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ABSTRACT

Learning-based techniques have revolutionized various media aspects, enabling
content generation, editing, and personalization advancements. However, the
widespread adoption of these methods has also given rise to significant security

and privacy concerns. This thesis primarily focuses on two major threats posed by
learning-based methods in image data: 1. surveillance and tracking and 2. malicious
forgery and tampering. To tackle these threats, we adopt four straightforward and
effective strategies: sensitive information sanitization, forgery media detection, media
authenticity protection, and media authorship proof.

We first highlight the challenges arising from the ubiquitous use of learning-based
image analysis techniques for surveillance and tracking. For instance, facial recogni-
tion algorithms, which have found wide-ranging applications, can track and identify
individuals without their consent, compromising their privacy. To mitigate this threat,
we propose a novel learning-based method for semantically sanitizing the face image’s
identity information in the generative network’s latent space. It achieves a balanced
trade-off between privacy protection and image utility preservation.

Regarding malicious forgery and tampering, we underscore the limitations of tra-
ditional forensic methods that primarily rely on detecting artifacts or distortions left
by tampering, leading to poor detection accuracy and generalization performance. In
response, we introduce an innovative framework that proactively defends against mali-
cious forgery by watermarking face identity features and identity whether watermarked
images have been forgeries according to the watermark existence. This novel detec-
tion mechanism solves the limitations of traditional forensic methods, thus providing a
reliable measure of media content authenticity.

In line with the adage that prevention is better than cure, we also propose a proactive
strategy for safeguarding media content at the pixel level. The designed scheme embeds
an invisible watermark into a target image that is pixel-by-pixel entangled with it, which
acts as an indicator of tampering trails. Once the watermarked image is counterfeited,
the embedded watermark will exhibit changes accordingly, so we can locate the tampered
regions by comparing retrieved and original watermarks. This proactive authentica-
tion mechanism makes our method effective against various image tamper techniques,
including image copy&move, splicing and in-painting.

Lastly, in the realm of authorship proof, we emphasize the importance of preserving
the rights of original content creators, thereby preventing plagiarism and copyright in-
fringement. To this end, we introduce a novel method that uses the semantic information
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in images to boost the robustness of watermarks, thereby ensuring reliable attribution
of authorship even under conditions of common distortions. The extensive experiment
results validate the effectiveness of our design and demonstrate that the proposed
method achieves superior robustness while maintaining comparable imperceptibility
and capacity when compared to state-of-the-art techniques.

By exploring and applying the latest learning-based techniques, this thesis aims to
fill critical research gaps in solving security and privacy concerns from learning-based
methods to media data. Our work seeks to strike a delicate balance between fostering
innovation and preserving user privacy and security. This research paves the way for
developing secure, privacy-preserving approaches, thereby contributing to the ongoing
evolution of media technologies.

Keywords: Face image de-identification, Deepfake detection, Image tampering de-

tection, Image manipulation localization, Invisible watermark, Robust image steganog-

raphy.
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INTRODUCTION

1.1 Backgrounds of the thesis

The contemporary digital age, marked by the rise of learning-based technologies,

presents incredible opportunities and profound challenges. The extensive ap-

plication of these technologies has transformed the media landscape, offering

innovative methods for content generation, editing, and personalization. However, the

flip side of this progress is the manifestation of significant security and privacy threats.

Specifically, some of these threats are: 1. Surveillance and tracking, 2. Malicious forgery

and tampering. This dichotomy forms the primary motivation for this thesis.

With the development of learning-based techniques, existing surveillance and track-

ing systems have become significantly powerful, enabling sophisticated pursuit opera-

tions. For example, some facial recognition algorithms can identify and track individuals

without consent. This process has raised serious privacy concerns as these techniques

can be deployed in public spaces or online, infringing upon people’s privacy rights. How-

ever, the existing countermeasures, such as traditional image blurring or mosaic, have

vulnerabilities in removing all sensitive information and are inadequate for preserving

the image’s utility.

Another motivation arises from the alarming increase in malicious forgery and

tampering of image data. Highly realistic fake or tampered media can be easily created

using learning-based techniques, leading to the spread of misinformation, identity theft,

and privacy violations. The consequences of these forgeries are far-reaching, as they
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CHAPTER 1. INTRODUCTION

undermine trust in media content, impact journalism, politics, and social communication,

and hinder the reliable dissemination of information. Traditional forensic methods that

detect visual artifacts or distortions from tampering operations fall short in the face of

evolving tampering techniques.

In response to these threats, the primary objective of this thesis is to develop effective

strategies for defending the security and privacy of image data. By investigating and

utilizing the latest learning-based techniques, this research designs robust and reliable

methodologies that protect image data while ensuring its authenticity and integrity.

These solutions include:

Sensitive Information Sanitization: Given the risk of sensitive information leakage

from visual data, this thesis proposes a learning-based method for semantic sanitizing.

The method aims to strike a balanced trade-off between privacy protection and utility

preservation.

Forgery Detection: To counter the increasing prevalence of visual data manipulation

or forgery, we design a proactive framework to combat malicious forgery by watermarking

face identity features.

Authenticity Protection: A proactive approach towards safeguarding media content

before malicious actions occur is essential. Our method aims to reduce the risk of data

breaches and other privacy and security threats by proactively defending media content.

Authorship Proof: Given the ease with which visual data can be copied and distributed

without proper attribution, establishing authorship is essential to prevent plagiarism

and copyright infringement. We propose a novel method that leverages the semantic in-

formation in images to boost the robustness of watermarks, enabling reliable authorship

attribution.

In summary, the motivation for this thesis stems from two key concerns: the en-

hanced capabilities of surveillance and tracking systems that infringe on privacy and

the alarming rise in malicious forgery and tampering with media, leading to widespread

misinformation and privacy violations. In response, the thesis aims to develop robust

strategies for safeguarding the security and privacy of image data. Its objectives include:

• Designing learning-based methods to sanitize sensitive information achieves a

balance between privacy and utility.

• Developing proactive frameworks for forgery detection and authenticity protection.

• Establishing authorship proof to combat plagiarism and copyright infringement.
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1.2. EXISTING CHALLENGES

By accomplishing these objectives, this research hopes to navigate the tension be-

tween leveraging AI innovations in media technologies and preserving user privacy and

security, thereby contributing to developing secure, privacy-preserving approaches in the

media technology domain.

1.2 Existing challenges

The threats posed by surveillance and tracking, and malicious forgery and tampering

present complex challenges that must be addressed to ensure the privacy and security of

image data. The current major challenges to solving these threats are:

1.2.1 Surveillance and Tracking

The widespread use of visual data, particularly on social media, can lead to breaches of

user privacy. Sensitive information can be extracted from this data, making it vulnerable

to misuse. To protect citizens’ privacy, many governments have introduced regulations or

laws, such as the General Data Protection Regulations (GDPR) in the European Union

or the Australian Privacy Principles (APPs) in Australia. However, these data are also

important sources for forming large-scale face image datasets, crucial for developing

advanced computer vision techniques like face recognition or identity tracking systems.

The above regulations will challenge the conventional use of images in computer vision

research because they require consent from every person in the dataset. It is nearly

impossible to obtain consent from every individual when using some large-scale image

datasets like Celeba or FFHQ. What is worse, traditional obfuscation-based face privacy

protection techniques, such as Mosaic or Blur, not only have vulnerabilities in removing

sensitive information but are also inadequate for preserving the image’s utility.

Therefore, the challenge lies in developing techniques that ensure privacy while

preserving the quality and utility of visual data. Specifically, such a method should

satisfy the following two criteria:

Anonymization: The method must remove the face image’s identity features and

reduce the possibility of re-recognition by both computer vision techniques and human

observers.

Realism: The processed facial dataset should maintain a similar statistical distribution

to the original, and individual images should retain high visual quality to ensure that

the dataset remains useful for computer vision research.
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1.2.2 Malicious Forgery and Tampering

Learning-based image generative or editing approaches, such as Generative Adversarial

Networks (GANs) and Diffusion models, lead to powerful methods of synthesizing or

manipulating visually authentic images/videos. Abusing these methods threatens visual

information integrity and personal privacy security, e.g., by generating fake news or

spreading rumours. The current detection methods are still in their infancy because they

mainly rely on leveraging learning techniques by distinguishing feature distribution

inconsistency or boundary discrepancy in an image to identify the forgery or any ma-

nipulation. Those methods assume that image manipulation techniques may inevitably

produce detectable artifacts in their outputs. However, this prerequisite might lead to

several inherent drawbacks.

• Various image post-processing operations can easily destroy these artifacts. As a

result, detection methods developed to detect these artifacts would be failed when

the suspect image is distorted.

• Forgery techniques are developed with an alarming speed, leaving fewer detectable

artifacts in their synthesized results. Detection methods are thus struggling to

keep up with the development of forgery techniques, making detection even more

challenging.

• Atifact-based detection methods are difficult to generalize to unknown scenarios.

These methods depend highly on the artifacts learned during training, so they

exhibit poor performance in dealing with unknown and strange artifacts.

• Protecting the authenticity of media content before malicious tampering occurs is a

crucial challenge. By the time tampering is detected, the damage has already been

done. Implementing security measures that safeguard media content in advance

can significantly reduce the risk of data breaches and privacy violations. However,

the challenge is designing proactive methods resistant to tampering and distortion.

Besides, in the age of digital media, visual data can be easily copied and distributed,

leading to plagiarism and copyright infringement. Traditional authorship-proof methods

often prove insufficient when faced with distortions common in the digital landscape.

Therefore, there is a significant challenge in designing robust methods to prove author-

ship and protect intellectual property rights.
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1.3. CONTRIBUTIONS OF THE THESIS

Addressing these challenges is crucial for developing reliable solutions that can

effectively safeguard privacy and security in an era marked by rapid advancements in

learning-based methods for media.

1.3 Contributions of the thesis

This thesis makes several substantial contributions towards defending the security

and privacy of image data from learning-based threats. The detailed contributions are

summarized in the following subsections.

1.3.1 Sensitive Information Sanitization

The thesis presents a novel method for the semantic sanitizing sensitive information,

detailed in the paper "A Learning-Based Method for Semantic Sanitizing". This approach

sanitizes sensitive information in the neural network’s latent space to balance privacy

protection with utility preservation, enhancing security while retaining the quality and

usefulness of the image data.

In summary, the major contributions of this work are summarized as follows:

• It develops a novel image privacy protection framework that implements the de-

identification of face images via editing the identity-related features in the neural

network’s latent space.

• A dedicated and adjustable privacy-related loss function is designed in this work to

regularize the network’s training process.

• The proposed framework’s superiority is demonstrated over traditional and ad-

vanced methods in privacy protection, visual quality, and utility.

1.3.2 Forgery Media Detection

The thesis introduces an innovative approach for detecting manipulated or forged visual

data. This contribution, published in the paper "Proactive Defense against Malicious

Forgery via Watermarking Face Identity Features", departs from traditional artifact-

based detection methods. It presents a novel framework that embeds watermarks in face

identity features, providing a robust means of determining media authenticity.

The main contributions of this work are summarized as follows:
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• It proposes a novel proactive Deepfake detection method by embedding an anti-

counterfeiting watermark into images’ identity vectors.

• A simple yet effective encoder-decoder network is designed for invisible anti-

Deepfake watermarking without needing pre-annotation or detection information.

• Extensive evaluations are conducted to prove the method’s effectiveness, robust-

ness, utility, and security. The experiment design can also serve as a template for

similar research in the future.

1.3.3 Media Authenticity Protection

In "Proactive Media Authentication using Deep Learning Semi-Fragile Watermarks",

a new method for media authentication is proposed. This method embeds an invisible

watermark pixel-by-pixel into an image to pinpoint tampered regions. It effectively

against various image tamper techniques, including image copy & move, splicing, and

in-painting.

The contributions are summarized as follows:

• It features a novel deep learning-based semi-fragile image watermarking frame-

work to defend against malicious tampering.

• The watermark balances detection performance and imperceptibility, ensuring no

impact on real-world image usage.

• A comprehensive evaluation comparing the method with state-of-the-art detection

methods to assess and analyze their performance across various aspects, including

effectiveness, robustness and security.

1.3.4 Media Authorship Proof

The thesis also proposes a novel method that utilizes the semantic information in im-

ages to enhance watermark robustness. This solution, discussed in the paper "Robust

Semantic Image-hiding for Authorship Proof", significantly boosts the resilience of wa-

termarks to common distortions, effectively establishing reliable authorship attribution

and protecting copyright.

In summary, the main contributions can be listed as follows:
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• Development of a semantic image-hiding network highly robust against various

distortions, enhancing image steganography practicability.

• Exploration of semantic features’ redundancy for carrying hidden information and

proof of identity feature invariance to conventional image distortions.

• Achievement of a balanced trade-off between capacity, imperceptibility, and robust-

ness with comprehensive performance evaluation.

By addressing these threats and challenges, our research makes substantial strides

in improving security and privacy within learning-based methods for media. Through

sensitive information sanitization, forgery detection, authenticity protection, and au-

thorship proof, we provide innovative solutions to the existing challenges, significantly

contributing to the advancement of secure and privacy-preserving approaches in media

technologies.

1.4 Overview of the thesis

This thesis is organized into seven main chapters detailing our research and findings on

defending the security and privacy of image data from learning-based threats. Below is a

brief description of what each chapter entails:

Chapter 1: Introduction. This chapter provides the background of our research,

outlining the motivation, objectives, existing challenges, and contributions of this thesis.

Chapter 2: Related Work. This chapter reviews the current literature on the

existing solutions in sensitive information sanitization, forgery media detection, media

authenticity protection, and media authorship proof.

Chapter 3: Sensitive Information Sanitization. This chapter delves into our

proposed solution for protecting sensitive information from privacy breaches. We present

a novel semantic sanitizing method that leverages the neural network’s latent space to

balance privacy protection with utility preservation.

Chapter 4: Forgery Media Detection. In this chapter, we introduce an innovative

approach for detecting manipulated or forged visual data. Our proposed framework

uses watermarking of face identity features, a departure from traditional artifact-based

detection methods.

Chapter 5: Media Authenticity Protection. Here, we detail our proactive media

authentication method that embeds an invisible watermark entangled pixel-by-pixel
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with a target image. We discuss the design and effectiveness of our method against

various image tampering techniques.

Chapter 6: Media Authorship Proof. This chapter focuses on our proposed solution

for establishing reliable authorship attribution. We explain our novel method that

leverages semantic information in images to enhance watermark robustness, effectively

preventing plagiarism and copyright infringement.

Chapter 7: Conclusion. This final chapter summarizes the key findings of our

research, discusses the implications of our work, and suggests directions for future

research in defending the security and privacy of image data from learning-based threats.

By following this structure, the thesis provides a comprehensive exploration of the

research topic, addressing the challenges, proposing novel techniques, and contributing

to the existing knowledge in the field. The chapters collectively offer valuable insights

and practical solutions for researchers, practitioners, and policymakers concerned with

image data security, privacy, and authenticity in learning-based methods.
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2
LITERATURE REVIEW

2.1 Preface

This chapter presents a comprehensive review of the literature and existing research

pertinent to the key areas this thesis aims to address: sensitive information sanitization,

forgery media detection, image tamper detection, and media authorship proof.

The sensitive information sanitization section surveys the present landscape of

privacy-preserving techniques, their methods, effectiveness, and the associated chal-

lenges. We critically examine traditional methods, such as Mosaic and Blur, and the

latest learning-based approaches and discuss their limitations in preserving data utility

while protecting privacy.

In the forgery media detection and image tamper detection sections, we delve into

the current detection techniques, their mechanisms, and their performance against

advanced tampering and forgery methods. The discussion encapsulates the limitations

of relying on visual artifacts and distortion clues, emphasizing the need for more robust

and generalized solutions.

The section on media authorship proof explores the existing strategies and techniques

for establishing and preserving authorship. We discuss traditional methods, their efficacy,

and their vulnerabilities against common distortions and unauthorized replication.

By examining the current state of research in these areas, this chapter establishes a

solid theoretical foundation for our study and highlights the research gaps that this thesis

9
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Table 2.1: Comparative Analysis of Sensitive Information Sanitization Methods.

Method Type Techniques Advantages Disadvantages
Mosaic Simple to implement Easily reversible; Low privacy protection;

Traditional Blur Widely used Significant utility loss;
Mask Immediate obfuscation Vulnerable to re-identification;

Learning-based Attribute manipulation Enhanced privacy and utility; Dependency on attributes;
[18, 45, 63, 79, 97, 106, 137, 146] Preserves some natural appearance; Unnatural outcomes

Facial Synthesis High level of anonymization; Dependency on attributes;
Effective in removing identity while keeping context; Unnatural outcomes

Differential Privacy [40, 141] Provides mathematical privacy guarantee Leads to distorted images; loss of utility

aims to address. The comprehensive review prepares the ground for the subsequent

chapters, where we present our innovative solutions to these identified challenges.

2.2 Sensitive information sanitization

This work focuses on sanitizing sensitive information in human face images, also known

as de-identification, which aims to hide the identity in the face image or video stream for

privacy protection. Until recently, a limited number of research works existed, which are

also listed in Table 2.1.

2.2.1 Traditional methods

Typically, the standard techniques for protecting face image privacy include Mosaic,

Blur, Mask and Pixelation. However, these methods are increasingly seen as inade-

quate for emerging privacy needs. They protect privacy by directly perturbing images’

Regions of Interest (ROIs) pixel values, which can effectively obfuscate corresponding

sensitive information, i.e., identity feature in this context, but also incur conspicuous

haziness in processed images, leading to significant utility loss [134]. Moreover, these

traditional techniques have demonstrated significant vulnerabilities when facing ad-

vanced learning-based re-identification attacks [107]. MacPherson et al. [99] presented

that faces obfuscated by the aforementioned techniques can be re-identified up to 96% by

utilizing body or scene features from images.

2.2.2 Learning-based methods

Consequently, more sophisticated and novel concepts have been employed to enhance

processed images’ privacy and utility. For instance, Hui-Po et al. [137] and Tao et al. [79]

obfuscated images’ sensitive information by manipulating face attributes. The ratio-

nale of those methods is that facial attributes, such as hairstyle or eye colour, could
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be an essential reference for faces’ identities. Therefore, changing these features, e.g.,

transforming eye colour from black to blue, appears reasonable for anonymization. Al-

though such approaches render faithful processed images, they heavily rely on predefined

attributes, which limits their applicability.

Other works [45, 63, 146] achieve de-identification by maximizing the distance of

identity feature embedding through a dedicated designed dissimilarity loss term or

multiple discriminators. Some methods [118, 125, 126] even mask the facial area and

synthesize a new face via inpainting. These methods, though, often map the original face

to a single anonymized counterpart, resulting in faces with similar appearances that

often appear unnatural.

Fan [40] introduced calibrated Differential Privacy (DP) noises into the image’s SVD

features, offering a certain level of protection and ensuring indistinguishability among

visually similar images. However, this method often results in overly distorted images,

leading to a considerable loss of utility. Wen et al. [141] adopted a similar approach by

adding noise to the identity vectors, thereby protecting image privacy, but separated

image features into identity and non-identity categories.

Another series of works uses predefined conditional labels to control the content of

generated images [97] or decouples images into different representations for manipula-

tion [18, 106]. Despite these methods’ ability to generate a variety of anonymized faces,

they often alter identity-irrelevant attributes and introduce additional visual artifacts.

2.3 Forgery media detection

With the significant advancement of generative methods, high-quality synthetic images

or videos are so realistic that they even can deceive the human eyes. Unfortunately,

malicious users can exploit these techniques to create social disruption or political

threats. Therefore, numerous detection approaches have been proposed to counteract

such risks, primarily by identifying the artifacts introduced by the imperfections of

learning-based forgery techniques. A comparative analysis is summarized in Table 2.2.

2.3.1 Low-Level Artifacts

GANs have seen significant advancements, now capable of synthesizing high-fidelity

images that can fool the human eye. Despite these improvements, GANs still reveal

disparities between generated and natural distributions due to the commonly used
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Table 2.2: Comparative Analysis of Forgery Media Detection Methods

Analysis Type Techniques Advantages Limitations
Low-Level Artifacts GAN Fingerprints [34, 95, 152] Early detection of GAN-generated images; Less effective as GANs evolve;

Up-sampling artifacts [160] Identifies specific GAN flaws. Becomes obsolete as GANs improve.
Color distortion [98] Effective against colour manipulation; Limited to specific types of forgery;

Spatial May miss subtle forgeries;
Pixel co-occurrence matrices [101] Robust against various fakes. Computationally intensive.

Biological Eye blinking, Head poses; Effective in video Deepfake detection; Limited to human subjects;
[24, 50, 80, 148, 150] Exploits natural human characteristics. May not apply to still images.

Frequency Azimuthally Averaged Spectrum [35] Effective in identifying frequency patterns; Requires sophisticated analysis techniques;
2D-FFT, 2D-DCT [36, 152] Robust against various image manipulations. May miss non-frequency based forgeries.

Proactive Embedding invisible tags [5, 138, 151, 153] Traceability of original content. Doesn’t help in tamper detection.

up-convolution (or deconvolution) operation [139], which maps low-resolution tensors to

high-resolution ones. The pioneering work AutoGAN [160] first observes that this up-

sampling artifact can be used to identify GAN-generated images. This discovery sparked

other studies [95, 152] to explore the concept of GAN fingerprints for distinguishing

between authentic and GAN-generated images. Later, Durall et al. [34] utilized GAN

fingerprints for Deepfake attribution. However, as GANs steadily improve, their problems

become short-lived, making it unsustainable to base detection mechanisms solely on these

known issues. For example, spectral regularization is proposed [34] to close the gap in

the spectral domain. Recently, Jung and Keuper [69] learned an additional discriminator

with spectrum inputs using adversarial training to reduce the frequency gap further.

2.3.2 Detection with Spatial Analysis

Because low-level artifacts are unsustainable, other works analyze different spatial

artifacts to attribute images as real or fake. For instance, McCloskey [98] first utilizes

colour distortions to detect fake images. This approach was later built upon by Nataraj

et al. [101], who developed a way to identify Deepfakes by assessing the combinations of

pixel co-occurrence matrices. Furthermore, Liu et al. [89] design a network to induce tex-

ture representations using a Gram matrix and validate that global textures at different

levels of a CNN are effective cues for fake detection. Similarly, the Laplacian of Gaussian

(LoG) has been applied to foster fake image and video detection [96]. In addition to

texture and colour distortions, some studies have targeted discrepancies across blending

boundaries to distinguish manipulated faces [78]. To improve the detection performance,

Dang [28] first adopt attention mechanisms on CNN models to detect forgery artifacts.

Building upon this approach, Zhao et al. [163] reformulate the forgery detection as

a fine-grained classification task and propose a new multi-attentional architecture to

capture local discriminative features from multiple faces attentive regions. Yu et al.[154]

introduced a commonality learning strategy to extract universal forgery features from
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different databases to better generalize in unknown forgery methods.

2.3.3 Detection with Biological Analysis

Except for the spatial artifacts, the biological signal artifacts are another obvious clue

for the forge. This is because authentic facial images and videos, captured with cameras,

usually appear more natural than their synthesized counterparts. Lyu [80] first proposes

to spot Deepfake videos by observing the lack of eye blinking in the synthesized face.

Taking a different approach, Yang et al. [150] utilized inconsistent head poses to uncover

forged videos. FakeCatcher [24] combines six biological signals to distinguish natural

and fake videos. Haliassos [50] targets the inconsistencies in mouth movements learned

via lipreading to detect forged videos. Yang et al. [148] employs the multi-task learning

scheme to extract more comprehensive and accurate lip features to gain more powerful

fake discriminability. Last, according to a patch-level prediction from different stages

of a CNN, it has been shown that hair and background are the most informative areas

for detecting fake facial images [21], which may help detection across various data

distributions.

2.3.4 Detection with Frequency Analysis

Frequency analysis, with its long history in image processing, is also a powerful tool for

detecting fake images. Several recent methods based on analyzing frequency patterns

of images are adapted to fake detection. For instance, Durall et al. [35] propose a

simple yet effective method based on the azimuthally averaged spectrum magnitude and

Support Vector Machines (SVM). Dzanic et al. [36] use 2D-FFT magnitudes as input

features for binary classification through Convolutional Neural Networks (CNNs). In the

same vein, Frank et al. [43] study 2D-DCT as CNN input features, yielding improved

detection results compared to the image-based method by Yu et al. [152]. To date, the

most advanced detection technique incorporates global and local 2D-DCT features [115],

further underscoring the effectiveness of frequency analysis in detecting fake images. In

a recent effort to improve the detector’s generalization, Luo [92] combines high-frequency

features of the image with colour textures to detect forgery. Li et al. [76] design a

novel frequency-aware discriminative feature learning framework to reduce intra-class

variation of natural faces while increasing interclass differences in the embedding space

for face forgery detection. Moreover, Liu et al. [86] introduce a Spatial-Phase Shallow

Learning (SPSL) method, which combines spatial image and phase spectrum to capture
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Table 2.3: Comparative Analysis of Image Tamper Detection Methods

Method Type Techniques Advantages Disadvantages
Local Noise Analysis [25] Detects noise inconsistencies; May fail with high-quality tampering;

Traditional CFA Artifacts [41] Useful for detecting image origin; Limited to CFA-based camera images;
Illumination Variance [30] Exploits lighting inconsistencies; Performance affected by image quality;

JPEG Compression Clues [83] Effective on recompressed images. Ineffective on uncompressed images.
CNNs [9, 11, 60] High accuracy and adaptability; Requires large annotated datasets;
RNNs [11, 12] Good at capturing sequence-based features; Computationally intensive;

Learning-Based GANs [65] Effective in generating and detecting fakes; May generate convincing fakes itself;
Auto-encoders [14, 162] Can learn complex tamper signatures; Vulnerable to adversarial attacks;

Multi-Task Learning [4, 60, 145, 166] Captures a wide range of artifacts; Complex to train and implement;
Edge Artifact Analysis [32, 164] Effective at boundary detection. May miss non-boundary tampering.

the up-sampling artifacts of face forgery, enhancing the transferability for face forgery

detection.

