squares (NLS) optimisation approach. The robust-BMFLS solution

performs outlier rejection using the Chi-square test through reclassification and iterative

smoothing. The limitation is it requires more iteration in time intervals with high ratio of

outliers.

Author@domain.com


vi Abstract

While, in the NLS optimisation approach works by assigning a weight to each observation,

that are iteratively computed from the robot pose prediction error and observation error,

outliers are detected and rejected by classification expectation-maximisation. However,

solving the NLS optimisation using full-batch estimation is an offline process. By intro-

ducing the RSWF, a constant time and online solution is presented. This is an incremental

and online robust solution which is computationally efficient to robust full-batch estima-

tion. The impact of different optimisation window sizes and update periods are studied

on the navigation performance. This is useful to determine the optimum window size and

update period using RSWF for localisation.
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Chapter 1

Introduction

1.1 Background and Motivation

Robust navigation is crucial for underwater robots to know its pose (position and orien-

tation) in a global frame. This is useful in making the robot follow a desired trajectory,

or performing a task such as cleaning or manipulation in intervention missions. Remotely

operated underwater vehicles (ROVs) have played a critical role in carrying out tasks

considered difficult or dangerous for humans. Unlike surveillance and inspection tasks,

intervention missions have higher demand on the navigation accuracy [1] [2]. For instance

Chavez et al. [3] admit underwater localisation is challenging in their work. In particular,

when the robot is close to the object to be manipulated [4]. But knowing the robot pose

in the global frame is essential in achieving these goals.

The underwater domain is one of the hostile and challenging environment for ROV to

operate. While many land-based or aerial navigation rely on one or more global positioning

system (GPS) to obtain an accurate measurement of vehicle’s position, a robot operating

underwater typically does not have this information [5]. Often low visibility and poor

quality sensor data or sensor failures make the vehicle underwater navigation tracking

difficult. This results in wrong pose observations (measurements) that introduce outliers

which degrade the navigation accuracy (Figure 1.1). Outlier detection is inherently a

difficult task which along with smoothing the navigation trajectory tend to increase the

1



2 Chapter 1. Introduction

computational requirements. Further, the problem becomes more challenging using low-

cost visual inertial sensors. Low-cost here is considered inertial-visual sensors where the

IMU costs within few thousand Australian Dollars (AUD) (about low-quality tactical grade

(<3K AUD), while the camera (vision) is less than 500 AUD.

Figure 1.1: An EKF estimated trajectory projected in 2D, using the experimental
dataset (red dots are observation measurements)

Figure 1.2: The submsersible pile inspection robot version 3 (SPIR3) ROV.
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1.2 Objectives

The objective of this thesis is to develop robust and efficient smoothing solutions for 6-DoF

navigation using low-cost IMU-vision sensors. They are:

• A robust Biswas-Mahalanabis Fixed-Lag Smoother (BMFLS) using extended Kalman

filter (EKF),

• An efficient and robust sliding window filter (RSWF) solution using nonlinear least-

squares optimisation.

Here, the RSWF is an incremental solution which works by scaling down the full batch

method to a small window of optimisation to remove potential outliers and perform state

estimation, and then moving to the next window. The developed solution are verified using

real-world experimental dataset in a water tank environment using the submersible pile

inspection robot version 3 (SPIR3) as shown in Figure 1.2. Although the outcome of this

work could be applied to other navigation problems, this research addresses unique solu-

tions to address low-cost IMU-vision based underwater localisation using fiducial markers

for pose measurement, to achieve robust inertial-visual navigation solution.

1.3 Contributions

The main contributions of this thesis are:

• Developing an efficient RSWF navigation solution with expectation-maximisation

(EM) using optimisation;

• Investigating the impact of various window sizes and update rate on accuracy and

computation run-time for RSWF estimation given unknown dataset;

• Enhancing ARTag underwater navigation performance using low-cost inertial-visual

sensors;

• Developing an iterative smoothing and outlier detection by utilising BMFLS.
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1.4 Publications

S. Hassan, H. Byun, J. Kim, “Iterative Smoothing and Outlier Detection for Underwater

Navigation” in Australasian Conference on Robotics and Automation (ACRA) 2021.

S. Hassan, J. Kim, S. Huang, “An Incremental Robust Underwater Navigation with

Expectation-Maximisation” in Australasian Conference on Robotics and Automation (ACRA)

2022.

1.5 Thesis Structure

The summary breakdown for this thesis are as follows:

Chapter 2 provides a background on state estimation techniques, outlier detection meth-

ods, a literature on the existing work to enhance filtering performance (robustness and

efficiency) of state estimation techniques and a discussion on their shortcomings.

Chapter 3 introduces inertial navigation and provides the mathematical derivation of the

inertial navigation equations, description of the experimental environment, and the non-

linear process model and the observation model for this thesis problem.

Chapter 4 presents the iterative smoothing based outlier detection approach using the BM-

FLS and the Chi-Square statistical test, the results achieved and evaluates the performance

of this EKF based approach.

While, Chapter 5 presents the RSWF navigation solution using nonlinear least-squares,

the results achieved, a discussion about the performance of this method and a comparison

to the approach in Chapter 4.

Finally, Chapter 6 draws a summary of this work and conclusions, some recommendations

with possible future investigations.



Chapter 2

Literature Review

2.1 Overview

This chapter provides a review of literature related to navigation tracking. They are: the

filtering and smoothing techniques with a discussion on the performance (accuracy and

efficiency), outlier detection methodologies, bias estimation, and work carried out so far

to increase the robustness and efficiency of state estimators and their shortcomings.

2.2 State Estimation Techniques

In the past, sailors used various tools such as compass, sexant, astrolabe or quadrant

in marine navigation. But modern navigation has become a combination of science and

technology. State estimation in vehicle navigation mainly involves predicting the posi-

tion, velocity and orientation, which if known, allows to understand the motion of the

vehicle over time. There are number of state estimation techniques that could be used in

navigation problems.

The full-least squares optimisation technique and the Kalman filter or extended Kalman

filter (EKF) are the most widely used state estimation techniques which are discussed in

the next section.

5
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2.2.1 Full Least-Squares

The full least-squares optimisation was one of the early optimal estimation methods and

it is still much in use today [6]. Optimisation has several advantages compared to filtering

techniques such as EKF. The nonlinear least-squares (NLS) estimation optimises over

entire trajectory by using entire measurements to perform full batch-estimation (Figure

2.1). As a result, optimisation provides smoothing which much desired to filtering, whereas

the EKF is sub-optimal compared to full-batch estimation. In [7] Sjanic et al. present a

detailed approach of the nonlinear least-squares framework via Gauss-Newton and argue

EKF suffers from linearisation errors.

However, solving the NLS by full-batch estimation in an offline process which becomes

computationally expensive with growing number of states. This is not desirable for real-

time applications. Further, NLS is known to be sensitive to data contamination. As a

result, the navigation accuracy will degrade measurement observations are contaminated

with outliers.

2.2.2 Kalman Filter

Kalman filter (KF) is the optimal estimator for linear models with Gaussian noise. that

recursively estimates the states. Nevertheless, its performance can be impaired by outliers

in the measurements. The KF algorithm is not shown here but runs similar to EKF as

outlined in the next section.

2.2.3 Extended Kalman Filter

The EKF is an extension of the Kalman filter to nonlinear problems. It is widely used in

navigation applications due its simplicity and efficiency. The EKF assumes the Markov

property. That is, the prior of kth state xk is only related to xk−1 and is independent of

the states before k − 1 ([8]). That is:

p(xk|x1:k−1, z1:k−1) = p(xk|xk−1) (2.1)
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Also, the current observation zk given the current state xk is conditionally independent of

the past measurements and states. That is:

p(zk|x1:k, z1:k−1) = p(zk|xk) (2.2)

In summary, the EKF uses the previous state xk−1 and current observation zk to estimate

xk, unlike the optimisation approach in Section 2.2.1 that uses all the historical data.

Further, the EKF is also vulnerable to outliers [9]. The Equation (2.3) summarises the

EKF progression,

xk|k−1 = f(xk−1|k−1,uk)

Pk|k−1 = FkPk−1|k−1Fk
T +Qk

ek = zk −Hkxk|k−1

Kk = Pk|k−1Hk
T (HkPk|k−1Hk

T +Rk)
−1

xk|k = xk|k−1 +Kkek

Pk|k = (I−KkHk)Pk|k−1

(2.3)

where

• xk|k−1 and xk|k are the prior and update state predictions respectively,

• f(·) is the nonlinear process model function,

• uk is the IMU input

• Fk and Hk are the process and observation model jacobians matrices,

• Pk|k−1 and Pk|k are the prior and updated covariance matrices respectively,

• Qk and Rk are the covariance process and observation noise matrices,

• Kk is the Kalman gain,

• zk is observation measurement, and

• ek is the observation error.
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2.2.4 Particle Filter

Particle filters (PFs) are also sub-optimal filters. The PF technique seeks to estimate the

probability density function (pdf) by obtaining by a sample of particles and their corre-

sponding weights. The states are then estimated based on the sample and the associated

weights. The sequential importance sampling (SIS) filter is the basis of PF, however, it suf-

fers from degeneracy problem. Instead, the sequential importance resampling (SIR) PF is

introduced. There are also other types PF derived from SIS filter, but SIR is investigated

in this thesis. Because the SIR filter is explored without knowledge of the observation

makes it inefficient and prone to outliers [10].

