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A B S T R A C T   

Background: Seismic signals record earthquakes and also noise from different sources. The influence of noise 
makes it difficult to interpret seismograph signals correctly. This study aims to develop a computationally 
lightweight, accurate, and explainable machine learning model for the automated detection of seismogram 
signals that could serve as an effective warning system for earthquake prediction. 
Material and method: We developed a handcrafted model for earthquake detection using a balanced dataset of 5001 
earthquakes and 5001 non-earthquake signal samples. The model included multilevel feature extraction, selector- 
based feature selection, classification, and post-processing. Input signals were decomposed using tunable Q wave 
transform and fed to a statistical and textural feature extractor based on the most complicated lock pattern (MCLP). 
Four feature selectors were used to choose the most valuable features for the support vector machine classifier. 
Additionally, voted vectors were generated using iterative hard majority voting. Finally, the best model was chosen 
using a greedy algorithm. 
Results: The presented self-organized MCLP-based feature engineering model yielded 96.82% classification ac
curacy with 10-fold cross-validation using the seismic signal dataset. 
Conclusions: Our model attained high seismological signal detection performance comparable with more 
computationally expensive deep learning models. Our handcrafted explainable feature engineering model is 
computationally less expensive and can be easily implemented. Furthermore, we have introduced a competitive 
feature engineering model to the deep learning models for the seismic signal classification model.  
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1. Introduction 

An earthquake is the result of geological movements of the Earth’s 
tectonic plates, which induce a sudden release of energy through to its 
crust (Bolton, Shreedharan, Rivière, & Marone, 2020; Wald, 2020). This 
generates seismic waves that spread across the Earth’s surface; the two 
main types being P and S waves (Saraf, Rawat, Choudhury, Dasgupta, & 
Das, 2009). While the waves’ point of origin localizes the earthquake’s 
source, its intensity is determined by the area extent of underground 
shaking that eventually breaches the ground surface (An, Tao, Jiang, & 
Yan, 2021; Z. Li, Meier, Hauksson, Zhan, & Andrews, 2018), as well as 
earthquake depth (Eftekhari, Samadzadegan, & Javan, 2023), defined as 
the distance between the point of energy origin and its arrival at the 
Earth’s surface (Rost, Earle, Shearer, Frost, & Selby, 2015). The envi
ronmental impact of an earthquake can be qualitatively assessed using 
the widely known Richter scale (Pavel, 2021)–a scale of 8 or greater 
denotes a destructive earthquake–while the magnitude of the mechan
ical effect can be more precisely quantified using seismographs, which 
can detect earthquakes of scale 2.5 or less that are otherwise usually not 
felt (van der Meijde, Pail, Bingham, & Floberghagen, 2015). 

Seismographs continuously record the magnitude, duration, timing 
and center of ground seismic waves (Wang, DeGrandpre, Lu, & Frey
mueller, 2018), and may be used in early warning systems to forecast 
major earthquakes (Bolton et al., 2020). However, there are some lim
itations (Wald, 2020). Other than earthquakes, seismic waves can be 
generated by environmental events as well as human activities (Z. Li 
et al., 2018), e.g., volcanic eruptions, underground chemical explosions, 
helicopters, trains, traffic, etc. (Mandal & Maiti, 2015). These non- 
earthquake seismic signals are also captured on seismograms, which 
causes significant data pollution, rendering it difficult to analyze ground 
activity for earthquake prediction. For effective prediction, earthquake 
and non-earthquake signals must be separated timeously, which can be 
demanding with manual methods (Malfante et al., 2018). Artificial 
intelligence-enabled automatic signal classification, which has been 
actively applied in many fields, e.g., healthcare (Tasci et al., 2023), 

offers a potential solution for the efficient analysis of dense seismogram 
signals. In this paper, we report a novel machine learning-based model 
for automated binary classification of seismogram signals into earth
quake versus non-earthquake signal categories, which has attained >
96% classification accuracy when trained on a public three-channel 
seismogram dataset (Magrini, Jozinović, Cammarano, Michelini, & 
Boschi, 2020). 

1.1. Literature review 

We performed a nonsystematic review of recent publications of 
machine learning approaches for the automated classification of seis
mographic data (Table 1). Most of the methods are based on deep 
learning, which can be computationally complex and expensive. Even 
so, many deep models attained only modest classification accuracy. 
Further, none of these models used explainable artificial intelligence 
(XAI), which can potentially garner wider acceptance by improving 
model interpretability (Loh et al., 2022). 

