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ABSTRACT

Classification Modelling for Encrypted Network Traffic Captured in Air

by

Yi Huang

End-to-end encrypted traffic predominates the network traffic on the Internet

to protect personal privacy and information security. However, unveiling encrypted

harmful content (e.g., fake news and propaganda videos) and detecting malicious ac-

tivities such as distributing copyrighted material become difficult to achieve through

traditional network surveillance.

To address network surveillance problems triggered by traffic encryption, this

thesis researches on identifying (i.e., classifying) the content of encrypted network

traffic captured in air from three aspects, namely classification in the closed world,

novelty detection in the open world, and few-shot learning for dynamically changing

targets in the open world. Recent research has verified that machine learning and

deep learning methods contribute to extracting underlying patterns from encrypted

network traffic, and deep learning can perform well without elaborate feature en-

gineering. Therefore, this thesis focuses on developing deep learning based models

and strategies to tackle corresponding issues.

First, for closed world classification, it has been evaluated that it is feasible to

identify the content of the encrypted network traffic captured through the Network

Layer. Nonetheless, it is still challenging to identify the content of encrypted network

traffic passively sniffed in air (Data Link Layer) due to the lack of packet header

information in upper protocol layers. In this thesis, the encrypted network traffic

is captured in air without connecting to the WiFi network. I evaluate that it is

possible to classify the content of these traffic samples with the raw data and frame-

level features by leveraging a lightweight deep learning model.



Second, to use classification models in practice, the proposed model should be

able to identify test samples as the target traffic (i.e., inliers) or background traffic

(i.e., outliers). Novelty detection is a promising technique to detect outliers located

at any location, such as abnormalities (i.e., far distance outliers) and novel patterns

(i.e., close distance outliers). Many different novelty detection approaches have been

proposed in the literature, but they generally focus on detecting one specific type of

outlier, e.g., far or close distance outliers. However, in the real world, it is difficult

to measure in advance whether the distance between outliers and inliers is far or

close. In this thesis, a new unified model, named Calibrated Reconstruction Based

Adversarial AutoEncoder (CRAAE) model, is proposed to implement location ag-

nostic outlier detection. The key idea is to integrate implicit and explicit confidence

calibration strategies into a reconstruction based model. I leverage the category

information disentangled from feature space to calibrate the decision metric (i.e.,

reconstruction error) constructed in the original data space for building a more ac-

curate decision boundary. CRAAE also adds Uniform or Dirichlet noise into the

artificial outlier generation process to represent various outliers. Experimental re-

sults show that CRAAE can outperform state-of-the-art unified models and achieve

similar performance to other methods that only address close or far distance outlier

detection.

Finally, to meet higher practical requirements, several approaches are proposed

to address open-set recognition problems on dynamically changing tasks (e.g., changes

in the target website or video list). While few-shot learning and open-set recogni-

tion methods have been proposed for domains such as computer vision, few-shot

open-set recognition for encrypted network traffic remains an unexplored area. I

propose a task adaptive Siamese Neural Network (SNN) for open-set recognition.

My contributions are three-fold: First, introducing generated positive and negative

pairs into the SNN training process to shape a more precise similarity boundary

through bidirectional dropout data augmentation. Second, utilising Dirichlet Pro-

cess Gaussian Mixture Model (DPGMM) distribution to fit the similarity scores of

the negative pairs constructed by the support set of each query task, and creating



a new open-set recognition metric. Third, constructing a hierarchical cross entropy

loss by leveraging the extracted features at coarse and fine granular levels to improve

the confidence of the similarity score. Extensive experiments on a network traffic

dataset and the Omniglot dataset demonstrate the superiority and generalizability

of my proposed approach.

This thesis started with application research and drilled down to meet more com-

prehensive scenarios with better performance. To address the specific application

scenarios, I developed deep learning techniques in novelty detection and few-shot

learning areas, which are demonstrated not only to solve the problems in the network

traffic domain but also to be transferred to other fields such as image processing.

Dissertation directed by Dr. Christy Jie Liang & Prof. Richard Yi Da Xu

School of Computer Science



Acknowledgements

When I finally stood at the other side of my PhD career, all kinds of feelings well

up in my heart. Although there were failures and pains along the way, every bit of

success was so precious when looking back. 2018 was my second year immigrating

to Australia, and that year I decided to apply for my PhD. I still clearly remember

how I felt sitting in the lounge area outside my supervisor’s office, waiting for the

interview. Looking at the people around me, I yearned to be one of them, but I was

not so confident about the interview. I worried that my supervisor might not give

me the opportunity. Before that, I never imagined that I would have the chance to

study for a PhD, and I never imagined that I could get a doctorate at the age of

forty.

First of all, I would like to express my heartfelt thanks to my supervisors, Richard

Xu and Christy Liang, for giving me this opportunity, allowing me to realize my

dream, and adding rich color to my life journey. I sincerely thank you for your con-

tinuous guidance and encouragement during my PhD research. Academically, you

have guided me and developed my creative mind; you have also given me a lot of

sincere advice on how to communicate, which has given me a lot of valuable expe-

rience for my future career. In addition, you also considered my financial situation

and tried your best to get me various scholarships.

I would also like to thank my project partners. Thanks to the industry experts

Guillaume Jourjon, Adriel Cheng, and Darren Webb from Data 61 and Defense

Science and Technology (DST) for funding the project and providing advice from

the industry perspective. Thanks to the academics, Dr. Suranga Seneviratne and

Dr. Kanchana Thilakarathnathe from the University of Sydney for helping me polish

my papers. I also thank them for their patience and kindness, which enabled me

to express my ideas comfortably in the meeting when I was not confident with the



vii

language in the early stage.

Thanks to my research partner Ying Li. During the first two years of my PhD

study, we were together almost every day, discussing and researching in academics

and sharing emotions of joy and disappointment in life. We cooperated and pub-

lished some articles together. Some of the content of these articles contributed to

chapters 3 of this thesis. Due to the pandemic in 2019, we cannot continue to com-

municate every day. Still, we often discuss issues through the Internet, inspiring

each other to move forward and maintaining close cooperation.

Thanks to Dr. Minqi Li for helping me understand non-parametric Bayesian

more deeply, and thanks to Tim for reproducing two baseline methods in the Deep

Bypass project.

Thanks to the other colleagues in our lab (Haodong Chang, Ziyue Zhang, Wan-

ming Huang, Wei Huang, Chen Deng, Caoyuan Li, Xuan Liang, Jason Traish, etc.)

for not alienating me because of the age gap and for comforting, helping, and en-

couraging me when I encountered various problems.

Finally, I would like to thank my parents (Yunlin Huang and Chongjun Kang),

parents-in-law (Jishu Cheng and Fengling Bai), husband (Peng Cheng), and daugh-

ters (Shiran Cheng and Shiwei Cheng). During my PhD study, my parents helped

me take care of my children and reduce my burden of housework as much as possi-

ble. My husband took care of the family’s financial burden alone and paid attention

to my feelings, helping me relieve my destructive emotions when I was frustrated.

My daughters could not understand why I did not spend much time with them at

first. Gradually, they accepted my working status and began to be interested in my

research. They tried to learn programming, hoping that they could do research like

me one day. Thank you to my closest family for your unconditional support and

understanding, which enabled me to overcome all difficulties and finally complete

my studies successfully.

Yi Huang

Sydney, Australia, 2023.



List of Publications

Journal Papers

J-1. Yi Huang, Ying Li, Guillaume Jourjon, Suranga Seneviratne, Kanchana Thi-

lakarathna, Adriel Cheng, Darren Webb, Richard Yi Da Xu. Calibrated Re-

construction Based Adversarial AutoEncoder Model for Novelty Detection.

Pattern Recognition Letters, vol. 169, pp. 50-57, 2023.

J-2. Yi Huang, Ying Li, Timothy Heyes, Guillaume Jourjon, Suranga Senevi-

ratne, Kanchana Thilakarathna, Adriel Cheng, Darren Webb, Richard Yi Da

Xu. Task Adaptive Siamese Neural Networks for Open-Set Recognition of

Encrypted Network Traffic With Bidirectional Dropout. Pattern Recognition

Letters, vol. 159, pp. 132-139, 2022.

J-3. Ying Li, Yi Huang, Suranga Seneviratne, Kanchana Thilakarathna, Adriel

Cheng, Guillaume Jourjon, Darren Webb, David B. Smith, Richard Yi Da

Xu. From Traffic Classes to Content: A Hierarchical Approach for Encrypted

Traffic Classification. Computer Networks, vol. 212, 109017, 2022.

J-4. Thilini Dahanayaka, Yasod Ginige, Yi Huang, Guillaume Jourjon, Suranga

Seneviratne. Robust Open Set Classification for Encrypted Traffic Finger-

printing. Computer Networks (2023), 109991.

Conference Papers

C-1. Ying Li, Yi Huang, Richard Yi Da Xu, Suranga Seneviratne, Kanchana

Thilakarathna, Adriel Cheng, Darren Webb, Guillaume Jourjon. Deep con-

tent: Unveiling video streaming content from encrypted wifi traffic. In: 2018

IEEE 17th International Symposium on Network Computing and Applications

(NCA), IEEE, 2018, pp. 1–8.



Contents

Certificate ii

Abstract iii

Acknowledgments vi

List of Publications viii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Is it feasible to identify the content of deeply encrypted

network traffic? . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 How to handle classification for previously unseen classes in

the open world? . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 How to tackle dynamically changing classification tasks with

few samples in the open world? . . . . . . . . . . . . . . . . . 8

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Survey 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Network Traffic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Traditional Packet Analysis Methods . . . . . . . . . . . . . . 17



x

2.2.2 Classic Machine Learning Methods . . . . . . . . . . . . . . . 19

2.2.3 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . 21

2.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Novelty Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 MCOSR Approaches . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 OCND Approaches . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Classic Approaches . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Recent Exploration . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Few-shot Learning Application . . . . . . . . . . . . . . . . . 33

2.5.4 Few-Shot Open-set Recognition . . . . . . . . . . . . . . . . . 35

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Classification for Encrypted Network Traffic in the Closed

World 37

3.1 Encrypted Network Traffic Data Collection and Processing . . . . . . 37

3.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Classification Performance Analysis . . . . . . . . . . . . . . . 44

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Classification Models for Encrypted Network Traffic in



xi

the Open World 48

4.1 Calibrated Reconstruction Based Adversarial AutoEncoder

(CRAAE) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Methodology for CRAAE . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Flexible Dirichlet Mixture Model (FDMM) Based Softmax Calibration 67

4.2.1 FDMM Introduction . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 FDMM Initialization Algorithm . . . . . . . . . . . . . . . . . 71

4.2.3 FDMM Inference Algorithm . . . . . . . . . . . . . . . . . . . 72

4.2.4 Experimental Setup and Results . . . . . . . . . . . . . . . . . 72

4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Few-Shot Learning for Encrypted Network Traffic in the

Open World 78

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Bidirectional Dropout Data Augmentation . . . . . . . . . . . 80

5.1.2 DPGMM Based Task Adaptive OSR Metric . . . . . . . . . . 83

5.1.3 Hierarchical SNN . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.4 Multi-model Ensemble . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Datasets and Evaluation Protocol . . . . . . . . . . . . . . . . 90

5.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 92



xii

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Performance Comparison Among Different Models . . . . . . . 93

5.3.2 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusion and Future Work 101

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Appendix 105

7.1 Neural Networks Parameters . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Additional Experiment Results . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 113



List of Figures

1.1 Network Traffic Captured in Air. . . . . . . . . . . . . . . . . . . . . 2

1.2 A schematic view of novelty detection decision boundaries with

MCOSR and OCND approaches for different location outliers, such

as abnormalities and novelties. . . . . . . . . . . . . . . . . . . . . . . 7

3.1 CNN Model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 CNN Model Performance. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Network Traffic Patterns for 10 Different Videos. . . . . . . . . . . . . 46

4.1 A schematic view of novelty detection decision boundaries with

CRAAE, MCOSR and OCND approaches for different location

outliers, such as abnormalities and novelties. . . . . . . . . . . . . . . 50

4.2 Calibrated Reconstruction Based Adversarial Autoencoder

(CRAAE) Model Framework - Contribution 1. . . . . . . . . . . . . . 51

4.3 Calibrated Reconstruction Based Adversarial Autoencoder

(CRAAE) Model Framework - Contribution 2. . . . . . . . . . . . . . 51

4.4 Calibrated Reconstruction Based Adversarial Autoencoder

(CRAAE) Model Framework - Contribution 3. . . . . . . . . . . . . . 52

4.5 CRAAE Module Architecture for Network Traffic Dataset. . . . . . . 57

4.6 F1 Score on the YouTube Video Traffic Dataset. . . . . . . . . . . . . 59

4.7 F1 Score on the MNIST Dataset. . . . . . . . . . . . . . . . . . . . . 60



xiv

4.8 Inter Dataset Novelty Detection (Inlier:YouTube Video). . . . . . . . 62

4.9 Inter Dataset Novelty Detection (Inlier: CIFAR). . . . . . . . . . . . 64

4.10 Performance gained by adding implicit calibration (-RAAE),

explicit calibration (CRAAE) and category component simulation

(Gaussian, Uniform or Dirichlet distribution) incrementally. (Inlier:

YouTube Video). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.11 Dirichlet Mixture Model EM Inference Performance on Synthetic

Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Model Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Network Traffic Patterns Based on Different Dropout Probabilities p. 83

5.3 Hierarchical Siamese Neural Network Framework. . . . . . . . . . . . 88

5.4 Hierarchical Network Architecture. . . . . . . . . . . . . . . . . . . . 89

5.5 Coarse Loss Factor Selection. . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Positive and Negative Dropout Probability (ppos and pneg) Selection. . 95

5.7 Performance on hierarchical SNN model (dotted line) with the

multi-model ensemble method (solid line). . . . . . . . . . . . . . . . 97



List of Tables

3.1 Constructed feature list on three traffic directions: uplink (U),

downlink (D), and combination of up and down (C). . . . . . . . . . 42

4.1 Performance of intra dataset novelty detection on YouTube video

traffic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Performance of intra dataset novelty detection on MNIST dataset. . . 61

4.3 Multi-Accuracy performance gained by adding implicit calibration

(-RAAE), explicit calibration (CRAAE) and category component

simulation (Gaussian, Uniform or Dirichlet distribution)

incrementally (Inlier: YouTube Video). . . . . . . . . . . . . . . . . . 67

4.4 Performance of DMM probability calibrated softmax threshold

novelty detection on synthetic dataset. . . . . . . . . . . . . . . . . . 76

5.1 Performance comparison among different models on the encrypted

network traffic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Calibration factor β selection. . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Performance gained by introducing the Hierarchical cross entropy

loss (H), multi-model Ensemble (E), bidirectional Dropout data

augmentation (D) and DPGMM based task Adaptive open-set

recognition metric (A) incrementally on the encrypted network

traffic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xvi

5.4 Performance gained by introducing each enhancement incrementally

on the Omniglot dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Performance gained by introducing the H, D and A methods

incrementally on the encrypted network traffic dataset. . . . . . . . . 99

5.6 Performance gained by introducing H and A methods incrementally

on the Omniglot dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 List of neural networks parameters for closed world classification. . . 105

7.2 List of neural networks parameters for novelty detection. . . . . . . . 106

7.3 Open-Set Recognition (OSR) performance of an SNN. . . . . . . . . . 107

7.4 Feature engineering and hyper-parameter selection for an SNN. . . . 109

7.5 OSR performance of an SNN with F1 (C), F3 (D) and Adam

optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 OSR performance of an SNN on original and new classification tasks. 110

7.7 OSR performance of an SNN on models selected through validation. . 111



1

Chapter 1

Introduction

1.1 Background and Motivation

By 2023, approximately 80% of web pages on Firefox and Chrome are loaded

over Hyper Text Transfer Protocol Secure (HTTPS) protocol [68]. HTTPS ensures

the connections on the network avoid eavesdroppers and hijackers by using encryp-

tion technology, Security Socket Layer (SSL) or Transport Layer Security (TLS).

Namely, encryption protects one’s send-receive information from interception and

ensures its integrity [42]. However, the wide use of end-to-end encryption brings

some challenges for network management. For instance, in the core network, end-

to-end encryption can have a negative effect on traffic analysis for intrusion detec-

tion, content filtering and network optimisations implemented by telecommunication

technicians. Furthermore, the fine-grained network surveillance like traffic content

classification becomes nearly impossible with end-to-end encryption and national

security activities [84] are also interfered by encryption.

Traditional network traffic analysis approaches include port number mapping,

protocol parsing, and payload-based signature. All these methods depend on details

encapsulated in packet layer by layer. When these layers are encrypted, the listed

packet information is not available. For instance, if network traffic is captured

in air, shown as Figure 1.1. The captured network traffic will be encrypted on

Application/Transport Layers (TLS) and Data Link Layers (WPA2), as per the

TCP/IP five-layer model. In this condition, all traditional network traffic analysis

methods are disabled. Therefore, how to make inferences and predictions from
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Internet

Content provider (e.g., 
YouTube, Netflix, Wikipedia…)

victim

Eavesdropping of Encrypted 
Wireless Channel with AirPcapNX

Viewing videos 
or web surfing

Figure 1.1 : Network Traffic Captured in Air.

deeply encrypted network traffic becomes an appealing topic. The motivation of

this thesis is based on the following three problems.

1.1.1 Is it feasible to identify the content of deeply encrypted network

traffic?

Before further discussion about encrypted network traffic, I clarify that when

I say network traffic is encrypted on a specific communication protocol layer, this

traffic is encrypted on protocol layers, including current and upper layers. For

example, the traffic encrypted on the Transport Layer means it is encrypted on the

Application and Transport Layers.

Even though encryption limits the application of traditional network traffic anal-

ysis approaches, Azab et al. [10] proposed to characterise network traffic through

analysing network traffic behaviours in different communication statuses (e.g., user

login, call establishment and answering) and Ceesay et al. [17] deciphered the pro-

tocols of tunnelling technologies by investigating how a secure communication chan-

nel is established and looking for metadata related to encryption. However, these

methods rely on domain knowledge, which is a barrier for cross-domain researchers.

In addition, Azab et al. [8] investigated recent research which verified that machine
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learning and deep learning methods can contribute to encrypted network traffic anal-

ysis. For example, [9] explored lenient and strict classifiers using machine learning

methods like Support Vector Machine (SVM), Näıve Bayes, Decision Tree (C4.5),

and Random Forest (RF) and network statistical features to classify encrypted traf-

fic flows. [109, 4, 23] extracted hidden patterns from network traffic with different

levels of encryption. They conducted their traffic analysis by investigating Internet

Protocol (IP) packets, Transmission Control Protocol (TCP) flows, and HTTPS

flows of the encrypted network traffic on the Transport and Application Layers.

Previous research demonstrated the feasibility of inferences based on encrypted

traffic flows (for the TCP Layer) or packets (for the Network Layer). One of the rea-

sons for this conclusion is that the metadata and statistical properties of the traffic

still exist, though the message content is encrypted. It is feasible to utilise meta-

data and statistical properties to extract the underlying traffic pattern implicitly.

For example, metadata such as destination and source IP addresses, port numbers,

protocols, and other encapsulated header information can be treated as feature filters

to extract clean flows from captured raw data. Then statistical properties of traffic

flows, like average packet lengths, packet direction of filtered flows, and inter-packet

times can be used as features in feature engineering.

This thesis focuses on making fine-grained inferences from passively observed

WiFi traffic encrypted on the Data Link Layer. The gaps between the research

question of this thesis and the existing research include i) the fine-grained traffic

classification task and ii) deficient metadata due to the deepest level of encryption

on the Data Link Layer.

About the first gap, as surveyed in [8], most existing research focused on proto-

col, application, and service group granularity of traffic classification tasks. A few

studies [99, 100] researched finer-grained traffic classification, i.e., identifying en-
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crypted video streaming using video titles. They verified that the encrypted video

streaming contains an information leak because the Dynamic Adaptive Streaming

over HTTP (DASH) based segmentation standard creates content dependent packet

bursts. DASH is a streaming technique with an adaptive bitrate that ensures the

media content delivery between HTTP web servers and consumers on the Inter-

net can implement high-efficiency streaming. Therefore, different video streams are

distinct in their particular burst patterns.

Nevertheless, the deficient metadata due to encryption on the Data Link Layer

(second gap) limits feature engineering, which is crucial to machine learning ap-

proaches. In addition, Deep Fingerprinting (DF) [116] and Automatic Website Fin-

gerprinting (AWF) [102] showed that deep learning methods outperform classical

machine learning methods like SVM, k-Nearest Neighbors, and RF. For this reason,

this thesis focuses on developing deep learning models that can implement various

classification tasks in the deeply encrypted scenario without complex handcrafted

features.