However, some variants of the PF are capable of handling nonlinear process and obser-

vation model, and non-Gaussian noises. Lastly, the PF outperforms EKF but it becomes

numerically challenging for high-dimensional state estimation problems with growing num-

ber of samples [11].

2.3 Optimal Smoothing

Smoothing provides more accurate state estimation compared to filtering methods (i.e

EKF). There are various type of smoothers, fixed-interval smoother, fixed-lag smoothers

(FLS) and fixed-point smoothers. Fixed lag smoothers can operate online but estimates

the vehicle state at a delayed time [12]. On the other hand, fixed-interval smoother uses

all the measurements in the interval, and commonly used for post-processing [13].

Although there are various typers smoothers, some may not be practical. The impor-

tant performance criteria for optimal smootheers are numerical stability, computational

complexity and memory requirements.

2.3.1 Biwas-Mahalanabis Fixed-Lag Smoother

The BMFLS is a fixed-lag smoother (FLS) generating estimation at time step k − l using

the current measurement at time step k. It is essentially the KF or EKF with augmented

state vector from state estimation over discrete-time window of fixed size l.
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The BMFLS runs in real time but estimates the state in delayed time. The earliest types

of fixed-lag smoothers were found to suffer from numerical stability. The BMFLS first

discovered by Biswas and Mahalanabis [13] is rather simple and numerically stable. The

detail implementation of the BMFLS is detailed in Section 4.2.

2.3.2 Sliding Window Filter

For the nonlinear least-squares optimisation to operate efficiently, the state vector cannot

grow without bound. One simple way to maintain this is to remove old poses. The Sliding

window filter (SWF) was first introduced in [14] to perform constant time online state

estimation for optimisation approaches such as NLS. The SWF iterates over a window

of n steps and provides smoothed estimation. The window of optimisation is then moved

forward and carries on (Figure 2.1). However, removing directly the oldest parameters from

system solution results in information loss and gives sub-optimal solution. The correct way

to remove old parameters is to perform marginalisation using Schur complement to take

into account prior information [15].

While the SWF does ease the computational burden, but from optimisation point of per-

spective is not significant and as a result SWF are still an active area of research [11].

Figure 2.1: An illustration of full-batch estimation and sliding window filter. The full-
batch estimation iterates over entire trajectory, whereas SWF iterates over a window of

steps.
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2.3.3 Incremental Smoothing

The concept of incremental smoothing was introduced by Kaess et al. [16] in the SLAM

problem to deal with computational complexity involved with full-batch estimation. While,

the SWF performs updating of all states in the sliding window, this may not be always

required as some states remain unchanged in certain conditions. As a result the notion

proposed by Kaess et al. does periodic updates of every 10 or 100 steps to improve the

efficiency of the incremental SLAM.

A similar concept introduced in [17] called compressed-SLAM was to deal with computa-

tional requirements. In the compressed-SLAM, the states are partitioned into local map

and global map. In the compressed-SLAM the local map are actively updated. While the

global landmarks are updated at a much lower rate thus compressing the local-to-global

correlation information [17]. The main point here is, states that remain close to constant

can have low cycle update to improve the filtering efficiency while maintaining accuracy.

2.4 Outlier Detection

Outlier detection mechanism is critical in vehicle navigation applications. In particular,

when using low-cost sensors to navigate in a dynamic environment that makes the plat-

form vulnerable to outlier measurements. “An outlier is an observation which deviates

so much from the other observations as to arouse suspicions that it was generated by

different mechanism” [18]. Outliers may occur due to noisy sensor measurements, sensor

failures or environmental disturbances [19]. Throughout this thesis it is evident that in

underwater IMU-vision based navigation using ARTag fiducial markers to obtain the pose

measurements are prone to outliers.

Further, capturing outliers is inherently difficult. Ignoring outliers will deteriorate the

navigation accuracy and as a result robust algorithms are essential. This section discusses

the performance of different outlier detection techniques and the existing work.
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2.4.1 Chi-square Test

The Chi-square test or Mahalanobis gating test is a well known technique to screen-out

outlier observations in navigation applications [20][21][22] [23]. It is commonly applied in

Kalman filtering to detect and rejects outliers by calculating the Mahalanobis distance

(MD) dk,

dk = νTk Skνk. (2.4)

The Chi-square χ2 distribution curve is determined by degree of freedom associated with

the distribution [24]. In Kalman filtering, if the dimension of measurements is m, using

Chi-square distribution with m degrees of freedom χ2(m) is used to classify the measure-

ment using the criterion:

 if dk < χ2
T , Inlier

if dk ≥ χ2
T , Outlier

(2.5)

where χ2
T is the threshold value from χ2(m) for a given percentile.

However, Mahalanobis gating test may fail with high intensity of outliers which may result

in rejecting correct observations causing information loss. An example of this is could be

seen in Chapter 4, in the experimental results. The direct catastrophic consequence is we

may lose all the good information.

2.4.2 M-estimation

As previously mentioned, the least-squares is sensitive to outliers. The maximum likelihood

M-estimation seeks to reduce the least-squares sensitivity by replacing with a more robust

cost function such as Cauchy or German-McClure. The weight function produced by these

cost functions means large errors will not carry as much weight and have less influence on

the estimation.
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2.4.3 Iteratively Re-weighted Least-squares

The iteratively re-weighted least-squares (IRLS) also allows to reduce the influence of

large errors on the estimation by re-evaluating the prediction and observation error in the

context of the navigation problem. M-estimation and IRLS do not eliminate an outlier

measurement but rather reduce its influence.

2.4.4 Expectation-Maximisation

The expectation-maximisation (EM) algorithm is an iterative method to find the maximum-

likelihood (ML) estimate of parameters of underlying distribution that cannot be solved

directly [8]. It has applications in EKF [25] to tune the noise covariance parameters or

in SLAM [26] to ease the computational complexity. The EM algorithm iterates between

the expectation (E) step and maximisation (M) step. After which the distribution of the

latent variables in the E step is determined. In this thesis, the EM algorithm is applied

to NLS batch-estimation to identify outliers.

2.5 Bias Estimation

Sensor white noise and bias instability are two main contributors in noisy measurements.

Accounting for bias in inertial navigation estimation improves the navigation accuracy by

constraining the drift during each IMU cycle and during loss of visual camera. As a result,

it helps in smoothing out trajectory by reducing the drift of IMU sensors and improved

state estimation during visual camera failures [27].

The Gauss-Markov model is effective than the random constant and random walk models

for bias modelling. In particular, the first order Gauss-Markov (FOGM) model is consid-

ered suitable for bias modelling in sequential navigation filters [28]. The FOGM integration

is shown as below:

bk+1 = e−∆t/τbk +wk (2.6)
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where τ denotes time-constant and bk is the bias state at time step k.

2.6 Related Work on Outliers

There are various ways that researchers have studied to mitigate the effect of outliers

on state estimation. Ting et al. [29] introduces a scalar weight for each measurement

according to Gamma distribution. By setting up an EM framework, the KF parameters,

process and observation model noise covariance matrices (Q and R) are iterated until

convergence.

Instead Agamennon et al. [19] models the observation noise matrix using the Student

t-distribution that is allowed to vary over time that may have tails compared to Gaussian

distribution. The expected measurement noise covariance matrix is found by applying

EM algorithm. They further apply fixed-interval smoothing to enhance the estimation.

Finally, the (Q and R) are still required to be estimated.

While, a robust EKF is introduced in [21] where the Rauch-Tung-Striebel (RTS) is applied

as fixed lag smoother. Similarly, this method also requires the estimation of (Q and

R). But learning the process and observation model noise covariance matrices are fairly

involved process. Lee et al. [23] extended the work in [19] by performing the Chi-Squared

statistical test to check it’s outlier measurement and remove it. Otherwise, it moves with

method in [19] for the expected observation noise covariance matrix. But, their assumption

is “outliers don’t always arise” and the approach is sufficient for the work.

Moreover, a robust KF is introduced in [20] based on MD as the judging criterion. Suppose

the MD is greater than the Chi-square distribution, a scaling factor is introduced to rescale

the innovation covariance that reduces the Kalman gain to maintain robustness. However,

this approach is applicable for low-dimensional problems.

Furthermore, the majority of the stated work were on enhancing the robustness of the KF

[21]. Many have not considered the nonlinear least-squares optimisation method. Lee et al

[30] has demonstrated promising results using the full least-squares approach to detect and

eliminate pose-graph false loop closures based on the classification EM method. In this
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work, a weight is assigned to each measurement Cauchy weight function that are iteratively

computed from the errors between the predicted poses and observed measurements. and

solved via Gauss-Newton. However, this method runs offline and is computationally heavy

for high-dimensional problems and long trajectories. In addition, Cheng et al. [31] applied

the concept from [30] and proposed an efficient and robust linear pose-graph based SLAM

to eliminate false loop closures by introducing a delayed optimisation approach.