2.3.5 Proactive Detection Measures

Meanwhile, several proactive measures [5, 138, 151] are being developed to combat

malicious media forgery. These methods involve embedding an invisible tag into the

original image, which remains retrievable after generation. This allows users to retrieve

the tag and halt the spread of the manipulated media. For instance, Yu et al. [153] embed

artificial fingerprints into the generative model and subsequently into its generated

Deepfakes, facilitating detection based on the extracted fingerprints.

2.4 Image tamper detection

Developing image editing techniques makes tampered images widely available and

more realistic. Currently, the research community defines three common types of image

tampering, which are: Copy-move (i.e., copying and moving elements from one region

to another region in a given image), splicing (i.e., copying elements from one image and

pasting them on another image), and inpainting (i.e., removal of unwanted elements).

All these manipulations could lead to misinterpretation of the visual content. Image

manipulation detection aims at detecting and localizing these tamperings, and the recent

related works are summarized in Table 2.3.

2.4.1 Traditional tamper detection methods

Initially, many studies in this field relied on hand-crafted or predetermined features such

as local noise analysis [25], Colour Filter Array (CFA) artifacts [41], and illumination

variance analysis [30].
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For instance, early work by Lin et al. [83] utilized the statistics of Discrete Cosine

Transform (DCT) coefficients of doubly compressed JPEG images to distinguish between

authentic and tampered regions. Ferrara et al. [41] used the colour filter array to detect

inconsistencies in an image’s tampered regions. Further, local noise features introduced

by sensors and post-processing [26, 94] and inconsistencies in illuminant colour or

lighting [20, 39] served as cues for image splicing detection.

However, these hand-crafted features were typically designed for a specific type of

image manipulation. Consequently, they often struggle to achieve high performance in

practice due to their inherent limitations.

2.4.2 Learning-based tamper detection methods

Applying deep learning techniques has revolutionized various fields, including image

manipulation detection. Researchers have harnessed the power of deep neural networks,

such as Recurrent Neural Networks (RNNs) [11, 12], Convolutional Neural Networks

(CNNs) [60], and Generative Adversarial Networks (GANs) [65], for this task. These

techniques have improved the generalization capability of image tampering detection

across different manipulation types.

A common approach in learning-based image tampering detection involves the es-

timation of local noise variances [109]. Different regions within an authentic image

contain similar intrinsic noise variances, so tampering can be revealed by detecting

inconsistencies in local noise variances. Notable works in this area include the propo-

sition by Fridrich et al. [44] to use steganalysis to construct rich models of the noise

component and capture numerous quantitative relationships between pixels. Li et al. [75]

introduced using an FCN’s first convolutional layer with trainable high-pass filters to

capture tampering features.

In addition, Zhang et al. [162] employed a stacked autoencoder to learn context

features, and Bayar et al. [14] replaced the low-pass filter layer with an adaptive kernel

layer to learn the filtering kernel used in tampered regions. There have also been

advancements in designing CNN structures to highlight local mosaic inconsistencies [9],

exploiting interdependencies between patches [11], and using a hybrid CNN-LSTM

network [12] to improve detection performance.

Several methods combine hand-crafted and learning features for image forensics, such

as combining BayarConv and SRM features [60, 145], utilizing a two-stream network for

detection [166], and merging a spatial domain CNN with a frequency domain CNN [4].

For instance, Wu et al. [145] and Hu et al. [60] use both BayarConv and SRM features as
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Table 2.4: Comparative Analysis of Media Authorship Proof Methods
Method Type Techniques Advantages Disadvantages

LSB [68, 128] Simple; easy to implement; Vulnerable to steganalysis; low robustness.
Traditional DCT [114] Resilient to JPEG compression; Can be removed by filtering and compression;

DWT [6, 13, 133] Robust against scaling and rotation. Complex implementation.
Deep Hiding [100, 167] High capacity; good fidelity Computationally intensive;

Learning-Based GANs [87, 122, 135] Generates robust watermarks; good at data hiding Requires careful training; may generate detectable patterns.
Adversarial Embedding [51, 112, 130] Improves imperceptibility of hidden content Complex model tuning required.

INNs [67, 90, 147] Reversible; high fidelity and capacity Still an emerging field; robustness concerns.

detection clues. Given features from distinct views, they develop a two-stream network,

which inputs the RGB image and its feature counterpart generated by the SRM filter to

identify the tampered pixels. Amerini et al. [4] combines a spatial domain CNN with a

frequency domain CNN for splicing forgery detection, inspired by the fact that single

and double JPEG compression artifacts differ. Zhou et al. [165] combine SRM features

with RGB features by a two-stream Faster R-CNN to perform manipulation detection.

Manipulating specific regions of an image inevitably leaves traces. Therefore, ex-

ploiting edge artifacts also contributes to manipulation detection. For instance, Salloum

et al. proposed a multitask FCN to predict a tampered area and its boundary [121].

Zhou et al. [164] introduced an edge detection and refinement branch. MVSS-Net [32]

replaced non-trainable bilinear pooling with Dual Attention and further concatenated

edge features for adaptive prediction.

Proactive measures have also been put forward to combat malicious tampering [5,

138, 153]. These involve embedding an invisible tag into the original image, which

remains retrievable post-manipulation, enabling users to block the dissemination of fake

information. However, these methods cannot pinpoint the tampered region.

2.5 Media authorship proof

Advancements in information technology and easy internet access have made unautho-

rized access, alteration, and dissemination of digital information all too common. This

unrestricted access to digital information, without any security mechanism, poses severe

threats to content security, protection, and integrity. Consequently, digital watermarking

and steganography have emerged to address these concerns, which are powerful tech-

niques for data protection and copyright security of digital images over unlicensed usage.

Related works are listed in Table 2.4.
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2.5.1 Traditional Image Watermarking and Steganography

Traditional image steganography techniques can be broadly classified into three types:

spatial-based, frequency-based, and adaptive-based steganography methods. The Least

Significant Bit (LSB) [68, 128] is a conventional spatial domain-based method. It replaces

the n least significant bits of the cover image with the most significant n bits of the

secret image. However, the LSB algorithm often introduces texture-copying artifacts,

especially in smooth regions of an image. Other spatial steganography methods are based

on pixel value differencing (PVD)[108, 144], histogram shifting [116, 132], multiple bit-

planes [64, 104], palettes [64, 105], etc.

In addition to LSB, there are many methods proposed to embed information in

frequency domains, such as the discrete Fourier transform (DFT) domain [3, 120], discrete

cosine transform (DCT) domain [59], and discrete wavelet transform (DWT) domain [6,

13, 133], etc. For instance, JSteg [114] embeds data into the LSBs of the host image’s

discrete cosine transform (DCT) coefficients. These methods offer better fidelity than

LSB but suffer from limited embedding capacity and lack robustness.

Adaptive steganography typically employs a general framework for data embedding,

decomposing the problem into embedding distortion minimization and data coding. A

prominent example of this method was proposed by Pevny et al.[112], which utilizes

the subtractive pixel adjacency matrix feature[111] and syndrome-trellis codes [42] for

adaptive steganography. Several other adaptive methods [48, 49, 56–58, 74] have been

designed with different cost functions. While these methods offer good imperceptibility,

they commonly fall short in payload capacity.

2.5.2 Learning-based Image Watermarking and Steganography

Recent developments in deep learning have seen its application in image-watermarking

and steganography [100, 167], yielding impressive results. These methods, also known

as deep hiding, started gaining attention with the work of Baluja [7], one of the first

learning-based solutions to conceal an entire RGB image within another. They adopt a

preparation network to extract useful features of the secret image and then employ a

hiding network to fuse the features of the secret image within the cover image. Finally,

a revealing network is adopted to recover the original secret image. Based on this

approach, subsequent learning-based image-hiding techniques have emerged and can be

categorized into four subclasses: the family by synthesis, the family by regulation, the

family by adversarial embedding, and the family by invertible networks.
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In the family of image synthesis, Shi et al. [122] and Volkhonskiy et al. [135] utilize

generative adversarial networks (GANs) to create a more suitable container. However,

these methods do not significantly improve the steganography payload capacity compared

to traditional methods. Contrarily, Liu et al. [87] adopt a different strategy, replacing

the embedding process with synthesizing a container image based on secret information

using a GAN.

In the family of modification probability map generation, most methods focus on

generating various cost functions that achieve minimal distortion embedding [112]. For

instance, Tang et al. [131] introduce a GAN-based distortion learning framework for

steganography, while Yang et al. [149] use a generator with U-Net architecture to convert

an input image into a container image. Rahim et al. [100], Zhang et al. [158], and Weng

et al. [143] use separate embedding and retrieval networks. Zhang et al. [155] propose a

novel universal deep hiding (UDH) meta-architecture, which improves the generalization

and interpretability of image hiding by disentangling the encoding of the secret image

from the cover image.

In the family of adversarial embedding, Tang et al. [130] propose an adversarial

scheme under the distortion minimization framework [112]. By employing an additional

discriminative network, Hayes et al. [51] further improve the imperceptibility of hid-

den content. Luo et al. [91] enhance watermark robustness by integrating adversarial

training and channel coding in their framework. Using image texture features, Liao et

al. [81] formulate adaptive payload distribution to achieve multiple image steganography.

SteganoGAN [157] uses the encoder-decoder structure for information embedding and

recovery, and a third network plays the role of an adversary to resist steganalysis.

Recently, an excellent technique called the invertible neural network (INN) has been

applied to image-hiding tasks. This network uses one normalizing flow backbone network

to learn a bijective mapping between the input and target domains to implement both

forward and backpropagation operations. Jing et al. [67] and Lu et al. [90] use this

revertible network, serving as both embedding and retrieval networks, achieving high

fidelity in both processes. Although these promising methods have achieved outstand-

ing fidelity and capacity, their robustness is insufficient. To address this, RIIS [147]

introduces a conditional normalizing flow to model the distribution of the redundant high-

frequency component conditioned on the container image, thus improving robustness

while maintaining imperceptibility and capacity.
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3
SENSITIVE INFORMATION SANITIZATION

3.1 Preface

This chapter engages with the critical issue of sensitive information sanitization in image

data, a cornerstone of privacy protection in our increasingly digital age. As we produce

a tremendous amount of visual data online daily, courtesy of the explosive growth of

various computer vision technologies, we inadvertently reveal a wide range of sensitive

information. This widespread data availability poses an unprecedented risk of privacy

leakage. The threat is particularly acute in the case of photos containing human faces,

which can easily be accessed and misused, leading to serious violations of individual

privacy.

Given this landscape, we begin the chapter by exploring the threats of inadequate

sanitization methods, mainly traditional anonymization techniques like blurring and

Mosaic. These conventional methods have proved weak and ineffective in the face of

emerging Deep Learning-based attacks.

Responding to this challenge, we present a novel de-identification approach that

harnesses the power of deep learning. The approach is based on a framework comprising

two modules: an Encoder and Generator networks. The Encoder transforms a face image

into a high-semantic latent vector of codes, which are subsequently de-identified accord-

ing to the differential privacy criterion. The Generator, leveraging the unconditional

Generative Adversarial Network (GAN), then synthesizes high-quality images based on
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these modified latent codes.

We provide a thorough presentation of this innovative approach, detailing its imple-

mentation and discussing its implications for privacy preservation. The chapter concludes

with an analysis of extensive experimental results, which indicate that our proposed

model can protect image privacy while maintaining the visual realism of processed

images. Through this exploration, we hope to contribute to developing robust techniques

for sensitive information sanitization and push the boundaries of privacy protection in

image data.

3.2 Introduction

With the wide deployment of devices equipped with cameras, our society has witnessed

a rapid increase in using and generating visual data. These data are used by people

as a new form of daily communication and play a crucial role in developing advanced

computer vision technologies, such as face recognition, image detection, etc. However, a

great amount of sensitive information, such as human faces and/or plate numbers, are

contained in the visual data. Directly sharing and using these images inadvertently pose

a serious risk of privacy violation.

Government regulations such as the General Data Protection Regulations (GDPR) has

went into effect by the European Union. According to GDPR, every person in the images

dataset needs to consent to the use of his/her images. This regulation challenges the

conventional way of research in computer vision because obtaining everyone’s permission

in a large-scale images dataset is nearly impossible. Fortunately, according to GDPR, if

the image data does not reveal any specific person’s identity information, it will be free

to use without any consent. Moreover, most computer vision applications do not rely on

images’ identity features. For instance, image segmentation and object detection only

need to detect, instead of identifying certain people in an image.

Therefore, to achieve a balanced trade-off between privacy protection and practical

application, it is necessary to sanitize images’ identity information while keeping the

processed images real-looking.

However, for face images, anonymizing identity information to satisfy the requirement

of GDPR while retaining its utility is a challenging task. Traditional anonymization

techniques are mainly based on obfuscation, such as Mosaic or Blur, which are inadequate

for removing privacy-sensitive information but substantially alter/destroy the original

face [84]. Given a face image, an ideal de-identification method should be able to preserve
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the appearance features of the original image and just remove its identity characteristics.

Consequently, the processed images would still look realistic to human observers and

AI-based computer vision tools, such as face detectors, emotion classifiers, but people

in those images cannot be identified. To be more specific, we formulate the following

criterion to regulate the de-identification methods:

• Anonymization: The anonymization techniques should have the ability to remove

privacy-sensitive information in the input images and reduce the identification

possibility of the processed images by vision methods or human observers;

• Realistic: The processed image dataset should keep similar distribution with the

original, and each image among the dataset should keep high visual quality;

• Usability: The complexity of the Anonymization process should be kept as low as

possible;

• Configurable: The method should support an adjustable protection mechanism,

which offers various levels of Anonymization according to users’ requirement.

To satisfy the above-mentioned properties, we propose a novel privacy protection

framework enforcing de-identification in latent space. Our network builds upon the

unconditional GAN to produce realistic images. Unlike the conventional GAN-based

image generation controlled by a random noise vector, we adopt an encoder-decoder

architecture to create an operable and high-semantic latent space to implement the

anonymization processing step. Besides, an Identity-Level loss function is introduced

during the network’s training process to regularize the network in latent space so as to

provide different de-identification effects from less private to more private. Therefore,

the proposed method provides configurable image anonymization.

More specifically, the anonymization process of the proposed method first encodes

input image into latent space as latent codes, and then generates a de-identified version

of the latent codes according to the privacy requirement. Finally, the Decoder uses the

modified latent codes to generate the anonymized image. Different from manipulation in

pixel space, the proposed image processing in latent space has the following advantgaes:

(1) manipulation in the latent space are more accurate so it can appropriately alter

original images’ characteristics and features, thus preserving output image’s quality and

utility; (2) the entire anonymization process is unsupervised, which does not require

complicated pre-processing and annotations of face areas; (3) unlike de-identification by
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directly altering pixels, latent space manipulation can provide rigorous privacy protection

because the face information is compressed in the tractable latent vectors.

In summary, the major contributions of our works in this paper are summarized as

follows:

• We present a novel face images privacy protection framework that implements

de-identification of face images via editing images’ identity-related features in the

latent space;

• We design a dedicated and adjustable privacy-related loss function to regularize

the network’s training process;

• We validate that our framework outperforms both traditional protection techniques,

such as blur and Mosaic, and the state-of-the-art methods, such as CIAGAN [97]

and DeepPrivacy [63], regarding privacy protection as well as visual quality and

utility preservation. In addition, we evaluate the impact of the privacy regulariza-

tion parameter on the performance of our proposed method.

3.3 Image Privacy Embedding Framework

3.3.1 Network Architecture

Figure 3.1: The framework of our proposed method. The Encoder consists of a Feature
Pyramid network and Privacy Embedding Layers. The Generator utilizes StyleGAN2’s
generator network. Feature Pyramid network first converts input image into three levels
feature maps in latent space. Then, Privacy Embedding layers implement manipulation
on feature maps to generate privacy enforced latent code. Finally, Generator employs
latent code to synthesize the output image.

22



3.3. IMAGE PRIVACY EMBEDDING FRAMEWORK

The complete architecture of our image privacy embedding framework is illustrated

in Fig. 3.1. It adopts an encoder-decoder architecture. We build our model on the one pro-

posed by Richardson et al. [119], which aims to reconstruct input images. Nevertheless,

the objectives of our works are not only generating images that resemble the original

ones, but also limiting the amount of private information revealed in the generated im-

ages. Therefore, we perform several alterations. First, the Encoder leverages the Feature

Pyramid network to project input images to spatial feature maps in the latent space.

Second, it employs Privacy Embedding layers to implement semantic manipulation on

feature maps to produce the privacy-anonymization latent codes. Third, the affine trans-

form generates parameters for the fixed and pre-trained Generator network regarding

these latent codes to synthesize the de-identification version of input images. The entire

image-to-image translation is an end-to-end style that starts from input pixels to latent

space feature maps, followed by modified latent codes, then end at output pixels. Hence,

different from the state-of-the-art anonymization techniques: CIAGAN and DeepPrivacy,

the proposed framework achieves image de-identification in the latent space instead of

the pixel space.

3.3.1.1 Encoder

The primary objective of Encoder is to generate latent vectors with respect to the input

images and to perform de-identification editing on such vectors. There are two challenges

to realize the goal: (1) How to project the image into the latent space accurately; and (2)

How to anonymize image in the latent space semantically.

For the first challenge, a simple solution is to directly extract the same dimension

vectors with respect to the Generator from the last layer of the Encoder network. How-

ever, such an approach presents a substantial bottleneck limiting the reconstruction

fidelity and latent space’s semantic richness [1, 2]. We attribute this limitation to the

absence of original image’s spatial information in the latent spaces. This is mainly be-

cause low dimension style vectors can not fully reflect the original image’s high-level

features especially the pixels’ relation in images. Without spatial information, the input

image’s semantics are compressed in an entangled manner, making it difficult for further

manipulation and reconstruction. Therefore, our Encoder adopts a Feature Pyramid

Network (FPN) as the mapping network to produce latent space with spatial dimensions.

FPN projects the input images into three levels of feature maps, representing coarse,

medium and fine details of the input image [119]. This property allows Encoder pro-

duces high semantic and fidelity latent space, which enable further manipulation and
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reconstruction.

For the second challenge, we employ a trainable Privacy Embedding Network (PEN)

to transform the feature maps into latent codes for future de-identification manipula-

tion. The PEN adopts fully convolutional layers’ architecture followed by LeakyReLU

activations to best comprehend and interpolate the spatial information of feature maps.

Each PEN corresponds to one Latent code vector. The specific layer number of each PEN

is aligned with the feature maps’ hierarchical scales to guarantee to generate the same

dimension latent codes. Feature Pyramid Network and Privacy Embedding Network are

jointly trained to protect sensitive information in latent space.

3.3.1.2 Generator

The Generator generates an output image utilizing latent codes extracted by Encoder.

Motivated by the state-of-the-art visual synthesis quality and high semantic latent space,

we employ a pre-trained StyleGAN2’s generator network as our Generator. StyleGAN2

is equipped with re-designed generator architecture, which provides disentangled latent

space W and editing capabilities to synthesize images. To better utilize the representative

power of StyleGAN2, followed by common practice [119], we use the extended latent

space W+, which composed of the concatenation of 18 vectors , each with a dimension of

512 for each input layer of StyleGAN2, to control image generation.

Consequently, the latent codes, aligned with the hierarchical representation, are fed

to Generator through an affine transform to generate the output image. The complete

data translation of our framework is an end-to-end image-to-image translation. More

specifically, we denote the Encoder’s latent space encoding and manipulation process

as F : R× → R1×1, where the input image x maps to a 18×512-dimension codes. The

Generator’s reconstruction transform is denoted as F−1 : R1×1 →R×.

3.3.2 Training and Losses

The left part of Fig. 3.2 illustrates the training scheme of our framework. We use E
and G to denote our Encoder and Generator. Since the Generator network is built upon

the representative power of pre-trained StyleGAN2’s generator [71]; therefore, only the

Encoder is updated during the training to achieve image anonymization. Besides, the

entire training scheme does not require any pre-annotations. Encoder implements all

image manipulation operations on images’ latent space instead of Generator on the pixel
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Figure 3.2: The training and protection scheme of our framework. Green arrows refer to
data flows from the input image to the generated image. Dashed red lines indicate loss
functions. Besides, the trapezoid with a red dash outline indicates a trainable network,
while black full line trapezoids represent fixed and pre-trained networks.

level. To semantically guide the training, we utilize a weighted combined loss function,

which consists of three dedicated sub-loss functions for different objectives:

Pixel-Level Loss: L2 loss is adopted to enforce the reconstructed images x̂ =G(E(x)) to

pixel-wise resemble input images x,

L2 (x)= ∥x− x̂∥2 ,

where E(·) denotes Encoder network, G(·) denotes Generator network, x and x̂ are

original and corresponded processed image.

Perceptual-Level Loss: In addition to preserving perceptual quality, we leverage

the Learned Perceptual Image Patch Similarity (LPIPS) [159] loss to encourage the

reconstructed images perceptually similar with the originals,

LLPIPS (x)= ∥L (x)−L (x̂)∥2 ,

where L(·) represents the perceptual features extractor.

Identity-Level Loss: To limit the amount of private information presented in the

reconstructed images, we regularize the cosine similarity between the input and re-

constructed images’ identity feature vectors. Specifically, by employing the pre-trained

ArcFace network [31], we obtain the identity features vector of images. Then, we set up

a privacy regularizer β ∈ [0,1] to restrict the similarity between input and reconstructed

images’ identity features to reduce the privacy information exposed in the reconstructed

images. Formally, the identity loss function is written by:

LID (x)=
∣∣β−CosineSimilarity (Arc (x) , Arc (x̂))

∣∣ ,
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where Cos(·) denotes cosine similarity and Arc(·) denotes pre-trained ArcFace network.

Besides, accompany with the privacy regularizer β’s, the identity-level loss will impose a

different level of privacy protection effects. As Cos (Arc (x)− Arc (x̂))= 1 indicates highest

similarity between x and x̂, a smaller β will enforce larger distance in identities and

therefore better privacy protection.

The overall weighted sum loss function is defined as:

L (x)=λ1L2 (x)+λ2LLPIPS (x)+λ3LID (x) ,

where λ1,λ2,λ3 are constant weighting corresponded loss.

3.3.3 Protection Stage

The right-hand-side part of Fig. 2 illustrates the protection scheme of our framework.

With our model trained to minimize loss function Eq. (4), the network enables de-

identification of the input images. During this stage, both Encoder and Generator are

fixed. Therefore, the input image is encoded into latent space, and then processed by

the proposed privacy-enhancement mechanism, resulting in an output of a privacy-

preserving latent code. The Generator will then synthesize a de-identification image

according to the privacy-preserving latent code. The Latent Codes part is omitted in Fig.

2 for brevity.

3.3.4 Attack Model

We consider a robust threat model to validate our framework’s privacy protection capa-

bility in a worst-case scenario. The adversary’s objective is to learn personal identity

by accessing images and then using the extracted identity information to match other

people’s images illegally. For example, an adversary can utilize the face on Google street

view to search corresponding individual social network accounts or other personal im-

ages published on the Internet to further illegally surveil people. We assume that the

adversary can acquire all processed images shared in online social networks but have

no access to the original images (which represent corresponding personal images with-

out processed by privacy-enhancement methods). Besides, the adversary is capable of

utilizing state-of-the-art face recognition methods to launch identification attacks.

To quantify this risk, we calculate the Identity Similarity between the original and

processed images,

Id Similarity= CosineSimilarity (F (x) ,F (x̂)) ,
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where F(·) represents identity features extractor which based on pre-trained facial

recognition networks.

Specifically, the higher Identity Similarity between the original and processed images

indicates a higher possibility of success illegal identification by the adversary, and hence

a lower privacy-level, and vice versa. Therefore, the objective of image privacy protection

techniques is to reduce their output image’s Identity Similarity compared with that of the

input one. Given by the dedicated Identity-Level loss, our framework provides adjustable

control over the processed images’ Identity Similarity with the original images. Hence,

our framework could effectively defence the re-identify attack, despite the state-of-the-art

facial recognition model.