In 2017, [126, 125] and [109] concurrently started to leverage deep learning mod-

els like Convolutional Neural Networks (CNNs) to address the encrypted network

traffic classification tasks. Specifically, Schuster et al. [109] proposed a CNN model

for fine-grained traffic classification (identifying encrypted video streams) with very

coarse network measurements and obtained satisfactory performance. In this thesis,

I aim to explore a weaker but more realistic hacking scenario, where the hacker only

needs to be within the coverage of the target WiFi network rather than needing to

access the IP level traffic (i.e., a malicious ISP or government entity). Compared

to the encrypted traffic on the Transport Layer in previous research, the encrypted

traffic on the Data Link Layer lacks metadata such as IP addresses. In this scenario,

I captured 802.11 frames on a certain channel, and the MAC address is the only

piece of metadata that can be used to filter frames and trace the flow between two
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nodes. Ensuring that the filtered frames belong to a specific flow is challenging,

particularly because the two nodes might communicate on different channels due

to WiFi’s Frequency Hopping Spread Spectrum (FHSS) mechanism. Conversely,

the Network Layer traffic can be filtered by protocols and the IP addresses, as

mentioned in [109], making the raw data for feature engineering more accurate and

cleaner. Therefore, making inferences from traffic encrypted on the Data Link Layer

presents more challenges.

In summary, although this research question has been explored in specific sce-

narios by previous studies, validating the feasibility of finer-grained classification

tasks in a more rigorously encrypted environment remains valuable.

1.1.2 How to handle classification for previously unseen classes in the

open world?

As stated in the Section 1.1.1, deep learning is a promising way for the fine-

grained classification task and deeply encrypted scenario in this thesis. However,

despite deep learning models have achieved unprecedented success in classification

tasks, these models have limitations when handling previously unseen classes. For

example, while a well-trained closed-set deep learning model can classify inliers (i.e.,

known classes) with high accuracy, it is bound to make errors if the input is from

an unknown class. In this case, the classifier will still classify this data point as one

of the known classes.

Handling unseen classes can be looked at from three different approaches: anomaly

detection, outlier detection, and novelty detection. These three approaches are

tightly related, and most of the time, they can be used interchangeably. Specifi-

cally, if outliers (unseen samples) are treated as abnormalities, then using anomaly

detection is more suitable. Meanwhile, if outliers are treated as a new class, novelty

detection is more appropriate. Outlier detection typically implies that the training
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data contains outliers, and outliers cannot form a dense cluster. In contrast, novelty

detection usually does not contain outliers in the training data and outliers (i.e.,

novelties) can form a dense cluster. The techniques leveraged by anomaly detection,

novelty detection and outlier detection are similar. To avoid ambiguity, throughout

this thesis, I will use the terminology ‘novelty detection’.

Novelty detection research involves correctly identifying outliers that are unseen

during training. Outliers can be located at any location, for example, abnormalities

are usually far from inliers, but novel/unobserved patterns are near inliers. Various

approaches addressing novelty detection include both Frequentist and Bayesian ap-

proaches, extreme value statistics, information theory, machine learning (SVM), and

deep learning (neural networks) ([95]). The objective of these methods is to con-

struct a decision boundary to distinguish inliers from outliers. Recently, neural net-

work based supervised learning methods have achieved favorable performance ([18]).

The research in [55] compared a traditional method with a deep learning model in a

network intrusion detection scenario and demonstrated that deep learning methods

become increasingly effective compared to traditional approaches as the sample size

grows. In addition, the study in [26] compared traditional machine learning meth-

ods (clustering, local outlier factor (LOF), principal component analysis (PCA),

and SVM) with deep learning models (MLP, LSTM, and CNNs) and the results

also endorsed the growing trend of utilizing deep learning techniques in the context

of novelty detection.

In general, deep learning methods for novelty detection can be categorized into

two main classes. One-class Novelty Detection (OCND) methods utilise strate-

gies like reconstruction ([91]) and density estimation ([101]) to construct a decision

boundary. In addition, Multi-Class Open Set Recognition (MCOSR) approaches

that aim to distinguish outliers from inliers and classify inliers usually construct

the decision boundary through some strategies to improve their boundary accuracy.
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Figure 1.2 : A schematic view of novelty detection decision boundaries with MCOSR

and OCND approaches for different location outliers, such as abnormalities and

novelties.

For example, including artificial outliers for training ([67]) and temperature scal-

ing ([45]) to implicitly and explicitly calibrate the softmax confidence. Figure 1.2

shows a schematic view of novelty detection decision boundaries with different ap-

proaches including MCOSR and OCND.

MCOSR approaches are based on the softmax score of an elaborate classifier.

Therefore, their decision boundaries are prone to envelop each inlier class boundary

because classifying inliers is one of their targets. On the other hand, the decision

boundaries of OCND approaches are tighter in contrast to MCOSR approaches.

Tight boundaries outperform loose boundaries when outliers are located near inliers

(see thin dash-dot lines in Figure 1.2). However, it becomes a drawback when

outliers are far from inliers because it is likely to misclassify more inliers as outliers

(see bold dash lines in Figure 1.2).



8

While MCOSR and OCND approaches have achieved state-of-the-art perfor-

mance in their corresponding outlier location scenarios, they usually underperform

in detecting an accurate decision boundary for different outlier location scenarios.

The Generative Probabilistic Novelty Detection (GPND) model proposed by [94]

attempted to handle this problem. However, the performance of GPND in the close

distance outlier detection scenario is still limited, especially when there are multiple

inlier classes.

1.1.3 How to tackle dynamically changing classification tasks with few

samples in the open world?

While traditional network traffic analysis methods, including port number map-

ping, protocol parsing, and payload-based signatures, struggle to handle encrypted

network traffic, deep learning approaches are proven successful in this field. In [109],

a CNN was utilised to identify which video was streamed over HTTPS from multi-

ple video providers based on side-channel features only. Similar results have been

shown using deep learning methods for website fingerprinting over encrypted Do-

main Name System (DNS) traffic [25], over the anonymous network Tor [116, 102]

and VPN [22, 60].

Nonetheless, previous work on encrypted traffic classification is unsuitable for

real-world applications due to two limitations. First, the models do not generalize

and cannot handle dynamically changing tasks. Deep learning methods are known

for their high training data requirements [122]. Traffic fingerprinting and its appli-

cations such as parental control, surveillance, and censorship are highly dynamic.

The target list of content or websites to monitor can change frequently, and in some

cases, there may not be enough training data to train deep models.

The second limitation of existing work is that they mainly consider closed-set

classification only. In contrast, a real-world traffic fingerprinting system requires the
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ability to separate background traffic (unknown classes) from target traffic (known

classes), i.e., there is little focus on open-set recognition (OSR).

Few-shot learning is a promising way to address the dynamically changing task

challenge. Many models [62, 6, 72] with few-shot learning have been applied to com-

puter vision and natural language processing. Recent research demonstrated that

few-shot learning also can achieve high performance in intrusion detection [131, 33,

129], website fingerprinting attack [19] and communication jamming recognition [74].

However, its application in fine-grained encrypted network traffic identification has

not been extensively explored. The more challenging scenario is that only one train-

ing sample per content or website is available. In addition, classic few-shot learning

models usually handle closed world tasks and do not support unseen classes in test-

ing.

1.2 Contributions

In Section 1.1, I stated the necessity and feasibility of the encrypted network

traffic analysis. I introduced three problems to be solved and explained the cur-

rent research approaches and their limitation. This thesis will address the problems

as mentioned above in encrypted network traffic classification, with specific corre-

sponding contributions stated as below:

To solve the first research question “Is it feasible to identify the content of deeply

encrypted network traffic?”, I configured a data collection environment to capture

network traffic in air and demonstrated the possibility of identifying video streaming

content from encrypted WiFi traffic traces utilizing a deep learning model architec-

ture. In addition, I constructed a bunch of features and evaluated their importance

by utilizing them one by one to see the experiment performance. More and more

people enjoy various videos on the Internet through mobile phones or computers,

conveniently benefiting from the high bandwidth communication technology (e.g.,



10

the fourth generation of mobile communication technology (4G) and WiFi). Mean-

while, the popularity of video consumption breeds misuse and even crime. For

example, malicious parties utilise video to spread fake news, propaganda, and crime

related content. Therefore, it is necessary to identify whether certain target videos

are streaming in a certain area or being viewed by particular individuals. Due to

this, I focus on identifying video streams for closed world scenario.

The contributions of this part include:

• First, I collected a new dataset of network traffic captured through a WiFi

sniffer.

• Second, I evaluated the feasibility using a model based on a lightweight deep

learning architecture CNNs to classifying newly collected encrypted video

streams.

• Third, I evaluated the performance of each constructed feature based on my

feature engineering work and noted the best performing ones.

The second research question is “How to handle classification for previously un-

seen classes in the open world?”. I went into the novelty detection field to pursue

solutions for classification in the open set scenario. I built a unified Calibrated Re-

construction Based Adversarial Auto-Encoder (CRAAE) model for location agnostic

outlier detection. My CRAAE model embraces reconstruction strategies of OCND

and the confidence calibration mechanism of MCOSR. The proposed model divides

the extracted latent representation vector (feature space) from the encoder into cat-

egory and style components, which are assumed to carry class label information (e.g.

number ‘0’ or ‘1’ in the MNIST dataset) and background style information (e.g. up-

right or tilted writing style in the MNIST dataset) of the input data as explained

in [77, 101]. I leverage the category information from feature space to explicitly
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calibrate the reconstruction error constructed in the original data space for creating

a more accurate decision boundary. I introduce decoder generated data as known

outliers during the training process for implicit calibration and to calculate; (i) the

cross entropy loss for inliers between the softmax output of the category component

and the ground truth, and (ii) the Kullback-Leibler (KL) loss for known outliers

between the softmax output of category component and the Uniform distribution.

My main contributions to this problem can be summarized as follows:

• First, I propose a novel unified model framework CRAAE for location agnostic

outlier detection. CRAAE integrates the explicit and implicit confidence cal-

ibration strategies into a reconstruction-based model. I leverage the category

information from the feature space to explicitly calibrate the reconstruction

error constructed in the original data space for building a more accurate deci-

sion boundary. I add the decoder generated data into the training process for

implicit calibration.

• Second, I propose using Uniform and Dirichlet distributions to replace the

Gaussian distribution when generating known outliers to represent more gen-

eralized and precise outliers. This approach improves performance in the far

distance outlier detection scenario.

• Third, I validate my model on both the network traffic datasets and image

datasets, which achieves state-of-the-art performance for any outlier location

scenarios as a unified model when compared to GPND, as well as performs

competitively in comparison to OCND and MCOSR methods in the close and

far distance outlier detection, respectively.

To solve the third research question “How to tackle dynamically changing classi-

fication tasks with few samples in the open world?”, I extend the large dataset based
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classification to few-shot learning based models. In this thesis, I propose a bidi-

rectional dropout data augmentation method that works in conjunction with

Siamese Neural Networks (SNN)-based few-shot learning ([62]). More specifically,

I treat dropout as a resampling tool to generate new samples that are similar to

given samples (i.e., positive pairs) and new samples that are different (i.e., negative

pairs).

To improve open-set recognition performance, I leverage two key ideas. The

first is a task adaptive metric. Usually, to classify a query sample under the

SNN architecture in a closed-set, I need to pair the query sample with each sample

in the support set and classify the query sample to the class of the pair with the

maximum similarity score. To extend this to the open-set, I can use a threshold

on the maximum similarity score. However, similarity scores of pairs for SNN vary

according to the class diversity of support sets. As such, I need a method to identify

the value range of the similarity scores for closed-set and open-set settings for each

support set.

Though there is only one sample for each support class in one-shot learning,

I can construct negative pairs that can be used as supplementary information to

estimate the confidence of similarity scores for open-set recognition. I feed these

negative pairs into the trained SNN to obtain task dependent negative similarity

scores. Similarity scores will form multiple clusters according to the different levels

of similarity. I assume these negative similarity scores follow a Gaussian Mixture

Model distribution. However, the number of clusters with negative similarity scores

is unknown. Therefore, I utilise theDirichlet Process Gaussian Mixture Model

(DPGMM), which can automatically generate new clusters according to the data

to fit the distribution of these negative pairs. Then, I leverage the probability of

each query sample following the trained DPGMM distribution to build the new OSR

metric.
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The second key idea to improve the open-set performance is to use hierarchical

cross entropy loss. SNN consists of CNN blocks that can extract features of

the input, and different depths of the CNN can extract features from a coarse to

a fine level. When coarse and fine level labels (e.g., alphabets and characters in

the Omniglot dataset or video platforms and exact videos in the encrypted network

traffic dataset) are available, I can use their corresponding features to construct

hierarchical cross entropy loss at different levels to improve the network performance.

Finally, the training pairs of SNN are irrelevant to the number of support classes

of a query task. A query task consists of a N -way one-shot support set and one

or more query samples. I can calculate the accuracy and AUROC of any N -way

one-shot validation/test query task for the same trained model. The best perform-

ing model varies with ’N’, the number of support classes. Thus, to improve the

robustness of model selection, I propose a multi-model ensemble strategy, i.e., I se-

lect several best performing models based on multiple support classes scenarios, and

these selected models work together to identify the query samples.

In summary, I make the following contributions to this problem:

• First, I propose a bidirectional dropout data augmentation method to en-

rich training samples and create highly distinguishable similarity scores in the

training process.

• Second, I utilise the DPGMM distribution to fit the similarity scores of the

trained model fed by task dependent negative pairs and create a new open-set

recognition metric, the probability of each sample under the trained DPGMM

distribution.

• Third, I construct the hierarchical cross entropy loss to improve the confidence

of similarity scores and apply the multi-model ensemble method to the test

process to ensure the robustness of model selection.
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• Finally, the experiments demonstrate that the proposed approaches obtain

a significant performance gain of 4.5% and 4.0% in terms of accuracy and

AUROC on the encrypted network traffic dataset as well as 1.2% and 1.8% on

the Omniglot dataset.

1.3 Thesis Organisation

This thesis is organized into five primary sections to provide a comprehensive

overview of my research. These sections include the Abstract, Acknowledgments,

Lists of Publications, Figures and Tables, the Main Body, and the Bibliography.

Within the Main Body, the content is further divided into seven distinct but

interrelated chapters, as outlined below:

• Chapter 1: Introduction - This opening chapter provides the background

and clarifies the motivation for the study, as well as outlining the contributions

made by this thesis.

• Chapter 2: Literature Survey - This chapter offers a comprehensive survey

of existing research in areas pertinent to this study, such as network traffic

analysis, feature engineering, novelty detection, and few-shot learning.

• Chapter 3: Classification for Encrypted Network Traffic in the Closed

World - Addressing the first research question, this chapter presents the

methodologies employed for data collection and processing of encrypted net-

work traffic. It validates the feasibility of using CNNs to classify deeply en-

crypted network traffic in a closed-world scenario.

• Chapter 4: Classification Models for Encrypted Network Traffic in

the Open World - In response to the second research question, this chap-

ter presents my proposed models and approaches for novelty detection, i.e.,
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CRAAE model framework and Dirichlet Mixture Model-based softmax cali-

bration method.

• Chapter 5: Few-Shot Learning for Encrypted Network Traffic in

the Open World - Tackling the third research question, this chapter unveils

my innovative task-adaptive Siamese open-set recognition model for encrypted

network traffic. It presents each strategy of this model, including bidirectional

dropout data augmentation, DPGMM based task adaptive OSR metric, hier-

archical SNN, and multi-model ensemble.

• Chapter 6: Conclusion and Future Work - This chapter summarises the

key findings and contributions of my thesis while also discussing the potential

avenues for future research.

• Chapter 7: Appendix - This chapter serves as a repository for additional

experimental details and outcomes, augmenting the core chapters and enabling

a deeper understanding of the research.
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Chapter 2

Literature Survey

2.1 Introduction

This thesis started with the application requirement unveiling the underlying pat-

tern of encrypted network traffic captured through WiFi sniffing. Furthermore, to

meet real world scenarios, I aimed to classify encrypted network traffic and identify

the traffic from unseen classes with either a large number or a small number of train-

ing samples. To achieve the target, I investigated previous research achievements

about network traffic analysis, feature engineering, novelty detection and few-shot

learning. I knew about the traditional techniques and cutting edge technology that

had been applied to solve the similar problems. Though there are different limi-

tations in existing approaches, they laid the foundation and inspired my idea. I

summarize my literature review into four parts in this chapter.

2.2 Network Traffic Analysis

Network Traffic analysis can be divided into packet-based and flow-based cat-

egories. Packet-based traffic analysis collects packet information, including IP ad-

dresses (source and destination), port numbers (source and destination), packet

sizes, and specific payload data. Flow-based traffic is aggregated by filter rules. A

flow is a series of packets filtered by addresses, ports, and protocols. The collected

flow information is the bit rate, size and duration of the flow and the number of

flows per time bin. There are several packet capture tools, namely TCP-dump,

Wireshark, Snort, and common flow capture tools (e.g., NetFlow and JFlow) [16].
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In my research, my analysis object is frame-based network traffic captured by

Wireshark, and my analysis task is network traffic classification in both the close-

set and open-set situations. Frame-based network traffic is similar to packet-based

network traffic, but it only collects information that includes source and destination

Media Access Control (MAC) addresses, frame sizes, frame direction, frame types,

and radiotap headers. Next, in this section, I will introduce various network traffic

analysis methods, including traditional methods, classic machine learning and deep

learning methods.

2.2.1 Traditional Packet Analysis Methods

Traditional analysis methods for traffic packets include port number mapping,

protocol parsing, and payload-based signature.

Port number mapping associates port number [53] with the corresponding traffic

type. For example, TCP ports 80, 53, and 25 correspond to web traffic, Domain

Name System (DNS), and e-mail. This method is simple and fast because it only

depends on packet headers. However, dynamically allocated port numbers will be

the future trend because more and more applications prefer to conceal their traffic

for privacy reasons or other targets. This situation results in the limitation of port

number based traffic classification methods.

Complete Protocol parsing analyzes packets from various protocol headers. It is

an accurate but not realistic solution because of its defects such as high computa-

tional complexity for implementing each current protocol parser, lack of authority

for proprietary protocols, and secured protocols [16]. As a result, it is usually used

in combination with other methods, e.g., signature.

Signature is a kind of payload-based method which aims at packet payloads

rather than packet headers. This method utilises predefined byte sequences to clas-

sify traffic types. e.g., the string ‘\xe3 \x38’ in eDonkey P2P traffic and ‘\GET’ in
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web traffic [16].

Signature makes traffic classification less computationally complex but exists

several problems needed to be solved. First, the selection of signature needs adequate

experience; otherwise, the classification will not be accurate. Second, for offline

signature analysis, the signature may be in the truncated and threw part by chance,

and it will result in a low hit ratio. Finally, this method cannot deal with encrypted

content, which is a critical defect in the future.

In [111], the five common P2P traffic types can be accurately classified based on

elaborately selected application level signatures from available packet-level traces

according to previous knowledge. However, It consumes plenty of time to extract

signatures manually. Chhabra et al. [21] proposed the Packet Imprint in Security

Attacks algorithm (PISA), which clusters similar flows based on packet information

and extracts signatures from intensive clusters which consume a large proportion

of the bandwidth. PISA provided an aggregation view of the traffic and defined

the significance of a signature in terms of dimensionality, intensity, persistence,

and distribution. As stated above, most network connection related application

classification methods or tools are based on various signatures. However, encryption

is an apparent bug that can be used to bypass these mechanisms. When encryption

mechanisms such as Secure Sockets Layer (SSL), Secure Shell (SSH), and Internet

Protocol Security (IPsec) are readily available and widely used to encrypt any type

of traffic, the problem becomes increasingly prominent. In paper [12], they proposed

a method to solve a part of the encryption problem. This method only leverages the

size of the first few packets to identify the underlying application in SSL encrypted

connections with about 85% accuracy.

Much related work contributes to traditional packet analysis. Even though most

of these methods are no longer practical with wide encryption in internet network
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communication, their methodology and thinking are still helpful to inspire future

researchers.

In the following two sections, I will introduce classic machine learning and deep

learning methods which can handle more complex and rigorous situations.

2.2.2 Classic Machine Learning Methods

As I stated before, the limitation of previous techniques is usually caused by

their dependence on common port numbers or interpreting payload contents. As a

result, new approaches turn to analyze traffic’s statistical characteristics. The Net-

work Layer traffic has features like bytes, duration, and arrival periodicity, which

are unique for distinguishing traffic. Based on previous work, machine learning tech-

niques have emerged as a promising tool to handle traffic patterns, flow attributes

and packet characteristics in multi-dimensional spaces with large scale datasets [88].

Mitchell [80] defined that “Machine Learning is the study of computer algo-

rithms that improve automatically through experience.” I notice from the definition

that algorithms and experience corresponding to mathematical models and train-

ing datasets are the core elements of machine learning. Machine learning learned

from data and automatically improved their algorithm parameters to achieve high

performance of their tasks. What machine learning learns can not be explicitly

programmed in advance. In the real world, there are many challenging tasks for a

human to create the programmable or interpretable algorithms manually and spec-

ify every necessary step[3]. For these tasks, machine learning techniques are feasible

approaches to solve the problem if there are enough training data.

Machine learning approaches are usually divided into three broad categories: su-

pervised, unsupervised, and reinforcement learning. For supervised learning, each

data sample has a label that plays the “teacher” role in telling the machine to adjust

its parameters to achieve higher performance. In contrast, unsupervised learning is
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not given labels to estimate how the algorithm works during training. The task

of unsupervised learning is usually to discover hidden patterns of given data. For

reinforcement learning, it pursues a trade-off between exploring unknown areas and

exploiting existing knowledge. In other words, it enables models (agents) to take

actions in the environment that can maximize the cumulative reward. Reinforce-

ment learning is widely used in game theory, information theory, simulation-based

optimization, and multi-agent systems. Recently, some work [118, 37] applied rein-

forcement learning to address network traffic analysis, especially for network defense

scenarios. In this thesis, the data is labelled while it is being collected. For exam-

ple, the video title is the label for the network traffic sample streaming this video.