1.2. Motivation and our model 

We aimed to develop a computationally lightweight, accurate, and 
explainable machine learning model for the automated classification of 
seismogram signals that could serve as an effective warning system for 
earthquake prediction. Generally, machine learning-based systems can 
efficiently use data to solve nondeterministic polynomial problems, but 
only by incorporating XAI can the user be better equipped to understand 
how the model learns from the data. For this work, we used a seismo
gram dataset comprising three channels (X, Y, and Z) and have devel
oped a handcrafted explainable feature engineering (XFE) model for 
earthquake detection using seismogram signals that could explain the 
individual as well as combined channel effects for earthquake predic
tion. Handcrafted feature generators focus on improving model perfor
mance by capturing relevant information, while handcrafted XFE is 
employed toexplain the model’s predictions. In other words, 

Table 1 
Summary of machine learning methods for earthquake detection.  

Paper Method Dataset Key points and limitations 

Otovic et al., 2022 (Otović et al., 
2022) 

Custom-designed convolutional neural 
network (CNN) (ConvNetQuake) 

Len-DB (Magrini et al., 
2020) 

Earthquake magnitude determination; 86:14 holdout validation; high 
time complexity; relatively low accuracy 

Magrini et al., 2020 (Magrini et al., 
2020) 

Custom designed CNN Len-DB (Magrini et al., 
2020) 

Earthquake/noise detection; 71:21.5:7.5 holdout validation; 96.7% 
(training), 95.3% (validation), 93.2% (test) accuracies; high time 
complexity 

Majstorović et al., 2021 
(Majstorović, Giffard-Roisin, 
& Poli, 2021) 

Custom designed CNN Own dataset Earthquake/noise detection (stage 1) and earthquake characterization 
(stage 2); 80:10:10 holdout validation; 97% (stage 1) and 68% (stage 2) 
accuracies; high time complexity 

Kong et al., 2021 (Kong et al., 
2021) 

Autoencoder-based feature extraction; 
CNN 

Len-DB (Magrini et al., 
2020) 

Earthquake/noise detection; >90% accuracy; high time complexity 

Mousavi and Beroza, 2019 ( 
Mousavi & Beroza, 2020) 

CNN; long short term memory STEAD (Mousavi, 
Sheng, Zhu, & Beroza, 
2019) 

Earthquake magnitude determination; 70:10:20 holdout validation; high 
time complexity 

Zhu et al., 2022 (Zhu, Tai, 
Mousavi, Bailis, & Beroza, 2022) 

Custom-designed CNN (EQNet) STEAD (Mousavi 
et al., 2019) 

P and S picking determination and earthquake time detection; cross- 
validation strategy; good P and S wave arrival detection; high time 
complexity 

Saad et al., 2022 (Saad et al., 2022) Short-time frequency transform; 
unsupervised deep learning; attention 
networks 

STEAD (Mousavi 
et al., 2019) 

Data denoising process on single-channel earthquake data; signal-to- 
noise ratio 1.95 dB; high time complexity; threshold difficulty in 
obtaining the appropriate binary mask 

Li et al., 2022 (W. Li et al., 2022) Custom-designed CNN based on 
residual network (1D ResNet34) 

SCEDC (Hafner & 
Clayton, 2001) 

P wave, S wave and noise classification; 50:25:25 holdout validation; 
98.70% accuracy; high time complexity 

Jozinović et al. (Jozinović, 
Lomax, Štajduhar, & Michelini, 
2020) 

Custom designed CNN Own dataset Earthquake/noise detection; high-time complexity 

Kavianpour et al. (Kavianpour, 
Kavianpour, Jahani, & 
Ramezani, 2021) 

CNN, Bi-directional long-short-term 
memory 

Own dataset Earthquake magnitude prediction, 80:20, RMSE: 0.0982, high time 
complexity 

Meier et al. (Meier et al., 2019) Custom-designed CNN, a generative 
adversarial network 

SCSN data Precision: 99.50, recall: 99.30, Accuracy: 99.50 

CNN, convolutional neural network; Len-DB, Local Earthquakes and Noise DataBas; SCEDC, The Southern California Earthquake Data Center; STEAD, STanford 
EArthquake Dataset; SCSN, Southern California Seismic Network. 
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handcrafted XFE is a subset of handcrafted feature generation, requiring 
the features to be interpretable and explainable. In this context, our 
framework comprised the following components: hybrid multilevel 
feature extraction based on tunable Q wave transform (TQWT) signal 
decomposition (Selesnick, 2011) combined with statistical and–using a 
novel most complicated lock pattern (MCLP)–textural feature extrac
tion; feature selection using multiple feature selectors; classification 
using support vector machine (SVM) (Vapnik, 1998); and post- 
processing to obtain best-voted results using iterative hard majority 
voting (IHMV) (Dogan et al., 2021). 

