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Abstract

Natural language processing (NLP) is a challenge while important subfield

of artificial intelligence (AI). And natural language understanding (NLU)

is a crucial component of NLP. In recent years, graph structures and graph

neural networks are widely utilized in NLU. In single task scenarios, graph

structures can represent the sentence or document in graphs (e.g. syntax

graph of a sentence). And sometimes only one graph cannot represent

sufficient information, therefore multiple graph structures are proposed

to sufficiently represent the relations and dependencies. In multi-task

scenarios, the interactions among the multiple tasks can be represented

in a multi-task graph. And different kinds of graph neural networks have

been proposed to achieve information aggregation on the graphs. In this

thesis, the multi-graph structures for single tasks, the multi-task graph

structures for multi-task learning, and the graph neural networks working

on them are collectively referred to as multi-graph architectures.

In this thesis, we design multi-graph architectures based on interconnected

graphs to represent diverse linguistic dimensions and multi-task interac-

tions, including syntactic, semantic, and contextual information. Each

graph encapsulates specific linguistic features, fostering a more compre-

hensive understanding of language nuances. The fusion of these graphs

enables the model to capture intricate relationships and dependencies

among words, concepts, sentence and different tasks, contributing to a

more robust and context-aware NLU system.

This thesis explores the design principles, implementation details, and

experimental results of multi-graph architectures applied to various NLU

tasks, such as aspect sentiment classification, joint dialog sentiment classi-

fication and act recognition, and joint multiple intent detection and slot

filling. Comparative analyses against state-of-the-art models demonstrate

the efficacy of the proposed multi-graph architectures in handling ambigu-

ous language constructs and improving overall NLU performance in both

single-task and multi-task scenarios.
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Chapter 1

Introduction

Natural language processing (NLP) is a subfield of artificial intelligence (AI) that

focuses on the interaction between computers and human language. The goal of NLP

is to enable machines to understand, interpret, and generate human language in a way

that is both meaningful and contextually relevant. Natural language understanding

(NLU), a subset of NLP, refines the focus to the comprehension and interpretation

of human language, aiming to imbue machines with a deeper understanding of the

meaning and context within textual or spoken communication. Beyond mere syntactic

analysis, NLU endeavors to extract semantic meaning, discern intent, and navigate the

subtleties of language. NLU includes various tasks like sentiment analysis, named entity

recognition, relation extraction, dialog understanding, spoken language understanding,

question answering and so on. In NLU, single-task scenarios denote that there is only

one stream of predictions corresponding to a single task for the input. And multi-task

scenarios denote that there are multiple streams of labels corresponding multiple tasks

for the input.

In recent years, graph structures (e.g., syntax graphs, relation graphs, semantics

graphs) have been widely used in both of single-task and multi-task scenarios of NLU.

And different kinds of graph neural networks (e.g., graph convolutional networks, graph

attention networks, relational graph convolutional networks) are adopted to achieve

information aggregation on the graph structures. Generally, graph structures can

benefit NLP in the following aspects. First, representing linguistic structures. Graphs

provide a flexible way to represent the syntactic and semantic structure of language,

like parse trees or semantic nets. This allows capturing complex linguistic relationships.

Second, knowledge representation. Knowledge graphs can store real-world entities

and relationships which provides useful background knowledge for NLP models. This

helps with tasks like entity linking, disambiguation, and question answering. Third,

incorporating contextual information. Graphs can capture contextual information
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like document structure or the flow of a conversation. This provides useful context

beyond just the current sentence for NLP models. Forth, multi-hop reasoning. Graph

algorithms like message passing over nodes can allow models to make multi-step

inferences through reasoning over linguistic structures and world knowledge. This helps

for complex reasoning tasks. Fifth, leveraging neural networks. Graph neural networks

can operate directly on graph structured data to learn effective language representations

and make predictions. Knowledge sharing: Linguistic or world knowledge encoded

in graphs can be shared across tasks and applications instead of having to relearn.

Overall, graphs provide a flexible way to represent and leverage diverse linguistic

information for more robust and accurate NLP models. The combination of graphs

and neural networks is a promising approach for advancing NLP.

Here we introduce the definition of Multi-graph Architectures in this thesis. It

includes two parts: (1) multi-graph structures; (2) graph neural networks working on

multi-graph structures to achieve information aggregation. In single-task scenarios,

sometimes there are different kins of graph structures are designed by different works

to capture the specific information. And in some tasks, the information corresponding

to different graph structures are complementary to each other. Therefore, sketching

the multiple graphs into a unified graph and allowing them to interact can potentially

capture more sufficient information and provide more beneficial clues for the tasks.

However, few previous works focus on this direction. In multi-task scenarios, we observe

that the sequence corresponding to different tasks can be represented into several

task-specific groups of nodes, among which there are rich relations. However, previous

works either do not adopt the graph structures or simply adopt the fully-connected

graph, which is composed of all nodes from multiple tasks, ignoring modeling the rich

relationships among the task-specific nodes.

In this thesis, the research question we focus on is how to design advanced multi-

graph structures for both single task problems and multi-task problems in the field of

natural language understanding. Besides, we also investigate the research question of

how to design advanced graph neural networks to achieve information aggregation on

the designed multi-graph structures. In this thesis, we present five works, as shown

in Fig 1.1. KaGRMN and NSE tackle the task of aspect sentiment classification,

which is a single-task scenario. DARER tackles the task of joint dialog sentiment

classification and act recognition, which is a multi-task scenario. Co-guiding Net and

ReLa-Net tackle the task of joint multiple intent detection and slot filling. Specifically,

the content in this thesis are summarized as follows:
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Natural Language Processing

Natural Language Understanding

Multi-graph Architectures

Single-task Scenarios Multi-task Scenarios

Aspect Sentiment Classification Joint Multiple Intent Detection and 
Slot Filling

Joint Dialog Sentiment 
Classification and Act Recognition

KaGRMN-DSG, Neural Subgraph Explorer

DARER Co-guiding Net, ReLa-Net

Figure 1.1: Roadmap of this thesis.

The content in chapter 3 corresponds to the KaGRMN-DSG work published on

IEEE TETCI 2022. This work proposes to leverage the external aspect knowledge to

enhance the aspect semantics, which can facilitate the aspect sentiment classification.

Besides, the DSG module aims to merge the two kinds of syntactic information to

comprehensively understand the context semantics.

The content in chapter 4 corresponds to the Neural Subgraph Explorer work

published on IJCAI 2022. This work proposes to prune the syntax graph regarding

the specific aspect, aiming to retain the aspect-related semantics while eliminate the

aspect-unrelated semantics.

The content in chapter 5 corresponds to the DARER and DARER2 works published

on ACL 2022 and IEEE TPAMI 2023. This work proposes a novel framework leverage

temporal information, label information, and semantics to work together to let DSC

and DAR gradually promote each other. DARER utilizes RGCNs for speaker-aware

temporal modeling and dual-task reasoning, while DARER2 adopts our proposed

ReTeFormers.

The content in chapter 6 corresponds to the Co-guiding Net published on EMNLP

2022. This work makes the first attempt to achieve the mutual guidances between the

multiple intent detection and the slot filling. To implement this idea, we propose a two-

stage framework and the Co-guiding Net, which includes our proposed heterogeneous

graph attention network applying on the designed semantics-label graphs.

The content in chapter 7 corresponds to the ReLa-Net published on EMNLP
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2022. This work discovers and exploits the dual-task label topologies and relations

between the multiple intent detection and slot filling tasks. Moreover, we also propose

the label-aware inter-dependent decoding mechanism to further exploit the label

correlations for decoding.
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Chapter 2

Literature Review

2.1 Graph Architectures for NLU

Graph structures and graph neural networks have been widely adopted in various

NLU tasks. For example, in relation extraction task, [100] utilized a multi-view graph

structure to capture the possible relationships among tokens and selected important

words for relation extraction. In aspect sentiment classification task, [79] proposed

a star-shaped aspect-centered relational graph structure and proposed a relational

graph attention network to capture the aspect-related syntactic information. In multi-

intent spoken language understanding task, GL-GIN [57] and AGIF [58] adopted

the dual-task graph structure and employed the graph attention networks to capture

the interaction between the multiple intent detection task and slot filling task. In

commonsense reasoning task, KagNet [40] adopted a schema graph derived from the

commonsense question to enhance the prediction of the answer. Despite of the success

that has been achieved in NLU field, little attention has been paid to multi-graph

architectures, which is the core of this thesis.

