
Decoding the Neighborhood
Aggregation Mechanism of GNNs:

From Generalization to Interpretive
Analysis

by Shuming Liang

Supervisors: Prof. Yang Wang

A/Prof. Zhidong Li

Dr. Bin Liang

Faculty of Engineering and Information Technology
University of Technology Sydney

This dissertation is submitted for the degree of
Doctor of Philosophy

November 2023

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Shuming Liang, declare that this thesis is submitted in fulfillment of the requirements
for the award of Doctor of Philosophy, in the Faculty of Engineering and Information
Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In
addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic in-
stitution. This research is supported by the Australian Government Research Training
Program.

Signature:
Date:

4 Dec 2023

Production Note:

Signature removed prior to publication.

Acknowledgements

I am humbled and deeply grateful as I reflect on the completion of my Ph.D. journey. This
significant milestone would not have been possible without the unwavering support and
encouragement of numerous individuals who have touched my life in profound ways.

I extend my heartfelt appreciation to my supervisory panel, including Prof. Yang Wang,
Dr. Zhidong Li, and Dr. Bin Liang. Your expertise, mentorship, and dedication have been
instrumental in shaping my research endeavors. Your insightful feedback, constructive
criticism, and endless patience have guided me towards intellectual growth and academic
excellence. I am grateful for the trust you placed in me, allowing me the freedom to explore
new ideas while providing invaluable guidance along the way. Your unwavering support
has been the cornerstone of my development as a researcher, and I am honored to have had
the privilege to work under your mentorship.

To my family, I am forever indebted to your unconditional love and continuous en-
couragement. Your unwavering support has provided me with the strength and resilience
to overcome challenges and pursue my dreams. You have been my constant source of
inspiration, and I am eternally grateful for your presence in my life.

To my friends, thank you for being a constant source of joy, laughter, and companion-
ship. Your unwavering camaraderie provided the much-needed respite from the academic
rigors and reminded me of the importance of balance and human connection.

To my beloved wife, Dr. Yu Ding, you have been my rock and my guiding light
throughout this arduous journey. Your love and companionship have been a source of
inspiration and comfort, providing balance and perspective during the most challenging
times. Your sacrifices and selflessness have allowed me to fully immerse myself in
my research, knowing that I had your unwavering support every step of the way. Your
unwavering belief in me, even during moments of self-doubt, has been the driving force
behind my perseverance and determination. This achievement would not have been possible
without you by my side, and I am honored to share this success with you.

I would like to express my deepest gratitude to every individual who has contributed
to my personal and academic growth. I am truly fortunate to have crossed paths with
such remarkable individuals. May this acknowledgement serve as a testament to my
appreciation and as a reminder of the profound impact you have had on my journey.

Publications

1. Shuming Liang, Zhidong Li, Bin Liang, Yu Ding, Yang Wang, Fang Chen. Failure
Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure
Series. In Proceedings of the 30th ACM International Conference on Information
Knowledge Management, CIKM ’21, page 3955–3964, New York, NY, USA.

2. Shuming Liang, Yu Ding, Zhidong Li, Bin Liang, Yang Wang, Fang Chen. Ana-
lytical and Empirical Insights into GNNs for Link Prediction. Under triple-blind
submission and review.

3. Shuming Liang, Bin Liang, Zhidong Li, Yu Ding, Siqi Zhang, Yang Wang, Fang
Chen. VAGNN: Enhancing Generalization and Scalability in Graph Neural Networks.
Under triple-blind submission and review.

4. Shuming Liang, Andy Guo, Bin Liang, Zhidong Li, Yu Ding, Yang Wang, Fang
Chen. Machine Learning and Computer Vision Applications in Civil Infrastruc-
ture Inspection and Monitoring. Infrastructure Robotics: Methodologies, Robotic
Systems and Applications.

5. Yu Ding, Lei Wang, Bin Liang, Shuming Liang, Yang Wang, Fang Chen. Domain
Generalization by Learning and Removing Domain-specific Features. In Thirty-sixth
Annual Conference on Neural Information Processing Systems (NeurIPS 2022),
pp.24226-24239.

6. Bin Liang, Zhidong Li, Hongda Tian, Shuming Liang, Yang Wang, Fang Chen.
Optimising Water Quality with Data Analytics and Machine Learning. In Advances
in Data Science and Analytics: Concept and Paradigm.

7. Bin Liang, Sunny Verma, Jie Xu, Shuming Liang, Zhidong Li, Yang Wang, Fang
Chen. A Data Driven Approach for Leak Detection with Smart Sensors. 2020 16th
International Conference on Control, Automation, Robotics and Vision (ICARCV),
Shenzhen, China, 2020, pp. 1311-1316.

Abstract

Graph Neural Networks (GNNs) have emerged as a powerful tool for analyzing graph-
structured data, enabling effective graph representation learning and capturing complex
dependencies among nodes. This thesis presents three research works that contribute to
the advancement of GNNs in generalization, scalability, and interpretability.

The first research work proposes a general and scalable GNN framework called Virtual
Adjacency Graph Neural Network (VAGNN). VAGNN introduces the concept of an opti-
mizable virtual adjacency matrix, enabling the flexible construction of neighborhood sets
for aggregation in GNNs. It overcomes the limitations of existing GNNs by customizing
the inclusion of local and global nodes, offering a selection of attention mechanisms for
the aggregation function, and providing the ability to incorporate supplementary infor-
mation for further control over the aggregation process. VAGNN demonstrates improved
generalization and scalability capabilities, with experimental evaluations on real-world
datasets validating its performance.

The second work focuses on the interpretive analysis of GNNs in link prediction. By
exploring the underlying mechanisms of GNNs in link prediction, this research investigates
the learning of pair-specific structural information and the effectiveness of node embed-
dings in GNNs. Our analysis shows that traditional link heuristics like common neighbors
convey effective information that is difficult to be learned by GNNs. Also, we discover
that node embeddings can enhance the performance of GNN-based link prediction, and
the denser the graph, the more the enhancement. This work reveals the limitations of
existing GNN-based link prediction models and highlights the importance of incorporating
common neighbor-based heuristics. Empirical evaluations on real-world datasets support
our findings and provide insights for the design of more robust link prediction algorithms.

The third research work undertakes an investigation into the inner working mechanism
of diverse GNN techniques in real-world scenarios. Our objective revolves around identi-
fying the challenges that arise in practical problems, proposing subsequent solutions to
these challenges through the utilization of various techniques, and providing insightful
interpretations regarding the effectiveness of these techniques. Specifically, our investi-
gation is concentrated in the context of node classification, where the nodes in a graph
are distributed geospatially and associated with temporal information. We introduce a
GNN-based framework called Multi-hop Attention-based GNN (MAG). This framework

x

develops a novel geographical graph construction method, aiming to capture the geo-
graphical neighboring effects among nodes. Furthermore, MAG addresses a multitude
of challenges, including differentiating information from different neighbors through an
attention mechanism, mitigating the over-smoothing issue via the use of residual con-
nections, and capturing temporal effects with the integration of a point process module.
Experimental evaluations on real-world datasets demonstrate the superiority of MAG over
previous models, validating the effectiveness of our proposed framework and supporting
our interpretations and findings.

These research works contribute to the development and understanding of GNNs. They
present novel GNN frameworks, provide insights into the strengths and limitations of
GNNs in link prediction, and interpret the working mechanism of different techniques in
GNNs. The findings and methodologies presented in this thesis contribute to advancing the
field of graph representation learning and open up new possibilities for analyzing complex
systems represented as graphs.

Contents

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Background . 1
1.2 Research Motivations, Objectives and Contributions 2

1.2.1 VAGNN: A General and Scalable GNN Framework 2
1.2.2 An Interpretive Analysis of GNNs in Link Prediction 4
1.2.3 Exploring the Functionalities of Diverse GNN Techniques in Real-

World Scenarios . 5
1.2.4 A Summary of Contributions . 7

1.3 Thesis Organization . 7

2 Literature Review 9
2.1 Notations . 9
2.2 Graph Neural Networks . 10

2.2.1 Graph Convolutional Network 10
2.2.2 Graph Attention Network . 12
2.2.3 Addressing the Scalability Challenges in GNNs 14
2.2.4 High-hop GNNs . 17
2.2.5 Graph Transformers . 19
2.2.6 More Noteworthy GNNs . 22

2.3 Other Graph Representation Learning Methods 24
2.3.1 Graph Autoencoders . 24
2.3.2 Random Walk Methods . 24
2.3.3 Representation Leaning on Dynamic Graphs 26
2.3.4 Point Process Embedding Methods 30

2.4 Summary . 33

xii Contents

3 VAGNN: A General and Scalable GNN Framework 35
3.1 Introduction . 35
3.2 Preliminary . 37
3.3 The Proposed VAGNN . 38

3.3.1 Attention Methodologies . 40
3.3.2 The Extra Weight . 42
3.3.3 Virtual Adjacency Matrix . 42
3.3.4 The Expressiveness of VAGNN 44

3.4 Experiments . 45
3.4.1 Datasets . 45
3.4.2 Implementation . 49
3.4.3 Examination of VAGNN Generalization Capabilities 50
3.4.4 Parameter Sensitivity Study on Virtual Adjacency Matrix 53
3.4.5 Attention Methods Assessment 54
3.4.6 Exploration of the Superior Model Performance 55

3.5 Summary . 55

4 An Interpretive Analysis of GNNs in Link Prediction 57
4.1 Introduction . 57
4.2 Preliminaries . 60

4.2.1 Problem Definition . 60
4.2.2 NCN-dependent Structural Information 60
4.2.3 GNNs in Learning the Number of Neighbors 61

4.3 NCN-dependent Structural Information cannot be Effectively Learned via
GNNs . 63
4.3.1 Analytical Study . 63
4.3.2 Empirical Study . 65
4.3.3 Experimental Settings . 66

4.4 Node Embedding in Link Prediction . 67
4.4.1 Experimental Observations . 67
4.4.2 Analytical Insights into Node Embeddings 67

4.5 Limitation Analysis of Existing Methods 69
4.5.1 A Survey of Link Prediction Methods 69
4.5.2 Limitation Analysis . 71
4.5.3 Further Analysis of Experimental Results 74

4.6 More on the Experiments . 76
4.6.1 GNN Models Used in the Experiments 76
4.6.2 SEAL-type Methods. 78
4.6.3 Implementation Details . 78

Contents xiii

4.6.4 Additional Experimental Results 78
4.7 Summary and Implication . 78

5 Exploring the Functionalities of Diverse GNN Techniques in Real-World
Scenarios 81
5.1 Introduction . 81
5.2 Related Work in Pipe Failure Prediction 83
5.3 Problem Formulation . 84
5.4 Proposed Framework . 85

5.4.1 GNN Module . 85
5.4.2 Multi-hop Aggregation . 85
5.4.3 Attention-based GNN Layer . 86
5.4.4 Residual Connections and Layer-wise Aggregation 87
5.4.5 Learning Temporal Failure Pattern 88
5.4.6 Failure Predictor . 88

5.5 Experiments . 89
5.5.1 Datasets . 89
5.5.2 Data Preprocessing . 89
5.5.3 Experimental Settings . 92
5.5.4 Main Results . 93

5.6 Further Analysis . 94
5.6.1 The Sensitivity of Aggregation Methods 94
5.6.2 Failure Detection Rate . 95
5.6.3 Hyper-parameters and Training Time 95

5.7 Application . 96
5.7.1 Pipe Prioritization Platform . 96
5.7.2 Feature Importance . 99

5.8 Summary . 100

6 Conclusion and Future Work 101
6.1 Conclusion . 101
6.2 Future Work . 102

Bibliography 105

List of Figures

2.1 Over smoothing when the number of graph convolution layers increases.
The points are the node embeddings of Zachary’s karate club graph with
GCNs. Figure is extracted from Li et al [78]. 11

2.2 The standard GAT (left) computes static attention - the ranking of attention
coefficients is global for all nodes in the graph, and is unconditioned on
the query node. In contrast, GATv2 (right) can actually compute dynamic
attention, where every query has a different ranking of attention coefficients
of the keys. This figure is from the work of [14]. 13

2.3 Performance comparisons of using one cluster versus multiple clusters.
The former approach uses 300 partitions, while the latter involves the
utilization of 1500 partitions, with a random selection of 5 partitions to
compose each batch. The results present the epoch (x-axis) versus the F1
score (y-axis). This figure is from the work of Cluster-GCN [25]. 16

2.4 The architecture of a representation learning method for dynamic graphs
from Manessi et al. [91]. 28

2.5 Visualization of four models. Image extracted from MHDNE [155]. . . . 33

3.1 An illustration of the methods constructing a virtual adjacency matrix on
an undirected graph. 39

3.2 The results of the parameter sensitivity study on the virtual adjacency
matrix construction. The three plots (a) (b) (c) correspond to three different
configurations for the 1-hop conversion of high-hop local neighboring
nodes. For example, in plot (a), the term "1-hop" represents the virtual
adjacency matrix that uses the local neighboring nodes within 1 hop (i.e.,
only the actual 1-hop nodes). In plot (b), the term "2-hop" refers to the
conversion of local neighboring nodes within 2 hops into 1-hop neighbors
in the virtual adjacency matrix. The colors of grid cells in the plots
indicate the performance (Hits@20) of the proposed VAGNN on the ogbl-
ddi dataset. 50

xvi List of Figures

3.3 The performance improvement of attention-based GNN models over the
baseline GCN [64]. Boxplots present the statistical analysis based on the
results obtained from the nine datasets used in this work. 54

4.1 An illustration of neighborhood information propagation and aggregation
in GNNs, where ai, j can be an edge weight or attention weight from node
j to i. 62

4.2 The results of Algorithm 3 using heuristic encoding (HE) only, node
features (X) only, node embeddings (NE) only, or their combinations. The
nodes in ogbl-ddi do not have any features and we use the node degree as
the node feature. 65

4.3 Node labeling in SEAL-type methods. The left is a subgraph specific for a
positive link sample and the right is a negative one. The labeling features
are based on the SPDs from every node (here only show the first-order
neighbors of node v or w) to the target pair of nodes. For example, on the
left, the node with the labeling (1,10) indicates that the SPD from this
node to node v and u is 1 and 10, respectively. 73

4.4 Results of different methods for link prediction on four OGB datasets. For
MLP and general GNNs, we present their results obtained by utilizing node
embeddings, considering the dominant performance of node embeddings
as shown in Fig. 4.2. 74

4.5 The algorithmic flow chart of SEAL-type methods. 77
4.6 Results of encoding different numbers of link heuristics. We can find that

the best result on each dataset is achieved by encoding a certain number of
heuristics rather than all heuristics. 79

5.1 The architecture of our proposed framework MAG. It contains two main
procedures: data preprocessing and failure prediction. Data preprocessing
includes data collection, geographical graph construction, feature engi-
neering, and temporal failure series extraction. In graph construction, two
nodes are geographically linked (red edge) if two corresponding pipes
without physical joint are geographically close to each other. In each GNN
layer, we employ an attention mechanism and multi-hop aggregation. We
add a layer-wise aggregation layer following the last GNN layer and the
hidden representations of previous GNN layers are reserved in this layer
through residual connections. In addition to the GNN module, We use a
module to learn the temporal failure pattern including the base evolutionary
effect and historical failures’ time-decayed excitement on the current state
of a pipe. MLP is used as the final failure predictor. 83

List of Figures xvii

5.2 An example of our data shown on the map. It includes water pipes (green
lines) and failures (yellow dots), sewer pipes (blue line) and failures (light
blue dots), as well as tree canopy (red polygons). 90

5.3 Failure analysis on elevation-based features. Failure rate is defined as
the number of pipe failures per 100KM per year. Slope is the elevation
difference between two ends of a pipe divided by pipe length. More than
95% of pipes have the slope less than 0.08. There are three types of shapes
for three adjacent pipes in the elevation direction. 90

5.4 Comparison of baseline GCN [64] and GraphSAGE [46]. GS1 is the
GraphSAGE with concatenation as COMBINE(·) and mean pooling as
AGG(·), GS2: concatenation and LSTM aggregator, GS3: concatenation
and max pooling, GS4: max and mean pooling, GS5: max pooling and
LSTM aggregator, GS6: max and max pooling. 95

5.5 Failure detection rate vs ranking predictions on water pipe dataset. 96
5.6 Failure detection rate vs ranking predictions on sewer pipe dataset. 97
5.7 An example of risk map based on pipe prioritization. 97
5.8 Feature importance. 98

List of Tables

2.1 Random partition versus clustering partition of the graph on the GNN
performance. Clustering partition leads to better performance (in terms of
test F1 score) since it removes fewer between-partition links. Results are
from the work of Cluster-GCN [25]. 15

3.1 A brief summary of the notations used in VAGNN 38
3.2 Statistics of OGB link prediction datasets used in our experiments. 48
3.3 Results of node classification. 51
3.4 Results of link prediction . 51
3.5 Results of graph classification . 52

4.1 NCN-dependent link heuristics between nodes v,u. 60
4.2 Results on test sets of OGB link prediction datasets. Higher is better. For

a fair comparison, we only list the results that do not take advantage of the
validation dataset as training data. 77

5.1 Basic statistics for two pipe datasets . 89
5.2 Feature description . 91
5.3 Results for two pipe networks . 93
5.4 Best tuned hyper-parameters for our framework 96

Chapter 1

Introduction

1.1 Background

Graph Neural Networks (GNNs) are a class of neural networks that have achieved sig-
nificant success in recent years for their ability to effectively analyze and model graph-
structured data. Unlike traditional neural networks that operate on regular grid-like or
sequential data such as images [68, 49], texts [135, 30], and audio signals [50, 8], GNNs
are designed to handle graph-structured data, where nodes (also known as vertices) are
interconnected by edges (also known as links), and the number of neighboring nodes varies
across different nodes. GNNs have demonstrated remarkable efficacy in a wide range of
real-world scenarios, such as social network analysis [9], recommendation systems [157],
and molecular chemistry analysis [84].

The development of GNNs can be traced back to the early 2000s or possibly even
earlier when researchers began exploring ways to extend traditional neural networks to
effectively process diverse graph structures [175, 42]. A significant breakthrough in GNNs
came with the introduction of Graph Convolutional Network (GCN) by Kipf and Welling
in 2016 [64]. Specifically, the convolutional operation is originally developed for analyzing
regular grid-like data, leveraging local contextual relationships and sharing weights to
learn hierarchical representations [74, 50]. Different from the regular grid-like data in
which each node (a pixel in an image) has fixed number of neighboring nodes, nodes
in graph-structured data have diverse numbers of neighbors, which brings traditional
neural networks algorithmic challenges in propagating information from neighbors to
the central nodes [175, 42, 64]. GCN adapts the concept of convolution to the graph
domain. It introduces a localized neighborhood aggregation scheme, which iteratively
updates the representation of each node by aggregating information from its neighboring
nodes. This iterative process is typically performed over multiple layers, enabling the
GCN to propagate and incorporate information over the irregular graph structures and
capture higher-order dependencies among nodes. Consequently, the GCN enables effective

2 Introduction

node-level representation learning from both node features (attributes associated with each
node) and the graph topology (connectivity pattern between nodes).

Over the years, numerous variations and extensions of GNNs have been proposed,
each addressing different challenges and leveraging different aspects of graph data. Some
notable GNN architectures include GraphSAGE [47], Graph Attention Network (GAT)
[136], Distance Encoding GNNs (DEGNN) [77], Graph Transformers [135, 30], and
others. These models differ in terms of neighborhood construction strategies, attention
mechanisms, global node utilization, and other architectural designs.

The development and advancement of GNNs have significantly contributed to the
field of graph representation learning and have opened up new possibilities for analyz-
ing and understanding complex structured data. Ongoing research continues to explore
advancements in GNNs, addressing challenges such as scalability, interpretability, etc.
Researchers are also exploring novel applications and adapting GNNs to domains such as
computer vision [123], natural language processing [146], and reinforcement learning [96].
As the field continues to evolve, GNNs are expected to play a crucial role in advancing our
understanding and analysis of complex systems represented as graphs.

1.2 Research Motivations, Objectives and Contributions

This thesis presents a comprehensive exploration of GNNs, encompassing three distinct
research works that contribute to the advancement of GNNs in terms of generalization,
scalability, and interpretability.

1.2.1 VAGNN: A General and Scalable GNN Framework

The first research work focuses on the development of a general and scalable GNN frame-
work called Virtual Adjacency Graph Neural Network (VAGNN). The motivation behind
VAGNN stems from a comprehensive commonality analysis of various GNN architectures.
Specifically, a majority of modern GNNs belong to the family of the neighborhood aggre-
gation algorithm [150], also referred to as the message-passing mechanism [40]. These
models introduce innovations mainly centered on the neighborhood construction methods
and aggregation functions. For example, GraphSAGE [46] removes certain actual edges to
improve the computational efficiency of GNNs, where a fixed-size set of 1-hop neighbors
is uniformly sampled from the full neighborhood sets. High-hop GNNs, such as DEGNN
[77], MixHop [1], and KPGNN [35], incorporate higher-hop neighboring nodes along with
1-hop nodes for neighborhood aggregation. Graph Transformers [32, 159, 156, 19] employ
the self-attention mechanism that takes into account all nodes, where the neighborhood of
each node for aggregation is all the other nodes in the graph.

1.2 Research Motivations, Objectives and Contributions 3

However, existing GNNs exhibit certain deficiencies. Most previous GNNs primarily
concentrate on local neighbors within limited hops, neglecting the incorporation of global
nodes. On the other hand, graph transformers [167, 32, 156, 102] take into account all
nodes in the process of neighborhood information aggregation, with each node attending to
every other node during self-attention computation. Nevertheless, such graph transformers
come with several limitations. Firstly, the inclusion of numerous global nodes would
excessively dilute the information from local neighbors, leading to the over-dilution issue
[69]. Secondly, this setting makes the graph Transformer computationally expensive
or even infeasible for large graphs [156]. Moreover, it can be likened to a language
Transformer [135] taking the entire dictionary as input instead of a single sentence, which
is unreasonable.

The objective of this research work is to explore common characteristics among diverse
GNN architectures and graph Transformers [64, 137, 156], with the goal of unifying them
through the introduction of a more general GNN framework. We propose VAGNN, a
novel approach that incorporates an optimizable virtual adjacency matrix to improve the
generalization and scalability of GNNs. Our method introduces the concept of the virtual
adjacency matrix, allowing for a more flexible construction of the neighborhood set for
aggregation in GNNs. Firstly, with the concept of the virtual adjacency matrix, we can
construct the neighborhood set for the aggregation in GNNs from a general perspective.
Unlike conventional GNNs that construct a fixed neighborhood set, VAGNN enables
customization of the set by selectively removing 1-hop neighbors and incorporating high-
hop local neighbors and global nodes. Additionally, VAGNN offers a selection of attention
mechanisms for the aggregation function and the option to incorporate supplementary
information for further control over the aggregation process. Theoretically, VAGNN can be
transformed into a majority of existing GNNs and graph Transformers[137, 77, 35, 156].
Also, it holds the potential to achieve superior performance by optimizing the virtual
adjacency matrix and tailoring aggregation methods specifically for the given graph dataset.

The virtual adjacency matrix in VAGNN serves as a mask to determine whether the
nodes require attention calculation and information aggregation or not. When implementing
VAGNN based on sparse matrix operations, its computational complexity exhibits a linear
relationship with the number of node pairs used for neighborhood aggregation. This
linear complexity demonstrates the scalability of VAGNN, rendering it well-suited for
large graphs [54]. Especially, by selectively choosing global nodes, VAGNN effectively
overcomes the scalability challenges associated with the utilizzation of global nodes in
graph Transformers [159, 156, 102], reducing the storage complexity from O(N2) or even
O(N3) to N, where N denotes the total number of nodes in a graph.

Experimental evaluations on diverse real-world datasets validate the generalization
and scalability capabilities of VAGNN. Parameter sensitivity analysis using VAGNN also
reveals the importance of carefully selecting and balancing the inclusion of local and global

4 Introduction

information. This work lays the foundation for further exploration in developing more
efficient techniques for virtual adjacency matrix construction and weighted aggregation
functions, opening up possibilities for the design of more robust GNNs in the future.

1.2.2 An Interpretive Analysis of GNNs in Link Prediction

The second research work conducts an analytical and empirical analysis of GNNs in
link prediction. Link prediction is a node-pair-specific problem, aiming to estimate the
likelihood of the existence of an unknown edge between two nodes in graphs. Link
prediction plays a pivotal role in various fields, including social network analysis [9],
recommendation systems [157], and biological network analysis [84]. Understanding the
underlying mechanisms and factors that drive link formation and evolution is crucial for
accurate link predictions. This work investigates the inner workings of GNNs for link
prediction, exploring the impact of different components including node features, node
embeddings, heuristic information like common neighbors, etc. Through a combination of
theoretical analysis and empirical evaluations on real-world datasets, this research work
aims to provide valuable insights into the strengths and limitations of GNNs for link
prediction tasks.

GNNs have demonstrated powerful expressiveness in graph representation learning
[173]. However, what structural information specific to two nodes can be learned via
GNNs remains an open question. A prominent task that relies on such information is
link prediction. Nevertheless, existing GNN-based link prediction works [168, 124, 142,
171, 44, 145] primarily pay their attention to the model design, rare of them touch on the
question: Do their models learn pair-specific structural information for link prediction?

Motivated by this, we present analytical and empirical investigations into the link
prediction capability of GNNs, with a focus on two fundamental questions: 1) whether
GNNs can effectively learn the pair-specific structural information related to the number of
common neighbors? and 2) node embeddings can improve the performance of GNN-based
link prediction models, and the denser the graph, the more the improvement. How do we
interpret this?

In GNNs, a neighborhood aggregation scheme is typically employed, where the rep-
resentation of each node is iteratively updated by aggregating the representations of that
node and its neighbors [27]. However, it has been recognized that the learned node-wise
representations can hardly capture information related to the number of its neighbors,
primarily because the set-based pooling of the aggregation scheme inherently disregards
the size of the neighborhood set of each node [150, 170].

A strategy for applying node-wise representations learned by GNNs to downstream
multiple-node tasks (e.g., link prediction, graph classification, etc.) is to combine the
representations of the nodes involved in these tasks. For link prediction, we find that

1.2 Research Motivations, Objectives and Contributions 5

the combination of two nodes’ representations essentially lacks the ability to capture
information related to the number of common neighbors. This is mainly because node-
wise representations learned by GNNs inherently lack information about the number of
neighbors of each node, and most operations of combining two nodes’ representations
(e.g., concatenation, Hadamard production, etc.) also do not contain any behaviors of
counting how many common neighbors between two nodes. To empirically verify this,
we incorporate traditional link heuristics (e.g., Common Neighbors) into the GNN and
compare the link prediction performance between the GNN combined with link heuristics
and only the GNN. The approach yields results either superior or comparable to those
obtained by using only GNNs, experimentally supporting our analysis.

In our experiments, we find that trainable node embeddings can enhance the perfor-
mance of GNN-based link prediction models, and the denser the graph, the stronger the
enhancement. Our explanation is as follows. Compared to the model weights of a GNN
that are shared across all nodes [64, 27], each trainable node embedding is unique to its
respective node. This characteristic of node embeddings can benefit the model. When the
training is supervised by positive and negative link samples (i.e., two nodes are not linked),
the link state of two nodes in every link sample could be encoded into the embeddings
of that two nodes and the embeddings of their neighboring nodes under the help of the
neighborhood aggregation process of the GNN. This would enable each node embedding to
remember the relationships of that node to other nodes, allowing the model to know better
which two nodes are more likely to be linked or not. Furthermore, in the neighborhood
aggregation of the GNN, the denser graphs would allow each node to see more other nodes,
allowing for better learning of node embeddings for link prediction.

This research work provides deeper insights into the expressiveness of GNNs in link
prediction. These insights can help identify and interpret the limitations of existing link
prediction methods, potentially directing the search for more robust algorithms. In addition,
we empirically compare the performance of multiple types of link prediction methods on
real-world datasets. The results can be interpreted with our insights, further underlining
the significance of our findings.

1.2.3 Exploring the Functionalities of Diverse GNN Techniques in
Real-World Scenarios

Various advanced techniques have been developed within the realm of GNNs, including
attention mechanisms, high-hop neighborhood construction, residual connections, and
more. Despite the progress, certain fundamental questions remain open regarding the inner
working functionality as well as the effectiveness of these techniques in addressing chal-
lenges inherent in the practical applications of GNNs. Without the loss of generalization,
this study is dedicated to answering these questions within the context of a real-world

6 Introduction

application: pipe failure prediction in water pipe networks. Several characteristics of
the pipe networks make such an application an ideal testing-ground for validating and
exploring different GNN techniques. To begin, the pipes possess a multitude of attributes,
such as length, material, and diameter, with each attribute spanning a distinguishable range
of values. Secondly, the pipes are accompanied by temporal information, including pipe
age, historical failure occurrences, maintenance records, etc. Furthermore, the pipes are
distributed geographically, which requires the construction of the graph representing the
pipe network to consider not only physical connections but also geospatial neighboring
effects among pipes1. Lastly, we treat pipes as nodes in the graph construction and the
problem of pipe failure prediction can be transformed to a node classification task.

In this research, we introduce a novel GNN-based framework called Multi-hop Attention-
based GNN (MAG). We integrate a diverse set of advanced techniques into MAG and
provide an in-depth interpretation of the roles played by these techniques in tackling
challenges that arise in pipe failure prediction applications.

The first challenge we address is capturing both the structural information of pipe
connectivity and geographical neighboring information by the GNN. To achieve this,
we represent the pipes as nodes and construct the edges between nodes according to the
physical joints between pipes and the geographical distance between the two corresponding
pipes. Secondly, the neighborhood information aggregation of GNN may lead to the
loss of key information associated with pipes, especially when the connected pipes vary
significantly. To address this concern, MAG adopts an attention mechanism to learn
adaptive weights for the adjacent nodes and thus differentiate the dissimilar neighbors in
the aggregation process. Additionally, GNNs provably suffer from the over-smoothing [78]
issue that the representation of the target central node in deep GNN layers may be over-
smoothed by averaging the information from a too wide range of neighbors. To overcome
this issue, we introduce residual connections and layer-wise aggregation [151, 75] to our
GNN model. Lastly, we acknowledge the significant temporal impact of historical failures
on the current state of pipes [31]. Consequently, we develop a temporal pattern learning
module to complement the GNN module in capturing and leveraging temporal information
encoded in historical failure records.

Overall, the work introduces novel elements to address challenges in real-world sce-
narios using the GNN, including the neighborhood construction by considering the ge-
ographical distribution of nodes, the attention mechanism to capture the dissimilarity

1There exist two critical pieces of information embedded in pipe networks, i.e., the structure of pipe
connectivity and geographical neighboring effects. Regarding the pipe connectivity, industry practices
indicate that when a pipe fails, additional failures are likely to occur on the pipes that are on the same route
(connected to the failed pipe) due to physical effects such as water hammer [115]. In terms of geographical
neighboring effects, nearby pipes, even those not directly connected to the failed pipe, may still exhibit a
higher likelihood of failures due to shared environmental factors, including soil properties, ground vibrations,
and so forth [11, 98]

1.3 Thesis Organization 7

of nodes with regard to their properties, and the residual connections to overcome the
over-smoothing issue of the GNN. Our framework is evaluated on two real-world pipe
network datasets. Experimental results show that it outperforms the statistical and machine
learning models, as well as the GNN baselines. These results affirm our analysis of the
challenges encountered in practical applications and demonstrate the effectiveness of the
techniques employed to tackle these challenges.

1.2.4 A Summary of Contributions

The three studies collectively advance the field of GNNs by addressing distinct challenges
and offering innovative solutions. The first study introduces VAGNN, a scalable framework
overcoming limitations in existing GNNs by introducing a virtual adjacency matrix for
flexible neighborhood set construction. Demonstrating linear computational complexity
and validated through real-world experiments, VAGNN lays the groundwork for future
advancements of GNNs in virtual adjacency matrix construction and weighted aggregation
functions. The second study conducts an interpretive analysis of GNNs in link prediction,
revealing their limitations in capturing pair-specific structural information represented by
link heuristics like Common Neighbors. It also experimentally discovers that trainable node
embeddings can effectively enhance GNN-based link prediction performance, especially in
denser graphs. This study provides valuable insights into GNNs in link prediction, guiding
the development of more robust link prediction algorithms. The third study addresses the
challenges of GNNs in real-world pipe networks, presenting the Multi-hop Attention-based
GNN (MAG) framework that integrates various techniques to effectively capture structural,
geographical, and temporal information embedded in pipe networks. MAG outperforms
statistical models, machine learning algorithms, and GNN baselines in real-world datasets,
contributing crucial insights for applying GNN techniques to complex scenarios.