3.4 Experiment

In this section, we implement extensive and comprehensive experiments to evaluate our

framework’s effectiveness of identity anonymization. The proposed method is compared

with both classic and state-of-the-art anonymization methods on various faces image

datasets. The experiment results indicate that the proposed method acquires the best

performance regarding various qualitative and quantitative evaluation metrics. Besides,

we also present a set of comparisons to reflect how privacy regularizer β affects the

anonymization performance of our method. The datasets, baselines and evaluation

metrics will introduce in the following:

Datasets. The experiments are conducted on two public well-known faces image datasets

to exhibit the performance of the proposed image de-identification framework.

• CelebA [88]: the dataset consists of 202599 face images with various features,

such as age, gender and race. For a fair comparison, we use the aligned version

where each image centred on a point in-between person’s eyes and then resized to

256×256 resolution. Only 20k images are randomly selected to train the proposed

model for saving time.

• Flickr-Faces-HQ [71]: This dataset is composed of 70k high-quality PNG images

with 1024×1024 resolution and also provides considerable coverage in terms of

personal age, ethnicity, image background, accessories, etc. To reduce training

complexity and time, we randomly selected 10k image from this dataset. Every

selected image are aligned and cropped to the cetral point, then resized to a

resolution of 256×256.

27



CHAPTER 3. SENSITIVE INFORMATION SANITIZATION

Comparative studies. We compare two classic anonymization methods and two state-

of-the-art learning-based techniques.

• Classic Methods: We use Mosaic and Blur to compare them with our method.

Both of them are current mainstream and most commonly used image privacy-

enhanced techniques which well represent the traditional methods.

• Learning-Based Method: We select DeepPrivacy [63] and CIAGAN [97] as

benchmark schemes. We adopt the official codes and pre-trained models given by

the authors. These two methods are selected because they satisfy our proposed

de-identification criterion and achieved better performance compared with the

other existing learning-based methods.

3.4.1 Evaluation Metrics

To quantitatively evaluate and compare the interested schemes, we employ the following

metrics to assess their performance in the aspects of visual quality, privacy protection

and utility.

3.4.1.1 Visual Quality Metrics

Three different evaluation metrics are employed to measure the visual quality of the

de-identification images:

• MSE: This metric calculates the pixel-wise Mean Square Error (MSE) between the

input and anonymous images to compare different outputs visual quality at the

pixel-level. A lower MSE value indicates a higher similarity between the original

and the de-identification images, implying better visual quality preservation.

• SSIM [140]: Rather than directly comparing the images pixel by pixel, we use

Structural Similarity (SSIM) to measure the perceptual difference between the

input and processed images incorporating Luminance, Contrast and Structure.

Therefore, a lower SSIM indicates better images’ visual quality preservation from

the human perceptual perspective.

• FID [55]: Different from the previous metrics which measure pair-wise image sim-

ilarity, Frechet Inception Distance (FID) calculates the Frechet distance between

the input and processed image datasets’ multidimensional Gaussian distributions
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N
(
µ,Σ

)
using the Inception v3 [127] features to quantify their quality similarity.

A lower FID represents better quality preservation.

3.4.1.2 Privacy Metrics

The objective of the privacy metrics is to evaluate the performance of privacy protection.

There are two different privacy metrics used in our experiments.

• Identity Similarity: According to Eq. (5), we define Identity Similarity as below.

This metric calculates the cosine similarity of the original and anonymized images’

identity feature vectors to quantify the effectiveness of privacy protection. As the

ArcFace model is employed in our encoder’s loss function, we leverage another state-

of-the-art Facial Recognition network’s pre-trained model, CurricularFace [62], to

extract the images’ identity features.

Id Similarity= CosineSimilarity (CF (x) ,CF (x̂)) ,

where CF(·) denotes pre-trained CurricularFace-based identity feature extractor. A

lower Identity Similarity value between the original and processed images indicates

a higher level of de-identification. Averaging the Identity Similarity among 10k

random identities from the FFHQ dataset, we obtain an empirical threshold δ

value: 0.19. Hence, in the following experiments, an image pair with an Identity

Similarity lower than 0.19 will be regarded as different identities.

• De-Identity Rate: Besides the Id_Similarity, we present another evaluation

metric: De-Identify Rate= ŷ/y, where ŷ is the number of image pairs that can be

recognized by the pre-trained CurricularFace as different identities, and y is the

total number of images pairs in the experiment. This metric is used to measure the

ratio of the anonymized images that have completely removed the original identity

characteristics.

3.4.1.3 Utility Metric

The processed images using the anonymization methods should maintain a high utility in

practical identity-agnostic computer vision tasks, such as face detection. To quantitatively

compare the studied methods in terms of utility preservation, we perform face detection

using the standard Dlib-ml library‚Äôs HOG-based face detector [27] on their processed

images. We measure the percentage of detected faces to evaluate the performance of each

anonymization method, with 1.0 representing perfect utility preservation.
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(a) MSE (b) SSIM (c) FID

Figure 3.3: The utility metrics corresponding to β from 0 to 1.

3.4.2 Impact of Privacy Regularizer

We now discuss the impact of the privacy regularizer β on the visual quality, utility and

privacy. Recall that β is incorporated in the identity loss function to regulate the input

and processed images’ identity similarity. A lower β leads to a higher variation, and

hence more potent privacy protection on the processed images, and vice versa. We train

our framework by varying β from 0.0 to 1.0 with an interval of 0.1 to construct different

models. Then, we calculate the defined metrics over different models to evaluate the

impact of β on the performance.

3.4.2.1 Visual Quality Evaluation

First, we show the experiment results of visual quality. As illustrated in Fig. 3.3, the

trend of the quality metrics is consistent with each other. The processed images’ quality

increases with the decrease of the required privacy protection level. This phenomenon

indicates that altering the image’s identity features will also reduce the quality of the

reconstructed images. However, according to quantitative results, the quality reduction

is not obvious, which verifies that our method can generate sufficiently high-quality

images while providing privacy protection.

3.4.2.2 Privacy Protection Evaluation

The quantitative results of privacy protection are shown in Fig. 3.4a. With the relaxation

of privacy regularizer, the average of Id_Similarity continues to rise, and the De_Identify

Rate declines, which shows that a smaller privacy regularizer provides a higher privacy

protection level, and vice versa. Moreover, there is an "elbow" point appearing at around
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(a) Id_Similarity and De_Identify rate. (b) Detection Rate.

Figure 3.4: Average Id_Similarity, De_Identify, and Detection Rate along with privacy
regularizer β increase from 0 to 1.

β= 0.2 on the De_Identify Rate curve, where the privacy protection level on the processed

images starts drops rapidly. Besides, the privacy protection becomes negligible at β= 0.4

when facing the re-identification attacks using the state-of-the-art facial recognition

models.

3.4.2.3 Utility Performance Evaluation

We show in Fig. 3.4b the results of utility with respect to the range of privacy regularizer.

The detection rates remain at almost 0.99 with various privacy regularizers, demonstrat-

ing that our method achieves a nearly perfect score in preserving utility. Besides, it also

proves that some computer vision tasks, such as face detection, are identity-agnostic,

which do not rely on people’s identity information. Therefore, the proposed anonymization

techniques could be employed to protect the privacy in the publicly available large-scale

face image datasets while preserving their utility in computer vision tasks.

3.4.2.4 Qualitative Comparison:

Furthermore, we visualize several samples with different β in Fig. 3.5 to conduct a

qualitative comparison. As β decreases, the visual identity of the processed image

significantly changes comparing with that of the original one, while most of the non-

identity features are retained to generate a high fidelity for the processed images.

3.4.3 Comparison with Classic Methods

In this subsection, We present comparison experiments between our method and the

mainstream image anonymization techniques, i.e., blurring and mosaic. For the sake
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Figure 3.5: Qualitative comparison of different privacy regularizer β. With a lower
regularization parameter, the processed image’s identity similarity significantly different
from the original. Besides, corresponding to discover in De-identify Rate curve, we note
that images output by models whose β higher than 0.4 still reserve very similar visual
identity with the original. Only images processed by models whose β lower than 0.2 have
relatively large difference with the original.

of fairness, all methods will be calibrated to reach a comparable value in terms of a

performance metric value, and then we will apply the other performance metrics to

evaluate their performance. The experiments in this section are conducted using the

FFHQ dataset.

3.4.3.1 Visual Quality Evaluation

We first evaluate the visual quality of the anonymized images. Our model and two bench-

mark methods are fine-tuned to make their privacy metric values reach the following

numerical range [0.1, 0.2, 0.4], which represents a variety of privacy protection levels

in the order of strength. Then, we evaluate the aforementioned visual quality metrics.

The results are summarized in Tables 3.1, 3.2 and 3.3. As shown in these tables, our

framework outperforms the blur and mosaic techniques in every category of performance

metrics at all of the investigated privacy protection levels. These results show that for a

given privacy protection level, our method can generate a higher utility compared with

the conventional techqniues.
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Table 3.1: Quality met-
rics at identity similarity
around 0.1.

MSE↓ SSIM↑ FID↓
Blur 0.12 0.50 158.23

Mosaic 0.42 0.40 130.71
Ours 0.04 0.63 48.51

Table 3.2: Quality met-
rics at identity similarity
around 0.2.

MSE↓ SSIM↑ FID↓
Blur 0.05 0.60 98.65

Mosaic 0.10+ 0.46 119.99
Ours 0.03 0.66 47.52

Table 3.3: Quality met-
rics at identity similarity
around 0.4.

MSE↓ SSIM↑ FID↓
Blur 0.03 0.65 65.82

Mosaic 0.05 0.54 108.03
Ours 0.03 0.69 46.33

3.4.3.2 Privacy Protection Evaluation

In this subsection, we evaluate the privacy protection performance of our method. Similar

to the evaluation of visual quality, we calibrate the interested methods to achieve a

similar SSIM value for fair comparison. From the experimental results, we find that our

framework can achieve a relatively stable SSIM value at around 0.65, with different sets

of parameters (more details will be discussed in the latter part of this section). In the

following, we only evaluate the privacy protection level under an SSIM of 0.65.

Table 3.4: Identity Similarity at same
SSIM value (0.65).

Methods Identity Similarity↓
Blur 0.38+-0.11

Mosaic 0.87+-0.04
Ours 0.16+-0.08

Table 3.5: Detection Rate at same SSIM
value (0.65).

Methods Detection Rate↑
Blur 0.4575

Mosaic 0.9818
Ours 0.9999

Table 3.4 shows that our method can significantly reduce the identity similarity

between the input and processed images comparing with the benchmark techniques,

which indicates that our method can provide a higher privacy protection level.

3.4.3.3 Utility Performance Evaluation

Next, we present the evaluation results of utility. We calculate the detection rate of each

method when the Identity Similarity reaches [0.1, 0.2, 0.4] and the SSIM is around 0.65,

respectively. The results are reported in Fig.3.6 and Table 3.5.

As shown in Fig. 3.6, our anonymized images consistently achieve 100% detection

rates under various privacy metric values. This result indicates that the proposed method

could perfectly maintain image utility in the face detection task. On the contrary, the

mosaiced and blurred images have much lower detection rates, indicating that these

anonymization techniques incur heavy utility loss in detection tasks. Table 3.5 shows
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Figure 3.6: Detection Rate at Identity Similarity on [0.1, 0.2, 0.4].

that the mosaic and blur techniques will inevitably cause utility loss even under the

same visual quality, while our method shows perfect utility preservation.

3.4.3.4 Qualitative Comparison

Apart from the above quantitative comparison, we also illustrate several original and

processed images in Fig. 3.7 with SSIM=0.65 to qualitatively exhibit the privacy pro-

tection. Regardless of the relatively high SSIM value, the blur and mosaic technique

lead to noticeable perturbation on images, which will significantly compromise their

applications in practice. In contrast, our method semantically modifies the ROIs of the

images, while maintain the fidelity in the processed images.

Figure 3.7: Qualitative comparison between our method and classic anonymization
techniques under SSIM values: 0.65, from left to right: Original, Ours, Blur and
Mosaic.

.
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3.4.4 Comparison with the state-of-the-art Methods

This section compares our method with the state-of-the-art de-identification methods,

i.e., DeepPrivacy [63] and CIAGAN [97], which are both trained and tested on the

CelebA dataset. Thus, we also apply our framework to the CelebA dataset for fairness

comparison.

Both the reference works cannot adjust the privacy protection levels. Hence, we

calculate their outputs’ Identity Similarity to be 0.1 and 0.2, respectively. Then we

fine-tune our model to achieve the same Identity Similarity and conduct a comparative

experiments. Table 3.6 lists the quantitative comparison results. In terms of the visual

quality metrics, CIAGAN achieves an impressive performance on FID by obtaining a

score of 12.72. Our method is slightly inferior to CIAGAN by achieving an FID score of

31.11. Although FID is usually employed as an important metric to evaluate the output

quality of GANs, it is calculated based on the distribution of generated images, which

cannot fully capture the quality of a single image. Besides, our method outperforms

CIAGAN and DeepPrivacy in the other Visual Quality metrics of MSE and SSIM. It

shows that our network could generate anonymous images with comparable visual

quality.

Fig. 3.8 illustrates more perceptual comparison results. From this figure, we can see

that our model produces more visually-realistic anonymous faces that preserve more

characteristics of the original identity. In contrast, the process images from CIAGAN look

different to the source images, because of the direct change of the original ID. However,

when the fake Identification does not share the same gender, age or makeup, CIAGAN

tends to produce extremely unrealistic images (e.g., row 3, column 5 in Fig. 3.8). Besides,

distortions and artifacts often occur on their processed images. The processed images

from DeepPrivacy could relatively well keep the facial pose and outline, nevertheless

it adds fuzziness on the face area. In addition, both CIAGAN and DeepPrivacy share

another significant flaw, i.e., these two techniques rely on facial landmark detection

to provide pre-annotation and require to feed their networks with face-removing im-

ages, making it difficult to deploy them in real-world applications. On the contrary, our

approach does not have these issues and can provide adjustable privacy protection.

3.4.5 Discussions

In summary, the experimental results demonstrate that our method could provide

adjustable privacy protection, while generating sufficiently high-quality images. This
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Table 3.6: Quality metrics at Identity Similarity around 0.2.

MSE↓ SSIM↑ FID↓ DR↑
CIAGAN 0.07+-0.02 0.65+-0.07 12.72 0.9939

Ours(Id=0.2) 0.02+-0.00 0.73+-0.08 31.11 0.9989
DeepPrivacy 0.09+-0.04 0.61+-0.09 25.94 0.9976
Ours(Id=0.1) 0.02+-0.00 0.72+-0.08 33.41 0.9976

Figure 3.8: Qualitative comparison between our method and SOTA anonymization
techniques DeepPrivacy and CIAGAN. From top to bottom show the outputs of: Original,
DeepPrivacy, CIAGAN, Ours (β= 0.0), and Ours (β= 0.2).

makes our method capable of satisfying different application requirements in practice.

From the presented results, it is obvious that our approach significantly outperforms

the classic obfuscated-based methods in anonymization task to achieve a balanced

trade-off among visual quality, privacy protection and utility preservation. Compared

with the deep learning based methods, i.e., CIAGAN and DeepPrivacy, our method can

provide more semantic and accurate anonymization. The qualitative results show that

the generated images from the proposed method can retain more original characteristics.

In contrast, both CIAGAN and DeepPrivacy fail to preserve enough original features.

However, according to our extensive experiments, we find several weaknesses of
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the current deep learning based de-identification methods. First, these methods rely

on face detection. Any face that is not detected by the deep learning based methods

cannot be anonymized. Our method suffers from a similar issue as it depends on the

pre-trained StyleGAN. Thus, it is challenging to anonymize face images that are not

facing forward because such examples are not available during the StyleGAN training

process. In addition, faces covered with objects, such as earrings, are extremely hard to

process. To generate a face with such features requires a more careful design, which is

still an open problem for the deep learning based methods.

3.5 Conclusion

This chapter presents a novel image privacy protection framework that could protect

the image’s privacy in the latent space and achieve a balanced trade-off between the

image’s privacy, utility and quality. The proposed framework consists of an Encoder and a

Generator. Input images are translated by Encoder into the latent space and then subject

to semantic manipulations to protect privacy of faces. Using the Encoder’s output, the

Generator is built upon a pre-trained unconditional GAN to reconstruct a high-fidelity

and anonymous image. The advantages of our framework are two-fold: i) it can remove

the identity information in the target image while retaining the other information that

has nothing to do with identity (such as image structures), thereby providing a visually

realistic image, and ii) the degree of de-identification can be controlled via a parameter to

provide adjustable protection so that users can flexibly tune their requirements of privacy

and utility. Our experimental results demonstrate the effectiveness of our framework

in real-world image datasets, thanks to its ability to generate comparable performance

metrics with the classic techniques as well as the state-of-the-art methods. In the future,

we will further explore the disentanglement of sensitive and non-sensitive attributes in

images as well as videos.

As Chapter 3 concludes with innovative approaches to sensitive information san-

itization in image data, the next chapter will seamlessly transition into the realm of

forgery media detection. Building upon the foundational understanding of protecting

sensitive data, Chapter 4 will introduce the challenges and advancements in detecting

and preventing digital forgeries, especially in the rapidly evolving landscape of Deep-

fake technology. The focus will shift from safeguarding information to ensuring media

authenticity in an era where digital manipulation is becoming increasingly sophisticated.

Specifically, in the next chapter, we design a proactive framework to combat malicious
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forgery by watermarking face identity features to counter the increasing prevalence

of visual data manipulation or forgery. This novel framework embeds watermarks in

face identity features, differing from traditional artifact-based detection methods. It

includes a new method for Deepfake detection, a simple yet effective encoder-decoder

network, and extensive evaluations demonstrating its effectiveness, robustness, utility,

and security.
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4.1 Preface

Chapter 4 delves into the increasingly critical issue of malicious forgery and tampering

in image data, a concern heightened by the explosive progress of Deepfake techniques.

These emerging techniques, capable of creating realistic yet false visual content, pose

unprecedented privacy and security risks to our society.

Traditional methods for forgery detection often stumble upon limitations, as they

primarily rely on capturing artifacts left by a Deepfake synthesis process. However, these

clues can be easily removed through various distortions (e.g., blurring) or even more

advanced Deepfake techniques, making the detection process challenging. We outline

these limitations before introducing an innovative solution to this rapidly evolving

problem.

Our proposed framework hinges on an anti-counterfeit labelling mechanism to protect

face images from malicious Deepfake tampering, moving beyond merely identifying

the artifacts. Using a neural network with an encoder-decoder structure, we embed

watermarks as anti-Deepfake labels into the facial identity features. These injected

labels are entangled with the facial identity features, which makes them sensitive to face

swap translations (i.e., Deepfake) but robust against conventional image modifications

(e.g., resize and compress).

In the following comprehensive discussion, we present the process of embedding
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watermarks as anti-Deepfake labels into facial identity features. We also extensively

analyse our method’s performance, drawn from extensive experimental results. Our

experiments indicate that our method can achieve an average detection accuracy of over

80%. Through this chapter, we aim to contribute a significant step forward in the ongoing

fight against the rampant spread of Deepfake and its resulting threats.

4.2 Introduction

The advancement of deep generative approaches has led to various powerful Deepfake

methods, which can synthesize visually authentic images/videos. However, abusing Deep-

fake techniques poses a pressing threat to the integrity of multimedia information and

personal privacy, such as fake news or rumours. To counterbalance the aggressiveness of

Deepfake, a new research branch known as Deepfake Detection arises, which aims to

utilize traditional media forensics methods or deep learning technology to differentiate

the fake images/videos from the real ones.

Existing Deepfake detection approaches mainly focus on passively capturing the arti-

facts introduced during the Deepfake synthesis as clues to identify the fake images/videos,

which suffer from two fundamental issues: (1) Generalization: artifact-based detec-
tion methods are difficult to generalize to unknown scenarios. These methods

depend highly on the artifacts learned during the training process, so they exhibit poor

performance in dealing with unknown and strange artifacts [93]. Besides, Deepfake

techniques are developed with an alarming speed, leaving fewer detectable artifacts

in their synthesized results [23, 72]. These methods are thus struggling to keep up

with the development of the Deepfake techniques. (2) Robustness: artifact-based
detection methods are not robust against real-world distortions. Conventional

image manipulations (e.g. cropping, compression) might destroy the artifacts in Deepfake

results. These effects would further make the artifact-based detection methods less reli-

able in such scenarios [61, 115]. Besides, the carefully crafted imperceptible adversarial

noise in Deepfake images/videos can also significantly reduce the effectiveness of the

artifact-based detection [19, 46].

To overcome the above problems, we propose a novel framework to proactively wa-

termarks the identity feature of face images and then determine whether these images

are Deepfake or not according to the existence of the watermark. The mechanism of

our method is similar to anti-counterfeit. Before sharing personal images online, the

user can use our method to embed his/her watermark into these images. The watermark
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acts as the anti-Deepfake label to protect the user’s authenticity of these images. Once

images with similar identities to the watermarked images appear online, the owner

of watermarked images can verify these suspect images’ authenticity according to the

existence of his/her watermark. More details about the proposed method’s real-world

application scenario are in Section 4.4.

As shown in Fig. 4.1, our proposed framework consists of two major steps: watermark

injection and watermark verification. In the watermark injection step, the input face

image is first disentangled via two dedicated networks into an identity representation

and multi-level attributes representation. Then we embed a pseudo-random sequence

into the identity representation to generate the watermarked identity. The embedded

sequence has no dependence on the face image, so it can be randomly selected but

will be preserved and used for the watermark verification step. Another generative

network integrates the watermarked identity with the original attributes to synthesize

the watermarked image. This watermarked image is perceptually similar to the original

one, excluding the negative impact on the image’s normal use from the watermark.

The watermark verification step aims to verify the existence of the watermark in the

image to determine whether Deepfake has manipulated it. We employ the same network

used in watermark injection to extract the image’s identity representation and then

calculate its correlation with the preserved watermark to inspect whether the watermark

exists. According to the feature of the pseudo-random sequence, if a peak appears in the

correlation result, it indicates the watermark is still in the corresponding image, so it

has not tampered with Deepfake. Otherwise, it will be determined as a fake one. More

details about the proposed method will be explained in the following sections.

In summary, our main contributions are summarized as follows: (1) We propose a

novel proactive Deepfake detection method by embedding an anti-counterfeiting water-

mark into images’ identity vectors. (2) We design a simple but effective encoder-decoder

network to implement invisible anti-Deepfake watermarking, which requires neither

pre-annotation nor pre-detection information. (3) We conduct extensive experiments to

evaluate the performance of our method in terms of effectiveness, robustness, utility and

security.

4.3 Preliminary

Pseudorandom Noise (PN) sequence is widely used in signal processing, which is usually

a binary sequence with a spectrum similar to a random sequence but generated by a de-

41



CHAPTER 4. FORGERY MEDIA DETECTION

Figure 4.1: Our method’s overall framework consists of watermark injection and water-
mark verification. The watermark injection step aims to generate watermarked images
that are perceptually similar to the original and contain the anti-Deepfake watermark.
The watermark verification step aims to verify the existence of the watermark in the
image’s identity representation to determine whether it is counterfeited or not. The
tampering part in the middle represents potential Deepfake manipulations on our water-
marked image, which is not our framework’s component but is the objective we aim to
detect.

terministic algorithm. Linear feedback shifter register (LFSR) is one of the simplest ways

to generate a PN sequence. In an LFSR, any bit is determined by a linear combination of

the previous n bits, which can be formulated as:

Bn = A0B0 ⊕ A1B1 ⊕ A2B2 ⊕ ...⊕ An−1Bn−1

Since any bit is a function of the previous n bits, every LFSR can produce a sequence of

bits that appears random and has a period of 2n −1. There are several commonly used

PN sequences which are: maximum length sequence (MLS), Gold sequences, Kasami

sequences and JPL sequences.

MLS sequence is the most representative PN sequence which is generated using

maximal LFSR. They are periodic and reproduce every binary sequence (except the zero

vector) that can be represented by the shift registers, i.e., for m length registers they

produce a sequence of with length 2m−1. The auto-correlation of an MLS is approached

to unit impulse function as MLS length increases. This property makes the MLS suitable

for synchronization and in the detection of information in single-user Direct Sequence

Spread Spectrum systems.

The Gold sequence is another well-known PN sequence that belongs to the category

of product codes for they are produced by XOR two same length MLS. The two MLS

must maintain the same phase relationship till all the additions are performed. A slight

change of phase even in one of the MLS produces a different Gold sequence altogether.

Gold codes are non-maximal and therefore they have poor auto-correlation property

when compared to MLS. However, it possesses good cross-correlation properties which
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Figure 4.2: Comparison between the unprotected social network (top panel) and the social
network protected by our method (bottom panel) in handling misinformation spreading
by Deepfake attacker.

are useful when multiple devices are broadcasting in the same frequency range, such as

the applications like CDMA and satellite navigation.