2.2 Aspect Sentiment Classification

In early studies [28,46], sentiment classifiers were built by traditional machine learn-

ing algorithms which demanded labor-intensive feature engineering. Most recently

proposed ASC models are based on neural networks which can automatically learn

representations. Conventionally, neural ASC model contains an aspect encoder, a

context encoder and an aspect-to-context attention mechanism [5,12,45,71,83].

Different kinds of networks are adopted as the encoder. As for LSTM, [69] employed

two separated LSTMs to encode the aspect-left and -right word sequences and then

combined the two last hidden sates for classification;
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[19] proposed to leverage external document sentiment analysis corpus in a multi-

task framework to enhance the context modeling of LSTM. Besides, convolutional

neural networks (CNN) and Memory Networks (MNs) are also exploited as encoders.

[22] introduced parameterized filters and parameterized gates into CNN to integrate

aspect information for context encoding. [101] designed a gated CNN layer to extract

the aspect-specific features from the context hidden states. Based on standard

MNs, [81] proposed the target-sensitive memory networks to focus on the impact of

aspect semantics on the classification.

The attention mechanism is utilized to extract aspect-related sentiment features

via assigning a weight to each context word regarding its relevance to the aspect. [45]

proposed an aspect-to-context attention and a context-to-aspect attention to study

the interactions between the aspect and context. [71] proposed an algorithm to

automatically mine useful supervised information for the attention mechanism through

the training process.

However, attention mechanisms may hardly capture the important words which is

far from the aspect in the input context. As the development of graph neural networks

[35,62,78,80], recent works utilize graph convolution network (GCN) [35,68,70,105] and

graph attention network (GAT) [23,78,79] to model the syntax graph for shortening

the distance between the aspect and its sentiment trigger words and leveraging the

syntactical information. [105] employed LSTM as encoder and exploit GCN to capture

local syntactic information via encoding the syntax graph produced by off-the-shelf

dependency parsers. [79] proposed Relational MHA, which can capture the global

dependency between the aspect and each context word via operating on the star-shaped

aspect-oriented syntax graph.

To enhance the context modeling, [19] and [6] trained their models on both

document-level sentiment classification and ASC tasks in the multi-task framework

with a shared encoder. [90] proposed an aspect-aware LSTM which introduces aspect

information into LSTM cells to generate better context hidden states in which more

aspect-related information is retained and aspect-irrelevant information is discarded.

As BERT has proven its power of language modeling on heterogeneous NLP tasks,

more recently proposed work [70, 79] adopted BERT as the context encoder to obtain

high-quality hidden states.

However, prior models neglect to leverage aspect knowledge, resulting in inadequate

aspect semantics. And the syntactic information they captured is insufficient. In this

thesis, we propose KaGRMN-DSG (chapter 3) to solve these two challenges. There are

two main differences from our model and previous works. The first one is leveraging
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aspect knowledge, which is achieved by a novel KaGR-MN. The other one is combining

both of local syntactic information and global relational information, which is achieved

by a DSG-Net.

Besides, since existing models apply GNNs on the whole syntax graph, they suffer

from two problems: noisy information aggregation and loss of distant correlations. In

this thesis, we propose a novel model termed Neural Subgraph Explorer (chapter 4)

to solve these two problems.

2.3 Joint Dialog Sentiment Classification and Act

Recognition

Dialog Sentiment Classification [15, 18, 29, 65, 112, 113] and Dialog Act Recognition

[26, 59, 61, 64] are both utterance-level classification tasks. Recently, it has been found

that these two tasks are correlative, and they can work together to indicate the

speaker’s more comprehensive intentions [33]. With the development of well-annotated

corpora, [3, 39], in which both the act label and sentiment label of each utterance

are provided, several models have been proposed to tackle the joint dialog sentiment

classification and act recognition task.

[3] proposed a multi-task framework based on a shared encoder that implicitly

models the dual-task correlations. [33] integrated the identifications of dialog acts,

predictors and sentiments into a unified model. To explicitly model the mutual

interactions between the two tasks, [53] proposed a stacked co-interactive relation layer

and [37] proposed a context-aware dynamic convolution network to capture the crucial

local context. More recently, [55] proposed Co-GAT, which applies graph attentions

on a fully-connected undirected graph consisting of two groups of nodes corresponding

to the two tasks, respectively.

In this thesis, we propose a novel model termed DARER (chapter 5), which

is different from previous works on three aspects. First, we model the inner- and

inter-speaker temporal dependencies for dialog understanding. Second, we model

the cross- and self-task temporal dependencies for dual-task reasoning; Third, we

achieve prediction-level interactions in which the estimated label distributions act as

important and explicit clues other than semantics.
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2.4 Joint Multiple Intent Detection and Slot Fill-

ing

The correlations between intent detection and slot filling have been widely recognized.

To leverage them, a group of models [11, 16, 17, 36, 43, 48, 54, 56, 88, 106, 109] are

proposed to tackle the joint task of intent detection and slot filling in a multi-task

manner. However, the intent detection modules in the above models can only handle

the utterances expressing a single intent, which may not be practical in real-world

scenarios, where there are usually multi-intent utterances.

To this end, [32] proposed a multi-intent SLU model, and [13] proposed the first

model to jointly model the tasks of multiple intent detection and slot filling via a

slot-gate mechanism. Furthermore, as graph neural networks have been widely utilized

in various tasks [2,66,79,92,94,97], they have been leveraged to model the correlations

between intent and slot. [58] proposed an adaptive graph-interactive framework to

introduce the fine-grained multiple intent information into slot filling achieved by

GATs. More recently, [57] proposed another GAT-based model, which includes a non-

autoregressive slot decoder conducting parallel decoding for slot filling and achieves

the state-of-the-art performance.

In this thesis, we propose two novel models, Co-guiding Net (chapter 6) and

ReLa-Net (chapter 7), to tackles the joint task of multiple intent detection and slot

filling.

Existing methods only model the one-way guidance from multiple intent detection

to slot filling. Besides, they adopt homogeneous graphs and vanilla GATs to achieve

the interactions between the predicted intents and slot semantics. In contrast, Co-

guiding Net (1) achieve the mutual guidances between the two tasks; (2) propose

the heterogeneous semantics-label graphs to represent the dependencies among the

semantics and predicted labels; (3) we propose the Heterogeneous Graph Attention

Network to model the semantics-label interactions on the heterogeneous semantics-label

graphs.

Previous models ignore the correlations among the two tasks’ labels, treating their

embeddings as separated parameters to be learned. Our ReLa-Net is significantly

different from previous ones. This is the first work to discover, capture and leverage

the topologies and relations among the labels for joint multiple intent detection and

slot filling.
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Chapter 3

KaGRMN-DSG

3.1 Introduction

Aspect-level sentiment classification (ASC) [63] is a fine-grained task of sentiment

classification or emotion recognition [4, 52,89,107]. ASC aims to infer the fine-grained

sentiment of a given aspect mentioned in a review. Generally, an aspect is a noun

phrase included in a review sentence. For example, in a review “It took so long to get

the check, while the dinner is great.”, there are two aspects (check and dinner) of

opposite sentiments. ASC has received increasing attention and interest from both

academia and the industry due to its wide applications in real-life scenarios such as

dialog systems [1], online reviews [51] and social networks [10]. Prior works have

noticed the importance of aspect-context interaction. Different kinds of attention

mechanisms [12, 45, 71] are proposed to extract aspect-relevant semantics from the

hidden states of context words. And more recently, syntactic information is widely

leveraged to facilitate the interactions between the aspect and its related words that

are distant in context sequence. Graph Convolutional Networks (GCN) [70,105] and

Graph Attention Networks (GAT) [25,79] are adopted to encode the syntax graphs

predicted by off-the-shelf dependency parsers. [68,105] employed GCNs to capture the

local syntactic information. [79] proposed relational multi-head attention (Relational

MHA) to capture the global relational information between aspect and each context

word.