1.3 Thesis Organization

This thesis presents a comprehensive investigation of GNNs, which contributes to the
growing body of knowledge in this field and demonstrates their potential across multiple
domains by facilitating effective analysis, prediction, and decision-making in complex
graph-structured data. The subsequent chapters are organized as follows:

• Chapter 2 provides the notations used in this thesis and a thorough literature survey
of GNNs as well as related techniques.

• Chapter 3 introduces our VAGNN, a novel framework designed to enhance the
generalization and scalability of GNNs with an optimizable virtual adjacency matrix.

8 Introduction

• Chapter 4 explores the inner workings of GNNs in the link prediction task. By
investigating the impact of various components such as node features, node embed-
dings, and heuristic information, we offer valuable insights into the strengths and
limitations of GNNs for link prediction.

• Chapter 5 demonstrates our investigation into the roles played by different GNN
techniques in real-world applications.

• Chapter 6 concludes this thesis.

Chapter 2

Literature Review

In today’s interconnected world, data often comes in complex structures where relation-
ships between entities play a crucial role in revealing insights. Graphs, a fundamental
concept in mathematics and computer science, offer a powerful framework to model
and analyze such relationships. Graph representation learning has emerged as a critical
research area to effectively extract valuable information from graphs. This chapter pro-
vides a comprehensive overview of graph representation learning, with a special focus
on GNNs [172] and other significant branches of graph representation learning methods,
such as Matrix Factorization methods [65, 93], random walk methods [104, 43], graph
autoencoders[139, 18, 133], and point process encoding approaches [178, 155].

2.1 Notations

In this thesis, we denote a set using a blackboard bold uppercase letter (e.g., N), a matrix
using a bold uppercase letter, a vector using a bold lowercase letter, and a scalar using a
lowercase letter.

Let G = (V,E,X) denotes a graph G with N nodes, where V is the set of nodes,
|V|= N, E is the set of edges, and X ∈ RN× f is the feature matrix for all nodes. xi ∈ R f

(i.e., the i-th row of X) is the feature vector of a node vi. A set of nodes connected directly
to a node vi ∈ V is the set of first-order or 1-hop neighbors of the node vi.

The adjacency matrix is an N×N square matrix, storing the actual connections between
nodes. It is denoted as A ∈ RN×N , in which the i, j-th entry (i.e., ai, j) is 1 if an edge exists
from node vi to v j, and 0 otherwise. The degree of node vi is deg(i) = ∑v j∈V ai, j. The
degree of the graph G is the average degree of all nodes.

10 Literature Review

2.2 Graph Neural Networks

GNNs have emerged as a prominent paradigm in machine learning, showing remarkable
success across numerous applications such as node classification [64, 136], link prediction
[165, 160, 140], and graph classification [150, 19, 138]. Over the past years, significant
advancements have been made in the development of various GNN architectures. This
section aims to provide a detailed overview of notable GNN architectures.

2.2.1 Graph Convolutional Network

To begin, Graph Convolutional Network (GCN) [64] introduces a simple yet effective
neighborhood aggregation mechanism for aggregating node features from neighboring
nodes in the graph. An L-layer GCN is composed of L graph convolution layers. In each
layer, the representation vector for each node is updated by aggregating the representations
of that node itself and its neighbors from the previous layer. Such aggregation process
iteratively updates the representations of nodes throughout the network. Formally, the l-th
GCN layer can be expressed based on matrix multiplication as below:

H(l+1) = σ

(
D̂−1/2ÂD̂−1/2H(l)W(l)

)
, (2.1)

where Â = A+ IN , where IN is an N-dimensional identity matrix. Â is the result from
adding self-connection to each node in A. D̂−1/2ÂD̂−1/2 is a normalized version of the
matrix Â. H(l) ∈RN×d and H(l+1) ∈RN×d′

are the input and output node representations in
the l-th layer of a GCN. The i-th row of H is denoted as hi ∈ Rd which is a d-dimensional
representation of the node vi. H(0) = X is initialized with the input feature matrix. W(l) ∈
Rd×d′

is a trainable weight matrix. σ(·) is an activation function.

Graph Laplacian The form D̂−1/2ÂD̂−1/2H(l) in Equation 2.1 corresponds to propa-
gating a weighted average of the representations of each node and its 1-hop neighbors to
that node. In essence, the work of Li et al [78] has shown that the convolutional operation
of spectral GCN is a special form of Laplacian smoothing, i.e., symmetric Laplacian
smoothing. Specifically, given the adjacency matrix with self-loop Â = A+ IN for a graph,
the Laplacian smoothing [130] on each channel of the input features is formulated by

ŷi = (1− γ)hi + γ ∑
j

âi j

di
h j (2.2)

where 1 ≤ i ≤ N, 1 ≤ γ ≤ 1, di is the degree of node vi. γ is a parameter that controls the
weighting between the representation of the current node xi and its neighbors’ representa-

2.2 Graph Neural Networks 11

Figure 2.1 Over smoothing when the number of graph convolution layers increases. The
points are the node embeddings of Zachary’s karate club graph with GCNs. Figure is
extracted from Li et al [78].

tions h j. The Laplacian smoothing in Equation 2.2 can be written in matrix form:

Ŷ = H− γD̂−1L̂H = (IN − γD̂−1L̂)H (2.3)

where L̂ = D̂ − Â. Particularly, the standard Laplacian smoothing is in the form of
Ŷ = D̂−1ÂX, which is the case of γ = 1 in Equation 2.3, i.e., Ŷ = (IN − D̂−1L̂)X =

(IN − D̂−1(D̂− Â))X = D̂−1ÂX. The form D̂−1L̂ is called the normalised Laplacian. The
D̂− 1

2 ÂD̂− 1
2 in Equation 2.1 is a symmetric normalised Laplacian D̂− 1

2 L̂D̂− 1
2 when γ = 1.

Over-smoothing Issue Given a GCN model, the first graph convolution layer preserves
the first-order proximity while the following convolution layers of GCN can capture high-
order proximity. However, a GCN model cannot include too many graph convolution
layers since it suffers from the over-smoothing issue as the number of graph convolution
layers increases [78].

Figure 2.1 shows a toy experiment in the work of Li et al [78]. The GCN models with
different numbers of convolution layers are trained on the Zachary’s karate club data [162]
which contains two classes of 34 nodes and 78 edges. The input feature vector is a one-hot
vector for each node. The nodes are plotted as points in Fig. 2.1, where the color of points
indicates the class of nodes. It can be seen that the points are not well separated when
the GCN has only 1 graph convolutional layer, and GCN with 2 convolutional layer can
separate the points into two classes relatively well, while the points are mixed quickly
with the increasing number of graph convolutional layers. Li et al [78] prove that the
representations of nodes within each linked subgraph will converge to the same values
when repeatedly applying Laplacian smoothing many times. For symmetric normalized
Laplacian, the convergence is proportional to the square root of the node degree.

Aggregation-based GNNs GCN serves as a foundational architecture for many sub-
sequent GNN models. As the GNN landscape has evolved, a multitude of architectural
variations have emerged. Remarkably, the majority of these GNN architectures adhere
to a common framework centered around the scheme of the neighborhood aggregation
algorithm [27]. Such the algorithm, which lies at the heart of GNNs’ functionality, can be

12 Literature Review

formalized as follows1:

h(l+1)
i = AGGREGATE(l)

({
h(l)

j | v j ∈ N(vi)∪{vi}
})

, (2.4)

where N(vi) is the set of neighboring nodes of node vi. The function AGGREGATE(·)
defines the aggregation operation over the set of representations

{
h(l)

j | v j ∈ N(vi)∪{vi}
}

.
The formulation of AGGREGATE(·) varies across different GNN models. Indeed, the
innovations of most existing GNNs center around two key aspects: the methods for
constructing the neighborhood set N(vi) and the specific method of AGGREGATE(·). In
the following, we present an overview of these existing GNN architectures.

2.2.2 Graph Attention Network

Attention mechanisms have been incorporated into GNNs to dynamically weigh the
importance of neighboring nodes during the aggregation process, allowing the model
to focus more on relevant nodes while downplaying the influence of less relevant ones.
The attention-based GNNs can lead to more effective representation learning and better
generalization to complex graph-structured data.

Among the various advancements in the field, Graph Attention Network (GAT) [136]
stands out as a widely acclaimed architecture. The GAT architecture consists of multiple
attention heads, each computing its own attention coefficients. The outputs from different
heads are then concatenated and linearly transformed to produce the final node embeddings.
GAT processes each node’s neighbors with attention weights, enabling it to adaptively
weigh the importance of different neighbors for each node. The core innovation of GAT
lies in its approach to computing attention coefficients. Formally, in the l-th layer of the
m-th head, the attention coefficient between nodes vi and v j can be calculated based on
their representations as below:

ATTN
(

h(l)
i ,h(l)

j

)
= σ

(
q(l,m) ·

(
CONCAT

(
h(l)

i W(l,m)
Q ,h(l)

j W(l,m)
Q

))⊤
)
, (2.5)

where σ(·) is an activation function, the ·⊤ represents transposition, CONCAT(· · ·) is the
concatenation operation, W(l,m)

Q ∈ Rd×dA is a trainable weight matrix shared across all

nodes, and q(l,m) ∈R2dA is a weight vector. Note that W(l,m)
Q transforms the representations

of nodes from the dimension d into dA, which offers the advantage of optimizing computer
memory usage through assigning a small value to the hyper-parameter dA when computing
attention on large graphs.

Despite the success of GAT, Brody et al. [14] reveal a limitation in GAT in terms of
the attention mechanism. Their findings reveal that GAT employs a restricted "static" form

1For simplicity, we omit the residual connections, activation functions, etc.

2.2 Graph Neural Networks 13

of attention. In this form, the attention function for any given target (query) node exhibits
monotonic behavior with respect to the scores of its neighbors (keys). As illustrated in
Fig. 2.2, the ranking order of attention coefficients remains consistent across all nodes
within the graph, irrespective of the query node. This fact significantly constrains the
expressiveness of GAT.

The primary issue in the standard GAT scoring function (Equation 2.5) is that the
learned weights q(l,m) and W(l,m)

Q are applied consecutively, resulting in the collapse into a
single linear layer. To address this limitation, Brody et al. [14] propose a straightforward
yet effective modification. They advocate for applying the q(l,m) post nonlinearity (σ(·)),
leading to GATv2. Consequently, the attention computation is reformulated as:

ATTN
(

h(l)
i ,h(l)

j

)
= q(l,m)

σ

((
CONCAT

(
h(l)

i W(l,m)
Q ,h(l)

j W(l,m)
Q

))⊤
)
, (2.6)

Figure 2.2 The standard GAT (left) computes static attention - the ranking of attention
coefficients is global for all nodes in the graph, and is unconditioned on the query node. In
contrast, GATv2 (right) can actually compute dynamic attention, where every query has a
different ranking of attention coefficients of the keys. This figure is from the work of [14].

14 Literature Review

2.2.3 Addressing the Scalability Challenges in GNNs

With the goal of addressing the scalability challenges of GNNs and training deeper GNNs
on large-scale graphs, a spectrum of innovative techniques has emerged. These techniques
significantly reduce computational complexity while preserving the representation quality,
thus enabling GNNs to handle real-world graphs more effectively.

GraphSAGE GraphSAGE [47] is a pioneer work in this regard. Instead of using all
first-order neighboring nodes of each node in GCN [64], it employs an innovative sampling-
based strategy to select a fixed-size neighborhood. This strategy can be implemented
through various sampling techniques, such as random walk-based sampling or uniform
sampling. The fixed-size neighborhood allows GraphSAGE to control the computational
footprint of each batch and thereby efficiently manage the computational demands of each
processing batch. This attribute of GraphSAGE proves to be of paramount significance,
which paves the way for applying GNNs to large-scale graph analysis.

On the other hand, GraphSAGE offers an array of aggregation methods, including
MEAN-pooling, MAX-pooling, and LSTM aggregator [53]. This diversified aggregation
toolkit equips practitioners with the flexibility to tailor their approach to the specific
demands of their graph data, enhancing the adaptability and performance of the model
across diverse scenarios.

GraphSAINT GraphSAINT [164] introduces a novel sampling strategy for training
deep GNNs on large graphs. The primary objective of GraphSAINT is to tackle the
critical challenges of scalability and computational efficiency that arise when training
GNNs on large graphs containing millions or even billions of nodes and edges. Instead
of conventional approaches of building a GNN [64] on the entire graph, GraphSAINT
samples subgraphs from the entire graph first in the training. Naturally, GraphSAINT
resolves “neighbor explosion” for the neighborhood aggregation of each node in GNN
training, since the subgraph is a small yet complete graph that contains all the necessary
contextual information of nodes for accurate GNN training.

However, the subgraph sampling training method in GraphSAINT also brings new
challenges. It’s intuitive that nodes with a higher influence on each other should have a
greater likelihood of being included in the same subgraph. This allows these sampled
nodes to mutually "support" each other within the confines of the training process. As a
result, this strategy leads to non-uniform node sampling probabilities, introducing bias into
the learning node representations. To address this potential bias, GraphSAINT incorporates
normalization techniques into its training process. These techniques ensure that the feature
learning process doesn’t favor nodes that are more frequently sampled. Furthermore, the
authors of GraphSAINT conduct a variance reduction analysis to enhance training quality.

2.2 Graph Neural Networks 15

This involves designing lightweight sampling algorithms that quantify the "influence" of
neighboring nodes, thereby improving the overall quality of the training.

Table 2.1 Random partition versus clustering partition of the graph on the GNN perfor-
mance. Clustering partition leads to better performance (in terms of test F1 score) since it
removes fewer between-partition links. Results are from the work of Cluster-GCN [25].

Dataset random partition clustering partition
Cora [116] 78.4 82.5

Pubmed [76] 78.9 79.9
PPI [28] 68.1 92.9

Cluster-GCN Cluster-GCN [25] presents a novel methodology to enhance the efficiency
and effectiveness of training deep GNNs on large-scale graphs. The fundamental innovation
of Cluster-GCN lies in its utilization of a graph clustering strategy to divide the graph
into smaller clusters (subgraphs). In contrast to techniques that extract subgraphs like
GraphSAINT, Cluster-GCN employs graph clustering algorithms such as Metis [61] and
Graclus [29]. These algorithms are designed to partition the graph’s vertices, with the
primary goal of generating clusters where within-cluster links are more numerous than
between-cluster connections.

Two key motivations underline the choice of utilizing graph clustering. Firstly, the
efficient learning of node representations in each batch corresponds to leveraging the
within-cluster links. Given that nodes and their neighbors often reside within the same
cluster, local information propagation can be more efficient. Secondly, since prediction
errors tend to be influenced by between-cluster links, it’s essential to minimize these links
in order to reduce prediction inaccuracies.

The authors provide empirical evidence to support the efficacy of their approach. In one
experiment, they compare two different node partitioning strategies: random partitioning
versus clustering-based partitioning. The graph is divided into 10 segments using both
random and METIS-based partitioning, and each partition is used as a batch for GNN
training. The results are shown in Table 2.1. It demonstrates that, under the same number
of training epochs, clustering partitioning leads to higher accuracy. This underscores the
importance of utilizing graph clustering methods over random partitioning.

However, the paper acknowledges two potential challenges within the Cluster-GCN
framework. Firstly, when the graph is partitioned, certain links might be removed, poten-
tially impacting performance. Secondly, graph clustering algorithms tend to group similar
nodes together, which could alter the distribution of a cluster from that of the original
dataset. This alteration can result in biased learning of node representations.

16 Literature Review

To address these issues, Cluster-GCN introduces a stochastic multiple clustering
approach by incorporating multiple clusters (subgraphs) together in a training batch. This
approach is aimed at incorporating between-cluster links back into the training process to
mitigate the removal of important links during partitioning. Moreover, it helps in reducing
variance across subgraphs, ensuring that the cluster-based gradient estimations are more
representative of the global gradient. This innovation enhances the algorithm’s robustness
and accuracy, leading to more reliable GNN training results on large-scale graphs.

To validate the efficacy of the stochastic multiple clustering approach, the authors
conducted an empirical experiment on the Reddit dataset. The empirical results in Fig.
2.3 demonstrate that the utilization of multiple clusters within a single batch substantially
enhances the convergence performance compared to the use of one cluster as a batch.

Figure 2.3 Performance comparisons of using one cluster versus multiple clusters. The
former approach uses 300 partitions, while the latter involves the utilization of 1500
partitions, with a random selection of 5 partitions to compose each batch. The results
present the epoch (x-axis) versus the F1 score (y-axis). This figure is from the work of
Cluster-GCN [25].

More Methods In addition to the aforementioned models, the landscape of addressing
scalability challenges for training deep GNNs on large-scale graphs has been further en-
riched by various innovative approaches. With the utilization of Monte Carlo approaches,
FastGCN [21] introduces a more economic sampling scheme that saves computational
resources compared to other methods like GraphSAGE [47], achieving orders of magni-
tude faster training while maintaining comparable prediction accuracy. SHADOW [163]
employs a design principle that decouples the depth and scope of GNNs to address the
scalability limitations of GNNs. It starts by extracting a localized subgraph as the scope,
which contains critical neighboring nodes while excluding irrelevant ones. Subsequently, a
deep GNN is employed to process this subgraph. These innovative methodologies collec-
tively contribute to a growing toolkit of solutions for enhancing the scalability of GNNs,
catering to the demands of processing information within large graphs.

2.2 Graph Neural Networks 17

2.2.4 High-hop GNNs

Most traditional GNNs, often relying on 1-hop message passing, are limited in their
information aggregation capabilities. To address this limitation, several GNNs have been
designed to leverage high-hop neighbors, allowing for better information incorporation
across multiple hops.

MixHop MixHop [1] is a novel approach for effectively combining and aggregating
feature representations of neighboring nodes at multiple distances. The primary innovation
of MixHop lies in its utilization of linear combinations of aggregation results from various
neighborhood orders. By doing so, MixHop can capture a wider range of relational
information, leading to improved representation learning. Remarkably, MixHop achieves
this without introducing any additional memory or computational complexity.

The architecture of MixHop achieves the high-hop GNN capability by performing
multiple GCN operations, where each operation utilizes a modified adjacency matrix
obtained by applying different powers to the original adjacency matrix. This modification
enables the model to consider node relationships across multiple distances simultaneously.
Mathematically, the MixHop architecture can be formalized as follows:

H(l+1) = CONCAT
{

σ

(
ÃpH(l)W(l)

)
|p ∈ P

}
, (2.7)

where CONCAT(·) is the concatenation operation. Ã is the normalized version of the
adjacency matrix. P is a hyper-parameter that is a set of integer adjacency powers, Ãp

represent Ã multiplied by itself p times. Ã0 is the identity matrix IN . These powers
determine the distances of neighboring nodes to be considered. For example, Ã1 and Ã2

involve the neighboring nodes within 1-hop and 2-hop distances, respectively.

KPGNN KPGNN [35], short for "K-hop Peripheral-subgraph-enhanced GNN", is a
novel high-hop GNN architecture. This architecture is designed to enhance the capabilities
of K-hop aggregation-based GNNs by incorporating peripheral subgraph information,
resulting in more powerful and expressive GNN models.

In the context of KPGNN, the term "K-hop" refers to the notion of considering nodes
within a certain distance (or number of hops) from a central node. The "P" stands for
"Peripheral-subgraph-enhanced," indicating that the architecture leverages peripheral sub-
graph information to augment its neighborhood aggregation process. Peripheral subgraph
refers to the subgraph formed by the neighboring nodes within the K-hop distance from the
central node. The key innovation of KPGNN lies in its neighborhood construction. While
conventional K-hop GNNs aggregate information solely from neighboring nodes within
each hop, KPGNN takes a step further by also aggregating information from the peripheral

18 Literature Review

subgraph induced by the neighbors within the same hop. These additional neighbors enable
KPGNN to capture more intricate local structural features around the central node, leading
to more expressive node representations.

An important insight is that KPGNN is capable of distinguishing distance regular
graphs when equipped with an appropriate encoder for the peripheral subgraph. This
showcases the model’s potential to uncover and leverage the inherent structural properties
of different types of graphs.

KPGNN offers several advantages in terms of its practical applicability and efficiency.
Firstly, it can be seamlessly applied to existing high-hop GNN architectures with only minor
modifications. This ensures that the incorporation of peripheral subgraph information is
adaptable to a wide range of GNN variants. Secondly, despite the enhanced capabilities, the
computational complexity added by KPGNN to the standard high-hop GNNs is minimal,
maintaining its feasibility for real-world applications.

The effectiveness of KPGNN are validated through rigorous experimental evaluations.
The results underscore the improved expressive capacity of KPGNN, showcasing its
adeptness at learning and representing local structural features surrounding individual
nodes. With the peripheral-subgraph-enhanced approach, KPGNN offers a promising
pathway to advancing the capabilities of GNNs in capturing nuanced graph properties,
thereby contributing to the broader field of graph representation learning and analysis.

Additional High-hop GNNs Several noteworthy high-hop GNN architectures have been
proposed, each introducing unique mechanisms to enhance the modeling capabilities of
GNNs across multiple hops in a graph.

DEGNN [77] proposes a series of GNN architectures based on Distance Encoding (DE).
By leveraging the distance between nodes. DE can be incorporated into GNNs as extra
node features or as controllers of neighborhood aggregation process. By incorporating
distance information, DEGNN enables the utilization of high-hop neighbors, allowing the
model to capture long-range dependencies and structural patterns. The utilization of DE
enriches the GNN’s understanding of the graph’s topology and fosters improved modeling
of complex relationships.

F-MPNN [10] explores the use of local graph parameters in GNNs to incorporate
higher-order graph structural information. These local graph parameters are computation-
ally inexpensive to compute and provide valuable information about higher-order structural
characteristics of the graph. F-MPNN allows any GNN architecture to incorporate these
parameters, enhancing its ability to capture intricate graph patterns and relationships.
Tensorized-GNN [55] is an expressive GNN architecture that employs tensor decom-
position to capture high-order nonlinear interactions among nodes. By leveraging the
symmetric CP decomposition, Tensorized-GNN efficiently parameterizes permutation-
invariant multilinear maps for modeling node interactions.

2.2 Graph Neural Networks 19

2.2.5 Graph Transformers

Following the success of the Transformer architecture in capturing contextual relationships
within sequential data [135, 30], recent efforts have been made to extend the Transformer’s
capabilities to the domain of GNNs.

The heart of the Transformer is the self-attention mechanism. It allows the model to
weigh the importance of different nodes (words) in a graph (sequence) relative to a specific
node (word), capturing relationships between nodes (words) regardless of their distance
apart. It involves three types of vectors: Query (Q), Key (K), and Value (V). These vectors
are used to compute attention scores, which determine how much each node (word) attends
to other nodes (words). The scores are then used to weigh the values, producing a weighted
sum that represents the attended context for each node (word). The standard Transformer
architecture consists of multiple heads of attention modules. It means that the self-attention
mechanism is used multiple times in parallel, each with its own set of learned weight
matrices. These parallel attention heads allow the model to focus on different aspects of the
input data, enabling it to capture various relationships and patterns among nodes (words).

We start by describing a single head of self-attention module. Let the representations of
N nodes in the l-th layer be H(l) ∈ RN×d . The i-th row of H(l) is denoted as h(l)

i ∈ Rd that
is a d-dimensional representation of node vi. Following the setting of Query, Key and Value
in the Transformer [135], three weight matrices are used, i.e., W(l)

Q ∈Rd×dA , W(l)
K ∈Rd×dA

and W(l)
V ∈ Rd×d′

, where dA is the dimension of each node’s representation used for
calculating self-attention coefficients and d′ is the dimension of output representation of
each node. This firstly leads to the following formulations:

Q(l) = H(l)W(l)
Q ,K(l) = H(l)W(l)

K . (2.8)

The self-attention matrix A(l) is subsequently calculated by:

A(l) =
Q(l)K(l)⊤

√
dA

. (2.9)

Lastly, the output of this self-attention module is expressed as:

H(l+1) = softmax
(

A(l)
)

H(l)W(l)
V . (2.10)

Graphormer Graphormer [156], built directly upon the standard Transformer, has
emerged as a pioneering solution for effectively adapting Transformers for graph data. The
key innovation introduced by Graphormer centers around the necessity to integrate the
inherent structural properties of graphs into the model. To this end, Graphormer proposes

20 Literature Review

a series of straightforward yet effective structural encoding techniques, which enhances
the model’s capacity to capture and interpret graph-structured data.

Specifically, Graphormer proposes the concept of Centrality Encoding in Graphormer
to differentiate the node importance in the graph. Notably, nodes within a graph can exhibit
varying degrees of importance, such as the distinction between influential celebrities and
the general population within a social network. However, these importance gradients are
not inherently reflected in the conventional self-attention mechanism, which predominantly
relies on the semantic attributes of nodes for similarity calculations. To overcome this
limitation, Graphormer innovatively incorporates node centrality encoding. Specifically,
Graphormer employs degree centrality as the basis for this encoding, assigning a learnable
vector to each node according to its degree, which is subsequently integrated into the node
features at the input layer. Empirical evaluations convincingly demonstrate the efficacy of
this simple yet impactful centrality encoding in enhancing the Graphormer’s expressiveness
for modeling graph-oriented data.

In addition, Graphormer introduces a novel Spatial Encoding mechanism designed
to capture the underlying structural relationships between nodes. One notable geometric
property that distinguishes graph-based data from other structured data domains, such as
language and images, is the absence of a canonical grid for embedding the graph. Indeed,
nodes are represented in a non-Euclidean space and are interconnected by edges. To
effectively leverage such structural information, Graphormer pioneers the assignment of
learnable embeddings based on the spatial relations between any two nodes. Graphormer
employs the shortest path distance as a demonstrative metric, embedding it as a bias term
within the softmax attention mechanism. This innovative approach facilitates the accurate
capture of spatial dependencies among nodes within the graph.

Furthermore, the authors acknowledge the potential presence of supplementary spatial
information in edge features, such as the bond types between atoms in molecular graphs.
In response, a novel edge encoding method is designed, wherein Graphormer computes
an average of dot products between edge features and learnable embeddings along the
shortest path. This computed value is then utilized in the attention module. Armed with
these encoding techniques, Graphormer substantially enhances its capability to model
relationships between nodes and faithfully represent graph structures.

Moreover, the authors rigorously characterize the expressive capability of Graphormer,
showcasing how various prevalent GNN variants can be regarded as special cases within
the broader framework of Graphormer. This mathematical exposition underscores the
unifying potential of Graphormer in encapsulating and surpassing existing graph-based
modeling techniques.

Structure-Aware Transformer (SAT) SAT [19] stands as a remarkable advancement
within the domain of graph Transformers. This innovative approach addresses a critical

2.2 Graph Neural Networks 21

shortcoming of the self-attention mechanism inherent to node representations: the insuffi-
cient capture of structural similarities. The core strength of SAT lies in its integration of
structural insights, achieved by extracting a subgraph representation rooted at each node
prior to attention computation.

Notably, the nature of SAT aligns with previous findings as exemplified in Mialon
et al.’s investigation [94]. In their work, the authors establish a connection between self-
attention within the Transformer and a trainable kernel—a kernel constructed over node
features. Specifically, Equation 2.13 can be rewritten as follows:

Attn(hv) = ∑
u∈V

κ(hv,hu)

∑w∈Vκ(hv,hw)
, (2.11)

where κ(·, ·) a kernel parameterized by WQ and WK:

κ(hv,hu) =
hvWQ,(huWk)

⊤
√

dA
(2.12)

The significant contribution of SAT [19] lies in its recognition that the aforemen-
tioned kernel (Equation 2.11) primarily captures attributed similarities among node pairs.
However, this kernel might fail to differentiate structurally different nodes with simi-
lar or identical node features. To overcome this limitation and incorporate similarity,
SAT introduces a generalized kernel. This novel kernel incorporates local substructures
around each node, thereby broadening the scope of structural context. In light of this, the
structure-aware attention function in SAT is defined as follows:

Attn(hv) = ∑
u∈V

κg(Gv,Gu)

∑w∈Vκ(Gv,Gw)
, (2.13)

where Gv represents a subgraph in the graph G centered around node v. Notably, the kernel
function κg(·, ·) offers versatility in its design, allowing for diverse comparisons between
pairs of subgraphs. This novel self-attention mechanism not only captures attribute-based
similarities but also effectively learns structural similarities among subgraphs, consequently
yielding more expressive node representations than traditional self-attention mechanisms.

More Graph Transformers Furthermore, the extension of the Transformer mechanism
into the realm of graph analysis has led to the development of various innovative approaches.
Graph Transformer[32] serves as a prime example of how the foundational Transformer
concept can be tailored for graph data. In this adaptation, Laplacian eigenvectors are
employed as a fundamental encoding method. Attention computation is focused on
the immediate neighborhood of each node, in contrast to the conventional approach of
considering the entire graph. An advancement in this direction is seen in the Self-Attention

22 Literature Review

Network (SAN) [67], which utilizes Laplacian eigenvectors for absolute encoding. It
distinguishes itself from the Graph Transformer [32] by conducting attention computations
that span the entirety of the graph, rather than limiting attention to local neighborhoods.

The incorporation of both absolute and relative encodings has become a common
strategy in graph Transformer methods. Relative encoding, initially proposed in the context
of the vanilla Transformer by Shaw et al. [121], is an additional layer that augments the
encoding process. Unlike absolute encoding, which is applied once to input node features,
relative encoding integrates information about the relative positions or distances between
nodes into the self-attention mechanism. Mialon et al. [94] have further expanded on
this concept by introducing relative encoding through kernels. These kernels bias the
self-attention calculation, effectively infusing positional information into the Transformer
through kernel selection. Subsequent advancements have continued to push the boundaries
of this field by encoding structural attributes, such as centrality metrics and shortest
path distances, into positional representations [156], or by leveraging GNNs to learn
representations of the underlying graph structure [110, 147, 94].

In summary, the expansion of the Transformer mechanism to analyze graph data has
yielded a diverse array of methodologies. These methodologies span from variations in
encoding strategies—utilizing both absolute and relative encodings—to integrating graph
structural properties via innovative techniques like learning representations of subgraphs.
This vibrant landscape of advancements showcases the continuing evolution and growing
versatility of graph Transformers.

2.2.6 More Noteworthy GNNs

In addition to the previously discussed GNN models, we highlight several pioneering
contributions that have significantly advanced the field of GNNs. These works have played
a pivotal role in shaping the landscape of GNN research and development.

Graph Isomorphism Networks (GIN) [150] introduces a highly expressive model
architecture by aggregating features using permutation-invariant functions. This approach
empowers GIN to capture intricate local and global graph structures with remarkable
efficiency. Graph U-Net [38] , drawing inspiration from conventional U-Net architectures
in computer vision [111], adopts an encoder-decoder design to cater to graph-based
applications. By incorporating skip connections, this model effectively preserves both
local and global graph characteristics, enhancing its capability to handle complex graph
data.

JKGNN [151] adaptively incorporates different neighborhood ranges for each node
with the novel jump connections, resulting in improved representation. GCNII [22] utilizes
initial residual connections and identity mapping at each layer. This unique approach
effectively mitigates the issue of over-smoothing that tends to arise with increasing network

2.2 Graph Neural Networks 23

depth, ensuring the model’s sustained efficacy. DeeperGCN [75] introduces pioneering
concepts of residual connections and message normalization layers. These novel compo-
nents serve to facilitate the training of deeper GNNs, enabling the model to delve into
more intricate graph structures while maintaining optimal performance. AirGNN [88]
introduces a node-level adaptive transition that seamlessly combines feature aggregation
and residual connection. It highlights the limitations of directly aggregating single-node
representations obtained by GNNs and introduces the concept of the "labeling trick" that
unifies previous successful methods for multi-node representation learning. PEG [140]
is a new class of GNN layer that aims to address the limitations of GNNs in accurately
predicting tasks based on sets of nodes. It leverages positional encoding techniques to
incorporate positional features of nodes. PEG achieves permutation equivariance with
respect to the original node features and rotation equivariance with respect to the positional
features.

Recognizing the inherent diversity in graph structures, researchers have focused on
developing tailored GNN architectures that cater to specific graph tasks. These specialized
architectures demonstrate superior performance by effectively leveraging domain-specific
characteristics. Neo-GNN [160] stands out by effectively estimating overlapped neigh-
borhoods and handling multi-hop neighborhoods, capturing the structural information
required for accurate link prediction. Heterogeneous GNNs [89] address graph analysis
on heterogeneous information networks by extending GNNs to handle different types of
nodes and edges with varying semantics.

