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Abstract
In the field of nanoscience, the scanning electron microscope (SEM) is widely employed to visualize the surface topog-

raphy and composition of materials. In this study, we present a novel SEM image classification model called

NFSDense201, which incorporates several key components. Firstly, we propose a unique nested patch division approach

that divides each input image into four patches of varying dimensions. Secondly, we utilize DenseNet201, a deep neural

network pretrained on ImageNet1k, to extract 2920 deep features from the last fully connected and global average pooling

layers. Thirdly, we introduce an iterative neighborhood component analysis function to select the most discriminative

features from the merged feature vector, which is formed by concatenating the four feature vectors extracted per input

image. This process results in a final feature vector of optimal length 698. Lastly, we employ a standard shallow support

vector machine classifier to perform the actual classification. To evaluate the performance of NFSDense201, we conducted

experiments using a large public SEM image dataset. The dataset consists of 972, 162, 326, 4590, 3820, 3925, 4755, 181,

917, and 1624.jpeg images belonging to the following microstructural categories: ‘‘biological,’’ ‘‘fibers,’’ ‘‘film-coated

surfaces,’’ ‘‘MEMS devices and electrodes,’’ ‘‘nanowires,’’ ‘‘particles,’’ ‘‘pattern surfaces,’’ ‘‘porous sponge,’’ ‘‘powder,’’

and ‘‘tips,’’ respectively. For both four-class and ten-class classification tasks, we evaluated NFSDense201 using subsets of

the dataset containing 5080 and 21,272 images, respectively. The results demonstrate the superior performance of

NFSDense201, achieving a four-class classification accuracy rate of 99.53% and a ten-class classification accuracy rate of

97.09%. These accuracy rates compare favorably against previously published SEM image classification models. Addi-

tionally, we report the performance of NFSDense201 for each class in the dataset.
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1 Introduction

Nanoscience, a burgeoning research field focused on the

exploration of new materials and the characterization of

their microscopic properties, has witnessed remarkable

growth [1, 2]. This expansion has led to the development of

nano-sized particle imaging systems tailored for materials

science applications [3]. Among the various tools utilized

by scientists in this domain, the scanning electron micro-

scope (SEM) holds a prominent position, enabling the

visualization of surface topography and composition for

samples of interest [4, 5]. Conventionally, these acquired

SEM images are manually annotated by laboratory

scientists and subsequently archived in dedicated data

repositories [6]. Recognizing the need to facilitate the

sharing of the ever-increasing volume of SEM images, the

Nanoscience Foundries & Fine Analysis (NFFA)–EUR-

OPE project, a distributed research infrastructure spanning

Europe, has established the Information and Data Reposi-

tory Platform (IDRP) [7]. The IDRP serves as a centralized

entry point, ensuring harmonized data policies and facili-

tating access to SEM data for the scientific community [7].

For effective data sharing, the data must be findable,

accessible, interoperable, and reusable [8]. Consequently, it

becomes evident that automated classification of SEM

images, integrated into the data warehouse as a comple-

mentary curation function, is essential for the IDRP or any

other significant SEM dataset [6, 9].
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The proliferation of SEM images capturing various

types and sizes of composite materials has presented

challenges in their classification, prompting the application

of machine learning techniques [6, 10, 11]. In [11], deep

learning techniques were employed for nanoparticle

detection, while [10] utilized machine learning methods for

mineral classification. A U-Net method was adopted to

classify scanning electron microscopy-energy-dispersive

X-Ray spectroscopy (SEM–EDS) images, achieving an F1-

micro score of 88.32% across 12 classes. Ge et al. [12]