However, little attention has been spent on aspect representation and its conveyed

semantics. Aspect representation and its semantics not only guide the aspect-context

interaction but also provide important clues for ASC. Despite its importance, in

previous works [5,79,105], aspect representation is simply derived by pooling the hidden

states of aspect words. In Sec. 3.3.8 we empirically study the aspect representation

generated by BERT [9], and two cases are shown in Table 3.8. We can find that
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BERT cannot capture the exact meanings and property information of Mountain

Lion OS and iTune, although it is one of the strongest language models. Merely

relying on pre-trained large language models cannot obtain sufficiently effective and

informative aspect representation, making it hard for machines to address ASC. In

contrast, humans can easily handle ASC and we conjecture the key to master this task

is to leverage the adequate aspect knowledge they often refer to as the clue. Thinking

of and leveraging the aspect knowledge are instinctive reactions of humans when they

read an aspect in a review. For example, there is a review “Just a not bad restaurant,

because the cheese and chips are both very soft.” With the knowledge of ‘cheese’ and

‘chips’, humans are aware that the former should be soft and the latter should be click

(not soft). Hence it is easy for humans to infer the positive sentiment of ‘cheese’ and

the negative sentiment of ‘chips’. However, in contrast, in ASC models there is no such

mechanism, and aspect knowledge has not been explored or leveraged. Inheriting this

deficiency, the aspect representation and semantics derived by prior models may lose

important aspect information, which hinders aspect sentiment reasoning and make

ASC challenging for machines.

On the other hand, both GCN and Relational MHA are useful for modeling distinct

syntax graphs, but they have respective shortages: GCN is hard to capture the global

relations between aspect and its non-adjacent context words on the syntax graph;

Relational MHA fails to capture the local syntactic information among context words

because they are isolated from each other on the star-shaped aspect-oriented syntax

graph. However, prior works only consider one of them, resulting in insufficient

syntactic information.

To tackle the aforementioned two challenges, we suggest that (1) aspect knowledge

should be explicitly leveraged in ASC models; (2) both kinds of syntactic information

should be combined to capture sufficient syntactic information. We observe that there

is plenty of entity descriptions in popular and easily accessible knowledge bases, such

as DBpedia1 and Wikipedia2. From their statistics, there are about 6.6 Million and

50 Million entities in current DBpedia and Wikipedia datasets. These descriptions

can sufficiently represent the entities’ meanings and conveying a wealth of entities’

knowledge. In ASC, aspects are always entities, making it more convenient to retrieve

their descriptions.

In this work, we propose a Knowledge-aware Gated Recurrent Memory Network

with Dual Syntax Graph Modeling (KaGRMN-DSG) model as our solution to the

1https://wiki.dbpedia.org/
2https://www.wikipedia.org/
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two challenges. Specifically, its novelty lies in three core modules. The first one is

Knowledge-aware Gated Recurrent Memory Network (KaGR-MN) which recurrently

integrates the aspect knowledge into aspect representation and then context memories.

An aspect-to-description attention mechanism is devised to dynamically summarize the

needed aspect knowledge from the aspect description regarding the current semantic

state. An adaptive knowledge integrating gate is designed to adaptively integrate the

summarized knowledge into aspect representation. Then a self multi-head attention is

employed to contextualize the integrated knowledge and update the context memory

bank. The second one is Dual Syntax Graph Network (DSG-Net), which marries the

proposed Position-aware GCN and Relational MHA, then learns the dual syntactic

interaction to comprehensively capture sufficient syntactic information. The third one

is the knowledge integrating gate (KI Gate) which re-enhances the final representation

with further needed knowledge.

We highlight our contributions as follows:

(1) Based on plenty of informative entity descriptions from easily accessible knowledge

bases, we end-to-end embed and leverage the aspect knowledge to address ASC.

(2) We propose a novel KaGR-MN, which combines the advantages of LSTM, Trans-

former, and Memory Networks. It recurrently embeds and integrates beneficial aspect

knowledge into aspect representation and all context memories.

(3) We propose a dual syntax graph network, in which the local syntactic information

and global relational information are combined to comprehensively capture sufficient

syntactic information.

(4) We conduct extensive experiments on three benchmark datasets. Results show

that our model achieves new state-of-the-art performances, significantly outperforming

previous best results. Ablation study and further analysis validate the effectiveness of

our model.

3.2 Model

Overview The architecture of our KaGRMN-DSG model is illustrated in Fig. 3.1.

To extract the beneficial clues for aspects, knowledge-aware gated recurrent memory

network and knowledge integration gate incorporate summarized aspect knowledge to

enrich aspect representation and all context memories. To capture sufficient syntactic

information, dual syntax graph network combines local syntactic information and

global relational information, then learns their mutual interaction. To comprehen-

sively abstract high-level clues, aspect-to-context attention mechanism aggregates
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Figure 3.1: The architecture of KaGRMN-DSG. The internal architecture of KaGR-
MN cell is shown in Fig.3.2

aspect-related semantics from all hidden states into the final representation. And we

believe that these modules can effective cooperate to further improve aspect sentiment

reasoning.

Description Retrieval We use aspect (A) to query DBpedia first and then Wikipedia

to get its description (D). If multiple descriptions are returned (polysemy), the one

with the highest semantic similarity to context (C) is selected as D. The semantic

similarity of a description candidate and review context is calculated as:

avg(C) =
1

NC

NC∑
i=1

e(ci) (3.1)

avg(D′) =
1

ND

ND∑
i=1

e(di) (3.2)

sim(C,D′) = cos
(
α ∗ avg(C) + (1− α) ∗ e(dl), avg(D′)

)
(3.3)

where NC and N ′D denotes the number of words in the context and description

candidate respectively, e(w) denotes the word embedding3 of word w, dl denotes

domain label (e.g. the dl of Lap14 dataset is ‘laptop’). Here we intuitively set α

as 0.5 because both of the context semantics avg(C) and domain information e(dl)

are important in selecting the correct description candidate. The reason why we

use domain label here is that sometimes there may be not enough words conveying

domain-specific semantics for distinguishing the needed description. Besides, the

retrieval is enhanced with some rules, such as soft matching with lemmatization and

stop word filtering. Finally, about 70% aspects in the datasets can be equipped with

retrieved descriptions.

3We use Glove word embedding [49].
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3.2.1 Memory Bank Construction

In this work, we adopt BERT to encode the description and context to produce their

hidden states. For description (D), the formal input is 〈[CLS]; D; [SEP]〉, where 〈; 〉
denotes concatenation operation. The description is encoded in the single-sentence

manner then a series of its hidden states is generated: HD = {hid ∈ Rde}ND
i=1, which is

taken as the description memory bank MD.

As for context (C), we model the context-aspect pair in the sentence-pair manner

to generate aspect-aware hidden states [90]. The formal input is 〈[CLS]; C; [SEP];

A; [SEP]〉. In this way, we obtain the hidden state of [CLS]: hcls and a series of

aspect-aware context hidden states: HC = {hic ∈ Rde}NC
i=1. As BERT has a strong

capability of sentence-pair modeling, hcls contains not only the information from both

of the aspect and the context but also their dependencies. Thus we take hcls as the

initial contextualized aspect representation r0a. Then we use r0a to replace the hidden

states of aspect words (HA = {hia ∈ Rde}NA
i=1) in HC, obtaining the initial context

memory bank M0
C = [h1c , h

2
c , ..., r

0
a, ..., h

N
c ], where N = NC −NA + 1.

MD and M0
C are two strands of input of KaGR-MN cell. Along time steps, MC is

recurrently updated while MD remains identical.

3.2.2 Knowledge-aware Gated Recurrent Memory Network

As the series of context hidden states and description hidden states have been obtained,

now the challenge is how to incorporate as much beneficial aspect knowledge as possible

without losing the original semantics obtained from BERT?.

The first thing is to conserve the original semantics in the context memories obtained

from BERT. To this end, we employ Memory Networks (MNs) as the backbone to

store context memories, because that MNs can accurately remember original facts [85].

Secondly, we are supposed to make the integrated knowledge beneficial. In other words,

we should provide each sample the aspect knowledge it needs. Hence we propose

an aspect-to-description attention (A2D Att) mechanism to summarize the needed

aspect knowledge from the description memory bank. Thirdly, we should integrate

the beneficial aspect knowledge into the aspect representation. Then we propose an

adaptive knowledge integration gate, which borrows the idea of gating mechanisms in

LSTM [21]. Gate mechanism has proven its strong ability of information integration

in many tasks [7,90]. However, only integrate knowledge into aspect representation

is insufficient, not exploring the full value of aspect knowledge. It is intuitive that

the aspect knowledge should be incorporated into all context memories. Besides,
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Figure 3.2: The architecture of KaGR-MN cell.

an appropriate mechanism should be devised to update the context memory bank.

To achieve these two goals, inspired by Transformer [77], we utilize self multi-head

attention to update the context memories, and in the meanwhile, the aspect knowledge

in the aspect representation can be spread to all context memories. Finally, all the

above mechanisms form the Knowledge-aware Gated Recurrent Memory Network

(KaGR-MN), which combines the advantages of MNs, LSTM, and Transformer.

The architecture of KaGR-MN cell is illustrated in Fig. 3.2. In the following texts,

we depict the details of KaGR-MN.

