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ABSTRACT 
 

The use of non-destructive assessment techniques for evaluating structural conditions 
of aging infrastructure, such as timber bridges, utility poles and buildings, for the past 20 
years has faced increasing challenges as a result of poor maintenance and inadequate 
funding. Replacement of structures, such as an old bridge, is neither viable nor 
sustainable in many circumstances. Hence, there is an urgent need to develop and utilize 
state-of-the-art techniques to assess and evaluate the “health state” of existing 
infrastructure and to be able to understand and quantify the effects of degradation with 
regard to public safety. This paper presents an overview of research work carried out by 
the authors in developing and implementing several vibration methods for evaluation of 
damage in timber bridges and utility poles. The technique of detecting damage involved 
the use of vibration methods, namely damage index method, which also incorporated 
artificial neural networks for timber bridges and time-based non-destructive evaluation 
(NDE) methods for timber utility poles. The projects involved successful numerical 
modeling and good experimental validation for the proposed vibration methods to detect 
damage for simple beams subjected to single and multiple damage scenarios and was 
then extended to a scaled timber bridge constructed under laboratory conditions. The 
time-based NDE methods also showed promising trends for detecting the embedded 
depth and condition of timber utility poles in early stages of that research. 
 
 

INTRODUCTION 
 
Australia has been, historically, blessed with plentiful supplies of native hardwood 

timbers. Such timber is of both strong and durable species. As a result, these materials were 
heavily used during the early European settlement since 1788, for developing transport links 
such as wharf and bridge structures. Later, timber was used for utility poles for transmission 
of electricity and communication lines (Crews, 2008). 

Recent surveys have shown that there are approximately 29,000 timber bridges in 
Australia, of which many are still in service despite being degraded or in structurally 
weakened condition (DoTaRS, 2003). The enormous number of timber bridges, which form a 
significant portion of bridges in Australia (total is in excess of 40,000), reflects the 
importance of these structures to the country’s economic growth and the daily life of many 
Australians. In addition, these bridges are highly valued, not just for economic reasons, but 
also for the social and historical value placed on them by rural communities.  
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The Department of Transport and Regional Services Australia (DoTaRS, 2003) has 
estimated that a third of timber bridges are in excess of 50 years old. These bridges are 
located mainly on regional roads, owned and maintained by local government agencies. Due 
to lack of funds and engineering expertise, it is not easy to undertake thorough condition 
assessment of these bridges, which are often functionally obsolete and structurally deficient. 

Due to their age and unknown “health” condition, it is extremely crucial for asset 
managers to have a reliable tool for monitoring and evaluation of the state of health of their 
bridge stocks in order to carry out timely maintenance and repair/replacement, and therefore 
ensure the safety of public as well as preserve these heritage-valued structures for the country 
(McInnes, 2005).  

Another important component of Australia’s infrastructure is timber utility poles. 
According to Nguyen et al. (2004) and Francis and Narton (2006), there are nearly seven 
million utility poles in the current network, of which around five million timber poles are 
used for distribution of power and communications. The utility pole industry in Australia 
spends about $40~50 million annually on maintenance and asset management to avoid failure 
of the utility lines, which is very costly and may cause serious consequences. Each year, 
about 30,000 electricity poles are replaced in the eastern states of Australia, despite the fact 
that up to 80% of these poles are still in a very good serviceable condition. For timber utility 
poles, investigation of asset management systems for the power distribution industry shows 
that the design and assessment methods, which form traditional industry practices in 
Australia, are imprecise and often unreliable. Assessment techniques are required to maintain 
a high level of reliability against pole failure. There is a need for a simple, reliable and 
effective tool for determination of embedded length and condition of timber utility poles in 
service.  

This chapter reports on research work carried out by the authors in development and 
implementation of vibration-based methods for evaluation of damage and state of health of 
timber structures. For damage detection and damage severity estimation, a modified damage 
index method (MDI) has been developed for dealing with timber beam-like structures, and a 
damage index method for plate-like structures (DI-P) was proposed for timber bridges and 
timber decks. Both the methods were formulated based on modal strain energy. In addition to 
numerical investigations using finite element models, the researchers carried out experimental 
studies on timber beams and a laboratory prototype timber bridge subjected to single- and 
multiple-damage scenarios. To enhance the damage detection results and to overcome 
shortcomings of the proposed modal-strain-energy-based methods, integration of artificial 
neural networks (ANNs) in form of a network ensemble was also proposed in damage 
localization and severity estimation. The research and development of damage detection in 
timber utility poles including use of non-destructive evaluation (NDE) techniques for 
determination of condition and underground depth of embedded timber poles in-service is 
also briefly reported in this chapter.  
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LITERATURE REVIEW 
 

State-of-the-Art in Damage Detection for Timber Structures 
 
Timber/wood has been used extensively as building material for centuries. The 

degradation of structural members of timber may be due to several causes, such as biotic 
degradation and physical degradation. It is, therefore, important to perform periodical 
condition assessment and evaluation on the structures to determine the extent of deterioration 
for a proper maintenance schedule. Often the problems in wood/timber structures do not lie in 
the effectiveness of preserving systems of the material itself but in not having the correct 
tools necessary to locate deterioration (Duwadi et al., 2000). Thereby, it delays application of 
remedial treatments to prevent further degradation in the structures. The current state-of-the-
art for in-situ condition assessment and evaluation of timber consists of several steps either 
through non-destructive, destructive or semi-destructive means as briefly listed in Table 1 
(Kasal, 2008). A wide variety of techniques being used to verify deterioration in timber 
members can be found in Ross et al. (2006).  

 
Table 1. Classification Of Methods For In-Situ Timber Evaluation (Kasal, 2008) 
 

 Method  
NON-DESTRUCTIVE DESTRUCTIVE SEMI-DESTRUCTIVE 
Visual inspection Specimen extraction Resistance drilling 
Stress and acoustic waves Full-member tests Core drilling 
Moisture contentmeasurements Standard tests of mechanical 

properties 
Tension micro-specimens 

Radiography  Pin penetration resistance 
Computer tomography  Other non-conventional methods 
Species determination   
Dendrochronology   

 
It is quite obvious that destructive tests impose several disadvantages such as complete 

loss of the element of interest. For semi-destructive methods, they are non-destructive with 
respect to the member of interest, but are destructive with respect to the extracted specimen 
itself. Hence, non-destructive methods are widely used by engineering practitioners lately, as 
these methods do not alter much the tested member material properties. However, many non-
destructive techniques (NDTs) are mostly used on small and accessible areas. It is time 
consuming to perform them on large timber structures like timber bridges, and it is also 
costly. This led to research on global methods, which would be able to reduce testing time, 
the cost involved and disruption to traffic flow. If necessary, the global methods can be 
combined with other more localized NDE methods for evaluating damage details. 