The assumption in the above work is that the odometry solutions are reasonably accurate.

But, if low-cost inertial-measurements are used, this assumption may be no longer valid.

Also, the work above were simulation based or validated for aerial or land navigation and

not for difficult environments such as underwater where due light absorption and scattering

through water make underwater vision based localisation challenging.

On the other hand, Peng et al. [32] have formulated a robust PF for underwater terrain-

aided navigation. The approach modifies the covariance matrix in the likelihood function

p(y|x) based on the Huber cost weight function to suppress the effect from outliers. The

notion in Chapter 5 can be expanded to the solution in [32] to develop a further robust

PF.

Finally, fiducial markers are used in vision-based navigation for pose estimation. Fiducial

markers have several advantages. First, their tone and shape are easy to recognise that

are printed in black and white which is easy to differentiate in a binary image. Second,

they are low-cost and are installed to planar surfaces (e.g. floors, ceilings) with known

global coordinates [33]. There are several fiducial marker packages available (e.g. ARTag,

AprilTag, ArUco, STag). In an evaluation study for these four different packages by

Kalaitzakis et al. have indicated ARTag have the lowest computational cost, but suffer

from extreme outliers in marker bundles [34].

2.7 Summary

This chapter provided some background in state estimation techniques and outlier detec-

tion methods where a critical review of the performance of these techniques were discussed.

Also, a literature review on the existing work on enhancing the robustness of the KF, EKF
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and full-least squares were presented and became clear they are computationally challeng-

ing. Finally, from literature review it become evident the work towards enhancing the

navigation algorithms for underwater visual-inertial applications are lacking and requires

more consideration.





Chapter 3

Problem Formulation

3.1 Problem Overview

This thesis is concerned with enhancing robustness of IMU-vision based navigation using

low-cost inertial-visual sensors in a 6-DoF environment where a monocular camera is used

to obtain the robot pose measurement using AR (augmented reality) Tag fiducial markers.

The details of the experimental setup is outlined in Section 3.3.

However, due to harsh underwater environment, tracking an underwater robot becomes

difficult. In this thesis, the dataset collected from the experiment suffers from noisy and

missing measurements due outlier presence in the underwater environment. Figure 3.1

illustrates an interval of experimental raw vision measurements for the x-position. It can

be observed in the middle interval, there are three layers of observations where the top two

layers appear as outliers. As a result, such measurement observations will lead to spurious

navigation. The rest of this chapter provides the derivations for the inertial navigation

equations, the process and observation model for the navigation problem described in this

thesis.

17
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Figure 3.1: An example of outliers in the raw vision and marker observations. It is
evident the noises do not follow normal standard Gaussian distribution, but rather an

offset outlier pattern which stems from confusion in recognising the markers.

3.2 Inertial Navigation

Inertial navigation is a pose estimation technique in which the measurements provided by

accelerometer and gyroscope are integrated to predict the vehicle’s position and orienta-

tion from known starting point and orientation [35]. Inertial measurement units (IMUs)

usually contain three orthogonal rate-gyroscope and three orthogonal accelerometers. The

gyroscope measures angular velocity around each axis x, y and z while the accelerometer

measures the acceleration along each axis x, y and z in the body frame. Figure 3.2 is the

the Orientus IMU mounted onto the SPIR platform. The inertial navigation equations in

this thesis are outlined in Section 3.2.2.

The SPIR platform’s IMU noise characteristics are displayed in Table 3.1.

Table 3.1: The IMU noise characteristics.

Sensor Accelerometer Gyro

Bias Instability 20 µg 3 ◦/hr

Initial Bias < 5 mg < 0.2 ◦/hr

Noise Density 100 µg/
√
Hz 0.004 ◦/s/

√
Hz
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Figure 3.2: The Oreintus IMU from Advanced Navigation, used in SPIR platform to
provide 6-DoF vehicle information.

3.2.1 Coordinate Systems

There are various coordinate systems used in inertial navigation based on the applications

and sensors. Because the sensor measurements and navigation outputs are expressed

in different reference frames, the coordinate system must be defined to formulate the

navigation equations. This section defines the references frames used for the navigation

problem in this thesis.

Body Frame

The body frame (moving platform) consists of the three orthogonal axes with the origin

being the centre of mass of the platform. The x-axis (or roll axis) points forward, the

y-axis (or pitch axis) points to the right, and z-axis (or yaw axis) points down all with

respect of platform that makes up the right-handed coordinate system.

Navigation Frame

The navigation frame is defined to be a non-accelerating reference frame. The origin of

this coordinate system could be fixed anywhere in the space with the three orthogonal

axes.
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Camera Frame

Camera frame (c), is a moving with its origin fixed in the camera’s optical centre. The

axes of the camera frame is denoted as Xc, Yc and Zc where the Xc is the optical axis.

3.2.2 Inertial Navigation Equations

In this section, the attitude equations will be presented first followed by the velocity/po-

sition equations.

3.2.2.1 Attitude Equations

The Euler angle and the Direction Cosie Matrix (DCM) transformation will be presented.

Euler angles

In this thesis, the navigation frame is rotated and aligned to the body frame in the sequence

of yaw (ψ), pitch (θ) and roll (ϕ). The transformation of the navigation frame to body

frame Cb
n is constructed by multiplying each consecutive rotation matrices in the sequence.

By taking the inverse of Cb
n, the transformation of the body frame to the navigation Cn

b

is obtained:

Cn
b =


CθCψ CϕSψ + SϕSθCψ SϕSψ − CϕCθCψ

−CθSψ CϕCψ − SϕSθSψ SϕCψ + CϕSθSψ

Sθ −SϕCθ CϕCθ

 , (3.1)

where S(·), C(·) are shorthand notations for sin(·) and cos(·) respectively. As the body

frame rotates with respect to the navigation frame, the Euler angles also change according

to the angular rates measured by the gyro onboard the vehicle.
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
ωx

ωy

ωz

 =


ϕ̇

0

0

+


1 0 0

0 Cϕ Sϕ

0 −Sϕ Cϕ



0

θ̇

0



+


1 0 0

0 Cϕ Sϕ

0 −Sϕ Cϕ



Cθ 0 −Sθ
0 1 0

Sθ 0 Cϕ



0

0

ψ̇



=


1 0 −Sθ
0 Cϕ SϕCθ

0 −Sϕ CϕCθ



ϕ̇

θ̇

ψ̇

 .

(3.2)

The inverse of Equation (3.2) is the Euler rates, that is:


ϕ̇

θ̇

ψ̇

 = Enbω =


1 SϕSθ/Cθ CϕSθ/Cθ

0 Cϕ −Sϕ
0 Sϕ/Cθ Cϕ/Cθ



ωx

ωy

ωz

 . (3.3)

Equation (3.3) shows the nonlinear transformation of the angular rates to the Euler rates.

By implementing a first order numerical integration, the Euler angles can be expressed in

discrete form, that is,


ϕk

θk

ψk

 =


ϕk−1

θk−1

ψk−1

+

∫ k

k−1


ϕ̇k−1

θ̇k−1

ψ̇k−1

 dt. (3.4)

The general form Equation (3.4) is expressed in this thesis as:

ψnk+1 = ψ
n
k +Enbω

b
k∆t, (3.5)

where subscript b and superscript n denote body and navigation frame respectively.
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3.2.2.2 Position and Velocity Equations

The body frame and navigation frame are illustrated in Figure 3.3. Integrating the IMU

acceleration output fbk by time step ∆t yields the body frame velocity. Using the DCM

matrix, the body velocity with respect to (w.r.t) navigation frame is:

vnk+1 = vnk + (Cn
b [f

b
k] + gn)∆t. (3.6)

Then, integrating the velocity w.r.t. fixed frame gives the position prediction, that is:

pnk+1 = pnk + vnk∆t. (3.7)

Figure 3.3: The navigation frame (n) and body frame (b) illustration with SPIR.

3.3 Environment Setup

This section describes the experimental setup to collect the dataset. This includes physical

description of water tank facility, the monocular vision and the ARTag fiducial markers

setup to obtain the pose measurements of the vehicle.
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3.3.1 Experimental Environment

The experiment was set up inside a (6×4×2m) water tank (Figure 3.4) at UTS infrastruc-

ture lab facility. Plain water from the tap with Hydrogen Peroxide is used to fill the tank.

The SPIR (vehicle) operates in 6-DoF environment and hence position and orientation

observation are required. The mechanism to obtain vehicle pose measurements is outlined

in next section.

Figure 3.4: A general view of the UTS water tank facility.

3.3.2 Pose Measurements

Fiducial markers are often used in augmented reality to estimate camera pose [33]. Here,

obtaining the vehicle position and orientation measurements requires estimating the cam-

era pose. In the experiment, ARtag fiducial markers are installed inside the water tank

(environment) as shown in Figure 3.5 with known global coordinates to provide the di-

rect position and orientation measurements of the vehicle. The ARtag fiducial markers

are printed in black and white using the ar−track−alvar ROS package. The markers are

adhered to an acrylic sheet. The magnetically acrylic sheets were attached to one side of

tank wall. An outline of obtain pose measurements using monocular vision (camera) is

provided in the next section.
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Figure 3.5: ARTag-based fiducial markers installed on the side wall of the water tank,
which is used to provide the pose (position and orientation) measurements using a monoc-
ular camera installed on the robot. The markers’ positions and orientation are pre-

calibrated.