3.2.2.1 Dynamic Knowledge Summarizing

Intuitively, on the one hand, the context-aspect pair of each sample may demand

individual aspect knowledge, even if they have the same aspect. On the other hand,

at each time step, KaGR-MN should integrate specifically needed aspect knowledge

according to the current cell state. Therefore, the aspect knowledge summarizing

should be dynamic. To achieve this, we design an aspect-to-description attention (A2D

Att) mechanism to dynamically summarize the specifically needed aspect knowledge

from the description memory bank MD at each time step. The architecture of A2D

Att is shown in Fig. 3.2. At each time step (t), the aspect representation of previous

time step rt−1a serves as the cell state and is used to query MD. Then an attention

weight α is assigned to each hd regarding its importance to rt−1a :

αi =SoftMax(F(hid, r
t−1
a ))

=
exp(F(hid, r

t−1
a ))∑ND

k=1 exp(F(hkd, r
t−1
a ))

(3.4)
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where F(hid, r
t−1
a )) is a score function defined as:

F(hid, r
t−1
a )) = (Wd h

i
d + bd) (rt−1a )T, (3.5)

where Wd and bd are weight matrix and bias respectively, and T denotes transposition.

Then we can obtain the summarized knowledge representation as: rtk =
∑ND

i=1 αih
i
d.

3.2.2.2 Adaptive Knowledge Integration

As the specifically needed knowledge has been summarized, it should be integrated

into the aspect representation regarding the current cell state. As the gate mechanisms

[7, 21, 60] have proven their ability of controlling information flow, here we design

an Adaptive Knowledge Integration (AdaKI) Gate to integrate rtk into rt−1a . Its

architecture is shown in Fig. 3.2. AdaKI Gate can be formulated as:

rt∗a = rt−1a + rtk � (Wk[rt−1a , rtk]), (3.6)

where � denotes Hadamard product, [, ] denotes concatenation and Wk is weight

matrix. The core of AdaKI Gate is to produce a gate vector using rtk and rt−1a . This

gate vector achieves the fine-grained control on each dimension of rtk.

There are two merits of this fine-grained control. First, AdaKI Gate can determine

what knowledge and how much knowledge from rtk should be integrated into rt−1a .

Second, it can map the integrated knowledge into the same semantic space of rt−1a

and Mt−1
C . This adaption helps maintain the semantics consistency of rt∗a and Mt−1

C ,

which is beneficial to later knowledge contextualizing. In Sec. 3.3.6, we investigate

the effect of different knowledge gates used here. After rt∗a is obtained, it replaces rt−1a

in Mt−1
C , forming Mt∗

C .

3.2.2.3 Knowledge Contextualizing and Context Memory Bank Updating

Although the needed beneficial knowledge has been integrated into rt∗a , the other

context memories in Mt∗
C remain the same as the ones in Mt−1

C . Intuitively, all context

memories should benefit from aspect knowledge to facilitate aspect-related information

aggregation. To achieve this, we propose a knowledge contextualizing mechanism to

broadcast the newly-integrated knowledge in rt∗a to all context memories in Mt∗
C . Here

we borrow the idea of self-attention [41,77], which can effectively relate the different

tokens in a sentence and capture the intra-sentence dependencies.

In this work, we adopt the self multi-head attention (Self MHA) formulation in [77].

We first map Mt∗
C to queries (Q), keys (K) and values (V) matrices by individual
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linear projections, where Q,K,V ∈ RN×ds . And this process repeats Hs
n times, where

Hs
n is the number of heads and Hs

n × ds = de. The scaled dot-product attention is

used to produce the output of each head, then all of the Hs
n outputs are concatenated

to form the updated context memory bank Mt
C:

Mt
C = ‖H

s
n

h=1SoftMax

(
QKT

√
ds

)
.V (3.7)

This simple but effective knowledge contextualizing mechanism updates Mt∗
C and rt∗a

by letting context memories (including rt∗a ) exchange useful information with each

other, which is beneficial to capture aspect-related information. Along time steps, ra

and MC would contain more and more reasonable and beneficial semantics for ASC.

3.2.3 Dual Syntax Graph Network

As proven in prior works, GCN can capture local syntactic information and Relational

MHA can capture the global relation between the aspect and each context word via

operating on the star-shaped aspect-oriented syntax graph (as shown in Fig. 3.1).

However, as we have discussed in Sec. 3.1, they have respective shortages. They can

only capture one of the two kinds of syntactic information and lose the other. Previous

models only employ one of them, leading to insufficient syntactical information.

To this end, we propose DSG-Net (as shown in Fig. 3.1) which marries the proposed

Position-aware GCN and Relational MHA and learns their interaction, capturing

sufficient syntactic information.

3.2.3.1 Local Syntactic Information Modeling

Graph Construction Based on the original syntax graph G4, we first add a new

aspect node A and merge all edges between nodes of aspect words and non-aspect

context words to A. Then we delete all of the original nodes of aspect words and their

edges. The obtained graph is similar to G, and only several context word nodes are

connected to A. Thus we term it sparse graph Gs (shown in Fig.3.1).

Position-aware GCN In this work, we augment the standard GCN with a position

weight wip = 1 − |i−τ |
N+1

, in which τ denotes the position of aspect, i denotes the ith

context word. As the Self MHA in KaGR-MN does not consider the order of context

memories, some positional and ordering information may be lost. wip can supplement

this information, which helps capture local syntactic information. Besides, it indicates

4obtained by spaCy toolkit: https://spacy.io/
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the position of A and highlights the potential aspect-related words which are generally

closer to A. In lth-layer, the local neighborhood information is aggregated as:

hli =
∑
j∈N s

i

Ws
g(wjp h

l−1
j )/(di + 1) + bs

g, (3.8)

in which N s
i is the first-order neighbors of node i (including i) in Gs, di is the degree

of node i, Ws
g and bs

g are weight matrix and bias.

3.2.3.2 Global Relational Information Modeling

We obtain the star-shaped aspect-oriented syntax graph following [79]. In this syntax

graph, every context word directly connects to the aspect node A, so we term it

dense graph Gd. Then we employ the Relational MHA to model the global relational

dependency between aspect and each context word. The node representation is:

hi =

Hd
n∑

m=1

( ∑
j∈N d

i

βmij W
1
mhj

)
/Hd

n,

βmij = SoftMax(gmij ),

gmij = ReLU
(
rijW

2
m + b1

m

)
W3

m + b2
m,

(3.9)

where Hd
n denotes the head number, rij is the embedding of the relation between

nodes i and j, W1,2,3
m and b1,2

m are weight matrices and biases.

3.2.3.3 Dual Syntactic Information Fusion

Now the Position-aware GCN has captured the important local syntactic information

and the Relational MHA has captured the important global relational information.

To integrate them together and let them compensate for each other, we concatenate

the aspect node representations respectively derived by Position-aware GCN and

Relational MHA, then we employ a multi-layer perception (MLP), which can auto-

matically abstract the integrated representation [47,53], to generate the unified node

representation sequence, which include the unified aspect representation R̃a.

3.2.4 Knowledge Re-enhancement

After graph modeling, sufficient syntactic information has been integrated into R̃a.

On the one hand, some new clues may be captured by DSG-Net and retained in R̃a.

Thus R̃a may further need more aspect knowledge to collaborate with these new clues
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to support ASC. On the other hand, as the syntax graph may be imperfectly generated

by the parser, some wrong connections and relations may be introduced. In this case,

re-integrating some knowledge can help alleviate the influence of the imperfect syntax

graph. To this end, we design a knowledge integrating gate (KI Gate) to re-enhance

R̃a with further needed knowledge contained in rTk . The function of KI gate is given

as:

Ra = R̃a + rTk ∗Wr
k[R̃a, r

T
k ], (3.10)

where Wr
k is weight matrix. Here R̃a and rTk produces a gate scalar rather than a

gate vector. There is no subsequent contextualizing module thus rTk can be directly

integrated into R̃a without fine-tuning for adaption. In Sec. 3.3.6, we investigate the

effect of different knowledge gates used here.

3.2.5 Aspect-related Semantics Aggregation

Here we employ an Aspect-to-Context Attention (A2C Att) mechanism to aggregate

the aspect-related semantics retained in all hidden states into a final representation

Rf . Similar to A2D Att, A2C Att can be formulated as:

βi =SoftMax(F(hic,Ra)), (3.11)

F(hic, Ra) = (Wac h
i
c + bac) (Ra)T, (3.12)

Rf =
N∑
i=1

αih
i
c, (3.13)

where Wac and bac are weight and bias.