presented a deep learning model in a review paper that

leveraged the computer vision capabilities of convolutional

neural networks to extract morphology, distribution, and

intensity information from microscopic images. Modarres

et al. [9] explored transfer learning in a deep learning-

based SEM image classification model, utilizing four pre-

trained convolutional neural networks (Inception-slim,

Inception-v3, Inception-v4, and ResNet) from the Ima-

geNet1k dataset [13]. These networks were employed to

extract features from an SEM dataset comprising 18,577

images distributed across ten classes [6]. The Inception-v3

model achieved approximately 90% accuracy. Transfer

learning, in this context, involves fixing the pre-trained

initial layers of the convolutional neural networks and

training only the final few layers on the target dataset to

learn specific features. Consequently, feature extraction

becomes less computationally intensive compared to

training an entirely new network. Additionally, computer

vision techniques have gained widespread adoption for

automated image classification tasks in recent years [14]. In

[15], a multilayer perceptron with backpropagation training

algorithm was employed to automatically segment and

classify high-resolution micrographs of cast iron images for

non-destructive testing, yielding results comparable to

manual human visual classification. Similarly, in [16], a

‘‘bag of features’’ approach was utilized to construct

microstructural signatures for classifying 105 micrographs

of metallic materials based on similarity matching with

local image patterns, achieving an accuracy of 83%. The

success of computer vision techniques in automated

microstructural analysis has stimulated efforts to explore

their applicability in SEM image classification. Osenberg

et al. [17] introduced a feature engineering approach for the

classification of SEM images. They employed threshold-

based models to extract features and subsequently utilized

random forest (RF) classifiers to classify the selected fea-

tures. Their method achieved an impressive classification

accuracy of 94%. However, the authors did not provide a

comprehensive presentation of their results. In related

work, Han et al. [18] proposed a novel synthetic image

generation model. They further introduced an attention-

based convolutional neural network (CNN) architecture by

incorporating two pooling functions and multiplicative

operations. Moreover, they addressed the issue of vanish-

ing gradients by employing residual blocks. Their model

achieved a higher accuracy of 95% and was compared

against well-known CNN architectures such as MobileNet,

VGG16, and ResNet50. Nonetheless, the authors did not

explore the utilization of high-performing CNN models,

such as DenseNets or EfficientNets. Dahy et al. [19] pro-

posed a feature selection model utilizing a metaheuristic

optimization technique. They applied their feature selector

to the deep features extracted from SEM images. Unfor-

tunately, their model lacked novelty, as they solely focused

on evaluating the performance of their proposed feature

selector. Moreover, it is worth noting that metaheuristic

optimization-based feature selectors tend to exhibit high

time complexity. Scott- Fordsmand and Amorim’s paper,

[20], extensively discussed the profound impact of lever-

aging machine learning models for the automatic classifi-

cation of nanomaterials. The authors emphasized the

intrinsic significance of this field, as it directly influences

various aspects of human life. However, the paper lacked

the presentation of any proposed models or the provision of

classification results.

1.1 Motivation and the proposed model

SEM images play a crucial role in the field of material

sciences. To reduce classification costs, machine learning

models have gained popularity for automating the classi-

fication of SEM images [6, 10, 11]. In this study, we pro-

pose a feature engineering model that combines patch

division techniques inspired by computer vision approa-

ches [21] with transfer learning using a pre-trained con-

volutional neural network.

Traditional fixed-sized patch division models, such as

the vision transformer [21] and multilevel perceptron-

mixer [22], have demonstrated impressive classification

performance. However, their utility has been limited by the

high dimensionality of the extracted feature vectors. To

address this limitation, we introduce a novel nested patch

division method that divides input images into non-fixed

size patches. This approach reduces the number of patches

required to cover the entire image and enhances compu-

tational efficiency compared to standard fixed size patch

division methods.

Our inspiration for feature extraction stems from the

successes achieved by pre-trained convolutional neural

networks and patch-based models. However, standard

fixed-size patch-based models often impose significant

computational burdens. To mitigate this challenge, we

employ a nested patch division model that necessitates

fewer patches to encompass the entire input image.

Specifically, we utilize DenseNet201 as our feature gen-

erator, which is a 201-layer convolutional neural network
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pre-trained on ImageNet1K [13]. Accordingly, our pro-

posed model is named NFSDense201.

In our approach, we employ iterative neighborhood

component analysis (INCA) as the feature selector, fol-

lowed by a support vector machine (SVM) as the classifier.

This combination allows us to effectively extract discrim-

inative features from the merged feature vector obtained by

concatenating the features extracted from the nested pat-

ches. The SVM then performs the final classification task.

By integrating these components, our NFSDense201

model offers a comprehensive solution for SEM image

classification. The proposed nested patch division, feature

extraction using DenseNet201, and the combination of

INCA and SVM collectively contribute to the model’s

effectiveness in classifying SEM images.