3.3.3 Vision

The monocular camera shown in Figure 3.6 is mounted inside an enclosure on the front of

the platform. It takes 26 camera images in a second (26 Hz). The monocular camera is

calibrated to know its intrinsic parameters (focal point and principal point). The intrinsic

properties allow to convert the coordinates in the image to (scale-less) position in the

world [36]. By knowing the camera’s intrinsic and fiducial marker physical size, 6-DoF

tracking is achieved. As a result, the environment observation setup provides the direct

position and orientation visual measurements of the robot.

Figure 3.6: The monocular camera (Low-Light HD USB) camera mounted on the plat-
form.
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3.4 State Estimation Model

This section formulates the state estimation model for the underwater navigation problem

in this thesis. This includes the derivation of the process and observation models.

3.4.1 Vehicle State

The 6-DoF vehicle state xk is defined as the position, velocity and orientation in the

navigation frame:

xk =
[
pnk vnk ψnk

]T
, (3.8)

where ψn represents the Euler angles: roll (ϕ), pitch (θ) and yaw (ψ).

3.4.2 Nonlinear Process Model

The vehicle nonlinear process model can be expressed in the general form:

xk = f(xk−1,uk) + g(xk−1,wk), (3.9)

where xk is the vehicle state, f(·, ·) represents the nonlinear state transition function at

time k based on the previous time step state xk−1 and current control input (IMU output)

uk. Also g(·, ·) is the nonlinear coupling function between random process and state of

nonlinear dynamic model and the process noise wk. The process noise wk consists of

accelerometer and gyro noise wb
a,k and wb

g,k respectively identified in Equation (3.10).

wb
a,k ∼ N(0,Qa), Qa = σ2aI3

wb
g,k ∼ N(0,Qg), Qg = σ2gI3.

(3.10)

The process noise w is modelled as zero mean Gaussian noise with standard deviation

strength σ, that is:
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E[wk] = 0

E[wkw
T
k ] = Qk =

Qa 0

0 Qg

 . (3.11)

Using the position, velocity and orientation navigation equations, the non-linear vehicle

process/prediction model according to the Earth-Fixed Local-Tangent frame becomes:


pnk

vnk

ψnk


︸ ︷︷ ︸

xk

=


pnk−1 + vnk−1∆t

vnk−1 + (Cn
b,k−1f

b
k + gn)∆t

ψnk−1 + (Enb,k−1ω
b
k)∆t


︸ ︷︷ ︸

f(xk−1,uk)

+


03,3 03,3

Cn
b,k−1 03,3

03,3 Enb,k−1


︸ ︷︷ ︸

Gk−1

wb
a,k

wb
g,k

 ,
︸ ︷︷ ︸

wk︸ ︷︷ ︸
g(wk)

(3.12)

where pnk and vnk are the position and velocity in the navigation frame and ψnk is the Euler

angle, f bk and ωbk are the acceleration and angular-rate measurement in the body frame

(IMU output), Cn
b is the DCM defined in Equation (3.1) and (Eb

n) is the body rate to

Euler rate transformation matrix defined in Equation (3.3). Also Gk−1 is the process noise

coupling matrix for the linear dynamic system, that is:

Gk−1 ≈
∂g(x,w)

∂x

∣∣∣∣
x=xk−1

. (3.13)

The IMU sensors bias will be taken into account and estimated in Section 5.5 of this thesis.

3.4.3 Observation Model

The observation model is linear form as the visual sensor (monocular camera) delivers the

direct pose measurements. The observation noise vk consists of observation position and

orientation noise vba,k and vbψ,k respectively. That is:

zk = Hxk + vk, (3.14)
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vbp,k ∼ N(0,Rp), Rp = σ2pI3

vbψ,k ∼ N(0,Rψ), Rψ = σ2
ψ
I3

(3.15)

where

H =

I3 03 03

03 03 I3

 . (3.16)

Similarly, the observation noise vk is modelled as zero mean Gaussian noise with standard

deviation strength σ, that is:

E[vk] = 0,

E[vkv
T
k ] = Rk =

Rp 0

0 Rψ

 . (3.17)

3.5 Summary

This chapter provided an overview of the problem considered in this thesis, the inertial

navigation equations and the environment setup in the experiment. The inertial navi-

gation equations were formulated based on fixed navigation frame. The attitudes of the

platform were expressed in Euler angle form. By transforming between the body frame

and navigation frame, the position and velocity equations were derived. As a result, using

the inertial navigation equations, the nonlinear process model was constructed. Finally,

the experimental setup provides the direct pose measurements and hence the observation

model is in linear form.





Chapter 4

Iterative Smoothing and Outlier

Detection

4.1 Overview

This chapter presents the novel iterative smoothing and outlier detection approach using

the EKF. This includes the utilisation of the the Biwas-Mahalnabis fixed lag smoother

(BMFLS) to estimate the smoothed vehicle state at a fixed-lag time. The Chi-square test

is applied to classify measurements through iterations to detect and reject outliers to en-

hance the navigation accuracy. This chapter includes the BMFLS propagation, algorithm

summary, simulation study, experimental results and a discussion where the advantages

and limitations of this method are discussed.

4.2 Biswas-Mahalanabis Fixed-lag Smoother (BMFLS)

In this section we present the formulation and details of the BMFLS for nonlinear pro-

cess model for the problem considered in this thesis. The BMFLS is propagated sim-

ilarly to the EKF, except with augmented state vector with past predictions xk[s] =

29
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{xk,xk−1, · · · ,xk−l} using l + 1 lagged states over a fixed size interval (Figure 4.1):

∆tlag = l∆t. (4.1)

Figure 4.1: The BMFLS augmented state vector.

Figure 4.2 represents a summary cycle of the BMFLS where after the prediction/update

cycle, states are augmented and the smoothed state of interest is stored. We denote the

prior smoothed state vector as:

x̂k(−),s =


x̂k,EKF

x̂k−1,EKF

...

x̂k−l,EKF

 (4.2)
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Figure 4.2: A representation of the BMFLS cycle

where the current state x̂k(−) is estimated using the nonlinear dynamic model:

x̂k(−) = f(x̂k−1(+),uk) (4.3)

P̂k(−) = Fk−1P̂k−1(+)F
T
k−1 +Gk−1QkG

T
k−1∆t, (4.4)

where Fk−1 is the Jacobian of the process transition function which is constructed as:

Fk−1 =
∂f(x, uk)

∂x

∣∣
xk−1

. (4.5)

The dimension of the observation matrix Hm×n is required where m is the number of

measurement variables and n is the number of state variables. Also we need to compute

the cutoff block index for state augmentation:
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The propagated smoothed covariance matrix is:

P̂k[s](+) =

 P̂k(−) Fk−1P̂k−1[s](+)(1 : n, 1 : n× l)

P̂T
k−1[s](+)(1 : n, 1 : n× l)FTk−1 P̂[s]k−1(+)(1 : n× l, 1 : n× l)

 . (4.6)

When the vision measurements are available, the innovation (or error) and its covariance

are computed:

ek = (zk −Hx̂k(−)) (4.7)

Sk = HPk(−)H
T +Rk. (4.8)

The BMFLS state and covariance are then updated using the smoothed Kalman gain,

Kk[s] = P̂k[s](−)(:, 1 : n)HTS−1
k (4.9)

x̂k[s](+) = x̂k[s](−) +Kk[s]ek (4.10)

Pk[s](+) = Pk[s](−) −Kk[s]HPk[s](−). (4.11)

4.3 Robust-BMFLS Algorithm

This section presents how through iterative smoothing and measurement classification

process, outliers are detected and navigation trajectory is enhanced. Figure 4.3 manifests

a summary cycle of the robust-BMFLS which is an add-on to the BMFLS cycle from

Figure 4.2. A Pseudo-code of the proposed method is outlined in Algorithm 1. In order to

achieve a stable solution, we assume that there are some inliers captured in time intervals

with large number of outliers.

4.3.1 Algorithm Description

The Algorithm 1 works by initially treating all the raw observation measurements as inliers

in the first iteration (line 2). Then, the smoothed states are obtained from the BMFLS

function (lines 6-9) as shown in the flow chart in Figure 4.2.
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Figure 4.3: The iterative smoothing and outlier detection cycle.

Next (still first iteration), inliers and outliers for the entire observations are sorted by

computing the Mahalanobis distance (MD) and running through the Chi-square test (lines

12-26). The MD is calculated for each observation using the smoothed output (from current

iteration) to perform measurement classification. That is,

ek = (zk −Hx̂k(−)) (4.12)
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dk = eTk Skek (4.13)

zk =

 inlier, if dk < χ2
T

outlier, if dk ≥ χ2
T

(4.14)

where χ2
T is the threshold value selected from Chi-square distribution table based on the

degree-of-freedom (DoF) of the observation model (see Section 2.4.1). If the MD is below

the threshold, the observation is considered an inlier, otherwise it’s declared an outlier and

will not be considered in the next iteration.