4.4 Application Scenario

Fig. 4.2 demonstrates how to deploy our method in the real world. In the scenario without

applying our method (Fig. 4.2 top panel), a user shared his/her images to a social network,

such as Facebook or Instagram. Once the image is uploaded online, the user cannot

verify its authenticity anymore. Therefore, malicious users can not only pick victims’

photos and manipulate them to create Deepfakes but also release the synthesized results

while falsely claiming these images are authentic. The misinformation will cause severe

reputation loss for the victim and raise security and privacy concerns.

On the contrary, in the scenario where the user employed our method (Fig. 4.2 bot-

tom panel), the images shared online will be embedded with the user’s personalized

watermark. The embedded watermark is invisible to humans and robust to conventional

manipulations. Thus there is negligible impact on the image’s visual quality and appli-

cation utility. Nevertheless, unlike other visible or invisible watermarking techniques,

our watermark is sensitive to Deepfake manipulations. Once the malicious users apply

Deepfake techniques on watermarked images, the corresponding embedded message will

be destroyed. According to the existence of the watermark, the real and fake images can
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be effectively differentiated. Therefore, the user can utilize our method to reduce the

negative impact of Deepfake by identifying the forged information and authenticating

the real information.

4.5 Methodology

Our proposed framework includes two steps: watermark injection and watermark verifi-

cation. We will introduce the details in this section.

4.5.1 Watermark Injection

The watermark injection step aims to insert a sequence into a face image to entangle

with its identity feature while keeping the watermarked image perceptually similar

to the original. The rationale behind this step is that slightly disturbing the identity

feature while preserving residual attributes will not significantly distort the face image.

Moreover, the conventional image modifications, e.g., cropping, resizing and compression,

usually do not impact the identity feature of the facial images. Hence, the embedded

watermark can avoid being modified and remain robust against conventional image

manipulations. In contrast, Deepfake methods, whose objectives are editing or swapping

the image’s identity, will inevitably alter the inserted watermark. Therefore, we can

utilize this mechanism to detect whether Deepfake modifies a watermarked image or

not.

To this end, the watermark injection step consists of three processes: (1) Feature

disentanglement, which disentangles the face image as two independent representations,

namely identity and attributes; (2) Identity watermarking, which embeds a watermark

into the extracted identity representation (vector); (3) Image reconstruction, which inte-

grates the watermarked identity and original attribute to synthesize the corresponding

watermarked image. The overview of the watermark injection is illustrated on the left

part of Fig. 4.1, and architecture details are in Section 4.5.5.

Feature Disentanglement: Given an input face image, we employ two dedicated

networks, namely identity encoder and attributes encoder, to respectively extract the

independent representations, zid(X ) and zatt(X ), from the image.

Identity Encoder: The identity representation is the high-level human biometric fea-

ture for characterizing a specific person with lesser intra-personal variations and larger

inter-personal differences. Similar to most research for disentangling representations
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of identity and attributes [106, 142], the identity encoder in our work employs the pre-

trained face recognition network [31] as the backbone to extract the input image’s last

feature vector generated before the final fully-connected layer as identity representation.

Specifically, the identity representation is a 512-dimension vector, which is formulated

as zid(X ) = Arc(X ), where X denotes the input image and Arc(·) represents the face

recognition network.

Attributes Encoder: The attributes representation of face image is defined as spatial

features such as pose, expression, background etc. According to the details of these

features, attributes can be divided into different levels, from coarse (e.g., overall spatial

outline), to fine (e.g., exact shape). Therefore, we adopt multi-level feature maps to

preserve such details to represent the attributes. Specifically, we feed the input image

into a U-Net style network and then use the feature maps generated from the U-Net

decoder as attribute representations. The formal attributes representation is denoted as:

zatt(X )= {
z1

att(X ), z2
att(X ), ..., zn

att(X )
}

2 ,

where zn
att(X ) represents the n-th level feature map from the U-Net decoder, and n

is the number of feature levels. The attributes encoder in this work does not require

extra annotations as it extracts the attributes using self-supervised training, which is

trained to keep the original image X and generated watermarked image X̂ have the

representation of the same attribute.

Identity Watermarking: After feature disentanglement, we add a bit-wise binary

sequence zseq to the identity representation zid(X ) to generate the corresponding water-

marked identity. The binary sequence can be user-defined or random-generated, which

will serve as a signature for future verification, so the user of our method should preserve

his/her embedded sequence and keep it secret from adversaries. Besides, to reduce the

watermark’s perturbation on the identity representation, we regulate it with a constant

weight α. Unless otherwise stated, α will be set to 0.1 in our experiments. Therefore,

the final watermark sequence values are minimal compared with the original identity

sequence. The identity watermarking is formulated as:

zw
id(X )= zid(X )+αzseq,

where zw
id(X ) represents the watermarked identity vector.

Image Reconstruction: The subsequent process is to integrate watermarked iden-

tity and the original attributes to synthesize the watermarked image. Previous stud-

ies [10, 102] revealed that simply concatenating identity and attributes to synthesize
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images will incur severe visual quality degradation and distortion. To avoid this prob-

lem and generate the high-fidelity watermarked image, we employ a novel Adaptively
Attentional Denormalization (AAD) [77] mechanism to accomplish feature integration.

The image reconstruction network adopts multiple cascaded AAD Residual Blocks

(ResBlk) to integrate the identity and attributes. Each AAD ResBlk consists of multiple

AAD layers, which employ an attention mechanism with denormalization to adaptively

adjust the participation of identity representation and attribute representation for

synthesizing different regions. For instance, the identity will provide more importance

on generating the facial area, which is most discriminative for distinguishing identities,

while the attributes will focus more on the regions related to spatial features, such as

skin colour and background.

We formally define the reconstruction procedure as:

X̂ =Gen(zw
id(X ), zatt(X ))= zw

id(X )⊕ zatt(X ),

where the ⊕ denote the ADD ResBlk’s integration and Gen(·) denote the reconstruction

network.

4.5.2 Watermark Verification

Different from aiming to accurately recover the inserted watermark like the traditional

watermark techniques [73, 113, 167], the objective of our watermark verification is to

detect whether the watermark still exists in the watermarked image’s identity feature

and, in turn, determine whether Deepfake modifies this image or not. Since the difficulty

of watermark detection is much easier than watermark recovery, our method can thus

provide more reliable verification results.

In more detail, our watermark verification step consists of two processes: (1) Extrac-

tion, which extracts the input image’s identity representation; (2) Verification, which

calculates the correlation between extracted identity and pre-defined watermark to verify

the existence of watermark in the input image.

Extraction: We re-use the identity encoder adopted in feature disentanglement to

extract the identity representation from the watermarked image, which is formulated

as zid(X̂ )= Arc(X̂ ). The rationale behind this process is that the watermarked identity

integrated by our reconstruction process is believed to preserve in the watermarked

image’s identity feature, so we can use the same identity encoder to extract the corre-

sponding watermarked identity representation. For the watermarked image not modified
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by Deepfake, the extraction process is defined as:

zid(X̂ )= Arc(X̂ )

= Arc(zw
id(X )⊕ zatt(X ))

= Arc((zid(X )+αzseq)⊕ zatt(X ))

≈ zid(X )+αzseq.

The attributes zatt(X ) is omitted because Arc(·) only extract identity features.

Verification: After obtaining the identity representation zid(X̂ ), we calculate its

correlation with the watermark sequence zseq to verify whether the watermark is present

in the input image. Since the zid(X̂ ) and zseq can be regarded as 1-dimensional real

discrete sequences, the function computes the correlation of them is defined as:

Corr[l]=
N−1∑
n=0

zid(X̂ )[n]∗ zseq[n− l+N −1],

where l = 0,1, ...,2N−2 is the index for correlation result,n denotes the index for discrete

sequences, N represents the their length, and zseq[m] is 0 when m is outside of the range

of zseq.

As demonstrated in Eq. 4.5.1, for the real watermarked image, the correlation function

in Eq. 4.5.2 equals to:

Corr[l]=
N−1∑
n=0

zid(X̂ )rec[n]∗ zseq[n− l+N −1]

≈
N−1∑
n=0

(zid(X )[n]+αzseq[n])∗ zseq[k]

=
N−1∑
n=0

zid(X )[n]∗ zseq[k]+αzseq[n]∗ zseq[k],

where we set k = n− l+N −1 for simplicity. Therefore, the correlation between extracted

identity and the pre-defined watermark can be assumed as the sum of two indepen-

dent calculations: cross-correlation of original identity representation with watermark

sequence, and auto-correlation of watermark sequence itself. In contrast, if the wa-

termarked image is modified by Deepfake, its identity representation and entangled

watermark sequence will be distorted, so the correlation between its extracted identity

and the pre-defined watermark cannot factorize like Eq. 4.5.2 but can only be assumed

as two different sequences’ cross-correlation like Eq. 4.5.2.

According to the auto-correlation’s property, the maximum correlation value will

appear at the index of (N−1)th. While for the cross-correlation, there is no such property.
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Hence, we can detect if there is a distinct peak value at the (N −1)th index to deter-

mine whether the watermarked image’s identity feature is tampered with by Deepfake

methods.

4.5.3 Training Procedure

No extra annotations are required in our training procedure, and except for the identity

encoder, all other networks are trainable.

Adversarial Loss: To make the reconstructed image more realistic, we employ a

multi-scale discriminator Dis(·) from [66] with hinge loss functions to train our model in

an adversarial way:

LAdv = logDis(Xm)+ log(1−Dis(X̂m)),

where Xm and X̂m indicate the low-resolution original and corresponding reconstructed

image after m-th down-sampling.

Attributes Preservation Loss: We also calculate the attributes representations’ L2

distance between original and reconstructed image to enforce attributes preservation:

LAtt =
1
2

n∑
k=1

∥∥∥zk
att(X )− zk

att(X̂ )
∥∥∥2

2
,

where the n denotes the level of attributes.

Reconstruction Loss: In addition, to keep the reconstructed image resemble the

original and mitigate the conflict with watermark injection at pixel-level, we define a

perceptual similarities loss LPIPS [159] between the original and reconstructed image

rather than the common pixel-level reconstruction loss:

LR = ∥∥L(X )−L(X̂ )
∥∥

2 ,

where L(·) represents the perceptual features extractor.

Watermark Preservation Loss: To minimise the distortion of embedded watermark

sequence in the reconstructed image, a watermark preservation loss function is used to

measure the cosine similarity between the watermarked identity vector and extracted

identity vector:

LW = 1−CosineSimilarity(ẑid(X ), Arc(X̂ )),

where Cos(·) denotes the operation of cosine similarity.
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Figure 4.3: Training procedure

Our framework is finally trained with a weighted sum of the above losses, which is

defined as:

L (X )=λRLR +λAdvLAdv +λAttLAtt +λWLW ,

where λR ,λAdv,λAtt,λW are tunable constant weighting corresponded loss. Unless stated

otherwise, the λ values are set as λR = 10,λAdv = 0.1,λAtt = 10 and λW = 1.

4.5.4 Training Details

The concept diagram of our framework’s training procedure is illustrated in Fig. 4.3. In

Fig. 4.3, black arrows refer to data flows from the input image to the watermarked image

and Discriminator, while the red lines indicate data flow for each loss function. Besides,

the trapezoids with a red dash represent a trainable network, while black sold line

trapezoids represent fixed networks. We utilize adversarial training for our framework

where the Discriminator adopts a multi-scale network [110].

Given an input face image X , the identity encoder and attributes encoder respectively

extract the 1D 1x512 identity representation zid(X ) and multi-level attributes repre-

sentation zatt(X ) from the image. Then we bit-wise add watermark sequence zseq to the

identity representation zid(X ) to produce watermarked identity zw
id(X ). The Generator

finally integrates the watermarked identity zid(X ) and original attributes representation

zatt(X ) to produce the watermarked facial image X̂ . After obtained X̂ , we calculating

different losses according to E.q. 4.5.3,4.5.3,4.5.3,4.5.3 and update all trainable networks.

As we can see in the scheme, non-extra annotations are required in our training process.
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Figure 4.4: Detailed architecture of Watermark Injection.

4.5.5 Network Architecture

Our framework is built upon FaceShifter’s AEI-Net [77] but modified by us to implement

face identity watermarking rather than face-swapping. The entire network, illustrated

in Fig. 4.4, consists of an Identity Encoder, a U-Net style Attributes Encoder, and a

Generator composed of 8 cascaded AAD Residual Blocks. Detailed structures of each

component are in Fig 4.5.

4.6 Experiment

We conduct extensive experiments to evaluate our method from the following aspects: i)

the different pseudo-random sequences’ impacts on model performance, ii) effectiveness

in Deepfake detection, iii) visual quality of watermarked images, and iv) security in

potential attack scenarios. The experiment results demonstrate that our method can

achieve the best performance regarding various qualitative and quantitative evaluation

metrics. Note that the security analysis results are in Section 4.6.6.

4.6.1 Experiment Setup

Datasets: We train our method on the Flickr-Faces-HQ (FFHQ) [71] dataset, and

conduct experiments on CelebA-HQ [70] and CelebA [88] datasets to reveal its gener-

alizability. Unless stated otherwise, all images in the experiment have been aligned and

cropped to the size of 256×256.

Baselines: We select the work whose authors released the source codes and pre-

trained models in our comparison experiment for results reproducible.
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Figure 4.5: Network structures. Following the structures of FaceShifter [77]: Conv k,s,p
represents a Convolutional Layer with kernel size k, stride s and padding p. ConvTran
k,s,p represents a Transposed Convolutional Layer with kernel size k, stride s and
padding p. All Leaky ReLUs have α = 0.1. AAD ResBlk(cin, cout) represents an AAD
ResBlk with input and output channels of cin and cout.

Deepfake Detection: Passive methods [17, 21, 53, 136] and proactive method [153] are

selected because they represent the latest reproducible Deepfake detection methods.

Digital Watermarking: We chose StegaStamp [129] and UDH [155] as the baseline

because they achieve the SOTA performance in embedding information and exhibit

appealing visual quality results.

We use the official codes and pre-trained models for all the above-mentioned methods.

Evaluation Metrics: We evaluate the performance using three different categories

of metrics: (1) For both Deepfake detection, to measure the miss detection rate and

false alarm rate, we compute image-level Accuracy(ACC) and F1-Score. AUC and

related ROC curve, which are decision-threshold-free metrics, are also reported to

select optimal models; (2) Regarding robustness evaluation, the proportion of correctly

detected watermarked images after various post-processing is calculated and denoted
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as Detection Ratio (DR); (3) Peak-Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) are used to calculate the similarity between the

watermarked images and original images to show the visual quality of watermarked

images.

The above metrics are higher when the associated methods show better performance,

except stated otherwise.

4.6.2 Impacts of the Types of Sequences

According to Eq. 4.5.2, the correlation property of the embedded sequence plays a

significant role in the watermark verification. Thus, we first analyse the impact of

the different watermark sequences on our method. Two representative Pseudorandom

Noise (PN) sequences: Maximum-Length Sequence (MLS) and Gold Code (Gold), and

two most common random sequences: Gaussian noise and Laplace noise, are selected

for comparison. All embedded sequences are set to a length of 512, the same as the

identity representation. For a fair comparison, the network is trained FFHQ images by

randomly selecting the above watermarks in each iteration. Then, we apply four different

sequences to the 10k randomly chosen Celeba-HQ images to generate watermarked

testing images, resulting in 40k testing images and calculate the defined metrics over

these images to evaluate the impact.

Correlation Results. In Table 4.1, we present the averaged correlation results,

where Peak denotes the correlation value appear at the zero-lag, Average represents

the mean of the residual correlation results, and Peak-to-Average Ratio (PAR) outputs

a ratio of Peak over Average, which indicates how significant the Peak stands out in the

correlation results. Except for the results from watermarked images, we also report the

correlation of original images in Table 4.1’s first row, which acts as a reference. As shown

in Table 4.1, the watermarked images’ Peak and PAR are significantly higher than the

reference, where the Gold sequence achieves the highest values. The apparent difference

between watermarked and non-watermarked images’ correlation results demonstrates

that our method can effectively embed and extract the watermark in images.

Visual Quality. Afterwards, we evaluate the visual quality of images after water-

marking different sequences. The best SSIM and PSNR values are also reported in

Table 4.1’s Original row for reference. According to the quantitative and qualitative

results exhibited in Table 4.1 and Fig. 4.6, no matter what types of sequence are embed-

ded, the watermarked images can maintain high visual quality and look perceptually
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Table 4.1: Different sequences’ correlation results and corresponding watermarked
images’ visual quality.

Sequences Correlation results Visual Quality
types Peak Average PAR ↑ SSIM ↑ PSNR ↑

Original 0.77 0.54 1.43 1.0 48.0
Gaussian 0.96 0.54 1.79 0.95 34.65

Gold 5.61 0.52 10.83 0.94 33.32
Laplace 1.82 0.74 2.45 0.95 34.84

MLS 4.82 0.53 9.17 0.95 33.5

Figure 4.6: Qualitative comparison of different sequences’ watermarked images. Despite
injecting different sequences, all watermarked images are perceptually identical to the
original images.

identical to the original, which demonstrates that watermarking images via our method

would not affect its utility.

Effectiveness. In this section, we explore the effectiveness of our method in iden-

tifying the watermarked or non-watermarked images. Our method discriminates 10k

watermarked images and 10k randomly chosen Celeba-HQ non-watermarked images

for different types of watermark sequences. Besides, according to the correlation results

summarized in Table 4.1, different types of watermark sequences have different PARs.

Here, we consider adopting different PAR values ranging from 1 to 10 with a step size

of 1 as the threshold to decide whether a watermark exists in the corresponding image.

More specifically, an image with PAR higher than the threshold in its correlation results

will be regarded as watermarked. We calculate related ACC and F1 Scores further to

analyze our method’s discriminability under different PAR thresholds, and also plot the

ROC curve and compute corresponding AUC to provide more convincing results.

Fig. 4.7 displays the experiment results. According to the trend of ACC and F1

Score curves, the optimal thresholds for different sequences are 2 for Gaussian and

Laplace, 5 for Gold and 4 for MLS. We will adopt these thresholds in the subsequent
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Figure 4.7: ROC ↑, Accuracy ↑ and F1 Score ↑ of different sequences under different
PAR thresholds. Gold and MLS sequences’ performance to discriminate between water-
marked or non-watermarked images are superior to Gaussian and Laplace.

Table 4.2: Detection ratio ↑ of different sequences against color adjustment and hori-
zontal flipping.

Image Sequences types
Manipulations Gaussian Gold Laplace MLS

ColorJitter 63.9% 94.8% 45.4% 91.2%
Flip 61.9% 97.2% 52.4% 96.7%

robustness evaluations. Besides, their AUC values are 0.5552, 0.9952, 0.6466 and 0.9917

for Gaussian, Gold, Laplace and MLS, respectively. The ROC curve of Gold and MLS

are much closer to the top left than Gaussian and Laplace. These results indicate that

adopting Gold and MLS as watermark sequences would perform our method better than

Gaussian and Laplace.

Robustness. We test the impact of different sequences on our method’s robustness.

Five common post-processing operations are adopted in the experiment, i.e., Gaussian

blurring, colour adjustment, JPEG, horizontal flipping, resizing and cropping. For Gaus-

sian blurring, we consider kernel standard deviation ranging from 0.5 to 1.0 with a

step size of 0.1. For JPEG, we consider quality factors ranging from 50 to 100 with a

step size of 10. For resizing and cropping, we consider first cropping the image’s pe-

ripheral sizes ranging from 50% to 100% with a step size of 10% and then resizing it

to 256×256. For Horizontal flipping and colour adjustment, we employ the PyTorch

torchvision.transformations’ functions RandomHorizontalFlip with the probability of

the image being flipped set as 1.0 and ColorJitter with the default setting to achieve

all image’s horizontal flipping and randomly brightness, contrast, saturation and hue

change. Examples of the modification are visualized in Fig. 4.8.

For each sequence’s watermarked images, we apply the above operations to generate
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Figure 4.8: Samples of each post-processing operation results adopted in our experiment.

Figure 4.9: Detection ratio ↑ of different sequences against JPEG, Resize-Crop and
Gaussian Blur.

corresponding images and then employ our method to detect watermarks from these

processed images and compute the detection ratio DR. Table 4.2 and Fig. 4.9 present each

sequence’s robustness performance. Our method shows a minor performance degradation

when dealing with compression and blur but is susceptible to resizing and cropping. As

illustrated in Row 1 Column 2 of Fig. 4.8, the main reason is that a crop size smaller than

80% would cut off partial facial regions, damaging the corresponding identity feature.

However, this problem is not severe because a cropped face image is unlikely to be used

in practice.

The results of Gold and MLS watermark sequences reflect our method’s robustness

against these image post-processing, where the Gold sequence achieves the best perfor-

mance, slightly superior to MLS but much better than Gaussian and Laplace. Therefore,

we will adopt the Gold sequence as the watermark to compare our method with other

works in Deepfake detection.
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Figure 4.10: Samples of non-watermarked and our watermarked images’ Deepfake
results. The watermarked image’s forgery result is perceptually identical to the non-
watermark image’s.

4.6.3 Deepfake Detection

We compare our method with other Deepfake detection approaches in image-level real

or fake classification. Two attributes manipulation methods, i.e., AttGAN [54] and

StarGAN2 [23], two identity swap methods, i.e., InfoSwap [47] and SimSwap [22], and

two face anonymization approaches, namely CIAGAN [97] and DeepPrivacy [63] are

employed in this experiment. We adopt the official codes and pre-trained models of these

works, so our experiment results are reliable and reproducible, which thus can refer for

future comparison.

Celeba and CelebaHQ images are employed in this experiment to represent low-

and high-resolution Deepfake cases. We apply Deepfake methods to watermarked and

non-watermarked images to generate corresponding fake outputs. The watermarked

real and fake images are utilised to evaluate our method’s discriminability, while the

non-watermarked real and fake images are adopted to evaluate other detection methods’

performance. According to the analysis of different sequences’ performance, our method

adopts the Gold sequence as the embedded watermark in the comparison experiment

and sets the PAR threshold to 5.

We first illustrated Fig. 4.10 to have a qualitative comparison of Deepfaked non-

watermarked and watermarked outputs where we can see that the non-watermarked

and our watermarked images’ Deepfake results are perceptually identical to each other,

demonstrating that our method well maintains the utility of the image. Moreover, it

also makes it hard for the Deepfake adversaries to distinguish the protected and non-

protected images, increasing our method’s secrecy.

Table 4.3 summarizes the comparison results between ours with passive methods.
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Table 4.3: Accuracy ↑ and F1 Scores ↑ of different methods’ DeepFake detection results.

Detection Low Resolutions(Celeba) High Resolutions(Celeba-HQ)
methods AttGAN CIAGAN DeepPrivacy InfoSwap SimSwap StarGAN2 AttGAN CIAGAN DeepPrivacy InfoSwap SimSwap StarGAN2
BTS [53] 0.86/0.87 0.51/0.66 0.5/0.66 0.49/0.66 0.51/0.67 0.53/0.67 0.86/0.87 0.5/0.66 0.5/0.66 0.49/0.65 0.5/0.66 0.55/0.68
CD [139] 0.88/0.86 0.51/0.03 0.51/0.01 0.54/0.17 0.51/0.01 0.78/0.71 0.81/0.77 0.51/0.04 0.52/0.07 0.52/0.07 0.52/0.06 0.84/0.81
ICPR [17] 0.59/0.69 0.62/0.62 0.58/0.68 0.49/0.64 0.6/0.71 0.46/0.63 0.53/0.68 0.65/0.62 0.56/0.69 0.51/0.66 0.55/0.69 0.49/0.65

PF [21] 0.76/0.79 0.51/0.66 0.52/0.65 0.57/0.68 0.54/0.67 0.99/0.98 0.75/0.79 0.51/0.66 0.55/0.68 0.56/0.69 0.54/0.68 0.98/0.97
RFM [136] 0.5/0.67 0.51/0.67 0.51/0.67 0.5/0.67 0.51/0.67 0.5/0.67 0.5/0.67 0.5/0.67 0.51/0.67 0.5/0.67 0.5/0.67 0.5/0.67
SBI [123] 0.79/0.82 0.77/0.8 0.78/0.82 0.77/0.81 0.78/0.81 0.72/0.75 0.8/0.8 0.72/0.78 0.78/0.8 0.76/0.77 0.83/0.84 0.69/0.7

Ours 0.94/0.94 0.87/0.86 0.98/0.98 0.98/0.98 0.97/0.98 0.82/0.84 0.94/0.94 0.85/0.82 0.99/0.98 0.99/0.99 0.98/0.98 0.85/0.87

Our method achieves more than 0.8 ACC and F1 Scores on detecting all Deepfake

methods’ outputs, revealing its superior effectiveness and generalization. Except PF

perform better than ours on StarGAN2, our method outperforms all other baselines with

a clear margin. Our method performs poorly on StarGAN2 (still achieves second-rank

performance) because StarGAN2 does not modify face identity-related features. To verify

this, we employ AttGAN to manipulate identity-related attributes, e.g., gender and

skin colour. The result in Table 4.3 shows that our method can accurately detect these

manipulated images. On the contrary, other passive detection methods only perform well

in detecting limited Deepfake methods, deteriorating to random guesses ( 50% accuracy)

in detecting other Deepfake methods.