Over the last few decades, many methods assessing global structural integrity for timber 
structures have been developed. Some recent works have focused on using vibration 
techniques, which are non-destructive in nature, to assess the in-service stiffness of timber 
structures like short-span timber bridges and floor systems within buildings. For timber 
structures, the focus of developments on vibration techniques has been on assessing the 
condition of wood in-service based on techniques that evaluate individual members and small 
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area defects within a wood member. The basis of vibration-based methods is that any changes 
in the physical properties of wood such as mass, damping and stiffness, will in turn alter its 
dynamic characteristics, namely, natural frequency, damping ratio and mode shape.  

Peterson et al. (2001a,b) reported on adopting the damage index method for one-
dimensional (1-D) systems that utilizes modal strain energy before and after damage for 
identifying local damage and decay in timber beams using the first two flexural modes. The 
researchers also mentioned that the mode shapes to be used in the damage localization 
algorithm should be selected according to the location of damage. The method is quite 
promising for single-damage scenarios but it does not work well for two-damage scenarios in 
a timber beam. Furthermore, the results showed that the method is quite mode dependant.  

Morison et al. (2002) presented the possibility of extending global testing methods, 
specifically, impact testing, for determining if damage in the form of decay is present in 
timber bridges. The project also intended to provide cost and time savings over existing 
methods of inspecting timber bridges. The method is to correlate the first natural frequency 
(fundamental frequency) with stiffness characteristics of timber bridge stringers (girders) 
using an algorithm derived from a partial differential equation governing the transverse 
vibration of a simple flexural beam. However, the largest obstacles encountered in this study 
were the actual boundary conditions of a bridge in the field, which are difficult to determine. 
Similar efforts were extended by Morison et al. (2003) in investigating dynamic 
characteristics of timber bridges using several existing methods such as damage index derived 
from estimated and measured curvature and flexibility influence coefficient estimated by the 
direct current (DC) value of the frequency response function (FRF) matrix. The results 
showed that the broadband curvature method was successful in showing a difference between 
the original state and the damaged state. However, it is far from a quantitative prediction of 
damage. While the flexibility influence coefficient method was able to show a change in the 
system when a weaker stringer replaces an original one, it failed to identify which stringer 
was replaced. Similar work was reported by Wang et al. (2005).  

Hu and Afzal (2006) used a damage indicator for the detection of single- and two-damage 
cases of timber beams. The damage indicator is derived from the difference of the mode 
shapes before and after damage. The indicator is then expressed using discrete Laplace 
transform and finally normalized statistically in space. The method using either first or second 
modes successfully identified single artificial defect at different locations and a two-damage 
case with equal spacing and similar level of damage severity. However, the method is 
incapable of evaluating quantitatively the severity of damage. In addition, the method found 
difficulty in generating higher mode shapes as well as the combination of first and second 
modes. The damage indicator was further sensitive to different damage locations and different 
modal orders. The results of this study were based on 43 impact points for each set of data 
from the modal tests, which may be too time consuming and, hence, not cost effective.  

Muller (2008) presented a paper describing the application of ground penetrating radar 
(GPR) technique to detect defects within the timber superstructure of the Hornibrook 
Highway Bridge. The author found that GPR was successful in detecting, locating and 
estimating the extent and severity of girder defects on the bridge in around a fifth of the time 
and cost of the traditional approach of “visual inspection plus test drilling.” Furthermore, the 
ability of GPR to locate isolated defects led to numerous defects being found that would have 
gone undetected based on the traditional visual inspection or targeted test drilling.  
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Damage Detection utilizing Artificial Neural Network Techniques  
 
In recent years, the use of Artificial Neural Networks (ANNs) in structural damage 

detection has gained momentum. ANNs are artificial intelligence that simulate the operation 
of the human brain. They are composed of a large number of highly interconnected 
processing elements, which are analogous to neurons and are tied together with weighted 
connections that represent synapses. The key element of ANNs is that they learn by example 
and not by following programming rules. Once trained, they are capable of pattern 
recognition and classification and are robust in the presence of noise. These characteristics 
make ANNs powerful complementary tools in vibrational damage identification. With the use 
of ANNs, some critical issues in traditional damage detection methods can be overcome and 
damage detection accuracy and reliability greatly improved.  

The first researchers to introduce ANN to vibration-based damage detection in civil 
structures were Wu et al. (1992). Their paper from 1992, investigates the feasibility of ANN 
in structural damage detection; Fourier spectrum recordings of an experimental three-storey 
frame structure were used as ANN inputs to detect damage. The researchers found that the 
network was successful in identifying the damage condition of each member in the structure 
and concluded that “the use of neural networks for structural damage assessment is a 
promising line of research.”  

Sahin and Shenoi (2002) used changes in natural frequencies and curvature mode shapes 
as input features for ANNs for location and severity prediction of numerical and experimental 
damage in cantilever steel beams. From the network predictions, they found that the reduction 
in natural frequency provides the necessary information for the existence and severity of 
damage, however, differences in curvature mode shapes severed as better indicator in the 
location predictions.  

Many successful applications have also been reported on multi-stage damage assessment 
methods that incorporate artificial intelligence techniques. Ko et al. (2002) developed a three-
stage identification scheme, which was applied to numerical simulations of the Kap Shui Mun 
cable-stayed bridge in Hong Kong. In the first stage, auto associative neural networks are fed 
with natural frequencies to identify the existence of damage. This was followed by a 
combination of modal curvature index and modal flexibility index to identify the damage 
area. In the third stage, ANNs were used to determine specific damage member(s) and 
damage severity.  

 
Lee and Yun (2006) presented a two-step damage identification strategy and 

demonstrated the method on numerical data and field test data of the old Hannam Grand 
Bridge in Seoul, Korea. First, the DI method was used to screen potentially damaged 
members and then, neural networks were trained with mode shape differences between before 
and after damage to assess the defects. They found that while the damage screening of the 
first step gave many false damage alarms, the damage assessment results using neural 
networks showed good estimates for all damage cases.  