3.2.6 Sentiment Classification

We concatenate Rf with hcls and then fed the final vector into a linear layer, which is

followed by a SoftMax classifier for prediction:

P = SoftMax(Wp[hcls,Rf ] + bp), (3.14)

where P is the predicted sentiment distribution, Wp and bp are weight matrix and

bias. The cross-entropy loss function is adopted for model training.

There are two reasons why we introduce hcls here. First, this can add a skip

connection to BERT, shortening its loss back-propagation path to facilitate training.

The second is for robustness. Possibly the syntax graphs are imperfect and the

integrated knowledge contains noise. Hence hcls serves as a reference and makes the

whole model more robust.
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3.3 Experiments

3.3.1 Datasets

We conduct experiments on three popular datasets for the ASC task: Lap14 and

Res14 datasets are from SemEval 2014 task 4 [51], and Res15 dataset is from SemEval

2015 task 12 [50]. The statistics of all datasets are presented in Table 3.1.

Table 3.1: Dataset statistics of the three datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Lap14 994 341 464 169 870 128

Res14 2164 728 637 196 807 196
Res15 912 326 36 34 256 182

3.3.2 Experiment Setup

We adopt the BERT-base uncased version [9]. We train our model using Adam

optimizer [34] with default configuration. The hyper-parameters are listed in Table

3.2. Accuracy (Acc) and Macro-F1 (F1) are adopted as evaluation metrics. As there

is no official validation set, following previous works [70,105,108], we run our model

three times with random initialization and report the average results on test sets, as

shown in Table 3.3. And to compare with the works reporting best results, we also

report the best results on test sets, as shown in Table 3.4. All computations are done

on an NVIDIA Quadro RTX 6000 GPU.

3.3.3 Compared Baselines

According to what kinds of external information are utilized, we divide the baselines

into several group:

1) No external information is used:

• IAN [45] separately encodes the aspect and context, then model their interactions

using an interactive attention mechanism.

2) External corpus is used:

• PRET+MULT [19] first pre-trains the model on document-level task, then

trains the model on both document-level sentiment classification and ASC in

the multi-task learning framework.
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Table 3.2: Setting of hyper-parameters.

Hyper-params
Dataset

Lap14 Res14 Res15

learning rate 1× 10−5 5× 10−5 3× 10−5

batch size 32 32 32
dropout rate 0.3 0.3 0.3

de 768 768 768
ds 256 256 128
Hs

n 3 3 6

Hd
n 2 4 6

T 4 4 2
GCN layer number 2 2 2

• TransCap [6] utilizes a devised aspect-based capsule network to transfer knowl-

edge from document-level task to aspect-level task.

3) Syntax Graph is used:

• ASGCN [105] employs a GCN to encode the syntax graph for capturing local

syntactic information.

• BiGCN [108] convolutes over hierarchical syntactic and lexical graphs to en-

code not only original syntactic information but also the corpus level word

co-occurrence information.

4) BERT encoder is used:

• BERT-SPC [9] takes the same input as our model and use hcls for sentiment

classification.

• AEN-BERT [67] adopts BERT encoder and uses the attentional encoder network

to model the interactions between the aspect and context.

5) Both of syntax graph and BERT encoder are used:

• R-GAT+BERT [79] use the relational graph attention network to aggregate

the global relational information from all context word into the aspect node

representation.

• DGEDT-BERT [70] employs a dual-transformer network to model the inter-

actions between the flat textual knowledge and dependency graph empowered

knowledge.

• A-KVMN+BERT [73] uses a key-value memory network to leverage not only

word-word relations but also their dependency types.
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• BERT+T-GCN [72] leverages the dependency types in T-GCN and use an

attentive layer ensemble to learn the comprehensive representation from different

T-GCN layers.

• SAGAT [25] utilizes graph attention network and BERT to fully obtain both

syntax and semantic information.

• KGCapsAN-BERT [104] utilizes multi-prior knowledge to guide the capsule

attention process and use a GCN-based syntactic layer to integrate the syntactic

knowledge.

And we label all models with what kinds of external information they leverage, as

shown in Table 3.3 and Table 3.4.

3.3.4 Main Results

Table 3.3: Performances comparisons of average results with random initialization.
K,B, T and G denote the model leverages aspect Knowledge, BERT, extra T raining
corpus and syntax Graph, respectively. Best results are in bold and previous SOTA
results are underlined. ∗ denotes that we produce the results using their original
source codes. † indicates KaGRMN-DSG significantly outperforms baselines under
t-test (p < 0.01).

External

Information
Model

Lap14 Res14 Res15
Acc F1 Acc F1 Acc F1

− − − IAN [45] 72.05 67.38 79.26 70.09 78.54 52.65

− T − PRET+MULT [19] 71.15 67.46 79.11 69.73 81.30 68.74
− T − TransCap [6] 73.51 69.81 79.55 71.41 - -

− − G ASGCN [105] 75.55 71.05 80.77 72.02 79.89 61.89

− − G BiGCN [108] 74.59 71.84 81.97 73.48 81.16 64.79
− B − BERT-SPC∗ [9] 78.47 73.67 84.94 78.00 83.40 65.00

− B − AEN-BERT [67] 79.93 76.31 83.12 73.76 - -

− B G R-GAT+BERT∗ [79] 79.31 75.40 86.10 80.04 83.95 69.47
− B G DGEDT-BERT [70] 79.8 75.6 86.3 80.0 84.0 71.0

− B G A-KVMN+BERT∗ [73] 79.20 75.76 85.89 78.29 83.89 67.88
− B G BERT+T-GCN∗ [72] 80.56 76.95 85.95 79.40 84.81 71.09

K B G KaGRMN-DSG (Ours) 81.87† 78.43† 87.35† 81.21† 86.59† 74.46†

Our Improvements 1.62% 1.92% 1.22% 1.46% 2.10% 4.74%

The performance comparison of all models on average scores is shown in Table

3.3, and the comparison on best scores is shown in Table 3.4. We can observe that:

Syntax graphs, external training corpus, and BERT can all improve ASC. Especially,

simple BERT-SPC significantly outperforms all models that do not adopt BERT, even

if some of them leverage syntax graph and external training corpus. This shows the

power of pre-trained language models on ASC. And combining BERT and syntactic
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Table 3.4: Performances comparisons of best results. K,B, T and G denote the
model leverages aspect Knowledge, BERT, extra T raining corpus and syntax Graph,
respectively. Best results are in bold and previous SOTA results are underlined. ∗

denotes that we produce the results using their original source codes.

External

Information
Model

Lap14 Res14 Res15

Acc F1 Acc F1 Acc F1

− B − BERT-SPC∗ [9] 78.84 73.95 85.80 78.48 83.76 68.33

− B G SAGAT [25] 80.37 76.94 85.08 77.94 - -

− B G KGCapsAN-BERT [104] 79.47 76.61 85.36 79.00 - -
− B G R-GAT+BERT∗ [79] 79.46 75.75 86.61 80.78 84.13 71.12

− B G A-KVMN+BERT [73] 79.78 76.14 85.98 77.94 84.14 68.49
− B G BERT+T-GCN [72] 80.88 77.03 86.16 79.95 85.26 71.69

K B G KaGRMN-DSG (Ours) 82.13 79.42 87.68 81.98 87.08 75.34
Our Improvements 1.55% 3.10% 1.24% 1.49% 2.13% 5.09%

information can further improve results as sufficient semantics captured by BERT

and the syntactic information conveyed by syntax graphs can cooperate to assist ASC.

However, all baselines do not leverage aspect knowledge and only consider either

local syntactic information or global relational information. As a result, their derived

aspect representation lack some important clues of aspect and their captured syntactic

information is insufficient, leading to their inferior performance compared to our

KaGRMN-DSG model.

We obtain consistent improvements over baselines in terms of Acc and F1 on all

datasets, achieving new state-of-the-art results. On average results, our KaGRMN-

DSG overpasses previous best results by 1.92%, 1.46%, and 4.74% in terms of Macro-F1

on Lap14, Res14, and Res15 datasets respectively. On best results, KaGRMN-DSG

overpasses previous best results by 3.10%, 1.49%, and 5.09% in terms of Macro-F1 on

Lap14, Res14, and Res15 datasets respectively. The improvements are contributed by

the superiorities of KaGR-MN, which effectively leverage beneficial aspect knowledge,

and DSG-Net, which combines GCN and Relational MHA to capture sufficient syntactic

information.