1.2 Novelties and Contributions

The contributions of this work are outlined below, high-

lighting the key aspects of our approach:

• Local Image Feature Extraction: In computer vision,

fixed-size patches are commonly employed for extract-

ing local image features. However, this often leads to

high-dimensional feature vectors. To address this, we

introduce a novel nested patch division method,

enabling comprehensive coverage of the input image

with fewer non-fixed size patches. This approach

effectively reduces the dimensionality of the extracted

feature vectors while preserving the necessary

information.

• Transfer Learning with DenseNet201: Training image

classification models from scratch using unseen images

can be computationally demanding. In our study, we

leverage the pre-trained DenseNet201 architecture,

which was originally trained on the ImageNet1k dataset

[23]. By utilizing the already learned features in the

initial layers of DenseNet201, we focus on training the

last layers specifically for SEM image feature extrac-

tion. This strategy significantly reduces the training

time required for the model.

• Efficient Feature Selection with INCA: NFSDense201

generates redundant features due to the parallel extrac-

tion of features from multiple overlapping nested non-

fixed size patches. To address this issue, we employ

iterative neighborhood component analysis (INCA) to

efficiently filter out redundant features. This process

results in a highly condensed selected feature vector

that contains the most discriminative features [24]. By

iterating the feature selection function during the

learning process, we determine the optimal length of

the selected feature vector specific to our study dataset.

These contributions collectively make NFSDense201 a

highly efficient SEM image classification model. We val-

idate our model through extensive training and testing on a

large-scale SEM image dataset. Leveraging a standard

shallow support vector machine (SVM) classifier, our

model achieves excellent classification performance. These

results provide strong justification for our design decisions,

specifically incorporating the learning of non-fixed size

nested patches using a pre-trained deep network into our

SEM image classification model.

2 Dataset

The open-access SEM image dataset [6], comprising a total

of 21,272 images, was utilized in our study. These images

were previously annotated by domain experts and catego-

rized into ten distinct classes: ‘‘biological,’’ ‘‘fibers,’’

‘‘film-coated surfaces,’’ ‘‘MEMS devices and electrodes,’’

‘‘nanowires,’’ ‘‘particles,’’ ‘‘pattern surfaces,’’ ‘‘porous

sponge,’’ ‘‘powder,’’ and ‘‘tips,’’ encompassing 972, 162,

326, 4590, 3820, 3925, 4755, 181, 917, and 1624.jpeg

images, respectively. To ensure consistency, we uniformly

resized all images to dimensions of 1024 9 768 pixels.

3 NFSDense201 model for SEM image
classification

Our classification model comprised the following sequence

of operations: image resizing, nested patch division, hybrid

deep feature extraction, feature vector concatenation, fea-

ture selection, and classification (Fig. 1). The steps are

detailed as follows:

Step 1 Resize SEM image to 224 9 224 sized images.

Step 2 Apply nested patch division to resize images.

Step 3 Extract features by using two layers of the pre-

trained DenseNet201.

Step 4 Merge the generated feature vectors.

Step 5 Choose the best features by applying INCA.

Step 6 Classify the generated feature using SVM with a

75:25 split ratio.

Explanations of the individual steps are detailed in the

following subsections.

Figure 1 illustrates the architecture of the NFSDense201

SEM image classification model. The input image was

divided into four nested patches, each serving as a distinct

input to the pre-trained DenseNet201. Through the uti-

lization of the network’s global average pooling and fully

connected layers, two deep feature vectors were extracted

from each patch, resulting in a total of eight (= 4 9 2)
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feature vectors per input image. These feature vectors were

subsequently concatenated to form a merged feature vector.

To enhance discriminative power, the iterative neigh-

borhood component analysis (INCA) technique was

employed. INCA iteratively evaluated the loss value and

selected the most significant features during the learning

process. This iterative feature selection process enabled the

generation of a final feature vector of optimal length that

was specific to the dataset under consideration.

The resulting final feature vector was then fed into a

standard support vector machine (SVM) classifier for

classification. The SVM utilized the extracted features to

assign the input image to one of the predefined classes.

This sequential process of feature extraction, iterative

feature selection, and classification formed the core of the

NFSDense201 model’s functionality.