1.3. Theoretical background 

Deep learning models for analyzing seismographic data have expo
nential computational complexity (Ghanbari & Antoniades, 2022; Lv, 
Chen, Dou, & Plaza, 2022; Qing et al., 2022; Xiu et al., 2023); feature 
engineering models generally possess linear complexity and are 
computationally more efficient and less costly (Wei et al., 2022). 
However, handcrafted feature generators cannot extract features at high 
levels for accurate prediction. To resolve this, multilevel deep feature 
extraction can be simulated using signal decomposition techniques to 
transform the seismogram signal into wavelet bands and input the 
decomposed wavelet band (plus raw seismogram signal) into down
stream feature extractors, where both statistical and textural features 
can be extracted in parallel. The former involves the calculation of 
standard statistical moments from the input signals. For the latter, we 
were inspired by the popular MCLP–one of the best-submitted solutions 
for the Summer of Math Exposition (Zye, 2021) –to build a novel textural 
feature extractor using MCLP-generated directed graphs. The basic 
premise of MCLP involves finding the most complicated path for 
unlocking an Android mobile phone (as determined by preset rules) that 
joins all the 3 × 3 dots on the opening screen; the problem is general
izable to larger square or even rectangular dot matrixes (Zye, 2021). In 
this work, we used a MCLP based on a 3 × 3 dot matrix and a statistical 
feature generator to extract multiple textural and statistical features, 
respectively, from each input seismogram signal and its TQWT- 
decomposed wavelet bands. To reduce redundant features, four 
different feature selectors, each with its own unique attributes, were 
deployed downstream to select the most discriminative feature vectors. 
These were fed to a standard shallow SVM classifier for calculating 
prediction vectors, which were post-processed using IHMV to generate 
the best-voted prediction vectors. Finally, the relative contributions of 
the different seismic signal channels, either individually or in combi
nation, and feature selectors toward model performance were mapped 
out, yielding insights into the most valuable input signals and model 
components, enhancing model interpretability and potentially facili
tates model optimization. 

1.4. Innovations and contributions 

Innovations (novelties) and contributions of this research are clar
rified below. 

Innovation:  

- MCLP is an information security theorem. We have used this pattern 
to generate a new generation feature creation function.  

- A novel self-organized XFE model has been introduced using the 
recommended MCLP feature extractor, TQWT (it has been used to 
generated features at frequency domain), four feature selector, SVM 
and IHMV. 

Contributions:  

- Proposed a novel MCLP-based feature engineering method 
combining signal decomposition, statistical feature extraction, mul
tiple feature selectors, SVM, IHMV, and XFE with building a para
metric network for self-organized automated classification of seismic 
signals. Our model analyzed seismic signals channel-wise and pre
sented the most valuable channel for this problem. Furthermore, we 
have explained the most informative features, bands, feature selec
tion function and SVM kernel for solving this seismic signal classi
fication problem. 

- Our presented MCLP-based XFE attained is a lightweight (computa
tionally efficient) classification model.  

- Attained higher performance than the state-of-the-art techniques 
developed for discriminating earthquake seismic signals. 

1.5. Organization 

The rest of the study is organized as follows. Section 2 describes the 
data used and methods employed. Section 3 reports the results obtained 
using the developed model. The obtained results are discussed in Section 
4, and also the results are compared with the other reported results using 
similar datasets. Also, the highlights and limitations of the developed 
model are presented in this section. Finally, conclusions are given in 
Section 5. 

2. Materials and methods 

2.1. Dataset 

From a public dataset (Magrini et al., 2020) containing three-channel 
(X, Y and Z) seismogram signals, each of length 27 s with sampling 
frequency 20 Hz, i.e., data length 540 (=27 × 20). We built a balanced 
dataset with > 10,000 observations by selecting the first 5001 earth
quakes and the first 5001 non-earthquake seismogram signals (Fig. 1). 

2.2. Proposed model 

Our handcrafted model comprising four phases–multilevel feature 
extraction, multiple selector-based feature selection, classification, and 
post-processing (Fig. 2) –possessed linear time complexity and is thus 
less computationally demanding than deep learning models. The indi
vidual channel-wise seismogram signals–X, Y, and Z–and a concatenated 
signal obtained by merging all three channel signals were input into the 
model. First, each input signal would undergo TQWT decomposition 
into eight wavelet bands. The latter and the raw input signal would be 
fed to statistical and MCLP-based textural feature extractor functions to 
generate four feature vectors, which were merged to obtain a fifth 
feature vector. All five feature vectors were fed to four feature selec
tors–neighborhood component analysis (NCA) (Goldberger, Hinton, 
Roweis, & Salakhutdinov, 2004), ReliefF (Robnik-Šikonja & Kononenko, 
2003), minimum redundancy maximum relevance (mRMR) (Radovic, 
Ghalwash, Filipovic, & Obradovic, 2017), and Chi2 (Liu & Setiono, 
1995)–to generate a total of 20 (=5 × 4) selected feature vectors con
taining the most valuable features, which were fed to a standard shallow 
SVM classifier to calculate the respective 20 predicted vectors. The latter 
were post-processed using IHMV (Dogan et al., 2021) to generate an 
additional 18 voted vectors. From the 38 combined predicted and voted 
vectors, a greedy algorithm was applied to select the most accurate final 
result. Details of each phase are explained in the following subsections. 