Also, to make the programming easier, the index of inliers are stored during iteration

where c = 1 (inlier) and c = 0 (outlier) as shown in Equation (4.15). where c ∈ {0, 1}

is the outlier association variable. The variable c is passed into the BMFLS function in

next iteration (line 8). Note, initially the values of c are all ones because all measurements

are treated as inliers as stated above.

inlier−index(k) =

 1, if dk < χ2
T

0, if dk ≥ χ2
T .

(4.15)

In the second iteration, the trajectory is refined without outliers captured in the previ-

ous step. Using smoothed states in the second iteration, all the visual measurements are

reclassified to separate inliers and outliers. In the next iteration, the smoothed state are

predicted using the inliers captured in the previous iteration. This smoothing and obser-

vation re-classification process are repeated until the inliers converge where all potential

outliers are screened out.

4.4 Simulation

A simulation data corresponding to the dynamic and observation model defined in Section

3.4.2 and 3.4.3 is generated to examine this work as compared to the ground-truth. The

simulation study is carried out for two reasons: 1) obtaining ground truth in the experiment

was not feasible, 2) to further validate the work. Figure 4.4 illustrates the 3D position

ground-truth trajectory with raw measurements generated for the simulation study with

outliers injected at certain intervals.
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Algorithm 1: Iterative Smoothing and Outlier Detection

1 Initialisation: x0, P0, Q, R, χ2
threshold;

2 inlier index = ones(1, len);
3 for iter=1:N do
4 /*Obtaining smoothed state without outliers*/;
5 xs = [];
6 for i = 1 : len do
7 c = inlier index(i);
8 [xs] = BMFLS Function(...., c);

9 end
10 /*Reclassification of all raw observations*/;
11 inlier = []; outlier = [];
12 for k = 1 : len do
13 if measurement available then
14 ek[s] = (zk −Hx̂k[s]);

15 Ss[k] = HPk[s]H
T +R;

16 dk = eTk[s]Sk[s]ek[s];

17 /*perform outlier gating test*/;
18 if dk >χ

2
threshold then

19 inlier index(k) = 0;
20 outlier(:, k) = zk;

21 else
22 inlier index(k) = 1;
23 inlier(:, k) = zk
24 end

25 end

26 end
27 plot(states);

28 end

4.4.1 Results

This section presents the results of the robust-BMFLS using the simulation dataset. Figure

4.5 illustrates position and orientation curves during first and fifth iteration for a fixed-lag

size of 60 steps. Also, the root-mean square error (RMSE) at each iteration is summarised

in Table 4.1.

As shown in iteration 1, during about 800 − 1000 steps, some measurements are wrongly

classified. This has resulted the orientation curve to drift away from ground-truth and a

large rotational RMSE (0.6462 rad). However, in the fifth iteration, the measurements

in this interval 800 − 1000 steps have been correctly reclassified which has reduced the
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Figure 4.4: 3D trajectory of the simulated data with ground-truth.

RMSE (0.1406 rad) where the potential outliers have been captured and the solution has

converged. The simulation dataset contains a moderate level of outliers which is handled

well through iterative smoothing with Chi-square test.

In addition, the 2D projected position trajectory after outlier rejection is shown with

comparison to EKF in Figure 4.6. Further, the RMSE for different lag sizes are manifested

in Table 4.2. The EKF has the largest RMSE, while lag size of 0 is simply the EKF

which after iterative outlier removal has improved the RMSE. Furthermore, the lag size

of 100 has the lowest RMSE. This reinforces the usefulness of a large window and in

particular smoothing in enhancing the navigation trajectory, however with an increase in

computation.

Table 4.1: The RMSE at each iteration for fixed-lag size of 60 steps.

Iteration Number RMSE(m) RMSE(rad)

1 0.4312 0.6462
2 0.6953 0.1405
3 0.5152 0.1406
4 0.4405 0.1406
5 0.4291 0.1406
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Figure 4.5: The first and fifth iteration results using simulation dataset for the position
and Euler angles.

Figure 4.6: 2D projected position trajectory after outlier rejection.
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Table 4.2: The RMSE comparison for different fixed-lag sizes after outlier rejec-
tion(simulation).

Lag Size RMSE(m) RMSE(rad)

EKF 9.7803 1.7724
0 0.8696 1.0172
20 0.6644 0.1708
80 0.5054 0.2012
100 0.3313 0.1405

4.5 Particle Filter

This section presents the SIR PF results using the simulation dataset. The SIR filter

pseudocode is outlined in algorithm 2. It works by selecting the number of particles Np.

During each cycle (lines 5-11), each particle state is predicted and the associated weight

is calculated using the likelihood function. Next, all weights are normalised (lines 13-15)

and the effective sample size N̂eff is computed. If the N̂eff falls below a threshold, then

resampling is carried out (lines 17-19). Finally, the state at time step k is estimated (line

20).

Figure 4.7 illustrates the SIR filter position trajectory (blue line). As shown, the SIR filter

degrades in presence of outliers where it eventually started to diverge. Similarly, the SIR

filter is also claimed to diverge rapidly in [32] with small level of outliers. Also, according

to [37], the PF performs well 3D state space, but becomes less useful in six-dimensional

state. This demonstration manifests the vulnerabilities of the SIR filter to outliers.
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Algorithm 2: SIR filter pseudocode

1 xpp = x0 ∗ ones(1, Np);
2 N = # IMU measurement;
3 wi1 = ones(1, Np)/Np;
4 for k = 1 : N do
5 for i = 1 : Np do
6 xik = f(xik−1) + randn(w̃) ;

7 if Measurement available then
8 Calculate: wik = p(zk|xik)
9 end

10 xpp(:, i) = xik;

11 end

12 t = SUM [wik]
Np
i=1;

13 for i = 1 : Np do
14 Normalise weights: wik = t−1wik;
15 end

16 Calculate: N̂eff = 1∑Np
i=1 (w

i
k)

2 ;

17 if N̂eff < Nthr then

18 {xik, wik}
Np
i=1 = resample(xpp, wk, Np) ;

19 end

20 State est: x̂k =
∑Np

i=1(w
i
kx

i
k);

21 end

Figure 4.7: The SIR filter position trajectory using simulation dataset. Due to presence
of outliers, the solution is diverging.
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4.6 Experimental Results

This section presents the results achieved by robust-BMFLS using the experimental data.

The details of the experimental setup is outlined in Section 3.3. The robot was manually

controlled to maintain the hovering position under a current disturbance. Due to diffi-

culties, it was not feasible to obtain the ground-truth trajectory. The experiment lasted

about 50 minutes. The IMU and monocular camera operate at 252 Hz and 26 Hz respec-

tively. The iterative smoothing and outlier rejection results using the experimental dataset

Figure 4.8: The SPIR3 performing underwater inspection and maintenance task in a
test-water tank facility.

is illustrated in Figure 4.9. The figure shows the position and orientation curves between

the first and sixth iteration of the algorithm where the red dots indicate outliers while

green dots represent inliers. Also, the ratio of outliers and inliers during each iteration is

captured in Table 4.3.

During the first iteration, the trajectory (blue line) is estimated using all the raw vision

observations. Using the pose estimations from iteration 1, the measurement observations

are separated into outliers and inliers. In the experimental result, there are some heavy

intense outlier presence in some intervals such as in the (0−6) seconds. It can be observed

there are some measurements that are being wrongly classified as outliers (35%) and vice-

versa in the first iteration.
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In the second iteration, It is seen, some measurements have been correctly classified such

as in the (0−6) seconds interval where the ratio of outliers is 33 %. Moreover, during each

iteration, the observations are seen gradually being classifieds correctly due to performing

smoothing without outliers captured from previous step. Finally, it’s visible in the sixth

iteration, the vision observations are being correctly classified and there are 29 % outliers is

declared where the smoothed trajectory (blue line) is running through inlier measurements.

The results indicate the proposed approach is capable of handling outliers in an efficient

manner without the need for tuning the noise covariance matrices for the process and obser-

vation model. On the other hand, the results from first iteration reinforces the limitation

of the Chi-square test for outlier rejection without tuning the process and observation

model noise covariance matrices.

Furthermore, Figure 4.10 illustrates the proposed solution outlier handling capability even

time periods with high outlier density such as in the (0−6) seconds. The high outlier pres-

ence in this period is due to turbulence created in water when the robot was switched on.

In such instance, the camera is confused between the different ARTag markers resulting in

high number of outliers during this period. In addition, a comparison between the ordinary

BMFLS and robust-BMFLS are shown in Figures 4.11 and 4.12. It is evident an ordinary

(non-robust) BMFLS navigation trajectory degrades with erroneous measurements.

Table 4.3: The inlier and outlier ratio at each iteration.