Then, we compare our method with the latest proactive detect method, i.e., AGF [153],

to detect FaceShifter’s Deepfake outputs on Celeba-HQ images and present the detection

results in Table 4.4. According to the requirement of AGF, we employ AGF to fingerprint

15k Celeba images and train FaceShifter model A on these fingerprinted images. Then,

we use trained FaceShifter model A to generate 5k Deepfake results on original Celeba

images without AGF fingerprint. We employ the AGF to conduct detection on the set,

which mixes the 5k Deepfaked images with another randomly selected 5k original Celeba

images and summarized results in Table 4.4.

We train another FaceShifter model B for our method on the same 15k Celeba images

but without AGF fingerprints. We employ our method to inject watermarks into 5k

Celeba images, which are the same image in the AGF process. Then, we use trained

FaceShifter model B to generate Deepfake results based on our watermarked images

and mix another 5k original Celeba image to form a test set. We employ our method to

conduct detection on this test set and report the results in Table 4.4.

Although AGF achieves impressive detection performance, with 0.99 Recall and 0.91

F1 Score, our method still beats it on almost all metrics (only 0.005 lower Recall which is

negligible). In particular, our method has a significant advantage in detection accuracy

due to AGF producing more false alarms on authentic images (only 0.84 Precision).

We also report the AUC of our method on different Deepfakes and datasets in Table 4.5

57



CHAPTER 4. FORGERY MEDIA DETECTION

Table 4.4: DeepFake detection performance of proactive methods.

Acc ↑ F1 Scores ↑ Precision ↑ Recall ↑
AGF [153] 0.7179 0.9148 0.8444 0.9980

Ours 0.9955 0.9955 0.9980 0.9930

Figure 4.11: Our method’s ROC ↑, Accuracy ↑ and F1 Score ↑ on different Deepfake
and datasets images. The ROC curve indicates our method has excellent discriminability
on both low- and high-resolution Deepfake results. Besides, according to the trend of
Accuracy and F1 Scores, our method can achieve different performances under different
PAR thresholds.

Table 4.5: AUC ↑ of our method on different Deepfake and datasets.

Datasets DeepFake Methods
AttGAN CIAGAN DeepPrivacy InfoSwap SimSwap StarGAN22

Celeba 0.98 0.95 0.99 0.99 0.98 0.98
CelebaHQ 0.98 0.95 0.99 0.99 0.98 0.98

and plot the ROC, accuracy and F1 Scores curves when adopting different thresholds

in Fig. 4.11. We plot our method’s ROC, accuracy, and F1-Score curves when adopting

decision thresholds ranging from 1 to 10 with a step size of 1. As illustrated in Fig. 4.11,

our method can achieve excellent classification capability when facing different Deepfake

methods. Besides, the F1 Score and ACC curves indicate that our method has better

detection performance on CIAGAN and StarGAN2 when adopting a threshold of 3

and 7, respectively. These results reveal our method’s exceptional image level real

or fake classification capability when facing different Deepfake methods. In general,

the experiment results demonstrate that our method has superior Deepfake detection

performance to existing methods.
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Table 4.6: Quality of different watermarking methods’ outputs.

Quality Proactive Detection Deep Hiding
metrics Ours AGF UDH StegaStamp
SSIM ↑ 0.94 0.91 0.69 0.89
PSNR ↑ 33.32 30.69 20.39 29.77

Figure 4.12: Qualitative comparison between our method, AGF and SOTA watermarking
techniques StegaStamp and UDH.

4.6.4 Digital Watermarking

We compare our method with the AGF and SOTA digital watermarking techniques,

namely Stegastamp and UDH, in the visual quality of watermarked images to show that

our method does not sacrifice the normal utility of images. Here, we adopt the widely used

metrics PSNR and SSIM to quantitatively reflect comparison results in Table 4.6. The

results demonstrate that the outputs of our method have much better visual quality than

others. Fig. 4.12 also illustrates perceptual comparison, where our watermarked images

are more visual-realistic which accurately preserves the hue and light of the original

images. In contrast, UDH introduces apparent artifacts in its watermarked images.

StegaStamp’s outputs have noticeable colour distortion in the facial area. Therefore,

qualitative and quantitative results indicate that our method can generate high-quality

images with a robust watermark.

4.6.5 Computational Overhead

According to Table 4.7, the primary computational cost of our method is the watermark

injection, while the verification(detection) stage’s overheads are close to other detection

approaches. Considering the detection performance of our method, we believe it is a

balanced trade-off between computational costs and detection accuracy.
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Table 4.7: Parameters and FLOPs of different detection methods.

Parameters FLOPs
BTS 45.907M 95.1557G
CD 23.5101M 5.3965G

ICPR 0.1271M 0.8869G
PF 23.51M 2.1G

RFM 20.8111M 6.0116G
SBI 0.1288M 0.1981G

Ours
Injection 396.0907M 83.8398G

Verification 43.7977M 6.3236G

4.6.6 Security Analysis

To verify the security of our method of confronting worst-case threaten, we simulated

attacks to the application scenarios of our method. The objective of the adversaries is to

utilize the knowledge about our watermarking mechanism to forge the watermark. Here,

we consider three strong attack models:

Attack Model 1: The adversary can obtain the victim’s entire watermarking framework

and its corresponding pre-trained models but knows nothing about the watermark se-

quence. Thus, the adversary tries to embed different sequences on Deepfaked images via

the obtained network to deceive the watermark verification step.

Attack Model 2: The adversary knows the victim’s watermark sequence but cannot

obtain the corresponding framework. Thus, the adversary utilizes the knowledge about

our method trying to build and train a similar watermarking network to embed the

victim’s watermark on Deepfaked images to deceive the watermark verification step.

Attack Model 3: The adversary stealthily collects the victim’s watermarked images

and employs these images as dataset to train his/her Deepfake method to generate fake

images to deceive the watermark verification step.

Attack Model 1 For Attack Model 1, we simulate the forging process by utilizing

one fixed watermarking framework to synthesize four groups of watermarked images

according to different types of sequences. Then, we randomly generate another sequence

to act as the victim’s watermark and use the same framework to implement watermark

verification on these watermarked images. As can be seen from Table 4.8, the correlation

results of different watermarked images are close to non-watermarked images. Therefore,

even if the victim’s watermarking framework leaked, the forged watermarked image
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Table 4.8: Correlation results of Attack Model 1.

Sequences Auto-correlation results DR
types Peak Average PAR

Gaussian 0.78 0.53 1.47 0.6%
Gold 0.95 0.53 1.79 2.98%

Laplace 1.01 0.53 1.89 0.13%
MLS 0.77 0.53 1.46 1.6%

Table 4.9: Correlation results of Attack Model 2.

Networks Auto-correlation results DR
Peak Average PAR

ModelArc 0.71 0.53 1.33 1.28%
ModelCir 0.73 0.53 1.37 1.63%

cannot pass the corresponding watermark verification step.

Attack Model 2 For Attack Model 2, we employ another face recognition network,

namely circularface, as the identity encoder to constitute a new watermark framework

then utilize both arcface ModelArc and circularface ModelCir watermark networks to

generate watermarked images by embedded same sequence respectively. To simulate the

deceive process, we use ModelArc ’s network to verify ModelCir ’s outputs and ModelCir ’s

network to verify ModelArc’s outputs. The correlation results reported in Table 4.9

demonstrate that different frameworks cannot generate the same watermarked results

even embedded in the same sequence.

Attack Model 3 For Attack Model 3, we train Faceshifter [77] by 40k Gold sequence

watermarked images to imitate the attack scenario and test the specific performance.

The Faceshifter is one of the most representative Deepfake methods which generates

Deepfake image by utilizing the source image’s identity and target image’s attributes.

Hence, the fake image from Faceshifter would preserve the source’s identity feature and

the target’s attributes feature.

After training the Faceshifter model to coverage, we subdivide the Deepfake generate

process into six different cases: 1) Using the non-watermarked image as source and non-

watermarked image as the target, denoted as Idori Attori; 2) Using the non-watermarked

image as source and watermarked image as the target, denoted as Idori Attwat; 3) Using

the watermarked image as source and non-watermarked image as the target, denoted

as Idwat Attori; 4) Using the watermarked image as source and watermarked image

as the target, denoted as Idwat Attwat; 5) Using the non-watermarked image as source

and non-watermarked image as the target but verification with different Gold sequence,
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Table 4.10: Correlation results of Attack Model 3.

Networks Auto-correlation results DR
Peak Average PAR

Idori Attori 1.13 0.52 2.15 3.6%
Idori Attwat 0.58 0.52 1.11 0.1%
Idwat Attori 3.02 0.53 5.68 92.9%
Idwat Attwat 3.6 0.53 6.77 94.67%

Idwat AttoriDS 0.58 0.53 1.1 1.33%
Idwat AttwatDS 0.64 0.52 2.62 1.2%

denoted as Idwat AttoriDS; 6) Using the non-watermarked image as source and non-

watermarked image as the target but verification with different Gold sequence, denoted

as Idwat AttwatDS.

The experiment results are summarized in Table 4.10. We can see even the Faceshifter

is trained with the watermarked images, but unless the fake image is generated from

the source image which has the same watermarked sequence with the verification model,

otherwise the correlation results and DR are the same with the non-watermarked image.

4.6.7 Limitations

First, our method requires pre-processing, which will introduce computational overhead

(in Section 4.6.5) and cannot perform detection of already synthesized images. Therefore,

we think the best application case of our method is to protect critical images and employ

our method before spreading them over the social network. Second, current watermarking

is embedded in the identity features of face images, as we believe it presents the most

severe threat if a person’s identity is faked. Our method needs further improvement to

adapt to other types of Deepfake content.

4.7 Conclusion

This work poses a proactive method to protect face images from malicious Deepfake. By

embedding an invisible watermark into the face image’s identity, our method provides

users with a reliable approach to verifying their image’s authenticity, reducing the

negative impact of Deepfake forgery. The experiment results have demonstrated our

method’s superior performance in identifying Deepfake, preserving reconstructed images’

visual quality, retaining watermarked sequence robustness, and resilience to potential

malicious attacks.
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4.7. CONCLUSION

Upon exploring the intricacies of forgery media detection in Chapter 4, we will

venture into Chapter 5, where the emphasis shifts to media authenticity protection.

Chapter 5 builds upon the previous discussions on detecting forgeries by proposing

proactive measures to embed verification mechanisms directly into media files. The

chapter delves into innovative watermarking techniques, demonstrating how they can

be used to establish the authenticity of digital images, thereby adding a crucial layer of

security against tampering and unauthorized alterations. Specifically, the next chapter

proposes a proactive approach to safeguarding media content before malicious actions.

This method embeds an invisible watermark pixel-by-pixel into an image to locate

tampered regions effectively. It features a novel deep learning-based semi-fragile image

watermarking framework, achieving a balance between detection performance and

imperceptibility and comprehensive evaluations of its performance against various

tampering types.
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MEDIA AUTHENTICITY PROTECTION

5.1 Preface

In Chapter 5, we tackle a critical issue in digital media: ensuring the authenticity of im-

age data to safeguard privacy and security amidst the increasing prevalence of malicious

image tampering. This emerging threat, where images are intentionally manipulated to

harm owners or users, poses severe challenges to image authenticity. Despite the evo-

lution of image manipulation techniques that leave fewer detectable traces, traditional

methods have persistently tried to detect tampering by identifying visual artifacts and

distortions with limited success.

Given the limitations of conventional methods, we propose a proactive solution. This

chapter details the proposed deep learning-based semi-fragile watermarking scheme for

media authentication. This watermarking scheme embeds an invisible watermark into a

target image, entangled pixel-by-pixel. This watermark acts as an indicator of tampering

trials and exhibits changes once the watermarked image is counterfeited. By comparing

retrieved and original watermarks, we can locate the tampered regions.

This proactive authentication mechanism makes our method effective against various

image tamper techniques, including image copy&move, splicing, and in-painting. Our

watermark is designed to be fragile to malicious tampering operations, but it remains

robust to benign image-processing operations such as JPEG compression, scaling, sat-

uration, and contrast adjustments. This robustness enables our watermark to retain
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effectiveness even when images are shared online.

This chapter further discusses the implementation of our semi-fragile watermarking

scheme, presenting comprehensive results to illustrate its effectiveness against various

tampering techniques. Our extensive experiments demonstrate that our method achieves

state-of-the-art forgery detection with superior robustness, imperceptibility, and security

performance. In doing so, we hope to pave the way for robust defence mechanisms for

image data, contributing significantly to the broader fight for media authenticity.

5.2 Introduction

Digital images have become an essential medium for information transmission in our

society. However, technical advancement makes tampering images imperceptibly, which

can be exploited for malicious intentions, e.g., creating fake news and Internet rumours.

Therefore, detecting the tampered regions in an image is essential to protect image

authenticity.

State-of-the-art detection methods leverage deep learning techniques by distinguish-

ing feature distribution inconsistency [60, 75, 145] or boundary discrepancy [121, 164] in

an image to identify the forgery or any manipulation. Those methods assume that image

manipulation techniques may inevitably produce detectable artifacts in their outputs. For

example, [145] detect forgery pixels by identifying local anomalous features in suspicious

images. However, this prerequisite might lead to several inherent drawbacks. First, as

image manipulation techniques progressively evolve, fake images exhibit less noticeable

artifacts. As a result, detection methods developed to detect certain artifacts would be

failed with a high chance. Moreover, existing methods trained on seen tampering types

might fail to detect unseen counterfeits.

Besides, some methods [5, 138, 153] detect malicious tampering in a proactive style.

Those methods embed invisible tags into images. Then, according to the extracted tag,

they determine whether a suspicious image has been forged. However, these methods

cannot pinpoint the tampered region in a forgery image.

To overcome these issues, we propose a proactive image authentication method

based on deep learning semi-fragile watermarks. Our method can provide accurate

and generalized tampering detection performance, not limited to a specific forgery or

manipulation type. It can pinpoint the tampered pixels rather than only identify whether

an image is a forgery.

The pipeline of our method involves converting a secret image into an invisible water-
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mark, which we embed pixel-by-pixel into a cover image to create a watermarked image

(known as the container image). The container image remains perceptually identical to

the original cover image, allowing us to replace the original cover and use the container

image in scenarios with a risk of malicious tampering. Any manipulation of the container

image will inevitably affect the same region of the embedded watermark, causing damage

to the secret image in that area. Consequently, we can precisely locate the tampered

region by comparing the decoded secret image from the container image to the original

secret image.

The designed framework consists of three modules to achieve the above function: a

hiding network, an attack module and a revealing network. We adopt a cover-agnostic

style hiding network that generates watermarks according to different secret images,

independent of cover images. This design allows us to directly add the watermark to

an arbitrary cover image to construct the container image, significantly improving our

method’s generalization. Besides, by minimizing the perceptual differences between cover

and container images, the hiding network learns to encode secret images as invisible

watermarks with remarkable imperceptibility.

In addition, to make our watermark fragile to malicious tampering approaches

but robust to conventional image post-processing operations, we introduce an attack

module in the training process. It consists of horizontally combined distortion and tamper

layers that simulate tampering and post-processing manipulations. By applying these

manipulations to container images, the attack module can strengthen the semi-fragility

of our watermark. The attack module is only employed for training with hiding and

revealing networks and is not included in our method’s inference step.

The revealing network aims to recover the secret image from the container image

to locate the tampered regions within it. We thus train the revealing network using

the masked secret image with the same tampered regions in the processed container

image as the label. Consequently, when tampering occurs within the container image, the

revealing net focuses on restoring only the areas that remain untouched by tampering

operations rather than attempting to reconstruct the entire secret image. The term

"untouched area" refers to regions of the container image that have not been altered

by tampering. This mechanism allows us to locate the tampered region accurately by

comparing the original and recovered secret images.

Experiment results demonstrate that our designed scheme can achieve an average

detection AUC of nearly 0.95 across a wide range of image manipulations. It turns the

open-world image manipulation detection problem into a trivial watermark retrieval
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Table 5.1: Summary of notations in this paper.

Notation Description
xsecret Secret image: the image to be hidden,

serving as the source of a watermark.
xcover Cover image: the image to hide the secret image,

also the image we want to protect from tampering.
xcontainer Container image: the image with xsecret embedded,

which is exposed to potential tampering methods.
xretrieved Retrieved secret: recovered secret image from container,

comparing it with xsecret can identify the tampered area.

task, allowing for greater tamper detection accuracy. Our contributions are summarized

as follows:

• We develop a novel deep learning-based semi-fragile image watermarking frame-

work, which can serve as a proactive defence against malicious tampering.

• Our watermark achieves a balanced trade-off between detection performance and

imperceptibility, so there is no influence on watermarked images’ real-world usage.

• We have comprehensively evaluated the proposed method, analysing its perfor-

mance across various aspects. We not only compared our method with SOTA

detection methods on multiple datasets to detect various types of tampering to re-

flect its detection capability, but we also conducted a deep analysis of its watermark

and assessed its performance in terms of robustness and security. Our experiment

can serve as a template for similar research in the future.

5.3 Methodology

This section explains how to implement the proposed method. Given an image of size

W ×H, the goal of our method is not only to determine if the image has been tampered

with but also to locate the altered regions. The main notations used in the rest of the

paper are listed in Table 5.1.

5.3.1 Motivation and Threat Model

We begin by elucidating the motivation and threat model of our method. Fig. 5.1 presents

the common threat model to image-sharing platforms like Facebook or Instagram. At-
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(a) The platform without protection.

(b) The platform with our method’s protection.

Figure 5.1: One potential application scenario of our method is protecting users’ images
on some public platforms, such as Instagram. Our method can give users a reliable
approach to verifying the pixel-level authenticity of their images.

tackers in this model aim to tamper images and spread the forgery to produce reputation

losses for the victim or obtain benefits from the forgery. We assume they have the same

access rights as the victim, enabling them to obtain the victim’s posted images and share

the tampered images on the same platform.

In this scenario, the victim shares their images without any reliable precautionary

measure. Once the image is uploaded online, there is no mechanism to ensure its

authenticity and integrity, rendering it vulnerable to malicious tampering attacks. The

attackers can easily pick the victim’s photos, manipulate them, and release the tampered

results while falsely claiming them to be authentic. Such misinformation can lead to

severe reputational damage for the victim and raise security and privacy concerns. Worse

still, it is hard for the victim to disclose the forgery since there are no reliable third part

identification methods.

To address the above problems, we design a solution for proactively protecting the

authenticity of images. We transform the secret image into a semi-fragile and invisible

watermark and then embed it into the target image. This watermark is designed to

be fragile to malicious manipulations or tampering, while simultaneously remaining

robust to benign image-processing operations such as compression, scaling and colour

adjustment. In this way, our methodology enables the identification of tampered regions
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Figure 5.2: Overview of the proposed framework. The black arrows refer to data flows,
and the red dashed lines show the loss flows. Our framework comprises three modules:
hiding network, attack module and revealing network. The hiding network generates
a watermark from the secret image, which is embedded in the cover image to produce
the container image. The attack module manipulates the container image to create
a processed image and corresponding mask. Finally, the revealing network retrieves
the secret image from the processed container and determines the tampered region
by comparing it with the original secret image. As illustrated in the detection process
(right side), we can thus pinpoint the tampered region (predicted mask) by pixel-to-pixel
comparing the retrieved and original secret images.

or pixels by comparing the recovered secret image from the container against the original

secret image. This mechanism equips image owners with a reliable means of proactively

protecting their images’ authenticity and integrity before sharing them online.

Additionally, our approach distinguishes itself from passive detection methods by

utilizing the embedded watermark as detection clues instead of artifacts left by tam-

pering operations. This feature makes our method agnostic to the evolution of image

manipulation techniques. So, it has reliable performance when detecting unknown and

novel tampering methods.

The bottom panel of Fig. 5.1b illustrates how to deploy our method in the real world.

Prior to sharing images online, users can use our method to embed the personalized,

human-invisible watermark into their images. These watermarked images are virtually

indistinguishable from the originals, thereby having a negligible impact on their visual

quality and utility. Once the watermarked image has been tampered with maliciously,

users can employ our method to verify the tampered region and declare the forgery.

5.3.2 Network architecture

As outlined in the motivation section, the objective of our networks is to convert a secret

image as semi-fragile and invisible watermark, which is fragile to malicious tampering

but withstand conventional image processing.
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To this end, our networks comprise three distinct modules, as depicted in Fig. 5.2:

(1) Hiding network: This module transfers the secret image as the human-invisible

watermark. (2) Attack module: The attack module perturbs the container image that co-

adapts with the training of hiding and revealing networks to strengthen our watermark’s

robustness and improve our method’s tamper detection accuracy. (3) Revealing networks:

This module recovers the secret image from the container and allows it to be compared

with the original secret for identifying the tampered regions.

Hiding net. Previous learning-based image hiding techniques [155, 167] utilize the

frequency discrepancy between the cover image and watermark to achieve effective

hiding that is invisible to humans. Drawing inspiration from these methods, we adopt

the same U-Net style architecture with full-convolution layers as the backbone for our

hiding network. This architecture has performed excellently in extracting the secret

image’s representative features and encoding them into the high-frequency (HF) domain

to generate the corresponding watermark. Unlike nature images, which mainly consist

of low-frequency (LF) information, the HF watermark is invisible to human observers.

Consequently, embedding it in the cover image will not produce virtually noticeable

alternations in the corresponding result, i.e., the container image in our context. Besides,

the pixel-wise addition establishes the simple but effective one-to-one corresponding

relationship between the watermark and the container image pixels. As a result, pixel

changes in the container image directly affect the corresponding pixel in the embedded

watermark, which will be further exhibited in the recovered secret image. The full-

convolutional architecture also enables us to adjust the number of layers of the hiding

network to produce the watermark with the same resolution size and the number of

channels to fit different cover images.

Moreover, ensuring that the embedded watermark is semantically independent of

the container image is crucial in achieving practical pixel-level tamper detection. An

adversary may exploit the semantic information in the container image to hide tampering

traces by modifying the container image according to its content. However, it is not possi-

ble to hide the variation caused by the tampering process in the embedded watermark

when the watermark is semantically independent of the container image. Therefore, we

adopt the cover-agnostic framework proposed by [155], which enables us to generate

the watermark only with secret image input without any information from the cover

image. This approach allows our hiding network to embed any secret image into any

cover image without re-training. As a result, even when advanced tampering operations

can generate visually realistic outputs, the tampered region remains detectable from the
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secret image, enabling practical pixel-level tampering detection.

Attack module. Our watermark should be robust against various image distortions

and be sensitive to tampering operations. The former refers to the damage to images

produced in their usage scenarios, such as Gaussian blurring or JPEG compression,

affecting the whole image. In contrast, the latter involves intentional manipulation that

only affects parts of the image. Based on this difference, we design an attack module

consisting of a horizontally combined distortion layer and tampering layer, which applies

global and local manipulation on container images.

The distortion layer is inspired by previous works such as [155, 167] and is designed

to apply various distortions on container images. By co-adapting the training of our

networks with relevant distortions, we can improve their robustness against these

distortions.

To improve the tamper detection accuracy, we also design a tamper layer that imitates

tampering operations on the container images. Before inputting the container image into

the revealing net, we randomly select a region of the container image and modify the

pixel values in this region to simulate pixel variation caused by tampering operations.

In subsequent training, we mark the modified region as the mask and use it as the

ground-truth label.

The rationale of the tampering layer is that it can generate a tampered container

image and corresponding mask, allowing us to introduce simple tampering operations

into our network training procedures. By enforcing the retrieved secret image with the

same tampered region as the container image, the hiding network learns to embed the

secret image sensitive to the container image’s pixel variation. Similarly, the revealing

network learns to extract the secret image with the same variation region based on

changes in the container image rather than simply reconstructing the entire secret

image. We can thus pinpoint the tampered region in the container image by comparing

the original secret image with the retrieved secret image.

The distortion and tampering layers compose our attack module. Like other deep

hiding methods, we add it between hiding and revealing networks. This attack module

is only employed during training and is not included in our method’s inference step. A

detailed analysis of the attack module can be found in Sec.IV.B.

Revealing net. As explained in the preceding section, the hidden watermarks and

cover images typically occupy different frequency domains within container images, with

the watermark mainly residing in the HF and the original cover image mainly in the LF.

From the perspective of the embedded watermark, the information of the cover image
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can be perceived as a frequency disturbance. The revealing network thus aims to retrieve

the watermark under this disturbance and recover it as the secret image.

To this end, we employ a convolutional framework with residual connect as the

backbone of our revealing network, which functions well when the inputs and outputs

are distinct [38]. We jointly train the revealing network with the hiding network to pay

more attention to the high-frequency spectrum of the embedded watermark. Such a

design can significantly limit the impact of the disturbance of the cover image on the

watermark retrieval and secret image recovery, resulting in superior performance in

both concealing and revealing.