2.2.1. Signal decomposition 
In this paper, the TQWT method is used for signal decomposition. 

TQWT (Selesnick, 2011) is a decomposition method frequently used in 
the literature on signal processing. TQWT is a bandwidth-adjustable 
approach that can analyze over multiple scales and frequency ranges. 
This method separates features in a specific frequency range and iden
tifies similarities or differences between signals. In addition, the tunable 

S. Gokhan Ozkaya et al.                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 118 (2023) 103297

4

Fig. 1. Examples of non-earthquake (noise) and earthquake seismograms belonging to the three signal channels.  

Fig. 2. Schema of the proposed explainable feature engineering model. **f, feature vector; p, predicted vector; s: selected feature vector; v, voted vector; w, 
wavelet band. 
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nature of TQWT decomposes the signals into different frequency 
components. 

The TQWT method uses wavelet oscillations (Q), reduction coeffi
cient (r), and the number of levels (J) tuning parameters to obtain 
multilevel wavelet transforms. In this study, eight wavelet bands were 
obtained using the TQWT method. Various features were extracted from 
these sub-bands. 

2.2.2. Feature extraction 
The input seismogram signal (i.e., Channel X, Y, or Z, or concate

nated signal of all three channels) was decomposed using TQWT to 
generate eight wavelet bands. These, decomposed signals with raw 
signals were fed to statistical and MCLP-based textural feature extrac
tors. The former calculated 14 statistical moments (minimum, 
maximum, average, median, standard deviation, mean absolute devia
tion, energy, wavelet entropy, information entropy, Tsallis entropy, sure 
entropy, Renyi entropy, log entropy, and threshold entropy), generating 
14 statistical features (Kuncan, Yılmaz, & Kuncan, 2019). MCLP, a new 
local binary pattern-like textural feature extractor, created another 256 
features. Accordingly, 270 features were extracted in total for every one 
of the eight decomposed wavelet bands or raw input, i.e., the length of 
each of the four feature vectors corresponding to Channel X, Y, Z and the 
concatenated signal was 2430 (= (256 + 14) × (8 + 1)). Finally, the four 
vectors were concatenated to form a fifth feature vector of length 9720 
(=2430 × 4) (Fig. 3). 

The steps involved in feature extraction are detailed below. 
Step 1: Create four signals from the channel-wise seismogram signals 

and the concatenated signal resulting from merging all three channels. 

c1(j) = signal(j, 1), j ∈ {1, 2,⋯, L}

c2(j) = signal(j, 2)

c3(j) = signal(j, 3)

c4(j+L× (t − 1) ) = signal(j, t), t ∈ {1, 2, 3} (1)  

where c1, c2, c3 and c4 represent channel ×, channel y, channel z and the 
merged channel signal, respectively; and L, the length of each channel. 

Step 2: Apply TQWT to each signal to calculate wavelet bands. 

wki = τ
(
ck, 1, 3, 7

)
, k ∈ {1, 2, 3, 4}, i ∈ {1, 2,⋯, 8} (2)  

where w represents the wavelet band; and τ, TQWT. 
Step 3: Extract features by deploying signals, wavelet bands, and the 

used feature extractors. 

xk1 = ϖ
(
ζ
(
ck
)
,ψ

(
ck
) )

, k ∈ {1, 2, 3}

xki+1 = ϖ
(
ζ
(
wki

)
,ψ

(
wki

) )
, i ∈ {1, 2,⋯, 8}

f k = ϖ
(
xk1, x

k
2,⋯, xk9

)
(3)  

where x represents extracted features (with the length of 270 (=256 +
14)); ϖ(.), merging function; ζ(.), statistical feature generator (the 14 
calculated moments are listed above); and ψ(.), MCLP function used for 
textural feature extraction (Fig. 4). 

The steps involved in MCLP-based textural feature extraction are 
detailed below. 

Step 3.1: Load the signal. 
Step 3.2: Create an overlapping block of length 9. 
Step 3.3: Apply vector2matrix transformation to each overlapping 

block to create 3 × 3 matrixes, on which the MCLP is applied. 
Step 3.4: Apply the MCLP-directed graph (Fig. 5) for textural feature 

extraction. 
Using signum function as a binary feature extraction kernel, eight 

bits were extracted sequentially according to the eight numbered 

directed edges (Fig. 5), as defined below. 
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

b1
b2
b3
b4
b5
b6
b7
b8

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= δ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

m1,1,m3,2
m3,2,m1,3
m1,3,m2,2
m2,2,m1,2
m1,2,m2,3
m2,3,m3,1
m3,1,m3,3
m3,3,m2,1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)  

δ(x, y) =
{

0, x − y < 0
1, x − y ≥ 0 (5)  

where δ(.) represents the signum function, which takes two parameters 
(x, y); m, the matrix of size 3 × 3; and b, generated bits. In the MCLP 
transformation, 8 bits were extracted per signal block. 