Another multi-stage damage assessment approach was proposed by Bakhary et al. (2007), 
who used substructure techniques together with a two-stage ANN model to detect single- and 
multiple-damage scenarios. The method was successfully demonstrated on numerical 
simulations of a two-span concrete slab. 
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An extension to ANNs are neural network ensembles (also referred to as committees or 
classifier ensembles), which are a hierarchy of networks that are trained independently for the 
same task and whose outcomes are fused at different stages by ensemble networks. These 
neural network committees were observed to perform better than the best network used in 
isolation (Perrone and Copper, 1993) and are currently used in many fields of research.  

The idea of multi-stage network training was first employed in the area of vibration-
based damage detection by Marwala and Hunt (1999). The researchers applied a two-stage 
neural network ensemble to numerically simulated cantilever beam data, with one network 
trained with frequency energies, which are integrals of the real and imaginary components of 
the frequency response functions over various frequency ranges, and another network trained 
by using the first five flexural mode shape vectors. The authors found that the ensemble gave 
a mean error of 7.7% compared to 9.5% and 9.78%, respectively, of the individual networks. 
In an extension to this work, Marwala (2000) presented a committee of neural network 
approach, which employs frequency response functions (FRFs), modal properties (natural 
frequencies and mode shapes), and wavelet transform (WT) data of numerical and 
experimental steel seam-welded cylindrical shells. The data were separately fed to three 
neural networks, which were later combined in a committee network. It was found that the 
committee identified the damage cases better than the three approaches used individually. 

 
 

Vibration-Based Assessment Work Undertaken at the Centre for Built 
Infrastructure Research at UTS 

 
In the authors’ research group (CBIR), studies on vibration-based assessment methods for 

timber structures started in early 2000. A simple dynamic testing method, based on structural 
frequency shift (SFS), was developed by Samali et al. (2002, 2003a,b) (related work is also 
published in Li et al., 2004; Crews et al., 2004; and Benitez and Li, 2002) to evaluate the 
global stiffness and strength of in-service timber bridges. This dynamic method is generally 
proven to be easily performed and cost effective. In addition, the operators are not required to 
have high skills and can be easily trained on the job to perform the dynamic timber testing. 
The method has been successfully used to undertake field-testing of more than 600 timber 
bridge spans across New South Wales (NSW). The testing procedure involves the attachment 
of accelerometers underneath the bridge girders and exciting the bridge with a modal hammer 
with and without extra mass blocks at mid-span of the bridge. In order to refine the method 
and to further reduce cost and testing time as well as evaluate some of the practical issues 
during the field testing, a project was initiated to investigate the effects of using alternative 
mass forms, such as use of a trailer to replace currently used mass blocks, and adding mass at 
locations other than mid-span, on the bridge vibrations and subsequent integrity assessment 
(Li et al., 2005). The authors have progressively expanded the research work to also detect the 
location of damage and to evaluate damage severity. The modal-strain-energy-based damage 
index method for beam-like structures (DI) and its modified version (MDI), as well as 
damage index (DI) method for plate-like structures (DI-P) form the basis for the developed 
location and severity identification methods. For improved damage evaluation, artificial 
neural network techniques were introduced in the detection procedures. Indices of the DI 
method and compressed frequency response functions are used as input parameters for neural 
network training. Selected publications are listed in (Choi, 2007; Choi et al., 2007; Choi et al., 
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2008a,b; Li et al., 2007; Samali et al., 2009; Dackermann et al., 2008a,b, 2009). Furthermore, 
the group also started another research project using vibration-based methods to estimate 
embedded length in soil for timber utility poles as well as determining their structural 
conditions (Zad, 2009). Some of the research outcomes that deal with the identification of 
damage locations and severities on timber beams and timber bridge decks are presented in the 
following sections.  

 
 

DAMAGE DETECTION ON TIMBER BEAM STRUCTURE 
 

Timber Beam Structure 
 
Pin-pin supported timber beams were chosen to verify the developed methods on a 

simple structure. The timber beams are intended to represent scaled girders of typical timber 
bridges in Australia. The scaling for the beams was based on dynamic similitude of the 
girders in terms of their first natural frequencies, which usually range from 5 to 20 Hz. 

 
Laboratory Timber Beam 

Experimental timber beams were set up and tested in the Structures Laboratory of the 
University of Technology Sydney (UTS). The beams were of treated radiata pine sawn 
timber, measuring nominal dimensions of 45 mm by 90 mm in cross-section with a span 
length of 4,500 mm. The modulus of elasticity (MOE) of the beams was about 12GPa 
obtained from four-point bending tests. The experimental set up is displayed in Figure 1(a). 

 

(a) (b)  

Figure 1. (a) Experimental test set up and (b) medium-size damage (27 mm  45 mm) of timber beam 

Two laboratory timber beam structures were tested and inflicted with various types of 
damage. Single- and multiple-damage scenarios with different damage locations and 
severities were investigated. All damage scenarios consisted of a rectangular opening from 
the soffit of the beam, located at 1/4, mid-span (1/2), and 3/4 of the span length to simulate 
pockets of rot. Damage descriptions are as follows, L, M, and S are used to denote “light,” 
“medium,” and “severe” damage, respectively. All inflicted damage occupied 1% of the total 
span length (45 mm) and consisted of 10%, 30%, or 50% of the beam depth, designated as 
damage cases L, M, and S, respectively. The 10%, 30%, and 50% of the beam depth cut in 
cross section correspond to losses of sectional “I” (moment of inertia) of 27.1%, 65.7%, and 
87.5%, respectively. The cases described in this chapter are listed in Table 2. A medium-size 
damage is displayed in Figure 1 (b). 
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Table 2. Dimensions of Damage Inflicted in Timber Beams 
 

Damage 
Case 

Damage 
Scenario 

Location per 8th

of span length 
Length 
l (mm) 

Depth 
h (mm) 

% reduction of 
“I” 

1 4L 4 45 9 27.1 
2 4M 4 45 27 65.7 
3 4S 4 45 45 87.5 
4 4S6L 4, 6 45 45, 9 87.5, 27.1 
5 4S6S 4, 6 45 All 45 All 87.5 