3.3.5 Ablation Study

We empirically analyze KaGRMN-DSG and prove the necessity of every component

by conducting an ablation study, whose results are shown in Table 3.5. In this section

we answer the following research questions (RQs):

Effect of Aspect Knowledge. To study the pure impact of aspect knowledge, we

devise two variants: M1 and M2. In M1, the original description is replaced with

the aspect itself. In this case, there is no aspect knowledge available for KaGR-MN
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Table 3.5: Results of ablation study.

Variants
Lap14 Res14 Res15

Acc Acc Acc

M0: KaGRMN-DSG (full model) 81.87 87.35 86.59

M1: w/o Aspect Knowledge (D is replaced with A) 80.30 (↓ 1.57) 86.43 (↓ 0.92) 85.24 (↓ 1.35)
M2: only KaGRMN (w/o DSG-Net,KI Gate,A2C Att) 80.72 (↓ 1.15) 86.55 (↓ 0.80) 85.36 (↓ 1.23)
M3: w/o DSG-Net 80.56 (↓ 1.31) 86.43 (↓ 0.92) 85.56 (↓ 1.03)
M4: w/o Relational MHA 80.98 (↓ 0.89) 86.67 (↓ 0.68) 85.79 (↓ 0.8)
M5: w/o Position-aware GCN 81.03 (↓ 0.84) 86.76 (↓ 0.59) 85.67 (↓ 0.92)
M6: w/o KI Gate 81.09 (↓ 0.78) 87.11 (↓ 0.24) 85.79 (↓ 0.80)
M7: w/o A2C Att 81.50 (↓ 0.37) 87.00 (↓ 0.35) 86.41 (↓ 0.18)
M8: w/o A2D Att 80.93 (↓ 0.94) 86.70 (↓ 0.65) 85.61 (↓ 0.98)
M9: w/o Self MHA 80.36 (↓ 1.51) 86.46 (↓ 0.89) 85.24 (↓ 1.35)

and its function becomes modeling the interactions between the aspect and context.

Surprisingly, even without knowledge, M2 can obtain promising results. We attribute

this to the advanced architecture and effective functions of KaGR-MN, in which aspect

and context are separately encoded and their interactions are effectively modeled

by KaGR-MN. On the other hand, the performance degradation of M0 convincingly

demonstrates the pure improvements contributed by the aspect knowledge conveyed

by aspect descriptions. In M2, DSG-Net, KI Gate, and A2C Att are all removed, so

M2 has a BERT+KaGR-MN architecture and the final aspect representation is used

for prediction. M2 consistently outperforms baselines, proving that KaGR-MN can

derive a good enough aspect representation in which the clues for aspect sentiment

reasoning are retained. Along time steps, recurrently leveraging aspect knowledge,

KaGR-MN can capture more and more beneficial clues, semantics and dependencies

then retain them in aspect representation and context memories. And effectively

utilizing beneficial aspect knowledge is the key advantage of our method compared

with previous works.

Effect of Syntactic Information. The results gap of M3 and M0 shows the improve-

ment DSG-Net achieves by cooperating with the aspect knowledge. These results

validate the advantages of combining both kinds of syntactic information to capture

sufficient syntactic information. We then study the effects of Position-aware GCN

and Relational MHA. We can observe that both M4 and M5 perform worse than M0,

proving both the local syntactic information and global relational information should

be captured for ASC. In previous works, only either one of them is considered, leading

to insufficient syntactic information. In contrast, our model marries them and lets

them compensate for each other, sufficiently capturing syntactic clues.

Effect of Knowledge Integration Gate. Without KI Gate, M6 obtains worse results
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Table 3.6: Results of different knowledge gate settings.

Variants Gate 1 Gate 2
Lap14 Res14 Res15

Acc Acc Acc

M0 AdaKI KI 81.87 87.35 86.59

M10 AdaKI AdaKI 81.50 (↓ 0.37) 87.05 (↓ 0.30) 85.98 (↓ 0.61)

M11 KI KI 81.09 (↓ 0.78) 86.73 (↓ 0.62) 85.36 (↓ 1.23)

M12 KI AdaKI 81.03 (↓ 0.84) 86.58 (↓ 0.77) 85.24 (↓ 1.35)

than M0. This indicates that after DSG-Net, some aspect knowledge is further needed

and KI Gate is efficient to re-enhance the final aspect representation with the needed

knowledge.

Effect of Aspect-to-Context Attention. In M7, the final aspect representation is used

for prediction. We can find that M7 has limited performance degradation compared

to M0. This proves that although previous modules can discover and extract clues for

ASC, there are still important clues contained in non-aspect hidden states rather than

final aspect representation. Hence it is necessary to employ A2C Att to aggregate the

aspect-related semantics in all hidden states into the final representation.

Effect of A2D Att and Self MHA in KaGR-MN Cell. The significant performance

decrease of M8 shows that A2D Att is indispensable to dynamically summarize the

specifically needed aspect knowledge from MD. Without Self MHA, the integrated

knowledge in aspect representation can not be contextualized and context memories

cannot be updated. As a result, M9 performs much worse than M0.

3.3.6 Investigation on Knowledge Gates

KaGRMN-DSG has two different knowledge gates (AdaKI and KI) for knowledge

integrating. Here we empirically investigate these two knowledge gates by testing their

four different settings. The results are shown in Table 3.6. We can find that M10 and

M12 have slight decreases in performances when respectively compared with M0 and

M11. This is because KI Gate can preserve the knowledge in rTk while AdaKI Gate

may lose some knowledge when adapting to the semantic space of R̃a. M11 and M12

perform much worse than M0 and M10. This is because the semantic space adaption

of AdaKI Gate in KaGR-MN can maintain the semantics consistency of rt∗a and Mt−1
C ,

which is crucial for subsequent knowledge contextualizing.
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Figure 3.3: Impact of the time step number T

Table 3.7: Cases demonstration. [N, P, O] denotes predicted sentiment distribution:
[Negative, Positive, Neutral].

Case [N, P, O]

1.

C: The [Mountain Lion OS]A is not hard to figure out if you are

familiar with Microsoft Windows.

D: OS X Mountain Lion is ... Apple Inc.’s desktop and server

operating system ...

M0: [0.0, 0.999X, 0.001]

M1: [0.01, 0.49×, 0.5]

2.

C: On start up it asks endless questions just so [iTune]A can sell you

more of their products.

D: iTunes is a media player, media library, Internet radio broadcaster,

mobile device management utility ...

M0: [0.57X, 0.41, 0.02]

M1: [0.03, 0.67×, 0.30]

3.

C: While the [smoothies]A are a little big for me, the fresh juices are

the best i have ever had!

D: A smoothie is a drink made from pureed raw fruit and/or vegetables,

typically using a blender ...

M0: [0.62X, 0.0, 0.38]

M1: [0.02, 0.97×, 0.01]

4.

C: All the various Greek and Cypriot dishes are excellent, but the

[gyro]A is the reason to come – if you don’t eat one your trip was wasted.

D: A gyro or gyros is a Greek dish made from meat cooked on a ...

M0: [0.02, 0.98X, 0.0]

M1: [0.88×, 0.11, 0.01]

3.3.7 Impact of Time Step Number T

We plot the performance trends of KaGRMN-DSG with increasing T on the three

datasets, as presented in Fig. 3.3. We can observe that the performances show a trend

of increases at first and then decreases. And the best result is obtained when T is 2

or 3 for Res15 and 4 for Lap14 and Res14. This shows that appropriately increasing

T can gradually improve the results, which is consistent with our expectation. This

can also prove the effectiveness of the recurrent manner of KaGR-MN. However, too

large T leads to inferior performances, which is also consistent with our expectation.

One possible explanation is that too much knowledge integrated into the aspect

representation and context memories will harm their original contextual information.

Another is that too many recurrent steps will lead to overfitting on training sets.
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Table 3.8: Misunderstanding from BERT presented by semantic cosine similarity (S).
v is the average of entity’s hidden states. ai denotes the A in case i.