Graph HyperNetwork [165] is a method for neural architecture search (NAS) on graph-
structured data. It utilizes a hypernetwork to generate architectural parameters, allowing
for the automatic design and optimization of GNN architectures. TFGW [138] proposes
a design of a GNN layer, which computes Frechet Graph Wasserstein (FGW) distances
between an input graph and learnable graph templates. The method enables simultaneous
learning of GNN preprocessing layers and graph templates. GraphMix [54] introduces
a graph-level augmentation technique to enhance GNN training. It combines data from
multiple graphs by mixing node features and labels, leading to improved generalization
and robustness. NBFNet [176] defines node pair representations as a sum of path repre-
sentations, with each path representation being a product of edge representations. This
innovative approach enriches the model’s ability to capture intricate node relationships and
contributes to improved accuracy in graph-related tasks.

24 Literature Review

2.3 Other Graph Representation Learning Methods

2.3.1 Graph Autoencoders

With the success of neural networks, which have demonstrated a remarkable capacity
for capturing intricate information from data [12, 68, 126, 50], auto-encoder approaches
have emerged as promising tools for representation learning. An auto-encoder [51] is a
feed-forward neural network that contains two essential components: encoder and decoder.
The encoder takes a vector v ∈ RN as input and feed forward it through several layers
producing e ∈ Rd , and then the decoder continues to feed forward e through several layers
to generate v̂ ∈ RN . The decoder actually aims to reconstruct v. The training of the
auto-encoder is achieved by minimizing the reconstruction loss ||v− v̂||, where e can be
considered as an embedding vector of the original vector v.

In the realm of graph representation learning, the auto-encoder technique has found
application through various approaches [139, 18, 133]. Wang et al. [139] introduce the
Structural Deep Network Embedding (SDNE) technique. Given the adjacency matrix A of
a graph G = (V,E), SDNE takes as input a vector ai ∈ R|V|, where ai corresponds to the
i-th row of the adjacency matrix A and describes the neighboring connectivity of node vi.
SDNE produces ei ∈Rd by the encoder and feed ei into the decoder to reconstruct ai. After
the model optimization, the vector ei can be construed as an effective embedding of the
nodes vi. Cao et al. [18] proposed a similar approach to SDNE. It computes a high-order
proximity matrix S ∈ R|V|×|V|. Tran [133] proposed an auto-encoder that can take into
account the node attributes by concatenating the attribute values xi of node vi to ai.

2.3.2 Random Walk Methods

A family of pioneering techniques within the realm of graph representation learning
revolves around the utilization of random walk-based methodologies. In this category of
methods, the input is primarily composed of nodes and links, with only limited reliance
on node attributes. Inspired by the conceptual framework of word embeddings within the
domain of natural language processing [95], a suite of techniques, including DeepWalk
[104] and node2vec [43], have emerged to harness the power of node embeddings. In this
context, given a graph G = (V,E), a random walk is a sequence of nodes v1, · · · ,vi, · · · ,vl

where vi ∈ V, where l is the length of the walk, node vi and node vi+1 are connected, the
distances between nodes in this sequence are greater than zero, i.e., si, j > 0 for 1≤ i≤ l−1.
A random walk can be generated along a path that starts at a node vi, then transitions to its
neighbor v j, then transitions to a neighbor of v j and ends after l steps. The initial node
and the following steps on this path can be selected based on some strategies, such as a
uniformly random scheme.

2.3 Other Graph Representation Learning Methods 25

Akin to the principles underpinning natural language processing, random walk-based
techniques generate multiple such random walks across a graph. In this analogy, nodes
can be likened to words, a walk can be deemed analogous to a sentence, and the set of
all nodes in a graph corresponds to the lexical dictionary of words. This parallel enables
the adoption of techniques analogous to those used in word embedding approaches, like
Skip-Gram [95], to effectively learn node embeddings.

These strategies are typically unsupervised and leverage shallow neural networks for
model training. DeepWalk [104], the pioneering work in this domain, synergistically blends
random walk principles with language modeling methodologies to learn node embeddings.
The initial node selection and transition sequencing in the walk are governed by uniform
random choices. DeepWalk adeptly captures higher-order proximity, encompassing the
last k vertices and the next k vertices centered around node vi in the context of the random
walk. Notably, k is a hyperparameter that abides by the condition 2k+1 <= l. Building
upon this foundation, subsequent studies [43, 107] have introduced further refinements.
Specifically, node2vec [43] incorporates a random walk strategy that strikes a balance
between depth-first exploration to comprehend community structure and breadth-first
traversal to capture localized information.

Several works have extended the random walk-based graph representation learning
from static graph to dynamic graph. One such approach, outlined by Mahdavi et al.
[90], involves adapting random walks to incorporate new events occurring within a graph.
Specifically, given a series of graph snapshots {G1, . . . ,GT} representing a dynamic graph,
the set of random walks for the t-th snapshot consists of two sets. One set contains the
common random walks in (t −1)-th and t-th snapshots. Another set contains the newly
generated walks for the affected nodes which are either newly added or are involved in
new events in the t-th snapshot. A static model is firstly learned for G1. The model for
the t-th snapshot (t > 1) is initialized with the parameters from the fine-trained model for
t −1-th snapshot and then optimized using the t-th set of random walks.

Another strategy employing random walk approaches in dynamic graphs is to generate
each random walk by considering the timing information. The selection of the link for the
next transition in a random walk can follow a distribution, e.g. a probability proportional
to the time that the link was added. Nguyen et al. [97] apply this strategy. Instead of
representing a dynamic graph as a sequence of discrete snapshots, they define a continuous-
time dynamic graph G = (V,ET) where each edge ei, j = (vi,v j, t) ∈ ET is assigned a
unique time t ∈ R+. In such a graph, a temporal walk is valid when it is a set of vertices
connected by links with ascending timestamps. Formally, a temporal walk from node v1

to vk in G is a sequence of nodes {v1,v2, · · · ,vk} such that ei,i+1 ∈ ET and ti ≤ ti+1. This
definition echoes the random walk method for static graphs but includes an additional
constraint where the walk is required to respect time.

26 Literature Review

Nguyen et al. [97] determine the initial edge ei ∈ ET from which a temporal walk
starts by following a uniform or weighted distribution. The selection of distribution is
typically based on the downstream applications. For example, in the link prediction task,
beginning more walks from links nearer the current timestamp can improve the predictive
performance. This is because the events (edges) that occurred in the long past are prone to
hold less relevance to the current state of the graph. To generate a step starting from a node
v for a temporal random walk, a set of neighboring nodes centered at this node v is denoted
by Γt(v) =

{
(w, t ′)

}
where e = (v,w, t ′) ∈ ET and t ′ ≥ t. Γt(v) is used for selecting the

next node to which the node v transitions. The selection also can follow a strategy. For
instance, considering the time interval k between the occurrence time of two edges et

u,v and
et+k

v,w , the link prediction task on a social network wants k to be small, which constrains the
temporal walks that friends from largely different time periods are not grouped together.
The procedure to generate temporal walks in [97] is summarized in Algorithm 1.

However, random walk-based approaches for dynamic graph embedding are not an
ideal choice for applications where the graphs change at a fast rate. This is because
performing new walks and updating the embedding model with the new walks can be quite
time-consuming. In addition, most proposed methods based on random walk only consider
the structure information while neglecting node attributes, which could limit the overall
expressive capabilities of these methods.

Algorithm 1 Temporal Random Walk. A method from Nguyen et al. [97]
1: Procedure Temporal Walk(G = (V,ET),es,r, t,L,C) where L is the length of a walk,

C is the window size for optimization.
2: Initialize temporal walk St = [s,r] where s ∈ V and r ∈ V
3: Set i = r
4: for p = 1 to min(L,C)−1 do
5: Γt(i) =

{
(w, t ′)

}
where e = (i,w, t ′) ∈ ET , t ′ ≥ t

6: if |Γt(i)|> 0 then
7: Select node j ∈ V from Γt(i)
8: Append j to St
9: Set t = t ′, Set i = j

10: else
11: Terminate temporal walk
12: end if
13: end for
14: Output temporal walk St rooted at node s

2.3.3 Representation Leaning on Dynamic Graphs

Snapshots-based Methods Several graph representation learning approaches have been
developed for dynamic graphs. In a family of such methods, a dynamic graph is typically

2.3 Other Graph Representation Learning Methods 27

represented as a sequence of discrete snapshots {G1,G2, · · · ,GT}, where each snapshot
represents the state of the dynamic graph at time t or within an observed window (t −1, t].
Within this context, a cornerstone of dynamic graph representation learning methods
revolves around the utilization of Recurrent Neural Networks (RNNs), leveraging the
successes of RNNs in sequence modeling [86].

Many snapshots-based representation learning methods have been put forth centered
on depicting a dynamic graph as a series of snapshots. The fundamental concept behind
these methods can be described as Ht = RNN(Ht−1,Zt), where the d−dimensional matrix
Ht ∈ R|Vt |×d is the representations of |Vt | nodes for the dynamic graph at the t-th time
window. Ht is obtained by firstly learning the representations Zt of the t-th snapshot with
a static GNN model and then feeding both the Zt and the representations Ht−1 of the
dynamic graph at the (t −1)-th time window into a sequence modelling model, e.g., a form
of RNN [86]. Ht jointly captures the t-th snapshot information as well as the historical
evolution pattern in the past snapshots.

An early pioneer in snapshots-based dynamic graph representation learning is the work
by Seo et al. [118]. Furthermore, Manessi et al. [91] combine Long Short-Term Memory
networks (LSTMs) [53] with GCNs to learn both the influences among snapshots and
graph structure in each snapshot. Sankar et al. [113] propose DySAT which leverages the
attention mechanism in GCN models for each Gt to produce the final embeddings.

This thesis uses an approach proposed by Manessi et al. [91] as an example to illustrate
such snapshots-based architecture. Given a dynamic graph G= (V,ET) represented by
a sequence of snapshots G = {G1,G2, · · · ,GT}, where a snapshot Gt = (Vt ,Et) can be
viewed as a static graph at timestamp t and all snapshots share the same vertices, namely
Vt = V. As shown in Figure 2.4, a graph convolution layer of the model takes inputs
of At and Z(l) (in the first layer Z(l) = Xt , Xt ∈ R|V|×d .). It outputs representations
Z(l+1)

t ∈ R|V|× f for |V| nodes by:

Z(l+1) = ReLU(D̃− 1
2 ÃD̃− 1

2 Z(l)W) (2.14)

where the adjacency matrix Ã = A+ I|V| is modified from A with nodes’ self-loop I|V|,
D̃i,i = ∑

|V|
j=1 Ãi, j is used to symmetrically normalise Ã. W ∈ Rd× f is a parameter matrix.

ReLU() is the rectified linear unit activation function. In this architecture, there are T
copies of such operation in a layer corresponding to T snapshots. All copies are shared the
same training parameter matrix W, which enables the W independent of the length of the
sequence of snapshots.

As shown in Figure 2.4, such snapshots-based model proposed by Manessi et al.
[91] uses a separate LSTM for each node. Considering a sequence of representations
{z1,z2, · · · ,zT} where zt ∈ R f for a node v, an LSTM layer takes input as this sequence

28 Literature Review

Figure 2.4 The architecture of a representation learning method for dynamic graphs from
Manessi et al. [91].

and output a sequence of {h1,h2, · · · ,hT}, ht ∈ Rk by:

ht = ot ⊙ tanh(ct)

ct = jt ⊙ c̃t + ft ⊙ ct−1

ot = σ(ztWo +ht−1Uo +bo)

ft = σ(ztW f +ht−1U f +b f)

jt = σ(ztW j +ht−1U j +b j)

c̃t = σ(ztWc +ht−1Uc +bc)

(2.15)

where ⊙ is the Hadamard product, σ() is the sigma activation function. The Wl ∈ R f×k

and Ul ∈Rk×k are weight matrices, bl are bias vectors where l ∈ {o, f , j,c}. There are |V|
(number of all nodes) copies of such LSTM. The training weights are shared among these
LSTM which make this model independent of the number of graph nodes. The LSTM
layer in this architecture outputs a matrix of |V|× k×T dimensions, which means that
each node at timestamp t has a k dimensional representation.

Continuous Methods Instead of representing a dynamic graph as static snapshots, sev-
eral innovative approaches [134, 71] learn the representations by unfolding a dynamic graph
into a sequence of events that occurred in a continuous time space. This strategy allows for a
comprehensive consideration of all temporal changes inherent in dynamic graphs. The fun-
damental concept underlying such methods involves updating node representations based
on the unfolding sequence of events. Specifically, when a new link forms between nodes v
and u at time t, the representation for node v, denoted as zv, undergoes an update based on
the RNN mechanism. This update is defined as zv = RNN(zv,previous,CONCAT(zu;∆tv),
where zv,previous is the previous representation of node v before t, ∆tv is the time interval
from the time of the last interaction of node v to t.

An exemplary instance of this dynamic graph unfolding approach is presented in the
work by Kumar et al. [71]. The authors introduce a JODIE model to learn the dynamic

2.3 Other Graph Representation Learning Methods 29

representations of users and items from a sequence of user-item interactions. In JODIE,
nodes within a dynamic graph are categorized into two distinct types: users and items.
Edges between these nodes correspond to user-item interactions, such as a customer
making a purchase in an e-commerce platform, an editor modifying an article in Wikipedia,
or an individual posting on another individual’s social network page.

JODIE unfolds a dynamic graph into a sequence of temporal user-item interactions S.
An interaction is represented by S j = (u j, i j, f j, t j), which is an event occurred between a
user u j ∈ U and an item i j ∈ I at time t where f j is a feature vector associated with this
interaction, U and I are the sets for users and items, respectively. The JODIE model uses
two separate RNNs to learn the dynamic representations of users and items. RNNU is used
to update user embeddings and it shares the weights among all users. RNNI shared across
all items is used to update item embeddings. When a user u interacts with item i at time
t, JODIE updates the user embedding u(t) ∈ Rn and item embedding i(t) ∈ Rm using the
following expressions:

u(t) = RNNU(uprevious, iprevious,∆tu, f)

i(t) = RNNI(iprevious,uprevious,∆ti, f)
(2.16)

where uprevious and iprevious represent the user and item previous embeddings before the
time t. ∆tu and ∆ti are the time elapsed since u’s last interaction and i’s last interaction,
respectively. f is the interaction feature vector.

Discussion The methods based on discrete snapshots exhibit the potential to harness
advancements derived from a diverse array of GNNs for static graphs. These methods, how-
ever, inherently rely on fixed time intervals to generate snapshots, potentially overlooking
nuanced temporal dynamics. In contrast, continuous models possess the capacity to capture
more temporal information when compared with snapshots-based methods. However, it’s
important to note that the complexity of continuous models increases as the increasing
number of changes in a dynamic graph, which would lead to a big computational load as
the graph evolves over time. Besides, existing continuous models are proposed for some
specific types of dynamic graphs, thus constraining their applicability across a broader
spectrum.

In light of these considerations, there emerge two noteworthy avenues for future ex-
ploration. Firstly, an exploration of methods based on discrete snapshots is warranted,
capitalizing on the recent advancement achieved in the domain of neural networks. This
approach promises to harmonize the benefits of static GNNs for dynamic graph analysis.
Secondly, the evolution of continuous models merits attention, with the goal of devis-
ing strategies to mitigate the computational overload associated with larger and more

30 Literature Review

complex dynamic graphs. Simultaneously, there is ample room to develop continuous
models that can be applied to a broader spectrum of dynamic graph types. These dual
trajectories—embracing the potential of discrete snapshots-based methods in synergy
with neural network advancements, and refining and diversifying the realm of continuous
models—stand out as promising pathways for future research in this field.

2.3.4 Point Process Embedding Methods

In the realm of traditional statistics, the temporal point process [103] serves as an im-
portant mathematical framework for modeling a sequence of discrete events occurring
asynchronously over time. Central to the concept of the temporal point process is the
conditional intensity function λ (t), which models the time of the next event occurrence
given all historical events. Given the historical events before t, λ (t)dt is the probability of
an event occurring within a small window [t, t +dt]. The conditional density function f (t)
can be specified as f (t) = λ (t)S(t), where S(t) = exp

(
−

∫ t
tn λ (τ)dτ

)
is also known as the

survival function, which is the probability that no new event happens up to t since tn.
Various formulations of λ (t), such as Poisson process [103], Hawkes process [48], and

Self-Correcting process [57], have been proposed in order to capture the underlying patterns
in the temporal point sequences. Herein we turn our attention to the Hawkes process.
Unlike simple models like the Poisson process which assumes that event occurrences are
entirely independent, the Hawkes process models the events by considering not only the
internal properties of the event self but also the impacts of the historical events occurring
at the previous times. The λ (t) for the Hawkes process [48] can be expressed as follows:

λi(t) = µi + ∑
t j<t

α jκ(t j − t), (2.17)

where t j is the time of the j-th historical event occurred before t, µi ≥ 0 is the base intensity
that is a function of t but independent of the historical events. κ(·) is a kernel function that
describes how much historical events excite the occurrence of an event at t.

A dynamic graph can be unfolded as a sequence of events in a continuous time
space. This sequence naturally aligns itself with the concept of temporal point processes.
Pioneering this alignment, Yuan et al. [178] propose a model named HTNE, which stands
as one of the earliest endeavors to employ temporal point processes in the analysis of
dynamic graphs.

We use HTNE to showcase the practical implementation of point processes in the
dynamic graph realm. In HTNE, the event in the point process corresponds to the for-
mation of a link between a pair of nodes in a dynamic graph. For each node, a neigh-
borhood formation sequence is generated first. Mathematically, given a node vx, its
corresponding neighborhood formation sequence can be denoted as a sequence of events,

2.3 Other Graph Representation Learning Methods 31

i.e., {(ex,nei1 , t1),(ex,nei2 , t2), · · · ,(ex,nein , tn)}, where an event is an edge formation ex,nei

with its neighboring node vnei at time t. HTNE models the neighborhood formation
sequences by modifying the Hawkes process into the following formulation:

λex,y(t) = µex,y + ∑
tnei<t

αnei,yκ(t − tnei) (2.18)

where λex,y(t) describes the intensity of an event to construct a link ex,y between node
vx and any other node vy at time t, given the historical neighborhood formation sequence
for vertex vx before time t. λex,y(t)dt is the probability of forming such edge ex,y within a
small window [t, t +dt]. µex,y is a baseline intensity of forming an edge ex,y at any time,
which is independent of the historical events. αnei,y represents the degree to how much
a historical neighboring node vnei excites the formation of this edge ex,y, where node
vnei was linked to node vx before the time t. The kernel function κ(t − tnei) describes
the time decay pattern. HTNE uses an exponential function as the kernel function, i.e.,
κ(t − tnei) = exp(δx(t − tnei)), where δx is a learnable parameter dependent of node vx. δx

describes that for the node vx, its different historical neighboring node can influence its
current neighbor node vy interaction with different intensity.

The µex,y ,αnei,y are the parameters that can be learned by optimizing the Hawkes
process. HTNE represents µex,y by µex,y = −dist(ex,ey), where ei is the the embedding
for each node vi. Intuitively, this reveals the natural affinity of nodes in a graph, i.e., the
node embedding ex for node vx wants neighboring nodes to have similar embeddings and
independent nodes to have distant embedding vectors. For example, when node vx is
connected with node vy, the dist(ex,ey) should be learned as small and thus this negative
distance µex,y is large so that Hawkes model gives high probability of the event forming a
link between the two nodes.

Similarly, αnei,y is written as αnei,y = wnei,x(−dist(enei,ey)) where the weight wnei,x is

wnei,x =
exp(−dist(ex,enei))

∑ei∈Hx(t) exp(−dist(ex,ei))
, (2.19)

where Hx(t) is a set of embeddings of nodes which are the neighbours of node vx before
time t. Intuitively, the weight wnei,x describes a fact: the affinity between the historical
vertex vnei and the vertex vy should be influenced by the vertex vx. In other words, it
describes the different influences of the different historical neighboring node vnei on the
formation of the edge ex,y. For example, in a co-authorship network, some authors have
fixed co-researchers over time. As a result, the historical co-authors have larger impacts on
predicting the co-authors in the next publication. Whereas some researchers transfer their
research interests from one area to another different one. Their co-authors may change
frequently over time, such that they have different affinities with the historical co-authors.

32 Literature Review

Hawkes process is typically optimized by maximum likelihood estimation which is
based on the assumption that the observed data is most probable. In HTNE, the Hawkes
process should give a higher probability for the case when vy is a neighboring node of node
vx but a lower probability when vy is not the neighbor of node vx.

Letting Hx(t) denote the historical part of the neighborhood formation sequence for
vertex vx until time t, the probability of link formation between node vx and another node
vy at time t can be inferred by the conditional intensity:

p(ex,y,Hx(t)) =
λex,y(t)

∑y′ λex,y′ (t)
(2.20)

The log-likelihood of neighborhood formation sequences for all nodes in the graph can
be obtained with this probability. However, the Equation 2.20 requires to calculate λex,y′ (t)
over the entire set of nodes for each event, i.e., edge formation, which is computationally
expensive when the graph is large.

To address this issue, HTNE uses the Negative Sampling method [95] to approximately
optimize the Hawkes process for each edge formation. Thus the objective function can be
written as follows:

loss = logσ(λex,y(t))+
K

∑
k=1

−logσ(λex,k(t)) (2.21)

where y refers to the node vy that is in the neighborhood formation sequence of node vx,
while k refers to negative node vk which have not present in this neighborhood formation
sequence. The negative nodes for node vx are sampled by extracting nodes from all
nodes of the graph but not in the neighborhood formation sequence of node vx. The
σ(x) = 1/(1+exp(−x)) is the sigmoid activation function. It can be seen that the negative
sampling loss computes the conditional intensity for only a small percentage of nodes
rather than all nodes in the graph.

In HTNE, optimizing the Hawkes process, where events are the link formations in
neighborhood formation sequences, is to modify the parameter µex,y ,αnei,y in the Equation
2.18. The µex,y ,αnei,y are represented by the embeddings of corresponding nodes. As a
result, minimizing the loss function in Equation 2.21 means to optimize the embeddings
for nodes. The negative sampling loss function encourages nodes connected with each
other to have similar embedding, while those far apart have separated ones.

Ying et al. [155] propose a model MHDNE which is a subsequent work of HTNE.
MHDNE considers not only the influence of historical neighbor nodes on the current node
but also the impact of the common neighbors between two nodes. MHDNE obtains better
performance than HTNE. Figure 2.5 that is extracted from the work of MHDNE [155],
shows a t-SNE visualization of the embeddings of 2500 authors from four research fields

2.4 Summary 33

Figure 2.5 Visualization of four models. Image extracted from MHDNE [155].

(colors). Avg Deepwalk conducts Deepwalk [104] algorithm over a set of snapshots to
obtain vertex representations at different times. STWalk [100] performs space-walk and
time-walk on the graph which can extract the spatio-temporal behavior of vertexes. As
shown in Fig. 2.5, Avg Deepwalk algorithm can only cluster one class of authors to an
independent area, and the researchers in the rest three classes are mixed. STWalk maps
the purple dots and green dots to scattered positions, failing to extract the properties of
such kinds of authors. HTNE [178] can map the authors in the three fields to different
clusters, but map some researchers in these three classes into the "purple" class. MHDNE
shows better results than the other three methods, which can map the authors to different
communities with clear margins.

The embedding methods based on the point process have exhibited a distinct advantage
for event time prediction [178, 155], attributed to the continuous nature of the point
process. However, recent studies [56] have revealed shortcomings in the performance of
these methods, prompting the need for refinement. Furthermore, a critical limitation of
existing point process-based embedding models lies in their oversight of node attributes.
To this end, a promising avenue for future exploration lies in the realm of dynamic graph
embedding, entailing the seamless integration of node attributes alongside point processes.
This innovative fusion holds considerable potential for advancing predictive accuracy and
enhancing the practical applicability of such models.

2.4 Summary

The aforementioned literature demonstrates the incredible progress in the field of GNNs and
several notable methods in graph representation learning, highlighting key advancements

34 Literature Review

in attention mechanisms, sampling techniques, specialized architectures for diverse graph
structures, etc. Expanding on these advancements, our research encompasses three distinct
contributions presented in the subsequent chapters. Firstly, we propose a general and
scalable GNN framework that demonstrates remarkable performance. Secondly, we
present an interpretative analysis of GNNs in the context of link prediction. Lastly, we
study the effectiveness of different GNN techniques in addressing challenges encountered
in real-world graph applications. These innovations collectively enhance generalization
capabilities, improve scalability for handling large graphs, and increase the interpretability
of model predictions, thereby establishing our research works as significant contributions
to the realm of graph research.

Chapter 3

VAGNN: A General and Scalable GNN
Framework

This chapter introduces a general GNN framework called Virtual Adjacency Graph Neural
Network (VAGNN), motivated by the commonality analysis of various GNN architectures.
Unlike conventional GNNs that employ fixed configurations to construct neighborhoods
for information aggregation, VAGNN leverages a virtual adjacency matrix to optimize
neighborhoods by selectively excluding 1-hop neighbors while incorporating high-hop
local neighbors and global nodes. Additionally, VAGNN allows for the selection of
different attention mechanisms for aggregation and the incorporation of supplementary
information into attention weights. The linear computational complexity of VAGNN
makes it scalable for handling large graphs. Experimental evaluations on diverse real-
world datasets validate the generalization and scalability capabilities of VAGNN. Parameter
sensitivity analysis also reveals the importance of carefully selecting and balancing the
inclusion of local and global information in VAGNN. This work lays the foundation for
further exploration in developing more efficient techniques for virtual adjacency matrix
construction and weighted aggregation functions, opening up possibilities for the design of
more robust GNNs in the future.

3.1 Introduction

Over the past few years, a considerable array of GNN models has emerged [148, 52]. The
majority of these models adhere to the neighborhood information aggregation algorithm
[150] (also known as the message-passing mechanism [40]). This algorithm can be
expressed by Eq. 3.11, where the representation of a node vi is iteratively updated by

1For simplicity, we omit the residual connections, activation functions, etc.

36 VAGNN: A General and Scalable GNN Framework

aggregating representations of its neighboring nodes and the node itself (i.e., N(vi)∪{vi}).

h(l+1)
i = AGGREGATE(l)

({
h(l)

j | v j ∈ N(vi)∪{vi}
})

(3.1)

Various aggregation-based GNNs have been proposed [52], with notable innovations
primarily centered around two key aspects: the construction of the neighborhood set N(·)
and the development of the function AGGREGATE(·). As shown in Eq. 3.1, earlier
GNNs [64, 137] typically construct the set N(vi) with the direct utilization of all 1-hop
neighbors of the node vi. Alternatively, some models [46, 21] construct N(vi) by selecting
a subset of 1-hop neighbors of vi to improve computational efficiency. Furthermore, certain
models [1, 77, 35] incorporate high-order neighboring nodes of vi into N(vi), resulting in
high-hop GNNs. Drawing inspiration from the Transformer model in Natural Language
Processing (NLP) [135], N(vi) is created to encompass all nodes in a graph in several
graph Transformers [159, 156, 19].

In terms of the design of the function AGGREGATE(·), the simplest approaches [64,
46, 151] involve set-based MEAN- or MAX-pooling over the set of node representations
(i.e., the set of

{
h(l)

j | j ∈ N(i)∪{i}
}

in Eq. 3.1). Subsequently, attention mechanisms
were integrated into the AGGREGATE(·) [137, 132]. In the graph Transformer, supple-
mentary information, such as shortest-path distance between nodes and edge features,
is encoded into additional weights alongside attention weight to collectively govern the
neighborhood aggregation [156, 19, 102].

The analysis of diverse GNN architectures motivates us to propose a more general
GNN framework called Virtual Adjacency GNN (VAGNN). We introduce the term "virtual
adjacency matrix" for GNNs to differentiate it from the actual adjacency matrix. In graph
theory, the adjacency matrix describes the connections between nodes. In the case of a
graph with N nodes, the adjacency matrix is an N ×N square matrix, where the i, j-th
entry of the matrix is assigned a value of 1 if node v j is a 1-hop neighbor of node vi, and
0 otherwise. In GNNs like GCN [64] where N(·) only comprises all 1-hop neighbors
of a node, the matrix representing all nodes’ N(·)s aligns precisely with the adjacency
matrix. However, for many GNNs [46, 21] in which the construction of N(·) involves
using partial 1-hop neighbors or higher-hop nodes of a node, the corresponding matrix is
no longer being the actual adjacency matrix. Therefore, it is appropriate to refer to the
matrix governing the neighborhood aggregation in GNNs as a virtual adjacency matrix.

Our proposed VAGNN is a general and scalable GNN framework. Firstly, with the
concept of the virtual adjacency matrix, we can construct the neighborhood set N(·) from a
general perspective. Unlike most existing GNNs that employ fixed methods for constructing
the N(·), VAGNN allows for the optimization of the N(·) by customizing the removal
of 1-hop neighbors and the incorporation of high-hop local neighbors and global nodes.
Moreover, VAGNN offers the capability to choose from various attention mechanisms for

3.2 Preliminary 37

the aggregation function, and provides the option to incorporate supplementary information
for controlling the aggregation. Theoretically, VAGNN can be transformed into a majority
of existing GNNs and graph Transformers[137, 77, 35, 156]. Also, it holds the potential to
achieve superior performance by optimizing the virtual adjacency matrix and aggregation
methods tailored specifically for the given graph dataset.

The virtual adjacency matrix in VAGNN acts as a mask that determines whether the
nodes require attention calculation and information aggregation or not. When implement-
ing VAGNN based on sparse matrix operations, its computational complexity exhibits
a linear relationship with the number of node pairs used for neighborhood aggregation
(approximately equal to the sum of the sizes of all nodes’ N(·)s). This linear complexity
demonstrates the scalability of VAGNN, rendering it well-suited for large graphs [54].
Especially, by selectively choosing global nodes, VAGNN effectively overcomes the scala-
bility challenges associated with utilizing global nodes in graph Transformers, reducing the
storage complexity from O(N2) or even O(N3) to N, with N representing the total number
of nodes in a graph [159, 156, 102].

We conduct extensive experiments on nine diverse real-world datasets sourced from
the Open Graph Benchmark (OGB) [54]. The experimental results demonstrate the
remarkable generalization and scalability capabilities of the proposed VAGNN. We also
investigate the sensitivity of parameters involved in the construction of the virtual adjacency
matrix. Our observations reveal that removing a small number of 1-hop neighboring nodes
and incorporating a limited number of global nodes yield favorable outcomes, while an
excessive utilization of global nodes leads to performance degradation. These findings
highlight the importance of carefully selecting and balancing the inclusion of local and
global information in GNNs. Furthermore, we explore the performance of GNN models
equipped with different attention mechanisms [137, 132, 156]. Our results show that the
self-attention mechanism consistently outperforms others. Lastly, superior results are
achieved by VAGNN when employing the combination of optimal parameters.

Our comprehensive analysis and empirical investigation demonstrate the potential of
VAGNN as an effective approach for real-world graph-related tasks [54]. The obtained
outcomes further emphasize the importance of carefully configuring the virtual adjacency
matrix to maximize performance. Future research can focus on further optimizing the
virtual adjacency matrix construction methods and weighted aggregation functions for
specific graph datasets to unlock even greater potential in graph representation learning.

3.2 Preliminary

Most modern GNNs follow the neighborhood information aggregation algorithm, as
expressed by Eq. 3.1. This equation describes the update rule of the representation of an

38 VAGNN: A General and Scalable GNN Framework

individual node in GNNs. In fact, the aggregation-based GNNs can be formalized based
on matrix multiplication as below:

H(l+1) = σ

(∗
AH(l)W(l)

)
, (3.2)

where H(l) ∈ RN×d and H(l+1) ∈ RN×d′
are the input and output node representations in

the l-th layer of a GNN. The i-th row of H is denoted as hi ∈ Rd which is a d-dimensional
representation of the node vi. H(0) = X is the input feature matrix. W(l) ∈ Rd×d′

is
a trainable weight matrix. σ(·) is an activation function.

∗
A is a matrix governing the

information propagation between nodes. For the plain GNNs like GCN [64],
∗
A is a

normalized version of the adjacency matrix A. For high-hop GNNs[77, 35],
∗
A would

contain the connection information between every node and its high-hop neighbors.