In addition, different from the conventional deep hiding methods aiming to recon-

struct the secret image from the container image as high-fidelity as possible, the objective

of our revealing process is to recover the secret image with the same tampered region

as in the container image. Therefore, we use the tampering layer masks to mask the

secret image during training as the recovery label for the revealing network instead of

the original secret image.

5.4 Network Architecture

We illustrate the detailed structure of our networks in Fig. 5.3. Our method consists of

two U-Net style pure convolutional networks, the Hiding network and the Revealing

network, respectively.

The left side of Fig. 5.3 depicts the architecture of the hiding network, which is sym-

metric with down- and up-sampling blocks. The features extracted by the down-sampling

blocks are passed on to the up-sampling blocks for further processing. Specifically, the

down-sampling block consists of a 4×4 Conv2d layer with a stride of 2, a LeakyReLU
layer with a negative sloop of 0.1, and a BatchNorm layer. The cover image is firstly

down-sampled to a tensor with a size of 1024×2×2, which is then up-sampled to obtain

the watermark. The up-sampling block includes a 4×4 ConvTransposed2d with a stride

of 2, a ReLU layer, and a BatchNorm layer. At the end of the up-sampling process, the

sigmoid function projects the outputs pixel value to -1 to 1 as the subsequent embedding

process’s watermark. This architecture enables the up-sampling blocks to share the fea-

tures extracted by the down-sampling blocks, thereby preserving the input information

for generating the output.

The revealing network’s architecture illustrated on the right side of Fig 5.3 comprises

three parts: the down-sampling, the residue, and the up-sampling. In the down-sampling
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Figure 5.3: Network Architecture. Conv k,s,p represents a Convolutional Layer with ker-
nel size k, stride s and padding p. ConvTran k,s,p represents a Transposed Convolutional
Layer with kernel size k, stride s and padding p. All Leaky ReLUs have α= 0.1.

part, the unit block consists of a 3×3 Conv2d layer, a BatchNorm layer, and a ReLU
layer. Specifically, the stride is set to two in the last block of the down-sampling part

to enlarge the receptive field. In the residue part, nine residue blocks, comprising 18

convolution layers, generate residual features. In the up-sampling part, the residual

features are up-sampled to recover the secret image. The unit block here is similar to the

down-sampling part, with only differences in the number of input and output channels.
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For up-sampling, the first block’s Conv2d layer has a stride and kernel size of 2 and 4×4,

respectively. Finally, the sigmoid function is applied to output the final recovered secret

image. This architecture is based on CEILNet, which performs well when its output

differs significantly from its input, making it suitable for retrieving the secret image

from the container image.

5.4.1 Loss functions

To minimize the difference between the cover and container image, and enforce the

retrieved secret to reflect the container’s tampered pixels accurately, we adopt the

following losses:

Hiding secret loss. We define a simple but effective pixel similarity loss function

between the cover and container image to optimize the hiding network to achieve

indistinguishable image hiding:

LHiding = ∥xcontainer − xcover∥2,

where the LHiding adopts l2-norm.

Revealing secret loss. Given the tampered container image from the attack module,

we train the revealing network using the same loss function as the Hiding loss. Never-

theless, to ensure that the retrieved secret image accurately reflects the tampered area

in the container image, we do not simply reconstruct the entire secret image. Instead, we

use the masked secret image as the ground truth label to train the revealing network to

recover the secret image with the same tampered region applied to the container image.

This function is defined as follows:

LRevealing = ∥xsecret ×M− xretrieved∥2,

where LRevealing also adopts l2 norm, and M is the absolute residual between the mask

from the tampering layers and identity matrix, i.e., |I −mask|.
Total loss function. The total loss function LTotal is a weighted sum of LHiding

and LRevealing, as follows:

LTotal =λHLHiding +λRLRevealing,

where λH and λR are weights used to balance different loss terms.
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It should be noted that all losses can adopt the l1 norm or a combination of different

norms. However, our validation results have shown that the choice of the norm does not

significantly impact our method’s performance. Therefore, we have adopted the l2 norm

for uniformity and convenience.

5.5 Experiments

We conduct extensive experiments to evaluate our method’s performance from the follow-

ing aspects: (1) impact of different components and decision thresholds; (2) effectiveness

in image tamper detection; (3) robustness against conventional image post-processing;

(4) imperceptibility of the embedded watermark; (5) security under threats and counter-

measures. Furthermore, we implemented detailed analyses of the watermark that we

embedded.

5.5.1 Experimental Setup

Dataset. We train our networks on the widely used face image dataset FFHQ [71] and

test its performance on other datasets. The gap between training and test datasets

can validate our method’s generalization. Note that choosing the FFHQ dataset as the

training set is not based on considering performance differences.

Evaluation Metrics. To evaluate the performance of our method, we employed

several evaluation metrics for each aspect of our experiments. Peak-Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are used to measure

the similarity between the watermarked (container) images and original (cover) images

to reflect the imperceptibility of the watermark and fidelity of the watermarked (con-

tainer) images. We also calculate the Area Under the receiver operating characteristic

curve (AUC) as the primary evaluation metric to reflect the image tamper detection

performance.

Implementation Details. Our method is implemented in PyTorch and trained on

an NVIDIA Tesla K80 GPU. The image size in the experiment is set to 256x256. We use

an Adam optimizer whose learning rate periodically decays from 10e-4 to 10e-7. We set

the two weights in the combined loss as λH = 1 and λR = 0.75, according to the model

performance on a held-out validation set from FFHQ.
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(a) Accuracy (b) F1 score (c) ROC

Figure 5.4: The tampering detection Accuracy, F1 Score and ROC of our method under
different decision thresholds.

5.5.2 Ablation Study

We first perform ablation studies to evaluate the impact of distinct components and

decision thresholds on the performance of our method.

Impact of decision thresholds. Our method classifies the genuine and forged

pixels based on the disparity between the recovered and original secret images. Thus,

the decision threshold for our method is the threshold value that determines whether

two pixels are dissimilar. To assess the impact of different decision thresholds on our

method, we embed the same secret image into 1k Celeba-HQ [70] images using our

method. Next, we apply three typical tampering operations, i.e., copy-move, inpainting

and splice, to generate the corresponding test sets. Then, we employ our method to detect

the tampered regions in each set while varying the decision threshold from 0.1 to 0.9 with

a step size of 0.1. We calculate the corresponding accuracy and F1 score according to the

detection results and plot the ROC. We do not calculate AUC values here because it is a

threshold-irrelevant metric that cannot reflect the fluctuations in detection performance

with decision thresholds varying. The results are presented in Fig. 5.4.

The results in Fig. 5.4a show high detection accuracy across different sets, even under

extremely low or high thresholds. This abnormal phenomenon is due to the imbalanced

data problem between forgery and authentic pixels in each image, which rendering

accuracy cannot distinguish the performance of our method under varying decision

thresholds. Nevertheless, according to the trend of F1 Score curves, we can find that our

method exhibits superior detection ability when the threshold is below 0.7, but beyond

this threshold, the performance decreases significantly. This phenomenon occurs because

a high threshold ignores correctly identified tampered pixels, leading to poor detection
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Figure 5.5: Samples of pixel-level detection results of our method in varied decision
thresholds. Mask (GT) represents the ground truth of tampered masks. Mask (PD)
represents the predicted tampered results, and the values under Mask (PD) are the
corresponding decision threshold.

results. The ROC presented in Fig. 5.4c proves the outstanding detection capability of

our method. All three curves are close to the top left, and the corresponding AUCs are

higher than 0.95.

Visualized predicted masks in Fig. 5.5 also verify the inference in the above quan-

titative evaluation. The predicted tampered areas are smaller than the ground truth

when decision thresholds are higher than 0.6, while predicted tampered areas with lower

thresholds tend to produce false alarms on authentic pixels. We can safely conclude that

our method can effectively classify genuine and forgery pixels under the appropriate

decision thresholds. Unless otherwise specified, we will set the decision threshold to 0.5

in the following experiments.

Impact of different components. To assess the influence of individual components

of our method, we evaluate the designed scheme’s performance under various config-

urations. All configurations are trained on the complete FFHQ dataset and tested on

a random sample of 1k CelebaHQ images. For the sake of simplicity, we compute the

average pixel-level detection AUC values of Copy-Move, Inpainting and Splice. Addi-

tionally, we employ three commonly used image post-processing methods, namely Blur

(with kernel sigma 1.0), JPEG (with compression factor 70) and Crop (random crop 70%

image), to attack the container images of each configuration. We calculate the detection

AUC on these images to gauge each configuration’s robustness against post-processing.
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Table 5.2: Ablation studies for different model designs.

Secret Attack module Effectiveness & Robustness Stealthiness
Image None Distortion Tampering AUC ↑ AUC(Blur1.0) ↑ AUC(JPEG70) ↑ AUC(RC0.7) ↑ SSIM ↑ PSNR ↑

✓ 0.9368 0.5658 0.6111 0.9360 0.95 39.65
RGB ✓ 0.9397 0.7410 0.9095 0.9285 0.93 38.01

✓ 0.9755 0.6092 0.6992 0.9745 0.93 37.79
✓ ✓ 0.9793 0.7340 0.9650 0.9750 0.94 38.05

Gray ✓ ✓ 0.9689 0.7213 0.9342 0.9815 0.94 38.01
QR Code ✓ ✓ 0.9745 0.7460 0.9676 0.9745 0.93 37.89

Noise ✓ ✓ 0.9780 0.7130 0.9456 0.9667 0.94 38.10

Figure 5.6: Samples of pixel-level manipulation detection results of our method in varied
setups. Mask (PD) with the name of post-processing methods or without name means the
predicated tampered mask from the corresponding post-processed or original tampered
container, respectively.

The results are summarized in Table 5.2, while a more detailed analysis is presented

below.
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(1) Influence of different secret image formats. As stated in the methodology section,

the secret image used in our method is independent of the cover images. Thus, we

investigate the impact of different formats of secret images on our method’s performance.

We select images from four common types of images as secret images, including RGB,

grayscale, QR code, and Gaussian noise. Different secret images were embedded into the

same 1k CelebaHQ images using the same networks and trained models, resulting in

four distinct groups. Next, we evaluated the performance of each group to determine if

there were any differences in the method’s performance.

The evaluation results for the various secret image formats are presented in the

last four rows of Table 5.2 and 2nd to 5th columns in Fig. 5.6. The metrics values for

each group are similar, with a maximum difference of 10%, while the qualitative results

are almost identical. These findings suggest that the choice of different secret image

formats does not significantly impact the performance of our proposed method. This

characteristic is particularly practical because users of our method can freely choose any

image as their secret image making it challenging for potential adversaries to obtain

users’ secret images falsely, thus increasing the security of our method. In the following

experiment, we will use RGB images as the secret image for simplicity and uniformity.

(2) Influence of attack module. Finally, we use different combinations of components

in the attack module to reveal their effect (1st to 3rd rows in Table 5.2 and last three

columns in Fig. 5.6 ).

Without equipping the distortion layers, networks achieve high detection AUCs on no-

distorted container images in the first and fourth rows. However, when applying image

post-processing methods to the container images, the networks experience a significant

performance drop. In contrast, networks with distortion layers in their attack module

achieve higher detection AUCs on distorted container images, as shown in the second and

third rows. It can also be observed in Fig. 5.6 that the networks without the distortion

layer will produce more errors in the predicted mask when the container images are

distorted. These performance fluctuations indicate that the distortion layers can improve

our method’s robustness against image distortion attacks.

Furthermore, by comparing the models equipping the tampering layers (third and

fourth rows) to those without tampering layers (first and second rows), we can observe

that tampering layers can further improve the method’s tampering detection accuracy,

especially on the non-distorted container images. As illustrated in Fig. 5.6, networks

with tampering layers produce more accurate predictions of tampered regions, with fewer

false negatives than networks without attack modules. Conversely, networks without
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Table 5.3: The averaged pixel-level tamper detection AUC ↑ results from different
methods.

Detection CASIA 1 CASIA 2 Columbia MS-COCO
methods CM IP SP CM IP SP CM IP SP CM IP SP
MVSS-Net 0.9118 0.9376 0.9063 0.9118 0.9243 0.9168 0.9350 0.9104 0.9261 0.9050 0.9199 0.9108
HP-FCN 0.5995 0.6837 0.5906 0.5885 0.6734 0.5909 0.5580 0.6816 0.5845 0.4085 0.6912 0.4050

ManTraNet 0.9064 0.8987 0.8862 0.8774 0.8966 0.8788 0.9161 0.9205 0.8851 0.9411 0.9049 0.8890
Ours 0.9793 0.9930 0.9959 0.9778 0.9924 0.9959 0.9719 0.9936 0.9906 0.9663 0.9991 0.9915

∗Note: the abbreviation CM represents CopyMove, IP represents Inpainting, SP represents Splice and
DF represents DeepFake.

attack modules tend to underestimate the extent of tampered areas, resulting in reduced

detection performance. Networks equipped only with distortion layers exhibit a high

rate of false alarms, likely due to the perturbations introduced by the distortion layers.

Overall, the full framework with both distortion and tampering layers in the attack

module achieved the best performance on almost all detection metrics, justifying the

necessity of all components in the attack module.

5.5.3 Effectiveness

In this section, we compare our method with other tamper detection methods to reflect

our method’s advantages and disadvantages in tamper detection. Three published meth-

ods are selected for comparison with our method: HP-CNN [75], MVSS-Net [32], and

ManTraNet [145], for they all have publicly available pre-trained models and source

codes.

Pixel-Level comparison. We first detect pixel-level tampering on CASIA 1 [33],

CASIA 2 [33], Columbia [103], and 10k randomly selected MS-COCO [82] datasets. We

embedded the watermark into these images and applied different tampering operations.

Then, we used our method to detect tampering in these images, while other methods

were directly employed for detecting forgery on non-watermarked images. As shown in

Table 5.3, our method outperforms other methods on all datasets by a significant margin.

It exhibits nearly perfect detection performance on some sets, e.g., IP in CASIA 1 or SP

in MS-COCO. Additionally, all set results indicate that our method has a more stable

detection capability across all different datasets, while others have extremely higher

performance fluctuations.

Image-Level comparison. We then conduct the image-level detection comparison.

Our method can achieve image-level tamper detection by setting a threshold that the

image will be identified as a forgery when the number of pixels within this image
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Table 5.4: The averaged image-level tamper detection AUC ↑ results from different
methods.

Detection CASIA 1 CASIA 2 Columbia MS-COCO
methods CM IP SP CM IP SP CM IP SP CM IP SP
MVSS-Net 0.8010 0.7945 0.8134 0.8201 0.7847 0.8130 0.8210 0.8014 0.8203 0.7900 0.7887 0.8108
HP-FCN 0.5159 0.5837 0.5100 0.5534 0.5974 0.6100 0.5050 0.5860 0.5145 0.5085 0.5901 0.4950

ManTraNet 0.7850 0.7780 0.7915 0.8074 0.8090 0.7880 0.8105 0.8130 0.7905 0.8330 0.8158 0.7930
Ours 0.9139 0.9353 0.9291 0.9210 0.9213 0.9312 0.9152 0.9301 0.9445 0.9236 0.9080 0.9210

∗Note: the abbreviation CM represents CopyMove, IP represents Inpainting, SP represents Splice and
DF represents DeepFake.

Table 5.5: The averaged pixel-level tamper detection FPR ↓ from different methods.

Detection methods CopyMove Inpainting Splice
MVSS-Net 0.1921 0.0526 0.077
HP-FCN 0.0419 0.0413 0.0388

ManTraNet 0.1444 0.0419 0.0988
Ours 0.0144 0.0176 0.0124

recognized as forgeries is over this threshold. Specifically, we fix to tamper the 30% area

of each image, and an image will be classified as tampered when 10% of its pixels are

recognized as forgery pixels. We increase this decision threshold from 10% to 30% with

step 2% to calculate corresponding detection AUC values. Besides, the same number of

authentic images is mixed with tampered images in each set to test different methods’

real/fake classification ability.

Table 5.4 summarizes the performance of distinct models. Despite the degradation

of AUC scores across all methods compared to pixel-level detection results, our method

again emerges as the top performer. These findings demonstrate our method’s superior

detection performance at pixel and image levels. Notably, the MVSS-Net and ManTraNet

exhibit more severe degradation in detection performance than others. We attribute this

phenomenon to false-alarm problems of these methods on the authentic pixels/images. To

verify this hypothesis, we calculate each method’s pixel-level detection results’ averaged

False-Positive Rate (FPR). According to Table 5.5, the baseline methods’ FPR is signifi-

cantly higher than ours. These results suggest that other methods produce more false

alarms on the authentic pixels than ours, leading to unreliable detection results that

limit their practical reliability. On the contrary, our method can provide more reliable

detection effects on both tampered and authentic pixels/images.

Computation efficiency comparison. We also measure the detection efficiency in

terms of Frames Per Second (FPS). Tested on NVIDIA Tesla K80 GPU, HP-FCN, MVSS-
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Figure 5.7: Examples of mask prediction from different detection methods. Compared
with other methods, ours can accurately pinpoint the tampered pixels and produce
significantly fewer false alarms on the authentic pixels.

Net, and ManTra-Net run at FPS of 3.91, 19.84 and 2.73, respectively. The watermarking

stage of our method runs at 9.88 FPS, while the detection stage runs at 36.71 FPS. Our

method’s primary time consumption is mainly associated with embedding the watermark

into images. In practice, this stage can be executed before tamper detection. Therefore,

only considering the detection stage, the FPS of our method is sufficient for real-time

application.

Qualitative comparison. Finally, we visualize each method’s detection results in

Fig. 5.7. Consistent with qualitative results, the figure illustrates that our method can

accurately locate the tampered regions with significantly fewer false positive pixels,

especially when detecting authentic images. While other methods can also pinpoint the

tampered regions, they are accompanied by some false alarm results in both tampered

and authentic images. Therefore, our method’s detection results are more reliable.

5.5.4 Robustness

In real life, one may disguise a tampered image with additional post-processing to

evade detection or apply various post-processing on the container image for different
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Figure 5.8: Samples of each post-processing method are adopted in the robustness
evaluation. Note that the Crop’s samples are resized in this figure for better visualization.

applications. The detection methods should remain effective against these processing

techniques. Here, we consider five typical post-processing techniques and also present

how we apply them in the following experiment:

• Gaussian blur the images with kernel standard deviation ranging from 0.5 to 1.3

with a step size of 0.1.

• JPEG compress all images with quality factors ranging from 40 to 100 with a

step size of 10.

• Crop the image to a smaller size ranging from 100% to 50% with a step size of

10%.

• Horizontally flip all images.

• Colour adjusts all images’ brightness, contrast, saturation and hue randomly.

We present samples of different post-processing operations’ results in Fig. 5.8. These

samples provide a visual representation of the impact of various post-processing tech-

niques on the images. We apply the above post-processing to the tampered images and

then employ different methods to detect the tampered regions. As shown in Table 5.6 and

Fig. 5.9, our method is immune to crop, JPEG compression and horizontal flip, whereas

susceptible to Gaussian blur and colour adjustment. Especially for the Gaussian blur,

the overall performance almost drops linearly. The main reason is that these processing

methods would modify the images’ pixel value, further distorting our embedded water-

mark so that they will significantly impact our method’s detection capability. However,

as the robustness evaluation results revealed, our method still provides comparatively
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Table 5.6: The averaged image/pixel-level detection AUC ↑ results from different methods
under colour adjustment and horizontal flipping.

Image Detection methods
Manipulations MVss-Net HP-FCN ManTraNet Ours

ColorAdjust 0.77/0.88 0.53/0.55 0.73/0.86 0.78/0.84
HorizontallyFlip 0.79/0.91 0.54/0.58 0.78/0.89 0.92/0.98

(a) GaussianBlur (b) JPEGCompress (c) Crop

Figure 5.9: The averaged image/pixel-level tamper detection AUC ↑ from different
methods against Gaussian blur, JPEG compress and crop. The solid line indicates the
pixel-level detection results, while the dashed line represents the image-level detection
results. Our method is robust against crop and JPEG compress but sensitive to Gaussian
blur. However, our method still achieves better detection performance than other methods
under these post-processing distortions.

better detection performance against other baselines, demonstrating that it can provide

reliable detection performance under real-world distortions.

5.5.5 Imperceptibility

In this section, we evaluate the visual quality of the container image to reflect the stealthi-

ness and imperceptibility of our watermark, thereby ensuring that it does not compromise

the utility of the watermarked image. As there is no available deep watermark-based

tamper detection method for comparison, we compare our method with SOTA invisible

watermarking methods. To ensure a fair comparison, we only select methods with a

payload capacity higher than 24 bits per pixel (bpp), which can hide an entire image

into a cover image. As a result, HiNet [67], DDH [143], and UDH [155] are selected as

the learning-based baselines, and 4bit-LSB [128] which is a traditional watermarking

technique, is also selected as a reference in our comparison.

To assess the imperceptibility of our method and all baselines, we use them to

embed the same secret image into 1k randomly selected MS-COCO images to generate

corresponding container image sets. We then calculate PSNR and SSIM between each

method’s container and cover images. The numerical results are summarized in Table 5.7.
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Table 5.7: The averaged similarity between original and watermarked images from
different image hiding methods.

Quality Deep Hiding Techniques
metrics HiNet DDH UDH LSB Ours
SSIM ↑ 0.97 0.71 0.84 0.78 0.94
PSNR ↑ 40.17 26.24 29.77 28.05 38.05

Figure 5.10: Qualitative comparison between our method and SOTA hiding techniques’
watermarked images. Our outputs are perceptually identical to the original, while the
results of LSB have slight colour distortion, and DDH and UDH introduce noticeable
artifacts in their outputs.

From the table, we observe that HiNet achieves exceptionally high values on both metrics,

while our method ranks second with slightly inferior performance (SSIM 0.04 lower and

PSNR 2.0 dB lower), which still outperforms other methods by a large margin.

While our method may not have the best quantitative imperceptibility performance,

the qualitative results in Fig. 5.10 demonstrate that the container images of our method

are sufficiently naturalistic for human observers. Both HiNet and our method generate

high visual quality container images with more visual-realistic and accurately preserve

the original’s hue and light in corresponding watermarked images. In contrast, UDH

and DDH introduce apparent artifacts in their watermarked images. LSB outputs have

obvious colour distortions. The high visual quality of the container image can also verify

our watermark’s imperceptibility.

Besides evaluating the similarity between the container and cover images, we employ

an open-source steganalysis tool called StegExpose to measure the anti-steganalysis

ability of each method’s watermark. Fig. 5.11 shows the ROC curve of each method. We

can see that the StegExpose detection accuracy on learning-based methods is quite close

to the random guess, indicating their watermarked images are highly imperceptible to

fool the Statistical steganalysis tool.
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Figure 5.11: ROC curves of StegExpose for detecting different image-hiding methods. The
detection accuracy on all learning-based methods is close to random guess, demonstrating
the highly imperceptible to fool the Statical steganalysis tool.

In summary, qualitative and quantitative results demonstrate that our method can

generate high visual-quality container images and imperceptible watermarks, ensuring

that our watermarked image can still be used normally in real-world scenarios.

5.5.6 Security

This section investigates potential security risks that the attackers may exploit to

compromise the effectiveness of the proposed method.

The security of the secret image. Our initial investigation focuses on determining

whether adversaries can acquire users’ secret images by analyzing information from

container or cover images.

The first line of defence against this threat is the imperceptibility of our watermark.

As demonstrated by the results of our imperceptibility experiments, adversaries cannot

distinguish between the container and cover images using quantitative, qualitative or

steganalysis-based analyses. Consequently, it would be challenging for adversaries to

locate images containing secret information, let alone obtain them.

In our method’s application scenario, users share only the container images on

platforms with risks of malicious tampering while keeping their cover images private.

As a result, adversaries cannot access original cover images without users’ permission.

To fully validate the security of our method, we investigate whether the secret image
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Figure 5.12: Residuals between our method’s container and cover images. As expected,
the residuals without magnification are nearly equal to blank. Magnifying the residuals
may reveal the embedded secret images’ outlines, but still very ambiguous.

is safe when the cover images leak. As illustrated in Fig. 5.12, the residuals between

the container and cover images are exceedingly thin, and even with 50 or 100 times

magnification, they remain ambiguous. Consequently, adversaries can not obtain the

secret images according to the container and cover images.

Risk of the secret image leakage. We then consider the scenario in which users’

secret images are compromised while the pre-trained models remain secure. Adversaries

will use their trained models to embed these secret images into their tampered images

to conceal the tampered area and evade our detection.

To simulate this attack, we trained two different groups of models on an identical

dataset to represent the user and adversary, respectively. We first employ user networks

to embed the secret image into 1k randomly selected CelebaHQ images, followed by

tampering operations. We then use adversary networks to embed the same secret image

into these tampered images to simulate the adversary’s cloaking action. Finally, we

utilize the user’s networks to detect tampered and cloaked images, testing whether our

method is still effective. Table 5.8 summarizes the detection FPR, TPR, Precision and F1

Score, while Fig 5.13 provides visual representations of the results.