Entity (e) S(ve, va1) Entity (e) S(ve, va2)

lion 0.8516 media player 0.4720

mountain 0.7997 radio broadcaster 0.5887

operating system 0.6826 software 0.7051

dangerous animal 0.8272 utility 0.6982

3.3.8 Case Study

We show some cases in Table 3.7. Note that the only difference between KaGRMN-

DSG (M0) and M1 is that the input D in M1 is replaced with A. We can observe

that M0 can accurately predict the correct labels in all cases, while M1 fails all cases

although its overall performance is promising (as shown in Table 3.5)

Without leveraging aspect knowledge, the aspect representation and semantics

derived by M1 are inadequate. As shown in Table 3.8, BERT cannot capture the

exact meanings and properties of Mountain Lion OS and iTune, although it is one

of the strongest language models. In Case 1, M1 regards Mountain Lion OS as ‘lion’

which is ‘dangerous’. Then considering ‘not hard’, M1 is confused on P and O. In

contrast, leveraging aspect knowledge, M0 captures the exact meaning: an operating

system. Then considering the aspect-related semantics (‘not hard’), M0 correctly

predicts P. In Case 2, the aspect sentiment expression is a little obscure as there are no

explicit sentiment trigger words (e.g. delicious, good, expensive). Even if M1 captures

aspect-related context semantics, it fails due to the lack of property information of

iTune. Thanks to the integrated aspect knowledge, M0 is aware that iTune is primarily

used for media playing rather than selling products, thus correctly predicts N.

Looking into Case 3 and Case 4, we can find that due to the lack of aspect

knowledge, M1 is prone to be affected by some misleading sentiment trigger words:

‘best’ in case 3 and ‘but’ in case 4. The reason why M0 wins M1 is that M0 can

combine the aspect knowledge and the aspect-related semantics together to capture

the correct clues for ASC.

3.3.9 Computation Time Analysis

The comparison of time costing and avg F1 of BERT-SPC, BERT+T-GCN and

our KaGRMN-DSG model is shown in Table 3.9. We can find that although our

model demands more training time and inference time than BERT-SPC, it overpasses

BERT-SPC on avg F1 by a large margin (6.3%). As for BERT+T-GCN, which
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Table 3.9: Comparison of training time and inference time (per sample) as well as the
avg F1 on the three datasets.

Models Training Time↓ Inference Time↓ Avg F1↑

BERT-SPC 0.007309s 0.002219s 73.59%

BERT+T-GCN 0.033835s 0.003350s 76.22%

KaGRMN-DSG 0.015333s 0.004208s 78.91%

is the best-performing baseline, although it costs lightly less inference time than

our KaGRMN-DSG, it costs much more time for training, and more importantly,

its performance is significantly inferior to us. Additionally, since Local Syntactic

Information Modeling and Global Relational Information Modeling both take the

output of KaGRMN as input, they can be parallelized theoretically, so the training

time and inference time of our KaGRMN-DSG model can be further reduced in practice.

In a word, our model may cost more time for training and inference than some baseline

models, but it is worthy considering the significant performance improvement.

3.4 Summary

In this paper, we point out the two challenges encountering existing ASC models

and we therefore propose a novel KaGRMN-DSG model to end-to-end embed and

leverage aspect knowledge, then capture sufficient syntactic information by marrying

both kinds of syntactic information. In our model, the integrated beneficial aspect

knowledge and sufficient syntactic information can effectively cooperate, yielding new

state-of-the-art results.
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Chapter 4

Neural Subgraph Explorer

4.1 Introduction

Target (or aspect) sentiment classification (TSC) [69] aims to infer the sentiment

polarity of the specific target included in a review context. For example, in the review

“The price is reasonable but the service is poor.”, there are two targets ‘price’ and

‘service’ with opposite sentiment polarities. Generally, TSC task is formulated as a

classification task whose input is a given context-target pair.

Earlier dominant neural TSC models are based on attention mechanisms [5,45],

which are designed to capture the correlations between the target and its relevant con-

text words. Although promising progress has been achieved, researchers discovered that

attention mechanisms may mistakenly attend to the target’s syntactically unrelated

words and have difficulty capturing the distant while crucial context words [24,105].

To this end, the syntax graph of the context is widely leveraged to incorporate the

syntactic information via applying graph neural networks (GNNs), e.g. graph convolu-

tional network (GCN) and graph attention network (GAT). With the combination of

the BERT [9] which has proven its power in heterogeneous tasks, the recent models of

the BERT+Syntax paradigm has achieved state-of-the-art performances [38,70,94].

However, despite the remarkable improvements brought by the incorporation

of syntactic information, we find existing models suffer from two issues which are

illustrated in Fig. 4.1:

• Noisy information aggregation. In existing models, the message passing process of

GNNs is conducted on the whole syntax graph, and all words transfer information

with their neighbors. Consequently, the noisy information contained in target-

irrelevant works may be aggregated into the target nodes, which disturbs the

prediction. As shown in example (1), ‘less expensive’ are crucial for inferring
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USB3   Peripherals   are   noticably   less   expensive   than   the   ThunderBolt  ones  

The   menu   is   limited   but   almost   all   of   the   dishes   are   excellent

(1)

(2)

denotes there is a dependency between the two words and their nodes are connected in the syntax graph.

Figure 4.1: Illustration of two examples with syntax dependencies. Example (1) is
from Laptop14 dataset while example (2) is from Restaurant14 dataset. Targets are
underlined. Red color denotes the sentiment of the target is positive, while color
denotes negative.

the positive sentiment of ‘USB3 Peripherals’ and their distance on the syntax

graph is 2. However, the distance between ‘less expensive’ and another target

‘ThunderBolt ones’ is also 2, while this review expresses negative sentiment on

‘ThunderBolt ones’. In this case, the information of ‘less expensive’ is aggregated

into both targets. For the first target, it is beneficial, while for the later one, its

information is noisy, harming the prediction.

• Loss of distant correlations. After l-layer GNNs, the information of a node’s

≤ lth-order neighbors can be aggregated into it, while further nodes cannot

exchange information with it. Sometimes, the critical words may be distant from

the target on the syntax graph. Thus the target loses their crucial information.

As shown in example (2), ‘excellent’ plays the key role in expressing the positive

sentiment of ‘dishes’, while their distance is 4, which means that their correlation

cannot be captured by the widely-adopted 2- or 3-layer GNNs [38,70,105].

To solve the first issue, target-irrelevant nodes are supposed to be removed from

the syntax graph. For the second issue, an alternative solution is to increase the layer

number of GNNs. However, this would lead to over-fitting problem and exacerbates

the first issue. Another alternative is leveraging the fully-connected self-attention

graph [38, 70] to introduce first-order connections. In this case, massive correlative

information between the words is introduced. Although the beneficial first-order

connections between the target and its related words are introduced, the noisy ones

between the target and noisy words are also integrated, which exacerbates the first

issue. Thus we should introduce the beneficial first-order connections and eliminate

the noisy first-order connections simultaneously.

In this paper, we argue that it is urgent to conduct target-oriented syntax pruning.

On the one hand, it can reduce the noisy information via pruning the target-irrelevant

nodes. On the other hand, pruning the syntax graph and self-attention graph then

merging them can adaptively introduce the beneficial first-order connections between

29



the target and its related words rather than all first-order correlations, which include

the noisy ones. To this end, we propose Neural Subgraph Explorer, whose core is a

stacked target-oriented syntax graph pruning layer. We design a multi-hop action

score estimator to evaluate the contribution of each node regarding the target. And we

leverage the Gumble-Softmax [27] for stable and differentiable discrete action sampling.

To obtain the first-order connections between the target and its related words, we

apply the non-local self-attention to generate the fully-connected self-attention graph.

Then the syntax graph and self-attention graph are pruned and merged into a unified

graph, on which the proposed position weighted GCN is applied for message passing.

Another advantage of introducing the self-attention graph is that it guarantees the

connectivity of the obtained graph, resolving the potential issue that the pruned syntax

graph has isolated nodes which harms the message passing. Experimental results on

benchmark datasets show that our model achieves new state-of-the-art performance,

significantly surpassing existing models.

4.2 Methodology

The architecture of our model is illustrated in Fig. 4.2. We propose the position

weighted GCN for graph message passing. And the core of our model is the proposed

target-oriented syntax-graph pruning module. Next, we introduce the details.

4.2.1 Contextual and Syntactic Encoding

BERT Encoder. Following the up-to-date models [72,79], we employ BERT encoder

to obtain the initial word hidden states. Given the review context word sequence

x1, x2, ..., xNc and the target word sequence a1, ..., aNt , the input of BERT is the

target-context pair:

〈[CLS]; x1, x2, ..., xNc ; [SEP]; a1, ..., aNt ; [SEP]〉, (4.1)

where Nc and Nt are the length of review context and target respectively, and

〈; 〉 denotes sequence concatenation. Then we obtain the hidden state sequence of

the review: Ĥc = [hc1, ..., h
c
Nc

] ∈ RNc×d, including the target word hidden states

Ĥt = [ht1, ..., h
t
Nt

] ∈ RNt×d, where d denotes the dimension of the hidden state.