3.1 Feature extraction

To preprocess the SEM images from the dataset, a resizing

operation was performed, resulting in images of size

224 9 224, which aligns with the dimensions used in the

vision transformer [21]. This image size was also chosen as

the input dimension for the DenseNet201 model. A nested

patch division approach was employed to create four pat-

ches with incremental dimensions: 56 9 56, 112 9 112,

168 9 168, and 224 9 224 (the last patch being identical

to the input image) (refer to Fig. 2). Each patch was then

fed into the DenseNet201 model for inductive-based fea-

ture extraction.

The DenseNet201 architecture, which had been pre-

trained on the ImageNet1K database, containing approxi-

mately one million images across 1000 classes, was

utilized to extract local features from each patch. Specifi-

cally, the last fully connected layer (fc1000) and the global

average pooling layer (avg_pool) of the DenseNet201

network were employed to generate two deep feature

vectors of lengths 1000 and 1920, respectively. The global

features were extracted from the last patch, which was

identical to the input image, while the local features were

extracted from the first three smaller patches.

The resulting feature vectors from the four patches per

SEM image were concatenated to form a merged feature

vector with a length of 11,680 (= [1000 ? 1920] 9 4).

This merged feature vector captured the combined infor-

mation from the different patches. The steps involved in

this process are summarized as follows:

1. Perform image resizing to obtain images of size

224 9 224.

2. Utilize a nested patch division algorithm (Algorithm 1)

to create non-fixed size patches. The initial patch size

was fixed at 56 9 56, resulting in the generation of

four patches per input image (as shown in Fig. 2).

By following these steps, the input SEM images were

appropriately processed, and the necessary local and global

features were extracted using the DenseNet201 model.

Algorithm 1 depicted the presented nested patch division.

Fig. 1 Schema of the

NFSDense201 SEM image

classification model. Here, p:

patches, f: feature vectors
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3. Extract deep features using the fc1000 and global

avg_pool layers, respectively, of the pre-trained Den-

seNet201.where fvi represents the ith feature vector;

fð:Þ, fc1000 layer; .ð:Þ, global avg_pool layer; and

cð:; :Þ, merging function. From each patch, two deep

feature vectors of lengths 1000 and 1920 were gener-

ated using the fc1000 and global avg_pool layers of

DenseNet201. There were concatenated into a feature

vector of length 2920.

fvi ¼ c f ptchið Þ; . ptchið Þð Þ; i 2 f1; 2; . . .; 4g ð1Þ

4 Merge the four feature vectors generated from the four

patches to obtain one merged feature vector per input

image.

feat jþ 2920� i� 1ð Þð Þ ¼ fvi jð Þ; j 2 f1; 2; . . .; 2920g
ð2Þ

(a) Original image

(b) Patches with sizes of 56 × 56, 112 × 112, 168 × 168, and 224 × 224.

Fig. 2 Nested (non-fixed size)

patch division of a sample input

SEM image that had been

resized to 224 9 224 (top

panel). Defining the initializing

unit for patch division as 56,

four (= 224/56) non-fixed sized

patches that were centered on

the input image were created

with the following incremental

dimensions: 56 9 56,

112 9 112, 168 9 168, and

224 9 224 (bottom panel). The

fourth patch had the same

dimensions as the input image,

which allowed for global feature

extraction, in addition to local

feature extraction from the first

three smaller patches
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where feat represents the merged feature vector of

length 11,680 (= 2920 9 4).

3.2 Feature selection

The usage of overlapping nested patch-based feature

extraction inherently leads to the generation of redundant

features in the central region of the input image, as

depicted in Fig. 2. To address this issue, our proposed

model incorporates INCA, a straightforward yet highly

effective feature selection mechanism. INCA operates by

iteratively selecting the most discriminative features based

on computed loss values [24], thereby filtering out redun-

dant and non-informative features. In our experiments, we

set the parameters of INCA as follows: the iteration range

was defined from 500 to 1000, and the loss function cal-

culator employed was SVM. Remarkably, when applied to

our extensive study dataset consisting of 21,272 images,

INCA successfully generated a final feature vector of

optimal length 698.

3.3 Classification

For classification purposes, we employed cubic SVM, a

widely recognized and efficient shallow classifier [25, 26].

To evaluate the performance of our model, we adopted a

75:25 training-to-test split hold-out validation strategy. The

SVM parameters were configured as follows: the kernel

utilized was a third-degree polynomial function, the coding

scheme employed was one-vs-all, and the box-constraint

parameter was set to 1.