 
To obtain the modal parameters of the beam, experimental modal testing and analysis 

was performed. In modal testing, the beams were excited by an impact hammer, and the 
acceleration responses were measured by nine equally spaced piezoelectric accelerometers. 
The time history signals of the hammer and the acceleration responses were first amplified by 
signal conditioners and then recorded by a data acquisition system. The sampling rate was set 
to 10,000 Hz for a frequency range of 5,000 Hz and 8,192 data points, thus giving a 
frequency resolution of 0.061 Hz. The time history data were then transformed into the 
frequency spectra using fast Fourier transform (FFT). By dividing the frequency spectra 
signals of the response data by the frequency spectra of the excitation data, the frequency 
response functions (FRFs) were obtained. The first five flexural modes of the beam were 
identified by performing modal analysis utilizing the leading software from LMS (LMS 
CADA-X). The corresponding mode shapes were mass normalized, and in order to enhance 
the quality and effectiveness of damage identification, the mode shape vectors were 
reconstructed from nine to 41 data points utilizing cubic spline interpolation techniques. The 
experimental modal testing set up and modal analysis procedures are shown in Figure 2. 
 
Numerical Timber Beam Model 

For damage severity estimation, artificial neural network techniques are employed. To 
generate patterns for the training of the networks, a numerical model of the timber beam 
structure is created using the finite element analysis package ANSYS. The dimensions and 
material properties of the pin-pin supported beam model comply with the specifications of the 
experimental beams. The cross-section is modeled with 20 elements across the height and 
four elements along the width. The longitudinal direction of the model is divided into 201 
nodes and 200 elements. Seven different damage locations with spacings of 562.5 mm (1/8th 
of the span length) are considered. The damage locations (“1” to “7”) are displayed in Figure 
3(a). For each of these locations, five different damage severities, with cuts of 10%, 20%, 
30%, 40% and 50% of the beam depth are investigated, generating a total of 35 different 
damage cases. All inflicted damage are 45 mm in length and 9 mm, 18 mm, 27 mm, 36 mm 
and 45 mm in height, respectively. This corresponds to 27.1%, 48.8%, 65.7%, 78.4% and 
87.5% loss of I. Damage is modeled by rectangular openings from the soffit of the beam 
along the span length. A medium-size damage is depicted in Figure 3(b).  
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Figure 2. Schematic diagram of experimental modal testing and analysis 

 

(a) (b) 

90 mm 

 47 mm 

 

27 mm 

   4,500 mm 
562.5 mm 

 1  2  3  4  5 6  7 

 

Figure 3. Finite element modeling of (a) pin-pin supported timber beam and (b) medium-size damage 

Using the modal analysis module in ANSYS, the first five flexural mode shapes are 
extracted. To synchronise the numerically obtained data with the experimental data, the mode 
shape vectors are reduced from 201 data points to nine points, representing the nine 
measurement sensors of the experimental test set up. Subsequently, the mode shape vectors 
are again reconstructed from nine to 41 data points, utilizing cubic spline interpolation 
techniques. 

 
 

Damage Localization Utilizing MDI Method 
 

Derivation of MDI Method 
The damage index (DI) method developed by Kim and Stubbs (1995) was adopted and 

modified (named as modified damage index (MDI)) to locate damage. The MDI method is 
based on relative differences in modal strain energy between an undamaged structure and that 
of the damaged structure. The modal strain energy utilizes mode shape curvature in the 
algorithm to calculate the damage index for the jth element and the ith mode, ij, as given 
below. 

 

   

   

L
2 2//  * //

i i

j 0
ij L

2 2// //  *
i i

j 0

( x ) dx ( x ) dx

( x ) dx ( x ) dx

 


 

 

 
 (1) 
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In Eqn (1), the terms i”(x) or i”*(x) are normalized mode shape curvature coordinates. 
The curvature is normalized with respect to the maximum value of the corresponding mode 
for each mode of a beam structure. The normalized curvature used in the MDI method is 
shown to perform better in damage localization compared to its original formulae, where 
curvature was not normalized (Kim and Stubbs, 1995). The asterisk denotes the damage 
cases. For the original damage index method, although mode shape vectors have been mass 
normalized, the mode shape curvatures used for the damage index calculation are not 
normalized. Values of mode shape curvature are dependant on the shapes of each individual 
mode shape. Instead of reflecting the changes in the curvature due to damage, the summation 
of non-normalized mode shape curvatures will distort the damage index in favor of higher 
modes, which results in false damage identifications. The modified damage index (MDI) 
method introduced above overcomes the problem by normalizing mode shape curvatures with 
respect to the maximum norm of each mode shape curvature. To account for all available 
modes, NM, the damage indicator value for a single element j is given as  

 
NM

ij
i 1

j NM

ij
i 1

Num

Denom
 







  (2)  

 
where Numij = numerator of ij and Denomij = denominator of ij in Eq. (1), respectively. 
Transforming the damage indicator values into the standard normal space, the normalized 
damage index Zj is obtained 

 

j

jj
jZ







 
   (3) 

 
where j and j are the mean and standard deviation of j values for all j elements, 

respectively.  
The estimation of the damage severity for element j is expressed by equation 
 

j
j

1
  1


    (4) 

with j being the severity estimator.  
 
A judgment-based threshold value is selected and used to determine which of the jth 

elements are possibly damaged, which in real applications is left to the user to define based 
on what level of confidence is required for localization of damage within the structure.  
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(a) 4L (b) 4S 

Figure 4. Damage localization for single-damage cases 
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(a) 4S6L (b) 4S6S 

Figure 5. Damage localization for two-damage cases 

 

Damage Localization Results 
 
In the following, results of damage localizations utilizing the MDI method are presented. 