Therefore, here I focus on investigating supervised learning.

In the supervised learning scope, there are regression and classification ap-

proaches that are different in the inference process. Classification is to map data

instances to a series of discrete values, which are named as classes. However, re-

gression is to map data instances to a series of continuous values. There is a simple

example to understand the difference between classification and regression. Predict-

ing whether an account has the credit risk belongs to classification, and predicting

the probability of the credit risk for an account belongs to regression. Next, I will

summarise popular supervised learning techniques in the network traffic classifica-

tion field because classification techniques are the core of this thesis.

In 2004, Roughan et al. [103] proposed Class-of-Service (CoS) Mapping for Qual-

ity of Service (QoS), which utilised machine learning algorithms, NN, LDA, and

QDA, to match various network applications with corresponding QoS traffic classes.

Then Moore et al. [82] applied Näıve Bayes estimator to implement application based

network traffic classification. This work fed the manually labelled traffic samples

into the Näıve Bayes estimator for supervised learning. It was proved that this ap-

proach could achieve a high level of accuracy. In [87], a classification sliding window
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method was proposed to address timely and continuous classification, which is a sig-

nificant constraint for a traffic classifier in the real world. The classification sliding

window method only used little packets to keep the timeliness of classification and

reduce the packet’s storage space. This method is different from other approaches,

which need to capture the beginning of a traffic flow. Therefore, it provided the

feasibility of monitoring traffic. In 2013, [36] proposed a discriminative restricted

Boltzmann machine (DRBM) based approach for anomaly detection on the KDD

cup dataset [71]. DRBM belongs to the class of statistical machine learning and is

capable to integrate generative power to capture the underlying characteristics of

the normal traffic class. This paper used 28 of 41 features of KDD cup dataset for

classification.

2.2.3 Deep Learning Methods

Deep learning is indeed a subarea of broader machine learning. Deep learning

models usually consist of at least three layers of artificial neural networks. Deep

learning models benefit from current fast computers and big data, achieving very

high performance with vast parameters. In the network traffic domain, deep learning

models, for example, CNNs and Recurrent Neural Networks (RNNs) have been

widely applied for intrusion detection.

In 2015, [89] applied a Self-taught Learning model combined with softmax re-

gression [97] to detect abnormal connections in the NSL-KDD cup dataset [121].

In 2016, [76, 61, 120, 59] proposed various deep learning approaches for intrusion

detection. Ma et al. [76] proposed a spectral clustering based ensemble model that

consists of multiple parallel sub-models. Each sub-model is independent and cor-

responds to a cluster. Then Kim et al. [61] proposed a Long Short-Term Memory

(LSTM) recurrent neural networks model to identify the network traffic. This paper

only utilised 300 entries of each class for intrusion detection. This model can achieve
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high true positive rates. However, false positive rates of this model are also very

high (up to 80%). In [120], the authors focused on feature engineering. Their one-

class model only leveraged 6 features out of the 41 features. Previous work focused

on Internet network connections that use the TCP/IP protocol. Kang et al.[59]

extend the application scenario to a vehicular network that uses the Controller Area

Network (CAN) protocol [34]. This paper proposed a Multilayer Perceptron (MLP)

model as a one-class classifier and only leveraged the “DATA” payload of each packet

consisting of a 64 bits vector.

In 2017, [78] surveyed the performance comparison of various deep learning and

traditional Bayesian models. They noticed that these approaches could achieve sim-

ilar performances. In the same year, [109] firstly proposed a CNNs model to identify

the content of encrypted traffic rather than only traffic types. The model could

identify videos streaming over HTTPS with very high accuracy through features

extracted from temporal network traffic. Then [75] also employed a CNN model to

classify the traffic flows according to the patterns of the packet sequence in each

flow.

2.3 Feature Engineering

Features are shared attributes or characteristics of the data samples which are

utilised to analyze or predict. Feature engineering may affect the performance of

machine learning algorithms because features represent various information hidden

in data samples. There are feature extraction and feature selection two main parts

of feature engineering. Feature extraction is to extract or construct features from

raw data through data process techniques based on domain knowledge. Feature

selection is to check how the extracted features work and choose the most miniature

necessary set of features for the target model.

For network traffic, Moore et al. [81] provided 249 features, including simple
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statistics of packet length, packet number, and inter-packet timings, and features

derived from the protocol header (e.g., SYN and ACK counts) for TCP flows on up,

down and combined up and down direction. In 2017, Moore et al. [83] extended their

feature extraction work to feature selection. This paper utilised a wrapper method

to select features that combined classification and feature selection. Here, network

traffic data was from the 2003–2007 and 2009 Department of Defense Cyber Defense

Exercises (CDXs). This paper combined the artificial neural network (ANN) model

with a feature signal-to-noise ratio (SNR) to classify threat traffic flows and select

features. The result shows that there are 18 salient features of 248 features from the

CDXs data.

For malware written in Portable Executable (PE) format, Raman et al. [98] iden-

tified seven key features to assist machine learning algorithms for novelty detection.

They selected 100 features based on their domain experience at first. Then, they

utilised the Random Forest algorithm on these experience based 100 features one

by one to filter 13 features with the highest individual accuracy. In addition, they

divided these features into seven buckets according to where the features originated

in the PE file and assumed that the most essential, less-correlated features would

be the features with the highest individual accuracy from each bucket. Finally, they

found a minimum feature set by selecting features one by one from these buckets

according to the descending order of individual accuracy. This order was determined

by utilizing machine learning algorithms, e.g., J48, J48 Graft, and Random Forest,

to see the performance of each feature.

For image data, Jiang [58] introduced four category feature extraction techniques

based on human expert knowledge, image local structure, image global structure,

and machine learning. In recent years, the CNN has been replacing traditional

feature extractors since it can extract complex features hidden in images and filter

more efficient task-based features. Zhao et al. [140] proposed a framework combining
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dimension reduction for spectral extraction and CNN for spatial feature extraction.

Then, the integrated features, through stacking spectral and spatial features to-

gether, were applied for image classification and achieved good performance.

In summary, even though feature extraction is very domain specific, there are

some general methods for feature extraction [46], such as the dimensionality re-

duction through space embedding or projection (e.g., PCA), and the extraction of

local features using convolutional methods. When original features are not enough

compared with the complex problem, dimensionality increase is also a reasonable

method consisting of statistics of the original features.

‘Not too many, not too few’ is crucial but challenging for feature engineering. Too

few features cannot adequately represent the characteristics of the data samples. To

better represent the data samples, it is necessary to extract enough features. How-

ever, a high number of features may result in the ‘Curse of Dimensionality’ problem.

As the number of features increases, the feature space expands exponentially, mak-

ing the data points within it sparser. Then, models based on data in a sparse feature

space may lack generalization ability because they tend to overfit to the unique data

points. For this reason, feature extraction needs to consider feature dimensionality.

In addition, feature selection can help to eliminate unnecessary features, thereby

further reducing dimensionality.

For feature selection, Liu et al. [73] divided the approaches into three main cat-

egories: filter, wrapper, and embedded methods. Filter methods select the best

feature subset according to specific metrics before the model training based on the

general characteristics of data [30]. For example, Pearson’s correlation can be used to

measure the linear dependence between two features, after which redundant features

can be identified. Filter methods are not dependent on the classification algorithm,

which means once the feature subset is selected, it can be applied to different clas-
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sifiers. However, filter methods ignore the feature effect on a classifier, which may

result in a decline in classification performance. Wrapper methods iteratively train

a model using a subset of features and adjust the number of features in the subset

based on the model’s performance in the previous iteration. For example, ‘Forward

Selection’ initiates with zero feature in a model and continuously adds the feature

that most improves the model to the feature subset, until adding an extra feature

no longer brings any performance improvement. Wrapper methods are computa-

tionally intensive because feature subset search and model selection are conducted

interactively. Embedded methods implement feature selection simultaneously with

model training, requiring less computation than the wrapper method. For example,

random forest methods use the random extraction of the features and samples to

train hundreds of trees. Each tree only sees a part of features and samples, ensuring

the trees are less apt to over-fitting.

2.4 Novelty Detection

There is a plethora of work in novel detection [95] and anomaly detection [18].

Such work can be categorized from various perspectives such as MCOSR [107, 108,

67] and OCND [92, 94, 13] or Model-closed assumption [13, 101] and Model-open

assumption [85]. This section discusses deep learning based related work in MCOSR

and OCND categories. MCOSR approaches for novelty detection usually coordinate

with the softmax score of an elaborate classifier through strategies such as explicit

and implicit confidence calibration to distinguish outliers from inliers. On the other

hand, OCND approaches utilise strategies in the likes of reconstruction and density

estimation.
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2.4.1 MCOSR Approaches

Scheirer et al. [107] presented the problem of open set recognition and asserted

in [108] that real-world data is comprised of three basic categories, that are, known-

known, known-unknown, and unknown-unknown data. I introduce MCOSR related

work from explicit and implicit confidence calibration aspects.

Explicit confidence calibration mainly includes probability-based and tempera-

ture scaling strategies. Bendale et al. [11] proposed a probability based method

OpenMax which influenced many other subsequent research works in this field. The

authors adapted deep neural networks for open set recognition and utilised the

penultimate layer of the classifier model to fit a Weibull distribution, then estimated

the probability of an input being from an unknown class. Webb [130] introduced

softmax output equalization, which improved the performance of OpenMax, and

Ge et al. [38] extended OpenMax by employing a GAN for novel category image

synthesis. Furthermore, Yoshihashi et al. [134] utilised multiple layers of the classi-

fication model to replace the penultimate layer of OpenMax in order to keep hidden

information, that otherwise vanishes in the middle of the inference chains. Tem-

perature scaling [45] is a scalar calibration of the logit vector. Liang et al. [70]

combined temperature scaling confidence calibration with slightly perturbed input

to separate the softmax score distributions between inlier and outlier and proposed

Out-of-Distribution Image Detection (ODIN) that does not require any change to

the pre-trained neural network.

Besides, Devries et al. [28] proposed a method of learning confidence estimates

by a new neural network layer. Here, the function of confidence estimates and tem-

perature scaling is similar, but confidence estimates are learned during the training

process in contrast to temperature scaling, which is learned during the test process.

Hassen et al. [49] treated the softmax score as the projection of the input instance in
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another space and combined a distance loss function with cross entropy. The model

was trained to maximize the distance between different classes (inter class separa-

tion) and minimize cross entropy and distance of an instance from its class mean

(intra class spread). Finally, the outlier score is calculated as the closest Euclidean

distance of an instance from each class mean. [44] proposed a framework for joint

modelling of labels and data by treating the discriminative classifier as an energy

based model for the joint distribution.

The above work provides explicit confidence calibration for the softmax scores.

Meanwhile, some MCOSR methods propose implicit confidence calibration by in-

troducing known unknown data (i.e., known outlier) into the training process to

calibrate the softmax score. For instance, [29, 51, 14] added some existing datasets

as negative samples into the training process. Furthermore, Lee et al. [67] developed

a training method that introducing data generated by a GAN [41] as negative sam-

ples and jointly trained the classifier and the GAN model with an integrated loss

that includes cross entropy loss, original GAN loss, and KL loss between softmax

output and the Uniform distribution.

2.4.2 OCND Approaches

OCND approaches can be broadly categorized into reconstruction-based methods

and density estimation-based methods.

Reconstruction-based methods [5, 92, 138, 104, 91, 94, 133], demonstrated that

the difference between inliers outliers can be detected through reconstruction metrics

such as reconstruction error and reconstruction probability.

Sabokrou et al. [104] leveraged reconstruction error directly as the decision score,

while Zenati et al. [138] used adversarially learned features through a bi-directional

GAN to adjust reconstruction errors and to determine if a data sample is anomalous.

On other hand, multiple work [5, 94, 91, 92, 133] utilised reconstruction probability,
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which is a probabilistic measure. For instance, Pidhorsky et al. [94] discretized the

reconstruction error of the training set using a histogram method and then applied

the histogram parameters to discretize the reconstruction error of the test set. More

recently, In [91], the latent representation vectors were conditioned by Feature-wise

Linear Modulation (FiLM) [93] to make the decoder perfectly and poorly reconstruct

the inliers and the outliers, respectively.

Under the density estimation-based methods, Bishop et al. [13] proposed Uni-

form distribution to represent outliers which were effective in low dimension data.

Recently, based on Bishop’s idea, Ren et al. [101] assumed that each object to

detect has a background component and semantic component. The authors trained

two models with the same architecture but different parameters to identify inliers

and outliers. In contrast, the typical set algorithm proposed by Nalisnic et al. [85]

focuses on sculping the distribution of inliers accurately by leveraging a deep gen-

erative model and typical set theory which can address the curse of dimensionality.

There is also some work on novelty detection based on unsupervised and semi-

supervised learning. Basically, these methods share some similarities with supervised

learning methods but usually combine clustering techniques to construct decision

metrics. For example, [1, 115] leveraged reconstruction error and latent vectors

similarity based on GAN and Variational Autoencoder as decision metrics. [119, 110]

included more samples into the training process based on a contrastive learning

scheme to discriminate in- and out-of-distribution samples.

To summarize, some approaches (e.g., [67, 70]) are suitable for the far distance

outlier detection scenario. On the other hand, some approaches (e.g., [92, 104]) per-

form better in the close distance outlier detection scenario. Few methods ([94, 110])

attempt to address both far and close distance outlier detection scenarios. However,

they have limitations in the close distance outlier detection scenario, especially when
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there are multiple inlier classes or depend on complicated deep learning models with

massive hyperparameter tuning. This thesis will propose a lightweight unified model

to address the location agnostic outlier detection problem.

2.5 Few-Shot Learning

To describe few-shot learning in a formal way, I leverage the definition of FSL

in [127]. They firstly re-defined machine learning as “a computer program is said

to learn from experience E with respect to some classes of task T and performance

measure P if its performance can improve with E on T measured by P.” FSL was

then defined as “a type of machine learning problems (specified by E, T and P),

where E contains only a limited number of examples with supervised information

for the target T.”

From the definition, FSL looks opposite to classic machine learning [54] which

tackles problems with a fixed task on heavy training. As we know, numerous super-

vised training samples bring significant performance improvement in classic machine

learning, and enormous training samples are one of the key factors for classic machine

learning achievement. Therefore, limited supervised training with few samples and

dynamic tasks is a big challenge. Few-shot learning is a promising way to address

the problem. There are different genres of approaches based on such as distance met-

rics, model architectures, optimization algorithms, and data augmentation. Next,

I first introduce the classic few-shot learning approaches and then explore recent

work and few-shot learning applications. Finally, I investigate the few-shot learning

approaches in open-set recognition.

2.5.1 Classic Approaches

For distance metric based approaches, in 2015, [62] proposed SNN, which aims

to distinguish classes from the similarity of input pairs. The core network of an SNN
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framework consists of a series of convolutional layers which are used to extract the

features of inputs. Each sample of input pairs is fed to the same neural networks and

projected to the same feature space. Then the L1 distance of each pair is calculated

in this feature space, and the normalized distance is sent to the binary cross entropy

module to train the network. Once the network has been tuned, it can adapt

new classes from unknown distributions and classify them based on the similarity

generated by the trained powerful feature extractor. In 2016, Vinyals et al. [124]

proposed an attention mechanism based nearest-neighbor classification approaches,

Matching Network, to implement multi-classification through cosine distance on

feature space. This approach utilised the meta-learning training and test setting,

training a feature extraction network by a set of labeled examples (i.e., the support

set) and predicting classes for the novel samples (the query set). This paper defined

an episode term as the combination of a support set and a query set which is widely

used in subsequent research. Each episode represents a few-shot task. Training and

testing on the same type of episodes make the classification power transfer between

training and testing more reliable. In 2017, [117] proposed Prototypical Networks

(PNs), which are inspired by k-Means clustering. PNs learn a metric space and build

prototype representations for each class. Then PNs can classify the test sample by

searching the minimum distance to prototype representations.PNs handled both few-

shot learning and zero-shot learning. At training time, a base network is trained

to learn the cluster centers, using a subset of classes and a subset of samples (e.g.,

5-way, the support set, and 1-shot the query set). At test time, a similar setup is

used for unseen classes.

For the model architecture based approach, Santoro et al [106] proposed a

Memory-Augmented Neural Network (MANN), which is the foundation of model-

based approaches. MANN first introduced external memory into few-shot learning

to work like the LSTM mechanism. MANN utilised a controller to implement long-
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term weights storage through slow updating and short-term weights storage utilizing

the external memory. This method gives the model the ability to rapidly adapt to

new data and use this data to make accurate predictions given only a tiny sample

of data.

For the optimization algorithm based approach, Model Agnostic Meta Learning

(MAML) was proposed by Finn e al. [35]. MAML learned how to initialize with the

best possible model parameters to achieve fast learning on a new task with fewer

gradient steps. This algorithm is model-agnostic; that is, it can work with any model

trained with gradient descent no matter model application target is classification,

regression, or reinforcement learning. However, it has some issues, for example,

complex hyper-parameter searches for stable training and high computational costs

during both training and inference.

The lack of training samples may result in over-fitting, a difficulty that few-

shot learning needs to overcome. Collecting more samples for dynamically changing

classification tasks are usually challenging. Therefore, it is better to generate more

samples based on existing data using data augmentation techniques. In the data aug-

mentation sub area, Antoniou et al. [7] utilised an image condition GAN referred to

as DAGAN to generate new samples to improve the few-shot learning performance.

Meanwhile, Hariharan et al. [48] proposed a sample reconstructor that projects a

sample to another sample of the same category.

2.5.2 Recent Exploration

Since 2018, more research studies have contributed to few-shot learning. Recent

ideas include extensions to classical few-shot learning methods and extending few-

shot learning approaches from supervised learning to semi-supervised learning.

For the distance metric-based sub area, Ye et al. and Puch et al. [132, 96] ex-

tended previous approaches (based on L1 or L2 loss) by constructing triplet loss. In
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addition, Gidaris et al. [39] proposed a classification weight generator. In detail, Gi-

daris et al. utilised a cosine-similarity based recognition model and attention-based

weight generator to improve few-shot classification performance for both novel and

base categories. In [40], they leveraged a Graph Neural Network (GNN) architecture

based Denoising Autoencoders (DAE) to reconstruct target-discriminative classifi-

cation weights. Furthermore, in 2019, Allen et al. [2] proposed an Infinite mixture

prototypes (IMP) approach that can represent both simple and complex data distri-

butions for few-shot learning. IMP integrated the advantage of deep representation

learning and the Bayesian nonparametric by representing each class with scalable

clusters rather than a single cluster which is widely used in previous prototypical

methods. IMP approach pursued a balance point between nearest neighbor and

prototypical representation approaches. In 2020, Ji et al. [57] utilised intra-class

distribution information to improve current Prototypical Networks.

For the model-based sub area, Doveh et al. [32] proposed a Meta-learned task-

adaptive (MetAdapt) architecture using Network Architecture Search (NAS) cell

to optimize the model architecture and to adaptively change itself given novel few-

shot tasks. MetAdapt assists in alleviating over-fitting issues caused by very small

samples of various few-shot tasks. Though it is a model-based method, it only applies

NAS to the last block of the network architecture rather than the full model.

For the optimization based sub area, Antoniou et al. [6] identified problems

of the original MAML, which resulted in unstable training, high dependence on

hyper-parameter, and high computation and time cost on training and inference.

These problems also limit the flexibility and generalization ability of the framework.

Antoniou et al. proposed corresponding methods to address each issue in MAML

and demonstrated that learning rates, batch normalization parameters, and target

losses, when learned and optimized on a per-step basis, can significantly improve

the original MAML.
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For the data augmentation sub area, Zhang et al. [139] proposed a MetaGAN

approach similar to DAGAN. MetaGAN utilised GAN to generate fake samples

rather than real ones and trained the generator and classifier simultaneously to

learn sharper decision boundaries. MetaGAN can address both supervised and semi-

supervised few-shot learning. Meanwhile, Wang et al. [128] combined meta-learner

with a “hallucinator” similar to MetaGAN and end-to-end optimized both mod-

els. The hallucinator creates an additional supervised training set, taking existing

samples with added noise as input. These approaches are extension studies of data

augmentation approaches.

Few-shot learning approaches are developing at high speed. These methods may

belong to different sub areas or have been implemented in different application fields.

Comparing the performance of various few-shot learning approaches under the same

scale is important to estimate their impact and benefit later researchers. However,

the different experiment setting details of these algorithms make effective comparison

challenging. For this reason, Chen et al. [20] presented a consistent comparative

analysis of several classic few-shot classification algorithms and showed that deeper

backbones could reduce the performance variation among different approaches when

base data and novel data are from a similar domain. It is possible to achieve the

state-of-the-art performance using only a modified baseline method. This result

guides later researchers, especially those in cross-domain studies, to initially attempt

basic methods and focus on model fine-tuning.

2.5.3 Few-shot Learning Application

Multiple application domains have benefited from few-shot learning techniques.