3.3 The Proposed VAGNN

In this section, we introduce our VAGNN. Without loss of generality, we demonstrate this
work on homogeneous graphs [52]. To enhance the readability of the subsequent equations,
we provide a concise summary of the notations in Table 3.1.

Table 3.1 A brief summary of the notations used in VAGNN

Notation Description
l,L the l-th layer and total layers L

m,M
the m-th head and total heads M in multiple-head

attention module MultiHead(·)
d,d′,dO,dA the dimension of the representation of a node

A the actual adjacency matrix
∗
A the matrix for information propagation
∨
A the virtual adjacency matrix
∧
A normalized version of the virtual adjacency matrix

â(l,m)
i, j the normalized weight between nodes vi, v j

ā(l,m)
i, j the weight for information aggregation between vi, v j

ǎi, j the i, j-th entry of the virtual adjacency matrix
∨
A

We begin by providing an overview of the architecture of a VAGNN layer. Formally,
the l-th layer of VAGNN can be described by the equation below:

3.3 The Proposed VAGNN 39

1 2

3

4 5

6 7

0 1 1 0 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

0 1 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

0 1 1 1 1 0 0
1 0 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

0 1 1 0 0 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 1 0

Actual Adjacency
Matrix Removal of actual edge 1-hop conversion of

high-hop local neighbors
1-hop conversion of

global nodes

Figure 3.1 An illustration of the methods constructing a virtual adjacency matrix on an
undirected graph.

H(l+1) = MultiHead
(

H(l)
)

W(l)
O , (3.3)

where
MultiHead

(
H(l)

)
= COMBINE

({
H(l)W(l,0),

∧
A(l,m)H(l)W(l,m) : ∀m = 1, · · · ,M

})
.

(3.4)

MultiHead
(

H(l)
)

is a multi-head attention module where M is a hyper-parameter defining
the number of attention heads. Multiple head attention in GNNs[137, 156] is an extension
of the attention mechanism that is commonly used in sequence-based models such as
language Transformers [135]. The MultiHead

(
H(l)

)
allows an individual layer of VAGNN

to learn different patterns and relationships within the representations H(l) through different
attention heads simultaneously, improving the model’s expressive power. The module
involves three main steps: computing attention coefficients (i.e.,

∧
A(l,m) ∈ RN×N for the

m-th head), aggregating information (i.e., the matrix multiplication
∧
A(l,m)H(l)W(l,m)),

and combining representations performed by the function COMBINE(·). The function
COMBINE(·) can be Concatenation, MEAN, etc. The W(l,m) ∈ Rd×dO is a trainable
weight matrix. The weight matrix W(l)

O satisfies W(l)
O ∈ RdO(M+1)×d′

or W(l)
O ∈ RdO×d′

if
COMBINE(·) is Concatenation or MEAN, respectively. The hyper-parameters d,d′, and
dA define the dimensions of the representations of each node in different learning stages.

In Eq. 3.4, the H(l)W(l,0)
A is a residual connection from H(l) towards H(l+1). The

∧
A(l,m)H(l)W(l,m) is the neighborhood information aggregation in the m-th attention head of
the l-th layer of VAGNN, where

∧
A(l,m) ∈ RN×N stores the normalized weights. The i, j-th

entry of
∧
A(l,m) (i.e., â(l,m)

i, j) is obtained by normalizing ā(l,m)
i, j using the entries in the i-th

row of Ā(l,m) with the softmax function:

â(l,m)
i, j = softmax j

(
ā(l,m)

i, j

)
=

exp
(

ā(l,m)
i, j

)

∑N−1
k=0 exp

(
ā(l,m)

i,k

) . (3.5)

40 VAGNN: A General and Scalable GNN Framework

The ā(l,m)
i, j , as the i, j-th entry of Ā(l,m) ∈ RN×N , is the weight for information aggregation

between node vi and v j. It is computed by the equations below:

ā(l,m)
i, j =

ATTN
(

h(l)
i ,h(l)

j

)
+EXT

(
vi,v j

)
, if ǎi, j = 1

0, if ǎi, j = 0
, (3.6)

where the function ATTN
(

h(l)
i ,h(l)

j

)
→R calculates the attention coefficient between node

vi and v j using their corresponding representation h(l)
i ,h(l)

j . The function EXT
(
vi,v j

)
→

R introduces an extra weight between node vi and v j, enabling the incorporation of
information that is challenging to be acquired solely by the attention coefficient. For
instance, this function can incorporate structural information such as the shortest-path
distance between node vi and v j [156]. The ǎi, j is the i, j-th entity of the matrix

∨
A. Herein

∨
A is our proposed virtual adjacency matrix for VAGNN. In Eq. 3.6, we can see that

∨
A acts

as a mask, determining which node pairs’ weights need to be computed.
Eq. 3.6 presents the fundamental elements underlying the proposed VAGNN. This

equation summarizes and generalizes the common characteristics of GNNs and graph
Transformers [137, 77, 156], endowing VAGNN with powerful expressiveness. In the
subsequent sections, we will provide a comprehensive exposition of the key components
of this equation.

3.3.1 Attention Methodologies

The attention mechanism enables the GNN model to learn adaptive importance weights
between two nodes, allowing every node to differentiate between neighbors during the
process of aggregating neighborhood information in the GNN.

As shown in Eq. 3.6, the ATTN
(

h(l)
i ,h(l)

j

)
is the attention function used to calculate

the attention coefficient between nodes vi,v j based on the representations of those two
nodes. We summarize several main methods for the function ATTN(·, ·) as follows:

1. Cosine similarity-based attention [132]. This is the simplest method for computing
attention weights. It is typically computed as:

ATTN
(

h(l)
i ,h(l)

j

)
= β

(l,m)cos
(

h(l)
i ,h(l)

j

)
, (3.7)

where β (l,m) ∈ R is a learnable parameter for the m-th attention head in the l-th
layer, cos(x,y) = xy⊤/|x||y|, and |x| is the Euclidean norm of the vector x. cos(·, ·)
calculates the cosine of the angle between two vectors, tending to learn higher
attention weights for more relevant representation vectors.

3.3 The Proposed VAGNN 41

2. GAT-type attention [136, 15]. In GAT [136], ATTN(·, ·) can be formalized as:

ATTN
(

h(l)
i ,h(l)

j

)
= σ

(
q(l,m) ·

(
CAT

(
h(l)

i W(l,m)
Q ,

h(l)
j W(l,m)

Q

))⊤
)
,

(3.8)

where σ(·) is an activation function, the ·⊤ represents transposition, CAT(· · ·) is the
concatenation operation, W(l,m)

Q ∈ Rd×dA is a trainable weight matrix shared across

all nodes, and q(l,m) ∈ R2dA is a weight vector. Note that W(l,m)
Q transforms the

representations of nodes from the dimension d into dA, which offers the advantage
of optimizing computer memory usage through assigning a small value to the hyper-
parameter dA when computing attention on large graphs.

Compared to cosine similarity-based attention, GAT-type attention employs a shared
linear transformation to hidden states across all nodes in the graph, which could
improve the expressive power of the model.

3. Self-attention mechanism [167, 159, 156]. Self-attention has demonstrated great
success in Transformers in NLP and computer vision[135, 30]. Recent efforts have
been made to extend it to the domain of GNNs. For self-attention mechanism,
ATTN(·, ·) can be expressed as:

ATTN
(

h(l)
i ,h(l)

j

)
=

(
h(l)

i W(l,m)
Q

)
·
(

h(l)
j W(l,m)

K

)⊤

√
dA

, (3.9)

where W(l,m)
Q ∈ Rd×dA and W(l,m)

K ∈ Rd×dA are trainable weight matrices shared
across all nodes for the m-th attention head in the l-th layer, 1√

dA
is a scaling

factor [135, 156].

As shown in Eq. 3.8 and Eq. 3.9, both the GAT-type attention and self-attention
mechanism apply linear transformations to the hidden representations of two cor-
responding nodes. Nevertheless, these two attention methods exhibit a distinction.
In the GAT-type attention, the transformed results are concatenated and subse-
quently subjected to a dot product operation with a weight vector. In contrast, the
self-attention mechanism directly performs a dot-product operation on the two trans-
formed representation vectors. In terms of computation resource utilization, the
self-attention mechanism would be more space-efficient than the GAT-type attention
method.

42 VAGNN: A General and Scalable GNN Framework

3.3.2 The Extra Weight

In Equation 3.6, we can see that the learning of the attention weight between two nodes
vi,v j primarily relies on the node-wise representations, i.e., hi and h j. However, when
characterizing the relationship between two nodes in graph data, besides the reliance on
node representations, there exist other factors, such as the shortest-path distance between
two nodes, whether they have an edge, the weight of the edge, and the number of common
neighbors they share. To effectively capture these extra pieces of information, we introduce
a function EXT

(
vi,v j

)
and add it to the attention weight, thus providing a better description

of the relationship between the two nodes. The incorporation of such additional weight
can be seen as analogous to the utilization of positional encoding in NLP Transformer
models [135], where positional information between two tokens is combined with the
self-attention weight.

EXT
(
vi,v j

)
serves as a valuable complement to the attention weight, introducing an

explicit component in the GNN design. We provide a specific form of EXT
(
vi,v j

)
as

follows:
EXT

(
vi,v j

)
= α

(l,m)SPD
(
vi,v j

)
+ · · ·+EW

(
vi,v j

)
, (3.10)

where SPD
(
vi,v j

)
calculate the shortest-path distance between two nodes vi,v j, α(l,m) ∈R

is a trainable weight for the function SPD(·, ·), EW
(
vi,v j

)
can be a function to aggregate

the features of edges between vi,v j. In fact, previous works [159, 156, 19, 102] have
explored incorporating information independent of node features to the attention weight.
For example, Graphormer [156] proposes a method of encoding edge features. In VAGNN,
that method can be formalized as EW

(
vi,v j

)
= 1

E ∑
E
e=1 xe(w

(l,m)
e)⊤, where E is the number

of edges in (one of) the shortest path between vi,v j, the edges is indexed from vi to v j, xe is
a feature vector of the e-th edge, and w(l,m)

e is the e-th trainable weight vector for EW(·, ·).
The function EXT(·, ·) provides significant flexibility for the architectural design of the

proposed VAGNN. It should be noted that the main focus of this work is to demonstrate the
generalization capabilities of VAGNN. We leave the study into the methods of EXT(·, ·)
for future research endeavors.

3.3.3 Virtual Adjacency Matrix

In this work, we investigate various existing GNNs and identify a common characteristic
among these models. Specifically, we observe that many GNNs modify the original
adjacency matrix for neighborhood information aggregation, with the purpose of improving
model expressiveness or computational efficiency. For example, GraphSAGE [46] removes
some of the actual edges (i.e., 1-hop neighbors) to enhance the computational efficiency
of GNNs, where a fixed-size set of 1-hop neighbors is uniformly sampled from the full
neighborhood sets. High-hop GNNs, such as DEGNN [77], MixHop [1], and KPGNN

3.3 The Proposed VAGNN 43

[35], incorporate higher-hop neighboring nodes along with 1-hop nodes for neighborhood
aggregation. Graph Transformers [32, 159, 156, 19] employ the self-attention mechanism
that takes into account all nodes, where the matrix for the neighborhood aggregation
is equivalent to {1}N×N . In graph theory, the adjacency matrix describes the actual
connections between nodes in a graph. Nevertheless, these modified adjacency matrices
employed for neighborhood aggregation in GNNs have lost that original functionality.
Hence, we propose the term virtual adjacency matrix as a more appropriate descriptor for
the modified matrix.

The virtual adjacency matrix is an important concept in our proposed VAGNN. As
shown in Eq. 3.6, the virtual adjacency matrix serves as a mask that controls which node
pairs can participate in the neighborhood information aggregation in the GNN. We study
the methods for constructing the virtual adjacency matrix and categorize them into three
main classes outlined below:

1. Removal of actual edges. This class of methods involves converting certain 1-hop
neighbors into non-1-hop neighbors.

2. 1-hop conversion of high-hop local neighboring nodes. Here, high-hop local neigh-
bors are transformed into 1-hop neighbors.

3. 1-hop conversion of global nodes. This class of methods focuses on converting
global nodes into 1-hop neighbors.

The latter two classes of methods involve the addition of virtual edges between nodes,
enabling high-hop neighbors and global nodes directly participate in the aggregation
process of the central node. It is important to note that high-hop neighboring nodes and
global nodes are different. High-hop neighbors are not directly connected to the central
node, but they have small shortest-path distances to that node. In contrast, global nodes
may have significantly larger shortest-path distances or even no path connection to the
central node.

Diverse methods can be developed for the three aforementioned classes of methods for
the virtual adjacency matrix construction. For example, as shown in Fig. 3.1, regarding
the removal of actual edges, potential approaches could be random edge removal or edge
removal based on weight. In the case of 1-hop neighbor conversion, the methods could
include transforming all 2-hop local neighbors, selecting local nodes along a random path
walk starting from the target node, converting partial global nodes, etc. Note that our work
primarily centers around introducing VAGNN and its generalization capability. We defer
the investigation of specific construction methods to future research. Furthermore, in the
subsequent experimental section, we will evaluate the performance of several fundamental
construction methods.

44 VAGNN: A General and Scalable GNN Framework

3.3.4 The Expressiveness of VAGNN

Compared to previous GNNs, the proposed VAGNN allows us to approach and design the
GNN models from a more general perspective. Unlike conventional GNN models, VAGNN
is not restricted to a specific architecture. Instead, it provides a general framework that is
capable of being transformed into various existing GNNs and graph Transformers [64, 137,
156]. This generalization is achieved through customizable options in VAGNN, including
designing the functions of ATTN(·, ·) and EXT(·, ·), and constructing the virtual adjacency
matrix.

Specifically, when the virtual adjacency matrix is the original adjacency, VAGNN with-
out any attention mechanism becomes pioneering GNN models like GCN [64]. Building
upon this, the introduction of a residual connection gives rise to JKGNN [151], GCNII
[22] and DeeperGCN [75], while the inclusion of an attention mechanism leads to the
development of GAT [137], AGNN [132], and similar models. If the virtual adjacency
matrix is constructed by removing certain edges from the original adjacency, it takes the
form of GraphSAGE [46], FastGCN [21], etc. Alternatively, If the virtual adjacency matrix
incorporates high-hop neighbors, it resembles DEGNN [77], MixHop [1] and KPGNN
[35]. Lastly, if the virtual adjacency matrix consists entirely of ones, along with the
self-attention mechanism and additional weights based on structural information, VAGNN
is transformed into the architecture of Graph Transformers [32, 159, 156, 19].

In addition to its ability to be configured as existing GNNs and graph Transformers,
VAGNN offers valuable assistance in designing novel and potentially more effective
GNNs. Firstly, existing GNNs exhibit certain deficiencies. Almost all previous GNNs
primarily concentrate on local neighbors within a certain hop, neglecting the incorporation
of global nodes. On the other hand, graph transformers [167, 32, 156, 102] take into
account all nodes in the process of neighborhood information aggregation, where each
node attends to every other node during the self-attention computation. However, this
design of graph transformers comes with several limitations. Firstly, the inclusion of
numerous global nodes would excessively dilute the information from local neighbors,
leading to the over-dilution issue [69]. Secondly, this setting makes the graph Transformer
computationally expensive or even infeasible for large graphs [156]. Moreover, it can be
likened to a language Transformer [135] taking the entire dictionary as input instead of a
single sentence, which is unreasonable.

In contrast, VAGNN can address the aforementioned issues by constructing a virtual
adjacency matrix that incorporates partial global nodes. This approach brings several
benefits. Firstly, it enables a balance between the contributions of information from local
and global nodes by controlling the proportion of global nodes used. Moreover, as opposed
to traditional graph Transformers, the utilization of a virtual adjacency matrix with partial
global nodes allows VAGNN to be implemented based on sparse matrix operations. This

3.4 Experiments 45

can reduce the storage complexity from O(N2) and O(N3) of the dense matrix addition and
multiplication (N is the number of total nodes) to a linear scale with the number of selected
node pairs, thereby enabling VAGNN to exhibit excellent computational scalability even
on large graphs. Additionally, by simultaneously employing three classes of methods for
the virtual adjacency matrix construction (as discussed in Section 3.3.3) and optimizing the
proportions of different nodes involved in those methods, we have the potential to achieve
a superior model performance.

3.4 Experiments

This section presents the experimental evaluation of our proposed VAGNN model. First
of all, it should be noted that the main objective of this work is to introduce the VAGNN
model and demonstrate its powerful expressiveness and generalization capabilities, rather
than pursuing state-of-the-art model performance. Therefore, we design the experiments
to primarily serve the following purposes:

• Examination of generalization capabilities. We compare the performance of VAGNN
with several representative GNNs and graph Transformers by configuring VAGNN
to be transformed into these models.

• Sensitivity study on parameters of the virtual adjacency matrix construction. We
investigate the parameter sensitivity of the methods for constructing the virtual
adjacency matrix. Specifically, we focus on examining the influence of different
proportions of 1-hop nodes, high-hop nodes, and global nodes on the model’s
performance.

• Study on attention methods. We assess the performance of the models with different
attention methods.

• Exploration of the superior model performance. With the optimized parameters, we
explore the potential of the most optimal VAGNN performance.

3.4.1 Datasets

All datasets used in our experiments are selected from the Open Graph Benchmark (OGB)
[54]. We conduct experiments on three prominent graph tasks, i.e., node classification, link
prediction, and graph classification. Accordingly, the datasets are ogbn-products, ogbn-
proteins, and ogbn-arxiv for node classification; ogbl-ppa, ogbl-collab, and ogbl-ddi for
link prediction; and ogbg-molhiv, ogbg-molpcba, and ogbg-code2 for graph classification.

OGB provides official evaluation protocols [54] for all benchmark datasets. We strictly
follow these protocols for the training/validation/test data split and the evaluation metrics.

46 VAGNN: A General and Scalable GNN Framework

Specifically, For ogbg-molpcba, which comes with multiple classification tasks, Average
Precision (AP) is used as the evaluation metric. For the datasets used in link prediction,
the evaluation metric is Hits@k, which measures the proportion of positive samples that
appear in the top-k positions in a ranked list of all (positive and negative) samples. We refer
to [54] for further details about OGB datasets. All our experimental results are reported on
the test set, with mean and standard deviation computed across 5 trials.

Node Classification Datasets

ogbn-products The ogbn-products is an undirected and unweighted graph that serves
as a representation of the Amazon product co-purchasing network. Each node within the
graph corresponds to a product available for purchase on Amazon, and edges between
two products indicate that the products have been purchased together. The preprocessing
methodology follows the work of [25] in terms of extracting node features and target
categories. This process involves the generation of node features through the derivation of
bag-of-words features from the product descriptions, followed by a subsequent application
of Principal Component Analysis to condense the dimensions to a size of 100. The pre-
dictive objective revolves around categorizing products within a multi-class classification
framework, where the 47 highest-level categories are employed as the target labels.

Dataset splitting of the dataset adheres to a more intricate and practical approach. It
incorporates the notion of sales ranking, thereby engendering a dataset partition that mirrors
real-world dynamics. The sales ranking, indicative of popularity, serves as the criterion
for sorting products, and subsequently, the uppermost 8% of products are designated for
training purposes. The subsequent 2% of products in the ranking hierarchy are allocated
for validation, while the residual products constitute the testing set. This sophisticated
partitioning procedure faithfully emulates real-world scenarios wherein labels are primarily
ascribed to pivotal nodes within the network, subsequently enabling machine learning
models to extrapolate predictions to nodes of relatively lower importance.

ogbn-proteins The ogbn-proteins is a comprehensive undirected, weighted, and type-
enriched graph, with nodes symbolizing distinct proteins and edges denoting diverse
biological interactions among proteins, such as physical interactions, co-expression, or
homology [129, 26]. Each edge is associated with an 8-dimensional feature vector, wherein
each dimension embodies the estimated confidence level of a specific association type,
bounded between 0 and 1. Notably, higher values signify heightened confidence in the
association. The protein entities originate from a spectrum of 8 distinct species.

The primary predictive task revolves around the detection of protein functions, or-
chestrated as a multi-label binary classification challenge encompassing a total of 112
distinctive labels. The assessment metric involves calculating the average ROC-AUC

3.4 Experiments 47

scores across these 112 tasks. To ensure rigorous evaluation and robust model performance,
the dataset undergoes strategic partitioning, wherein the protein nodes are segregated
into training, validation, and test sets based on their respective species of origin. This
partitioning strategy facilitates an insightful evaluation of model generalization across
various species contexts.

ogbn-arxiv The ogbn-arxiv is a directed graph that captures the intricate web of citations
among Computer Science (CS) arXiv papers as indexed by MAG [141]. Each node within
this graph signifies an arXiv paper, while the directed edges depict the interconnections
where one paper references another. In an endeavor to enhance the information within each
node, a 128-dimensional feature vector is crafted by amalgamating embeddings derived
from the titles and abstracts of the respective papers. The constituent word embeddings are
artfully computed through the application of the skip-gram model [95] across the expansive
landscape of the MAG corpus. Furthermore, MAG paper IDs are also mapped into the raw
texts of titles and abstracts. This dataset further augments the richness node features by
associating each paper with its year of publication.

The prediction task is to predict the 40 distinct subject areas to which arXiv CS papers
belong, such as cs.AI, cs.LG, and cs.OS, which are manually assigned by the authors and
the moderators of arXiv. Given the exponential surge in scientific publications over the
past century, with the volume doubling every 12 years, the automation of categorizing
the thematic essence of each publication stands as a pragmatic necessity. This endeavor
formally translates into predicting the primary categories to which the arXiv papers belong,
thus constituting a complex 40-class classification challenge.

In a bid to reflect the real-world dynamics, a pragmatic data partitioning strategy is
undertaken based on the publication timelines of the papers. This configuration mirrors
the customary practice where Machine Learning models are nurtured on extant papers and
subsequently leveraged to forecast the thematic domains of freshly-minted publications.
Such a configuration seamlessly lends itself to real-world applications, particularly in
assisting arXiv moderators. To be precise, the proposition advocates for training on papers
published up until 2017, validation on those unveiled in 2018, and culminating with testing
on the corpus brought forth since the advent of 2019.

Link Prediction Datasets

In this work, we do not evaluate the performance of link prediction methods on previous
small graph datasets such as Cora, Citeseer, Pubmed [177]. This is mainly because the
different split proportions of train, validation, and test sets on these datasets would lead
to different comparison results [33]. We refer readers to [33] for more details about the

48 VAGNN: A General and Scalable GNN Framework

Table 3.2 Statistics of OGB link prediction datasets used in our experiments.

Dataset #Nodes #Edges #Degree

ogbl-ddi 4,267 1,334,889 500

ogbl-collab 235,868 1,285,465 8

ogbl-ppa 576,289 30,326,273 73

ogbl-citation2 2,927,963 30,561,187 21

issues of these traditional datasets. As an alternative, we conduct experiments on four link
prediction datasets from OGB [54]. The statistics of datasets are summarized in Table 3.2.

ogbl-ddi The ogbl-ddi is a homogeneous, unweighted, undirected graph built based on
a drug-drug interaction network [144]. In this graph, a node represents a drug and an
edge describes an interaction between two drugs. The nodes in this graph do not have
any features. OGB officially splits edges into train, validations, and test sets according
to what proteins those drugs target in the body. The test set is composed of drugs that
predominantly bind to different proteins from drugs in the train and validation sets, thereby
evaluating the generalization capacity of the model for practical link prediction.

ogbl-collab The ogbl-collab is an undirected graph extracted based on a collaboration
network between authors from MAG [141]. The nodes represent authors and the edges
indicate the collaboration between authors. Every node has 128-dimensional features
obtained by averaging the word embeddings of papers that are published by the authors [54].
Each edge comes with an attribute, i.e., the year when the co-authored paper is published.
The task is to predict future author collaborations. The data is split according to time,
aiming to simulate a realistic application in collaboration recommendation.

ogbl-ppa The ogbl-ppa is an undirected, unweighted graph. Nodes represent proteins
from 58 different species, and edges are biologically meaningful associations between
proteins [129]. The node features are obtained based on the species. OGB splits the data
according to the type of protein associations, which meets the practical needs.

Graph Classification Datasets

ogbg-molhiv and ogbg-molpcba The ogbg-molhiv and ogbg-molpcba datasets are two
molecular property prediction datasets derived from the MoleculeNet with different sizes:
ogbg-molhiv (small) and ogbg-molpcba (medium). RDKit [72] is employed for the pre-
processing of all molecules. Each graph in these datasets represents a unique molecule,

3.4 Experiments 49

wherein atoms constitute the nodes and chemical bonds represent the edges. Notably,
the node features encompass nine dimensions, including attributes like atomic number,
chirality, formal charge, and ring membership.

The predictive objective centers around accurate forecasting of molecular properties,
framed as binary labels. An illustrative instance is whether a molecule obstructs HIV
virus replication. ROC-AUC is employed for evaluating ogbg-molhiv, while the evaluation
metric for ogbg-molpcba integrates the Average Precision (AP) across tasks, attributed to
the highly imbalanced class distribution (only 1.4% positive data). In order to partition the
datasets, the scaffold splitting technique is adopted. By categorizing molecules based on
their two-dimensional structural frameworks, this method ensures that structurally distinct
molecules are distributed into diverse subsets. This approach augments the authenticity of
model performance estimations, aligning with prospective experimental scenarios [149].

ogbg-code2 The ogbg-code2 dataset constitutes a comprehensive assemblage of Abstract
Syntax Trees (ASTs), drawn from a vast repository of approximately 450,000 Python
method definitions. These methods are culled from a diverse array of 13,587 repositories
spanning the GitHub spectrum’s most renowned projects. The wellspring of our Python
method compendium emerges from GitHub’s CodeSearchNet initiative - a compendium of
datasets and benchmarks tailored for machine learning-based code retrieval. Notably, ogbg-
code2 comes with additional features including AST edges, AST nodes, and tokenized
method names. Through this augmentation, ogbg-code2 empowers us to encapsulate
source code in its intrinsic graph architecture, transcending the confines of its token-based
sequence representation.

The primary predictive task entails predicting the sub-tokens that collectively constitute
the method name. The evaluation adheres to the methodology outlined in [5, 6], employing
the F1 score to evaluate the alignment between predicted sub-tokens and ground-truth
sub-tokens. Dataset splitting follows a prudent project-oriented approach [4], whereby the
training set’s ASTs originate from GitHub projects unrepresented in both the validation and
test sets. This design mirrors the pragmatic workflow of training a model on an extensive
repository of source code and subsequently deploying it to predict method names within a
distinct codebase. This project-based partitioning scheme serves as a robust litmus test for
the model’s capacity to apprehend the nuances of code semantics, eschewing reliance on
the specificities of training projects, such as idiosyncratic naming conventions and coding
styles unique to particular developers.

3.4.2 Implementation

We implement our algorithm based on PyTorch, PyTorch Geometric [36], and OGB [54].
The model is trained with Adam optimizer [63] with the learning rate decayed using the

50 VAGNN: A General and Scalable GNN Framework

ExponentialLR method [79]. All experiments are conducted on a Linux machine with two
32-core CPUs, 512G RAM, and two NVIDIA A100 (40G) GPUs. Code is available at
https://github.com/2023researchup/GNNHE.

(a) 1-hop (b) 2-hop (c) 3-hop

Figure 3.2 The results of the parameter sensitivity study on the virtual adjacency matrix
construction. The three plots (a) (b) (c) correspond to three different configurations for
the 1-hop conversion of high-hop local neighboring nodes. For example, in plot (a), the
term "1-hop" represents the virtual adjacency matrix that uses the local neighboring nodes
within 1 hop (i.e., only the actual 1-hop nodes). In plot (b), the term "2-hop" refers to the
conversion of local neighboring nodes within 2 hops into 1-hop neighbors in the virtual
adjacency matrix. The colors of grid cells in the plots indicate the performance (Hits@20)
of the proposed VAGNN on the ogbl-ddi dataset.

3.4.3 Examination of VAGNN Generalization Capabilities

This work introduces a general GNN framework, i.e., VAGNN, with the purpose of bridging
the current gaps among various architectures of GNNs and graph Transformers [64, 137,
156]. The attainability of this purpose stems from the commonality of all these models
belonging to the family of the neighborhood information aggregation algorithm.

In order to experimentally examine the generalization capability of VAGNN, we
carefully choose several representative GNN models, including:

1. GCN [64]. It uses all 1-hop nodes for neighborhood information aggregation without
any attention weights.

2. GraphSAGE [46]. It is similar to GCN, but it differs in the selection of the neigh-
borhood set. Instead of utilizing all 1-hop neighbors as done in GCN, GraphSAGE
employs a fixed-size neighborhood set sampled uniformly from the 1-hop neighbors.

3. DEGNN [77]. It is a high-hop GNN framework where the neighboring nodes
attending the central node’s information aggregation are selected based on the
shortest-path distance between the neighbors and the central node. The distance in
DEGNN is a hyper-parameter. In this work, we specifically set this hyper-parameter
as 2, which corresponds to a 2-hop GNN configuration.

3.4 Experiments 51

Table 3.3 Results of node classification.

ogbn-products ogbn-proteins ogbn-arxiv
(Accuracy %) (AUC %) (Accuracy %)

GCN [64] 75.64±0.21 76.53±0.35 71.74±0.29
VAGNN(GCN) 75.77±0.19 77.31±0.41 71.38±0.31

GraphSAGE [46] 78.29±0.16 77.68±0.20 71.49±0.07
VAGNN(SAGE) 78.03±0.35 78.04±0.37 71.25±0.18

DEGNN [77] 80.14±0.64 85.01±0.72 71.62±0.17
VAGNN(DE) 80.37±0.91 85.17±0.65 71.93±0.21
AGNN [132] 78.84±0.35 79.11±0.35 71.81±0.37

VAGNN(AGNN) 78.92±0.43 79.02±0.34 71.74±0.57
GAT [137] 79.23±0.78 79.35±0.44 71.97±0.35

VAGNN(GAT) 79.19±0.59 79.41±0.38 71.86±0.25
Graphormer [156] − − −
VAGNN(Trans) 81.14±0.67 80.73±0.51 72.14±0.45

VAGNN(mix+Cos) 81.53±0.57 86.17±0.28 71.64±0.29
VAGNN(mix+GAT) 82.91±0.62 87.29±0.52 72.06±0.77
VAGNN(mix+Trans) 84.26±0.79 88.71±0.69 72.85±0.63

Table 3.4 Results of link prediction

ogbl-ppa ogbl-collab ogbl-ddi
(Hits@100 %) (Hits@50 %) (Hits@20 %)

GCN [64] 54.19±1.21 49.35±0.47 88.42±1.34
VAGNN(GCN) 54.23±1.17 49.19±0.53 88.52±2.83

GraphSAGE [46] 49.07±2.18 48.10±0.81 87.37±3.68
VAGNN(SAGE) 50.15±2.73 48.39±0.75 88.09±4.91

DEGNN [77] 51.33±0.87 50.29±0.27 89.94±5.23
VAGNN(DE) 51.61±1.31 50.29±0.32 89.17±3.94
AGNN [132] 54.58±2.56 49.24±0.48 89.61±3.54

VAGNN(AGNN) 54.37±2.10 49.17±0.26 90.02±3.84
GAT [137] 56.27±3.25 49.17±0.55 91.21±5.98

VAGNN(GAT) 55.98±2.79 49.33±0.19 90.79±7.12
Graphormer [156] − − −
VAGNN(Trans) 53.29±4.41 50.05±0.72 92.31±6.25

VAGNN(mix+Cos) 55.37±2.46 50.91±0.37 91.42±2.57
VAGNN(mix+GAT) 57.68±3.28 52.62±0.73 92.68±5.51
VAGNN(mix+Trans) 59.73±3.35 53.29±0.65 94.07±3.66

52 VAGNN: A General and Scalable GNN Framework

Table 3.5 Results of graph classification

ogbg-molhiv ogbg-molpcba ogbg-code2
(AUC %) (AP %) (F1 Score %)

GCN [64] 76.06±0.97 23.96±0.41 15.07±0.18
VAGNN(GCN) 76.25±0.64 23.72±0.70 15.43±0.35

GraphSAGE [46] 76.35±1.32 25.05±0.17 15.13±0.39
VAGNN(SAGE) 76.18±1.09 25.17±0.31 15.36±0.25

DEGNN [77] 79.84±1.25 28.15±0.41 15.81±0.21
VAGNN(DE) 79.62±1.47 28.26±0.63 15.78±0.25
AGNN [132] 76.36±1.13 26.84±0.22 15.37±0.15

VAGNN(AGNN) 76.41±1.05 27.08±0.31 15.26±0.12
GAT [137] 76.81±1.51 27.03±0.29 15.69±0.10

VAGNN(GAT) 76.83±1.29 27.14±0.33 15.57±0.21
Graphormer [156] 80.51±0.53 31.39±0.32 17.52±0.14
VAGNN(Trans) 80.95±1.07 31.58±0.51 17.71±0.23

VAGNN(mix+Cos) 78.91±1.47 29.12±0.27 16.14±0.21
VAGNN(mix+GAT) 79.49±1.62 29.88±0.54 17.92±0.23
VAGNN(mix+Trans) 80.94±1.14 31.72±0.48 18.51±0.19

4. AGNN [132]. It is a 1-hop GNN and employs a cosine similarity attention mecha-
nism as shown in Eq. 3.7.

5. GAT [137]. It is a 1-hop GNN that incorporates an attention mechanism as shown in
Eq. 3.8.

6. Graphormer [156]. It follows the basic architecture of NLP Transformer [135] and
employs self-attention on all nodes.

We use the term VAGNN(GCN) to denote the VAGNN that has been configured exactly
according to the GCN. Similarly, other VAGNN variations, such as VAGNN(SAGE),
follow the same nomenclature convention. Note that VAGNN(Trans) employs the same
attention mechanism as Graphormer. However, we utilize partial global nodes for each
node in VAGNN(Trans) when using all nodes to calculate the self-attention is challenging
on some datasets.