4 Experiment

In this section, we have presented our experimental results.

Moreover, we have defined two cases to get generalizable

results.

4.1 Setup

The SEM image dataset utilized in this study is publicly

available. Initially, the dataset was obtained by down-

loading it from the relevant source. Our model has been

implemented within the MATLAB (2021b) environment,

making use of a modestly configured personal computer

equipped with 16 gigabytes of main memory, a 1 terabyte

hard disk, a central processing unit operating at 3.60

gigahertz, and the Windows 11 operating system. To

facilitate our implementation, we acquired the pre-trained

DenseNet201 network. The proposed model was coded

using m files and functions. Furthermore, we employed the

MATLAB classification learner toolbox to generate the

SVM code. Moreover, our proposed NFS-DenseNet201

constitutes a parametric deep feature engineering model,

and the specific parameters employed are provided as

follows.

4.1.1 Deep feature extraction

We conducted fully connected and global average pooling

of the pre-trained DenseNet201. The DenseNet201 archi-

tecture was used with default settings. For feature extrac-

tion, we resized the images to dimensions of 224 9 224.

Additionally, we employed four nested patches with sizes

of 56 9 56, 112 9 112, 168 9 168, and 224 9 224.

4.1.2 Feature selection

INCA was utilized during the feature selection phase, and

the parameters of this selector are presented as follows. We

defined the iteration range from 500 to 1000, and the loss

function calculator employed was SVM. Notably, the

number of iterations of the NCA corresponds to half of the

total number of observations. By using a greedy algorithm,

the feature vector with the lowest misclassification rate.

4.1.3 Classification

To classify the selected features, we employed a 3rd-degree

polynomial order SVM. The settings of the classifier are as

follows: the kernel employed was a third-degree polyno-

mial function, the coding scheme utilized was one-vs-all,

the box-constraint parameter was set to 1 and validation is

75:25 split ratio.

4.2 Classification tasks

To evaluate the classification performance in a general

setting, we devised two distinct cases, each encompassing a

different number of classes. The specific details of these

cases are outlined as follows:

Case 1: In this case, we utilized a subset of the dataset

consisting of 5,080 SEM images. These images were

drawn from four categories: ‘‘fibers,’’ ‘‘nanowires,’’

‘‘porous sponge,’’ and ‘‘powder’’ (used for training and

testing).

Case 2: For this case, we employed the entire dataset,

comprising a total of 21,272 images spanning all ten

categories.

It is worth noting that the optimal number of features

selected by INCA in Case 2, namely 698, was applied to

both cases. This consistent feature selection approach
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allowed us to use the same set of 698 features to evaluate

the classification performance in both scenarios.

4.3 Model performance evaluation

The model’s performance was evaluated using standard

performance metrics [27, 28], namely accuracy, recall, and

precision. We calculated both class-wise and overall per-

formance metrics. The mathematical explanations of these

performance evaluation parameters are illustrated as

follows:

accuracy ¼ tpþ tn

tpþ tnþ fpþ fn
ð3Þ

recall ¼ tp

tpþ fn
ð4Þ

precision ¼ tp

tpþ fp
ð5Þ

f1 ¼ 2tp

2tpþ fnþ fp
ð6Þ

where tp, tp, fn, and fp represent the numbers of true

positives, true negatives, false negatives, and false posi-

tives, consecutively.

4.4 Results

For both Case 1 and Case 2, the performance of

NFSDense201 was truly remarkable, as demonstrated by

the excellent overall results presented in Table 1. Addi-

tionally, the class-wise classification performance, depicted

in Fig. 3, was commendable. In particular, NFSDense201

achieved a remarkable accuracy rate of 99.53% for the

four-class classification task, while obtaining a

respectable accuracy rate of 97.09% for the ten-class

classification task.

Regarding Case 1, the category-wise outcomes varied.

The ‘‘porous sponge’’ category exhibited a flawless per-

formance, achieving a perfect classification rate of 100%.

On the other hand, the ‘‘fibres’’ category, which constituted

the smallest group within the dataset, had a slightly lower

classification rate of 97.56%.