The most popular application of few-shot learning is on computer vision, such as

object recognition and tracking ([31]), talking head image generation ([136]) and

face reenactment ([47]).
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Dong et al. [31] implemented fast visual object tracking with improvement in

the robustness of representations by replacing the twin branches and pair-loss of

the Siamese network with four branches and a combination loss of pair-loss and

triplet-loss. Zakharov et al. [136] proposed a framework utilizing adversarial learn-

ing (generator and discriminator) to create a talking head image through several,

even one photograph. The generated talking head images can be conditioned on the

landmarks extracted from the same or different persons, but the quality of gener-

ated images based on landmarks of another person is mixed. In 2020, to address

this problem, that is, the facial characteristics mismatch between target and driver

caused by using another person’s landmarks, Ha et al. [47] proposed a few-shot learn-

ing framework that combines landmark transformer and image attention modules

with autoencoder based target feature alignment mechanism. The landmark trans-

former can disentangle the expression geometry from the landmarks and significantly

mitigate the identity mismatch issue.

In addition, more studies for application on network traffic analysis have been

proposed since 2020. For example, in the network intrusion detection area, Xu et

al. [131] proposed a deep neural network based meta-learning framework to dis-

tinguish a normal sample from a malicious one. In 2021, Wang et al. [129] built a

Siamese capsule network to handle imbalanced data challenges in intrusion detection

because it can dynamically extract the relationship among traffic features. Based

on previous research, Duan et al. [33] surveyed few-shot learning methods applied

in intrusion detection. They introduced approaches like embedded learning, multi-

task learning, and generative models, indicating that insufficient data is the most

important challenge. Furthermore, Chen et al. [19] explored new data augmentation

methods for few-shot website fingerprinting attacks, including intra-sample transfor-

mation (i.e., random rotation and masking) and inter-sample transformation (i.e.,

randomly mixing two traffic samples), to address the data insufficiency issue. Liu
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et al. [74] combined a classic few-shot learning model with three representations of

communication signals to identify the jamming. It is demonstrated that the model

architecture based on MAML can automatically extract the features from signals

and address the shortcomings of handcrafted feature extraction.

2.5.4 Few-Shot Open-set Recognition

Few-shot learning approaches have addressed the problem of classification on a

new task. However, most approaches still cannot handle unseen categories for the

support set of new tasks. Recently, this problem has gained much attention.

There are a few SNN based open-set few-shot learning approaches. Siamese

Autoencoder network (SiA) ([123]), an anomaly detection approach, utilised Maha-

lanobis distance on feature space for anomaly detection and preserved the original

data structure during feature extraction. In [105], they proposed an open-set face

recognition approach for small galleries based on SNN. This method replaced a CNN

based SNN with a fully connected layers based SNN, and the OSR method was based

on the softmax threshold for the output of the SNN.

Further open-set few-shot learning research is based on the prototype network.

An oPen sEt mEta LEaRning (PEELER) algorithm proposed in [72] introduced

unseen categories into the training process and modified the original loss function

by adding open loss. Open deep network based on the prototype (P-ODN) ([114])

introduced manual labeling into training, so it gave open-set recognition scalability.

Previous identified unseen samples will be manually labeled as a new category and

added into later training. The number of categories is also changed to include the

new category. The P-ODN trained prototypes and prototype radii obtained more

distinguishable features and proposed a multi-class triplet thresholding method for

OSR. In [56], they utilised a reconstruction mechanism on the feature prototypes.

This method trains a transformer function(reconstruction network). It applies this
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function to both the original and modified prototype sets (replace the predicted cat-

egory prototype with the query feature). If the distance between these two trans-

formed prototype sets is more significant than a threshold, the query sample will

be identified as an unseen category. In [52], they proposed a method to modify the

feature prototype and generate a negative prototype. By leveraging an attention

mechanism according to the base category memory, support samples of each task

were used to generate the negative prototype.

Compared to previous work, I extend the few-shot learning application to fine-

grained network traffic classification (i.e., content level) and propose a similarity

controllable data augmentation method. Also, the proposed hierarchical cross en-

tropy loss and DPGMM based open-set metric can adapt to dynamically changing

tasks with highly diverse support classes in training and test processes, respectively.

2.6 Summary

To summarise, this chapter provides a comprehensive overview of existing litera-

ture pertinent to the research questions of this thesis. It covers traditional methods

as well as machine learning and deep learning methods for network traffic analy-

sis, feature engineering, novelty detection, and few-shot learning. While substantial

progress has been made in these areas, gaps and challenges still exist. One exam-

ple is the difficulty of content-level classification for deeply encrypted network traffic

(i.e., encrypted on the Data Link Layer) in an open-world setting where sample sizes

are small and classification tasks are dynamically changing. These gaps not only

serve as the motivation for this research but also as the direction for the specific

research aims outlined in Section 1.1. In the subsequent chapters, I will system-

atically present the methodologies and findings aimed at addressing these research

questions.
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Chapter 3

Classification for Encrypted Network Traffic in

the Closed World

This chapter is to address the first research question, “Is it feasible to identify the

content of deeply encrypted network traffic?” This chapter is the foundation of this

thesis because it includes the details of the data collection and data processing of

the new encrypted network traffic dataset captured in air. I demonstrate that using

a deep learning model to address the fine-grained (content level) encrypted network

classification in the closed world is feasible even with limited metadata and can

achieve good performance. Then the subsequent work can utilise the dataset and

feature engineering results from this chapter to address more challenging classifica-

tion problems in the open world.

3.1 Encrypted Network Traffic Data Collection and Process-

ing

This section describes encrypted network traffic data collection, data preprocess-

ing, including data filtering and frame type identification, and feature engineering

procedures.

3.1.1 Data Collection

For verifying the feasibility of eavesdropping on encrypted wireless network traf-

fic, data is collected in an environment that consists of two laptops, a WiFi wireless

network of a university, an Airpcap sniffer, and the Wireshark software (see Fig-

ure 1.1).
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One laptop, connected to a WiFi Access Point (AP) using a certain channel

of the 2.4 GHz spectrum, like channel 1 or channel 6, is treated as the victim.

Sometimes, the laptop is connected to a channel first and then re-connected to

another channel because of internet interruption or insufficient channel capacity on

the original channel. One Airpcap USB device plugged into another laptop treated

as an eavesdropper can only monitor one channel. According to the observation, the

victim laptop is mostly connected to channel 6 in the data collection environment.

Therefore, Airpcap is set to monitor channel 6 in our data collection. The WiFi

network of this data collection environment follows the 802.11n standard with WPA2

encryption. The victim laptop is manipulated by a script to mimic streaming traffic

by repeatedly playing the target contents (video, audio, and web surfing).

I consider the time consumption and the necessity of adequate data to avoid

model over-fitting. I first only select 10 videos on the YouTube platform (the most

popular video platform) to evaluate the feasibility of identifying the video through

the encrypted traffic captured in air. I name these video samples as the classification

dataset in this thesis. Then we extend the content type from video to audio and web

surfing to assist in solving more challenges, e.g., novelty detection. I select 10 videos

on Netflix; 10 songs on YouTube Music; and 10 web page lists from Wikipedia.

Here, I still set the number of videos, songs, and web page lists as 10 to maintain

consistency with the number of YouTube videos. I name these samples as the novelty

detection dataset. Finally, more classes of video samples are collected for few-shot

learning. Few-shot learning usually evaluates the performance for 5-way, 10-way,

and even 20-way n-shot query samples. Therefore, more than 10 classes are needed

to represent the variety of the training samples. Data collection increases the classes

of videos and expands the platforms, doubling the initial number of classes (10) on

three popular video platforms (Netflix, Stan, and YouTube). These 60 classes (i.e.,

2 × 10 × 3) of samples are utilised to evaluate the new idea in few-shot learning. I
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name these samples as the few-shot learning dataset.

Through a web browser, one laptop (victim) accesses the selected content repeat-

edly (about 300 times for YouTube videos and about 100 times for other content).

Another laptop (eavesdropper) captures each stream’s first 180 seconds of traffic.

On this eavesdropper laptop, the AirPcapNx∗ is used as a sniffer to collect frames

streaming on a channel. At first, collecting about 300 runs of video streaming for

each video on YouTube ensures the samples are enough to overcome over-fitting is-

sues caused by limited samples. After the feasibility evaluation of using deep learning

techniques to classify the video streaming contents, the sample volume (300 runs

per class) is proved more than enough. Considering the time cost, only about 100

runs are collected for each class in the subsequent data collection. Regarding the

traffic length, I make a trade-off between the selection of Reed et al. [99] (about 2

minutes) and Schuster et al. [109] (about 5 minutes), capturing 3 minutes of traffic.

When collecting the traffic from YouTube and YouTube Music, the advertise-

ments at the beginning are removed by using a premium account to avoid their

interference. In addition, I set up the system to automatically open 18 URLs one by

one at 10-second intervals to obtain a traffic sample of 180 seconds. I have observed

and estimated that the average time for opening and browsing a news website is

several seconds. Therefore, I select an integer of 10 seconds as the time interval to

simulate simplified web surfing operations.

Overall, we collected 11,529 samples, 3,198 (YouTube video) samples for the

classification dataset, 1,749 (Netflix video, YouTube Music song, and Wikipedia

web page list) samples for the novelty detection dataset, and 6,000 samples (Netflix,

Stan, and YouTube video) for the few-shot learning dataset.

It is worth noting that, during the data collection, some factors may cause the

∗https://www.riverbed.com

https://www.riverbed.com
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failure of the traffic capture, for example, internet interruption, Wireshark fault,

and channel hopping. Therefore, to improve the sample quality, it is necessary to

check the captured traffic and ensure it contains streaming data through the size of

the pcap files. The normal pcap file size is about tens of Megabytes, but the invalid

pcap file size is about several Megabytes or less. The invalid samples are discarded.

Then each class usually does not have N valid samples after N runs. For example,

when collecting YouTube video traffic samples, a video needs more than 300 runs

to contain at least 300 valid samples. At last, we collected 3,198 rather than just

3,000 samples. For Netflix video, YouTube Music song, and Wikipedia web surfing

data collection, we captured 3,000 samples, but only 2,331 of them are valid, which

are then split into training (1,749) and test (582) set (utilised by other tasks of

the project). The training set (1,749) samples are used in this thesis for novelty

detection experiments as outliers. Then we collected 20 class samples on Netflix,

Stan, and YouTube, respectively, using the same method as stated in YouTube video

data collection, but we only kept 100 valid samples per class to make the number

easy to remember.

3.1.2 Data Preprocessing

Data Filter

The Airpcap sniffer captures all frames available on specified channel in its vicin-

ity. According to IEEE 802.11 protocol, WiFi uses WPA-2 for frame encryption.

Therefore, I cannot extract information about the Network Layer and higher pro-

tocol layers, such as IP addresses and port numbers. I only can access a few basic

information from the Data Link Layer, such as the size, type, duration time of a

frame, the source MAC addresses, the destination MAC addresses, and the radio

information (i.e., signal strength and noise level). I also collect these parameters

for the traffic flowing through (in and out) the target victim in each direction. I
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consider the MAC address of the target victim as a unique identifier to filter the

captured traffic. Then I analyze all of the frames from and to this target victim.

Frame Type Identification

There are three types of 802.11 frames, namely, management frames, control

frames, and data frames. Among them, data frames contain the payload including

information in Network, Transport and Application Layers. Though the payload is

encrypted, the temporary size of the data frames (during a time period) still may

reflect the streaming data profile. Meanwhile, the management frames are used to

manage the Basic Service Set (BSS) like probing, roaming, and disconnecting clients

from the BSS. Control frames are related to medium access and frame acknowledge-

ment. The time-sequential number of management and control frames during a time

period may reflect the communication pattern between source and destination. To

obtain the target traffic streaming between the victim and the Access Point (AP), I

first filter all types of frames by the MAC address of the target victim. Then I use

the frame size parameter (greater than 64 bytes) to select the data frame. Other

control and management frames (less than 64 bytes) are referred to as non-data

frames.

3.1.3 Feature Engineering

The first three minutes (180 seconds) of each stream are captured and then

grouped according to the traffic direction (i.e., up-link, down-link, and combination

(up-link and down-link)). I investigated the I/O graphs through Wireshark and

found that a 1-second time interval allows for a clear visual observation of the traffic

pattern, although some details may be lost. In contrast, a 10-millisecond time

interval tends to obscure the patterns due to excessive detail. Therefore, I selected

a time interval between 10 milliseconds and one second for binning the packets.

Meanwhile, the number of bins should be about 512 or 256, which are commonly
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Table 3.1 : Constructed feature list on three traffic directions: uplink (U), downlink

(D), and combination of up and down (C).

Feature ID Feature Meaning

F1 (U, D, C) The number of data frames in a time bin

F2 (U, D, C) The number of bytes for data frames in a time bin

F3 (U, D, C) The number of non-data frames

F4 (U, D, C) The number of bytes for non-data frames in a time bin

F5 (U, D, C) The minimum frame size in a time bin

F6 (U, D, C) The maximum frame size in a time bin

F7 (U, D, C) The average frame size in a time bin

F8 (U, D, C) The variance frame size in a time bin

used as the number of hidden neurons in neural networks, to keep a similar number of

parameters when utilizing the classic deep learning models. Finally, I set the bin size

as 0.36, which is similar to the setting in [109], and obtain 500 bins for each stream.

For each direction, I compute features based on certain characteristics within each

bin. The constructed four primary features include the number of data frames, the

number of bytes for data frames, the number of non-data frames (i.e., management

and control frames), and the number of bytes for non-data frames. Furthermore,

to represent the traffic from more perspectives, I construct four additional features:

the minimum frame size, the maximum frame size, the average frame size, and the

variance frame size. These features are summarised in Table 3.1. In this thesis, the

concept of ‘features’ differs from traditional machine learning, where the number

of handcrafted features usually matches the dimension of a processed sample. This

implies that the number of features is 12,000 (500 × 24) according to the definition

of traditional machine learning methods. However, the 500 features are the bins for

the entire time sequence traffic, and each bin does not have an independent meaning.
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Therefore, I treat the eight binning methods across the three different directions as

features, resulting in 24 features in total.

3.2 Model Architecture

In this section, I implemented a CNN model to evaluate the classification per-

formance of each constructed feature on the collected network traffic dataset in the

closed world.

CNN model has been employed to identify the content of the traffic in [109] and

achieved excellent performance. The task goal of [109] is similar to mine in this work.

In addition, the studies in [69, 24] also demonstrated, in traffic fingerprinting, CNNs

outperform RNNs, which are generally suited for time series data. Furthermore,

works like WaveNet [90] showed that noisy time series data is better modelled by

1D CNNs. Therefore, I utilise CNN model to evaluate the feasibility of unveiling

the video stream captured in air. It is worth mentioning that, in my experiments,

I apply the CNN model to the traffic captured in air through sniffing rather than

traffic captured through a wired port. The architecture of the CNN model is shown

in Figure 3.1. This model consists of three convolution layers, two fully connected

layers and a max-pooling layer. I select the Adam optimizer and train this model

with batch size 64. To simplify the feasibility evaluation experiment, I keep the

parameters (e.g., model network architecture, optimizer and batch size) the same as

the experimental settings in [109].

3.3 Experiments and Results

3.3.1 Experimental Setup

I use the YouTube video traffic captured by the method stated in Section 3.1.1

which consists of 3,198 video streaming samples of size 500 × 24 in 10 videos, with

about 300 video streaming samples per video. The dataset is randomly permu-
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Figure 3.1 : CNN Model Architecture.

tated and split into a training set (80%) and a testing set (20%). Even though, the

training-test split ratios, like 8:2, 7:3 and 6:4 are common in practice, the 8:2 ratio

that often referred to as the Pareto principle is the most popular. Hence, I use this

split ratio. The other experimental parameters are listed in the Appendix 7.1. I use

the same Batch size, activation, optimizer as in the settings in [109]. Regarding the

learning rate, batch normalisation decay and batch normalisation epsilon, I selected

the specific values based on experiment evaluation. For example, I attempted learn-

ing rate from 10−1, 10−2, 10−3, 10−4, 10−1, and found 10−4 can quickly converge and

achieve nearly the same accuracy. Therefore, I set the learning rate as 10−4.

3.3.2 Classification Performance Analysis

I apply the CNN model architectures on video streaming traffic classification.

I train the 1D CNN model with each feature (i.e., each 500 × 1 vector) listed in

Table 3.1 individually. The performance for each feature is shown in Figure 3.2.

I notice that the features obtained from the captured traffic profiles directly, such

as F1 (U, D, C), F2 (U, D, C), F3 (U, D, C), and F4 (U, D, C), can achieve excellent
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performance (with accuracy about 97%). On the other hand, the performance of

features generated from the statistic of the captured data, i.e., F5 (U, D, C), F6 (U,

D, C), F7 (U, D, C), and F8 (U, D, C), is mixed. For example, the F6 (D, C), F7

(D, C), and F8 (C) perform competitively with the F1, F2, F3, and F4. However,

the accuracy with F5 (D), F8 (D), F5 (C), and the F5, F6, F7 and F8 on the up-link

is between 92% and 95%.
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91.00%
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Figure 3.2 : CNN Model Performance.

Intuitively, I predict that the number of data frames would perform best because

the video content data is encapsulated in the payload of a data frame. This assump-

tion can be explained by the network traffic patterns of different videos as shown in

Figure 3.3. This figure demonstrates that the traffic profile (i.e., the fluctuation of

“Frame count” along with time) is a crucial characteristic for distinguishing between

videos. However, the experiments show that video streaming also can be accurately

classified using non-data frames. As stated before, non-data frames include the man-

agement and control frames related to communication patterns between two nodes.

The experiment results indicate that both the bursts of video content streaming and
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the interaction process between the server and the client carry useful information for

identifying streaming videos. Compared to the findings in [109], this thesis shows

that non-data frames are still meaningful for content-level encrypted network traf-

fic classification tasks. It is reasonable to combine data and non-data features to

achieve higher performance.

Figure 3.3 : Network Traffic Patterns for 10 Different Videos.

3.4 Summary

To summarise, this chapter i) explains data collection and data preprocessing

details of the new dataset, ii) conducts feature engineering, which guides the fu-

ture feature selection of the subsequent research (combining the data and non-data

features), iii) evaluates the feasibility of using a deep learning model to classify en-

crypted network traffic on the content level in the closed world. Additional research

about the closed world classification for encrypted network traffic captured in air is
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discussed in my collaborative paper [69]. This thesis focuses on the following open

world classification, including novelty detection and few-shot open-set recognition.
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Chapter 4

Classification Models for Encrypted Network

Traffic in the Open World

I have answered the first research question, “Is it feasible to identify the content

of deeply encrypted network traffic?” in Chapter 3. I have determined that deep

learning techniques are feasible for fine-grained (content level) network traffic classi-

fication in a deeply encrypted scenario. Deep learning techniques do not depend on

elaborately designed features that need experienced domain knowledge and enough

metadata. However, I only discussed classification tasks in the closed world, which

is too idealized to adapt to the real world, which is an open world. Ensuring all the

test samples belong to the trained classes is unrealistic. Therefore, to adapt to the

real world, I raise the second research question: “How to handle classification for

previously unseen classes in the open world?” I will continue exploring deep learn-

ing techniques to address this question in this chapter. After investigating existing

studies and analyzing their advantages and limitations, as stated in Sections 2.4

and 1.1.2, I propose two methods to address this question. One is a new model

based on framework innovation, and the other is based on algorithm innovation. In

this chapter, I will describe the two models in detail, covering model framework,

model algorithm, experimental settings, and result analysis.
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4.1 Calibrated Reconstruction Based Adversarial AutoEn-

coder (CRAAE) Model

I will use novelty detection techniques to detect previously unseen classes (i.e.,

outliers). Outliers can be located far from or near the known classes (i.e., far dis-

tance outlier and close distance outlier). Existing novelty detection approaches

usually conduct detection only for one type of outlier. However, in the real world,

whether the outliers are far from or close to the inliers is unknown. Taking advan-

tage of two mainstream approaches (MCOSR and OCND), I propose the CRAAE

Model, which integrates implicit and explicit confidence calibration strategies into a

reconstruction-based model to implement agnostic location novelty detection. The

proposed CRAAE is expected to generate a more accurate decision boundary shown

in Figure 4.1.

4.1.1 Methodology for CRAAE

In this section, I first present an overview of the proposed CRAAE model frame-

work and then present the training and inference process of the model. Finally, I

describe the specific model optimizations for each module.

CRAAE Model Framework

CRAAE is a multi-function, lightweight integrated framework based on AAE.

The first contribution, as shown in Figure 4.2, is using the category component

to classify inliers. This category component also serves as the explicit calibrator

for the novelty detection score, improving the accuracy of the decision boundary.

The second contribution, shown in Figure 4.3, involves generating samples via the

decoder using random inputs from statistical distributions like Uniform and Dirichlet

to represent more generalized and precise outliers. Finally, as shown in Figure 4.4, I

feed these generated samples into the encoder as fake inputs for the training process.
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Figure 4.1 : A schematic view of novelty detection decision boundaries with CRAAE,

MCOSR and OCND approaches for different location outliers, such as abnormalities

and novelties.

I compute KL loss for fake inputs and cross-entropy loss for true inputs, introducing

the third contribution: implicit calibration of the decision metric.