Step 3.5: Generate map signal. 

map(h) =
∑8

i=1
bi × 28− i, h ∈ {1, 2,⋯,L − 8} (6)  

where map represents the map signal, which is coded with eight bits. 
Step 3.6: Extract the histogram of the map to generate 

Fig. 3. Schema of the feature extraction method. **f, feature vector; w, wavelet 
band; x, merged textural and statistical features extracted from raw seismogram 
or individual wavelet band. 
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ft = ψ(map) (7)  

where ft represents a feature vector with length 256 (=28); and ψ(.), 
histogram extraction function. Steps 3.1 to 3.6 define the MCLP feature 
extraction procedure. 

Step 4: Concatenate the four feature vectors f1, f2, f3, f4 (each of 
length 2430), into a fifth feature vector of length 9720. 

f 5 = ϖ(f 1, f 2, f 3, f 4) (8)  

where f5 is merged feature vector and ϖ() defines the feature concate
nation function. 

2.2.3. Multiple selector-based feature selection 
Four feature selectors with unique selection attributes were used in 

parallel (Fig. 2). NCA and ReliefF are distance-based selectors that 
generate positive weights and positive plus negative weights, respec
tively, which are used to select the most informative features. Chi2- 
based selectors use the linear statistical moment, Chi2, to efficiently 
select the most linear features. mRMR uses information entropy and the 
maximum information difference to select the most valuable features. 
Applying these four feature selectors to the four extracted features plus 

the fifth merged feature vector, 20 (=4 × 5) selected feature vectors 
were calculated, each of which was empirically fixed at a length of 270 
since our model generated 270 features from each input (raw signal or 
wavelet band). The steps of feature selection are detailed below. 

Step 5: Apply the four feature selection methods to the five gener
ated feature vectors to calculate 20 index vectors. 

idg = fsh
(
f k, y

)
, h ∈ {1, 2, 3, 4}, k ∈ {1, 2,⋯, 5}, g ∈ {1, 2,⋯, 20} (9)  

where fsh represents the hth feature selection function; idg, the gth sorted/ 
qualified index. 

Step 6: Choose the 270 most informative 270 features from each 
feature vector using the calculated sorted indexes. 

sg(d, r) = f k(d, idg(r) ), d ∈ {1, 2,⋯,NoS}, r ∈ {1, 2,⋯, 270} (10)  

where s represents the selected feature; and NoS, the number of signals. 

2.2.4. Classification 
We used a cubic SVM classifier (3rd-degree polynomial kernel) with 

10-fold cross-validation to calculate one predicted vector from each of 
the 20 selected feature vectors. 

Step 7: Classify the selected features by deploying cubic SVM. 

pg = SVM(sg, y) (11)  

where p represents predicted vector; and SVM(.), SVM classifier func
tion. 

2.2.5. Post-processing 
We applied IHMV on the 20 predicted vectors to generate another 18 

voted vectors using the mode function and a loop range of 3 to 20. After 
that, a greedy algorithm was applied to select the best result among all 
38 vectors. The greedy algorithm is often used in optimization methods 
to choose the best result (Lu, Liu, Zhang, & Yin, 2022). Our model 
generates more than one result and the greedy algorithm has been used 
to select the best result. 

Step 8: Generate voted vectors using the IHMV algorithm. 

accg = ϕ(pg, y)

ind = argmax(acc)

vh− 2 = ψ
(
pind(1), pind(2),⋯, pind(h)

)
, h ∈ {3, 4,⋯, 20} (12)  

where acc represents classification accuracy; ϕ(.), accuracy calculation 
function; ind, sorted indexes per descending order of accuracy; ψ(.), 
represents mode function; and v, voted vector. 18 (=20–3 + 1) voted 
vectors were generated using equation (12). 

Step 9: Choose the most accurate predicted label vector by applying 

Fig. 4. Block diagram of MCLP-based feature extraction. MCLP is a directed graph used to transform each overlapping signal block (of length 9) into a map from 
which textural features were generated using histogram extraction. 

Fig. 5. Directed graph with eight directed edges (enumerated in red) used in 
our model. This is one of 37 unique most complicated lock patterns for a 3 × 3 
matrix [36, 37]. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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the greedy algorithm. 

accg = ϕ(pg, y)

accg+t = ϕ(vt, y), t ∈ {1, 2,⋯, 18}

idx = argmax(acc)

fp =
{
pidx, idx ≤ 20
vidx− 20, idx > 20 (13)  

where idx represents an index of the most accurate vector, and fp is the 
final predicted vector. The above nine steps define our proposed MCLP- 
based seismogram signal classification model. 