In the context of Case 2, the overall class-wise F1 scores

displayed a range of performance levels. The ‘‘particles’’

category showcased the highest F1 score of 98.03%, sig-

nifying a notable classification accuracy. Conversely, the

‘‘film-coated surfaces’’ category demonstrated a compara-

tively lower F1 score of 90.68%, indicating some room for

improvement.

Analyzing the overall class-wise recall for Case 2, it is

evident that the ‘‘powder’’ category performed exception-

ally well, achieving a recall rate of 98.96%. Conversely,

the ‘‘fibers’’ category exhibited a lower recall rate of

89.02%. It is worth noting that despite the relatively lower

recall rate for the ‘‘fibers’’ category, the precision was

remarkably high at 99.79% for Case 2. This implies that

while approximately 11% of the ‘‘fibers’’ images may have

been misclassified (as indicated by the recall rate of

89.02%), if an SEM image was classified as ‘‘fibers,’’ it

Table 1 Overall classification performances of NFSDense201

Performance metrics Case 1 Case 2

Accuracy (%) 99.53 97.09

Overall precision (%) 99.01 96.90

Overall recall (%) 99.18 95.62

Overall F1 (%) 99.09 96.23

(a) Case 1

(b) Case 2

Fig. 3 Class-wise recall, precision, and F1 scores of NFSDense201

for Case 1 (a) and Case 2 (b)
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was highly likely to be correct, considering the signifi-

cantly high precision rate.

5 Discussion

NFSDense201 introduces a novel approach to feature

generation by leveraging the last fc1000 and global avg_-

pool layers of the pre-trained DenseNet201. This model

aims to extract deep features from non-fixed size patches of

incremental dimensions obtained through a unique nested

patch division technique applied to resized input SEM

images. By incorporating an identical patch that matches

the input image, the model efficiently generates compre-

hensive global and local features. To address feature

redundancy resulting from overlapping nested patches

centered around the image, we employ INCA feature

selection. Through this process, we identify an optimal

feature vector length of 698 for the study dataset. For

classification, we utilize a standard shallow cubic SVM

with a 75:25 split. Our NFSDense201 model achieves

remarkable accuracy rates of 99.53% for Case 1 and

97.09% for Case 2.

In conducting a nonsystematic review of existing mod-

els for SEM image classification (see Table 2), we find that

the NFSDense201 model outperforms its counterparts.

Notably, our model utilizes the largest SEM image dataset

to date. We specifically compare our results to those of

Kavuran et al. [29] who employed transfer learning, feature

reduction with metaheuristic optimization, and an SVM

classifier for a four-class Case 1 classification task using

the same dataset. Interestingly, their optimized model

achieved a similar classification accuracy of 99.30% [29],

despite our model not utilizing any optimization method. In

a separate study, Li et al. [30] proposed deep and machine

learning models for classifying minerals in microscopic

images into 13 categories. While their end-to-end deep

learning model achieved the highest F1 score of 92% [30],

it incurred substantial time complexity. In contrast, our

NFSDense201 model, based on transfer learning, achieves

excellent classification results with minimal time costs.

Furthermore, Leracitano et al. [31] obtained an accuracy of

Table 2 State-of-the-art SEM image classification methods

References Method Images Classes Validation Results

(%)

Kavuran [29] Transfer learning; metaheuristic optimization; support vector

machine

5079 4 75:25 split Acc 99.30

Tian et al. [33] Pre-trained VGG16 100 2 70:30 split Acc 88.00

Yin et al. [34] Convolutional neural network with attention 3469 4 70:30 split Acc 98.56

Li et al. [30] U-Net 15,600* 13 fourfold Acc 87.00

Leracitano et al. [31] Multi-layer perceptron 1280 2 Leave-one-

out

Acc 92.50

Tsutsui et al. [32] Gray-level co-occurrence matrix; two classifiers 480 8 80:20 split Acc 85.00

Our method NFSDense201 Case 1:

5080

4 75:25 split Acc 99.53

Pre 99.01

Rec 99.18

F1 99.09

Case 2:

21,272

10 75:25 split Acc 97.09

Pre 96.90

Rec 95.62

F1 96.23

*Microscopic images of minerals. Acc, accuracy; F1, F1 score; Pre, precision; Rec, recall

Fig. 4 Comparative analysis of pre-trained CNNs for the NFS

architecture using Case 2
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92.50% using a multilevel perceptron-based image classi-

fication model, albeit with a relatively small dataset.