Tables 3.3, 3.4, and 3.5 present the results of node classification, link prediction,
and graph classification, respectively. The results of the VAGNN variants closely align
with those of the corresponding GNN models across most datasets, demonstrating the
effectiveness of the VAGNN in generalizing various GNN architectures within a single
framework. These results also confirm that the majority of GNNs and graph Transformers
are built and operated within the form of neighborhood information aggregation (Equation
1).

3.4 Experiments 53

3.4.4 Parameter Sensitivity Study on Virtual Adjacency Matrix

The virtual adjacency matrix serves as a core component of VAGNN, governing the
participation of nodes in neighborhood information aggregation. As outlined in Section
3.3.3, the methods used to construct the virtual adjacency matrix can be categorized into
three classes, which correspond to the control over the proportions of three types of nodes
involved in the aggregation, i.e., actual 1-hop neighboring nodes, high-hop local neighbors,
and global nodes. In this parameter sensitivity analysis, our objective is to investigate
how different proportions of these three classes of nodes affect the performance of the
model. To effectively demonstrate this, we utilize three commonly-used methods with
concise parameters. Specifically, as shown in Fig. 3.1, for the removal of 1-hop neighbors,
we randomly eliminate ρ|E| actual edges (equivalent to converting 1-hop neighbors to
non-1-hop nodes). Herein, |E| represents the total number of actual edges. Moreover,
regarding the 1-hop conversion of high-hop local neighbors, we explore three settings:
using the original 1-hop neighbors, converting all local neighboring nodes within 2 hops
into 1-hop neighbors, and converting those within 3 hops into 1-hop. Lastly, for the 1-hop
conversion of global nodes, we randomly select φ |E| global nodes.

We use the dataset obgl-ddi to investigate the sensitivity of parameters. The results
are presented in Fig. 3.2. Regarding the parameter ρ , it can be observed that VAGNN
attains its optimal performance at relatively small values of ρ , with the majority of peaks
occurring around 0.0005 of ρ . As ρ increases, the performance of VAGNN gradually
declines and becomes particularly poor when ρ ≥ 0.1. The lowest performance of VAGNN
is observed when ρ = 1, which can be explained by the fact that setting ρ = 1 results in the
removal of all 1-hop neighboring nodes. These results emphasize the critical significance
of the information contained in 1-hop neighboring nodes in the GNN modeling.

In the context of the 1-hop conversion of high-hop local neighboring nodes, the results
on the 1-hop and 2-hop (Fig. 3.2a and Fig. 3.2b) are significantly better than the results on
the 3-hop (Fig. 3.2c). Remarkably, the most favorable results are observed on the 1-hop
conversion of 2-hop nodes (Fig. 3.2b), suggesting that the incorporation of high-hop nodes
could effectively improve the performance of the VAGNN model.

The results on the 1-hop conversion of 3-hop neighbors exhibit minimal variance.
This result can be attributed to the characteristics of the ogbl-ddi dataset. Specifically,
the ogbl-ddi is a graph with 4267 nodes and an average node degree of around 500. We
observe that for every node in ogbl-ddi, its neighbors within 3 hops would approximately
account for 95 percent of the entire graph’s nodes. Consequently, the virtual adjacency
matrix based on the 1-hop conversion of 3-hop neighbors on the ogbl-ddi dataset is similar
to the standard graph Transformer, where all nodes are considered as 1-hop neighbors in
the virtual adjacency matrix.

54 VAGNN: A General and Scalable GNN Framework

For the parameter φ , Fig. 3.2 demonstrates that smaller values of φ generally yield
superior performance, while larger values of φ lead to a noticeable decline in the results.
Moreover, when φ ≥ 1, the model exhibits poor and similar outcomes. This could be
attributed to the dense nature of the graph in the ogbl-ddi dataset (4267 nodes and a degree
of around 500). When φ ≥ 1, nearly all global nodes for each node would be converted
into its 1-hop neighbors in the virtual adjacency matrix. In many real-world graphs, the
number of global nodes is often far larger than that of local neighboring nodes for a node.
Hence, the meticulous selection of an appropriate number of global nodes for the virtual
adjacency matrix holds crucial importance.

We also extend the parameter study to the remaining datasets used in this work. The
observed parameter sensitivity on these datasets exhibits a consistent pattern that aligns
with the results presented on the ogbl-ddi dataset.

Figure 3.3 The performance improvement of attention-based GNN models over the baseline
GCN [64]. Boxplots present the statistical analysis based on the results obtained from the
nine datasets used in this work.

3.4.5 Attention Methods Assessment

With the goal of guiding the selection of the attention mechanisms for our proposed
VAGNN, we conduct a study on the empirical performance of the attention-based GNN
models, including three attention mechanisms: cosine similarity-based, GAT-type, and
self-attention. We take the results of GCN [64] as the baseline and statistically analyze
the improvements of the attention-based models over this baseline across nine datasets.
The analytical results are presented in Fig. 3.3. It can be seen that the self-attention-based
models (Graphormer [156] and VAGNN(mix+Trans)) demonstrate more enhancement, fol-
lowed by the GAT-type ones [137], while the models with cosine similarity-based attention,
including AGNN [132] and VAGNN (mix+Cos), show relatively minimal improvements.

As discussed in Section 3.3.1, it is worth noting that the GAT-type attention mechanism
[137] theoretically requires more computational resources than the self-attention mecha-

3.5 Summary 55

nism [159, 156, 19]. In our experiments, to avoid exceeding the computational capacity of
the machine, the dimensions of the representations used for computing GAT-type attention
often must be set smaller than those used for the self-attention mechanism, which would
partially limit the expressive capability of GAT-type models and subsequently impact their
performance. Overall, all these results suggest that the self-attention mechanism may be a
more favorable choice for the GNN design compared to the other two mechanisms.

3.4.6 Exploration of the Superior Model Performance

To attain the optimal performance of VAGNN, we carefully select the most effective combi-
nation of parameters for constructing the virtual adjacency matrix. We also employ the extra
weight as shown in Eq.3.10 where we follow the methods in [156]. Together with different
attention mechanisms, we denote such optimal VAGNN models as VAGNN(mix+Cos),
VAGNN(mix+GAT), or VAGNN(mix+Trans).

In Tables 3.3, 3.4, and 3.5, it can be found that our VAGNN(mix+Trans) consistently
achieves superior performance across most datasets. Moreover, by combining carefully-
selected parameters for the virtual adjacency matrix and the attention mechanism, VAGNN
surpasses the results obtained by previous GNN models that solely rely on a fixed "vir-
tual" adjacency matrix (e.g., GAT [137] with a 1-hop matrix). These outcomes serve as
compelling evidence for the significance of our optimizable virtual adjacency matrix.

VAGNN provides a flexible mechanism for customizing the proportions of diverse types
of nodes for neighborhood aggregation in GNNs. The utilization of VAGNN in achieving
superior outcomes yields insightful findings that are highly beneficial for researchers
and practitioners, providing them with valuable knowledge and practical guidance for
effectively implementing these techniques in various scenarios. VAGNN also opens up
avenues for future exploration, particularly in the development of more efficient approaches
for constructing the virtual adjacency matrix. This line of research holds substantial
potential for advancing the design of more robust GNNs in forthcoming studies.

3.5 Summary

In this chapter, we present VAGNN, a general and scalable GNN framework. With an
optimizable virtual adjacency matrix, VAGNN offers the capability to customize the neigh-
borhood for aggregation, allowing for the selective exclusion of 1-hop neighbors and the
incorporation of high-hop local neighbors and global nodes. We also describe the flexibility
of VAGNN in terms of selecting attention mechanisms for information aggregation and
incorporating supplementary information into the attention weight. By customizing the
construction of the virtual adjacency matrix and utilizing various attention mechanisms,
VAGNN can be transformed into most existing GNNs and transformers, demonstrating the

56 VAGNN: A General and Scalable GNN Framework

generalization of VAGNN. Furthermore, we discuss the linear computational complexity of
VAGNN, which enables its scalability for handling large graphs. Additionally, we perform
a parameter sensitivity analysis, highlighting the importance of carefully selecting and
balancing the inclusion of local and global information in GNNs. VAGNN provides an
effective tool for researchers and practitioners in the field of GNNs. It paves the way for
designing more efficient techniques for virtual adjacency matrix construction and weighted
aggregation functions, which will contribute to the development of more effective GNN
models in the future.

Chapter 4

An Interpretive Analysis of GNNs in
Link Prediction

This chapter investigates the link prediction capability of GNNs. Our research reveals
that GNNs lack the model ability to learn structural information related to the number of
common neighbors between two nodes, primarily due to the nature of set-based pooling of
the neighborhood aggregation scheme. Furthermore, our extensive experimental analysis
indicates that when the training is supervised by positive and negative link samples,
trainable node embeddings can improve the performance of the GNN-based link prediction
model. Importantly, we observe that the denser the graph, the greater the improvement. We
attribute this to the characteristics of node embeddings, where the state of each link sample
could be encoded into the embeddings of nodes that are involved in the neighborhood
aggregation of the two nodes in that link sample. In denser graphs, every node could have
more opportunities to attend the neighborhood aggregation of other nodes and encode
states of more link samples to its embedding, thus learning better node embeddings for
link prediction. Lastly, we demonstrate that the insights gained from our research carry
important implications in identifying the limitations of existing methods, which could guide
future research efforts toward the development of more robust link prediction algorithms.

4.1 Introduction

GNNs have demonstrated powerful expressiveness in graph representation learning [173].
However, what structural information can be learned via GNNs remains an open question.
In the literature, this question was predominantly studied in terms of graph-level, e.g.,
graph isomorphism [150, 24, 39, 13] by comparing GNNs and Weisfeiler-Lehman test
[143]. Few papers have investigated this open question in terms of structural information
specific to two nodes. A prominent task relying on such information is link prediction.
Existing GNN-based link prediction works [168, 124, 142, 171, 44, 145] primarily pay

58 An Interpretive Analysis of GNNs in Link Prediction

their attention to the model design. Nevertheless, rare of them touch on the core question:
Do their models really learn pair-specific structural information for link prediction?

For example, SEAL [168] and its successors [77, 131, 154] are a family of link
prediction methods that attempt to use GNNs to learn pair-specific structural information
represented by traditional link heuristics such as Common Neighbors, Katz index [62],
and SimRank [60]. SEAL has proven that most link heuristics between two nodes can
be computed approximately within an enclosing subgraph specifically constructed for the
two nodes [168]. SEAL-type methods also assign a labeling vector as additional features
to each node in such subgraph based on the relationship of each node to the target two
nodes [170]. Then these methods perform link prediction by using GNNs to classify such
enclosing subgraphs, with the expectation that GNNs can learn the structural information
equivalent to link heuristics from the enclosing subgraph. However, few of these works
have examined whether this expectation holds true, and our research indicates a negative
answer to this expectation.

In this work, we present analytical and empirical investigations into the link prediction
capability of GNNs, with a focus on a fundamental question1: whether GNNs can effectively
learn the pair-specific structural information related to the number of common neighbors
for link prediction? and by exploring our experimental observations: experimentally, node
embeddings can improve the performance of GNN-based link prediction models, and the
denser the graph, the more the improvement. We consider the latter exploration to be
one of our primary contributions because 1) existing link prediction works rarely reveal
and delve into these observations and 2) these empirical findings come with significant
practical implications for selecting appropriate link prediction methods based on graph
density. Without sacrificing the generality of our research, we focus our work on the
context of link prediction.

Prior to presenting our research, we hereby declare that the primary objective of
this research work is to investigate fundamental problems in GNNs for the task of link
prediction. Therefore, the GNN algorithms employed in this work are basic and general. It
is important to note that this work does not seek to propose innovative model architectures
or suggest novel applications for GNNs. Instead, we focus on analyzing the existing models,
identifying their strengths and weaknesses, and providing insights into link prediction
for potential improvement. We believe that an in-depth understanding of fundamental
algorithms is imperative for developing effective and efficient GNN models in the future.

First, modern GNNs follow a neighborhood aggregation scheme, where each node’s
representation is recursively updated by aggregating the representations of that node and

1There exists multiple types of structural information specific for two nodes in a graph. In this work, we
do not attempt to study all of them and measure which ones can be learned or not via GNNs. This is because
it requires the interpretation of the GNN which remains an open question and falls outside the scope of this
research. Instead, our primary objective is to study the limitation of GNNs in learning an important type of
structural information that highly relies on the number of common neighbors.

4.1 Introduction 59

its neighbors [27]. The learned representations are node-wise. It has been recognized
that each node’s representation can hardly capture information related to the number of
its neighbors due to the nature of the set-based pooling of the aggregation scheme which
inherently ignores the size of the neighborhood set of each node [150, 170].

A general strategy for applying node-wise representations learned by GNNs to down-
stream multiple-node tasks (e.g., link prediction, graph classification, etc.) is to combine
the representations of the nodes involved in these tasks. For link prediction, we find
that the combination of two nodes’ representations essentially lacks the ability to capture
information related to the number of common neighbors. This is mainly because node-
wise representations learned by GNNs inherently lack information about the number of
neighbors of each node, and most operations of combining two nodes’ representations
(e.g., concatenation, Hadamard production, etc.) also do not contain any behaviors of
counting how many common neighbors between two nodes.

To empirically verify this, we adopt an approach of incorporating traditional link
heuristics (e.g., Common Neighbors) into the GNN and examine the link prediction
performance. The approach yields results either superior or comparable to those obtained
by using only GNNs, experimentally supporting our analysis. Notably, this approach
helps us achieve state-of-the-art on two Open Graph Benchmark (OGB) [54] datasets, i.e.,
ogbl-collab and ogbl-citation2.

In our experiments, we find that trainable node embeddings can enhance the perfor-
mance of GNN-based link prediction models, and the denser the graph, the stronger the
enhancement. In particular, by only utilizing node embeddings in GCN [64] or GAT [136],
we are able to surpass all previous best results on two dense graphs ogbl-ddi and ogbl-ppa,
achieving 96.21, and 63.51, respectively.

Our explanation for these experimental observations is as follows. Compared to the
model weights of a GNN that are shared across all nodes [64, 27], each trainable node
embedding is unique to its respective node. This characteristic of node embeddings can
benefit the model. When the training is supervised by positive and negative link samples
(i.e., two nodes are not linked), the link state of two nodes in every link sample could be
encoded into the node embeddings of that two nodes and their neighboring nodes with
the help of the neighborhood aggregation algorithm of the GNN. This would enable each
node embedding to remember the relationships of that node to other nodes, allowing the
model to know better which two nodes are more likely to be linked or not. Moreover, in
the neighborhood aggregation of the GNN, the denser graphs would allow each node to
see more other nodes, leading to better learning of node embeddings for link prediction.

This study provides deeper insights into the expressiveness of GNNs in link prediction.
These insights can help identify and interpret the limitations of existing link prediction
methods, potentially directing the search for more robust algorithms. To demonstrate this,
we present two analytical case studies: first, we show that SEAL-type methods [168, 131]

60 An Interpretive Analysis of GNNs in Link Prediction

Table 4.1 NCN-dependent link heuristics between nodes v,u.

Heuristic Definition

CNv,u |Γv ∩Γu|
JAv,u [59] |Γv∩Γu|

|Γv∪Γu|
AAv,u [2] ∑z∈Γv∩Γu

1
log|Γz|

RAv,u [174] ∑z∈Γv∩Γu
1

|Γz|
SPD Shortest Path Distance
Katzv,u [62] ∑

∞
l=1 β l|{path(l)v,u}|

are unable to effectively learn information related to the number of common neighbors.
Second, we find that NBFNet [177] lacks the algorithmic capability to train powerful node
embeddings for link prediction. In addition, we empirically compare the performance of
multiple types of link prediction methods on OGB datasets. The results can be explained
with our insights, further underlining the significance of our findings.

4.2 Preliminaries

Without loss of generality, we demonstrate our work on homogeneous graphs [52].

4.2.1 Problem Definition

Link prediction is a node-pair-specific problem, aiming to estimate the likelihood ŷv,u of
the existence of an unknown edge Ev,u /∈ E between two nodes v,u ∈ V. Herein we refer to
v,u as two target nodes in the candidate link Ev,u.

4.2.2 NCN-dependent Structural Information

In this research, we distinguish an important type of node-pair-specific structural infor-
mation, i.e., NCN-dependent structural information from others, where NCN refers to the
Number of Common Neighbors between two nodes.

First of all, we use several traditional link heuristics2 to instantiate NCN-dependent
structural information. These heuristics include Common Neighbors (CN), Jaccard (JA)
[59], AdamicAdar (AA) [2], Resource Allocation (RA) [174], Katz index [62], etc. Ta-
ble 4.1 lists the definitions of these heuristics. Common Neighbors (CN) is defined as the
size of the intersection of the first-order neighborhood sets of two nodes. Jaccard (JA)

2In this work, we do not pursue collecting and reviewing all link heuristics. Instead, we only use several
of them for the convenience of presenting our study on GNNs.

4.2 Preliminaries 61

coefficient [59] normalizes the CN by the size of the union of the two nodes’ neighbor-
hood sets. AdamicAdar (AA) [2] and Resource Allocation (RA) [174] both suppress the
contribution of nodes by penalizing each node with its degree. SPD is the shortest path
distance between two nodes. Katz index [62] weighted counts all paths between two nodes,
where |{path(l)v,u}| is the number of all paths between node v and u with the length of l, and
β is a damping factor satisfying 0 < β < 1.

We can see from Table 4.1 that the first four heuristics highly rely on the number of
common neighbors between two nodes v,u (i.e., |Γv ∩Γu|). Theoretically, Shortest Path
Distance (SPD) and Katz index [62] also capture NCN-dependent structural information.
For example, SPDv,u = 3 means that CNv,u = 0 and at least one node in Γu has at least one
common neighbor with v. For l = 4 in Katz, |{path(4)v,u}| can be computed by |{path(4)v,u}|=
∑a∈Γv,b∈Γu CNa,b.

Algorithm 2 SimRank [60]

1: Input: Graph G = (V,E) (|V|= N), decay factor C (0 <C < 1), iterations K
2: Output: Similarity S = (si, j) ∈ RN×N

3: Initialize: s(0)i, j = 1 if i = j, otherwise 0
4: for m = 1 to K do
5: s(m)

i j = C
|Γi||Γ j| ∑

|Γ j|
b=1 ∑

|Γi|
a=1 s(m−1)

Γi(a)Γ j(b)
, where Γi(a) is the a-th node in Γi

6: end for

Besides, we introduce SimRank [60], a link heuristic with limited capability to extract
NCN-dependent structural information. As shown in Algorithm 2, SimRank recursively
refines similarity scores between every two nodes by considering the neighboring nodes of
the two nodes, where the number of common neighbors is ignored essentially. Specifically,
we can see from the core function in Line 5 of Algorithm 2 that the similarity score
s(m)

i, j between node i, j in the m-th iteration is obtained by averaging the similarity scores
between all neighbors of i and j from the (m− 1)-th iteration, where the information
about how many common neighbors between i, j can hardly be encoded into s(m)

i, j . We will
demonstrate that the SimRank learning style exhibits certain similarities to the GNN.

4.2.3 GNNs in Learning the Number of Neighbors

Modern GNNs follow a neighborhood information aggregation algorithm where the repre-
sentation of each node in a graph is iteratively updated by aggregating the representations
of its neighbors and its own [27]. Formally, the representation of a node i updated by the

62 An Interpretive Analysis of GNNs in Link Prediction

l-th layer of a GNN is

ĥ(l)
i = AGG(l)

({
h(l−1)

j | ∀ j ∈ Γi ∪{i}
})

,

h(l)
i = ĥ(l)

i W(l),
(4.1)

where h(0)
i is initialized with the feature vector of node i, AGG(l)(·) is instantiated as a

set-based pooling operation such as MAX, MEAN, or attention-based SUM [47, 136],
W(l) is a weight matrix for the l-th GNN layer, which is shared across all nodes and used
for representation transformation (i.e., if ĥ(l)

v ∈ R f ,W(l) ∈ R f× f ′ , then h(l)
v ∈ R f ′).

1

2

3

4

5

6

𝑎1,2

𝑎2,1
𝑎5,4,

𝑎5,1

𝑎1,5
1

2

3

4

5

6

𝑎1 5
𝑎4,5

6
𝑎6,4

𝑎4,6𝑎1,3

𝑎3,1, 𝑎6,1

𝑎𝑎
𝑎1,6

1

2

3

4

5

6

Figure 4.1 An illustration of neighborhood information propagation and aggregation in
GNNs, where ai, j can be an edge weight or attention weight from node j to i.

Fig. 4.1 illustrates the neighborhood information propagation and aggregation process
in GNNs. In Fig. 4.1, ĥ(l)

i in Equation 4.1 can be computed by

ĥ(l)
i = ∑

j∈Γi∪{i}

a(l)i, j

∑ j∈Γi∪{i} a(l)i, j

h(l−1)
j , (4.2)

where a(l)i, j is the weight for the message (i.e., h(l−1)
j) from node j to i. For MEAN-pooling

in GNNs like GCN [47], it can be a(l)i, j = 1,∀Ei, j ∈ E. For attention-based SUM in GNNs

like GAT [136], a(l)i, j is an attention coefficient that is computed dynamically based on

h(l−1)
i and h(l−1)

j during the training process.

Theorem 1. The node representations learned by aggregation-based GNNs are node-wise.

Proof. As shown in Eq. 4.1, the input, intermediate, and output representations of GNNs
are node-wise.

Proposition 1. Each node’s representation learned by GNNs lacks information about the
number of neighboring nodes of that node.

Proof. As shown in Eq. 4.1, GNNs update the representation h(l)
i by aggregating the

representations of node i and its neighbors. In this process, the number of neighbors of
node i can hardly be encoded into h(l)

i . This is due to the inherent nature of neighborhood

4.3 NCN-dependent Structural Information cannot be Effectively Learned via GNNs 63

aggregation scheme in GNNs, i.e., the AGG(l)(·) in Eq. 4.1 is set-based pooling, aiming
to handle irregular sizes of neighborhood sets of different nodes. For example, if the
aggregation is MEAN pooling, then the set of representations (i.e., {h(l−1)

j | ∀ j ∈ Γi∪{i}}
in Eq. 4.1) will be averaged and the aggregation result could hardly contain information
about the size of this set.

Note that attention-based pooling also cannot address this inherent issue of neighbor-
hood aggregation. As shown in Eq. 4.2, attention-based GNNs like GAT [136] essentially
replace the original edge weight with attention weight. The set of representations is ac-
tually weighted averaged and the result still lacks information related to the size of the
neighborhood set of node i.

Proposition 1 shows that the neighborhood aggregation algorithm of GNNs inherently
cannot effectively learn information about the number of neighbors of each node. Essen-
tially, we can address this issue by, for example, adding the node degree as a feature to
each node. We note that several previous works have pointed out this inherent issue of
GNNs [150, 170]. We present it formally using Proposition 1 for better presenting our
following study.

4.3 NCN-dependent Structural Information cannot be
Effectively Learned via GNNs

4.3.1 Analytical Study

What can we do when applying the node-wise representations learned by GNNs to down-
stream graph tasks that involve multiple nodes, such as link prediction or graph classifi-
cation? A standard way is to combine the representations of the involved nodes into one
representation and pass it into the next model parts [150, 142]. For such a combination,
we have the following proposition:

Proposition 2. The combination of two or more nodes’ representations learned by GNNs
cannot effectively capture NCN-dependent structural information.

Proof. According to Proposition 1, due to the inherent nature of the neighborhood aggre-
gation algorithm, node-wise representations learned by GNNs cannot effectively capture
information related to the number of neighbors of each node, much less to the number of
common neighbors between two nodes. The operation of combining representations of two
or more nodes also cannot effectively extract NCN-dependent structural information. For
example, we can combine the representations of two nodes by concatenation, Hadamard
production, etc. [142] and combine more nodes’ representations by MEAN pooling

64 An Interpretive Analysis of GNNs in Link Prediction

Algorithm 3 GNN-based link prediction

1: Input: Graph G = (V,E,X) (|V|= N), X ∈ RN× f , trainable node embeddings E ∈
RN×d , ground truth yv,u for link sample (v,u), GNN layers L, epochs K

2: Output: Link likelihood ŷv,u ∈ R for node pair v,u
3: Initialize: node embeddings E, model weights, etc.
4: for i = 0 to K do
5: for l = 1to L do
6: ĥ(l)

i = AGG(l)
({

h(l−1)
j | ∀ j ∈ Γi ∪{i}

})
7: h(l)

i = ĥ(l)
i W(l)

8: end for
9: hvu = COMBINE

(
h(L)

v ,h(L)
u

)
10: ŷv,u = PREDICTOR(hvu)
11: Calculate loss(yv,u, ŷv,u)
12: Update E, model weights, etc.
13: end for
14: Herein hvu is the link representation for (v,u). COMBINE(·, ·) can be Hadamard

production, concatenation, etc. PREDICTOR(·) is a predictor like MLP.

[150], Sort pooling [169], etc. These combination operations on node-wise representa-
tions learned by GNNs are unlikely to contain the behavior of extracting NCN-dependent
structural information.

GNNs might learn little structural information related to the number of common
neighbors. However, the neighborhood aggregation algorithm of GNNs learns node-wise
representations by passing the messages of neighboring nodes of each node to that node
and set-based aggregates them [47, 136, 150, 170]. Such set-based aggregation operation
inherently washes out the information related to the number of nodes in the set, including
the number of common nodes between two nodes. As shown in Fig. 4.1, the node 1 and 4
have common neighbors 5,6. In GNN learning, the node 1 will receive the messages from
2,3,5,6, where the number of common neighbors (i.e., CN1,4 = 2) can hardly be captured
in the aggregation of five representations (i.e., representations of nodes 1,2,3,4,5). Note
that in this example, attention-based aggregation also cannot effectively learn CN1,4 = 2
from the aggregation of five representations. The reason is the same as the proof of
Proposition 1. In fact, it is difficult to interpret what information the GNN has learned in a
rigorous mathematical format. Nevertheless, we can say with certainty that the ability of
GNNs in learning NCN-dependent structural information is quite weak.

4.3 NCN-dependent Structural Information cannot be Effectively Learned via GNNs 65

Figure 4.2 The results of Algorithm 3 using heuristic encoding (HE) only, node features
(X) only, node embeddings (NE) only, or their combinations. The nodes in ogbl-ddi do not
have any features and we use the node degree as the node feature.

4.3.2 Empirical Study

Experimental Design

In this work, we conduct our empirical study based on a commonly-used link prediction
algorithm, i.e., Algorithm 3. As shown, given two nodes v,u, the link prediction is
performed by combining the two nodes’ representations from the last GNN layer into a
pair-specific link representation hvu and then passing it into a predictor like MLP. During
the training stage, the node pair (v,u) can be a positive or negative link sample, where a
negative sample can be two distant nodes that are not connected to each other.

If Proposition 2 holds, we expect that properly integrating NCN-dependent heuristics
into Algorithm 3 could improve the link prediction performance. To this end, we modify
the equation in Line 10 of Algorithm 3 to:

evu = CONCAT
(

e(CN)
vu ,e(JA)

vu , · · · ,e(RA)
vu

)
,

ŷvu = PREDICTOR(CONCAT(hvu,evu)) ,
(4.3)

where e(CN)
vu ,e(JA)

vu ,e(RA)
vu are trainable embeddings by encoding CN, JA, and RA, respec-

tively. For the purpose of verifying Proposition 2, we only encode NCN-dependent link
heuristics. The methodology of heuristic encoding is as follows. For heuristics that are
discrete integer values (e.g., CN, SPD), we assign a trainable embedding vector to each
integer. In the case of heuristics that are continuous floating-point values (e.g., AA, RA),
we partition the value range into small bins and subsequently allocate each bin a unique
embedding vector.

Encoding heuristics into embeddings is mainly because if we directly use heuristics
as features, we find that the model optimization is challenging, where the model is more

66 An Interpretive Analysis of GNNs in Link Prediction

likely to get stuck in a local optimum. This issue could arise due to the high correlation
between the heuristic features and the link samples. Encoding heuristics into trainable
embeddings can address this challenge successfully.

4.3.3 Experimental Settings

Datasets

We conduct all our experiments on four recently-published OGB link prediction datasets:
ogbl-collab, ogbl-citation2, ogbl-ppa, and ogbl-ddi [54]. All these datasets are constructed
based on real-world data, covering diverse realistic applications and spanning different
scales (4K - 3M nodes). We do not use previous commonly-used datasets [33] like Cora,
Citeseer, Pubmed, etc. This is because these datasets usually suffer from a series of
issues such as unrealistic and arbitrary data splits, small scale, and data leakage [122, 33].
Especially, Shchur et al. [122] show that different data splits on such datasets lead
to inconsistent results in performance evaluation among modern GNN methods, thus
rendering them inadequate for meeting our research objectives.

Evaluation Metrics

OGB provides official evaluation protocol [54]. We follow it in the data splits and evalua-
tion metrics (i.e., Hits@50, MRR, Hits@100, and Hits@20 on ogbl-collab, ogbl-citation2,
ogbl-ppa and ogbl-ddi, respectively). We report the result on the test set, with mean and
standard deviation computed across 5 trials. Additional experimental settings can be found
in the Appendix. Code is available at https://github.com/2023researchup/GNNHE.

Experimental Results

Fig. 4.2 shows the experimental results, where HE is the model (i.e., Algorithm 3) that
only uses heuristics encoding evu in Eq. 4.3 (herein we show the best HE, and more HE
results are shown in Fig. 4.6 in the Appendix). GNN(X), GNN(NE), and GNN(X+NE) are
the models only using the GNN with three different settings of input, i.e., node features
(X) only, node embeddings (NE) only, and concatenation of both X and NE (X+NE),
respectively. The model GNN(X)+HE uses both hvu and evu. For the GNN model, we use
GAT [136] with high-hop modification (refer to the Appendix for details) on ogbl-ddi and
GCN [64] on the other three datasets.

First, we can see in Fig. 4.2 that HE outperforms GNN(X) on all datasets, suggesting
that NCN-dependent heuristics convey meaningful information which could not be effec-
tively learned by the GNN. Second, as we expected, most of the results of combining GNN
and HE are better than those only using GNN. Especially, GNN(X)+HE achieves the best
on ogbl-collab and ogbl-ciation2. All these results can support Proposition 2.

4.4 Node Embedding in Link Prediction 67

4.4 Node Embedding in Link Prediction

In Algorithm 3, h(0)
i can be initialized using feature vector xi ∈ X, node embedding ei ∈ E

or the concatenation of both xi and ei. Some papers may refer to node embedding as
an intermediate representation of a node in GNNs. In this work, we clearly distinguish
node embeddings from node representations. We consider node embedding as a type of
node-wise input feature. The embedding of a node can be viewed as encoding a unique
node id into a trainable embedding vector, which is like encoding a unique word id into the
word embedding in natural language processing [95]. Note that we can encode any feature
into a trainable embedding vector (e.g., encoding node degree to an embedding). The main
difference between node embeddings and the embeddings of other node features is that
each node embedding vector is unique to that node and can be dynamically trained during
the training process, while other node features cannot satisfy both criteria. For example, a
node id is unique to that node but cannot be trained; an embedding of a node degree can be
trained but is not unique to that node since different nodes could have the same degree.