3. Results 

The parametric handcrafted feature engineering model was imple
mented in MATLAB (2022a) programming environment on a personal 
computer without needing GPU. We used the feature selectors with 
default settings without optimization and chose cubic SVM, which 
outperformed other standard classifiers in the MATLAB classification 
learner toolkit during preliminary testing. Standard accuracy, sensi
tivity, and specificity metrics were used to evaluate model performance 
for binary classification of earthquake versus non-earthquake (noise) 
seismogram signals on this balanced dataset. The mathematical nota
tions of these parameters are given below (Powers, 2020). 

acc =
TN + TP

TP+ FN + TN + FP
(14)  

sen =
TP

TP+ FN
(15)  

spe =
TN

TN + FP
(16)  

where acc represents accuracy; sen, sensitivity; spe, specificity; TP, true 
positives; TN, true negatives; FP, false negatives; and FN, false positives. 

Among the 20 predicted (Numbers 1 to 20) plus 18 voted (Numbers 
21 to 38) vectors, the highest accuracy, sensitivity and specificity were 
observed in the 25th, 17th and 22nd vectors, respectively (Table 2). 

3.1. Explainable results 

We were able to analyze the non-voted results of the predicted 

vectors according to the used signals and feature selectors. The 20 pre
dicted vectors (Numbers 1 to 20) were read out from different combi
nations of signal inputs and feature selectors (the feature extraction and 
classifier were common to all). In comparison, the 18 voted vectors 
(Numbers 21 to 38) were iteratively voted using the mode function 
based on increasing numbers (minimum 3) of the top predicted vectors 
(Table 3). The best-performing non-voted predicted vector was Number 
17 (Table 2), generated by combining Merged features + NCA + SVM. 
The best overall result was the fifth voted vector (Number 25 in Table 2), 
which was chosen from among the top seven most accurate predicted 
vectors that had been calculated based on the following combinations of 
signal inputs and model components: (i) Merged features + NCA + SVM, 
(ii) Channel X  + NCA + SVM, (iii) Merged features + Chi2 + SVM, (iv) 
(X + Y + Z) + NCA + SVM, (v) Merged features + ReliefF + SVM, (vi) 
Channel X  + Chi2 + SVM and (vii) Channel Y + NCA + SVM. Three out 
of seven models use merged features, and four use NCA feature selectors. 

The most informative single channel was Channel X, which yielded 
93.41% ± 3.83% accuracy, whereas the most accurate overall result of 
94% ± 3.88% accuracy was attained by feeding the concatenated 
feature vector containing features extracted from all inputs (Fig. 6) to 
downstream feature selectors. The best and worst feature selectors were 
NCA and mRMR, which yielded general classification accuracies of 
95.64% ± 0.72% and 87.95% ± 0.54%, respectively (Fig. 7). 

After analyzing the relative contributions of raw input signals and 
their respective eight decomposed different wavelet bands (final 270 
selected features), we have observed that all had contributed to the final 
selection, and none was redundant (Fig. 8). 

The boxplots depict the corresponding minimum, first quartile, me
dian, third quartile, and maximum values, while the blue circles show 
the abnormal values per the Gaussian distributions. 

We have compared the relative contributions of textural versus sta
tistical features to model prediction and observed that the former 
constituted the vast majority of selected features used to calculate the 
non-voted predicted vectors (Fig. 9). We performed ablation studies 
where models using only MCLP-based or statistical features were 
compared with our hybrid approach to investigate the contribution of 
statistical features. Analyzing the features extracted from channels X, Y, 
and Z, we observed that although statistical features alone yielded the 
least accurate results, their addition to the model enhanced the accuracy 
of MCLP-generated features considerably (Fig. 10). 

4. Discussion 

We have trained and tested a novel handcrafted MCLP-based XFE 
framework for detecting earthquake versus noise on a balanced dataset 

Table 2 
Performance metrics of the predicted and voted vectors.  