Tsutsui et al. [32] employed a gray-level co-occurrence

matrix to extract textural features from SEM images and

achieved 85% accuracy using two shallow classifiers on a

limited dataset. Similarly, Tian et al. [33] reported an

accuracy of 88% with their pre-trained VGG16-based

model on a small SEM image dataset. Lastly, Yin et al.

[34] proposed an attention-convolutional neural network

model, attaining an impressive accuracy of 98.56% on a

sizable four-class dataset.

Within the existing literature, we found no substantial

model that specifically addresses Case 2, as far as our

knowledge extends. As a consequence, we are unable to

provide any comparative findings pertaining to the afore-

mentioned dataset containing 10 distinct classes. To

address this gap, we designed a comparative scenario to

assess the performance of our proposed model against other

prevalent CNN architectures, including (i) MobileNetV2,

(ii) DarkNet53, (iii) Xception, (iv) EfficientNetb0,

(v) ResNet50, and (vi) InceptionV3. Employing our NFS-

based deep feature extraction architecture, we applied it to

these pre-trained CNNs and obtained results using Case 2,

involving a substantial image dataset.

To illustrate the outcomes, both the calculated results

and the performance of our proposed NFDenseNet201 are

depicted in Fig. 4.

Figure 4 demonstrates that the optimal deep feature

extraction model for our proposed deep feature engineering

architecture is DenseNet201, achieving an impressive

accuracy of 97.09%. Following closely, InceptionV3

attains a respectable accuracy of 95.33%. Conversely,

among the pre-trained CNNs, MobileNetV2 exhibits the

lowest performance for this particular problem, with an

accuracy of 92.33%.

Key characteristics of the NFSDense201 model are

outlined as follows:

• We introduce a novel nested patch division method,

which enables effective feature extraction from SEM

images.

• This method is combined with downstream deep feature

extraction using a pre-trained deep network, resulting in

a novel deep feature engineering model.

• The model is trained and evaluated on an extensive

dataset comprising 21,272 SEM images.

• Remarkably, NFSDense201 achieves classification

accuracy rates of 97.09% and 99.53% for ten- and

four-class SEM image classification tasks, respectively,

using a standard shallow SVM classifier without any

optimization. These results compare favorably with

existing literature.

• NFSDense201 demonstrates computational efficiency,

making it highly practical for implementation.

• The presented architecture can be readily adapted to

address various classification problems.

Nevertheless, certain limitations should be acknowl-

edged. In this study, we employ a cubic SVM classifier

without hyperparameter tuning, potentially hindering the

model’s performance. Exploring optimization methods

may yield improved classification results. Additionally,

alternative advanced classifiers could have been examined.

However, the primary focus of this work is to showcase the

discriminative capabilities of the features generated by the

main upstream model components, namely the novel nes-

ted patch division and the pre-trained DenseNet201. Given

this objective, a robust yet shallow classifier like SVM

adequately serves our present research goals.

6 Conclusions

In this study, we have successfully demonstrated the fea-

sibility and practicality of the NFSDense201 model for

accurate SEM image classification. By integrating the

innovative nested patch division technique and efficient

deep feature extraction using the pre-trained DenseNet201,

we have achieved outstanding classification results. Lev-

eraging the INCA feature selector in combination with a

cubic SVM classifier, our model achieved remarkable

accuracy rates of 97.09% and 99.53% for ten- and four-

class classification tasks, respectively. Notably, these

results were obtained using the largest publicly available

SEM image dataset.

Our proposed model exhibits several desirable qualities.

Firstly, it is computationally lightweight, enabling efficient

processing of images. Secondly, its implementation is

straightforward, ensuring ease of use for researchers and

practitioners. Moreover, we believe that the NFSDense201

model holds promise beyond SEM image classification and

can be readily applied to other computer vision tasks with

minimal modifications.

As future research directions, we suggest exploring

alternative methods and networks to enhance the nested

patch division and/or replace the pre-trained DenseNet201

model. By integrating these new components, we can

develop next-generation feature engineering models tai-

lored to diverse image classification applications. This

avenue of investigation has the potential to further improve

the performance and versatility of our approach.
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