Our findings indicate that this attack reduces the detection performance of our

method, particularly by generating more false negative tampered pixels. However, the

TPR suggests that more than 65% of tampered areas can still be successfully localized,

demonstrating that adversaries cannot wholly evade detection. Furthermore, the quali-
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Figure 5.13: Samples of the experiment result when the secret image is leaked. Embed-
ding the same secret image into the tampered container images will lead our method to
miss some tampered pixels in detection results, but the major tampered regions are still
accurately localized. Additionally, this cloak action will also produce apparent artifacts
in the outputs.

Table 5.8: Pixel-level detection results when the secret image leaks. w/o represents
without, and w represents with.

TPR ↑ FPR ↓ Precision ↑ F1 Score ↑
CopyMove
w/o cloak 0.7035 0.0140 0.9490 0.8080
w cloak 0.6114 0.0162 0.9441 0.7422

Inpainting
w/o cloak 0.7271 0.0195 0.9273 0.8151
w cloak 0.6114 0.0162 0.9441 0.7422

Splice
w/o cloak 0.7209 0.0131 0.9518 0.8204
w cloak 0.6114 0.0162 0.9441 0.7422

tative results presented in Fig. 5.13 validate the above inference that, despite reduced

detection accuracy, the primary tampered regions in the container images are still accu-

rately identified. We attribute this to the inability of different network groups to replace

the watermarked secret images in each container image perfectly.

Additionally, we observe that cloaked images exhibit apparent artifacts, likely due

to the overflow of embedding the extra secret image into already watermarked images.

This phenomenon renders the attack meaningless again, as cloaked images are easy to

identify and forbidden.

Risk of the pre-trained model. Finally, we analyze the situation where users’

pre-trained models are compromised while their secret images remain safe. Adversaries
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Figure 5.14: Samples of the experiment result when the pre-trained model is leaked. Em-
bedding the different secret images using the same models into the tampered containers
will make our method produce more false alarms when detecting authentic pixels. How-
ever, the tampered areas are still accurately identified, and apparent artifacts appear in
the cloaked images.

Table 5.9: Pixel-level detection results when pre-trained models leaked.

TPR ↑ FPR ↓ Precision ↑ F1 Score ↑
CopyMove
w/o cloak 0.7094 0.0144 0.9473 0.8113
w cloak 0.6750 0.0236 0.9141 0.7766

Splice
w/o cloak 0.7232 0.0182 0.9323 0.8146
w cloak 0.6760 0.0292 0.8924 0.7693

Splice
w/o cloak 0.7258 0.0138 0.9489 0.8225
w cloak 0.6356 0.0220 0.9218 0.7524

will use the same networks to embed different secret images into their tampered images

to conceal the tampered regions and evade our detection.

To simulate this attack, we first employ our networks to embed a secret image

(secret a) into the cover images and then perform tamper operations on these images.

Next, we use the same networks to embed another secret image (secret b) into these

tampered images to imitate the adversaries’ concealing process. Finally, we conduct

tamper detection on these images based on the secret image a.

The results are provided in Table 5.9 and Fig 5.14. Similar to the previous, this attack

also declined our method’s detection performance, but as evidenced by FPR values, it

will lead to more false alarms on the authentic pixels in detection results rather than
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falsely negating tampered pixels. The results in Fig 5.14 are consistent with quantitative

results, as the tampered regions can be accurately identified, but together with some

false alarms on the authentic pixels.

We infer that this phenomenon occurs because the newly embedded secret image

destroys the original watermark in the container image. Therefore, when comparing the

original secret image with the secret image recovered from this cloaked container, the

destroyed area in the watermark will result in false alarms. Nevertheless, as the results

show, the tampered regions can still be identified.

In summary, we have validated our method’s security, which can keep users’ secret

images safe in the practical application scenario and sustain detection performance even

if some credential information is compromised. However, considering the performance

degradation when credentials are leaked, it is still essential for users of our method to

keep their secret images and pre-trained models private.

5.5.7 Analysis

According to the above examinations, it is clear that our method is capable of reliable

pixel and image-level tamper detection. However, it is still insufficient to understand

our watermark and the watermarked image. In this section, we will implement an

investigation to analyse how our method works.

Pixel value Analysis. We begin our investigation by analyzing the pixel values of

our watermark. Our method incorporates the watermark into the cover image by directly

pixel-wise addition to generate the corresponding container image. Consequently, this

process inevitably introduces pixel differences between the cover and container images.

However, the Hiding secret loss of our method enforces the container to be identical to

the cover image. This design ensures that the Hiding network produces the watermark

with minimal pixel values to include the secret image’s information.

As a result, there is no noticeable distinction between cover and container images,

even though their pixel values are slightly different. To support our hypothesis, we

provide Fig 5.15 as evidence. We can observe that although the pixel values of the cover

and container images within the red box differ in all three RGB channels, this difference

is very slight. Therefore, the changes in pixel values resulting from the watermark would

not produce distinguishable perceptual alterations in the container image.

Frequency analysis. We then compute the averaged Azimuthal Integral (AI) [85]

values of different images that appear in our method to explore their frequency properties.

In brief, Azimuthal Integral [34] computes the radial integral over the 2D discrete
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Figure 5.15: The partial pixel values of cover and container images and the values gap
between them. Since adding with watermark in it, the container image’s pixel values
are different from the cover image. Nevertheless, the values gap is tiny, so there is
no perceptual difference between cover and container images, indicating our method’s
perfect concealing ability.

Fourier Transform spectrum along the spatial frequency. Given a square image I of

size M×N(M = N), the spectral representation is computed from the discrete Fourier

Transform (DCT)

(5.1)
DCT(I)(k, l)=

M∑
m=1

N∑
n=1

e−2πi· jk
M e−2πi· jl

N · I(m,n),

for k = 1, ..., M, l = 1, ..., N,

via Azimuthal Integration over radial frequencies φ

(5.2)
AI(ωk)=

∫2π

0
∥DCT(I)(ωk ·cos(φ),ωk ·sin(φ))∥2dφ

for k = 1, ..., M/2.

As depicted in Fig. 5.16, the 1D Azimuthal Integral power spectrum reflects the

relative intensity of the 2D spectrum at a certain frequency spatial coordinate, where

the intensity begins with the highest value at the lowest frequency and decreases as the

frequency increases. The outcomes are plotted in Fig. 5.17 and Fig. 5.18.

From Fig. 5.17, it can be observed that the frequency distribution of the container

image in the low-frequency domain almost aligns with that of the cover images. Since the

high-frequency contents in images are generally imperceptible to human observers, it ex-

plains why container images are perceptually indistinguishable from their corresponding
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Discrete
Fourier Transform

Azimuthal
Integration

Input

2D Spectrum

1D Spectrum

Figure 5.16: Azimuthal Integral. The input image is transformed into a 2D spectrum
using discrete Fourier transform. Then, the integration is conducted from the inside of
the 2D spectrum to the outside, along the yellow arrow circularly. Eventually, the 1D
spectrum is derived, where the red and green lines represent the sum of the pixel values
on the red and green circles.

Figure 5.17: The averaged Azimuthal Integral values of different cover, container and
watermark images. The watermarks mainly consist of a high-frequency spectrum. The
container images’ low-frequency distribution is almost aligned with that of the cover
images while having a higher high-frequency spectrum. So, it would be straightforward
to conclude that this high-frequency difference is due to the embedded watermarks on
containers.

cover images. Similarly, the watermark images, which are almost perceptually invisible,

mainly consist of high-frequency distribution with a significantly weak low-frequency

spectrum. Consequently, the container images embedded with these watermark images

will only exhibit some high-frequency distortion compared to the cover images but no

noticeable artifacts. The secret images’ frequency distributions in Fig. 5.18 are almost

perfectly aligned in most frequency domains but only slightly differ in the high-frequency

domain. These imperfections could be attributed to the imperfection reconstruction of our

method, but based on the previous experimental results, we consider them acceptable.
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Figure 5.18: The frequency distribution of the original and recovered secret images.
They are almost perfectly aligned in most frequency domains but only differ in the
high-frequency.

5.6 Conclusion and Discussion

The task of image tamper detection has become increasingly challenging due to the

constant evolution of image editing and synthesizing techniques. Confirming the authen-

ticity of images by identifying artifacts left from the manipulation process has become

more complex than ever before. To address these challenges, we propose a proactive

method to protect the authenticity of images by embedding a semi-fragile and invisible

watermark into each target image. This watermark serves as an indicator to verify the

authenticity of the image’s pixels.

The experiment results have demonstrated that our method performs exceptionally

well across all evaluation metrics. However, it should be noted that our method follows a

distinct pipeline from other current image tamper detection methods, which requires

additional steps. Given the perfect detection performance of our method, we believe this

overhead is acceptable. At present, the proposed method is best suited for protecting crit-

ical information. For example, public celebrities can use our method to add personalized

watermarks to their images to prevent malicious image forgery and tampering. Only

images with their watermarks can be considered authoritative, while images without

the corresponding watermarks will be assumed to come from unofficial channels. They

can also verify the tampered regions and declare forgery to reduce reputation loss.

Overall, this work represents a new direction for proactively fighting against mali-

cious tampering operations on image data.

Chapter 5’s in-depth analysis of media authenticity protection sets the stage for

Chapter 6, which tackles the critical aspect of media authorship proof. This chapter

extends the conversation from ensuring media authenticity to establishing and protecting
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the rights of content creators in the digital domain. It introduces novel techniques for

authorship attribution in image data, highlighting the importance of robust and reliable

methods for asserting and defending intellectual property in an increasingly digital

and interconnected world. Specifically, we propose a novel method that leverages the

semantic information in images to boost the robustness of watermarks, enabling reliable

authorship attribution. It includes a novel semantic image-hiding network, explores

semantic features for hidden information, and achieves a balanced trade-off between

capacity, imperceptibility, and robustness with comprehensive performance evaluations.
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MEDIA AUTHORSHIP PROOF

6.1 Preface

Chapter 6 addresses a significant aspect of our work that underpins the fight against

plagiarism and copyright infringement: authorship proof in image data. By identifying

the limitations of conventional authorship-proof methods, we set the stage for introducing

our unique strategy, specifically designed to enhance the robustness of authorship

attribution.

Our work contributes to image steganography, the practice of imperceptibly embed-

ding a secret image within a cover image. While recent advancements have concentrated

predominantly on refining output quality and payload capacity, our research identifies

the often-overlooked aspect of robustness as a crucial focus. Ignoring this dimension ex-

poses these methods to potential distortions during data pre-processing and transmission

stages.

To counter this vulnerability, we introduce ROSIN (Robust Semantic Image-hiding

Network), a robust semantic image-hiding network beyond merely embedding the secret

into a particular domain of the entire cover image. Our novel methodology first semanti-

cally disentangles the cover image into attribute and identity features and then hides

the secret image in the identity feature. This feature, characterized by its valuable value

and geometric invariance properties, is an ideal candidate for secret image concealment.

The results of our extensive experiments, covered in this chapter, validate the effec-
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Figure 6.1: The structure of ROSIN vs. conventional learning-based image steganogra-
phy framework. Previous works enhance their model’s robustness by inserting diverse
distortions at the training stage. On the contrary, our Rosin semantically disentangles
the input cover image and exploits the stability identity feature to embed the secret
image to achieve high robustness.

tiveness of our design. When juxtaposed with state-of-the-art techniques, we demonstrate

that ROSIN achieves superior robustness while maintaining comparable imperceptibil-

ity and capacity. The ability of our proposed solution to leverage an image’s semantic

features for enhanced robustness represents the first of its kind in the field of image

steganography, paving the way for promising real-world applications.

Throughout this chapter, we delve deeper into the implementation of our method,

discussing in detail the outcomes of our experiments and the potential implications of

our work on authorship attribution. This exploration underscores the critical role of our

work in combating plagiarism and copyright infringement, providing new insights into a

novel approach to authorship proof in image data.

6.2 Introduction

Image steganography, a well-studied subset of steganography, involves concealing a

secret image within a cover image to create a container image. The container image

must appear virtually identical to the cover image to facilitate the transmission of the

secret image while remaining undetectable to unauthorized viewers. Only the intended

recipient possesses the means to extract the embedded secret image from the container

image. Unlike other steganography techniques, such as bit-level message hiding [8],

image steganography prioritizes high imperceptibility and hiding capacity over perfect

decoding of embedded secrets.
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Traditional techniques conceal the secret image with different strategies, including

the least significant bits (LSB) [15, 68, 117], pixel value differencing (PVD) [161], his-

togram shifting [116], discrete Fourier transform (DFT) [3], discrete wavelet transform

(DWT) [6, 133], etc. While these methods have achieved promising fidelity, their embed-

ding capacity is limited (typically around 0.2-4 bits per pixel (bpp)), and they often lack

sufficient robustness. Recently, learning-based image steganography methods have alle-

viated the above limitations. These novel methods demonstrated impressive performance

in visual quality and hiding payloads, compared to traditional approaches. However,

some of them neglect the crucial aspect of robustness. Even slight distortions introduced

to the container image during data pre-processing and transmission will severely degrade

the quality of the revealed secret image at the receiver’s end. Given the prevalence of

such distortions in the dissemination of container images, image steganography without

a robustness guarantee becomes impractical.

Existing learning-based methods attempt to enhance robustness by training their

networks to mitigate various distortions that occur between the concealing and revealing

processes. These distortions, sometimes referred to as attack layers [156], can involve

pre-defined image post-processing manipulations or simulated perturbations generated

by neural networks. Typically, these methods employ architectures similar to the one

shown in Fig. 6.1.

Albeit effective, this approach faces several challenges. Firstly, the distortions must

be differentiable to enable joint training in the concealing and revealing processes.

However, many practical distortions, such as JPEG compression, are non-differentiable,

making it difficult to incorporate them into neural network training. Secondly, in most

cases, real-life distortions often differ from the assumed distortions used in training.

Selecting a diverse and well-balanced set of distortions for training becomes nearly

impossible, resulting in poor performance when facing novel distortions. Lastly, this

design makes it challenging to balance robustness with other metrics. Training with

distortions inherently conflicts with the goal of improving imperceptibility, potentially

leading to a decrease in image perception quality.

To address these issues, we propose a Robust Semantic Image Hiding Network, which

is called ROSIN. As illustrated in Fig. 6.1, ROSIN differs from previous methods by

semantically disentangling the input cover image and utilizing the stable identity feature

to achieve high robustness while concealing the secret image. Unlike prior methods, our

approach does not require prior knowledge of image distortions during training.

In the ROSIN framework, the cover image is disentangled into attributes and identity
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features. We employ an encoder network to extract the secret image’s latent represen-

tation. A learnable network combines the identity feature and latent representation

to form a fused feature vector. The training process ensures that the vector preserves

the essential information from both the identity feature and the latent representation.

Following the fusion of the identity feature and the latent representation, a synthesizing

network is employed to generate the container image by utilizing the fused feature

and the original attribute feature of the cover image. Although visually identical to the

original cover image, the container image secretly carries the embedded secret image.

This allows for the transmission of the secret image without raising any suspicion. At

the receiver end, the same identity encoder used in the cover image disentanglement is

utilized to extract the identity feature of the container image. Dedicated networks are

then employed to separate the embedded secret representation, which is subsequently

used to reconstruct the secret image. Thanks to the stability of the identity feature, the

embedded secret image can be revealed even under a wide variety of image distortions

that may occur during transmission.

To the best of our knowledge, this work represents the first attempt to leverage

semantic feature stability for image steganography. We conduct extensive experiments to

evaluate our method, and the results consistently demonstrate the superior performance

of ROSIN compared to existing baselines across various aspects. In summary, our main

contributions are listed as follows:

• We develop a novel semantic image-hiding network that exhibits high robustness

under diverse distortions, enhancing image steganography practicability.

• Our work explores semantic features’ redundancy and validates their suitability

for carrying hidden information in the context of image steganography.

• We demonstrate the identity feature is invariant to conventional image distortions,

further emphasizing its robustness.

• Our method achieves a balanced trade-off between capacity, imperceptibility and

robustness, addressing the limitations of previous approaches.

• We conduct comprehensive evaluations of our proposed method, analyzing its per-

formance across multiple dimensions to establish its effectiveness and superiority.
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Figure 6.2: Overview of our proposed Rosin’s framework. The black arrows refer to data
flows, and the red dashed lines show the loss flows. Besides, the trapezoids with red
solid lines represent a trainable network, while the black line trapezoid represents a
frozen network. The input cover image is first disentangled into attribute and identity
features, and the secret image is projected as a latent representation. Then, the identity
feature and latent representation are combined to generate the fused feature by the
Fuser network, which is believed to contain both the cover image’s identity feature and
the secret’s semantic representation. A synthesis network next takes fused feature and
original attribute maps to yield the container image. In the reveal process, the container
image is fed to the same identity encoder used in cover image disentanglement to extract
its identity feature, which is then input to the separator network to retrieve embedded
secret representation and reconstruct the secret image.

6.3 Methodology

The primary target of Rosin is to design a general and robust framework for image

steganography under diverse distortion, which is achieved via our novel semantic

disentanglement-based image-hiding techniques. Fig. 6.2 gives an overview of Rosin’s

architecture. Our Rosin network embeds the secret representation to the disentangled

cover identity feature, then uses the embedded identity feature with the original cover

attributes features to synthesize a container image perceptually identical to the orig-

inal cover. The secret representation fusion and concealing processes adopt adaptive

mechanisms trained to reduce perturbation on the container image. When we need to

reveal the hidden secret image, we can extract the container image’s identity feature

101



CHAPTER 6. MEDIA AUTHORSHIP PROOF

Table 6.1: Summary of notations in this paper.

Notation Description
xsec Secret image: the image to be hidden,

and wants to be transmitted without notice.
xcov Cover image: the image to hide the secret image,

also the image we used to camouflage the secret.
xcon Container image: the image with xsec embedded,

exposed to various distortions in transmission.
x̂sec Revealed secret: recovered secret image from xcon,

reflecting whether the transmission succeeded.
zid(X con) Identity feature of the cover image,

serving as the carrier of the secret image.
zatt(X cov) Attribute feature of the cover image,

reserve its spatial information.
zrep(Xsec) Latent representation of the secret image,

preserving the essential information for reconstruction.
zw

id(X cov) Feature incorporated identity and representation,
used to synthesize the container image.

zid(X con) Identity feature of the container image,
which is believed to contain the secret representation.

zrep(X̂sec) Retrieved secret representation,
which can be used to reconstruct the secret image.

and separate the embedded secret representation for reconstruction.

In summary, the functionalities of our framework can be divided into three major

parts: (1). feature disentanglement and extraction; (2). feature fusion and image synthe-

sis; (3). feature separation and secret reveal. In the following parts of this section, we

provide a detailed explanation of the Rosin architecture, including its functionality, loss

function and processing pipeline. The main notations used in the rest of the paper are

listed in Table 6.1.

6.3.1 Feature Disentanglement and Extraction

Given input cover and secret images, the first step of our method is to disentangle

the cover image into two independent representations, which are identity zid(X con)

and attribute features zatt(X cov), and extract the secret image’s latent representation

zrep(Xsec). We designed three dedicated networks to do that, illustrated in Fig. 6.2,

which are Attributes and Identity Encoders for the cover image disentanglement and
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Representation Encoder for the secret image extraction.

Cover Images’ Features Disentanglement: The identity feature in this context repre-

sents the high-level human bio-metric information neural networks use to distinguish

one individual from another. It includes facial structure and landmarks, enabling the

characterizing of a specific person with lesser intra-personal variations and larger inter-

personal differences. Therefore, the identity feature will remain consistent in face image

transmission even under image distortions or post-processing manipulations. Embedding

secret information within the identity feature can thus leverage this inherent stability

to its resilience against distortions.

Similar to most research for feature disentanglement works [106, 142], the iden-

tity encoder in our work employs the pre-trained face recognition network [31] as the

backbone to extract the input image’s last feature vector generated before the final

fully-connected layer as identity feature. This network adopts additive angular margins

in the well-established softmax loss function to maximize identity class separability,

so its identity feature has a clear geometric interpretation and is highly discrimina-

tive. Specifically, the identity feature is a 512-dimension vector, which is formulated

as zid(X ) = Arc(X ), where X denotes the input image and Arc(·) represents the face

recognition network.

The attribute feature of the face image is defined as spatial information related to

various aspects, such as pose, expression, background, etc. Depending on the level of

detail, attributes can range from coarse (e.g., overall spatial outline) to fine (e.g., precise

shape). Therefore, we adopt multi-level feature maps to preserve such details to represent

the attributes. Specifically, we feed the input image into a U-Net style network and then

use the feature maps generated from the U-Net decoder as attribute representations.

The formal attributes representation is denoted as:

zatt(X )= {
z1

att(X ), z2
att(X ), ..., zn

att(X )
}
,

where zn
att(X ) represents the n-th level feature map from the U-Net decoder, and n is the

number of feature levels.

We use the U-Net architecture from [77] as the attributes encoder for its ability

to capture both high-level and low-level spatial information, making it suitable for

preserving the diverse details associated with the attributes of the face image. It does not

require extra annotations, in our work, as it extracts the attributes using self-supervised

training, which is trained to keep the original Cover image X cov and Container image

X con have the representation of the same attribute.
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Secret Images’ Representation Extraction: The identity feature of the cover image

is a 512-dimensional vector, which is insufficient to directly accommodate the pixels of

secret images. Moreover, attempting to embed pixels into this high-level latent space

would result in value overflow and significant distortion on the identity feature [119].

To address this issue, we train an encoder to map the input secret image into a latent

representation.

The secret encoder adopts Resnet-50 [52] as the backbone, as it performs excellently

in extracting input image features. We use the last feature vector generated by the

final fully-connected layer as the secret image’s representation, which is also a 512-

dimensional vector. By training the secret encoder with the decoder to minimize the

difference between the input and output images, it learns to encode the secret image’s

essential feature while discarding the unnecessary details. This process allows the

representation to effectively guide high-quality secret reconstruction, even with the

reduced dimensionality. This process is denote as zrep(Xsec)= Enc(Xsec).

6.3.2 Feature Fusion and Image Synthesize

The next step in our method involves concealing the secret representation within the

identity feature and synthesizing the container image using the fused feature and the

original attribute feature from the cover image. Since the container image must be

indistinguishable from the cover image, our approach employs learnable mechanisms for

more adaptive fusion and synthesis.

We designed a dedicated Fuse Network to conceal the secret representation into the

identity feature. This Fuse Network adopts five full-connected layers, where the first four

layers are followed by a LeakyReLU layer with a negative sloop of 0.2 and a BatchNorm

layer. It inputs two 512-dimension vectors (the identity feature and secret representation)

and then outputs a single 512-dimensional fused feature. Through training to synthesize

the container image and reconstruct the secret image, the Fuse Network learns to

adaptively combine the different representations, effectively generating a fused feature

that preserves essential information from the identity feature and secret representation.

This use of learnable fusion reduces distortion in the container image, as denoted by

zw
id(X cov)= Fuse(zid(X cov), zrep(Xsec)).

Subsequently, we integrate the fused feature zw
id(X cov) and the original attributes

zatt(X ) to synthesize the container image. Previous studies [10, 102] revealed that

simply concatenating identity and attributes to synthesize images will incur severe

visual quality degradation and distortion. To overcome this problem and generate the
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high-fidelity container image, we employ a novel Adaptively Attentional Denormalization
(AAD) [77] mechanism to accomplish feature integration.

The synthesize network incorporates multiple cascaded AAD Residual Blocks (Res-

Blk) to integrate the identity and attributes. Each AAD ResBlk comprises multiple AAD

layers, which employ an attention mechanism with denormalization to dynamically

adjust the participation of identity representation and attribute representation for syn-

thesizing different regions. For instance, the identity will provide more importance on

generating the facial area, which is most discriminative for distinguishing identities,

while the attributes will focus more on the regions related to spatial features, such as

skin colour and background.

We formally define the synthesize procedure as:

X con =Gen
(
zw

id(X cov), zatt(X cov)
)
,

where Gen(·) denote the synthesize network. This adaptive attentional mechanism allows

for fine-grained control over the contribution of each feature representation, resulting in

a more accurate and visually pleasing synthesis of the container image. More importantly,

it can help perverse the secret image’s representation into the container image’s identity

feature.

6.3.3 Feature separation and secret reveal

The final step of Rosin is to recover the embedded secret image from the container image.

Since the secret representation is concealed in the identity feature, we initially adopt the

same identity encoder to extract the container’s identity feature, denoted as zid(X con)=
Arc(X con). Then, we use a Separator Network to extract the secret representation

from the container’s identity feature. This network also uses multiple full-connected

blocks, which consist of a full-connected layer, a ReLu layer and a BatchNorm layer, as

the backbone and outputs a 512-dimension revealed secret representation zrep(X̂sec)=
Sep(zid(X con)). After that, we input the revealed secret representation into the secret

Decoder to reconstruct the secret image X̂sec = Dec(zrep(X̂sec)).