MDI indices Zj are calculated using the first five flexural modes. In the results, the damage 
localization indices for each of the damage cases are plotted against the beam span length. In 
principle, any location with the index value Zj larger than zero (the probability-based criterion 
for damage detection) is considered as damage existing at that location. The actual damage 
locations are indicated with dashed line in all figures. In Figure 4, for single-damage cases, 
the MDI is able to indicate accurately the location of damage at position 2.25 m, with few 
false positives (indication of false damage locations) at position 0.5625 m, position 3.375 m 
and near the supports for case 4L. Figure 5 depicts the damage scenarios of two damage 
locations positioned at 2.25 m and 3.375 m detected with MDI. The severe damage at mid-
span (4S) is precisely identified by the damage indicator in both cases. This also applies to the 
damage at position 3.375 m in damage case 4S6S, however, the light damage of damage case 
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4S6L stays undetected. It is shown that the MDI method is capable of detecting severe 
damage, but may miss out light damage that appears together with severe damage. This is due 
to light damage altering slightly the mode shape and its derivatives, which may have been 
overshadowed by other more severe scenarios. It is observed that damage index Zj does 
change accordingly with increase severity of damage as seen in Figure 4. However, damage 
index Zj (indication of probability of damage existence at the location j) is not capable of 
estimating the severity of damage. 

 
 

Damage Severity Estimation Utilizing DI Method and ANN 
 

Methodology of Quantitative Prediction of Damage 
To enhance the severity assessment of the DI method, neural network techniques are 

introduced to the damage detection algorithm. A hierarchy of neural networks, referred to as 
neural network ensemble, are designed to estimate the loss of the second moment of area (I) 
of single damage cases. The damage estimator j of the DI method is used as input parameter 
to the networks. The j values of various vibrational modes have different characteristics and 
are of varying importance. To respect these differences and to generate well-prepared input 
data sets, the individual neural networks are trained with mode separated damage estimators. 
The network ensemble is first trained with data generated from finite element models of the 
timber beam, and then damage indices of the laboratory timber beam are fed to the ensemble 
to test the networks and to predict the damage severities. Three experimental damage cases 
are investigated. The cases are all situated at mid-span of the beam and are of severities L, M 
and S (4L, 4M and 4S), which correspond to a loss of “I” of 27.1%, 65.7%, and 87.5%, 
respectively. The mid-span location was chosen, as this is a node point of mode 2 and mode 4 
and, therefore, most problematic for the DI method.  

 
 
 

Artificial Neural Network Architecture 
A neural network ensemble is designed to estimate damage severities of timber beam 

structures. Numerical beam stimulations are used to train the networks and experimental 
timber beam data are used to test the networks with previously unseen data. First, five 
individual neural networks are separately fed with j values of the first five flexural modes, 
and then the outputs of each of the networks are combined in an ensemble network to produce 
the final severity estimation. All networks in the ensemble are multi-layer perceptron neural 
networks. The individual neural networks comprise an input layer with 41 nodes, 
corresponding to the 41 data points of the severity estimator j; three hidden layers with 30, 
20 and 10 nodes and one single node output layer estimating the severity of the damage. The 
network ensemble is designed with five input nodes, which are the outputs of the five 
individual networks; three hidden layers of 7, 5, and 3 nodes and one output node predicting 
the damage extent. The transfer functions used are hyperbolic tangent sigmoid functions. 
Training is performed utilizing the back-propagation conjugate gradient descent algorithm. 
The inputs are divided into three sets: a training, a validation and a testing set. While the 
network adjusts its weights from the training samples, its performance is supervised utilizing 
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the validation set to avoid overfitting. The network training stops when the error of the 
validation set increases while the error of the training set still decreases, which is the point 
when the generalization ability of the network is lost and overfitting occurs.  

The complete data set of 35 numerical samples is allocated for training. For the 
laboratory beam data, the undamaged beam is experimentally tested five times, and the three 
damage cases are tested three times each. Thereby, a total of 45 j damage indices are 
generated (five undamaged data sets  three damaged data sets  three damage severity 
cases). The 45 experimental samples are divided into sets of 18 for validation and 27 for 
testing. The design and operation of all neural networks are performed with the software 
Alyuda NeuroIntelligence version 2.2 from Alyuda Research, Inc. 

 
Damage Severity Results 

In the following paragraph, the damage quantification predictions of the neural networks 
are presented. It is found that the results of the five individual networks greatly differ among 
each other. These prediction differences are a reflection of the individual characteristics of the 
different vibrational modes. In the subsequent figures, the horizontal-axis displays the 45 
validation and testing samples of the three experimental damage cases 4L, 4M and 4S. The 
vertical-axis represents the normalized error, which is defined as Enorm(d) = (Td-Od)/Smax, 
where d is the damage case, Td the target value, Od the neural network predicted value and 
Smax the maximum severity (here, 100% loss of the second moment of area, “I”). Displayed in 
Figure 6 are the outcomes of the individual networks trained with the severity estimator j 
derived from (a) mode 2, (b) mode 3 and (c) mode 5. It is observed that the predictions of the 
network of mode 2 are incorrect for almost all damage cases. The reason for these errors is 
that for mode 2, the mid-span of the beam is a node point of flexural vibration and, therefore, 
the damage cannot be identified. For the network of mode 3, all medium and extra severe 
damage cases are below 10% normalized error; some large errors are obtained for extra-light 
damage. The network of mode 5 identifies all damage cases well with a maximum normalized 
error of 7.4%.  

To determine the damage characteristics based only on the outcomes of the individual 
networks is problematic, as their damage predictions vary greatly. To achieve reliable damage 
identification, a conclusive, intelligent fusion of the network outcomes is necessary. This is 
achieved by the neural network ensemble, which combines the outcomes of the individual 
networks. Figure 7 displays the finial severity predictions of the ensemble network. It can be 
seen that the estimated severities of all damage cases eventually agree very well with the 
actual damage extents with a maximum normalized error of 4.4%. These results clearly show 
the effectiveness of the neural network ensemble approach, which produce results that are 
more accurate than any of the individual networks. These final predictions show that by 
introducing ANNs to the DI-based damage detection algorithm, shortcomings of the DI 
method, which was not able to quantify single light damage, can be overcome.  
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(a) Individual neural network outcomes trained with j derived from mode 2 

(b) Individual neural network outcomes trained with j derived from mode 3 

(c) Individual neural network outcomes trained with j derived from mode 5  

Figure 6. Outcomes of individual neural networks tested with j damage indices derived from (a) mode 
2, (b) mode 3 and (c) mode 5 to estimate the severity of experimental damage cases 

 

Figure 7. Final damage severity predictions of the neural network ensemble 
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DAMAGE DETECTION ON FOUR-GIRDER TIMBER BRIDGE 
 