Iteration Number Inlier % Oulier %

1 65 35
2 67 33
3 68 32
4 70 30
5 71 29
6 71 29
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Figure 4.9: The first to sixth iteration results of the method for the position and
Euler angles. It can be seen that the set of outliers gradually decreases as the iteration

progresses, resulting in a better smoothing result at the sixth iteration.
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Figure 4.10: A better visualisation showing the separation of observations for period of
(100s). It can be seen there are time periods with high outliers density.
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Figure 4.11: An illustration of an ordinary (non-robust) BMFLS performance where
the trajectory is pulled towards the erroneous measurements.



Chapter 4. Iterative Smoothing and Outlier Detection 45

Figure 4.12: A 2D projected trajectory showing an ordinary (non-robust) BMFLS being
impacted by outlier measurements.

4.7 Discussion

The experimental results in Section 4.6 has shown the raw vision observations contain

erroneous measurements in some regions. This is due to the poor visibility and camera

confusion between the different markers, causing frequent outliers in the measurements.

But, through iterative smoothing and outlier rejection, the impact of wrong measurements

on navigation accuracy is mitigated. However, the methodology demonstrated in this

chapter applies the Chi-square test to detect and reject outliers at each iteration makes

this a simple algorithm to implement.

On the other hand, It was pointed out the visual observations were wrongly classified

in some instances. This reinforces the limitation of Chi-square test where it does not

distinguish measurement observation correctly when there are too many outlier present
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in a single iteration. Thus, through iterations, measurements are gradually reclassified

where potential outliers are screened out. This reinforces one limitation of the iterative

robust-BMFLS where it may not detect potential outliers in single iteration and requires

few more iterations.

While the proposed method works well when there are moderate or even large number of

outliers, if there are few or no inliers detected in a time periods with high outlier density,

it may lead to divergence until the trajectory is corrected again. This may be due to

high cluster of outliers affect the mean and variance of the dataset. This is resolved by

increasing the threshold in such time intervals for more inliers to appear thus reducing the

influence of outliers to recover the trajectory.

Finally, the proposed methodology solution is simple to implement. The augmented state is

run similar to EKF, yielding a computationally efficient performance. A large lag size does

provide a better smoothed trajectory, but just means more computation. The efficiency

of the robust-BMFLS is discussed in Chapter 5.

4.8 Summary

This chapter has presented the novel iterative smoothing and outlier detection by utilising

the BMFLS and using the Mahalanobis gating test to capture outliers through iterations

with classification. Both simulation and experimental dataset were used to validate the

proposed method. We have seen the methodology is simple that works well in handling

moderate to large level of outliers. The limitation is more iterations are required in time

intervals with large outlier ratio for the solution to converge.
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Incremental Robust Solution with

Expectation-Maximisation

5.1 Overview

This chapter presents an incremental robust solution with EM using the nonlinear least-

squares optimisation or the maximum a posterior (MAP) approach. A robust approach

was introduced in [30] to detect false loop closures in the pose-graph SLAM problem. We

extended this concept navigation tracking problem and introduce a RSWF approach for

fixed-lag time applications and to ease the computation burden in full-batch estimation

method. The effect of different window sizes and the update periods are studied to examine

accuracy and efficiency achieved.

5.2 Robust Localisation with EM

The robust optimisation approach is represented as the Bayesian network shown in Figure

5.1, where the X = [x1, x2, x3, ..., xn] are the robot poses and Z = [z1, z2, z3, ..., zn] are the

measurement observations. We assign weights to each observationW = [W1,W2,W3, ...,Wn]

where W ∈ [0, 1]. The value of W determines the weight of the observation in the optimi-

sation.

47
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Figure 5.1: Bayesian network representing the navigation problem. Wk is the assigned
weight for each measurement zk in the optimisation.

The optimisation framework requires finding the MAP, that is:

x̂ = argmax
x

p(x|w, z). (5.1)

The MAP in Equation (5.1) is solved via expectation-maximisation outlined in Section

5.2.1 and 5.2.2.

5.2.1 Expectation Step

In the expectation step, the weight variable W is computed by maximising p(W |x, z).

W = argmax
x

p(w|x, z)

=
p(w,x, z)

p(x, z)

∝ p(z|w,x).

(5.2)

From the expectation maximisation formulation in [30], the weight Wk is found to be the

Cauchy weight function:

Wk =
C2

C2 + ||zk − f(xk)||2Rk
(5.3)
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where C is a constant and ||zk−f(xk)||2Rk is the Mahalanobis distance. It can be observed

the Cauchy weight function varies between 1 and 0. With increasing error (Mahalanobis

distance dominates) and the weight function reaches close to zero.

The weights assigned to the observations are iteratively computed from the errors between

the predicted and observed vehicle poses, until the weights of all observations converge.

5.2.2 Maximisation Step

In this step, the MAP is computed using the weight value W from expectation step

described in Section 5.2.1. Using Bayes’ rule, MAP is obtained as follows:

x̂ = argmax
x

p(x|w, z)

∝ p(z|w,x)p(x)

∝
K∏
k=0

p(zk|wk,xk)
K∏
k=0

p(xk|xk−1).

(5.4)

5.3 Batch Estimation Optimisation

This section details the weighted NLS full batch estimation theoretical work used for the

approach in this chapter. The solution requires an initial estimate of the states which are

obtained using the EKF which are then smoothed using the weighted NLS.

5.3.1 Initialisation

The nonlinear least-squares requires an initial estimate of the states x0
0:K which are ob-

tained from using EKF. Every time a measurement is available, the position and orienta-

tion states are corrected.



50 Chapter 5. Incremental Robust Solution with Expectation-Maximisation

5.3.2 Nonlinear Least-Squares Optimisation

The objective function that requires to be minimised is defined in Equation (5.5) which is

the sum of squares of the prediction and observation models error. That is:

[δx∗k] = argmin
δxk

K∑
k=0

(Lv,k(x) + Lz,k(x)) (5.5)

where Lv,k(x) is the prediction model squared error and Lz,k(x) is the weighted observation

model squared error as stated below:

Lv,k(x) =
1

2
ev,k(x)

TQ−1
v,kev,k(x) (5.6a)

Lz,k(x) =
1

2
ez,k(x)

TWkR
−1
z,kez,k(x). (5.6b)

The linearised motion and observation model error at time k around the operating point

xop are as follows, respectively:

ev,k(xop + δx) ≈


ev,0(xop) + δx0, k = 0.

ev,k(xop) + Fk−1δxk−1 − δxk, k = 1, ...,K.

(5.7a)

ez,k(xop + δx) ≈ ez,k(xop)−Hkδxk, k = 0, ...,K (5.7b)

where

ev,k =


x̂0 − x0, k = 0.

f(xk−1, uk)− xk, k = 1, ...,K.

(5.8a)

ez,k = zk − h(xk), k = 0, ...,K (5.8b)

where xop denotes the operating point. We solve for δx at each iteration until the algorithm

converges.

δx =
[
δx0 δx1 δx2 . . . δxK

]T
. (5.9)
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The combined prediction and observation error is e(xop):

e(xop) =
[
δv,0(xop) δv,1(xop) . . . ev,K(xop) ez,0(xop) ez,1(xop) . . . ez,K(xop)

]T
.

(5.10)

The stacked version of the problem can be written and solved iteratively. The structure

of the combined motion and observation model Jacobians J matrix can be represented as:

J =



I

−F0 I

−F1
. . .

. . .

I

−FK−1 I

H0

H1

H2

. . .

HK



=

 Jv

Jz

 (5.11)

Λ = diag(P−1
0 , Q̃−1

1 , · · · , Q̃−1
K ,W0R

−1
0 , · · · ,WKR

−1
K ) (5.12)

(JTΛJ)︸ ︷︷ ︸
information matrix

δx∗ = JTΛe(xop)︸ ︷︷ ︸
information vector

(5.13)

xs = xop + δx∗. (5.14)

Notice the covariance matrix of the process noise Q̃ = Gk−1QkG
T
k−1 is singular and not

invertible. We can add a small diagonal matrix ∆I, to allow the covariance matrix become

invertible.
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5.4 Sliding Window Filter

As stated in literature review, in order for bath-estimation to work efficiently over long

period, the state vector cannot grow without bound. The SWF approach is one novel

solution that can resolve this. This section presents the Schur complement in the SWF

to perform marginalisation to discard oldest poses and maintain prior information. The

robust SWF in this work iterates over a fixed-size window to perform smoothing and

measurement classification.

5.4.1 Marginalisation

Marginalising out parameters is equivalent to applying the Schur complement to the linear

equation. For example, given the system:

A11 A12

AT12 A22


︸ ︷︷ ︸

A

δx∗1
δx∗2


︸ ︷︷ ︸
δx∗

=

b1
b2


︸ ︷︷ ︸
b

(5.15)

reducing the parameter x1 (marginalised state) into x2 gives:

A11 A12

0 A22 −AT12A
−1
11 A12

δx∗1
δx∗2

 =

 b1

b2 −AT12A
−1
11 b1

 (5.16)

where the matrices A and b in Equation (5.15) represent the terms (JTΛJ) and (JTΛe(xk))

in Equation (5.13) respectively. Finally, we solve for δx∗2.