As shown in Figure 4.4, the complete CRAAE framework includes one encoder

E, one decoder G, and two discriminators Dx and Dz. Both modules E and G play

multiple roles. E is the latent representation extractor as well as the classifier. In

addition, it also acts as a calibrator and provides both explicit and implicit calibra-

tion to the decision scores of novelty detection. G is the original input reconstructor

and the known outlier generator.

E consists of four CNN layers that extract category and style features from the

input. G also consists of four deconvolutional layers corresponding to E. Two

Novelties

Abnormalities

Inliers

Novelties

          Boundaries for abnormalities
          Boundaries for novelties
MCOSR          CRAAE             OCND
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Figure 4.2 : Calibrated Reconstruction Based Adversarial Autoencoder (CRAAE)

Model Framework - Contribution 1.

Figure 4.3 : Calibrated Reconstruction Based Adversarial Autoencoder (CRAAE)

Model Framework - Contribution 2.

discriminators assist E and G respectively for adversarial learning. Dz forces the

encoded style component to follow standard Gaussian distribution while Dx dis-

tinguishes between original and generated inputs. I describe the dataset-specific

changes to the model architecture in Section 4.1.2.
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Figure 4.4 : Calibrated Reconstruction Based Adversarial Autoencoder (CRAAE)

Model Framework - Contribution 3.

Training and Inference Processes

Before detailing the training and inference processes, I first explain the symbols

and variables in Figure 4.4. x is the true input (inlier) and x′ is the fake input

(known outlier). x̃ and x̃′ are the reconstructions corresponding to x and x′. xgen

is the generated fake input from synthetic latent representation. y is the ground

truth label corresponding to x. ỹ and ỹ′ represent the category component of

the latent representation extracted from x and x′, respectively. ygen is the synthetic

category component. Similarly, z̃ and z̃′ represent the style component of the latent

representation from x and x′, respectively. z and z′ are drawn from the standard

Gaussian distribution as the adversarial learning targets of z̃ and z̃′. zgen is the

synthetic style component. Next, I describe the training and inference process.

The black solid lines and the red dotted lines indicate the training procedure of

the true input x and the fake input x′, respectively. The green dotted lines denote

the generation procedure of xgen which is used as x′. The difference between the

training procedures of x and x′ is the processing of category components. ỹ and
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ỹ′ are fed into the softmax layer, then s(ỹ) and s(ỹ′), the output of the softmax

layer from ỹ and ỹ′, are separately used to compute the cross entropy loss with the

ground truth y and the KL loss with a discrete Uniform distribution U(y).

It is worth noting that the reason why I use KL loss rather than cross entropy

loss for minimizing the distance between s(ỹ′) and U(y). In general, the KL distance

of distribution P and Q (see the Equation 4.1) equals the cross entropy of P and

Q (first term in Equation 4.1) subtracts the entropy of P (second term in Equa-

tion 4.1), where P is the distribution of the actual data while Q is the hypothetical

distribution.

DKL(P∥Q) = −
∑
i

Pi logQi − (−
∑
i

Pi logPi). (4.1)

In my model, P is s(ỹ′) and Q is U(y). If s(ỹ′) is for samples from a given dataset,

the entropy of s(ỹ′) can be regarded as a constant. However, s(ỹ′) is for generated

samples in my model and the generated samples are continuously changed during

the training. Therefore, the second term of KL distance is not a fixed value which

can be ignored.

During the generation procedure, ygen can be a discrete Uniform distribution

or a distribution sampled from a Dirichlet distribution other than being drawn

randomly from a Gaussian distribution. My motivation is to describe ygen with a

distribution that is similar to the softmax output, not only a randomly sampled

vector. I treat each softmax output vector as a discrete distribution because the

sum of each softmax output entry equals 1, and the value of each entry is between

0 and 1.

In the inference process, first, I feed the training set Xtrain into the trained E

and G to obtain Z̃train and X̃train which are used for computing the two terms of

the novelty detection decision score, log PZ̃train
(z̃) and logPXtrain

(x). I fit Z̃train to

a generalized Gaussian distribution and compute the probability density function of
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Xtrain based on the histogram of the reconstruction error ||Xtrain − X̃train||. The

algorithm details for the two items are stated in [94]. Next, the test samples are fed

into E and then softmax layer to obtain ỹtest and the softmax vectors. Finally, the

maximum value of the softmax vector is utilised as the explicit calibration factor to

weight the novelty detection decision score, which is given by

(logPZ̃train
(z̃test) + logPXtrain

(xtest))/ max
i=1···K

(
eỹtest,i∑K
j=1 e

ỹtest,j

), (4.2)

where K is the class number.

CRAAE Model Optimization Update

I optimize each module of the CRAAE model through the following objective

function, which consists of five terms:

LGE(x,E,G,Dz) + LE(x,y,E,G) + LG(G,Dx)

+LDx(x,G,Dx) + LDz(x,E,G,Dz).
(4.3)

I update Dx by maximizing adversarial loss LDx(x,G,Dx) which is expressed

by

LDx(x,G,Dx) = E[logDx(x)] + E[log(1−Dx(xgen))], (4.4)

where xgen = G([ygen, zgen]), zgen is drawn from the standard Gaussian distribution

N (0, I)), and ygen can be a discrete Uniform distribution, a distribution drawn from

a Dirichlet distribution or a vector randomly drawn from a Gaussian distribution.

I update G through minimizing adversarial loss LG(G,Dx) shown as

LG(G,Dx) = −E[logDx(G([ygen, zgen]))]. (4.5)

I update Dz by maximizing adversarial loss LDz(x,E,G,Dz) given by

LDz(x,E,G,Dz) =E[logDz(z)]× 2.0 + E[log(1−Dz(z̃))]+

E[log(1−Dz(z̃′))],

(4.6)
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where z̃ and z̃′ is the output of E(x) and E(x′), respectively, and z is drawn from

the standard Gaussian distribution N (0, I)). Here, x′ = xgen, and xgen is generated

by G.

I update E through minimizing LE(x,y,G,E) which includes the KL loss and

the cross entropy loss

LE(x,y,G,E) = E[DKL(s(ỹ′)) ∥ U(y)]× β − E[logP(y = s(ỹ)|x)], (4.7)

where s(·) is the softmax function, ỹ and ỹ′ is the output of E(x) and E(x′),

respectively, and β is the loss balance parameter for E (I set β = 0.03 here.).

I jointly update E and G through minimizing LGE(x,E,G,Dz) which includes

following three parts: 1) the reconstruction loss Lrec(x,E,G) can be written as

Lrec(x,E,G) =− {E[x logG(E(x))] + E[(1− x) log(1−

G(E(x)))]} × γ,

(4.8)

where γ is the loss balance parameter for E-G (I set γ = 2.0); 2) the difference

loss between the reconstruction loss for inliers and known outliers Lrecdiff (x,E,G)

is shown as

Lrecdiff (x,E,G) = max (0, (Lrec(x,E,G)− Lrec(x
′,E,G))) , (4.9)

which restrains Lrec(x,E,G) ≥ Lrec(x
′,E,G); 3) the adversarial loss LE(x,G,E,Dz)

is given by

LE(x,G,E,Dz) = −{E[logDz(z̃′)] + E[logDz(z̃)]}. (4.10)

4.1.2 Experimental Setup

I evaluate the performance of CRAAE using the network traffic dataset and

several standard image datasets. I select additional image datasets to demonstrate

the universality of CRAAE model because novelty detection is critical in many real-

world domains. I also compare the performance of my model with several state-of-

the-art open-set recognition approaches. In the evaluation, I use several evaluation
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metrics such as the F1 score, the area under the receiver operating characteristic

curve (AUROC), the false positive rate (FPR) at 95% true positive rate (TPR), the

detection error, and the area under the precision-recall curve (AUPR).

Network Traffic Dataset

We collected the network traffic dataset for novelty detection in Section 3.1.1.

The novelty detection dataset contains four subsets of HTTP video, audio, and web

surfing network traffic captured over encrypted wireless networks.

For video traffic, this dataset has two subsets, corresponding to the YouTube and

Netflix platforms. Audio traffic is captured while streaming music from YouTube

Music, and web surfing traffic is captured when visiting Wikipedia web pages. More

specifically, the YouTube video subset consists of 3,198 video streams of 10 videos,

with approximately 300 video streams per video. The Netflix video, YouTube music,

and Wikipedia subsets consist of 540 video streams, 603 audio streams, and 606 web

surfing streams, respectively. Further detail of the network data capturing procedure

and underlying network conditions can be found in Section 3.1.1. I represent each

network trace as a vector of 2×500, where 500 is the number of bins over the trace

length, and 2 represents the number of selected features. The number of non-data

frames on the down-link (F3 (D)), and the number of data frames on both up-link

and down-link (F1 (C)) were identified as the two most important features in [69].

My experiments are designed to evaluate the model performance in different

outlier location scenarios. I simulate the close distance outlier detection scenario by

using several classes of a dataset as inliers and others as outliers, which is named

as intra dataset novelty detection. Meanwhile, the far distance outlier detection sce-

nario is simulated by using outliers and inliers from different datasets, respectively.

This scenario is named as inter dataset novelty detection. For intra dataset novelty

detection, the YouTube video subset is sliced into five folds; each fold contains 20%
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Figure 4.5 : CRAAE Module Architecture for Network Traffic Dataset.

randomly selected samples of each class. The training set, validation set, and test

set occupy 3 folds, 1 fold, and 1 fold, respectively. In addition, I select the differ-

ent number of classes in order, such as the first 1 class, first 3 classes and first 5

classes from the training set as inlier classes to train my proposed model. Then the

remaining classes are used as outliers. For inter dataset novelty detection, I treat

YouTube video subset as the inliers and other three subsets as the outliers. I use

80% of the YouTube video subset as the training set and 10% each as the test set

and the validation set.

Since this dataset is different in configuration compared to the image datasets, I

propose network traffic compatible modules in Figure 4.5 based on the architecture

prototype in [94] and the neural network parameter setting in [69].

Image Datasets

I use four image datasets in the evaluation. MNIST ([66]) contains 60,000 train-

ing and 10,000 test handwritten digits from 0 to 9 with size 28×28. CIFAR10 ([64])

contains 50,000 training and 10,000 test images of size 32 × 32 with 10 classes. I

use the test set of LSUN ([135]), which consists of 10,000 images of 10 scenes, as
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the outliers in far distance outlier detection. For TinyImageNet ([27]), I only use its

test set, which consists of 10,000 images with 200 classes, again as the outliers in far

distance outlier detection. All images stated here are resized to a size of 32 × 32.

I use the MNIST dataset for intra dataset novelty detection. The split ratio

for the training, validation and test subset and the selection method for outliers

and inliers are the same as the network traffic dataset. For inter dataset novelty

detection, I treat CIFAR10 as the inliers and other datasets as the outliers. In

order to ensure fair comparison under similar experimental conditions, the network

architecture for image datasets follows the protocol stated in [94]

To demonstrate the performance of my CRAAE model on imbalanced data, I

construct multiple test and validation sets varying the ratio of outliers to inliers

from 10% to 50% by randomly down-sampling or up-sampling outliers following the

method in [94].

In my experiments, the activation function is LeakyReLU with negative slope as

0.2, and the optimizer is Adam. The learning rate, learning rate decay, batch size,

and training epoch are 0.0001, 0.25 every 30 epochs, 64, and 100 for network traffic

datasets; 0.002, 0.25 every 30 epochs, 128, and 80 for image datasets; The latent

size for the network traffic dataset, MNIST dataset, and other image datasets is 64,

16 and 32, respectively (see Table 7.2 in Appendix 7.1).

4.1.3 Results

This section presents the experimental results for different outlier detection sce-

narios (i.e., intra dataset and inter dataset novelty detection).

Intra Dataset Novelty Detection

I compare the performance of my CRAAE model with GPND ([94]) in intra

dataset novelty detection. GPND provides F1 score results on a dataset using only
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Figure 4.6 : F1 Score on the YouTube Video Traffic Dataset.

one of the ten classes as the inlier class. I extend the experiments to include more

inlier classes. As illustrated in Figure 4.1, the variety and complexity of the in-

liers (i.e., the various distances between inlier samples) may influence the detection

performance, which is determined by the decision boundary. I propose to integrate

the category information into the decision metric to build a more accurate decision

boundary (red line). It is expected to perform better than other methods (blue and

green lines). To evaluate this, I set six groups of inlier classes, that is, video/digit

0, video/digit 0 and 1, video/digit 0, 1 and 2, video/digit 0 to 4, video/digit 0 to 6

and video/digit 0 to 8. The remaining classes of each group are treated as outliers.

About the module architecture (c.f. Figure 4.5), I design it based on the setting in

GPND to fit the characteristics of the network traffic dataset.

To evaluate the generalization of my proposed CRAAE framework, I extend my

experiments to image datasets. To ensure a fair comparison, I utilise the same

module architecture as GPND for image datasets.
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Figure 4.7 : F1 Score on the MNIST Dataset.

Table 4.1 : Performance of intra dataset novelty detection on YouTube video traffic

dataset.

Inlier AUROC ↑ FPR at 95% TPR ↓ Detection Error ↓ AUPR-In ↑ AUPR-Out ↑

Classes GPND/CRAAE

1 96.80/77.00 3.14/97.91 3.67/16.90 98.93/81.13 81.42/49.01

2 94.41/77.06 65.37/82.10 7.77/22.65 97.67/83.42 80.52/53.31

3 93.49/80.55 47.62/51.86 11.10/22.11 97.31/86.92 73.02/72.06

5 65.95/87.68 91.07/37.86 36.39/19.15 78.12/93.26 40.66/72.26

7 62.29/88.41 98.94/37.18 36.95/20.81 81.04/94.17 33.16/79.06

9 63.22/96.79 92.25/15.90 35.77/4.76 82.04/98.84 34.80/77.88

Figure 4.6 and 4.7 shows that my CRAAE framework performs at least 1% bet-

ter than GPND when the number of the inlier classes is greater than two, and the

performance advantage grows when the proportion of outliers increases. Further-
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Table 4.2 : Performance of intra dataset novelty detection on MNIST dataset.

Inlier AUROC ↑ FPR at 95% TPR ↓ Detection Error ↓ AUPR-In ↑ AUPR-Out ↑

Classes GPND/CRAAE

1 99.92/99.76 0.06/0.42 1.01/1.94 99.96/99.89 99.70/99.09

2 99.50/98.65 1.47/6.14 2.85/5.24 99.78/99.29 98.23/96.91

3 92.57/93.50 48.65/33.82 13.46/13.43 96.84/96.76 75.49/83.03

5 91.14/91.91 38.90/28.59 17.08/15.12 95.57/95.22 79.56/84.08

7 77.63/88.24 77.63/42.21 29.61/18.59 89.48/92.93 53.90/74.72

9 68.98/93.18 93.10/27.10 34.47/12.22 84.83/95.94 40.33/83.68

more, Table 4.1 and 4.2 shows that other performance measurements are consistent

with the F1 score, which confirms that my proposed model outperforms GPND in

intra dataset novelty detection with two or more inlier classes.

In addition, I compare my intra dataset novelty detection performance with

the state of the art provided by One-Class novelty detection using GANs (OC-

GAN) ([92]). OCGAN previously reported the novelty detection performance with

AUROC metric for each class of the MNIST dataset (one class as inliers and other

classes as outliers), but it lacked experimental results for multiple inlier classes.

Therefore, I compare the performance of CRAAE with OCGAN for the experimen-

tal setup where inliers include only class ‘0’. The AUROC of my CRAAE is 99.76%

which is close to the 99.8% AUROC of OCGAN.

In summary, the results show that my CRAAE model outperforms GPND on

various datasets in intra dataset novelty detection when the number of the inlier

classes is greater than two or three. As shown in Figure 4.1, for a tighter bound-

ary (OCND approaches like GPND), having more inlier classes tends to shape a

more complex sample distribution that may lead to misclassification (i.e., classify-

ing inliers as outliers). CRAAE builds an accurate decision boundary that matches
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the complex sample distribution and then reduces this misclassification. Therefore,

the CRAAE performance gain in intra dataset novelty detection is more significant

when the number of inlier classes is larger. For example, for 7 class inliers, CRAAE

outperforms GPND by 26.21% for AUROC, 61.76% for FPR at 95% TPR, and

16.14% lower for detection error on the YouTube video traffic dataset. Similarly,

the performance gain on the MNIST dataset is 10.61% AUROC, 35.42% FPR at

95% TPR, and 11.02% reduction in detection error.

Inter Dataset Novelty Detection

For inter dataset novelty detection, based on the CRAAE framework, I propose

another approach to improve the decision boundary accuracy by adjusting the known

outlier generator mechanism. I simulate category components by sampling from the

Dirichlet distribution or directly using the discrete Uniform distribution. The con-

centration parameters of Dirichlet distribution are represented as a 1×class number

vector; every entry is 1 except the entry corresponding to the ground truth label,

which is 100. For example, if there are five classes, the concentration parameters of

Dirichlet distribution for the third class is [1, 1, 100, 1, 1].
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Figure 4.8 : Inter Dataset Novelty Detection (Inlier:YouTube Video).

I evaluate my CRAAE model on the network traffic dataset, treating YouTube

videos as the inlier dataset. Other network traffic subsets, including YouTube music
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audio traffic, Wikipedia web surfing traffic, and Netflix video traffic, are utilised as

outliers. According to the hierarchical characteristics of the network traffic datasets,

network traffic differs in terms of HTTP type (e.g., video, audio, and web surfing),

content platform (e.g., YouTube and Netflix), and content (e.g., different videos

or songs). Therefore, I divide the far distance outlier detection scenario into finer

scenarios. I assume that the distance between the YouTube video traffic inlier and

the web surfing traffic outlier is further than between the YouTube video traffic

inlier and the YouTube music (same platform) or Netflix video (same HTTP type)

traffic outlier. The experiment evaluates CRAAE model performance in both the

medium distance and far distance outlier detection scenarios. Instead of FPR at

95% TPR and detection error metrics, I measure TNR at 95% TPR and detection

accuracy so that the performance comparison from the histograms can be made more

clearly. I have conducted experiments under various conditions, such as with both

explicit and implicit calibration, with only implicit calibration, and with Dirichlet

distribution or uniform distribution category component. The performance obtained

with uniform and Dirichlet distribution category components are similar. I present

the best performance obtained with explicit calibration and the uniform distribution

category component in Figure 4.8. My CRAAE model advantages are significant

for both web surfing and YouTube audio traffic outliers (far and medium distance)

when compared with GPND. For Netflix video traffic outliers (medium distance),

both GPND and CRAAE models do not perform well, whereby their detection

accuracy and AUROC are about 70% and TNR at 95% TPR is below 50%.

To verify the universality of my CRAAE model, I applied it on image datasets.

Figure 4.9 shows the inter dataset novelty detection performance with CIFAR as the

inlier dataset and TinyImageNet and LSUN as outlier datasets. The results in Fig-

ure 4.9 are obtained without explicit calibration and with the Dirichlet distribution

category component. I compare the results with the state-of-the-art performance of
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Figure 4.9 : Inter Dataset Novelty Detection (Inlier: CIFAR).

the GPND (an OCND approach) and joint confidence loss (an MCOSR approach)

proposed in [67]. From Figure 4.9, I can see that CRAAE performs competitively

with the other two methods. The performance of CRAAE is better than GPND

on TinyImageNet and is better than joint confidence loss on LSUN. I note that my

CRAAE model only requires 40% of the number of parameters used in the joint

confidence loss model.

To summarize, as a unified model, CRAAE performs better than baseline GPND

in location agnostic (far, close, and certain medium distance) outlier detection and

is comparable to OCND and MCOSR methods in close and far distance outlier

detection, respectively.

Ablation Study

My proposal includes three enhancements, namely implicit calibration, explicit

calibration, and category component simulation. In “Intra Dataset Novelty Detec-

tion” and “Inter Dataset Novelty Detection”, I have demonstrated the combination

effect of the proposed approaches on different novelty detection scenarios, respec-

tively. I evaluate their contribution independently in this section. It is worth noting
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that the explicit calibration correlates to E and Dz modules, and the second and

fifth items of the objective function; the category component simulation correlates

to G and Dx modules, and the third and fourth items of the objective function; the

implicit calibration correlates to E, G, Dx and Dz modules and the whole objective

function. The modules in the proposed model framework are not isolated but rather

interact with each other.

In Figure 4.10, I present the performance comparison through applying the three

enhancements incrementally with the YouTube video subset as inliners and the other

three network traffic subsets as outliers. I notice that the implicit calibration can
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Figure 4.10 : Performance gained by adding implicit calibration (-RAAE), explicit

calibration (CRAAE) and category component simulation (Gaussian, Uniform or

Dirichlet distribution) incrementally. (Inlier: YouTube Video).

obtain about 3% to 10% performance gain compared to GPND on various metrics in

the far and medium distance (same HTTP type) scenarios. The explicit calibration

provides 10% to 50% performance gain in far, medium distance (same platform)

and close distance (demonstrated in Section 4.1.3) scenarios. In addition, the per-

formance gain with uniform distribution category component is 1% to 3%, 8% to

23%, and 2% to 7% on AUROC, TNR, and detection accuracy metrics in different

scenarios. Dirichlet distribution category component performs similar to the Uni-

form distribution in the far and medium distance (same platform) scenarios, but
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does not work on another medium distance (same HTTP type) scenario. In general,

the combination of implicit, explicit calibration and the Uniform distribution cate-

gory component simulation can achieve high novelty detection performance in most

of the scenarios.