The Decoder adopts the CEILNet-structure framework [38] that is believed to func-

tion well in image reconstruction. This network mainly comprises several upsampling

blocks followed by a residue block to generate the output. Specifically, each up-sampling

block consists of a 3x3 Conv2dtrans layer, an InstanceNorm layer and a LeakReLu layer.

The final output image is obtained by convolving the last activation with a Tahn function.
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During the training, we extract the attribute feature from the container image

and compute the difference between this feature and the cover attribute feature. This

difference is used to optimize the attribute encoder.

Additionally, to mitigate the issue of over-fitting, we employ a straightforward strat-

egy at the training. Specifically, we ensure that the revealing process of Rosin can

distinguish between the container image from the clean image, rather than simply

producing a secret image regardless of the input. To achieve this, we divide the input to

the revealing stage during training into two parts. One half consists of the clean images

generated using the original cover identity and attribute features, without any embedded

secret representation. The remaining inputs are container images containing the secret

image. By doing so, the Separator and Decoder are forced to reconstruct the secret image

when presented with a container image, while producing a null image, i.e., a pure black

image when given a clean image. This simple yet effective strategy helps address the

over-fitting problem in Rosin.

6.3.4 Loss Functions

We describe the loss functions for training Rosin using the same notations as in Fig. 6.2.

No extra losses are required in our training procedure, and except for the identity encoder,

all other networks are trainable.

Image Reconstruction Loss: To keep the container image resemble the original cover

image and also mitigate the conflict with the secret image concealing, we define a

perceptual similarities loss LPIPS [159] between the cover and container images rather

than the common pixel-level L2 similarities:

LR = ∥∥L(X )−L(X̂ )
∥∥

2 ,

where L(·) represents the perceptual features extractor.

Attributes Loss: We also calculate the attributes features’ L2 distance between the

cover and container images to enforce attributes preservation:

LAtt =
1
2

n∑
k=1

∥∥∥zk
att(X )− zk

att(X̂ )
∥∥∥2

2
,

where the n denotes the level of attributes.

Feature Preservation Loss: This loss function measures the cosine similarity between

the fused feature and the extracted container identity. It expects to train Rosin to
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integrate the fused feature in the container image as its identity feature.

LFeat = 1−CosineSimilarity(ẑid(X ), Arc(X̂ )),

where Cos(·) denotes the operation of cosine similarity.

Representation Reconstruction Loss: Additionally, we adopt a simple but effective

L2 similarity loss between the original and revealed secret representations to regulate

the secret representation reconstruction.

LRep = 1
2

n∑
k=1

∥∥∥zk
rep(Xsec)− zk

rep(X̂sec)
∥∥∥2

2
,

For the inputs from the clean image, we set their original secret representations as

zeros vectors, which can help Separator to differentiate between the container and clean

images.

Secret Reconstruction Loss: Finally, an L2 loss is utilized to measure the similarity

between the original and the revealed secret image to minimize the average distance

between each pair of them.

LSec =
1
2

∥∥Xsec − X̂sec
∥∥2

2 ,

Like Eq. (6.3.4), when the inputs are clean images, the original secret image is set as

the null images to guide the Decoder output pure black results to avoid the over-fitting

problem.

In summary, the total objective function for training Rosin is a weighted sum of the

above losses, which is defined as:

L =λRLR +λALAtt +λFLFeat +λRLRep +λSLSec,

where λR ,λA,λF ,λR ,λS are tunable constant weighting corresponded loss. Unless stated

otherwise, the λ values are set as λR = 10,λA = 0.1,λF = 1,λR = 1 and λS = 1.

6.3.5 Rosin Processing Pipeline

In summary, the Rosin framework can be divided into two main stages: concealing and

revealing. In the concealing phase (light purple area in Fig. 6.2), the sender first maps

a secret image to a secret representation. This secret representation is then embedded

into the disentangled cover identity feature using the fuser network. The fused feature,

combined with the original cover attributes, is used by the synthesis network to generate

the container image, which can be transmitted to the receiver.
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In the revealing phase (light yellow area in Fig. 6.2), the receiver uses the same

identity encoder to extract the identity feature from the container image, which conceals

the secret representation. The Separator network is then used to separate the secret rep-

resentation from the identity feature. Finally, the secret Decoder is applied to reconstruct

the secret image based on the extracted secret representation.

Compared to existing image steganography methods, our method conceals and trans-

mits the secret image via the identity feature of the cover and container images. This

approach provides higher robustness due to the stability and invariance of the identity

feature under conventional image distortions. Additionally, the container image synthe-

sized by the AAD-based generator achieves high fidelity, enhancing the imperceptibility

of secret transmission. As a result, our method achieves a balanced trade-off between

imperceptibility and robustness.

6.4 Experiments

In this section, we present the results from our extensive experiments to evaluate

Rosin’s performance from the following aspects: (1). Imperceptibility of concealing the

secret image in the container and fidelity of the revealed secret image. (2). Robustness

of the embedded secret image; (3). Concealing and revealing phases’ computational

overhead and efficiency; (4). Scalability to hide a larger secret image in the container.

Furthermore, we implement detailed discussions of how Rosin works. The experiment

results demonstrate that our method can perform best across various qualitative and

quantitative evaluation metrics.

6.4.1 Experiments Setting

Datasets: We train our method on the widely used face image dataset Flickr-Faces-HQ
(FFHQ) [71], and then conduct experiments and comparison on another famous face

dataset CelebA-HQ [70]. The gap between training and testing datasets can validate

our method’s generalisation. Unless stated otherwise, all images in the experiment have

been aligned and cropped to the size of 256×256.

Metrics: Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) are used to calculate the similarity between the cover/container and

original/revealed secret image pairs to assess their quality. Moreover, following the same

setting as previous works [91, 147], these two metrics are also employed to evaluate
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the robustness of revealing the embedded secret image from distorted container images.

Overall, in this paper, higher PSNR and SSIM values indicate better fidelity of the

container and revealed secret images, and greater robustness in revealing the embedded

secret image from distorted container images.

Baselines: We compare Rosin with SOTA invisible image-hiding methods to reflect its

advantages and disadvantages in various aspects. To ensure a fair comparison, we only

consider methods with a payload capacity higher than 24 bpp, which allows them to

hide an entire image within a cover image. Furthermore, we select the method whose

authors have made their source codes and pre-trained models publicly available, ensur-

ing the reproducibility of our experimental results. Consequently, three learning-based

methods: HiNet [67], DDH [143], and UDH [155], along with one traditional method: 4bit-

LSB [128] are selected as baselines in our experiment. We re-train the learning-based

methods following the original authors’ configuration using Rosin’s training dataset.

Besides, we note that the original DDH and UDH methodologies can incorporate addi-

tional attack layers in their training process to enhance robustness. Hence, we train

another group of DDH and UDH models equipped with their respective attack layers. In

our experiment, we use the suffix w_A and w/o_A to distinguish DDH or UDH models

with/without attack layers.

6.4.2 Imperceptibility and fidelity

We first evaluate each method’s imperceptibility of concealing a secret image in the

container and the fidelity of revealing the secret image. These two benchmarks are

critical in the image steganography task, as they decide whether hiding secret images

compromises the utility of the container image and whether the secret image can be

accurately transmitted. For a fair comparison, we employ all methods to conceal the same

secret image within 1k randomly selected CelebaHQ images to generate container images.

Then, we reveal the embedded secret image from these container images producing

revealed secret images. These images are used for the following comparisons.

Similarity with Original: We calculate the averaged PSNR and SSIM values of each

method’s cover/container and original/revealed secret image pairs. The results are illus-

trated in the histogram of Fig. 6.3.

We observe that Rosin, HiNet, DDH_w/o_A and UDH_w/o_A achieve close perfor-

mance in the similarity between the cover and container images, while our Rosin slightly

falls behind in secret images’ similarity. However, our method significantly outperforms

the residual of baselines. The relatively lower performance of Rosin in secret image
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(a) SSIM (b) PSNR

Figure 6.3: SSIM and PSNR values of cover/container and original/revealed secret image
pairs from different methods. Rosin has comparable performance in both pairs with
baselines, but earns greatly enhanced robustness in return.

quality can be attributed to the process of compressing the secret image into a latent

representation will discard some less essential details, thereby reducing the similarity to

the original image. Nonetheless, the gap is minimal, only 0.04 SSIM and 2.0 PSNR db

lower, so it is safe to conclude that our method is comparable with SOTA. In addition,

equipping attack layers significantly drop the imperceptibility and fidelity of DDH and

UDH, demonstrating that this strategy cannot achieve a balanced trade-off between

robustness and other metrics.

In addition to the quantitative comparison, the visualisation of each method’s outputs

is illustrated in Fig. 6.4 for qualitative assessment. We also show the ten times magnified

residual between cover/container and original/revealed secret image pairs. Despite

not achieving the best quantitative performance, the qualitative results in Fig. 6.4

demonstrate that our method’s container and revealed secret images are sufficiently

naturalistic and accurately preserve the original hue and light conditions, making

them visually appealing to human observers. When examining the magnified residual

maps, we observe that the difference between our cover and container images is nearly

imperceptible, indicating that Rosin successfully conceals the secret image within the

cover image. The main discrepancies are primarily concentrated in the facial area,

highlighting that Rosin predominantly embeds the secret image into the container

image’s identity feature.

In addition, our method can nearly perfectly recover the secret image, i.e., the resid-

ual between the recovered image and the ground-truth secret image is nearly all in

black, even after ten times magnification. In contrast, DDH_w_A, UDH_w_A, and LSB
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Figure 6.4: Visualization of each method’s output and residual maps (Magnified x10).
Our outputs are perceptually identical to the original, indicating that embedding a secret
image into the container will not compromise its utility, and the secret image can also be
precisely transmitted. The magnified residues between the cover and our container show
that the majority manipulation area of Rosin is centralized at the face area. Besides,
it also shows that our method has relatively fewer residues between the original and
revealed secret images.

container images have noticeable texture-copying artifacts, especially in smooth regions.

LSB container images also suffer from undesirable colour deviation issues, leading to

visible blurring artifacts.

Steganographic analysis: Apart from the similarity between cover and container

images, the undetectability from steganalysis tools can also demonstrate the image

steganography method’s imperceptibility. Therefore, we employ a well-known open-

source steganalysis tool called StegExpose [16] to measure the anti-detection ability

of each method’s container images. Specifically, StegExpose is used to differentiate the

mixed cover images and corresponding container images from each method. The results

are then used to draw the receiver operating characteristic curve (ROC) in Fig. 6.5 and

calculate the corresponding area under the curve (AUC) value.

The computed AUC values for each method are as follows: Rosin (0.5158), HiNet

(0.9850), DDH w_A (0.7274), DDH w/o_A (0.5721), UDH w_A (0.8935), UDH w/o_A

(0.8084) and LSB (0.6058), where our method’s AUC value is the closest to 0.5. Besides,

our ROC in Fig 6.5 most closely aligns with that of a random guess. Both numerical
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Figure 6.5: The ROC curve produced by StegExpose for different methods’ container
images. The shadow area represents the random guess’s area under the curve. Rosin’s
ROC curve is closest to the random guess, representing its container images can almost
evasion the StegExpose’s detection.

and graphical results indicate that Rosin’s container images offer high security, thereby

evading detection by the statistical steganalysis tool. We infer this is due to the unique

embedding process of Rosin, where the secret image is exclusively embedded within

the facial regions of the container images, thereby leading to minimal and restricted

alterations that are challenging to detect.

In summary, qualitative and quantitative results demonstrate that our method has

high imperceptibility in concealing the secret image in the container, comparable fidelity

of the revealed secret image, and can also fool the StegExpose tool with high probability.

6.4.3 Robustness

We proceed to evaluate the robustness of each method in terms of extracting the embed-

ded secret images from distorted container images. The robustness here refers to the

distortion tolerance range, a crucial aspect in real-world image steganography tasks.

This is because container images often encounter various lossy distortions during their

transmission in practice, and the embedded secret image should remain effective and

extractable despite these distortions. Ignoring the robustness will render the embedded

secret image vulnerable and fragile, limiting its application in practice.

To comprehensively evaluate each method’s robustness, we employ various commonly
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(a) HorizontalFlip (b) Blur (c) ColorJitter (d) Compression

(e) Crop (f) NoiseAttack (g) Resize (h) Rotation

Figure 6.6: Robustness comparison with SOTAs. The histograms show the averaged
SSIM values of revealed secret images from different post-processing container images.
The plotting scale in each sub-figure is the same, so a higher bar represents higher SSIM
values and indicates better robustness. Rosin almost outperforms SOTAs in all sets and
is immune to some distortions, such as Blur and Compression.

used image post-processing techniques, including Flip, Blur, Color Adjustment, JPEF

Compression, Crop, Noise Attack, Resize and Rotation. Fig. 6.8 displays examples of

each post-processing technique’s output and corresponding setting. We choose a range of

distortions strong enough to differentiate the performance between different methods

but in a regime where the distorted image still resembles the original. Each post-

processing technique is applied to 1k container images from Rosin and other baselines

to generate corresponding sets of distorted container images. Then, we use these image

steganography methods to extract the embedded secret images from these distorted

container images. Finally, following previous works [91, 147], we calculate the averaged

SSIM and PSNR values of the revealed and original secret images to reflect each method’s

robustness against image distortions.

The evaluation results are reported in Fig. 6.6 and Fig. 6.7, demonstrating that

our method almost outperforms all baselines across all distortions. According to the

results, despite mild interference, e.g., blur and resize, on the container image, the

secret restoration of HiNet and LSB witness a substantial drop in performance. The

embedded secret images of DDH and UDH without attack layers are also susceptible

to distortions on their container images, with performance lower than HiNet and LSB

in some respects, such as noise attack and colour adjustment. These findings confirm
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(a) HorizontalFlip (b) Blur (c) ColorJitter (d) Compression

(e) Crop (f) NoiseAttack (g) Resize (h) Rotation

Figure 6.7: Robustness comparison with SOTAs. The histograms show the averaged
PSNR values of revealed secret images from different post-processing container images.
The plotting scale in each sub-figure is the same, so a higher bar represents higher PSNR
values and indicates better robustness.

that overlooking distortions makes methods inapplicable in practice. Furthermore, the

results demonstrate that DDH and UDH, when equipped with attack layers, can improve

robustness but are only effective for limited types of distortions introduced in their

training process. For example, by incorporating a differentiable compression attack in

the training process, DDH and UDH can efficiently combat JPEG compression. However,

when confronted with unknown distortions, such as rotation, DDH and UDH perform

poorly and fail entirely.

In contrast, Rosin does not suffer from the above issues. It delivers superior robust

performance across various distortions. The results even suggest that the embedded

secret image of Rosin is immune to some image post-processing techniques, such as

HorizontalFlip, Blur, Colorjitter, and compression, where the performance remains

unimpacted with the distortion strength increase. This is because these manipulations

do not distort the container image’s identity feature, so it would not affect our embedded

secret image’s revealing. Nevertheless, our method is relatively susceptible to Crop and

Rotation, although it still outperforms baselines with a considerable advantage margin.

Specifically, there is a clear performance downtrend with the crop size increasing. We

believe this phenomenon is because cropping large container image areas will inevitably

damage its identity feature, posing a threat to our identity feature embedding. Similar

to the crop, the rotation manipulation will also produce non-negligible changes in the
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Figure 6.8: This visualization showcases the outputs and corresponding configurations
for various image post-processing techniques. Each image displays the changes by a
specific distortion, demonstrating the potential challenges encountered during image
steganography.

Table 6.2: FPS, Parameters and MACs of Concealing&Revealing.

FPS Parameters (M) MACs (G)
HiNet 0.21&0.69 4.05 66.46
DDH 48.69&48.98 16.66&0.74 16.35&48.71
UDH 46.78&57.32 16.66&0.74 16.30&48.71
LSB 1.92&1.81 N/A N/A

Rosin 2.17&6.65 449.87&75.27 116.85&6.89

containers’ identity feature, which led our method to fail in some samples. Despite this,

it is pretty encouraging to see that Rosin can partially withstand these two powerful

attacks while others fail.

In conclusion, the robustness evaluation shows our superior performance against

common image distortions. Coupled with the results of the last section, we can con-

fidently affirm that our method strikes a balanced trade-off between robustness and

imperceptibility.

6.4.4 Efficiency and Overhead

Next, we assess each method’s efficiency and computational overhead. Regarding effi-

ciency, we test both learning-based and traditional methods’ concealing and revealing

Frame Per Second (FPS) on an Intel i7 13700K/KF CPU environment without any

GPU acceleration for a fair comparison. As for computational overhead, we count each
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Table 6.3: SSIM and PSNR of different resolution secret images.

256 x 256 512 x 512 1024 x 1024
SSIM
Container 0.9701 0.9557 0.9479
Secret 0.9030 0.8964 0.8749

PSNR
Container 44.97 42.39 41.51
Secret 35.34 33.49 31.95

method’s number of parameters and Multiply Accumulate Operations (MACs). The

results are given in Table 6.2.

Not surprisingly, Rosin has the most parameters and MACs due to its complex design.

However, its concealing and revealing are faster than HiNet and LSB, as Rosin’s sub-

networks adopt the simple backbone. Besides, when accelerating with a single NVIDIA

GeForce RTX 4090 GPU, the FPS of Rosin can improve to concealing: 347.61 and revealing

1063.48, which is still not the best one but sufficient for real-time application. Considering

the robustness of our method, we believe it is worth accepting the computation overhead

of our method.

6.4.5 Scalability

We subsequently enlarge the embedded secret image’s resolution to examine the hiding

scalability of Rosin. We separately retrain three Rosin models using the same cover

images but with secret images of three different resolutions, which are 256x256, 512x512,

and 1024x1024. To do that, we keep the majority of these models’ networks identical,

only adjusting the Secret Encoder’s input layer and the Decoder’s out layer to fit different

resolutions. Then, we calculated the averaged PSNR and SSIM values of each model’s 1k

cover/container and original and revealed secret image pairs.

Table 6.3 presents computed results. With the increase of the secret image’s resolution,

the PSNR and SSIM slightly drop but still maintain acceptable values. We believe

the performance degradation is due to the Decoder network’s reconstruction ability

limitation. A more sophisticated network might achieve higher similarities. These results

also demonstrate that the 512-dimensional secret representation vector can preserve

the essential information of a larger secret image. Therefore, it indicates that the

identity feature of the cover image also has redundancy to embed a larger secret image

representation, which exhibits the scalability of Rosin.
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Figure 6.9: Pipeline for specificity analyses. Rosin can successfully differentiate cover
and container images, and can also accurately retrieve its corresponding secret images.

Table 6.4: SSIM and PSNR of different secret images.

Secret 1 Secret 2 Secret 3
SSIM 0.9807 0.9747 0.9789
PSNR 44.88 43.92 44.51

6.4.6 Discussion

According to the above examinations, it is clear that our method has superior perfor-

mance in image steganography tasks. However, a deeper understanding of our method’s

functioning is required. Consequently, this section aims to conduct an investigation to

analyze Rosin and its outputs.

Specificity: We begin our investigation by analyzing the specificity of Rosin. The speci-

ficity here represents the revealing network’s ability to differentiate its corresponding

concealing network’s container image from the clean image or other concealing network’s

container image. In other words, when the revealing network receives clean images or

container images from other embedded networks, it should output a null image, i.e., a

pure black image.

To demonstrate the specificity performance of Rosin, we experiment with multiple

recipients receiving different secret images from the same container image. We train

three pairs of concealing and revealing networks to hide and retrieve their respective

secret images but hide the secret images in the same cover image, i.e., container =

cover + secret 1 + secret 2 + secret 3. The overall procedure is depicted in Fig. 6.9, and

117



CHAPTER 6. MEDIA AUTHORSHIP PROOF

Figure 6.10: Container image frequency analysis results. Rosin’s frequency distribution
almost aligns with that of cover images, while others have a significantly more high-
frequency spectrum.

quantitative results are provided in Table 6.4. From our observations, the retrieval

performance is reasonably good for all three recipients without revealing the wrong

secrets. Besides, we use these three revealing networks to retrieve secret images in a

clean image. All three networks yield null images, demonstrating that they can easily

distinguish between the container and cover images.

Frequency Distribution: We then compute the averaged Azimuthal Integral (AI) [85]

values of different images involved in our method to explore their frequency properties. In

brief, Azimuthal Integral returns the relative frequency intensity distribution spectrum,

where the intensity begins with the highest value at the lowest frequency and decreases

as the frequency increases. The outcomes are plotted in Fig. 6.10 and Fig. 6.11. We also

present other methods’ AI values for comparison.

From Fig. 6.10, we observed that the frequency distribution of our container images

almost aligns with that of the cover images, only slightly rising in the distribution’s tails.

On the contrary, the frequency distribution of HiNet, DDH and UDH container images

obviously has a more high-frequency spectrum. It is because the convolutional neural

network (CNNs) used in learning-based methods tend to have an abnormal distribution

in their high-frequency domain [34, 85]. Besides, high-frequency contents in images are

generally invisible to human observers [124], making learning-based methods tend to

embed the secret image into the high-frequency components of the container image to

achieve high imperceptibility. However, high-frequency hiding leads the embedded secret

image less robust [29, 37] and susceptible to image distortions aimed at the frequency

domain, such as JPEG compression. Our method relies less on high-frequency, as it
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Figure 6.11: Secret image frequency analysis results. The original and Rosin’s revealed
secret image’s frequency distributions are almost perfectly aligned in most frequency
domains but slightly differ in the high-frequency.

embeds the secret representation rather than the entire secret image and only embeds it

into the identity feature. This advantage makes our method more robust.

The original and revealed secret images’ frequency distributions in Fig. 6.11 are

almost perfectly aligned in most frequency domains but still slightly differ in the high-

frequency domain. While this phenomenon is also due to the abnormal high-frequency

problem of CNNs, we consider these minor differences acceptable, considering the previ-

ous experimental results.

6.5 Conclusion and Discussion

Although imperceptibility and capacity are critical metrics of image steganography, over-

looking robustness renders existing image steganography methods inapplicable in the

real world. Current solutions to enhance these methods’ robustness are often limited to

specific distortions and may also compromise other essential metrics. This study presents

Rosin, a new learning-based image steganography framework that exploits the stability

of identity features to improve robustness against various image distortions. Experi-

mental results confirm that Rosin exhibits exceptional robustness while maintaining

comparable imperceptibility and fidelity with SOTA methods. We firmly believe that

Rosin strikes a balanced trade-off between robustness and other key metrics, thereby

extending the practicality of image steganography in real-world applications. Moreover,

our innovative semantic image-hiding method paves the way for a new research direction,

promising further advancements in image steganography.
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7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

The work presented in this thesis addressed the security and privacy threats arising from

applying novel learning-based techniques to image data. Two prominent threats were

primarily tackled: Surveillance and Tracking, and Malicious Forgery and Tampering. By

developing novel techniques and methodologies, this work effectively solved the above

threats from the following aspects: Sensitive information sanitization, Forgery detection,

Authenticity protection, and Authorship proof.

We proposed a novel approach for semantically sanitizing sensitive information

in the latent space of neural networks to protect against privacy breaches, striking

a balance between privacy protection and utility preservation. We moved away from

the traditional artifact-based detection methods and introduced a unique framework

for proactive forgery media detection, leveraging face identity feature watermarking.

To defend against malicious tampering on images, we develop a novel learning-based

semi-fragile image watermark for pixel-level authentication. Finally, to establish reliable

authorship and combat plagiarism and copyright infringement, we designed a robust

image-hiding method that utilized semantic information in images.

Each contribution made in this thesis showcased the potential of learning-based

techniques in securing image data against malicious threats. The findings not only

expanded our understanding of the challenges posed by learning-based methods but also

provided innovative solutions to enhance the security and privacy of image data.
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By addressing these threats and introducing novel methodologies, this research

has advanced the field’s knowledge and contributed to developing practical strategies

for protecting image data. The outcomes of this work demonstrate the importance of

considering security and privacy implications in applying learning-based techniques to

image data, and offer insights into the potential future directions for further research in

this area.

7.2 Future work

Looking ahead, several potential directions for future research emerged from this work.

Firstly, as learning-based techniques continue to evolve, the solutions proposed in this

thesis should be regularly re-evaluated and enhanced to maintain their effectiveness.

The continuous development of more sophisticated malicious techniques necessitates an

ongoing commitment to updating and improving our methods.

Secondly, the scope of our research primarily revolved around image data. However,

similar threats exist for other forms of media, such as video and audio data. Extending

the proposed solutions to these domains would be an essential step in broadening the

effectiveness of our methods.

Thirdly, this work focused on individual solutions for each threat. There may be

value in investigating a more integrated approach that can address multiple threats

simultaneously. Such a unified model could potentially offer greater efficiency and more

robust protection against learning-based threats.

Lastly, while this thesis has primarily addressed the technical aspects of the threats,

future research could also explore the legal and ethical dimensions. For instance, investi-

gating how legal frameworks could support technical solutions, or examining the ethical

implications of using such technologies.

By pursuing these directions, we can continue to advance our defence against learning-

based threats, ensuring the security and privacy of media content in an increasingly

digital world.
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