5.4.2 RSWF Algorithm

Here, we provide a summary of the SWF algorithm”

• Add the new pose parameters: after completing k − 1 steps, we apply the process

model using xk = f(xk−1,uk) and update the information matrix (underlined in

Equation (5.13);
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• Remove parameters: if there are more than k poses, we marginalise out a defined

number1 of old poses using the Schur complement;

• Update parameters: we now solve for δx∗2 defined in Equation (5.16) using Gauss

Newton and apply the outlier detection method.

Algorithm 3 outlines the pseudo code for the RSWF navigation. Lines 20-26 are the

expectation step where Wk is calculated based on the smoothed output from previous

stem xs. Lines 30-36 are the maximisation step where the pose predictions are updated.

Next, the measurement classification occurs (lines 39-45) by going through the entire

measurement observations in the current window and recalculating the weight Wk based

on the current smoothed trajectory. In here, the measurements with weights less than the

threshold are removed. The EM process is repeated until the weights converge (line 8).

The EM process helps in preventing local minima. Finally, the current window is then

slided forward (line 7) with the defined number of oldest poses discarded.

5.4.3 Update Rate

As stated in Chapter 2 literature, researchers have considered compressed-SLAM or incre-

mental smoothing [16] [17] to reduce the computational complexity of SLAM. We apply

a similar concept in this incremental robust approach. Because the states in the window

of optimisation remain almost unchanged, the window of optimisation could be slided

forward at more than one step.

The number of steps we slide the window forward sets the update rate or marginalisation

size. The maximum number number of steps that the RSWF with window size ws can

moved up is half of optimisation window size (ws/2).

1This is the update rate, e.g update every 10 steps.
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Algorithm 3: Incremental Robust Navigation Pseudo Code

1 Window size ws;
2 Input x0 : initial state z, all measurements I;
3 Output xs : smoothed trajectory;
4 steps = marginalisation size or update rate;
5 N = # IMU measurement;
6 W’ = 0; W = I ; I’ = I ;
7 for i = 0 : steps : N do
8 while |W−W’ | > ν do
9 W’ = W ;

10 /* Classification EM iterations/*;
11 while |δ| > η do
12 /* SWF/*;
13 for k = i : i+ ws do
14 predict state: xk(−) = f(xsk−1);

15 calculate Jv and;
16 ΛQ = blkdiag(ΛQ, Q

−1);
17 calculate ev,k = f(xsk−1) - x̂k;

18 set ev = [ev, ev,k];
19 /*Expectation step*/;
20 if measurement k in ∈ I’ then
21 compute Wk with Equation (5.3);
22 calculate Jz and;
23 ΛR = blkdiag(ΛR,WkR

−1);
24 calculate ez,k = zk - Hx̂k;
25 set ez = [ez, ez,k];

26 end

27 end
28 /*Maximisation step/*;
29 Assemble ;
30 J = [Jv; Jz];
31 Λ = [ΛQ; ΛR] ;
32 e = [ev; ez];
33 Set up Schur complement (Equation (5.16));
34 and solve for δx∗;
35 JTΛJ δx∗ = JTΛe;
36 calculate [xs]T = [xs]T + δx∗;

37 end
38 /* Remove outliers */;
39 for all measurements in I do
40 compute Wk with Equation (5.3);
41 if Wk < ω then
42 Remove measurement k from I’ ;
43 end
44 X = [xs]T , W = Wk;

45 end

46 end
47 Store states and remove old steps poses ;

48 end



Chapter 5. Incremental Robust Solution with Expectation-Maximisation 55

5.4.4 Window Size

Additionally, another factor that influence the computational cost is the size of the win-

dow of optimisation. Small window size would mean faster computation which we shall

investigate the accuracy loss for reduced window sizes.

5.5 Bias Inclusion

In the method described in this chapter, the IMU bias is also included in the state vector.

The new state vector xv is:

xv =
[
pn vn Ψn bba bbg

]T
1×15

(5.17)

where

• Accelerometer bias in the body frame: bba = (bax,bay,baz),

• Gyroscope bias in the body frame: bbg = (bgx,bgy,bgz).

As a result, the full inertial navigation equations become:

pnk+1 = pnk + vnk∆t, (5.18)

vnk+1 = vnk + (Cn
b [f

b
k − bbg,k] + gn)∆t, (5.19)

ψnk+1 = ψ
n
k +Enb [ω

b
k − bbg,k]∆t. (5.20)

The bias is estimated using the FOGM model. The FOGM stochastic process is suitable

for auto-correlated sequences [38]. Bias instability is auto-correlated and hence is modelled

using FOGM model.
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The additional state errors (bias) are augmented to the main 9-states in the state vector.

Therefore the state vector is partitioned and the linearised navigation equation is:

xins
xb


k+1

=

 Fins C

0 Fb


k

 xins

xb


k

+

 Gins 0

0 I


k

 wins

wb


k

(5.21)

where the state transition parameter Fb = e−∆t/τ [39], ∆t is the sampling time. Note the

subscript ins in Equation (5.21) refers to parameters related to the 9 main body states

(position, velocity and orientation).

5.6 Simulation Results

The simulation dataset generated in Chapter 4 is used to verify the proposed method in

this chapter as well. A number of different window sizes and update periods are studied

with the RMSE computed with reference to the ground-truth.

Figure 5.2 is the projected estimated 2D trajectories of the entire simulation for different

window sizes and the full-batch (partial) after outlier rejection with update rate at every

10 steps. By visual inspection, it appears the full-batch estimation remains close to the

ground-truth followed by the largest window size (100).

In order to do a comparison between the full-batch estimation and RSWF, a computational

efficiency factor is computed. The performance run-time efficiency is calculated with

reference full-batch estimation run-time, that is:

ηeff =
timefull − timeRSWF

timefull
. (5.22)

The algorithm is implemented and tested in MATLAB using Intel Core i7 (4 Core) 3 GHz

processor. Figure 5.3 displays the computational efficiency curve for different window sizes

for a particular update period. It is clear from the plot, a small window size with lowest

update rate is the most efficient.

Although, an efficient navigation algorithm is desirable, accuracy is another key element

that we are interested to maintain. Table 5.1 also provides the RMSE for different window
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sizes and update periods. The full-batch techniques yields the lowest RMSE as expected.

But, for it can be seen that performing updates at every 10 steps result in a lower RMSE

in general compared to executing updates at every 20 steps.

Figure 5.2: The estimated trajectory projected in 2D for different window sizes with
update period of 10 steps.

Table 5.1: The RMSE comparison for different window sizes and update periods after
outlier rejection(simulation).

Method Window size RMSE(m) RMSE(Deg)

Full Batch Est N/A 0.1384 0.0074

SWF(1 step) 60 0.3730 0.3640
80 0.3159 0.3911
100 0.3670 0.4542

SWF(10 steps) 60 0.3984 0.3742
80 0.4580 0.4735
100 0.4277 0.4717

SWF(20 steps) 60 0.5098 0.5221
80 0.5055 0.5159
100 0.4024 0.4359
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Figure 5.3: The computational efficiency factor curve for different window sizes and
update periods.

5.6.1 Bias Effect

The RMSE comparison with and without bias inclusion after outlier rejection from simula-

tion is provided in Table 5.2. The results indicate the accuracy has slightly improved with

taking into account the bias. On the other hand, an increase in the computational cost

was observed as expected. A profile of the accelerometer bias (x-axis) with uncertainty

from simulation dataset is shown in Figure 5.4.

Table 5.2: The RMSE comparison with and without bias inclusion after outlier rejection
(simulation).

Window size Type RMSE(m) RMSE(Deg)

60 (10 steps) With bias 0.3633 0.3511
Without bias 0.3677 0.3511

80 (10 steps) With bias 0.3970 0.4530
Without bias 0.4780 0.5088
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Figure 5.4: The Accelerometer bias profile for EKF and RSWF with uncertainty using
simulation data.

5.7 Experimental Results

This section presents the RSWF results using the experimental dataset. The position

and orientation smoothed trajectories after outlier rejection are manifested in Figure 5.5

where inliers and outliers are shown as green and red dots respectively. The figure shows

the RSWF results after two iterations where the outliers or weights of all observations

have converged. Unlike, the robust-BMFLS that required six iterations for the same time

period, the RSWF has a better outlier detection convergence rate.

Further, the Figures 5.6 and 5.7 provide a comparison between the RSWF results (shown

in blue), the EKF output (black) and the robust-BMFLS (orange). We can observe the

EKF trajectory is impacted by the outlier presence (e.g 0−6s) while the RSWF trajectory

is running through the captured inlier observations.
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Figure 5.5: The RSWF (blue line) results after two iterations where outliers (red) have
converged.

Figure 5.6: The RSWF smoothed position trajectory shown in blue after classification
of inliers (green) and outliers (red).
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Figure 5.7: The RSWF smoothed orientation trajectory shown in blue after classifica-
tion of inliers (green) and outliers (red).