4.4.1 Experimental Observations

As shown in Fig. 4.2, on two relatively sparse graphs, i.e., ogbl-collab and ogbl-citation2
with graph degrees of 8 and 21, respectively, the performance of GNN(NE) is on par
with that of GNN(X), and GNN(X+NE) performs best. By comparison, on two denser
graphs, i.e., ogbl-ppa and ogbl-ddi with higher graph degrees of 73 and 500, respectively,
GNN(NE) outperforms GNN(X) by a large margin. These results indicate that incorporat-
ing node embeddings can enhance the link prediction performance of Algorithm 3. More
notably, these observations reveal a strong positive correlation between the performance
improvement by node embeddings and the graph degree, whereby denser graphs exhibit
greater improvement.

4.4.2 Analytical Insights into Node Embeddings

Proposition 3. Like Algorithm 3, when the training is supervised by positive and negative
link samples, trainable node embeddings can enhance the expressive power of the GNN-
based link prediction model.

Proof. In Algorithm 3, the parameters optimized by the link samples could include model
weights, trainable node embeddings, and other feature embedding weights (e.g. node
degree embeddings). The key difference between node embedding weights and other
learnable weights is that the former is unique to each node but the latter is shared across
multiple nodes (e.g., the GNN weight matrix W(l) in Eq. 4.1 is shared across all nodes; a
node degree embedding would be shared by several nodes). The unique nature of node

68 An Interpretive Analysis of GNNs in Link Prediction

embeddings can bring benefits. As shown in Algorithm 3, when the model training is
supervised by a link sample (v,u), for a GNN using node embeddings, the loss calculated
based on (yv,u, ŷv,u) would be used to optimize the node embeddings of nodes v,u and their
neighboring nodes (i.e., the nodes involved in calculating h(L)

v ,h(L)
u). The link state of

(v,u) could be encoded into the node embeddings of these nodes, which would enable the
node embedding better represent the corresponding node, similar to the training of word
embedding [95]. After being trained with sufficient positive and negative link samples, the
node embedding of each node could know which nodes (through their node embeddings)
in the graph are more likely to be or not to be connected to that node.

If node embeddings are not used in Algorithm 3, link samples will only supervise the
optimization of the model weights that are shared across multiple nodes. The states of link
samples could not be effectively retained by the model since these shared weights might
learn a common pattern for different nodes rather than unique to a node. By comparison,
each node embedding is unique to that node and could learn the link information specific to
that node. In this respect, trainable node embeddings could enhance the expressive power
of the GNN-based link prediction model.

In Proposition 3, the requirement of the model training is supervised by link samples is
indispensable. Without this prerequisite, the link state between two nodes could not be
encoded into node embeddings. Additionally, negative link samples can allow the embed-
dings of two distant nodes and their neighbors to see each other during the optimization of
the GNN-based model.

Proposition 3 shows that trainable node embeddings could improve the expressiveness
of GNN-based link prediction models. However, this does not mean that the model using
node embeddings will certainly perform better than that only using node features, especially
in practical applications where careful feature engineering based on domain knowledge is
conducted. Besides, trainable node embeddings remain limitations in the inductive setting
[131]. For example, when new nodes are added to the graph, the model together with all
node embeddings may need to be retrained.

Finding 1. Following Proposition 3, the denser the graph, the more the enhancement by
node embeddings.

In GNN-based link prediction models like Algorithm 3, node embeddings in a dense
graph could be better learned for link prediction than those in a sparse graph. The
explanation could be as follows. In a dense graph, a node often has a lot of neighboring
nodes, thereby providing numerous opportunities for that node to meet other nodes and
encode link relationships of that node with these other nodes into its embedding during the
neighborhood aggregation process in GNN training. In contrast, a sparse graph typically
contains only a limited number of neighbors for each node. For example, in the case where

4.5 Limitation Analysis of Existing Methods 69

a node v has only one neighboring node w, the optimization of the embedding of node v in
a GNN would mainly rely on the neighbor w. As a result, the learned embedding of node
v would lack sufficient information to identify the relationships between node v and the
majority of the other nodes in the sparse graph because node v rarely or never sees them
during the training process.

Finding 2. The learning styles of SimRank, as outlined in Algorithm 2, and the GNN-based
link prediction model with node embeddings, as described in Algorithm 3, exhibit certain
similarities.3

Comparing Algorithms 2 and 3, several similarities emerge. Firstly, similarity scores
in Line 3 of Algorithm 2 and node embeddings in Line 3 of Algorithm 3 both need to be
initialized and can be dynamically trained. Secondly, the updating computations of both
algorithms (i.e., Line 5 of Algorithm 2 and Line 6 of Algorithm 3) involve neighboring
nodes. Moreover, both the learned results (i.e., si j in Algorithm 2 and ŷv,u in Algorithm 3)
describe the existence likelihood of a link between two nodes. However, compared to
Algorithm 3 where the trainable parameters include node embeddings, model weights,
etc., the expressive power of SimRank is limited, where only the similarity scores between
every two nodes can be optimized, with each score always taking the form of a scalar.

Finding 2 implies that although NCN-dependent structural information cannot be effec-
tively learned via GNNs (Proposition 2), other types of pair-specific structural information
(e.g., the information captured by SimRank) might be learned through GNNs.

4.5 Limitation Analysis of Existing Methods

In this section, we first present a brief survey of existing link prediction methods and
then demonstrate the effectiveness of our findings in identifying the limitations of these
methods.

4.5.1 A Survey of Link Prediction Methods

Heuristic Methods.

Traditional link heuristics such as CN, AA [2], Katz index [62], etc. are usually defined
based on the number of common neighbors or paths between two nodes [92]. Their effec-
tiveness in link prediction has been confirmed in real-world tasks [82, 92, 66]. However,
many link heuristics are designed for specific graph applications and their performance

3For Finding 2, we do not compare the performance of Algorithm 2 and Algorithm 3 due to the difficulty
of SimRank in computation. For example, the basic memory requirement of SimRank is 415G and 2.42T on
ogbl-collab and ogbl-ppa, respectively. Besides, SimRank produces 0 at Hits@20 on ogbl-ddi.

70 An Interpretive Analysis of GNNs in Link Prediction

may vary on different graphs [66]. Also, the expressiveness of these methods is limited
compared to graph representation learning [168].

Node Embeddings with Matrix Factorization

A family of node embedding methods is those built with the utilization of matrix factoriza-
tion [65] on the graph adjacency matrix. Among them, MF [93] is a pioneer work extending
matrix factorization for link prediction. FSSDNMF [20] proposes a link prediction model
based on non-negative matrix factorization. In general, such methods mainly rely on the
adjacency matrix and tend to encounter scalability issues when employed on large graphs.

Node Embedding based on Relative Distance Encoding.

Another family of node embedding methods is those based on relative distance encoding.
The similarity of nodes in the embedding space reflects the semantic similarity of nodes
in the graph [104]. Such methods would learn more similar embeddings for two close
nodes than for two nodes that are far apart. Following word embedding [95], methods such
as Deepwalk [104], Node2vec [43], UniNet [153] learn node embeddings by treating the
nodes as words and treating the sequences of nodes generated based on links as sentences.
Inspired by subword tokenization [117], NodePiece [37] explores parameter-efficient node
embeddings. However, these methods typically train node embeddings in an unsupervised
learning manner without link samples. Solely using such node embeddings for link
prediction empirically perform poorly compared to other methods [142].

Graph Neural Networks.

A number of GNN models have been proposed. GCN [64] is a graph convolutional
network that learns node representations by summing the normalized representations
from the first-order neighbors. GraphSAGE [47] samples and aggregates representations
from local neighborhoods. GAT [136] introduces an attention-based GNN architecture.
JKNet [151] adds a pooling layer following the last GNN layer and each GNN layer has
a residual connection to this layer. Cluster-GCN [25] proposes an efficient algorithm
for training deep GCN on large graphs. LRGA [106] incorporates a Low-Rank global
attention module to GNNs. Several works such as Mixhop [1], AGDN [128], DEGNN
[77] propose techniques to leverage high-hop neighbors. ID-GNN [158] embeds each node
by inductively taking into account its identity during message passing. These GNNs have
demonstrated promising link prediction performance.

4.5 Limitation Analysis of Existing Methods 71

SEAL-type Methods.

SEAL and its subsequent works [168, 77, 131, 154] address the link prediction problem by
classifying the subgraphs that are extracted specifically for candidate links. SEAL [168]
extracts a local enclosing subgraph for each candidate link and uses a GNN [169] to classify
these subgraphs for link prediction. GraiL [131] is developed for inductive link prediction.
It is similar to SEAL but it replaces SortPooling [169] with MEAN-pooling. DEGNN [77]
proposes a distance encoding GNN. For link prediction, DEGNN uses a SEAL-type
strategy but a different labeling technique [170]. Differently from SEAL, Cai et al. [16]
transform the enclosing subgraph into a corresponding line graph and address the link
prediction task with the node classification problem in its corresponding line graph. Pan
et al.[99] follow the enclosing subgraph strategy in SEAL while designing a new pooling
mechanism called WalkPool. SUREL [154] proposes an algorithmic technique to improve
the computational efficiency of subgraph generation in SEAL. SIEG [3] incorporates the
structural information learned from the enclosing subgraphs into the GNN model for link
prediction.

Other Methods Developed Specifically for Link Prediction

In addition to SEAL-type methods, various link prediction-specific methods have been
proposed. Wang et al. [142] present PLNLP by jointly using the representations learned
by a GNN, distance encoding, etc. Yun et al. [161] present Neo-GNN, which weighted
aggregates the link prediction scores obtained by heuristics and a GNN. Zhu et al. [177]
propose NBFNet that generalizes traditional path-based link heuristics into a path formu-
lation. Singh et al. [124] demonstrate that simply adding a set of edges to the graph as
a pre-processing step can improve the performance of link prediction models. Roy et al.
[112] propose PermGNN where the neighborhood aggregator is optimized directly by link
samples. Zhao et al. [171] study counterfactual questions about link existence by causal
inference. Wu et al. [145] propose a RelpNet, which aggregates edge features along the
structural interactions between two target nodes. Guo et al. [44] propose cross-model
distillation techniques for link prediction. Shang et al. [120] propose a negative link
sampling method PbTRM based on a policy-based training method.

4.5.2 Limitation Analysis

In this study, we provide two critical insights into the application of GNNs in link prediction.
Firstly, we show that aggregation-based GNNs inherently lack the ability to learn NCN-
dependent structural information for link prediction. Secondly, we demonstrate through
experimentation that node embeddings can boost the performance of GNN-based link
prediction models on dense graphs. These insights can serve as effective avenues to identify

72 An Interpretive Analysis of GNNs in Link Prediction

and interpret the limitations of existing link prediction methods. Firstly, we present two
case studies to illustrate this.

Case study 1. Can SEAL effectively learn NCN-dependent structural information
as it expects? SEAL-type methods have achieved the best performance on several link
prediction datasets [168, 77, 131, 154]. SEAL [168] has proven that most link heuristics
between two nodes can be computed approximately within an enclosing subgraph extracted
specifically for that two nodes. Most SEAL-type methods employ GNNs for representation
learning, with the expectation that from such enclosing subgraphs, the GNN can learn the
structural information equivalent to link heuristics including CN, AA, Katz, etc. However,
whether this expectation holds true has not been thoroughly investigated in existing works.
Our insights gained from this work offer novel perspectives to investigate this issue, which
suggests that a definitive affirmation of this expectation is unlikely to be reached.

First, the GNNs used in SEAL-type methods, e.g., DGCNN [169] in SEAL [168], R-
GCN [114] in GraiL [131], still belong to the type of aggregation-based GNNs. According
to Proposition 2, these GNNs in SEAL-type methods inherently cannot effectively learn
NCN-dependent structural information.

Furthermore, we have noticed that SEAL-type methods usually use a node labeling
technique [170] to add labeling features to each node in an enclosing subgraph extracted
specifically for a candidate link. The labeling features of each node describe the relationship
of that node to the target two nodes. Fig. 4.3 illustrates such a labeling method, where the
labeling features of a node are the shortest path distances from the node to the target pair
of nodes. Zhang et al. [170] point out that the labeling features can help the GNN learn the
structural information related to the number of common neighbors. Their explanation is as
follows. As shown in Fig. 4.3, for node v and u, in the first iteration of the neighborhood
aggregation in a GNN, only the common neighbors between node v and u will receive the
labeling messages from both v and u; then in the second iteration, the common neighbors
will pass such messages back to both v and u, which can encode the number of common
neighbors into the representations of node v and u.

However, we question this statement. In the second iteration in the explanation above,
apart from the common neighbors, the non-common neighbors of node v also pass their
messages back to v. The messages from all neighbors of v are then aggregated through a
set-based pooling (e.g., MEAN or attention-based pooling as shown in Eq. 4.2). Such an
aggregated result for node v would wash out the distinguishable labeling information. We
present an example to illustrate this. As shown in Fig. 4.3, if the pooling method in a GNN
is MEAN, then the aggregation of the labeling features of the neighbors of node v would
be equal to that of node w, i.e., MEAN({10,3,2,1}) = MEAN({4,6,4,3,3}). This means
that the distinct labeling features of the neighbors of a node are not effectively kept in the
aggregated result. In other words, the aggregated results for node v and w in the positive
and negative link samples become indistinguishable. Note that attention-based pooling in

4.5 Limitation Analysis of Existing Methods 73

(1,3)

(1,10)

(1,2)

(1,1) (1,3)(1,4)

(1,3)

(1,6)

Positive link Negative link

𝑣

(1,4)

𝑤𝑢 𝑢

link? link?

Figure 4.3 Node labeling in SEAL-type methods. The left is a subgraph specific for a
positive link sample and the right is a negative one. The labeling features are based on the
SPDs from every node (here only show the first-order neighbors of node v or w) to the
target pair of nodes. For example, on the left, the node with the labeling (1,10) indicates
that the SPD from this node to node v and u is 1 and 10, respectively.

GNNs like GAT [136] also suffers from the above limitation for the same reason as the
proof of Proposition 1. The same goes for node u. It should be noted that our example is
merely for illustrative purposes. In practice, a GNN layer contains a series of complicated
operations such as linear and non-linear transformations, dropout, residual connection, and
others. The structural information in the labeling features could be partially kept in the
learned representations.

Although SEAL-type methods cannot effectively learn structural information related
to the number of common neighbors, we would highlight that these methods are powerful
for link prediction. Such methods transform the pair-specific link prediction problem
into a graph-level classification task. Compared to the models like Algorithm 3 that only
combines the representations of two target nodes, SEAL-type methods take advantage of
the representations of not only two target nodes but also their neighboring nodes in the
enclosing subgraph, enabling the model to consider more information of the surrounding
environment of the candidate link.

Case study 2. NBFNet lacks the algorithmic ability to leverage node embeddings.
NBFNet [177] is a model specifically developed for link prediction. Differently from
GNN-based link prediction methods like Algorithm 3 and SEAL-type methods, NBFNet
generalizes traditional link heuristics such as Katz index [62], Personalized PageRank [73]
into a general formulation and approximates such formulation using a special network.
Unlike aggregation-based GNNs that propagate and aggregate node-wise representations,
NBFNet is designed to train edge-wise representations while hardly considering node-
wise information including node attributes and node embeddings. This would make
NBFNet lack the algorithmic ability to train powerful node embeddings and may lead to
non-competitive link prediction performance on dense graphs.

It should be noted that the primary objective of our research is to present the insights
we have gained, and showcase their potential to aid in identifying the issues of existing
link prediction methods. Our focus does not lie in developing solutions to these issues, as

74 An Interpretive Analysis of GNNs in Link Prediction

this goes beyond the scope of our main goal. Nevertheless, these identified issues could
pave the way for future research.

4.5.3 Further Analysis of Experimental Results

Figure 4.4 Results of different methods for link prediction on four OGB datasets. For
MLP and general GNNs, we present their results obtained by utilizing node embeddings,
considering the dominant performance of node embeddings as shown in Fig. 4.2.

We expand our limitation analysis of existing link prediction methods by examining
their experimental results on four OGB benchmark datasets. In the interest of brevity, we
focus our investigation on several mainstream types of methods, as presented in Fig. 4.4.

First, the performance of each heuristic method is not stable across the four datasets.
For example, RA performs best on ogbl-ppa but second worst on ogbl-ddi. These results
are consistent with the research of [66], which has demonstrated that many link heuristics
are designed for specific applications and may perform well only on those applications.
Moreover, the unstable performance of every single heuristic method confirms the need of
combining multiple heuristics in modern link prediction methods, such as the Algorithm 3
where various heuristics are encoded in Eq. 4.3.

4.5 Limitation Analysis of Existing Methods 75

We also report the heuristic encoding results (i.e., HE) obtained through Algorithm 3
when only employing heuristic encoding. As shown in Fig. 4.6 in the Appendix, we find
that it is not always true that the more the heuristics used, the better the performance of
HE. In contrast, encoding a certain number of heuristics can yield the best performance,
whereas encoding too many heuristics would pose an optimization challenge.

In Fig. 4.4, the node embedding methods based on relative distance encoding (Deep-
Walk [104], NodePiece [37]) exhibit slightly better performance than those based on
matrix factorization (MF [93], FSSDNMF [20]). Nevertheless, all these methods fall short
compared to other types of methods. This could be attributed to the limitations of such
methods, such as reliance solely on the adjacency matrix or unsupervised learning without
link samples. This also underscores the critical role of link samples in supervising the
learning of node embeddings for link prediction as proposed in our Proposition 3.

Fig. 4.4 also presents the results of MLP and general GNNs (GCN [64], GAT [136]
and JKNet [151]) that use node embeddings only. MLP(NE) performs much worse than
GNNs, demonstrating the significance of neighborhood information aggregation of GNNs
in training node embeddings, considering that MLP updates each node’s representation
independently of other nodes. Furthermore, GCN(NE) and GAT(NE) perform comparably,
indicating that the expressiveness of GCN is sufficient for learning node embedding. The
similar performance of GCN and GAT empirically supports our proofs in Proposition 1 and
2, where we point out that the attention mechanism (e.g., GAT) cannot address the inherent
issue of GNNs in learning information related to the number of each node’s neighbors and
of common neighbors between two nodes.

In Fig. 4.4, SEAL-type methods show state-of-the-art performance. Especially, SIEG [3]
achieves the best results on two sparse graphs, i.e., ogbl-collab and ogbl-citation2 with
graph degrees of 8 and 21, respectively. However, they perform worse than general GNNs
with node embeddings (GCN(NE) [64], GAT(NE) [136] and JKNet(NE) [151]) on two
dense graphs, i.e., ogbl-ppa and ogbl-ddi. This discrepancy in the performance of SEAL-
type methods could be attributed to the algorithmic challenge of training node embeddings
using subgraphs. Unlike general GNNs, the algorithm of SEAL-type methods limits each
node to perceive other nodes within the subgraph rather than the entire graph, thereby
restricting the information flow between nodes and potentially reducing the effectiveness
of the learned node embeddings.

Besides, Fig. 4.4 shows two link prediction-specific methods, namely NBFNet [177]
and Neo-GNN [161]. NBFNet underperforms on four datasets, which aligns with the
limitations identified in Section 4.5.2. Neo-GNN predicts link likelihood by combining the
scores obtained by heuristic methods and the result produced by a GNN. It performs on
par with the state-of-the-art SEAL-type methods on two sparse graphs (ogbl-collab and
ogbl-citation2).

76 An Interpretive Analysis of GNNs in Link Prediction

By comparing the performance of different methods on four datasets, it is evident that
NCN-dependent information plays an important role in link prediction on sparse graphs.
Methods capable of acquiring NCN-dependent information (e.g., SEAL-type methods and
Neo-GNN) generally outperform those that cannot. Moreover, our GNN(X)+HE based
on Algorithm 3 performs better than SEAL-type methods on ogbl-collab, supporting our
limitation analysis of SEAL-type methods in Section 4.5.2, i.e., such methods may not
effectively learn the information equivalent to NCN-dependent heuristics. In addition, for
link prediction on dense graphs, the contribution of node embeddings becomes dominant.
Simple GNNs like GCN[47] with the incorporation of node embeddings can surpass the
performance of most existing methods.

4.6 More on the Experiments

4.6.1 GNN Models Used in the Experiments

In our experiments, we use two general GNN models, i.e., GCN [47] and GAT [136]. We
also employ the high-hop technique [87, 77] in our algorithm to improve the expressive
power of the GNN model.

Both GCN and GAT follow the neighborhood information aggregation scheme. GCN
uses MEAN-pooling in the aggregation. It can be formalized as

H(l) = ÂH(l−1)W(l), (4.4)

where Â is the normalized version of the graph adjacency matrix A, where A has self-
connections. There are two normalization methods, namely Â = D1/2AD1/2 or Â = D−1A.
D is the degree matrix which is a diagonal matrix where di,i = ∑ j∈V ai, j.

GAT [136] is an attention-based GNN. It can be formalized using Equation 4.2, where
the attention coefficient a(l)i, j is computed by

α
(l)
i, j = exp

(
LeakyReLU

(
a(l) ·CONCAT

(
h(l−1)

i ,h(l−1)
j

)))
, (4.5)

where a(l) ∈ R2d is a trainable weight vector in the l-th layer, h(l−1)
i ∈ Rd and h(l−1)

i ∈ Rd

are the representations of node i and j from the (l−1)-th layer, respectively. CONCAT(·, ·)is
the concatenation operation. LeakyReLU(·) is an activation function.

In Equation 4.2, the calculation is only performed when the node i and j are directly
linked, i.e., when ai, j = 1 in the i, j-th entry of A. Several works [87, 77] have proposed
high-hop aggregation techniques, with the goal of enhancing the expressive power of
GNNs. We employ such a technique by following the work of [87] to modify the adjacency
matrix into a high-hop adjacency matrix. Specifically, the i, j-th entry of h-hop adjacency

4.6 More on the Experiments 77

Table 4.2 Results on test sets of OGB link prediction datasets. Higher is better. For a fair
comparison, we only list the results that do not take advantage of the validation dataset as
training data.

ogbl-ddi ogbl-collab ogbl-ppa ogbl-citation2
Hits@20 (%) Hits@50 (%) Hits@100 (%) MRR (%)

MF [93] 13.68±4.75 38.86±0.29 32.29±0.94 51.86±4.43
Grarep [17] 12.99±3.54 39.63±0.44 31.36±1.32 51.25±2.75
DeepWalk [104] 26.42±6.10 50.37±0.34 23.02±1.63 61.05±2.33
Node2vec [43] 23.26±2.09 48.88±0.54 22.26±0.83 61.41±0.11
NodePiece [37] 24.15±3.04 47.88±0.41 22.85±0.94 61.52±1.59
GraphSAGE [47] 83.90±4.74 48.10±0.81 16.55±2.40 82.60±0.36
Mixhop [1] 93.29±2.43 52.09±0.57 52.04±3.37 83.26±0.73
AGDN [128] 95.38±0.94 52.26±0.85 51.33±2.16 83.17±0.54
NGNN [127] 83.86±2.25 52.04±0.83 50.75±1.94 84.92±0.25
ID-GNN [158] 85.13±3.46 51.74±0.46 49.45±1.62 83.31±0.64
VAGNN (Chapter 3) 93.13±3.96 52.74±0.55 50.45±1.32 84.31±0.37
SEAL [168] 30.56±3.86 54.71±0.49 48.80±3.16 87.67±0.32
GraiL [131] 31.76±4.24 54.19±0.52 47.25±2.84 86.59±0.58
DEGNN [77] 26.63±6.82 53.74±0.35 36.48±3.78 60.30±0.61
SUREL [154] 32.31±4.15 54.37±0.46 53.23±1.03 88.83±0.18
LGLP [16] 28.18±3.34 51.59±0.93 49.36±1.95 84.65±0.27
LRGA [106] 62.30±9.12 52.21±0.72 26.12±2.35 66.49±1.59
PLNLP [142] 90.88±3.13 52.92±0.98 32.38±2.58 84.92±0.29
PermGNN [112] 88.49±2.57 51.04±0.59 51.51±1.08 82.54±0.29
RelpNet [145] 48.60±2.37 49.18±0.93 47.08±1.34 79.92±0.15
CFLP [171] 76.12±2.84 46.66±0.72 45.81±1.04 82.59±0.37
PbTRM [120] 75.27±2.95 50.28±1.08 42.57±2.26 80.05±0.47
LLP [44] 46.92±2.36 52.35±0.91 44.03±1.83 81.53±0.73

matrix satisfies ai, j = 1 if SPD(i, j)≤ h, otherwise 0, where SPD(·) computes the shortest
path distance between nodes i and j.

The entire
graph

Extracting the subgraph
specific for (𝑣, 𝑢)

Labeling
nodes

Subgraph preparation

Node-wise
representations

Representation
for (𝑣, 𝑢) ො𝑦𝑣𝑢GNN Readout Predictor

Subgraph classification

Figure 4.5 The algorithmic flow chart of SEAL-type methods.

78 An Interpretive Analysis of GNNs in Link Prediction

4.6.2 SEAL-type Methods.

SEAL and its successors [168, 77, 131, 154] address the link prediction problem by
classifying the subgraphs that are extracted specifically for candidate links.

We briefly describe the algorithm flow of SEAL-type methods. As shown in Figure 4.5,
given an entire graph G and a target node pair (v,u), a h-hop enclosing subgraph G

(h)
vu with

a set of nodes V(h)
vu = {v′ | Spd(v′,v) ≤ h or Spd(v′,u) ≤ h} is extracted from G , where

Spd(·, ·) calculates the shortest path distance between two nodes. Then, for each node in
G

(h)
vu , a node labeling method [170] is used to assign a labeling vector to that node as its

additional features according to its relationship to (v,u). At the modeling stage, G
(h)
vu is

fed into a GNN model, and the node-wise representations of the nodes in V(h)
vu are learned.

Following the last layer of the GNN, a readout function READOUT(·) is employed over
the learned node-wise representations of all nodes in V(h)

vu , and then a representation for
G

(h)
vu is produced. At last, a predictor PREDICTOR(·) takes this representation as input to

perform link prediction for the node pair (v,u). Formally, the existence likelihood of a link
between v,u predicted by SEAL-type methods is

ŷvu = PREDICTOR
(

READOUT
({

h(L)
v′ | ∀v′ ∈ V(h)

v,u

}))
. (4.6)

The READOUT(·) (e.g., SortPooling in SEAL [168]) is typically used for graph-level
classification, aiming to deal with size differences among graphs.

4.6.3 Implementation Details

We implement our algorithm based on PyTorch and PyTorch Geometric [36]. The model is
trained with Adam optimizer [63]. The learning rate is decayed using the ExponentialLR
method [79]. We conduct all experiments on ogbl-ddi and ogbl-collab on a Linux machine
with 14-core CPU, 192G RAM, and NVIDIA Quadro P6000 (24G), and on ogbl-ppa and
ogbl-citation2 on a machine with 32-cores CPU, 512G RAM and NVIDIA A100 (40G).

4.6.4 Additional Experimental Results

We reproduce the results of several existing link prediction methods and we show them in
Table 4.2. Also, the results of encoding different heuristics are presented in Fig. 4.6.

4.7 Summary and Implication

This work studies the link prediction capability of GNNs. We show the limitations of GNNs
in learning NCN-dependent structural information and the strengths of node embeddings
in dense graphs. We also demonstrate that these insights can effectively identify the

4.7 Summary and Implication 79

Figure 4.6 Results of encoding different numbers of link heuristics. We can find that the
best result on each dataset is achieved by encoding a certain number of heuristics rather
than all heuristics.

bottlenecks of existing link prediction methods, which could guide the search for more
effective algorithms.

80 An Interpretive Analysis of GNNs in Link Prediction

This study carries significant implications for practical link prediction. For sparse
graphs, either SEAL-type methods or GNNs with heuristic encoding can yield satisfactory
performance. For dense graphs, the GNN with node embeddings is an ideal choice in the
transductive setting. In inductive learning, the methods that do not involve the training of
node embeddings may be more suitable.

Chapter 5

Exploring the Functionalities of Diverse
GNN Techniques in Real-World
Scenarios

5.1 Introduction

Numerous techniques have been developed with the purpose of enhancing the expres-
siveness of GNNs. These advanced techniques include attention mechanisms, high-hop
neighborhood construction, residual connections, and various others. Despite notable
advancements in GNNs, certain fundamental questions remain unresolved regarding the
functionality as well as the effectiveness of these techniques in effectively addressing
challenges associated with the real-world implementation of GNNs.

In this chapter, we study these questions based on a real-world application: pipe failure
prediction for pipe networks. Several characteristics of the pipe networks make them ideal
for validating and exploring various GNN techniques. Firstly, the pipes possess a set of
attributes, such as length, material, and diameter. Secondly, the pipes are accompanied
by temporal information, including pipe age, historical failure occurrences, maintenance
records, etc. Furthermore, the pipes are distributed geographically, which allows us to
examine the methods of graph construction. In general, there exist two critical pieces of
information embedded in pipe networks, i.e., the structure of pipe connectivity and geo-
graphical neighboring effects. Concerning the pipe connectivity, industry practices indicate
that if a pipe fails, more failures would be observed on the pipes that are on the same route
as this pipe (connected pipes) due to physical effects such as water hammer [115]. In terms
of geographical neighboring effects, more failures would be also observed on the nearby
pipes even which have no connections to the failed one, since these pipes are exposed
to similar environmental factors such as soil properties, ground vibrations, etc. [11, 98].

82 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

Lastly, the problem of pipe failure prediction can be transformed into a node classification
task, where we treat pipes as nodes in the graph construction.

We present a graph-based failure prediction framework, named MAG (Multi-hop
Attention-based GNN) by employing a GNN [151] to learn the features, structure, and
geographical neighboring information in the pipe network. GNNs have achieved great
success in many applications [84, 157]. The basic idea behind GNNs is to propagate and
aggregate neighborhood information over graph structure. However, there are several
challenges in applying GNNs to the pipe-network failure prediction, which the proposed
MAG is able to address.

• The first challenge is constructing a graph structure that should join the structural
and geographical information for the GNN. In this work, we represent the pipes
as nodes. Naturally, the edges between nodes can be constructed according to the
physical joints between pipes. On the other hand, we treat two nodes as linked if the
geographical distance between two corresponding pipes is within a range.

• Furthermore, the neighborhood message aggregation of GNN aims to remove the
abrupt noise. However, this aggregation may cause the loss of key information of
pipes for failure prediction, especially when the connected pipes vary widely in the
water network. MAG will adopt an attention mechanism to learn adaptive attention
weights for the adjacent nodes according to their relevance and thus differentiate the
dissimilar neighbors in the aggregation process.

• Moreover, GNNs provably suffer from over-smoothing [78] that the representation
of the target central node in deep GNN layers may be over smoothed by averaging
the information from a too wide range of neighbors, and as a result, the useful
information of the target node may be "washed out". To overcome this issue, we
apply GNN techniques [151, 75] including residual connections and layer-wise
aggregation to MAG, which prevents the learning from over-smoothing by reserving
the latent representations of each hidden GNN layer for the final prediction.

In addition, it has been recognized that the pipes’ historical failures have high temporal
effects on the current state of pipes [31]. To learn the temporal failure pattern, we develop a
module as the complement to the GNN module. Inspired by the point process, this module
learns two independent temporal effects as shown in Fig. 5.1. One is the base aging effect
based on the fact that aging pipes will fail more frequently. The other one is the stimulating
effect that a failure will cause more failures shortly. [101, 152].

In this work, we are provided with two real-world large-scale pipe networks by our
partner water utilities. Our framework is evaluated on these datasets and experimental
results show that it outperforms the statistical and machine learning models, as well as the
state-of-the-art GNN baselines.

5.2 Related Work in Pipe Failure Prediction 83

1st

failure

geographically linked
physically linked

Geographical graph structure

Node-level features
• asset attributes
• physical factors
• node structural properties

Node-level historical failure series

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡pipe
installation

2nd

failure
current

date

Water pipe network

Base evolutionary effect

Historical failures’ time-decayed excitement

Layer-wise aggregation layer
(Concat/Max-pooling/LSTM)

MLP Failure
prediction

GNN module and temporal failure pattern learning moduleData preprocessing

𝒗𝒗

GNN layer

𝒗𝒗

GNN layer

𝒗𝒗

GNN layer

𝒗𝒗

residual connections

(Concat)

Figure 5.1 The architecture of our proposed framework MAG. It contains two main
procedures: data preprocessing and failure prediction. Data preprocessing includes data
collection, geographical graph construction, feature engineering, and temporal failure
series extraction. In graph construction, two nodes are geographically linked (red edge) if
two corresponding pipes without physical joint are geographically close to each other. In
each GNN layer, we employ an attention mechanism and multi-hop aggregation. We add a
layer-wise aggregation layer following the last GNN layer and the hidden representations
of previous GNN layers are reserved in this layer through residual connections. In addition
to the GNN module, We use a module to learn the temporal failure pattern including the
base evolutionary effect and historical failures’ time-decayed excitement on the current
state of a pipe. MLP is used as the final failure predictor.