Four-Girder Laboratory Timber Bridge 
 
A four-girder experimental timber bridge was built in the laboratory to verify the damage 

detection method for more complex timber structures. The basic dimensions of the deck 
structure are 2.4 m wide and 4.8 m long, with a span length of 4.5 m. The bridge was built of 
four girders (g1 to g4) of treated radiata pine sawn timber measuring 45 mm  90 mm in 
cross-section. The deck consisted of four pieces of 21 mm thick  2.4 m wide and 1.2 m long 
structural plywood of grade F11. The deck and girders were connected using 50 mm self-
tapping screws with 137.5 mm spacing. No gluing was applied in order to avoid fully 
composite action, to simulate the interactions in a real timber bridge. The ends of the bridge 
girders were supported on concrete blocks and rigidly connected to the strong floor. A 
specially designed support system was used between girders and the concrete block to ensure 
a well-defined boundary condition that is very close to a pin-pin condition. The full bridge 
model is depicted in Figure 8. The goal of this study was to detect damage typically found in 
timber bridges. A total of 12 different damage scenarios at four damage locations were 
considered, as displayed in Figure 9. The inflicted damage cases consist of rectangular 
openings along the span of a girder starting from the soffit, located either at 1/8, 2/8, 4/8 
(mid-span) or 6/8 of the span length to simulate pockets of rot. At each of these locations, 
three different damage severities were studied, denoted as light (“L”), medium (“M”) and 
severe (“S”) damage, respectively. All inflicted damage are 1% of the total span length 
(45 mm) and consist of 10%, 30% and 50% of the beam depth, corresponding to 27.1%, 
65.7% and 87.5% loss of “I,” respectively. The three damage severities are shown in Figure 
10. The damage cases were inflicted in a cumulative manner. First, damage was inflicted on 
girder 2 (g2), then on girder 4 (g4), subsequently on girder 3 (g3) and finally on girder 1 (g1). 

 

 

Figure 8. The laboratory timber bridge 
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Figure 9. Plan view of damage and measurement locations on the bridge 

 
(a) Light damage (L)   (b) Medium damage (M)   (c) Severe damage (S) 

Figure 10. Side view of various inflicted damage 

 

Experimental Modal Analysis 
 
The modal test set up and instrumentation layout is similar to the beam test as shown in 

Figure 2. However, the impact location (reference or driving point), which is situated at 3/4 of 
the span length and located directly above girder 2 (refer to Figure 9), is a strategic position 
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that excites a large number of modes simultaneously. The response signal along the span was 
recorded using nine piezoelectric accelerometers. For the entire bridge deck, data from 81 
measuring points (depicted in Figure 9) were acquired. Due to the limited number of available 
sensors, the data acquisition for the 81 points was done in 9 tests. The nine non-stationary 
accelerometers were moved from line-to-line, i.e., from line 1 (L1) to line 9 (L9), until all 
measurement locations were covered. These accelerometers were used to measure the 
acceleration response on the top surface of the bridge. The nine measurement points per line 
were deemed sufficient for accurate reconstruction of mode shapes using interpolation 
techniques. The driving point measurement enabled the experimental mode shapes to be mass 
normalized. The captured mode shapes are shown in Figure 11. From the 99-point 
experimental mode shapes, 4141-point mode shapes were reconstructed using two-
dimensional (2-D) cubic spline interpolation technique, generating mode shape vectors with 
41 coordinates in both longitudinal and transverse directions. The reconstructed mode shapes 
with finer coordinates have shown to provide better chance of locating damage compared to 
using coarse coordinates. The reconstructed mode shapes were then applied in the damage 
detection algorithms attempting to locate and evaluate the inflicted damage scenarios.  

 

mode 1 (1st flexural) mode 2 (1st torsional) mode 3 (1st transversal) 

mode 4 (2nd flexural) mode 5 (2nd torsional) mode 6 (1st transversal 
& 2nd flexural) 

mode 7 (2nd transversal) mode 8 (2nd transversal 
& 2nd flexural) 

mode 9 (3rd flexural) 
 

Figure 11. Experimental mode shapes (81-points) for the laboratory timber bridge 

 



18 
 

Damage Localization utilizing Damage Index for Plate-Like Structures  
(DI-P) for Bridge 

 
Derivation of DI-P Method 

Cornwell et al. (1999) extended the damage index method for beam-like structures to 
include the detection of damage for plate-like structures characterised by a two-dimensional 
(2-D) mode shape slope and curvature. The algorithm used to calculate the damage index for 
the jkth subregion and the ith mode, ijk, is given below for detecting the location of damage. 
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 (5) 
 
where  represents Poisson’s ratio, and the term  2 x2 is a vector of second 

derivatives of mode shape coordinates (curvatures) with respect to x-axis. Similar convention 
is applicable to second derivatives with respect to y-axis and cross derivatives with respect to 
x- and y-axes. Equation (5) denotes damage index in matrix form describing change of strain 
energy before and after damage, corresponding to mode i for a bridge structure. The asterisk 
denotes the damage cases. To account for all available modes, NM, the damage indicator 
value for a single subregion jk is given as 
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where Numijk = numerator of ijk and Denomijk = denominator of ijk in Eq. (5), respectively. 
Transforming the damage indicator values into the standard normal space, the normalized 
damage index Zjk is obtained 
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  (7) 

 
where jk = mean of jk values for all subregions jk and jk = standard deviation of jk for all 
subregions jk. A judgment-based threshold value is again selected and used to determine 
which of the subregions jk are possibly damaged.  

 
Damage Localisation Results 

In the following, the normalized damage indicator, Zjk, calculated from the first nine 
modes is plotted against the laboratory timber bridge span length (4.5 m) and width (2.4 m). 
In principle, when the statistically normalized damage indicator value of Zjk for a given 
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location is larger than or equal to two (the probability-based criterion for damage), it is 
considered that damage exists at that location. To show the damage site in the contour plots, 
the actual damage locations are marked by an arrow sign and labeled with “Damage” in all 
subsequent figures.  

The damage localization results of single damage cases are illustrated in Figure 12. For 
the light damage case g2L (the smallest damage), depicted in Figure 12(a), the method could 
not locate the damage at position (3.375 m, 0.9 m). For the severe damage case g2S, which is 
illustrated in Figure 12(b), the damage location was clearly detected, even though there were 
some false positives.  