A better comparison visualisation is shown using the projected 2D trajectory in Figure 5.8

where the EKF estimation (black line) is impaired by erroneous measurements. Instead,

the robust EM approach with sliding window (or RSWF) seems to give an improved

estimation ability. The 3D raw position vision measurements for 10000 steps is shown

in Figure 5.9. Additionally, the 3D RSWF smoothed trajectory after outlier rejection is

shown in Figure 5.10. It is evident the impact of outliers on the smoothed trajectory are

reduced. The numerical results are analysed in the next few sections.

5.7.1 Window Size and Comparison with Full-Batch

As there is no ground-truth in the experimental dataset and to make a comparison with

full-batch estimation, the root mean-square error (RMSE) is calculated using the captured

inlier observations as:

RMSE =

√√√√ 1

n

n∑
k=1

(zkinlier − x̂k)2. (5.23)
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Figure 5.8: The projected vehicle 2D trajectory of the RSWF with comparison to the
EKF and robust-BMFLS.

Figure 5.9: A proportion of the 3D position raw vision measurements.
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Figure 5.10: The 3D smoothed trajectory shown in black line after classification of
inliers (green) and outliers (red).

A summary of the different window sizes performance for 1 step marginalisation are shown

in Tables 5.3 and 5.4. It can be observed that there is loss in accuracy as the window size

is reduced while the full batch estimation yields the lowest RMSE after outlier rejection.

On the other hand, a large window size increases the computational cost. The plots of

RMSE variation with time steps for translational and rotational motions are in Figure

5.11.

Table 5.3: Transational RMSE comparison for different window sizes after outlier re-
jection (experimental).

Method Window size RMSE(m)

Full Batch Est N/A 3.5108e-04

SWF 60 1.6e-03
80 1.5e-03
100 1.3e-03

Further, Figure 5.12 illustrates the RSWF RMSE plots for different window sizes and

periodic updates. The largest window size (80) with periodic update of every 10 steps

has resulted in lowest RMSE. Conversely, the window size (60) with periodic update of 20

steps has the largest RMSE. The main point here is understanding the accuracy loss for
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Table 5.4: Rotational RMSE comparison for different window sizes after outlier rejection
(experimental).

Method Window size RMSE(rad)

Full Batch Est N/A 5.1916e-04

SWF 60 9.5622e-04
80 7.0716e-04
100 7.2035e-04

Figure 5.11: The RMSE plots with different window sizes (1 step update) using exper-
imental data after outlier rejection for rotational and translational motions.

different window sizes and periodic updates which is further analysed in the next section.

5.7.2 Marginalisation Effect

In addition, the marginalisation size is studied to evaluate the accuracy for different cases.

Here, the full-batch estimation is used as the baseline. Thus, the RMSE formulae becomes:

RMSE =

√√√√ 1

n

n∑
k=1

(x̂kfullbatch − x̂kSWF
)2. (5.24)
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Figure 5.12: The RMSE comparison for different window sizes and periodic updates
(experimental).

The translational and rotational RMSE is summarised in Table 5.5. The results indicate

the notion of periodic updates is useful. For instance, for window size 60, the accuracy

lost between updating the states at every 10 and 20 steps is insignificant. Hence, updating

at every 20 steps is a wise choice.

Table 5.5: The RMSE comparison for different window sizes and update periods after
outlier rejection using experimental dataset for 2000 steps.

Method Window size RMSE(m) RMSE(rad)

SWF(10 steps) 60 0.0046 0.0011
80 8.416e-04 5.485e-04
100 3.884e-04 2.998e-04

SWF(20 steps) 60 0.0062 0.0015
80 0.001 8.039e-04
100 4.699e-04 4.545e-04

5.7.3 Robust-BMFLS and RSWF Comparison

The performance of the robust-BMFLS and RSWF are compared in this section. Table

5.6 depicts the computational run-time ratio of RSWF compared to the robust-BMFLS.
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The RSWF run-time is roughly 67% (window size = 60) and 32% (window size = 80)

higher than robust-BMFLS for 1 step update. But, the computational burden is overcome

by performing periodic updates in RSWF. Here, the relative run-time for periodic updates

at every 10 or 20 steps have dropped significantly compared to 1 step update rate.

Moreover, Figure 5.13 is the RMSE curves for the two approaches. It is evident the RSWF

has yielded a lower RMSE compared to robust-BMFLS. Thus the RSWF outperforms

robust-BMFLS accuracy-wise.

Table 5.6: The relative run-time using experimental data for each method for 1 step
update.

Window/Lag Size Update Rate Robust-BMFLS RSWF

60 1 1 1.67

80 1 1 1.32

60 10 1 0.651

80 10 1 0.584

60 20 1 0.318

80 20 1 0.290

Duration = 40s, number of steps is 10000.

Figure 5.13: The RMSE plots for the robust-BMFLS and the RSWF with window/lag
size of 80 steps.
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5.8 Discussion

The simulation study and experimental results in this chapter have illustrated the RSWF.

The experimental results depict the incremental robust EM method is capable of handling

a high cluster of outlier presence such as in intervals (0-6) seconds and (35-40) seconds

in the experimental dataset (Figures 5.6 and 5.7). It is also shown EKF is vulnerable to

wrong measurements.

One attribute in this investigtion which existing work have not been considered is the

visual distinction of outlier (red) and inlier (green) measurements as shown in the results

in Chapter 4 and 5 which makes clear for an end-user to evaluate and study the work.

The effect of optimisation window size and different update periods on the accuracy and

performance run-time are important points that are discussed.

From simulation and experiment, it is evident the window size has a direct impact on the

navigation performance. Full-batch estimation which iterates over the entire trajectory

gives lowest RMSE. While, decreasing the optimisation window size means accuracy loss.

Further, it become evident that full-batch estimation outperforms accuracy-wise, it be-

comes computationally intractable with time and thus not suitable for close real-time

applications. Rather, the incremental robust has eased the computational burden. In

particular, the notion of performing period updates at (e.g every 10 or 20 steps) has

proved a substantial reduction in the computational cost with negligible loss in accuracy

as shown using simulation and experimental data. One suggestion that could further ease

the computational burden in SWF is the notion of smart marginalisation mentioned [15]

that maybe further explored.

In comparison, the RSWF solution stems a better accuracy than the iterative smoothing

and outlier removal presented in Chapter 4. The RSWF has a better outlier detection ca-

pability in intervals with intense number of outliers and faster convergence rate. Whereas,

the methodology in Chapter 4, requires more iterations in such case. On the other hand,

the outlier removal mechanism in Chapter 4 makes it convenient to implement as com-

pared to the solution in this chapter and the literature review. But, by implementing the

notion of periodic updates in RSWF has further eased the computational run-time.
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Finally, based on the degree of accuracy required and the computing power available, the

end user could select the optimum window size and update rate to achieve the desired

outcome.

5.9 Summary

This chapter has presented the incremental robust solution with EM (or RSWF). The

algorithm was verified using simulation and experimental dataset. Various window sizes

with different update periods are studied where accuracy and computational achieved were

compared. The RSWF found to be capable of identifying high cluster of outliers with an

improved efficiency compared to full-batch estimation. Lastly, updating the states in the

incremental solution at lower rate (e.g every 10 or 20 steps) has showed a significant

improvement in computational run-time.



Chapter 6

Conclusions and Future

Considerations

6.1 Overview

The focus of this thesis was to develop online robust and enhanced solutions for 6-DoF

IMU-vision based underwater navigation. This has been illustrated by developing two

separate state estimation approaches filtering (EKF) and nonlinear least-squares optimi-

sation (NLS). The outlier detection and removal methods in Chapter 4 and 5 showed a

significant enhancement in the navigation trajectory in the experimental dataset.

We saw the proposed smoothing based EKF (robust-BMFLS) approach is easy to im-

plement, but its limitation is it requires more iteration to converge. The problem was

then further investigated using optimisation. The RSWF solution found to outperform

the robust-BMFLS accuracy-wise. By transforming the robust full-batch estimation to

RSWF, an online solution is achieved. However, by introducing the concept of periodic

updates in RSWF resulted in substantial reduction in computational requirements (Sec-

tion5.7.3).

Finally, ROVs operate in a difficult environment and knowing its pose in the global frame

is important. Thus, robust navigation algorithms are beneficial in intervention missions

for ROVs to complete a task successfully.

69
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6.2 Summary of Contributions

A summary contribution of this thesis include:

• Developing a robust and efficient approach using Chi-square test (Mahalanobis gating

test) to mitigate the impact of outliers on navigation accuracy;

• By combining various techniques, an incremental robust navigation solution with

EM was found using NLS optimisation;

• Introducing an efficient RSWF solution to further ease the computational cost in

optimisation with insignificant accuracy loss.

6.3 Future Considerations

The future investigations that are valuable for enhancing the robustness and efficiency for

this work or state estimation techniques are:

• Investigating the problem with particle filter based methods [40],

• Considering an adaptive solution in both solutions presented. For instance, in regions

with few or no outliers, a smaller window or lag size is used,

• Developing a compressed-smoothing navigation filter where the bias state could be

updated less frequently compared to the essential states (position, velocity and ori-

entation), similar to the notion in the compressed-SLAM [17].
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