Furthermore, the proposed CRAAE performs well not only in novelty detection

but also can achieve good multi-classification performance by leveraging the classi-

fication function of the encoder. I use a new metric “Multi-Accuracy (Multi-Acc)”

for multi-classification with the unknown class. The Multi-Acc computes the per-

centage of correctly classified samples, including known and unknown data in the

test process. If there are ten known classes, the unknown class will be labeled as

the eleventh class. The experimental setup and process are similar to the novelty

detection ablation study. The ratio of the outliers (the eleventh class) to inliers (the

ten known classes) is set as 1 : 10 to avoid data imbalance for multi-classification.

According to Table 4.3, category component simulation improves the performance

of the Multi-Acc metric by 1% to 5%. I also calculated the closed-set classification

accuracy for the YouTube video dataset (without outliers) using Gaussian, Uniform,

or Dirichlet distribution category components. The results are 96.01%, 97.27%, and

96.08%, respectively. The results approximate the 97.5% performance stated in [69],

indicating that my proposed approaches can keep a high performance level on both

novelty detection and multi-classification tasks.

4.1.4 Conclusion

In this section, I proposed CRAAE – a unified framework for accurate location

agnostic outlier detection. To build a more accurate decision boundary, I proposed

implicit and explicit calibration on the decision metric by introducing known outliers

into the training process. I also proposed to leverage uniform and Dirichlet noise

instead of Gaussian noise in generating known outliers. I evaluated my proposal on
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Table 4.3 : Multi-Accuracy performance gained by adding implicit calibra-

tion (-RAAE), explicit calibration (CRAAE) and category component simula-

tion (Gaussian, Uniform or Dirichlet distribution) incrementally (Inlier: YouTube

Video).

Outlier Dataset
Multi-Accuracy↑

-RAAE (G) CRAAE (G) CRAAE (U) CRAAE (D)

YouTube Music 86.41 90.53 87.54 91.76

Web Surfing 90.07 91.65 88.12 93.63

Netflix Video 88.63 87.48 87.52 87.37

network traffic datasets and image datasets for different outlier location scenarios.

The results demonstrate that CRAAE can achieve state-of-the-art performance for

any outlier location scenarios as a unified model on both datasets. CRAAE can also

achieve similar performance compared to OCND and MCOSR methods in close and

far distance outlier detection, respectively. Furthermore, CRAAE can be used for

multi-classification tasks and can achieve high performance.

4.2 Flexible Dirichlet Mixture Model (FDMM) Based Soft-

max Calibration

For the novelty detection topic, except for proposing the CRAAE model, I also

attempt a Flexible Dirichlet Mixture Model (FDMM) based softmax calibration

approach to improve novelty detection performance. The characteristic of soft-

max output vectors includes the sum of each vector entry equals one. The vector

corresponding to a category usually has a peak value at the corresponding entry.

Therefore, I assume the softmax output of multi-classification following a Dirichlet

Mixture Model distribution. I attempt to fit the mixture distribution through the
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softmax output vectors of training samples. I then compute the likelihood of the

softmax output for each test sample under the fitted distribution. I utilise this likeli-

hood to calibrate the original softmax output to decrease the over-fitting confidence

in deep learning models.

4.2.1 FDMM Introduction

The flexible Dirichlet mixture model [79] with K components can be written as:

fFD (s | Θ1, . . . ,ΘK) =
K∑
j=1

πjfD (s | αj) , (4.11)

where Θj = {αj ,πj , τ} is the group of parameters for component j, αj = α + τej

is the series of concentration parameter for jth component, where ej is a canonical

vector. Each entry of ej is 0 except for the jth one which is 1. πj is the mixing

proportion for jth component and it must be positive. The sum of each π equals

one. fD(s | α) is expressed as:

fD(s | α) =
Γ (α+)∏K
h=1 Γ (αh)

(
K∏

h=1

sαh−1
h

)
, (4.12)

where α+ =
∑K

j=1 αj.

πj (s | Θ) =
πjfD (s | αj)∑K
h=1 πhfD (s | αh)

= πj

Γ(αj)

Γ(αj+τ)
sτj∑K

h=1 πh
Γ(αh)

Γ(αh+τ)
sτh

, j = 1, . . . , K.

(4.13)

Given n independent samples si, i = 1, . . . , N , the completed sample vector

Sc is given by:

Sc = (S,Y ) = (s1, . . . , sN ,y1, . . . ,yN) , (4.14)

where the K-dimensional label vector yi = (yi1, . . . , yiK) (i = 1, . . . , N) denotes

the missing data. When the ith sample is from the jth component of the mixture



69

model, yij equals to 1 and the other entries of yi equal to 0. The complete data

log-likelihood can be written as:

logLc(Θ) =
N∑
i=1

K∑
j=1

yij {log πj + log fD (si | αj)} . (4.15)

Here I use the EM algorithm to estimate parameters of a flexible Dirichlet mix-

ture model [79]. I introduce the EM algorithm as follows.

E-step: I have the observed samples and estimated parameters for the current

step k, S = (s1, . . . , sn)Θ
(k) =

(
α(k),π(k), τ (k)

)
. Then I can calculate the conditional

expectation of the complete-data log-likelihood

logLc(Θ
(k)) =

∑K
j=1

∑N
i=1 πj

(
si | Θ(k)

)
×
{
log π

(k)
j + log fD

(
si | α(k) + τ (k)ej

)}
,

(4.16)

where πj

(
si | Θ(k)

)
represents the likelihood that si belongs to the jth component

of the mixture given Θ(k).

M-step:

Θ(k+1) = argmax
Θ

∑K
j=1

∑N
i=1 πj

(
si | Θ(k)

)
×{log πj + log fD (si | α+ τej)}

. (4.17)

Maximize Equation 4.16 to obtain the maximum likelihood estimates of the

parameters (see Equation 4.17). In particular, I have

π̂
(k+1)
j =

1

n

N∑
i=1

πj

(
si | Θ(k)

)
, (j = 1, . . . , K − 1), (4.18)

Here, I apply a Newton- Raphson method [86] to calculate α̂(k+1) and τ̂ (k+1), see

Equation 4.19, 4.20 and Equation 4.23, 4.24.

gα = ∇ℓ (α | S) =


∑N

i=1

∑K
j=1 πj

(
si | Θ(k)

)
(Ψ (α+ + τ)−Ψ(α1 + τej1) + log si1)

...∑N
i=1

∑K
j=1 πj

(
si | Θ(k)

)
(Ψ (α+ + τ)−Ψ(αK + τejK) + log siK)

 ,

(4.19)
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Hα = ∇2ℓ (α | S) =


Hα1,1 . . . Hα1,K

...
...

...

HαK,1
. . . HαK,K

 , (4.20)

for h = 1, . . . , K, I can deduce:

Hαh,h
=

N∑
i=1

K∑
j=1

πj

(
si | Θ(k)

)
(Ψ′ (α+ + τ)−Ψ′ (αh + τejh)) , (4.21)

Hαh,−h
=

N∑
i=1

K∑
j=1

πj

(
si | Θ(k)

)
Ψ′ (α+ + τ) , (4.22)

gτ =
∂ℓ (τ | S)

∂τ
=

N∑
i=1

K∑
j=1

πj

(
si | Θ(k)

)
(Ψ (α+ + τ)−Ψ(αj + τ) + log sij) , (4.23)

Hτ =
∂2ℓ (τ | S)

∂τ 2
=

N∑
i=1

K∑
j=1

πj

(
si | Θ(k)

)
(Ψ′ (α+ + τ)−Ψ′ (αj + τ)) , (4.24)

where

Ψ(x) =
d log Γ(x)

dx
and Ψ′(x) =

dΨ(x)

dx
.

Then I can obtain

α̂(k+1) = α(k) −H−1
α gα, (4.25)

τ̂ (k+1) = τ (k) − gτ/Hτ . (4.26)

For component parameters, I set a joint prior distribution G0 and introduce

indicator variables zi, i = 1, . . . , n, then the sample generation process can be written

as:

si | zi,Θ ∼ fD (αzi)

zi | π ∼ Mult (π1, . . . , πK)
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π | β ∼ Dir(β/K, . . . , β/K)

αj ∼ Gi drawn from a Dirichilet Process, Gi ∼ DP (γ,G0), where G0 is a

Gamma distribution.

4.2.2 FDMM Initialization Algorithm

Algorithm 1 Pseudocode for FDMM Initialization

Required: C = trained classification neural network model

Required: K = number of class

Required: Dmle = maximum likelihood estimation function of Dirichlet distri-

bution

Required: (X,y) = (x1, . . . ,xN ,y1, . . . ,yN), labeled known data

1: procedure Pretrain(X ,y)

2: Softmax layer output S = C (X)

3: Gather S into K groups {S1, . . . ,SK} according to labels y

4: for i = 1 to K do

5: αi = Dmle (Si)

6: π
(0)
i = len (Si) /len (S)

7: end for

8: α(0) = mean(sum(α, axis = 0)− diag(α))

9: τ (0) = diag(α)−α(0)

10: Return α(0), τ (0), and π(0)
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4.2.3 FDMM Inference Algorithm

Algorithm 2 Pseudocode for FDMM EM procedure

Required: Θ(0) =
(
α(0), τ,π(0)

)
, initial parameters for this FDMM model

from Pretrain procedure.

1: procedure EM-FDMM(S,Θ) ▷ Training fixed components FDMM

2: Calculate k = 0 step logLc(Θ
(0)), using Eq. 4.16

3: while logLc(Θ
(k)) ≥ logLc(Θ

(k−1)) do

4: Update mixing proportions π̂(k+1), using Eq. 4.18

5: Calculate k+1 step logLc(Θ
(k+1)), using Eq. 4.16

6: Compute gτ using Eq. 4.23 ▷ First derivative

7: Compute Hτ using Eq. 4.24 ▷ Second derivative

8: Update τ̂ (k+1) using Eq. 4.26

9: for i = 1 to K do

10: Compute gαi
using Eq. 4.19 ▷ ith element of gradient

11: Compute Hαi,i
using Eq. 4.21 ▷ Diagonal elements of Hα

12: Compute Hαi,−i
using Eq. 4.22 ▷ Other elements of Hα

13: end for

14: Update α̂(k+1) using Eq. 4.25

15: Return: α̂, τ̂ , and π̂

4.2.4 Experimental Setup and Results

I treat softmax output as samples drew from Dirichlet distribution. The soft-

max output of the multi-class sample set should follow a Dirichlet Mixture Model

distribution. I fit a group of synthetic samples to a fixed component DMM.

The DMM setting is inspired by FDMM, where I can use fewer parameters to

describe the mixture distribution. For normal DMM, each component has a set
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of parameters Θj = {αj ,πj}. For FDMM, the parameters for component j is

Θj = {αj ,πj , τ}. αj = α + τej, is the series of concentration parameter for jth

component. Based on the characteristic of softmax output, it is intuitive to only

use the same α for each component and use the τ to adjust the softmax peak value

position according to its corresponding class.

I use the parameter inference EM algorithm stated in Section 4.2.3 to infer the

parameters of FDMM. Figure 4.11 shows the inference performance based on this

algorithm simply. The inference for parameter π is very accurate. For this reason,

this information is not illustrated in this Figure. It is clear that my algorithm works

well on a synthetic dataset. For different α and τ and initialization parameters,

the training convergence speed is different. When α = (5, 7, 9) and τ = 50, the

training process can quickly achieve convergence in about 20 epochs. However,

the training process is highly dependent on the choice of initialization parameters.

If initialization parameters are not suitable, the training process can not achieve

convergence. Therefore, I propose an initialization algorithm stated in Section 4.2.2

to improve the model inference.

Based on this EM algorithm model, I then simulate the novelty detection pro-

cess. I simulate inlier softmax output through Dirichlet distribution sampling. For

example, α = (5, 5, 5, 5, 5), τ = 50,π = (0.2, 0.2, 0.2, 0.2, 0.2). For class ‘0’, its

αj = (55, 5,5,5,5). I create 100 samples for each class and split them into train-

ing and test set with a ratio 8 : 2. I also slice 10 samples of training set for pre-

training the initialization parameters. Other training samples are used to inference

the parameters α, τ, π.

For outlier test samples, I still simulate them through Dirichlet distribution

sampling with α = (1, 1, 1, 1, 1), τ = 0,π = (0.2, 0.2, 0.2, 0.2, 0.2). The sample

number of the outlier is set the same as the total test sample number, that is, 100
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Figure 4.11 : Dirichlet Mixture Model EM Inference Performance on Synthetic

Dataset.

samples, according to the above example setting. The outlier and inlier test samples

are concatenated to test the open set recognition performance of my model. After

the parameter inference process, I calculate the likelihood of a test sample belonging

to this DMM distribution and leverage it as the calibration factor of the softmax
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output.

My calibrated softmax threshold (based on DMM) novelty detection experiment

setting is as below.

αin is a vector with same entry value. In my experiment, this entry value is

5. τ is 50. The component number is 10, and the mixing proportion π for each

component is the same. There are 100 synthetic samples for each inlier class. The

proportion of samples for pre-training, training, and test is 10:70:20. The amount of

outlier test samples is the same as the inlier test samples. The entry value of αout

is 1.0.

First, I fix the above settings, only changing the component number. The result

is listed in Table 4.4. The performance of both approaches is nearly the same even

though it looks strange because classifiers usually perform better for fewer classes.

It is reasonable in my experiment setting because the softmax output is generated

perfectly and independent of the number of inlier classes.

Then I fix the component number as 10 and kept other settings except for τ ,

see the result in Table 4.4. I note that my approach can outperform the softmax

threshold method slightly when τ is equal to or smaller than 30. When the original

softmax output is more distinguishable, my approach impacts the result less. It is

worth mentioning that my approach does not reduce the performance of the original

approach. My approach keeps the same performance as the original approach in

the worst condition. For this reason, my approach can be applied to any exiting

softmax output based novelty detection and can be used in conjunction with other

novelty detection strategies.
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Table 4.4 : Performance of DMM probability calibrated softmax threshold novelty

detection on synthetic dataset.

τ AUROC ↑ FPR at 95% TPR ↓ Detection Error ↓ AUPR-In ↑ AUPR- Out ↑

(Inlier Classes = 50) Softmax/Softmax+DMM

10 98.96/98.96 8.5/8.5 3.5/3.5 98.29/98.28 99.25/99.25

20 99.46/99.46 4.75/3.75 2.25/2.25 99.34/99.34 99.58/99.58

30 99.67/99.67 3.67/3.67 1.92/1.92 99.64/99.64 99.72/99.72

τ AUROC ↑ FPR at 95% TPR ↓ Detection Error ↓ AUPR-In ↑ AUPR- Out ↑

(Inlier classes = 10) Softmax/Softmax+DMM

50 98.96/98.96 8.5/8.5 3.5/3.5 98.29/98.28 99.25/99.25

40 97.05/97.05 19.5/19.5 6.75/6.75 95.29/95.28 97.79/97.79

30 90.95/90.98 42.0/41.0 14.5/14.5 86.02/85.99 93.19/93.23

20 73.14/73.9 82.5/78.5 30.25/28.75 64.21/64.54 77.6979.19

10 32.36/ 39.79 99.5/1.0 50.0/49.75 38.08/40.89 38.8144.28

4.2.5 Conclusion

To the best of my knowledge, my proposed FDMM based softmax calibration

approach is the first one that treats the softmax output of multi-classification as a

Dirichlet Mixture Model distribution. This idea is novel, and its novelty detection

performance can be better than the basic approach based on the softmax threshold

when τ is equal to or smaller than 30. However, the performance improvement is

not significant. Therefore, I did not implement more experiments for this approach.

4.3 Summary

In this chapter, to answer the research question, “How to handle classification for

previously unseen classes in the open world?” I conduct my work from two aspects,

model innovation and algorithm innovation. I propose a new model framework
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CRAAE and a novel FDMM-based novelty detection method. CRAAE, as a unified

model for different outlier location scenarios, can achieve state-of-the-art perfor-

mance. Moreover, CRAAE can maintain good multi-classification performance by

leveraging its encoder as the classifier. In addition, I also explore novelty detection

techniques through the FDMM-based method, which for the first time proposes to

assume the softmax output of multi-classification as a Dirichlet Mixture Model dis-

tribution. It can outperform the basic approach based on the softmax threshold,

though its performance improvement is limited compared to the improvement gained

through the CRAAE model.

In summary, driven by addressing the application research question for encrypted

network traffic identification in the open world, I have made contributions to the

field of novelty detection through an effective model framework and the introduction

of a novel idea for further exploration.
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Chapter 5

Few-Shot Learning for Encrypted Network Traffic

in the Open World

In Chapter 4, I explored new methods for novelty detection to address the classifi-

cation of previously unseen classes in the open world. However, the best-performing

model is only trained for a specific classification task (e.g., 10 videos or 10 digits).

The trained model does not generalize when the identification task changes (e.g.,

to another 10 videos or 10 characters). It is necessary to collect new samples for

these new tasks to train the model again, which is time-consuming. To this end, in

this chapter, I address this research question “How to tackle dynamically changing

classification tasks with few samples in the open world?”

Few-shot learning is a promising method to adapt an already trained model

to new classification tasks using only a limited, in some extreme cases, only one

sample from each new class. Major few-shot learning approaches include distance

metric based methods, model architecture based methods, optimization based, and

data augmentation based methods. Though few-shot learning recently has been

applied to network analysis, its application in fine-grained encrypted network traffic

identification has yet to be explored much. In addition, classic few-shot learning

models usually focus more on closed-world than open-world tasks. When open-world

tasks (i.e., novelty detection or open-set recognition) and few-shot classification are

considered together, distance metric based few-shot learning models can easily adapt

open world by using similarity to classify a sample into a known class or identify it

as an unknown class. Therefore, I select SNN, a classic and widely used distance

metric based model, as the basic model architecture for my research for open-set
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few-shot learning. My subsequent experiments also validate that SNN outperforms

other few-shot learning models.

To address the limitation of traditional novelty detection and few-shot learning

models, I propose an SNN based framework that contains four key ideas in data

augmentation, model architecture, decision metric, and model selection aspects.

i) To adapt dynamically changing classification tasks, more classes in the train-

ing set will improve the model’s generalization ability. Hence, data augmentation is

a promising way to improve model performance without time-consuming data col-

lection. In addition, inspired by the previous work for novelty detection in Chapter

4, it is obvious that adding generated samples into the training process can achieve

better novelty detection performance. However, the training samples of SNN are

special. It is a sample pair consisting of two samples. If the two samples are from

the same class, the sample pair is labeled as positive, otherwise labeled as nega-

tive (see Figure 5.1. Therefore, I propose a data augmentation method to obtain

synthetic samples for both negative and positive sample pairing.

ii) In the test process of SNN, each query sample needs to pair with each sample of

support set (classification task), and the sample pair is fed into the trained model to

obtain a similarity score for classification. For open-set recognition, there should be

a reasonable similarity score threshold to identify the query sample as an unknown

class. Considering that the support set can be used to generate negative pairs,

I utilise them to help the model understand the negative similarity distribution.

Based on the exploration of the Dirichlet Process Mixture Model in Chapter 4, I use

DPGMM in this chapter to represent the negative similarity distribution.

iii) Based on the feasibility evaluation of the CNNs model in Chapter 3, I used

CNNs as the shared network of SNN. Utilizing the characteristic of CNNs that dif-

ferent layers of CNNs can produce features with different degrees of discrimination,
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I use the model to map the input to multiple feature spaces and obtain different

similarity scores to work together.

iv) Compared to classic few-shot learning approaches, SNN constructs training

batches without dependence on the number of support classes (N-way) of each query

task. It is an advantage for training because training once is enough to query

samples with any number of support classes. However, the characteristic brings

the problem for testing about selecting the best model/models for different N-way

one-shot validation. I combine multiple N-way validation results using an ensemble

learning mechanism to choose the best model.

These four ideas are referred to as: bidirectional dropout data augmentation,

DPGMM based task adaptive open-set recognition metric, hierarchical cross-entropy

loss, and multi-model ensemble. Next, I will explain them in detail. My proposed

model pipeline is shown in Figure 5.1. This figure explains the training, validation,

and test process and the construction of the training pair and test batch. It would

be more clear about how and where to apply my proposed ideas with this figure.

Next, I will present the details of these ideas, including methodology, experimental

setup, and results.

5.1 Methodology

5.1.1 Bidirectional Dropout Data Augmentation

Data augmentation increases the variety of training data which is critical for deep

learning, especially for few-shot learning. Data augmentation usually expands the

dataset in two ways; i) extend the class diversity by generating new items as novel

classes [62, 139], ii) enrich the existing class samples by using the new generated

items as extra samples of the same class [7, 128, 141]. However, to the best of

my knowledge, existing data augmentation approaches, for example, deep learning
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Figure 5.1 : Model Pipeline.
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based methods (e.g., feature space augmentation and GAN based augmentation) as

well as geometric and photometric transformation based approaches [113], do not

directly provide a similarity metric to measure the similarity between the generated

sample and the given original sample during data generation. For example, it is

difficult to distinguish which is more similar to the original image between the top-to-

bottom flipped image and the horizontally mirrored image. During the GAN-based

data augmentation, the discriminator output can be utilised as a similarity metric.

However, each generated sample has a unique similarity score, which cannot be

controlled or set before sample generation. Hence these techniques are not directly

applicable for generating both within-class and novel-class samples concurrently.