 

 

(a) g2L   (b) g2S 

Figure 12. Single-damage cases using the experimental data 

 
(a) g2Sg4L   (b) g2Sg4S 

Figure 13. Two-damage cases using the experimental data 

Observing from the results in Figure 13, severe damage locations at position (3.375 m, 
0.9 m) were identified for damage cases g2Sg4L and g2Sg4S (see Figure 13(a) and (b), 
respectively) as well as severe damage at position (2.25 m, 2.1 m) for case g2Sg4S. However, 
the light damage at position (2.25 m, 2.1 m) was not identified for case g2Sg2L. A possible 
explanation is that the change in mode shape curvature caused by the severe damage is 
dominating the results and overwhelming the curvature change due to the light and medium 
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damage. From the two damage cases, it should be noted that the second damage at position 
(2.25 m, 2.1 m) was not detected until this damage became roughly comparable in severity to 
the first severe damage at position (3.375 m, 0.9 m) in the experimental studies. This 
indicates that the method may encounter problems in identifying multiple damage locations 
with different degrees of severity using experimental data. However, the method is capable of 
identifying all severe damage locations, and this is critical for a structure in terms of avoiding 
catastrophic failure. Detecting less severe damage in timber bridges using this method can be 
achieved as a two-stage process. Once the severe damage is identified and repaired, the 
method can be applied again and then any less severe damage can be detected in the absence 
of any severe damage. A detailed discussion on the assessment of all investigated timber 
bridge damage cases with the DI-P method can be found in Choi (2007). 

 
 

Damage Severity Assessment Utilizing Frequency Response  
Functions and ANN 

 
Methodology of Severity Detection 

The DI-P method does not provide an algorithm for the estimation of damage severity. A 
different dynamic approach based on frequency response functions (FRFs) and artificial 
neural networks was developed to quantitatively estimate defects. FRF data are directly 
measured data, which have an abundance of information. They are easy to obtain and require 
very little human involvement (Fang and Tang, 2005). However, a very significant obstacle is 
the large size of the FRF data. Utilizing full-size FRFs in neural networks will result in a 
large number of input nodes, which will cause problems in training convergence and 
computational efficiency. If only partial sets of FRF data are used, an improper selection of 
data points from frequency windows will result in loss of important information, and errors 
will be introduced to the detection scheme (Ni et al., 2006). Principal Component Analysis 
(PCA) is a statistical technique for achieving dimensional data reduction and feature 
extraction. By projecting data onto the most important principal components, its size can 
greatly be reduced without significantly affecting the data. In the developed method, PCA is 
employed to compress the size of FRF data and make them suitable for network training. 
More precisely, residual FRFs, which are differences in FRF data between baseline and 
damage state, are compressed and used as ANN input. To demonstrate the method, it is 
applied to the different damage stages of the laboratory timber bridge. An accumulative 
damage growth, as simulated in the experimental bridge structure, is a common condition in 
field bridges. Unfortunately, in many circumstances, data on the intact state of these 
structures are not available. However, it is of importance for road engineers to obtain 
information on possible advancements of existing (even though unknown) damages as well as 
on newly acquired defects. To consider these needs, in this study, four different stages related 
to the four damage locations of the timber bridge are investigated. In the first stage, the 
undamaged structure is considered to be the baseline state, and the progress of damage at 
girder 2 is analyzed. In the second stage, the most severe damage case at girder 2 is regarded 
as baseline and the progress of damage at girder 4 is examined. In the third stage, the largest 
damage extent of damage at girder 4 (and the already existing damage at girder 2) is baseline 
and damage at girder 3 is investigated. Finally, the biggest damage state at girder 3 (including 
damage at girder 2 and 4) constitutes the baseline state and the extents of damage stages at 
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girder 1 are analyzed. On each girder, nine accelerometer measurements are available. To 
minimize the effort for neural network training, the FRF data of the nine accelerometers of 
each girder are added up to obtain one summation FRF for each girder and each damage state. 
These summation FRFs are the bases for the network training. 

 
Artificial Neural Network Architecture 

Four neural networks are created utilizing the NeuroIntelligence software from Alyuda to 
estimate the severities of damage at girders 1 to 4. Each network is trained independently with 
data derived from summation FRFs of the four girders. First, differences in summation FRF 
data between the baseline state and the damage state are calculated. Then, PCA techniques are 
adopted to compress the residual FRFs onto its most important principal components. The 
PCA-compressed residual FRFs are then separated by girders and fed to the four neural 
networks to estimate the severity of damage. The created networks are back-propagation 
neural networks utilizing hyperbolic tangent sigmoid transfer functions and conjugate 
gradient descent training algorithms. The networks comprise of an input layer of nine nodes, 
representing the number of the selected PCs (the first nine principal components account for 
97% of the original data); five hidden layers of 10, 8, 6, 4 and 2 nodes and one single node 
output layer estimating the extent of the damage. As each damage state is tested three times, a 
total of 108 data sets are available (three baseline data sets  three damaged data sets  
four damage locations  three damage severities). The input set is again divided into a 
training, a validation and a testing set of 60, 24 and 24 data samples, respectively. 

 
Damage Severity Outcomes 

The damage severity estimations of the four neural networks are very promising. Each of 
the networks trained with measurements from one of the four bridge girders predicts the 
severity level of all 108 damage samples correctly. The outcomes of the network trained with 
PCA-compressed residual FRFs of girder 1 are displayed in Figure 14. These results show 
that damage fingerprints in FRF data are very good indicators for quantitatively estimating 
damage extents. As the predictions of each network give independently precise damage 
detections, a reduction of the sensor network is possible. Data from only nine sensors of one 
girder (or even less) are enough to successfully assess the severities of accumulative damage 
in the studied laboratory timber bridge. 

 

 

Figure 14. Outcome of neural network trained with PCA-compressed residual FRFs of girder 1 
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DETERMINATION OF EMBEDMENT DEPTH OF TIMBER POLE 
 

Background of Research 
 
Different types of non-destructive evaluation (NDE) techniques were developed during 

the last decades and used to evaluate the embedment depth and the quality of materials of 
embedded structures such as concrete piles. Some of these tests have also been utilized on 
timber piles or poles. However, the extent of knowledge developed on NDE techniques for 
timber poles and piles appears to be inadequate, but the effectiveness and reliability of the 
NDE techniques are not often questioned.  