5.2 Related Work in Pipe Failure Prediction

The increasing urbanization has driven the great importance of the maintenance of civil
water pipe networks. These networks are composed of a large number of pipes distributed
around the whole city area. Any asset failure would lead to a regional or systematic
level falling, breaks, or even disasters [80]. Therefore, preventative maintenance for
pipes, particularly in aging urban-scale water networks, becomes of vital importance. Due
to limited resources, water authorities can hardly afford to comprehensively inspect all
assets. Instead, it is necessary to prioritize the pipes that require maintenance. Hence,
the ability to identify pipes that are at high risk of failure is a fundamental need of water
utilities [119, 70].

Failure analysis of the pipe distribution systems is a problem that has been studied over
the past few decades. Historically, statistical models have been an effective tool in this
field [31, 58, 80, 81]. Such models commonly treat the failure events as a stochastic point
process and model the risk of failure occurrence as a function of time. A good number of
statistical models have been applied, for example, Poisson point process [119], Weibull
model [31], Cox survival analysis [101], Hawkes point process [152], random survival
forests [58], and non-parametric Bayesian model [80].

However, statistical models suffer from some strict assumptions and data deficiencies.
Many statistical models assume that failure data follows a specific distribution [101, 31],
which is unrealistic in most real-world pipe failure predictions. Moreover, such models

84 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

highly rely on previous failure records, which is a problem in the real-world water industry
where most pipes have never failed.

Recently, machine learning algorithms have been adopted to develop data-driven
models for pipe failure prediction [109, 125, 81]. Compared with statistical models,
machine learning models can take much more information including asset attributes,
operation conditions, and surrounding environmental factors as input features, and produce
more feasible pipe-level predictions [41]. Many failure prediction models have been
proposed based on, for example, support vector machine [109], gradient boosting decision
tree [125], artificial neural networks [81, 41], etc.

More recently, Farmani et al. [34] proposed an approach for the pipe failure prediction
by combining the evolutionary polynomial regression model with K-means clustering
approach. Kumar et al. [70] evaluated several machine learning methods on real-world
pipe datasets. The experimental results show that the gradient boosting decision tree model
outperforms the others. Deep learning has been used in the water industry. Liang et al. [81]
developed a long-term hazard function based on recurrent neural networks. Their approach
allows a black-box treatment for modeling the hazard function. The proposed model is
successfully applied in proactive water pipe maintenance.

In essence, feature-based machine learning models avoid the issues that exist in statisti-
cal methods and achieve better predictive performance than statistical methods [125, 41].
However, all these models lack the ability to capture the structural information of pipe
networks, which is also the motivation for this research work. As a contribution, we
introduce a GNN-based failure prediction framework by jointly considering the features,
structure, and temporal failure series.

5.3 Problem Formulation

Formally, given a pipe network with N pipes, a graph G (V,A,X) can be constructed by
representing pipes as nodes, where V is the set of nodes, the adjacent matrix A ∈ RN×N

stores the structural information in which rows and columns are indexed by nodes, and
ai, j in the i-th row and j-th column of A indicates the connectivity between node i and j.
The value of ai, j is 0 if node i is not linked to j and non-zero if otherwise. The feature
matrix X ∈ RN× f represents the features of nodes (i.e., pipes) where the i-th row of X is
the feature vector xi ∈ R f of node i.

In addition, we denote Hi as the set of historical failure events of pipe i. We cast the
failure prediction task as a binary classification problem of whether a pipe will fail within a
future time window. Hence the task is to learn a model M :

{
G (A,X),{Hi}N

i=1
}
→ y∈RN

where the i-th entry of y is the estimated failure risk of the i-th pipe.

5.4 Proposed Framework 85

5.4 Proposed Framework

The whole architecture of our proposed framework is illustrated in Fig. 5.1. In this section,
we describe its main components including GNN module, temporal failure pattern learning,
and the final prediction.

5.4.1 GNN Module

GNNs have achieved great success in a variety of graph applications by jointly learning
the features and relational information of nodes [9, 157, 84]. Most GNNs follow a form of
neighborhood information aggregation algorithm [64, 77], where the representation of a
node is updated layer-by-layer through aggregating representations of its neighbors and
combining the result with itself. Formally, the representation of every node v ∈ V in the
l-th layer of a GNN is computed as:

h(l)
v = COMBINE(l)

(
h(l−1)

v ,AGG(l)
({

h(l−1)
u

}
u∈N(v)

))
(5.1)

where N(v) is the set of neighbors of node v. We initialize h(0)
v with the feature vector xv

of node v. COMBINE(·) and AGG(·) are defined by specific model. GraphSAGE [46]
uses concatenation in COMBINE(·) and proposes several AGG(·) functions based on
LSTM architecture or max-pooling operation. Graph Convolutional Network (GCN) [64]
averages the states of node v and its neighbors at the same time in the aggregation step.
Some recent works use attention mechanism to highlight the information of more relevant
neighbors in AGG(·), instead of treating all neighbors equally.

In our framework, we implement three recently published GNN techniques includ-
ing multi-hop aggregation, attention mechanism, residual connections, and layer-wise
aggregation.

5.4.2 Multi-hop Aggregation

Early GNNs including GCN [64], GraphSAGE [46], GAT [137], etc. implement 1-hop
message aggregation in a GNN layer, which limits the expressive power of GNNs [151,
1, 77]. Recent works present provably more powerful multi-hop GNN architectures.
MixHop [1] concatenates the outputs of multiple graph convolutional operations in a
layer and each of the operations utilizes different power of the adjacency matrix. DEA-
GNN [77] leverages the shortest path distance between any two nodes to control the
message aggregation process in GNNs.

86 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

In this framework, we follow the multi-hop approach in DEA-GNN [77]. Specifically,
the AGG(·) in Eq. 5.1 is changed into:

AGG(l)
({

h(l−1)
u

}
u∈N(v)

)
→ AGG(l)

({
h(l−1)

u

}
SPD(v,u)≤k

)
(5.2)

where SPD(·, ·) calculates the shortest path distance between two nodes, k is a hyper-
parameter. Note that setting k = 1 recovers the traditional 1-hop aggregation. Generally,
assigning k = 2 or 3 is sufficient, which ensures that the aggregation focuses on the local
neighboring information and avoids "noisy" information from higher-order neighbors [151,
77]. In practice, k is chosen by balancing the trade-off between computational complexity
and performance. Fig. 5.1 illustrates the multi-hop aggregation where the messages of
2-hop neighbors of the central node are aggregated in a GNN layer.

5.4.3 Attention-based GNN Layer

The neighborhood aggregation in the GNN layer may lead to biased representations of
nodes, especially when the adjacent nodes have completely different properties. We
employ an attention mechanism to tackle this issue. It allows the model to learn adaptive
importance weight between two adjacent nodes and thereby differentiate neighbors in the
aggregation procedure through highlighting the messages of more relevant nodes while
suppressing the contributions of less relevant nodes. Several attention based GNNs have
been proposed, such as GAT [137], AGNN [132], Gaan [166]. They present various
attention mechanisms to learn the relevance between two adjacent nodes.

In this work, we employ the attention mechanism proposed by GAT [137]. Formally,
the attention coefficient for the neighbor node u of central target node v is as follows:

α
(l)
vu =

exp
(

LeakyReLU
(

a(l) ·CONCAT
(

h(l−1)
v ,h(l−1)

u

)))
∑SPD(v,w)<k exp

(
LeakyReLU

(
a(l) ·CONCAT

(
h(l−1)

v ,h(l−1)
w

))) (5.3)

where a(l) ∈R2d is a trainable weight vector for the l-th layer, h(l−1)
v ∈Rd and h(l−1)

u ∈Rd

is the output states of node v and u from the (l −1)-th layer, respectively. CONCAT (·, ·)is
the concatenation operation. LeakyReLU is an activation function.

For the final formulation of the GNN layer in Eq. 5.1 in our GNN module, we set
COMBINE(·) as concatenation and AGG(·) as mean-pooling in the first GNN layer.
Combined with the attention mechanism in Eq. 5.3, the output representation of node v
given by the first GNN layer is formalized as:

h(1)
v = ReLU

(
CONCAT

(
xv,W(1) ·∑α

(1)
vu xu

))
where u : SPD(v,u)< k

(5.4)

5.4 Proposed Framework 87

where W(1) is a trainable weight matrix. This setting ensures that the original features xv

of node v can be reserved in h(1)
v .

Since we use residual connections and layer-wise aggregation in our GNN module (see
section 5.4.4), the concatenation operation is no longer necessary for the remaining GNN
layers. Therefore, we set the l-th (l > 1) GNN layer as:

h(l)
v = ReLU

(
W(l) ·∑α

(l)
vu hl−1

u

)
where l > 1;u : SPD(v,u)< k or u = v

(5.5)

where W(l) is the weight matrix for the l-th layer.

5.4.4 Residual Connections and Layer-wise Aggregation

Common GNNs based on neighborhood aggregation algorithm tend to be shallow and
deeper GNNs provably suffer from over-smoothing and gradient degeneration [78, 151].
Stacking increasingly deep layers in the GNN may over average the information from a
too wide range of neighbors, and as a result, the useful information of the central target
node may be "washed out". To overcome this issue, JKGNN [151] studies the range
of neighbors that can influence the central node’s representation and proposes a jump
knowledge architecture. DeeperGCN [75] presents a novel normalization layer and a
pre-activation version of residual connections for GNNs.

To further enhance the expressive power of our framework, we adopt the idea of
JKGNN [151]. As illustrated in Fig. 5.1, we add a layer after the last GNN layer. This
layer stores the hidden representations from the previous GNN layers. In other words, the
output of each GNN layer has a residual or jump connection to this layer. We implement
a layer-wise aggregation on these representations in this layer. Consequently, the final
representation of node v produced by our GNN module is

hGNN
v = AGG

([
h(1)

v , · · · ,h(l)
v

])
(5.6)

We adopt three aggregation schemes for AGG(·), including concatenation, max-pooling,
and LSTM-attention. Concatenation combines the representations together while max-
pooling applies a max(·) over the representations. Both concatenation and max-pooling are
not node-adaptive and do not introduce additional parameters associated with the specific
node. In contrast, LSTM-attention is node adaptive and needs to calculate the attention
score for each node.

88 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

5.4.5 Learning Temporal Failure Pattern

The historical failures of pipes are of particular importance to the future failure prediction.
Stochastic point process has proven to be an effective tool for dealing with such temporal
failure data. In essence, point process [48] is characterized with the conditional intensity
function λ (t), where λ (t)dt is the likelihood for an event occurring within a small window
[t, t + dt], given the historical events before t. Various point process models have been
proposed such as Poisson point process [119], Hawkes point process [48], Cox point
analysis [101], etc. Specifically, the λ (t) for Hawkes process [48] is given by

λ (t) = λ0(t)+ ∑
th∈H,th<t

κ(t − th) (5.7)

where th is the time of the h-th historical event occurred before t and H is the set of
historical events, λ0(t)≥ 0 is the base intensity that is a function of t but independent of
the historical events. κ(·) is a kernel function that describes how much historical events
excite the occurrence of an event at t.

To capture the temporal pattern in the failures data, we add a temporal failure pattern
learning module that is inspired by the Hawkes process to our framework. Formally, the
node v’s representation hT F

v of Temporal Failures’ effect given by this module is:

hT
v = µ +(ω −µ)e−δ t

hF
v = ∑

th∈Hv,th<t
αe−β (t−th)

hT F
v = ReLU

(
CONCAT

(
hT

v ,h
F
v
)) (5.8)

where µ > 0,ω > 0,δ > 0,α > 0,β > 0 are trainable parameters that are shared across
all pipes, t is the age of pipe v at the time of prediction, Hv is the set of historical failures
defined in Eq. 5.9.

In our framework, we call hT
v as base evolutionary effect that is only a function of pipe

age t, where ω is the initial failure risk at t = 0, δ is the rate of exponential decay, and
µ describes the reversion level. For example, with the age t being increased, the hT

v is
exponentially decaying if ω > µ , while exponentially growing if ω < µ . We call hF

v as
historical failures’ time-decayed excitement where α is the size of excitement jump for
exponential decay function. hF

v is an aggregation of the excitement effects of all historical
failures of pipe v on its state at time t.

5.4.6 Failure Predictor

We use a multi-layer perceptron (MLP) as the predictor of our framework. As shown in
Fig. 5.1, it takes the concatenation of the GNN output and temporal failure representation,

5.5 Experiments 89

i.e. CONCAT (hGNN
v ,hT F

v), as input and predict the final failure risk. The whole model
is optimized with the binary cross-entropy loss in an end-to-end manner. The target is
assigned as 1 for a pipe if a failure event occurred on this pipe in a given time window,
otherwise 0. The time window is set according to the down-streaming task.

It is worth noting that the weights to be trained in our model are shared across all nodes
(pipes). This can significantly reduce the computational complexity. On the other hand,
it allows our model to be trained with a batched scheme, which is of great importance,
especially for the real-world large-scale infrastructure networks.

5.5 Experiments

5.5.1 Datasets

In this application, we are provided with two real-world (water and sewer) pipe datasets
including pipe attributes and failure records. We study pipe failures in terms of leaks
or breaks on water pipes and chokes on sewer pipes. Table 5.1 summarizes the basic
information of two datasets. We also collect soil 1, elevation 2, and tree canopy 3 data from
the public resources. Fig. 5.2 shows a part of our data on a map.

Table 5.1 Basic statistics for two pipe datasets

Datasets Pipes Joints Failures
water pipe network 363,648 257,362 82,525 (leaks or breaks)
sewer pipe network 941,142 2,947,183 201,330 (chokes)

5.5.2 Data Preprocessing

Geographical Graph Structure Constructing The pipe network is geographically
distributed in a large-scale area. Pipes that are nearby to each other tend to exhibit similar
failure trends, regardless of whether the pipes are physically connected or not. Different
from the graph construction methods for common networks such as social networks [9],
recommender systems [157], and biochemical interaction networks [84], in this work, we
propose a method of constructing geographical graph structure according to not only the
physical connections but also the distance between pipes. Formally, the geographical graph
structure is defined as:

Definition 1. Geographical graph structure. Let geographical graph structure be repre-
sented by A ∈ RN×N that is the adjacency matrix of the graph with N nodes. ai, j in the

1http://www.clw.csiro.au/aclep/soilandlandscapegrid
2http://elevation.fsdf.org.au
3https://data.gov.au

90 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

Figure 5.2 An example of our data shown on the map. It includes water pipes (green lines)
and failures (yellow dots), sewer pipes (blue line) and failures (light blue dots), as well as
tree canopy (red polygons).

i-th row and j-th column of A is assigned as a non-zero value if either node i and node j
are connected or dist(i, j)< ρ , where dist(i, j) calculates the distance between nodes i
and j. Otherwise, ai, j = 0.

In this application, we use the centroid of each pipe in the dataset as the node and
construct the unweighted geographical graph structure. As shown in the Table 5.1, the
constructed graph consists of 363,648 and 941,142 nodes for water pipe dataset and sewer
pipe dataset, respectively.

Figure 5.3 Failure analysis on elevation-based features. Failure rate is defined as the
number of pipe failures per 100KM per year. Slope is the elevation difference between two
ends of a pipe divided by pipe length. More than 95% of pipes have the slope less than
0.08. There are three types of shapes for three adjacent pipes in the elevation direction.

Feature Engineering Feature engineering is a commonly used approach to enhance the
performance of the model. Table 5.2 lists the features we crafted. For pipe basic attributes,

5.5 Experiments 91

Table 5.2 Feature description

Feature Description

Age age of pipe at the time of prediction
Length pipe length
Diameter pipe diameter
Failures number failures in the last 1,5,10 years
Material water pipe: CICL, DICL, PVC, others

sewer pipe: VC, SGW, PVC, PE, others
Coating water pipe: Tar, Concrete, others

sewer pipe: None
Soil AWC, BDW, CLY, DER, DES, ECE,

NTO, PHC, PTO, SLT, SND, SOC
Tree canopy tree canopy coverage
Slope elevation variance of a pipe
Shape vertical shape of three connected pipes
Node degree node degree
Node PR node PageRank [45]
Node cluster clustering coefficient [45]

age, length, and diameter are continuous features. For failures, we count the number of
failures for each pipe in the last 1,5,10 years, respectively. Pipe material and external
coating material (only water pipes have) are categorical features. We group the materials
that are used rarely into "others" and then one-hot-encode them.

Environmental and physical conditions are important factors leading to pipe failure.
We craft 12 soil features that indicate the water capacity, density, composition (clay, silt,
sand, organic carbon), effective cation exchange, pH, etc. It has been recognized that tree
root is the main cause of pipe failure since the roots are more likely to grow around pipes
and absorb water and nutrients from pipes [98, 108]. Based on the available tree canopy
data, we use the percentage of a pipe covered by the tree canopy as the feature of this pipe.
We also study the failure rate on the features engineered based on elevation data. Two
elevation-based features are used for failure prediction. As shown in Fig. 5.3, one feature
is the slope that reflects the elevation variance of a pipe. The other one is the vertical shape
of three adjacent pipes for the middle pipe.

In addition, we calculate three node-level graph structural properties including node
degree, PageRank, and clustering coefficient [45]. Overall, there are 31 and 29 features for
water and sewer pipes, respectively.

Temporal Failure Series For a pipe, the influence of historical failures on its current
state shows a strong temporal pattern. In the data preprocessing as shown in Fig. 5.1, we

92 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

extract the failure records of each pipe i into a time series:

Hi = {t0, · · · , th, · · ·} (5.9)

where th is a time interval from the installation to the h-th historical failure event of pipe i.

5.5.3 Experimental Settings

This section describes our experiment setups, the evaluation results on two real-world
datasets, and further analysis including the sensitivity study of aggregation methods, failure
detection rate analysis, hyper-parameter tuning, and training time.

Baselines We compare the performance of our framework against three classes of base-
lines. (1) statistical models: Weibull model [31], Hawkes Process model [152], Random
survival forests (RSF) [58]. Note that the statistical models commonly predict the survival
likelihood for a group of pipes as a function of time. We transform such predictions into
failure probability for individual pipes [41]. (2) feature-based machine learning models:
Random Forests (RF), Support Vector Machine (SVM) [109], Gradient Boosting Decision
Tree (GBDT) [23], and a fully-connected neural network (MLP). (3) graph-based GNNs:
plain GCN [64], GraphSAGE [46], GAT [137], JKGNN [151], DeeperGCN [75] and
DEA-GNN [77].

For brevity, we abbreviate our proposed Multi-hop Attention based GNN (MAG) that
uses Concatenation, LSTM, or MAX-pooling in the layer-wise aggregation as MAG-
Concat, MAG-LSTM, or MAG-MAX, respectively. Besides, we also report the result of
MAG-nonGeo that uses the graph structure without geographical edge.

Evaluation metrics. We use four basic metrics [85] including AUC, F1 score, Precision,
and Recall to compare the performance of the models. In addition, the goal of this work
is to find the pipes that are at high risk of failure. Therefore, the predictor is expected
to rank the failed pipes higher than the good ones in the validation step. In this work,
we use the detection rate to measure such ranking performance of the models. Formally,
detection rate@k is defined as:

detection rate@k =
Ndetected(k)

Ntotal
(5.10)

which is the fraction of failed assets Ndetected(k) that are successfully detected in the top-k
of ranking predictions among all failed assets Ntotal .

Implementation Our method is implemented based on Pytorch. We adopt Adam opti-
mizer with a learning rate ∈ {0.001 ∼ 0.0001} and a dropout rate ∈ {0,0.1,0.2,0.5}. We

5.5 Experiments 93

report the best result across these hyper-parameters. We implement batch normalization
for stable and fast training [33]. We stop the optimization process when the AUC on the
validation set does not increase for 50 epochs. Testing is performed with the optimized
model. The experiments are repeated 10 times with randomly extracting validation and
testing set and the mean results are reported. We run all the experiments on a machine with
a NVIDIA A100 GPU, 32-cores CPU, and 256 GB of RAM.

Table 5.3 Results for two pipe networks

Model water pipe network sewer pipe network
AUC F1 Precision Recall AUC F1 Precision Recall

Weibull [31] 0.667 0.261 0.167 0.458 0.631 0.197 0.136 0.427
Hawkes [152] 0.685 0.278 0.178 0.464 0.65 0.221 0.158 0.441
RSF [58] 0.706 0.269 0.183 0.482 0.668 0.263 0.165 0.466
RF 0.765 0.372 0.294 0.586 0.771 0.357 0.247 0.559
SVM [109] 0.787 0.373 0.318 0.591 0.775 0.362 0.296 0.563
MLP 0.769 0.369 0.309 0.581 0.773 0.355 0.285 0.561
GBDT [23] 0.811 0.411 0.351 0.615 0.797 0.396 0.335 0.587
GCN [64] 0.789 0.3686 0.336 0.578 0.761 0.342 0.312 0.545
GraphSAGE [46] 0.798 0.37 0.336 0.585 0.772 0.353 0.314 0.556
GAT [137] 0.828 0.432 0.379 0.637 0.815 0.417 0.354 0.612
JKGNN [151] 0.837 0.439 0.405 0.665 0.835 0.425 0.381 0.638
VAGNN (Chapter 3) 0.842 0.428 0.401 0.667 0.836 0.431 0.383 0.632
DeeperGCN [75] 0.839 0.439 0.391 0.657 0.829 0.4291 0.383 0.631
DEA-GNN [77] 0.806 0.391 0.351 0.607 0.791 0.375 0.329 0.574
MAG-nonGeo 0.842 0.441 0.405 0.669 0.839 0.433 0.385 0.642
MAG-Concat 0.855 0.457 0.434 0.683 0.853 0.449 0.401 0.659
MAG-LSTM 0.851 0.452 0.437 0.679 0.855 0.452 0.398 0.661
MAG-MAX 0.831 0.433 0.371 0.651 0.822 0.419 0.377 0.628

5.5.4 Main Results

Table 5.3 summarizes the results on two datasets. It suggests that the feature-based machine-
learning algorithms are consistently better than statistical models. GBDT achieves the best
among traditional machine learning models. We implement GBDT using a variant, i.e.
XGBoost [23] which is a provably powerful decision-tree model. It has gained state-of-
the-art results in many industrial applications and data science tasks, especially for the
data that contains many categorical features. For GNN based baselines, GCN [64] and
GraphSAGE [46] achieve poor performance. Both methods also underperform the GBDT.
One reason is that the strategy of information aggregation in GCN is average, which may
gradually wash out the useful information of pipe failure prediction [78]. GraphSAGE
uses a concatenation scheme in the aggregation stage, which makes its performance better
than GCN. Although GraphSAGE reserve the original features of nodes in the first layer,
it has no residual connections to the deep layers and has the same over-smoothing issue
as GCN. DEA-GNN [77] is a form of multi-hop GNN. It performs slightly better than

94 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

GraphSAGE, which demonstrates the power of multi-hop aggregation. However, DEA-
GNN does not use methods such as attention mechanism or residual connections to address
the over-smoothing issue and performs worse than GBDT.

GAT [137], JKGNN [151], and DeeperGCN [75] outperform the other baselines. GAT
employs a multi-head attention mechanism in the aggregation process of each GNN
layer, which can highlight the information of more relevant neighbors while suppressing
the contributions of less relevant nodes. Its result indicates the importance of attention
mechanisms when applying GNNs in real-world graph applications, for example, failure
prediction in pipe networks where pipes are with greatly different attributes. JKGNN and
DeeperGCN achieve the best performance among all baselines. Both of them use the
residual scheme and attention aggregation to overcome the issues existing in GNNs [75].

For the variants of our model, MAG-Concat and MAG-LSTM yield the best perfor-
mance on both datasets. In practice, MAG-LSTM has more trainable parameters than
MAG-Concat and thus pays an additional computational cost. MAG-nonGeo outperforms
the best baselines but underperforms the MAG-Concat and MAG-LSTM. MAG-nonGeo
takes the graph structure that does not consider the geographical neighboring effect. The
GNN architecture of our framework is much similar to JKGNN and DeeperGCN. MAG-
nonGeo is still better than them, indicating that the temporal failure representations learned
by our model have a clear effect on failure prediction. MAG-MAX performs better than
GAT while worse than the best results of JKGNN and DeeperGCN. This may be because
the layer-wise max-pooling aggregation biases the representations and is not suitable for
pipe failure prediction.

5.6 Further Analysis

5.6.1 The Sensitivity of Aggregation Methods

To investigate the sensitivity of COMBINE(·) and AGG(·) methods in the setting of the
GNN layer (Eq. 5.1), we studied the performance of two baseline GNNs (i.e. plain
GCN [64] and GraphSAGE [46]) on our two real-world pipe datasets. The comparison
result is shown in Fig. 5.4. GraghSAGE with concatenation as COMBINE(·) and mean-
pooling as AGG(·) achieves the best, followed by LSTM-aggregator. GCN shows the
third-best result and outperforms the GraphSAGEs with a max-pooling setting.

This result recovers several characteristics of our datasets. Firstly, the promising
performance of concatenation means that the features of a pipe itself play a critical role
in the failure prediction. Secondly, the majority of pipes in two datasets have a degree of
2, namely a pipe is connected to only two pipes. Mean-pooling aggregation outperforms
slightly LSTM-aggregator, indicating that mean-pooling may be more suitable for our
dataset while the degree of most nodes is too small for LSTM-aggregator. Moreover,

5.6 Further Analysis 95

max-pooling is not suitable for both COMBINE(·) and AGG(·). This may be because
max-pooling selects the maximum of the features of neighbors and "washes out" the
important properties of the target pipe, especially considering the fact that the pipe failure
is highly sensitive to the pipe attributes such as length, size, age, and many more [83, 70].

Figure 5.4 Comparison of baseline GCN [64] and GraphSAGE [46]. GS1 is the Graph-
SAGE with concatenation as COMBINE(·) and mean pooling as AGG(·), GS2: concate-
nation and LSTM aggregator, GS3: concatenation and max pooling, GS4: max and mean
pooling, GS5: max pooling and LSTM aggregator, GS6: max and max pooling.

5.6.2 Failure Detection Rate

The performance on the detection rate is of great importance for real-world pipe prioriti-
zation. Proactive maintenance is usually time-consuming and requires a lot of financial
and labor costs, particularly for large-scale pipe networks. Decision-makers are much
concerned about the detection rate of high-risk pipes in the top ranking predictions.

Fig. 5.5 and Fig. 5.6 show the detection rate at top ranking predictions for water and
sewer dataset, respectively. RSF performs the worst, which is consistent with previous
works [125, 41]. It has been recognized that statistical models are more appropriate
for long-term pipe management planning while less competitive in pipe-level prediction
compared with feature-based models [125]. Overall, our framework improves the detection
rate by around 10% compared with the best baseline JKGNN. More importantly, the
proposed framework detects more than 50% of failures in the top 20% of ranking pipes,
meaning that 50% of pipes that are at high risk of failures can be detected if we only
inspect the top 20% of the prioritized pipes in practice.

5.6.3 Hyper-parameters and Training Time

The best-tuned hyper-parameters of our framework are summarized in Table 5.4. The ρ

in Def. 1 restricts the distance range within which we treat the pipes as geographically
neighboring. It is 100m for water pipes and 45m for sewer pipes. This may be because
the majority of sewer pipes are shorter than most water pipes. The best batch size is 1500
and 1000 for two datasets, which is much larger than common graph applications such as

96 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

Figure 5.5 Failure detection rate vs ranking predictions on water pipe dataset.

Table 5.4 Best tuned hyper-parameters for our framework

Hyper-parameter Water pipe dataset Sewer pipe dataset
ρ in Def. 1 100(m) 45(m)
k in Eq. 5.2 2 2
GNN layers 3 4
Batch size 3000 2000

Dropout rate 0.2 0.1

social networks [9] and recommender systems [157]. This may be due to the extreme label
imbalance in our datasets where most pipes are not failed.

Our framework can be optimized with batch normalization on a machine with NVIDIA
A100 GPU, 32-cores CPU, and 256G RAM using about 10 hours, and predict all pipes
(Table 5.1) using less than 2 minutes when we put all data on RAM where the maximum
usage of RAM is up to 124G.

5.7 Application

5.7.1 Pipe Prioritization Platform

Although we do not give an explicit indication for future pipe failure, the water utility
can deploy our work to obtain pipe risks for their down-streaming maintenance work
and fit it into a proactive maintenance plan. For example, our prediction produces a
risk ranking of the pipes for a given cohort, which addresses the pipe prioritization.
Accordingly, we developed the interactive Pipe Prioritization Platform, named Pcube, and

5.7 Application 97

Figure 5.6 Failure detection rate vs ranking predictions on sewer pipe dataset.

Figure 5.7 An example of risk map based on pipe prioritization.

embedded our proposed framework as the data processing component and the machine
learning component. The platform also includes an analytic component and a visualization
component. The visualization can provide prioritization and risks in GIS-based UI designs.

We show the risk map plot in Fig. 5.7. The map is based on Pcube deployment at a
metropolitan-level water utility for the proactive maintenance purpose. The map showing
risks of individual pipes provides operational convenience for planners to understand the
potential impact of maintenance work and the potential pipe burst. The map shows our
direct output. However, in reality, the analytic component will be involved to further discuss

98 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

Figure 5.8 Feature importance.

5.7 Application 99

the risks, by considering both our model output and the social-economic consequence of
failures.

5.7.2 Feature Importance

The on-site maintenance, even condition assessment, is costly. Although a huge amount of
budget has been planned, water utilities must know why the prediction has been made4. To
show this, we include the feature importance in the analytic component.

We use the permutation feature importance method [7], where the feature importance
score is calculated as the increase of prediction error when a feature is permuted, for
example, the values in one feature channel are replaced with random values. Specifically,
we have the original AUCorig as shown in Table 5.3. We then calculate the permuted
AUCperm with the same settings but a feature channel is permuted. Then the feature
importance can be obtained by the AUC difference AUCorig −AUCperm.

The feature importance results are shown in Figure 5.8. For water pipes, three failure-
related features are the most important ones. The high importance of the features "failures’
excitement" and "temporal evolution" indicates that the layer we especially used to learn the
temporal failure pattern is a critical supplement to the GNN module. The elevation-based
features "shape" and "slope" are also ranked top in the results, which is consistent with the
analysis as shown in Fig. 5.3. Four soil properties (NTO, PHC, ECE, PTO) are relatively
more important than other soil features. This may be because high NTO (Total Nitrogen),
PHC (soil pH), ECE (Effective Cation Exchange), and PTO (Total phosphorus) could
corrode the pipes [11]. The result shows that the material DICL (Ductile Iron Cement
Lined pipe) and CICL (Cast Iron Cement Lined pipe) are important for failure prediction,
which is consistent with previous studies [105].

For sewer pipes, the historical failures are the same important as for water pipes,
indicating that learning previous failures information is of great importance for the failure
prediction model. This can also explain why many traditional statistical models can give
reliable predictions only using historical failures. Besides, the features of sewer pipes such
as diameter, material VC, soil NTO, and PTO are also important, which have also been
recognized by domain experts.

Another example of lessons learned from the model is the importance of "tree canopy".
It is at the seventh and the second place in the feature importance result, respectively.
Accordingly, the industry investigation revealed that the tree root is one of the main causes
of pipe failures for both water and sewer system [98, 108].

4Please note that it is not necessary for the causal reasoning, but it is useful for domain experts to
understand/check.

100 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios

5.8 Summary

In this work, we develop a GNN-based failure prediction framework for pipe networks by
jointly considering the features, structure, geographical neighboring effects, and historical
failure information. We propose a novel method to construct graph structure depending on
the physical connections and geographical distances between pipes. We employ multi-hop
aggregation, attention mechanism in each GNN layer, and the residual connections and
layer-wise aggregation after the last GNN layer to tackle the issues of GNNs. We develop
a temporal failure pattern learning module in our framework to learn the base evolutionary
effects and historical failures’ time decayed excitements on the state of pipes. The proposed
prediction model is evaluated on two real-world pipe networks and achieves state-of-the-
art results. The primary task of our framework is to produce pipe prioritization which
provides the water utility with data-driven support for pipe maintenance. Also, we study
the feature importance which can help water experts to further identify and understand the
failure causes. Our framework can be extended to large-scale infrastructure networks for
asset-level failure prediction.