In light of this, using dropout provides advantages over other data augmentation

methods.

In deep learning, dropout refers to randomly ignoring units (e.g., nodes or pixels)

during the training phase with a certain probability p. Dropout is often applied to

the feature space of a neural network to prevent overfitting. In [63], dropout was

used on the input space as a data augmentation method. Encrypted network traffic

for each video is represented as temporal bins of a specific time interval and the total

number of packets or other measurable features in each bin [69]. Therefore, dropout

for network traffic is to randomly select some bins and set them as zero. If I treat

the network traffic of a video as a time sequence signal, dropout for this network

traffic can be regarded as random packet losses caused by channel interruptions. The

dropout probability p controls the ratio of lost packets. The range of p is from 0.0

to 1.0, and the larger the value of p, the more packets will be lost. Setting p = 0.5

means 50% of information is discarded. Therefore, 0.5 is used as the threshold

to distinguish whether a dropout sample is more similar to or different from the

original. The profiles of the network traffic after dropout with different probabilities

are shown in Figure 5.2, which also validates that a threshold of 0.5 is reasonable.
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I notice that the essential characteristics (e.g., spike location) and shape pattern

of the network traffic after dropout could be almost the same as the original one

when p is small enough (below 0.5), but it also could be significantly different from

the original one when p is large (over 0.5). That is, I can adjust the similarity of

the generated profiles and their original ones by changing the dropout probability

p. I set positive dropout probability ppos and negative dropout probability pneg to

respectively generate within-class samples (i.e., positive sample) and samples of a

novel class (i.e., negative sample).
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Figure 5.2 : Network Traffic Patterns Based on Different Dropout Probabilities p.

I tune hyperparameters ppos and pneg through a two-step traversing method.

First, I only focus on tuning ppos by varying ppos from 0.1 to 0.4 (below the threshold

0.5) with a step interval of 0.1. In this situation, I set pneg as 0.0, which means no

dropout for negative sampling to avoid performance interference. Next, ppos is fixed

as the probability value that performs best, and I adjust pneg from 0.5 to 0.9 (not

small than the threshold 0.5) with a step interval of 0.1 to seek the best-performing

pneg.

5.1.2 DPGMM Based Task Adaptive OSR Metric

SNN measures the degree of similarity of two inputs (i.e., sample pair). The two

inputs are fed into two identical neural networks (with the same architecture and

weights). The neural networks map the two inputs into a feature space and form

new representations. Then the distance between the new representations of the two
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inputs is calculated. Finally, the distance is fed to a fully collected layer to obtain

a scalar, i.e., the similarity score.

After training based on the binary cross-entropy loss, the SNN’s normalized

similarity scores (applying the sigmoid function on similarity scores) of positive pairs

(two inputs are from the same class, labelled ‘1’) and negative pairs (two inputs

are from different classes, labelled ‘0’) should approach 1.0 and 0.0, respectively.

Therefore, when not normalized, the similarity scores of positive and negative pairs

can be viewed as clusters centered around the mean of the similarity scores, which

are near large positive and negative values, respectively. Additionally, different tasks

may yield varying similarity scores that correspond to different cluster centers. For

example, the similarity score between two different handwritten digits ‘1’ is likely

to be higher than the similarity score between two different breeds of cats. I utilise

the support set of a query task (only one sample for each support class in one-shot

learning) to find the negative similarity distribution. If the maximum similarity score

of a query task has a high likelihood under the negative similarity distribution, the

query sample is prone to be identified as an unseen class.

For each query task, I construct negative pairs based on the N -way one-shot

support set following the
(
N
k

)
∗. Here, N denotes the number of support classes, k

is set to 2. For example, 5-way and 10-way one-shot support sets can construct 10

pairs and 45 pairs, respectively. I also can integrate the dropout data augmentation

method easily into the negative pair construction process. I create novel class sam-

ples according to the tuned negative dropout probability and leverage the generated

and original samples of the support set to construct negative pairs.

I then feed these negative pairs into the trained SNN model to obtain similarity

scores. The similarity scores of negative pairs can be grouped into many clusters

∗The combination operator with k items selected from a collection of size N .
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according to various dissimilarity levels. For example, the samples in the support

set may come from not only diverse fine classes but also various coarse classes.

Specifically, the similarity score whose negative pair consists of samples from the

same coarse class (e.g., YouTube video traffic/cat) but different fine classes (e.g.,

(YouTube traffic of video 1 and video 2)/(Persian and Siamese cat)) should fall

into a different cluster from the one whose negative pair consists of samples from

different coarse classes (e.g., (YouTube and Netflix video traffic)/(cat and bird)).

The similarity scores of a cluster are real-valued random variables distributed near

a center (the mean of similarity scores of the cluster). Therefore, it is reasonable to

fit the similarity scores of a cluster to a Gaussian distribution and to fit the similar-

ity scores of several clusters to the Gaussian Mixture Model (GMM) distribution,

which is widely used for clustering. For training the GMM, I need to preset the

hyperparameter K, which represents the number of mixture components (clusters).

However, the levels of dissimilarity would vary with the dynamically changing task,

making it challenging to directly infer the number of clusters K. Therefore, I utilise

a non-parametric Bayesian-based infinite mixture model DPGMM to identify the

effective number of components automatically.

As a generative model, a sample point x can be obtained through the following

steps. First, I represent the Dirichlet Process as below ([15, 43], the random measure

G is distributed with concentration parameter α and base distribution H:

G | α,H ∼ DP (α,H). (5.1)

Then, I can draw mean vector µi and covariance matrix Σi of Gaussian distri-

bution for the ith sample point from G:

(µi,Σi) | G ∼ G. (5.2)

Finally, I generate a sample point by drawing them from a Gaussian distribution
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with parameters µi and Σi:

x | (µi,Σi) ∼ N (x | µi,Σi) . (5.3)

Here, I utilise the similarity scores sneg obtained from the constructed negative

pairs of each new task to fit a DPGMM distribution using the variational inference

method:

p (s | Θ1, . . . ,ΘK) =
K∑
j=1

πjN (s | µj ,Σj) , (5.4)

where K is the number of fitted clusters, s denotes any similarity score, Θj =

{πj,µj ,Σj} is the set of parameters for jth cluster. πj is the mixing proportion.

Then I compute the log-likelihood of each sneg,l under the current fitted distribution,

where l ∈ {1, . . . , Nneg}, Nneg is the number of constructed negative pairs, and then

calculate their mean µLL and standard deviation σLL:

µLL =
1

Nneg

Nneg∑
l=1

log p(s = sneg,l|Θ1, . . . ,ΘK), (5.5)

σ2
LL =

1

Nneg

Nneg∑
l=1

(log p(s = sneg,l|Θ1, . . . ,ΘK)− µLL)
2. (5.6)

Next, I compute the log-likelihood for the maximum similarity score sTmax of

a test pair batch T constructed by paring each query sample with the samples of

the support set. Then I standardize this log-likelihood with µLL and σLL to reduce

bias. Finally, I leverage the maximum similarity score and the standardization log-

likelihood to build a new OSR metric:

sTmax − β[(log p(s = sTmax|Θ1, . . . ,ΘK)− µLL)/σLL]. (5.7)

Here, I select Z-score as the normalization method because it can handle out-

liers well compared with another common normalization method, Min-max scaling.
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Min-max scaling can obtain data with the same scale but can not handle outliers

well. The log-likelihood for sTmax can be out of the range of the log-likelihood for

sneg,l. Therefore, I select the Z-score method, which can handle outliers more effec-

tively. I treat the second term of Equation 5.7 as a calibration term for balancing

the confidence of the maximum similarity score. The hyperparameter β serves as

the calibration factor and its optimal value is determined through experiments, as

detailed in Section 5.3.2.

5.1.3 Hierarchical SNN

It is commonly known that different layers of CNNs can produce features with

varying degrees of discrimination ([137]). For example, the extracted features of a

facial image from shallow to deep layers can be the vertical edge, face outline, and

other more detailed facial features, such as the eyes, nose, and mouth. Features

extracted from coarse to fine level with different depths of CNNs have been used for

hierarchical classification ([112]).

The traditional SNN model maps the inputs to a single feature space, where the

distance between two inputs represents their similarity. Considering the character-

istics of CNNs, I map the inputs to multiple feature spaces to obtain a range of

similarity scores with varying degrees of discrimination. Then I utilise the coarse

and fine level labels of each sample, along with the corresponding features (similar-

ity scores), to construct a hierarchical cross entropy loss function, thereby achieving

higher model robustness. In the encrypted network traffic dataset, video platforms

and specific videos correspond to coarse and fine labels; similarly, alphabets and

characters in the Omniglot dataset.

The difference in the Hierarchical SNN frame (see Figure 5.3) from the classical

SNN is that there are multiple level features extracted from the network G(x). The

same level features of x1 and x2 are used to compute the Manhattan distances
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of this level. Then the different level distances are fed to a fully collected layer to

obtain the similarity scores, which are utilised to calculate the cross entropy with

their corresponding level labels.

Network G(𝒙)

Network G(𝒙 )

Shared 
weights

Same 
architecture

Input 𝒙𝟏

Input 𝒙2

|| 
G

(𝒙
𝟏
𝟏
) -

G
(𝒙
𝟐
𝟏
) |

| 1
…

|| 
G

(𝒙
𝟏
𝒏
) -

G
(𝒙
𝟐
𝒏
) |

| 1

G(𝒙𝟏𝟏)

G(𝒙𝟐𝟏) FC
 la

ye
r 

×
1

…
FC

 la
ye

r 
×

1

Output 𝒔𝟏

…

G(𝒙𝟏𝒏)

…
G(𝒙𝟐𝒏)

…

Output 𝒔𝒏

…

Figure 5.3 : Hierarchical Siamese Neural Network Framework.

The network architecture of G(x) is shown in Figure 5.4. This architecture is

based on a four layer convolutional backbone. The filter settings of each convo-

lutional layer and max pooling kernel size are designed for the encrypted network

traffic dataset. Here, I only gave a specific setting for the last dense layer because I

set other dense layers to have the same output dimension as the last one. The input

dimension of these layers is decided by the output of their corresponding flatten

layers. For example, the dense layer kernel for G(x3) is 6528× 4096. On the basis

of this framework, I propose a hierarchical cross entropy loss function to maintain

the consistency of loss functions on multiple levels:

LH = E

{∑
n

γn [yn log sn + (1− yn) log (1− sn)]

}
, (5.8)

where γn is the weighted factor for the nth level cross entropy loss, sn is the nth

similarity score output of hierarchical SNN (see Figure 5.3), yn is the corresponding

nth level label for a sample pair. I will tune hyperparameters γn to achieve high

performance through experiment evaluation.



89

G(𝒙𝟐) G(𝒙𝟑)G(𝒙𝟏)

C
o

n
v

1,
 6

4,
 3

2,
 1

, 0

M
ax

P
o

o
l

2 
1

C
o

n
v

64
, 1

28
, 1

, 1
, 0

R
e

LU

M
ax

P
o

o
l

2 
1

C
o

n
v

12
8,

 1
28

, 1
, 1

, 0

R
e

LU

M
ax

P
o

o
l

2 
1

C
o

n
v

12
8,

 2
56

, 1
, 1

, 0

R
e

LU

Fl
at

te
n

D
e

n
se

9
2

1
6

, 4
0

9
6

 

Si
gm

o
idInput 𝒙 G(𝒙𝟒)

Sigmoid

Dense

Flatten

Sigmoid

Dense

Flatten

Sigmoid

Dense

Flatten

Figure 5.4 : Hierarchical Network Architecture.

5.1.4 Multi-model Ensemble

An advantage of an SNN compared to other classic few-shot learning approaches,

including matching and prototypical models, is that the construction of training

batches is independent of the query task. This advantage implies I only need to

train once to query samples with any number of support classes. Therefore, the

problem for testing is how to select the best model/models through validation.

In [62], the authors utilised validation error as the model selection indicator and

selected the best-performing model through a 20-way one-shot validation set. The

selected model is then applied only on the 20-way one-shot test set. I notice that the

selected model is not always the same based on different N -way one-shot validation

sets. Therefore, I propose a multi-model ensemble strategy to improve the model

selection robustness, thus enhancing the classification accuracy.

The multi-model ensemble strategy includes two parts. First, I select the best-

performing models through validation. At inference time, I then apply these models
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for ensemble classification and open-set recognition.

I use both the best accuracy and the best average accuracy of five successive

iterations as the model selection metric. Considering storage space and the number

of candidate models, I save the training model every 100 iterations and evaluate

these models with different N -way one-shot support sets, such as 3-way, 5-way, and

10-way. I record the best accuracy and the best average accuracy for each kind

of support set. To ensure the selected models are more likely to converge, I select

the models with the best accuracy or the best average accuracy at the end of the

training process. For instance, the best accuracy and the best average accuracy of

3-way, 5-way, and 10-way query tasks occurs respectively at the iterations 5000 and

6000 to 6400, 8000 and 7800 to 8200, 8800 and 9900 to 10300, then I select the

models from the five iterations 9900 to 10300 as the best-performing models. If the

best accuracy occurs later than the best average accuracy, I only select one model.

For ensemble classification and open-set recognition, I apply different methods. I

utilise voting to classify each sample to the class with the highest share of votes. For

open-set recognition, I utilise the mean of the open-set recognition decision metric

across all best-performing models to identify whether a sample belongs to an unseen

class.

5.2 Experimental Setup

5.2.1 Datasets and Evaluation Protocol

To demonstrate my contributions in both network analysis and computer vision

domain, I use the collected network traffic dataset and the Omniglot dataset. The

Omniglot dataset is a widely used public image dataset in the few-shot learning field.

It is usually used as the benchmark dataset in few-shot learning to compare the

performance of different models, like MNIST/CIFAR/ImageNet datasets in multi-
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classification.

For the encrypted network traffic dataset (named as few-shot learning dataset

in Section 3.1.1), we collected 60 classes of video traffic from three different video

platforms (YouTube, Netflix, and Stan, 20 classes per platform). I randomly split

60 classes into training, validation, and test sets with a ratio of 4:1:1, which is just

enough to construct 10-way 1-shot validation/test while maximising the training

diversity. Each class has 100 samples (i.e., 100 runs for each video). I represent

each video streaming as a vector of 500× n, where n is the number of the features,

and 500 is the number of bins over the 3 minutes video streaming length. Based on

the feature engineering result shown in Figure 3.2 and the experimental verification

shown in Appendix (Table 7.4), I only select the top two important features to boost

computational efficiency and save computer memory capacity. The features used are

the number of non-data frames on the down-link (F3 (D)) and the number of data

frames on both the up-link and down-link (F1 (C)).

The Omniglot dataset [65] contains 1,623 different handwritten characters from

50 different alphabets. Each character has 20 samples with a size 105 × 105 drawn

by 20 different people. The Omniglot dataset is split into a background set and an

evaluation set. The background set consists of 30 alphabets, and the evaluation set

consists of 20 alphabets. I use the background set to construct a training set and

divide the evaluation set evenly into validation and test set (i.e., each set has 10

alphabets).

I use accuracy as the evaluation metric for closed-set classification and the Area

Under the Receiver Operating Characteristic Curve (AUROC) for OSR, where the

ROC curve is a graph with the true positive rate (TPR) as the Y-axis and the false

positive rate (FPR) as the X-axis across different decision thresholds. For binary

classification (OSR) models, the accuracy metric depends on the threshold selection,
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but AUROC shows its ability to discriminate between inliers (positive samples) and

outliers (negative examples) from a more general perspective without the need of

selecting a specific threshold.

5.2.2 Implementation Details

In my experiments, I select the ratio of positive and negative training pairs

as 1:1 for data balance and choose Adam as the model optimizer based on the

experimental results shown in Table 7.4. According to the original SNN setting

in [62], the training pair batch is 128, and the learning rate is selected from 10−1,

10−2, 10−3 and 10−4. The model performs similarly with learning rates 10−3 and

10−4. Subsequently, I fine-tune the learning rate from 2×10−4 to 9×10−4 and select

the best-performing one, 6 × 10−4. In addition, the number of training iterations

in [62] for the Omniglot is about 46k (training samples (30k) divide the batch size

(128) and times the epoch (200)). I round the iterations to 50k for the Omniglot

dataset. For the encrypted network traffic dataset, I traverse the iterations from 10k

to 50k with the interval of 10k and select the best-performing iterations of 20k. I

construct 1200/1200 query tasks for the test/validation set, which consist of samples

of known and unseen classes with a ratio of 1:1. The network architecture used

for the encrypted network traffic dataset is shown in Figure 5.4. For the Omniglot

dataset, I also use the framework of Figure 5.4, but the network architecture details,

such as the convolutional backbone, filter settings, the max pooling kernel size,

activation functions, and the dense layer setting, are stated in [62]. It is worth

mentioning that the different dense layer kernels in Figure 5.4 have the same output

dimension (4,096) and the input dimension depends on the output of their previous

flatten layer.
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5.3 Results

In this section, I first present the performance comparison among several few-

shot learning approaches to verify that SNN can handle both closed-set classification

and OSR tasks on the encrypted network traffic dataset. Next, I introduce the

hyperparameter selection process of my proposed model. Finally, I present the

ablation study on both the encrypted network traffic dataset and the Omniglot

dataset to evaluate the contribution of each proposed approach.

5.3.1 Performance Comparison Among Different Models

Table 5.1 presents the experiment results of SNN, MAML, and PEELER in terms

of accuracy and AUROC for 3-way, 5-way, and 10-way one-shot query tasks. For

MAML and PEELER, I use the same settings as [6] (4 layer convolutional backbone)†

and [72] (ResNet-10 backbone)‡ except for a few minor modifications according to

the input data dimension. The MAML paper did not tackle the open-set problem,

thus I only list its accuracy results. It is significant that SNN outperforms PEELER

and MAML, especially in 10-way one-shot query tasks. Therefore, I use the SNN

model as the baseline.

Table 5.1 : Performance comparison among different models on the encrypted net-

work traffic dataset.

N way SNN MAML† PEELER‡

1 shot Accuracy/AUROC

3 94.7/93.6 92.1/- 92.4/89.1

5 90.7/90.7 87.9/- 89.8/85.4

10 82.7/87.0 65.7/- 70.2/77.1

†https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch

‡https://github.com/BoLiu-SVCL/meta-open

https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
https://github.com/BoLiu-SVCL/meta-open
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5.3.2 Hyperparameter Selection

The hierarchical SNN model consists of G(x3) and G(x4) to construct a two

level cross entropy loss. I set the fine loss factor as 1.0 for G(x4) based on early

experiments. Also, as can be seen from Table 5.1, fine cross entropy loss can operate

independently to achieve good performance. Therefore, I retain this to dominate the

total cross entropy, and only fine tune the coarse loss factor. I present performance

results with coarse loss factors forG(x3) from 0.0 (original SNN) to 1.0 in Figure 5.5.

I select 0.3 as the coarse loss factor for subsequent experiments considering both

classification and OSR performance.

Figure 5.5 : Coarse Loss Factor Selection.

For Bidirectional Dropout Data Augmentation, I assume 0.5 as the separation

point between positive and negative dropout probability (ppos and pneg) based on

Figure 5.2. I first add samples for positive pairs generated with the ppos from 0.1

to 0.4 into training phase. Figure 5.6 (left) shows that the ppos 0.4 performs best.

Then I fixed the ppos and apply the pneg from 0.5 to 0.9 for data augmentation (see

Figure 5.6 (right)). Finally, I set the ppos and pneg as 0.4 and 0.6 for subsequent

experiments.

For DPGMM based task adaptive metric, I used a normalized log-likelihood
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Figure 5.6 : Positive and Negative Dropout Probability (ppos and pneg) Selection.

to calibrate the original similarity score. I also tuned the calibration factor β with

values 0.1, 0.5 and 1.0 and selected β = 1.0 which performed best (see the Table 5.2).

This experiment was implemented with ppos (positive dropout probability) 0.4 , pneg

(negative dropout probability) 0.6 and without hierarchical loss.

5.3.3 Ablation Study

In this section, I discuss the performance gained by introducing each enhance-

ment from my proposal incrementally. Table 5.3 and Table 5.4 present performance

results for the encrypted network traffic dataset and Omniglot dataset, respectively.

The first column of these tables is the baseline traditional SNN without applying
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Table 5.2 : Calibration factor β selection.

N way 0.0 0.1 0.5 1.0

1 shot AUROC

3 95.70 95.76 95.85 95.86

5 92.41 92.44 92.52 92.57

10 90.03 90.04 90.14 90.19

Table 5.3 : Performance gained by introducing the Hierarchical cross entropy loss

(H), multi-model Ensemble (E), bidirectional Dropout data augmentation (D) and

DPGMM based task Adaptive open-set recognition metric (A) incrementally on the

encrypted network traffic dataset.

N way SNN +H +H+E +H+E+D
+H+E

+D+A

1 shot Accuracy/AUROC

3 94.7/93.6 94.5/94.4 95.2/94.4 97.2/96.2 97.2/95.9

5 90.7/90.7 90.8/91.9 90.8/92.1 93.5/94.0 93.5/94.1

10 82.7/87.0 82.7/87.4 82.5/87.6 87.3/91.2 87.3/91.2

any proposed enhancements.