An ongoing research project of the Centre for Built Infrastructure Research (CBIR) at the 
University of Technology Sydney is the investigation on adequacy of the current NDE 
techniques for estimation of underground depth and condition of in-service timber pole 
structures as well as development of a new reliable and robust technique. The first stage of 
this research aims at conducting comprehensive state-of-the-art evaluations on available NDE 
techniques in terms of the reliability and effectiveness through numerical and experimental 
investigations. In the second stage, a new vibration- and acoustic-based NDE technique and 
procedure will be developed to encompass the latest development on advanced signal 
processing and damage detection, and to provide a reliable and effective tool for 
determination of the depth of embedment of timber poles/piles as well as their in-service 
condition including damage identification. 

The current state-of-practice for non-destructive determination of unknown condition and 
embedded length of poles or piles are generally stress-wave-based and can be divided into 
two groups: the surface NDT methods and the borehole NDT methods. In the surface NDT, 
the reflection of the stress wave is measured directly from the pole/pile, while in the borehole 
methods, it needs a borehole drilled close to the pole/pile and extends along its length to 
perform tests. In this case, the reflection is monitored in the borehole. The potential 
applications of surface NDE techniques for pole or pile depth determination are Sonic 
Echo/Impulse Response (compressional wave generated from longitudinal impulse), Bending 
Wave (dispersive wave generated from transverse impulse), and Ultraseisminc Vertical 
Proofing with geophysical processing of the data (compressional and flexural wave). 
Borehole NDE techniques include Parallel Seismic, i.e., direct measurement of compressional 
and shear wave arrival to receivers in a borehole emitted by wave travelling down the pile 
from an impact to the exposed substructure, Borehole Radar, i.e., reflection of 
electromagnetic wave energy is measured from nearby substructure. 

The research has mainly been focused on surface wave methods to meet the time- and 
cost-effective requirements of the project.  

 
 

Experimental Investigations 
 
A number of tests have been conducted, including investigations into suitable hardware 

(such as data acquisition system and cost-effective sensors), stress wave patterns, reliability 
and uncertainty issues. Three types of columnar specimens have been used in the current 
investigations, i.e., a 5 m steel RHS beam, a 5 m rectangular timber beam and a 5 m timber 
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pole. Considering the uncertainty on the material property of timber, a steel beam, consisting 
of homogeneous material without defects, was chosen as benchmark material for all stress 
wave tests. The rectangular timber beam without any defects was used to verify the behaviour 
of “ideal” timber during tests. Several timber poles taken out of service and containing local 
defects and uncertainty on its properties, have been used as “real” pole specimens.  

To be able to simulate geological embedment conditions for field specimens, a container, 
1.2m  1.2m in cross-section and three meters in height has been designed and fabricated to 
contain sand/soil for embedding different type of specimens (see Figure 15(b) and (c)). Fully 
instrumented benchmark specimens and pole specimens are then embedded, up to three 
meters, into the foundations consisting of eight layers of sand/soil. Various NDE techniques 
are then conducted on embedded specimens. The length of embedment can also be changed 
during the tests by simply pulling the specimens up and compacting sand/soil. Underground 
or embedded portion of the specimens were also instrumented so that stress wave patterns can 
be tracked down. Figure 15(a) shows the schematic NDE test set up under embedded 
conditions. 
 
 

Data processing

0.5 m

1 m

1 m

0.5 m

1 m

1 m

1 m

1 m

1 m

 
 
(a) Schematic NDE test set up                  (b) Embedded depth 0.8m   (c) Embedded depth 1.6m 

Acc 1 

Acc 2 

Acc 3 

Acc 4 

Acc 5 

Acc 6 

 

Figure 15. The laboratory set-up for NDT test on embedded depth and condition of timber pole 

A set of typical results from a longitudinal stress wave test of a timber pole are shown in 
Figure 16. Results show measured acceleration time histories and calculated velocity after the 
filtration from six sensors along the length of the pole. Using different techniques, length and 
condition of the pole can be estimated.  
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    (a) Accelerometer 1 (Acc 1)   (b) Accelerometer 2 (Acc 2) 

 
    (c) Accelerometer 3 (Acc 3)   (d) Accelerometer 4 (Acc 4) 

 
    (e) Accelerometer 5 (Acc 5)   (f) Accelerometer 6 (Acc 6) 
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Figure 16. Acceleration and velocity obtained from a timber pole stress wave test 

 

CONCLUSION 
 
This chapter presents research work on vibration-based damage detection methods of 

timber structures. The developed damage identification procedures are verified by two 
laboratory structures, a simple timber beam and a laboratory timber bridge deck. A modified 
damage index (MDI) method was proposed to locate damage in the timber beam structures. 
The method utilizes the first five mode shapes of the structure and their derivatives obtained 
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from experimental modal analysis. The results showed that the modified algorithm is 
effective and reliable in locating damage, even though it comes with some false positives. For 
severity assessment, ANNs are introduced to compensate the shortcoming of the method to 
quantify severity of damage in the timber beam. The severity estimator of the DI method is 
used as an input parameter to a neural network ensemble. The individual networks of the 
ensemble are trained with modally separated severity estimators in order to take advantage of 
distinguishable patterns of different vibrational modes and thereby to increase efficiency of 
network training and produce more accurate and robust damage detection results. The 
outcomes showed that the severities of all damage cases can be successfully determined by 
the network ensemble. Further, it was shown that the network ensemble produced more 
accurate predictions than any of the individual networks. 

For the laboratory timber bridge, the research proposed the DI-P method for damage 
location identification. The method uses the first nine modes obtained from experimental 
modal analysis to locate single- and multiple-damage in the structure. The locations of all 
severe damage cases in the single- and the two-damage scenarios can be successfully 
identified. However, light- and medium-damage cases could not be located reliably. To 
evaluate the severity of damage in the timber bridge, compressed residual FRFs were 
proposed and used as damage indicator for neural network inputs. Neural networks were then 
trained with the FRF-based damage fingerprints to predict the severity of accumulative 
damage cases. The results showed that for all damage cases, even those of light severity, of 
the laboratory timber bridge, the proposed neural network ensemble was able to identify the 
level of damage severity reliably.  

As an example, the chapter also introduced current research on determination of in-
service condition and embedment depth of timber poles using NDE techniques, including 
some testing set-up and initial results of experimental investigation.  
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