No. Acc (%) Sen (%) Spe (%) No. Acc (%) Sen (%) Spe (%) 

1  95.68 94.90  96.46 20 88.24 82.98 93.50 
2  95.34 94.02  96.66 21 96.86 95.86 97.86 
3  94.95 94.08  95.82 22 96.58 94.78 98.38 
4  87.68 82.76  92.60 23 96.83 95.76 97.90 
5  95.34 94.52  96.16 24 96.72 95.12 98.32 
6  94.79 93.38  96.20 25 96.89 95.80 97.98 
7  94.49 93.18  95.80 26 96.71 95.20 98.22 
8  87.54 82.56  92.52 27 96.75 95.52 97.98 
9  94.79 94.20  95.38 28 96.68 95.16 98.20 
10  94.79 93.28  96.30 29 96.75 95.50 98 
11  93.93 93  94.86 30 96.65 95.14 98.16 
12  87.51 82.66  92.36 31 96.71 95.44 97.98 
13  95.62 94.84  96.40 32 96.56 94.96 98.16 
14  92.58 89.72  95.44 33 96.53 95.08 97.98 
15  94.33 93.42  95.24 34 96.45 94.74 98.16 
16  88.75 83.44  94.06 35 96.42 94.90 97.94 
17  96.75 96.08  97.42 36 96.19 94.36 98.02 
18  95.63 94.20  97.06 37 96.25 94.56 97.94 
19  95.37 95.18  95.56 38 96 94 98 

**Acc, accuracy; Sen, sensitivity; Spe, specificity. 

Table 3 
Signal input and model components used to generate results.  

No Generation model No Generation model 

1 Channel X  + NCA + SVM 20 Merged features + mRMR + SVM 
2 Channel X  + Chi2 + SVM 21 Top 3 predicted vectors 
3 Channel X  + ReliefF + SVM 22 Top 4 predicted vectors 
4 Channel X  + mRMR + SVM 23 Top 5 predicted vectors 
5 Channel Y + NCA + SVM 24 Top 6 predicted vectors 
6 Channel Y + Chi2 + SVM 25 Top 7 predicted vectors 
7 Channel Y + ReliefF + SVM 26 Top 8 predicted vectors 
8 Channel Y + mRMR + SVM 27 Top 9 predicted vectors 
9 Channel Z + NCA + SVM 28 Top 10 predicted vectors 
10 Channel Z + Chi2 + SVM 29 Top 11 predicted vectors 
11 Channel Z + ReliefF + SVM 30 Top 12 predicted vectors 
12 Channel Z + mRMR + SVM 31 Top 13 predicted vectors 
13 (X + Y + Z) + NCA + SVM 32 Top 14 predicted vectors 
14 (X + Y + Z) + Chi2 + SVM 33 Top 15 predicted vectors 
15 (X + Y + Z) + ReliefF + SVM 34 Top 16 predicted vectors 
16 (X + Y + Z) + mRMR + SVM 35 Top 17 predicted vectors 
17 Merged features + NCA + SVM 36 Top 18 predicted vectors 
18 Merged features + Chi2 + SVM 37 Top 19 predicted vectors 
19 Merged features + ReliefF + SVM 38 All predicted vectors  
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that had been modified from a public seismogram signal database. The 
model is the first XAI model for earthquake detection, which facilitated 
the identification of the optimal model components: the most informa
tive single channel, feature extraction method, and feature selector were 
Channel X, MCLP-generated textural features, and NCA, respectively. As 
a result, our model attained excellent 96.75% and 96.89% classification 
accuracies using non-voted and voted vectors, respectively. 

In the classification phase, we used a cubic SVM classifier, which had 
been chosen after testing standard classifiers organized into eight cate
gories and various SVM subtypes on the MATLAB classification learner 
toolkit. As a result, SVM outperformed the other classifiers (Fig. 11A), 
and cubic SVM was evaluated to be the most accurate SVM subtype 
(Fig. 11B). 

4.1. Comparison with the literature 

Our handcrafted and computationally lightweight XFE model 
delivered classification performance commensurate with recently pub
lished deep models (Kong et al., 2021; Magrini et al., 2020; Majstorović 
et al., 2021) (Table 4). The other models used convolutional neural 

Fig. 6. Accuracies attained using various feature vectors.  

Fig. 7. Accuracies attained using different feature selectors.  

Fig. 8. Frequency distribution of selected features extracted from raw input 
signals (1) and the different wavelet bands (2 to 9) that contributed to the 20 
non-voted results. 

Fig. 9. Frequency distribution of textural and statistical features among the 20 
selected feature vectors. 

Fig. 10. Classification accuracies of MCLP-based textural and statistical feature 
ablation models compared with our hybrid textural and feature extrac
tion model. 
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networks (CNNs), which are inherently computationally complex. While 
Meier et al. (Meier et al., 2019) attained the highest precision and recall 
values, adding a generative adversarial network to CNN considerably 
compounded the model’s computation cost. Authors in (Kong et al., 
2021; Magrini et al., 2020; Majstorović et al., 2021) have employed 
holdout validations, we used 10-fold cross-validation to develop the 
model. Our results were obtained using the smallest dataset, a subset of 
the Len-DB database [18]; our model outperformed other models 
developed on the full Len-DB database [18, 20]. 