The above two tables demonstrate that the performance contribution of H is

about 1.0% in OSR for the network traffic dataset as well as 1.0% and 0.5% in

classification and OSR for the Omniglot dataset. The performance contribution of

E is not very significant. To illustrate the performance difference clearly, I apply

multi-model ensemble to the hierarchical SNN model on the encrypted network

traffic dataset and the results shown in Figure 5.7 demonstrate that this strategy

can improve both classification and OSR performance slightly. The performance
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Table 5.4 : Performance gained by introducing each enhancement incrementally on

the Omniglot dataset.

N way SNN +H +H+E +H+E+A

1 shot Accuracy/AUROC

5 96.1/96.0 96.8/96.3 97.2/96.5 97.2/97.9

10 95.1/94.2 95.4/94.4 95.2/94.8 95.2/96.0

20 90.2/91.6 89.7/91.4 91.3/91.9 91.3/92.6

30 85.1/86.4 85.7/87.0 85.8/87.5 85.8/88.0

values corresponding to the coarse loss factor 0.1 in Figure 5.7 overlay because the

selected model is a single model, hence multi-model ensemble cannot work.

Figure 5.7 : Performance on hierarchical SNN model (dotted line) with the multi-

model ensemble method (solid line).

The performance contribution of D is significant, from 2.0% to 4.8% in classifi-

cation and from 1.8% to 3.6% in OSR. However, I do not apply D to the Omniglot

dataset because valuable information (handwritten character) in each Omniglot im-

age is centrally located, and is not distributed over the whole image. Therefore, it

is hard to generate different similarity images by simply using the dropout strategy
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over all image pixels. In the future, I can attempt to apply the dropout strategy on

relevant patches of the image ([50]) to generate positive and negative samples.

I notice that the contribution of A on the Omniglot dataset is greater than the

encrypted network traffic dataset. This is due to the number and diversity of classes

in the encrypted network traffic dataset (60 fine classes and 3 coarse classes) which is

significantly less than the Omniglot dataset (1,623 fine classes and 50 coarse classes).

I conclude the A enhancement boosts OSR performance, especially for dynamically

changing query tasks with high diversity.

In summary, each enhancement contributes to the standard SNN model and the

model with all enhancements increases classification and OSR performance signifi-

cantly; demonstrating up to 4.6% and 4.2% improvement in accuracy and AUROC

on the encrypted network traffic dataset, as well as 1.1% and 1.9% on the Omniglot

dataset. To highlight the statistical significance of the improvements benefited from

my proposed methods, I also provide t-test results in Table 5.5 and Table 5.6.

Furthermore, to strengthen the validity of my experimental results, I provide the

mean and standard deviation of the accuracy and AUROC across five test sets. Each

test set consists of 1,200 query tasks. Additionally, I select the t-test, a common

statistical test used to compare the means of two groups, to validate the statistical

significance of the enhancement improvements. I carry out t-tests with the null

hypothesis that the means of each performance evaluation metric (i.e., accuracy

and AUROC) from two models with and without specific enhancements are equal.

I obtain the following p-values: p-value (+H) for SNN and SNN + H, p-value (+D)

for SNN+H and SNN+H+D, p-value (+A) for SNN+H+D and SNN+H+D+A (in

encrypted network traffic dataset) and p-value (+A) for SNN+H and SNN+H+A (in

Omniglot dataset). I utilise these p-values and a significance level of 5% to evaluate

whether I should reject the null hypothesis. I can conclude that an enhancement
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Table 5.5 : Performance gained by introducing the H, D and A methods incremen-

tally on the encrypted network traffic dataset.

N way SNN +H p-value (+H) +H+D p-value (+D) +H+D+A p-value (+A)

1 shot Accuracy/AUROC (%)

3 93.9 ±1.0/94.5± 0.5 94.5 ±0.6/95.0± 0.3 .3/.2 96.9 ±0.4/96.7± 0.2 < .001 /< .001 96.9 ±0.4/96.6± 0.4 -/.9

5 88.8 ±1.6/90.6± 0.3 89.3 ±1.3/91.7± 0.7 .6/< .01 93.0 ±0.4/93.8± 0.4 < .001 /< .001 93.0 ±0.4/93.8± 0.4 -/.9

10 80.1 ±1.7/86.2± 0.5 81.4 ±1.7/86.9± 0.6 .3/.1 85.7 ±1.9/89.7± 0.8 < .01 /< .001 85.7 ±1.9/89.7± 0.8 -/.9

Table 5.6 : Performance gained by introducing H and A methods incrementally on

the Omniglot dataset.

N way SNN +H p-value (+H) +H+A p-value (+A)

1 shot Accuracy/AUROC (%)

5 97.0 ±0.7/96.8± 0.6 97.6 ±0.4/97.3± 0.6 .2/.3 97.6 ±0.4/98.6± 0.4 -/< .01

10 94.0 ±0.9/93.6± 0.9 94.5 ±0.8/94.9± 0.4 .4/< .05 94.5 ±0.8/96.0± 0.4 -/< .01

20 88.8 ±0.9/90.2± 1.0 90.1 ±0.8/91.4± 0.5 .06/.06 90.1 ±0.8/92.2± 0.3 -/< .05

30 84.9 ±1.3/87.2± 1.0 86.0 ±1.2/88.7± 0.8 .3/< .05 86.0 ±1.3/89.2± 0.8 -/.4

significantly improves performance if its p-value is less than 0.05. I did not consider

multi-model ensemble method here because this method is mainly used to address

the model selection problem. The method assists my model in obtaining more stable

results but does not improve the performance significantly. Table 5.5 and Table 5.6

back up the performance analysis stated before. That is, D (bidirectional dropout

data augmentation) can improve both closed-set classification and OSR performance

on the encrypted network traffic dataset; A (DPGMM based task adaptive OSR

metric) can enhance OSR performance on the Omniglot dataset, and H (hierarchical

SNN) also can partially boost OSR performance on both datasets. Combining all

enhancements, my model presents up to 5.6% and 3.5% improvement in accuracy

and AUROC on the encrypted network traffic dataset, as well as 1.3% and 2.4% on

the Omniglot dataset.
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5.4 Summary

This chapter addressed the open-set recognition of encrypted network traffic

classification under dynamically changing tasks. First, a simple and efficient data

augmentation method, bidirectional dropout, was proposed to enrich the training

pairs by generating both positive and negative pairs. Then a novel DPGMM based

decision metric was built to implement task adaptive open-set recognition. In ad-

dition, I constructed hierarchical cross entropy loss to improve the confidence of

the similarity score and proposed a multi-model ensemble method to ensure the ro-

bustness of model selection. Experiments demonstrated that my approaches could

contribute to closed-set and open-set classification on both the encrypted network

traffic dataset and Omniglot dataset.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis mainly solved three research questions related to content level clas-

sification for deeply encrypted network traffic in the closed and open worlds.

• “Is it feasible to identify the content of deeply encrypted network traffic?”

• “How to handle classification for previously unseen classes in the open world?”

• “How to tackle dynamically changing classification tasks with few samples in

the open world?”

For the first research question, I emphasized feasibility verification and appli-

cation performance. I collected data and constructed features. Then I attempted

a CNN model on video streaming traffic to verify the feasibility of unveiling the

deep content of the encrypted network traffic captured in air and selected the best

performing features for subsequent researches.

For the second research question, I found that typical classifiers only could see a

limited set of classes during the training time. Consequently, they will not be able

to handle real-world data that usually contain previously unseen classes. Therefore I

proposed CRAAE – a unified framework for accurate location agnostic outlier detec-

tion. In order to establish a more accurate decision boundary, I introduced known

outliers into the training process through the CRAAE model’s generation func-

tion to implicitly calibrate the decision metric (reconstruction error) on the original
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data space. I also proposed explicit calibration on reconstruction error by the cat-

egory information disentangled from the feature space. In addition, I proposed to

leverage Uniform and Dirichlet noise instead of Gaussian noise to generate known

outliers. I apply the chosen network architecture and various evaluation metrics to

evaluate the performance of my proposal on both the image datasets and network

traffic datasets under different outlier location scenarios. The results show that

my method can be used as a unified model for image and network traffic datasets,

achieving state-of-the-art performance in any outlier location scenario. Compared to

the performance of OCND and MCOSR methods in close and far outlier detection,

respectively, CRAAE can also achieve a similar performance level. Furthermore,

I also attempted another calibration strategy, the DMM-based softmax calibration

method, which regards softmax output as a Dirichlet mixed model and used the

predicted proportion of each component to calibrate the softmax. This method

is the first to treat the multi-class softmax output as a Dirichlet mixture model

distribution. It is novel but only can slightly outperform the most basic softmax

thresholding method when τ is equal to or less than 30.

For the third research question, I extend a large dataset-based application model

to a few-shot learning-based application model. Under the dynamically changing

task scenario, I addressed the one-shot open-set recognition problem for encrypted

network traffic classification. First, I proposed a simple and efficient data augmen-

tation method, bidirectional dropout, to enrich the training pairs by generating

both positive and negative pairs. This method results in high performance on time

series data samples or samples with uniformly distributed significant information.

However, data such as digit pictures with a large proportion of background (i.e.,

information that does not assist the decision) will not benefit from this method.

In addition, I utilised the support set of each query task to construct task adap-

tive negative pairs and fitted a DPGMM distribution which is used to calibrate the
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original decision metric for open-set recognition. This DPGMM based method per-

forms well for datasets with diverse and large number of classes but has less effect

on simple datasets with fewer classes. Finally, I constructed a hierarchical cross en-

tropy loss to improve the confidence of the similarity score. This method extended

the original single loss to a combined, hierarchical loss to maintain the consistency

of loss functions at multiple levels by leveraging multiple labels available for each

sample. Experiments demonstrated that my proposed approaches could increase

closed-set and open-set classification performance on both the encrypted network

traffic dataset and Omniglot dataset.

6.2 Future work

As stated before, my research about encrypted network traffic data has solved the

classification application in the closed and open world, and also tackled the changing

task and few sample problems. My future work includes two aspects. One is about

model improvement, and another one is about application extension. For model im-

provement, I should consider scalable novel class discovery and cross-domain novelty

detection in few-shot learning. My proposed novelty detection approaches can iden-

tify the novel classes but still can not add the identified novel classes into known

classes. My few-shot learning model focused on video streaming traffic and had not

tackled the cross-domain problems. For example, the novel class is from audio or

web surfing streaming traffic. I have investigated some papers in this field and found

that cross-media retrieval is a promising way to address this problem. However, ex-

isting research on cross-media retrieval is usually based on a large-scale dataset.

Therefore, combing the few-shot learning ideas with the cross-media retrieval ap-

proaches should be an interesting and challenging future work. For application

extension, I have applied my proposed approaches to the encrypted network traffic

dataset and some image datasets. I can verify my approaches on more datasets with
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different traffic types (the data format is not the same as our collected data), such

as Website fingerprinting and voice command fingerprinting. Then I can explore

the implementation of my approaches in other application scenarios, like intrusion

detection.
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Chapter 7

Appendix

7.1 Neural Networks Parameters

Table 7.1 lists the parameters that I used in closed world network traffic classi-

fication.

Table 7.1 : List of neural networks parameters for closed world classification.

Parameter Name Value

Learning Rate 1e-4

Batch Size 64

Activation ReLU

Optimizer Adam

Batch Normalisation Decay 0.5

Batch Normalisation Epsilon 1e-3

For CRAAR novelty detection, the neural network parameters are presented in

the Table 7.2.

7.2 Additional Experiment Results

SNN is the benchmark. I had done many experiments before using it as the basic

architecture of my proposed methods. For example, feature selection, optimizer

selection, data split, and best-trained model selection.
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Table 7.2 : List of neural networks parameters for novelty detection.

Parameter Name Mnist Network traffic Other datasets

Learning Rate 2e-3 1e-4 2e-3

Batch Size 128 64 128

Latent Size 16 64 32

Training Epoch 80 100 80

Learning Rate Decay 0.25 every 30 epochs

Activation LeakyReLU with negative slope as 0.2

Optimizer Adam

I first evaluated this model on the previously collected encrypted network traffic

dataset captured in air. I only collected 10 class samples (100 samples per class).

Therefore, the dataset is insufficient for an SNN to train an accurate classification

for a new task. Then we collected more classes, 60 in total, and each class had

100 samples. To simplify the data collection experiment environment, we used a

physical port to capture network traffic. However, we only extracted Data Link

Layer information such as packet number and packet length of the frames as our

data features.

Next, I will introduce those experiments for building the baseline with an SNN

architecture.

The new dataset consists of 60 video streaming classes from three different video

platforms (YouTube, Netflix, and Stan, with 20 classes for each platform). I split

60 classes into training and test set. The training set consists of 40 classes of video

traffic where 0 to 14 classes correspond to 1 to 15 classes of Netflix platform, 15

to 29 classes correspond to 1 to 15 classes of Stan platform, and 30 to 39 classes

correspond to 1 to 10 classes of YouTube platform. Each class of video traffic has
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100 samples (i.e., 100 runs for each video). The left 20 classes are utilised as the

test set.

To make more types of N-way one-shot learning, e.g., 15-way and 20-way one-

shot learning, I utilise the left 20 classes as the test set (without validation set). I

test the model performance and save the model every 100 training batches where

the batch size is 128. There are 1,000 test batches (test batch size is N for N-way

one-shot). I evaluate the performance in terms of best average accuracy (for closed-

set classification) and AUROC (for open-set recognition) measure metrics. The best

average accuracy is the maximum mean of every 20 successive test epoch results. I

use this metric because it can represent the more approximate convergence status

performance in no validation set condition. Test batch is constructed as stated in

Figure 5.1. I normalize the output of each test batch using softmax. Then I utilise

the softmax score as the decision score for classification and novelty detection. The

experiment results are shown in Table 7.3. I can see the AUROC is not sensitive to

the ratio of inliers to outliers. Therefore, in subsequent experiments, I will fix the

ratio of inliers to outliers as 1:1.

Table 7.3 : Open-Set Recognition (OSR) performance of an SNN.

N Way Best Average AUROC

1 Shot Accuracy inliers:outliers = 1:1 inliers:outliers = 3:1

3 89.75 66.73 64.98

5 83.27 61.52 60.89

10 71.6 57.97 58.83

15 65.62 57.8 58.0

20 59.27 57.46 57.09

The experiment results confirm that an SNN can classify the encrypted network
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traffic dataset with reasonable accuracy when changing the classification task dy-

namically. However, novelty detection performance for open-set scenarios is not as

good as close-set classification performance. Then I do extensive feature engineering

and hyper-parameter selection experiments to improve the performance of an SNN.

First, I attempt to leverage the output of an SNN (similarity score) rather than

the softmax score as the decision score directly. Second, I try different feature com-

binations based on the results listed in Figure 3.2. I initially use all 24 features

together. However, the performance is similar to using just one feature. This sug-

gests that low-performance features could interfere with classification. According to

the performance ranking in Figure 3.2, F1, F2, F3, and F4 perform well and stably

across different directions. Specifically, F1 and F2 represent the bursts of streaming

the video content (data frames), and F3 and F4 represent the interaction process

between the server and the client (non-data frames). Therefore, I only select the

better-performing ones (i.e., F1 and F3) to represent data and non-data frames. I

utilise F1 and F3 in different directions (up-link (U), down-link (D) and combining

up- and down-link (C)) together (six features, F1 (U, D, C) and F3 (U, D, C))

to evaluate the performance. The results, as shown in Table 7.3 and Table 7.4,

demonstrate that the open-set recognition performance using six features is signif-

icantly better than using just one feature. Moreover, the closed-set classification

performance is similar for both situations. Considering computational efficiency

and computer memory capacity, I apply fewer (four) features to this model. The

best-performing combination is (F1 (U, C) and F3 (D, C), which outperforms using

one feature but is not as effective as using six features. From these four features,

I further narrow down to the best-performing two features: F1 (C) and F3 (D).

Applying F1 (C) and F3 (D), the performance for both closed-set classification and

open-set recognition is highly improved. Therefore, I will use these two features

in subsequent experiments. Finally, I evaluate different optimizers (i.e., SGD and
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Adam). The experiment results are list in Table 7.4. Regarding optimizer selection,

I knew SGD usually could achieve better local convergence with enough training it-

eration. However, it is too slow, and I can see Adam outperforms SGD when training

iteration times are the same because Adam converges more quickly. Furthermore, I

evaluate the SNN performance according to the selected optimizer and features (i.e.,

Feature F3 and F1, that is, the number of non-data frames on the down-link (D)

and the number of data frames on combination links (C) (i.e., both up-link (U) and

down-link (D).). I note that the performance is improved significantly based on the

new decision score, Adam optimizer, and features F1 (C) and F3 (D), see Table 7.5.

Table 7.4 : Feature engineering and hyper-parameter selection for an SNN.

Feature Selection

Features Best Average Accuracy (5-way 1-shot) AUROC (inliers:outliers = 1:1)

F1 (U, D, C), F3 (U, D, C) 82.29 81.46

F1 (U, C), F3 (D, C) 82.09 79.62

F1 (C), F3 (D) 86.55 83.51

Optimizer Comparison

N Way 1 Shot Best Average Accuracy AUROC

SGD/Adam

5 84.09/86.55 87.3/83.51

20 59.10/63.99 72.83/73.08

My previous experiments focus on new classification tasks (i.e., based on un-

known classes). I also evaluate the OSR performance of an SNN for classification

tasks based on known classes. For this experiment, I do a small change on the

dataset split. I divide the previous training set into two sets, one for training and

another for test. The new training set only has 80 samples for each class, and the

new test set has another 20 samples for each class. I still keep the original test set

for experiment comparison.

Table 7.6 demonstrates that an SNN can obtain high performance on both orig-
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Table 7.5 : OSR performance of an SNN with F1 (C), F3 (D) and Adam optimizer.

N Way 1 Shot Best Average Accuracy AUROC

3 90.96 87.9

5 86.55 83.51

10 75.11 79.95

15 68.27 73.91

20 63.99 73.08

inal and new classification tasks. Here, I add another performance measure metric,

Best Acc, to see the upper bound of the performance. This accuracy is the best

accuracy among the best 20 successive accuracies.

Table 7.6 : OSR performance of an SNN on original and new classification tasks.

N Way Best Ave Acc Best Acc AUROC Best Ave Acc Best Acc AUROC

1 Shot Test set sliced from 40 training classes Test set from 20 test classes

5 93.78 94.93 96.12 84.67 86.4 84.95

10 89.09 89.9 95.13 73.94 75.73 78.28

15 86.17 87.15 94.16 67.22 69.02 73.53

20 84.09 85.16 94.34 62.41 63.86 71.93

My previous experiments have no validation set for constructing more kinds of

test classification tasks. To adapt more common experiment setting, I slice the

validation set from the current test set. The validation set consists of 10 classes of

video traffic, where 1 to 5 classes correspond to 15 to 19 classes of the YouTube

platform, and 6 to 10 classes correspond to 16 to 20 classes of the Stan platform.

The test set consists of 10 classes of video traffic where 1 to 5 classes correspond to
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11, 12, 13, 14, 20 classes of the YouTube platform, and 6 to 10 classes correspond

to 16 to 20 classes of the Netflix platform.

I first evaluate on the validation set and select the five best performing models

for N-way one-shot tasks. Then I test the performance of these selected models

on the test set. I also exchange the validation and test set, using the test set for

selecting models and the validation set for testing the performance.

Table 7.7 : OSR performance of an SNN on models selected through validation.

N Way Average Acc Average AUROC Acc AUROC

1 Shot Validation set for model selection

5 88.73 88.7 88.5 89.01

10 82.17 83.34 81.83 83.62

15 76.89 81.36 80.16 78.96

20 72.43 77.15 74.33 77.3

Test set for model selection

5 77.39 82.71 79.66 83.25

10 66.03 78.72 64.83 82.2

15 61.79 76.26 63.83 80.14

20 56.33 75.65 57.83 77.51

In Table 7.7, average accuracy and AUROC are the mean values for results on

the selected five successive best performing models. Accuracy and AUROC are the

mean values for five repeated running results on the best performing model. For an

SNN, I only need one training process compared to prototype network approaches

because the construction of training pairs for any way any shot learning is the same.

Every 100 training batches, I validate the performance for 5-, 10-, 15-, and 20-way

one-shot learning, respectively, to select the best performing models and then test
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on 5-, 10-, 15-, and 20-way one-shot learning models separately.

I need to clarify that the 15-way and 20-way one-shot learning in this experiment

is not the real sense of 15-way and 20-way. I only have 10 classes of test samples; 15-

and 20-way can be constructed when some of the negative query pairs are repeatedly

sampled from the same class. Even though the test batch size is 15 or 20, some of the

negative test pairs are very similar. For example, one negative pair is constructed

by a sample ‘A’ from the class ‘0’ and a sample ‘B’ from the class ‘1’, and another

negative pair is constructed by a sample ‘A’ from the class ‘0’ and a sample ‘C’ from

the class ‘1’. Despite that, to some extent, I can predict the performance of 15-way

and 20-way one-shot scenarios by this kind of test batch construction.

In addition, I can infer from the results list in Table 7.7 that my model achieves

convergence because the best performing model performs consistently with the best

five successive models. To compare with other popular few-shot learning model

frameworks, I re-arrange the dataset split randomly, which is the same as Meta-

open and MAML, in Chapter 5 of this thesis.
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