Chapter 6

Conclusion and Future Work

This chapter summarizes the main contributions of this thesis as well as discusses the
potential future work.

6.1 Conclusion

In conclusion, this thesis explores the generalization, scalability, and interpretability of
GNNs. In Chapter 2, we present a comprehensive literature review of GNNs and related
graph representation learning methods, highlighting their unique ability to handle graph-
structured data. The development of GNNs is traced back to the introduction of GCN,
which adapted the concept of convolution to the graph domain. Since then, various GNN
architectures have been proposed, each addressing different challenges and leveraging
different aspects of graph data.

The thesis consists of three research works, each contributing to the advancement of
GNNs in different domains. The first research work, presented in Chapter 3, introduces
VAGNN, a general and scalable GNN framework. VAGNN incorporates an optimizable
virtual adjacency matrix to improve the generalization and scalability of GNNs. It enables
flexible construction of the neighborhood set for aggregation, allowing for the inclusion
of high-hop neighbors and global nodes as well as selective removal of 1-hop neighbors.
VAGNN offers a selection of various attention mechanisms and the option to incorporate
supplementary information for enhanced control over the aggregation process, improving
the generalization ability of VAGNN. Theoretical analysis demonstrates the scalability of
VAGNN, making it well-suitable for large graphs. Experimental evaluations validate the
generalization and scalability capabilities of VAGNN, laying the foundation for further
exploration in developing more efficient techniques.

The second research work, discussed in Chapter 4, focuses on the interpretive analysis
of GNNs for link prediction. It investigates the ability of GNNs to learn pair-specific
structural information related to the number of common neighbors for link prediction. The

102 Conclusion and Future Work

research work identifies the limitations of existing GNN-based link prediction models and
explores the impact of different components such as node features, node embeddings, and
heuristic information. The empirical evaluations on real-world datasets provide valuable
insights into the strengths and limitations of GNNs for link prediction tasks.

The third research work, presented in Chapter 5, demonstrates our exploration of the
roles of various GNN techniques in solving real-world applications. It proposes a GNN-
based approach called MAG to predict potential failures in water pipe networks. MAG
leverages the spatial and temporal information in the pipe network, including the structural
connectivity and geographical neighboring effects. The framework addresses challenges
such as capturing both structural and geographical information, handling over-smoothing
in GNNs, and incorporating temporal patterns. Experimental evaluations on real-world
datasets demonstrate the superiority of MAG over statistical and machine learning models.

Overall, this thesis has advanced the understanding and application of GNNs in various
domains. It has contributed to the development of novel GNN frameworks, provided
insights into the interpretability of GNNs for link prediction, and investigated the function-
ality and effectiveness of advanced GNN approaches in practical problems. The research
works presented in this thesis have laid the groundwork for further advancements in GNNs
and their applications, contributing to the ongoing progress in graph representation learning
and analysis of complex systems represented as graphs.

6.2 Future Work

Based on the findings presented in this thesis, several promising avenues for future research
emerge.

Neighborhood Construction Methods The significance of neighborhood construction
methods, as elucidated by our VAGNN framework, cannot be overstated. Our empirical
demonstrations underscore the pivotal role of varying neighborhood construction tech-
niques in influencing the efficacy of distinct GNN models across diverse graph-oriented
tasks. Embracing more adaptable approaches to neighborhood construction holds the
potential to catalyze the evolution of more robust and potent GNN architectures. Fur-
thermore, a compelling research trajectory lies in the realm of automating model-driven
neighborhood method selection. This entails investigating strategies to enable the model to
autonomously determine the optimal combination of 1-hop neighbors, local neighboring
nodes, and global nodes ratio, thereby maximizing performance outcomes.

Negative Samples in Link Prediction In our second research work, the link prediction
model training is supervised by positive samples (actual links) and negative samples

6.2 Future Work 103

(spurious links). In our experiments, we have noticed the pivotal role played by the
selection of negative samples in molding model performance. We observed that distinct
choices in this regard could wield significant influence. The underlying mechanism is
clear, i.e., the inclusion of negative samples compels the model to assign lower scores to
links during training, thereby bestowing superior link prediction capabilities upon non-
connected node pairs within the test set. However, it is crucial to note that this approach
could introduce a potential challenge. Namely, instances that are negative during training
but transition to positive in the test set can result in a notable performance decline. This
phenomenon opens up a novel avenue for refining link prediction performance, reframed
through the lens of optimizing negative sample selection.

Bibliography

[1] Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan,
H., Ver Steeg, G., and Galstyan, A. (2019). Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on
machine learning, pages 21–29. PMLR.

[2] Adamic, L. A. and Adar, E. (2003). Friends and neighbors on the web. Social networks,
25(3):211–230.

[3] Ai, B., Qin, Z., Shen, W., and Li, Y. (2022). Structure enhanced graph neural networks
for link prediction. arXiv preprint arXiv:2201.05293.

[4] Allamanis, M. (2019). The adverse effects of code duplication in machine learning
models of code. In Proceedings of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software, pages
143–153.

[5] Alon, U., Brody, S., Levy, O., and Yahav, E. (2018). code2seq: Generating sequences
from structured representations of code. arXiv preprint arXiv:1808.01400.

[6] Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019). code2vec: Learning dis-
tributed representations of code. Proceedings of the ACM on Programming Languages,
3(POPL):1–29.

[7] Altmann, A., Toloşi, L., Sander, O., and Lengauer, T. (2010). Permutation importance:
a corrected feature importance measure. Bioinformatics, 26(10):1340–1347.

[8] Aytar, Y., Vondrick, C., and Torralba, A. (2016). Soundnet: Learning sound repre-
sentations from unlabeled video. Advances in neural information processing systems,
29.

[9] Backstrom, L. and Leskovec, J. (2011). Supervised random walks: predicting and
recommending links in social networks. In Proceedings of the fourth ACM international
conference on Web search and data mining, pages 635–644.

[10] Barceló, P., Geerts, F., Reutter, J., and Ryschkov, M. (2021). Graph neural networks
with local graph parameters. In Advances in Neural Information Processing Systems,
volume 34, pages 25280–25293.

[11] Barton, N. A., Farewell, T. S., Hallett, S. H., and Acland, T. F. (2019). Improving
pipe failure predictions: Factors affecting pipe failure in drinking water networks. Water
research, 164:114926.

[12] Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and trends®
in Machine Learning, 2(1):1–127.

106 Bibliography

[13] Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M. (2022). Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668.

[14] Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention
networks? In International Conference on Learning Representations.

[15] Brody, S., Alon, U., and Yahav, E. (2022). How attentive are graph attention
networks? In International Conference on Learning Representations.

[16] Cai, L., Li, J., Wang, J., and Ji, S. (2021). Line graph neural networks for link
prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17] Cao, S., Lu, W., and Xu, Q. (2015). Grarep: Learning graph representations with
global structural information. In Proceedings of the 24th ACM international on confer-
ence on information and knowledge management, pages 891–900.

[18] Cao, S., Lu, W., and Xu, Q. (2016). Deep neural networks for learning graph
representations. In Thirtieth AAAI conference on artificial intelligence.

[19] Chen, D., O’Bray, L., and Borgwardt, K. (2022a). Structure-aware transformer for
graph representation learning. In International Conference on Machine Learning, pages
3469–3489. PMLR.

[20] Chen, G., Wang, H., Fang, Y., and Jiang, L. (2022b). Link prediction by deep
non-negative matrix factorization. Expert Systems with Applications, 188:115991.

[21] Chen, J., Ma, T., and Xiao, C. (2018). FastGCN: Fast learning with graph convo-
lutional networks via importance sampling. In International Conference on Learning
Representations.

[22] Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020a). Simple and deep
graph convolutional networks. In International conference on machine learning, pages
1725–1735. PMLR.

[23] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794.

[24] Chen, Z., Chen, L., Villar, S., and Bruna, J. (2020b). Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395.

[25] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. (2019). Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 257–266.

[26] Consortium, G. O. (2019). The gene ontology resource: 20 years and still going
strong. Nucleic acids research, 47(D1):D330–D338.

[27] Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. (2020). Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing
Systems, 33:13260–13271.

Bibliography 107

[28] De Las Rivas, J. and Fontanillo, C. (2010). Protein–protein interactions essentials:
key concepts to building and analyzing interactome networks. PLoS computational
biology, 6(6):e1000807.

[29] Dhillon, I. S., Guan, Y., and Kulis, B. (2007). Weighted graph cuts without eigen-
vectors a multilevel approach. IEEE transactions on pattern analysis and machine
intelligence, 29(11):1944–1957.

[30] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
(2021). An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations.

[31] Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., and Bouchard, K. (2013).
A survival analysis model for sewer pipe structural deterioration. Computer-Aided Civil
and Infrastructure Engineering, 28(2):146–160.

[32] Dwivedi, V. P. and Bresson, X. (2020). A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699.

[33] Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. (2020). Bench-
marking graph neural networks. arXiv preprint arXiv:2003.00982.

[34] Farmani, R., Kakoudakis, K., Behzadian, K., and Butler, D. (2017). Pipe failure
prediction in water distribution systems considering static and dynamic factors. Procedia
Engineering, 186:117–126.

[35] Feng, J., Chen, Y., Li, F., Sarkar, A., and Zhang, M. (2022). How powerful are k-hop
message passing graph neural networks. In Advances in Neural Information Processing
Systems, volume 35, pages 4776–4790.

[36] Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds.

[37] Galkin, M., Wu, J., Denis, E., and Hamilton, W. L. (2021). Nodepiece: Compositional
and parameter-efficient representations of large knowledge graphs. arXiv preprint
arXiv:2106.12144.

[38] Gao, H. and Ji, S. (2019). Graph u-nets. In international conference on machine
learning, pages 2083–2092. PMLR.

[39] Geerts, F. and Reutter, J. L. (2021). Expressiveness and approximation properties of
graph neural networks. In International Conference on Learning Representations.

[40] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural message passing for quantum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR.

[41] Giraldo-González, M. M. and Rodríguez, J. P. (2020). Comparison of statistical
and machine learning models for pipe failure modeling in water distribution networks.
Water, 12(4):1153.

[42] Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for learning in
graph domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729–734. IEEE.

108 Bibliography

[43] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864.

[44] Guo, Z., Shiao, W., Zhang, S., Liu, Y., Chawla, N., Shah, N., and Zhao, T. (2022).
Linkless link prediction via relational distillation. arXiv preprint arXiv:2210.05801.

[45] Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States).

[46] Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representation learning
on large graphs. In Advances in neural information processing systems, pages 1024–
1034.

[47] Hamilton, W., Ying, Z., and Leskovec, J. (2017b). Inductive representation learning
on large graphs. In Advances in neural information processing systems, pages 1024–
1034.

[48] Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90.

[49] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[50] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97.

[51] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507.

[52] Hoang, V. T., Jeon, H.-J., You, E.-S., Yoon, Y., Jung, S., and Lee, O.-J. (2023). Graph
representation learning and its applications: A survey. Sensors, 23(8):4168.

[53] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

[54] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J.
(2020). Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133.

[55] Hua, C., Rabusseau, G., and Tang, J. (2022). High-order pooling for graph neural
networks with tensor decomposition. In Advances in Neural Information Processing
Systems, volume 35, pages 6021–6033.

[56] Huang, S., Bao, Z., Li, G., Zhou, Y., and Culpepper, J. S. (2020). Temporal network
representation learning via historical neighborhoods aggregation. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pages 1117–1128. IEEE.

[57] Isham, V. and Westcott, M. (1979). A self-correcting point process. Stochastic
processes and their applications, 8(3):335–347.

Bibliography 109

[58] Ishwaran, H., Kogalur, U. B., Blackstone, E. H., Lauer, M. S., et al. (2008). Random
survival forests. Annals of Applied Statistics, 2(3):841–860.

[59] Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des
alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579.

[60] Jeh, G. and Widom, J. (2002). Simrank: a measure of structural-context similarity.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 538–543.

[61] Karypis, G. and Kumar, V. (1998). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392.

[62] Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43.

[63] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

[64] Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations
(ICLR).

[65] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37.

[66] Kovács, I. A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W.,
Kim, D.-K., Kishore, N., Hao, T., et al. (2019). Network-based prediction of protein
interactions. Nature communications, 10(1):1–8.

[67] Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and Tossou, P. (2021). Re-
thinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34.

[68] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25.

[69] Kuang, W., Zhen, W., Li, Y., Wei, Z., and Ding, B. (2021). Coarformer: Transformer
for large graph via graph coarsening.

[70] Kumar, A., Rizvi, S. A. A., Brooks, B., Vanderveld, R. A., Wilson, K. H., Kenney, C.,
Edelstein, S., Finch, A., Maxwell, A., Zuckerbraun, J., et al. (2018a). Using machine
learning to assess the risk of and prevent water main breaks. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 472–480.

[71] Kumar, S., Zhang, X., and Leskovec, J. (2018b). Learning dynamic embeddings from
temporal interaction networks. Learning, 17:29.

[72] Landrum, G. (2006). Rdkit: Open-source cheminformatics. 2006. Google Scholar.

[73] Langville, A. N. and Meyer, C. D. (2011). Google’s pagerank and beyond. In
Google’s PageRank and Beyond. Princeton university press.

110 Bibliography

[74] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[75] Li, G., Xiong, C., Thabet, A., and Ghanem, B. (2020a). Deepergcn: All you need to
train deeper gcns. arXiv preprint arXiv:2006.07739.

[76] Li, J., Zhu, X., and Chen, J. Y. (2009). Building disease-specific drug-protein
connectivity maps from molecular interaction networks and pubmed abstracts. PLoS
computational biology, 5(7):e1000450.

[77] Li, P., Wang, Y., Wang, H., and Leskovec, J. (2020b). Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances in
Neural Information Processing Systems, 33:4465–4478.

[78] Li, Q., Han, Z., and Wu, X.-M. (2018). Deeper insights into graph convolutional
networks for semi-supervised learning. In Thirty-Second AAAI conference on artificial
intelligence.

[79] Li, Z. and Arora, S. (2020). An exponential learning rate schedule for deep learning.
In International Conference on Learning Representations.

[80] Li, Z., Zhang, B., Wang, Y., Chen, F., Taib, R., Whiffin, V., and Wang, Y. (2014).
Water pipe condition assessment: a hierarchical beta process approach for sparse
incident data. Machine learning, 95(1):11–26.

[81] Liang, B., Li, Z., Wang, Y., and Chen, F. (2018). Long-term rnn: Predicting hazard
function for proactive maintenance of water mains. In Proceedings of the 27th acm
international conference on information and knowledge management, pages 1687–1690.

[82] Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction problem for social
networks. Journal of the American society for information science and technology,
58(7):1019–1031.

[83] Lin, P., Zhang, B., Wang, Y., Li, Z., Li, B., Wang, Y., and Chen, F. (2015). Data driven
water pipe failure prediction: A bayesian nonparametric approach. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management,
pages 193–202.

[84] Lin, X., Quan, Z., Wang, Z.-J., Ma, T., and Zeng, X. (2020). Kgnn: Knowledge graph
neural network for drug-drug interaction prediction. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20 (International Joint
Conferences on Artificial Intelligence Organization), pages 2739–2745.

[85] Ling, C. X., Huang, J., and Zhang, H. (2003). Auc: a better measure than accuracy in
comparing learning algorithms. In Conference of the canadian society for computational
studies of intelligence, pages 329–341. Springer.

[86] Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

[87] Liu, S., Chen, L., Dong, H., Wang, Z., Wu, D., and Huang, Z. (2019). Higher-order
weighted graph convolutional networks. arXiv preprint arXiv:1911.04129.

[88] Liu, X., Ding, J., Jin, W., Xu, H., Ma, Y., Liu, Z., and Tang, J. (2021). Graph neural
networks with adaptive residual. In Advances in Neural Information Processing Systems,
volume 34, pages 9720–9733.

Bibliography 111

[89] Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., and Song, L. (2018). Heterogeneous
graph neural networks for malicious account detection. In Proceedings of the 27th ACM
international conference on information and knowledge management, pages 2077–2085.

[90] Mahdavi, S., Khoshraftar, S., and An, A. (2018). dynnode2vec: Scalable dynamic
network embedding. In 2018 IEEE International Conference on Big Data (Big Data),
pages 3762–3765. IEEE.

[91] Manessi, F., Rozza, A., and Manzo, M. (2020). Dynamic graph convolutional
networks. Pattern Recognition, 97:107000.

[92] Martínez, V., Berzal, F., and Cubero, J.-C. (2016). A survey of link prediction in
complex networks. ACM computing surveys (CSUR), 49(4):1–33.

[93] Menon, A. K. and Elkan, C. (2011). Link prediction via matrix factorization. In
Joint european conference on machine learning and knowledge discovery in databases,
pages 437–452. Springer.

[94] Mialon, G., Chen, D., Selosse, M., and Mairal, J. (2021). Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667.

[95] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26.

[96] Munikoti, S., Agarwal, D., Das, L., Halappanavar, M., and Natarajan, B. (2023).
Challenges and opportunities in deep reinforcement learning with graph neural networks:
A comprehensive review of algorithms and applications. IEEE Transactions on Neural
Networks and Learning Systems.

[97] Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., and Kim, S. (2018).
Continuous-time dynamic network embeddings. In Companion Proceedings of the The
Web Conference 2018, pages 969–976.

[98] Obradović, D. (2017). The impact of tree root systems on wastewater pipes. Zbornik
radova, Zajednički temelji, pages 65–71.

[99] Pan, L., Shi, C., and Dokmanić, I. (2021). Neural link prediction with walk pooling.
arXiv preprint arXiv:2110.04375.

[100] Pandhre, S., Mittal, H., Gupta, M., and Balasubramanian, V. N. (2018). Stwalk:
learning trajectory representations in temporal graphs. In Proceedings of the ACM
India Joint International Conference on Data Science and Management of Data, pages
210–219.

[101] Park, S., Jun, H., Agbenowosi, N., Kim, B. J., and Lim, K. (2011). The proportional
hazards modeling of water main failure data incorporating the time-dependent effects
of covariates. Water resources management, 25(1):1–19.

[102] Park, W., Chang, W.-G., Lee, D., Kim, J., et al. (2022). Grpe: Relative positional
encoding for graph transformer. In ICLR2022 Machine Learning for Drug Discovery.

[103] Penrose, M. et al. (2003). Random geometric graphs, volume 5. Oxford university
press.

112 Bibliography

[104] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710.

[105] Pietrucha-Urbanik, K. (2015). Failure analysis and assessment on the exemplary
water supply network. Engineering failure analysis, 57:137–142.

[106] Puny, O., Ben-Hamu, H., and Lipman, Y. (2020). Global attention improves graph
networks generalization. arXiv preprint arXiv:2006.07846.

[107] Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. (2018). Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, pages
459–467.

[108] Randrup, T. B., McPherson, E. G., and Costello, L. R. (2001). Tree root intrusion in
sewer systems: review of extent and costs. Journal of Infrastructure Systems, 7(1):26–
31.

[109] Robles-Velasco, A., Cortés, P., Muñuzuri, J., and Onieva, L. (2020). Prediction
of pipe failures in water supply networks using logistic regression and support vector
classification. Reliability Engineering & System Safety, 196:106754.

[110] Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., and Huang, J. (2020).
Self-supervised graph transformer on large-scale molecular data. Advances in Neural
Information Processing Systems, 33:12559–12571.

[111] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer.

[112] Roy, I., De, A., and Chakrabarti, S. (2021). Adversarial permutation guided node
representations for link prediction. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 9445–9453.

[113] Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. (2018). Dynamic graph
representation learning via self-attention networks. arXiv preprint arXiv:1812.09430.

[114] Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d., Titov, I., and Welling, M.
(2018). Modeling relational data with graph convolutional networks. In European
semantic web conference, pages 593–607. Springer.

[115] Schmitt, C., Pluvinage, G., Hadj-Taieb, E., and Akid, R. (2006). Water pipeline
failure due to water hammer effects. Fatigue & Fracture of Engineering Materials &
Structures, 29(12):1075–1082.

[116] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008).
Collective classification in network data. AI magazine, 29(3):93–93.

[117] Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725.

Bibliography 113

[118] Seo, Y., Defferrard, M., Vandergheynst, P., and Bresson, X. (2018). Structured
sequence modeling with graph convolutional recurrent networks. In International
Conference on Neural Information Processing, pages 362–373. Springer.

[119] Shamir, U. and Howard, C. D. (1979). An analytic approach to scheduling pipe
replacement. Journal-American Water Works Association, 71(5):248–258.

[120] Shang, Y., Hao, Z., Yao, C., and Li, G. (2022). Improving graph neural network
models in link prediction task via a policy-based training method. Applied Sciences,
13(1):297.

[121] Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention with relative position
representations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468.

[122] Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. (2018). Pitfalls of
graph neural network evaluation. arXiv preprint arXiv:1811.05868.

[123] Shi, W. and Rajkumar, R. (2020). Point-gnn: Graph neural network for 3d object
detection in a point cloud. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1711–1719.

[124] Singh, A., Huang, Q., Huang, S. L., Bhalerao, O., He, H., Lim, S.-N., and Benson,
A. R. (2021). Edge proposal sets for link prediction. arXiv preprint arXiv:2106.15810.

[125] Snider, B. and McBean, E. A. (2020). Improving urban water security through
pipe-break prediction models: Machine learning or survival analysis. Journal of
Environmental Engineering, 146(3):04019129.

[126] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts,
C. (2013). Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642.

[127] Song, X., Ma, R., Li, J., Zhang, M., and Wipf, D. P. (2021). Network in graph
neural network. CoRR, abs/2111.11638.

[128] Sun, C. and Wu, G. (2020). Adaptive graph diffusion networks with hop-wise
attention. arXiv preprint arXiv:2012.15024.

[129] Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., et al. (2019). String v11:
protein–protein association networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets. Nucleic acids research, 47(D1):D607–
D613.

[130] Taubin, G. (1995). A signal processing approach to fair surface design. In Proceed-
ings of the 22nd annual conference on Computer graphics and interactive techniques,
pages 351–358.

[131] Teru, K., Denis, E., and Hamilton, W. (2020). Inductive relation prediction by
subgraph reasoning. In International Conference on Machine Learning, pages 9448–
9457. PMLR.

114 Bibliography

[132] Thekumparampil, K. K., Wang, C., Oh, S., and Li, L.-J. (2018). Attention-based
graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735.

[133] Tran, P. V. (2018). Learning to make predictions on graphs with autoencoders. In
2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA), pages 237–245. IEEE.

[134] Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. (2018). Representation learning
over dynamic graphs. arXiv preprint arXiv:1803.04051.

[135] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

[136] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
(2018a). Graph attention networks. In International Conference on Learning Represen-
tations.

[137] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
(2018b). Graph attention networks. In International Conference on Learning Represen-
tations.

[138] Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., and Courty, N. (2022).
Template based graph neural network with optimal transport distances. In Advances in
Neural Information Processing Systems, volume 35, pages 11800–11814.

[139] Wang, D., Cui, P., and Zhu, W. (2016). Structural deep network embedding.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1225–1234.

[140] Wang, H., Yin, H., Zhang, M., and Li, P. (2022). Equivariant and stable positional
encoding for more powerful graph neural networks. In International Conference on
Learning Representations.

[141] Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y., and Kanakia, A. (2020).
Microsoft academic graph: When experts are not enough. Quantitative Science Studies,
1(1):396–413.

[142] Wang, Z., Zhou, Y., Hong, L., Zou, Y., and Su, H. (2021). Pairwise learning for
neural link prediction. arXiv preprint arXiv:2112.02936.

[143] Weisfeiler, B. and Leman, A. (1968). The reduction of a graph to canonical form
and the algebra which appears therein. NTI, Series, 2(9):12–16.

[144] Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed,
T., Johnson, D., Li, C., Sayeeda, Z., et al. (2018). Drugbank 5.0: a major update to the
drugbank database for 2018. Nucleic acids research, 46(D1):D1074–D1082.

[145] Wu, E., Cui, H., and Chen, Z. (2022). Relpnet: Relation-based link prediction neural
network. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pages 2138–2147.

[146] Wu, L., Chen, Y., Shen, K., Guo, X., Gao, H., Li, S., Pei, J., Long, B., et al. (2023).
Graph neural networks for natural language processing: A survey. Foundations and
Trends® in Machine Learning, 16(2):119–328.

Bibliography 115

[147] Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J. E., and Stoica, I. (2021).
Representing long-range context for graph neural networks with global attention. Ad-
vances in Neural Information Processing Systems, 34:13266–13279.

[148] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A
comprehensive survey on graph neural networks. IEEE transactions on neural networks
and learning systems, 32(1):4–24.

[149] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S.,
Leswing, K., and Pande, V. (2018). Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530.

[150] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018a). How powerful are graph
neural networks? In International Conference on Learning Representations.

[151] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018b).
Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pages 5453–5462. PMLR.

[152] Yan, J., Wang, Y., Zhou, K., Huang, J., Tian, C., Zha, H., and Dong, W. (2013).
Towards effective prioritizing water pipe replacement and rehabilitation. In Twenty-third
international joint conference on artificial intelligence. Citeseer.

[153] Yao, X., Shao, Y., Cui, B., and Chen, L. (2021). Uninet: Scalable network represen-
tation learning with metropolis-hastings sampling. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 516–527. IEEE.

[154] Yin, H., Zhang, M., Wang, Y., Wang, J., and Li, P. (2022). Algorithm and system
co-design for efficient subgraph-based graph representation learning. arXiv preprint
arXiv:2202.13538.

[155] Yin, Y., Zhang, J., Pei, Y., Cheng, X., and Ji, L. (2019). Mhdne: Network embedding
based on multivariate hawkes process. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 409–421. Springer.

[156] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., and Liu, T.-Y. (2021).
Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34.

[157] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J.
(2018). Graph convolutional neural networks for web-scale recommender systems.
In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 974–983.

[158] You, J., Gomes-Selman, J. M., Ying, R., and Leskovec, J. (2021). Identity-aware
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10737–10745.

[159] Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. (2019). Graph transformer
networks. Advances in neural information processing systems, 32.

[160] Yun, S., Kim, S., Lee, J., Kang, J., and Kim, H. J. (2021a). Neo-gnns: Neighbor-
hood overlap-aware graph neural networks for link prediction. In Advances in Neural
Information Processing Systems, volume 34, pages 13683–13694.

116 Bibliography

[161] Yun, S., Kim, S., Lee, J., Kang, J., and Kim, H. J. (2021b). Neo-gnns: Neighbor-
hood overlap-aware graph neural networks for link prediction. Advances in Neural
Information Processing Systems, 34:13683–13694.

[162] Zachary, W. W. (1977). An information flow model for conflict and fission in small
groups. Journal of anthropological research, 33(4):452–473.

[163] Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R., Prasanna,
V., Jin, L., and Chen, R. (2021). Decoupling the depth and scope of graph neural
networks. In Advances in Neural Information Processing Systems, volume 34, pages
19665–19679.

[164] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. (2020). Graphsaint:
Graph sampling based inductive learning method. In International Conference on
Learning Representations.

[165] Zhang, C., Ren, M., and Urtasun, R. (2019). Graph hypernetworks for neural
architecture search. In International Conference on Learning Representations.

[166] Zhang, J., Shi, X., Xie, J., Ma, H., King, I., and Yeung, D. Y. (2018a). Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. In 34th Conference
on Uncertainty in Artificial Intelligence 2018, UAI 2018.

[167] Zhang, J., Zhang, H., Xia, C., and Sun, L. (2020). Graph-bert: Only attention is
needed for learning graph representations. arXiv preprint arXiv:2001.05140.

[168] Zhang, M. and Chen, Y. (2018). Link prediction based on graph neural networks.
Advances in Neural Information Processing Systems, 31:5165–5175.

[169] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018b). An end-to-end deep
learning architecture for graph classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 32.

[170] Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. (2021). Labeling trick: A theory
of using graph neural networks for multi-node representation learning. Advances in
Neural Information Processing Systems, 34:9061–9073.

[171] Zhao, T., Liu, G., Wang, D., Yu, W., and Jiang, M. (2022). Learning from coun-
terfactual links for link prediction. In International Conference on Machine Learning,
pages 26911–26926. PMLR.

[172] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M.
(2018). Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434.

[173] Zhou, J., Liu, L., Wei, W., and Fan, J. (2022). Network representation learning:
from preprocessing, feature extraction to node embedding. ACM Computing Surveys
(CSUR), 55(2):1–35.

[174] Zhou, T., Lü, L., and Zhang, Y.-C. (2009). Predicting missing links via local
information. The European Physical Journal B, 71(4):623–630.

[175] Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning
using gaussian fields and harmonic functions. In Proceedings of the 20th International
conference on Machine learning (ICML-03), pages 912–919.

Bibliography 117

[176] Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. (2021a). Neural bellman-ford
networks: A general graph neural network framework for link prediction. In Advances
in Neural Information Processing Systems, volume 34, pages 29476–29490.

[177] Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. (2021b). Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in
Neural Information Processing Systems, 34.

[178] Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., and Wu, J. (2018). Embedding temporal
network via neighborhood formation. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2857–2866.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Research Motivations, Objectives and Contributions
	1.2.1 VAGNN: A General and Scalable GNN Framework
	1.2.2 An Interpretive Analysis of GNNs in Link Prediction
	1.2.3 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios
	1.2.4 A Summary of Contributions

	1.3 Thesis Organization

	2 Literature Review
	2.1 Notations
	2.2 Graph Neural Networks
	2.2.1 Graph Convolutional Network
	2.2.2 Graph Attention Network
	2.2.3 Addressing the Scalability Challenges in GNNs
	2.2.4 High-hop GNNs
	2.2.5 Graph Transformers
	2.2.6 More Noteworthy GNNs

	2.3 Other Graph Representation Learning Methods
	2.3.1 Graph Autoencoders
	2.3.2 Random Walk Methods
	2.3.3 Representation Leaning on Dynamic Graphs
	2.3.4 Point Process Embedding Methods

	2.4 Summary

	3 VAGNN: A General and Scalable GNN Framework
	3.1 Introduction
	3.2 Preliminary
	3.3 The Proposed VAGNN
	3.3.1 Attention Methodologies
	3.3.2 The Extra Weight
	3.3.3 Virtual Adjacency Matrix
	3.3.4 The Expressiveness of VAGNN

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Implementation
	3.4.3 Examination of VAGNN Generalization Capabilities
	3.4.4 Parameter Sensitivity Study on Virtual Adjacency Matrix
	3.4.5 Attention Methods Assessment
	3.4.6 Exploration of the Superior Model Performance

	3.5 Summary

	4 An Interpretive Analysis of GNNs in Link Prediction
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Problem Definition
	4.2.2 NCN-dependent Structural Information
	4.2.3 GNNs in Learning the Number of Neighbors

	4.3 NCN-dependent Structural Information cannot be Effectively Learned via GNNs
	4.3.1 Analytical Study
	4.3.2 Empirical Study
	4.3.3 Experimental Settings

	4.4 Node Embedding in Link Prediction
	4.4.1 Experimental Observations
	4.4.2 Analytical Insights into Node Embeddings

	4.5 Limitation Analysis of Existing Methods
	4.5.1 A Survey of Link Prediction Methods
	4.5.2 Limitation Analysis
	4.5.3 Further Analysis of Experimental Results

	4.6 More on the Experiments
	4.6.1 GNN Models Used in the Experiments
	4.6.2 SEAL-type Methods.
	4.6.3 Implementation Details
	4.6.4 Additional Experimental Results

	4.7 Summary and Implication

	5 Exploring the Functionalities of Diverse GNN Techniques in Real-World Scenarios
	5.1 Introduction
	5.2 Related Work in Pipe Failure Prediction
	5.3 Problem Formulation
	5.4 Proposed Framework
	5.4.1 GNN Module
	5.4.2 Multi-hop Aggregation
	5.4.3 Attention-based GNN Layer
	5.4.4 Residual Connections and Layer-wise Aggregation
	5.4.5 Learning Temporal Failure Pattern
	5.4.6 Failure Predictor

	5.5 Experiments
	5.5.1 Datasets
	5.5.2 Data Preprocessing
	5.5.3 Experimental Settings
	5.5.4 Main Results

	5.6 Further Analysis
	5.6.1 The Sensitivity of Aggregation Methods
	5.6.2 Failure Detection Rate
	5.6.3 Hyper-parameters and Training Time

	5.7 Application
	5.7.1 Pipe Prioritization Platform
	5.7.2 Feature Importance

	5.8 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