As shown in Table 4, the studies in the literature used deep learning 
models such as CNN. Although CNN-based methods produce high clas
sification results, the time cost is relatively high in these methods. On 
the other hand, our proposed MCLP-based framework is a lightweight 
method. Therefore, its time complexity is considerably lower than CNN. 
In addition, CNN-based methods have many layers, making the structure 
complex. But our method consists of classical machine learning steps: 
feature extraction, feature selection, and classification. Hence, we ob
tained good results using a simple, less complex model. 

4.2. Highlights and limitations 

We used MCLP to extract textural features from seismogram signals 
for earthquake detection. Our approach included multilevel hybrid 
statistical and MCLP-based feature extraction, feature vector concate
nation, multiple feature selectors, a shallow SVM classifier, and IHMV 
for result selection. Unlike “black box” deep learning models, the con
tributions of the various signal inputs to and model components in our 
parametric architecture were readily analyzable. From such analyses, 
we observed that while the most discriminative individual channel was 
Channel X, superior results were obtained by merging the signals of all 
three channels and merging the feature extraction readouts of the in
dividual and merged channels. Moreover, MCLP-generated textural 
features, the merging of feature vectors, and the NCA selector were 
demonstrated to be the most valuable features, feature generation 
method and feature selector, respectively. Hence, our model can be 
considered the first automated seismogram-based XAI model for earth
quake detection. Additionally, the model became fully self-organized 
using the greedy algorithm and IHMV method. Our model attained 
good classification performance commensurate with the literature at a 
linear computational cost. 

We used default classifier settings without hyperparameter optimi
zation, which potentially could have improved classification perfor
mance. We empirically elected to choose the most informative 270 
features across all four feature selectors. To improve classification per
formance, iterative versions of these selectors could have been deployed 
to calculate the selector-specific optimal numbers of the most discrim
inative features, but at the cost of multiplied time complexity burdens 
depending on the number of iterative runs. 

5. Conclusion 

Our earthquake detection model employed a novel XFE model using 
TQWT-based signal decomposition, hybrid statistical features, MCLP- 
based textural feature extraction, feature vector merging, multiple 
feature selectors, SVM classifier, IHMV, and a greedy algorithm for 
result selection. The model attained good binary earthquake versus non- 
earthquake signal classification on a public three-channel seismogram 
dataset commensurate with deep models but at a lower computational 
cost. Moreover, we have presented detailed classification results strati
fied by individual and merged channel signal inputs, raw input and 
decomposed wavelet bands, textural versus statistical features, 

Fig. 11. Evaluation of eight categories of classifiers (A) and six SVM subtypes 
(B) on MATLAB classification learner toolkit using the optimal selected feature 
vector obtained by inputting the merged feature vector to NCA selector. The 
classifier categories are decision tree (1), discriminant (2), linear regression (3), 
naïve Bayes (4), SVM (5), k-nearest neighbor (6), ensemble (7), and neural 
network (8); and the SVM subtypes are linear (i), quadratic (ii), cubic (iii), fine 
Gaussian (iv), medium Gaussian (v), and coarse Gaussian (vi). 

Table 4 
Comparison of our model with published earthquake detection models.  

Paper Method Dataset Validation Results 

Meier 2019 ( 
Meier et al., 
2019) 

CNN, generative 
adversarial 
network, random 
forest classifier 

Combined 
dataset 

Holdout CV 
(80:20) 

Pre 
99.5% 
Rec 
99.3% 

Magrini 2020 
(Magrini 
et al., 2020) 

Custom designed 
CNN 

Len-DB Holdout CV 
(71:21.5:7.5) 

Acc 
93.2% 

Majstorović 
2021 ( 
Majstorović 
et al., 2021) 

Custom designed 
CNN 

Own 
dataset 

Holdout CV 
(80:10:10) 

Acc 
97.0% 

Kong 2021 ( 
Kong et al., 
2021) 

Autoencoder-based 
feature extraction, 
CNN 

Len-DB Holdout CV 
(46:14:30) 

Acc 
90% 

Our method TQWT signal 
decomposition, 
MCLP and statistical 
feature extraction, 
multiple feature 
selectors, SVM, 
IHMV 

Subset of 
Len-DB 

10-fold CV Acc 
96.89% 
Sen 
96.08% 
Spe 
98.38% 

**CNN: convolutional neural network; CV: cross-validation. 
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individual and merged features vectors, and individual feature selectors. 
We demonstrated that MCLP-generated textural features (Fig. 9), 
merging of feature vectors (Fig. 6), and NCA selector (Fig. 7) contributed 
the most to predicted vector accuracy. Moreover, ablation studies 
demonstrated the statistical features added to MCLP-generated features 
enhanced the model accuracy considerably (Fig. 10). Unlike deep 
models that require tuning of millions of parameters, our handcrafted 
XFE model possesses linear time complexity and is computationally 
lightweight, which should enhance its ease of implementation and 
adoption among interested researchers/developers. 
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