Position Weighted Graph Convolutional Network. Graph convolutional net-

work (GCN) has been widely used to encode the syntax graph to integrate syntactic

information into hidden states. In this work, based on standard GCN, we introduce
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Figure 4.2: The architecture of Neural Subgraph Explorer. SynGraph is obtained
from off-the-shelf dependency parser.

a weight for each word to indicate its position relative to the target, forming the

position-weighted GCN. By this means, the potential relative words for the target can

be highlighted. Specifically, the node updating process can be formulated as:

hli = ReLU

(
N∑
j=0

Asynij (wjpW
l
gh

l−1
j )

di + 1
+ blg

)
,

µj =
j − τ
N + 1

,

wjp =1− |µj|,

(4.2)

where Asyn is the adjacent matrix derived from the dependency parsing result and

A0
ij = 1 if there is a dependency from node j to i; µj is the relative offset between j-th

word and the target and wjp is the position weight of j-th word; di denotes the degree

of i−th node; W l
g and blg are parameters. If the target is a phrase, t− τ is calculated

with its left or right boundary index according to which side the word locates.

Now we obtain the syntax-enhanced context hidden states Hc and target hidden

states Ht. And by applying mean pooling over Ht, we obtain the initial target

representation rt.
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4.2.2 Target-oriented Syntax Graph Pruning

The process of target-oriented syntax graph pruning includes four steps: (1) the

multi-hop action score estimator evaluates the value of each word regarding the target,

producing the degree that whether the word should be pruned or reserved; (2) the

Gumble-Softmax is leveraged for differentiable discrete action sampling and generate

the action sequence; (3) the action sequence is used to mask the adjacent matrix of the

syntax graph and self-attention graph; (4) the position weighted GCN is adopted for

message passing on the obtained graph, updating the hidden states. Next we present

the details of each module following the above order.

4.2.2.1 Multi-hop Action Score Estimator

To decide whether a node on the graph should be pruned, each word is supposed to be

assigned a score to represent its contribution for expressing the sentiment semantics

of the given target. To this end, inspired from [5], we design a multi-hop action score

estimator. At each hop, it produces a gate score for each word and a summarized

target-centric context vector which is used at next hop. The details are given bellow:

st,t
′

j = Ws

[
wjph

t,t′

j , µj, Ct−1, rt

]
+ bs,

gt,t
′

j = Sigmoid(st,t
′

j ),

αtj =
exp

(
st,t
′

j

)
∑Nc

k exp
(
st,t
′

k

) ,
I t,t
′
=

Nc∑
j

αtjwjh
t,t′

j ,

Ct = GRU(I t,t
′
, Ct−1),

(4.3)

where Ws and bs are parameters; GRU denotes gated recurrent unit. C0 is initialized

as a zero vector.

Then the output gate gt,T
′

j of final step T ′ can derive

ptj,0 = 1− gt,T ′ , ptj,1 = gt,T
′

j , (4.4)

which represent the possibilities that node j should be pruned or reserved, respectively.

4.2.2.2 Action Sampling

Now we have a problem of discrete action selecting. Although REINFFORCE algorithm

[86] are commonly used for this problem, it causes model instability and hard training.
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To this end, we leverage the Gumbel-Softmax [27] trick for differentiable action

sampling:

acttj =
exp

((
log
(
ptj,1
)

+ ε1
)
/π
)∑1

a=0 exp
((

log
(
pti,a
)

+ εt
)
/π
)) , (4.5)

where εt is randomly sampled from Gumbel distributionand π is the temperature

coefficient which is set 0.1 in this work. acttj = 0 denotes pruning while acttj = 1

denotes reserving.

4.2.2.3 Graph Pruning and Merging

Given the set of actions {acttj}Nc
i=1 corresponding to the context word, we use it to

mask Asyn:

Asyn,tij = acttj · A
syn
ij , (4.6)

where Asyn,t is the adjacent matrix of the pruned syntax graph of the t-th layer.

Now in the pruned syntax graph, some target-irrelevant nodes (words) are removed.

However, the issue of loss of distant correlations is not tackled. Besides, the pruning

operation on the whole syntax graph may lead to a potential problem that the pruned

syntax graph may include isolated nodes, which hinders the message passing on the

obtained graph.

To solve the above two issues, we propose to exploit the self-attention graph

(SatGraph), which is a fully-connected semantic graph consisting of all words in the

sentence and derived by the self-attention [77]. SatGraph can provide the first-order

connections between each two nodes. Therefore, merging the pruned SatGraph with

the pruned SynGraph can not only guarantee the connectivity but also can directly

connect the target with its related words, promoting the aggregation of target-related

information, which is beneficial for prediction.

An intuitive way to obtain the self-attention graph is to retrieve the self-attention

matrix at the last layer of BERT [9]. However, considering the self-attentions in

BERTBASE (BERTLARGE) are 12-head (16-head), and the word representations are

segmented into 12 (16) local subspaces, one of the 12 (16) self-attention matrices

can only reflect the local word correlations in the local subspace rather than general

global semantic space in which the subsequent modules work. Therefore, due to

the segmentation bias between the multi-head local subspaces and the general global

semantic space, the self-attention matrix derived by BERT cannot be used for the

self-attention graph.

To this end, we add a non-local self-attention layer between BERT and position

weighted GCN, as shown in Fig. 4.2, to obtain the global self-attention matrix
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Asat ∈ RNc×Nc representing the correlations between words in the general semantics

space which is consistent with subsequent modules. Specifically, Asat is obtained as

follows:

Asat = Softmax
(

(ĤcMq)(ĤcMk)
T/
√
d
)
, (4.7)

Then the updated hidden states are obtained by:

H̃c = AsatĤcMv, (4.8)

where Mq,Mk,Mv ∈ Rd×d are parameters. And then H̃c is fed to the position weighted

GCN before the target-oriented syntax graph pruning layer.

Then we prune SatGraph in the same way as SynGraph and merge them:

Asat,tij = acttj · Asatij ,

At = (Asyn,t + Asat)/2.
(4.9)

In this process, not only the beneficial first-order connections are introduced, but also

the noisy first-order connections are removed duo to pruning operation on SatGraph.

Then At will be used for messaging passing later.

4.2.2.4 Node Updating

For message passing on the obtained graph, we apply another position weighted GCN

(noted as (b) in Fig. 4.2) over At.

4.2.2.5 Multi-layer Stacking

In order to let our model gradually improve the graph pruning and learn deep features,

we stack the target-oriented syntax graph pruning module in a multi-layer manner.

4.2.3 Prediction and Training

After T layers of target-oriented syntax graph pruning, we obtain the final representa-

tions of each context word, which includes Nt target words. We apply mean pooling

over all target words to generate the final target representation, getting the final target

representation Rt

Then we fed Rt to a multi-layer perception (MLP) and then softmax for classifi-

cation:

P = softmax
(
W 1
c (W 2

c Ra + b2c) + b1c
)
. (4.10)

Finally, by applying arg max on the class vector P , we can get the produced sentiment

polarity of the target in the review.
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Given D training samples, the training objective is:

` = −
D∑
i=1

∑
c∈C

I(y = c) log(P (y = c)), (4.11)

where y is the ground-truth class, I is an indicator function, and C denotes the

sentiment polarity class set.

4.3 Experiment

4.3.1 Experimental Setup

4.3.1.1 Dataset

We conduct experiments on three public benchmark datasets to obtain reliable and

authoritative results. Restaurant14 and Laptop14 are from [51], and Restaurant15

is from [50]. We pre-process the datasets following the same way as previous works

[72,79,105]. The statistics of all datasets are shown in Table 4.1.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Laptop14 994 341 464 169 870 128
Restaurant14 2164 728 637 196 807 196
Restaurant15 912 326 36 34 256 182

Table 4.1: Dataset statistics of the three datasets.

4.3.1.2 Implementation Details

We adopt the BERTBASE uncased version as the BERT encoder and it is fine-tuned in

the experiments. We train our Neural Subgraph Hunter using AdamW optimizer. The

dependency parser used in our experiments is from spaCy toolkit1. In our experiments,

the dimension of hidden units are 768. The dropout rate for BERT encoder is 0.1,

while the dropout rate for other modules is 0.3. The batch size is 16 and epoch number

is 30. The learning rates are 1e-5, 5e-5, 3e-5 for Lap14, Res14 and Res15 datasets

respectively. The weight decay rages are 0.05 for Res14 and Res15 datasets while

0.001 for Lap14 datasets. The layer number of the position weighted GCN (a) and

(b)are both 2. The hop number of the multi-hop action score estimator is 3. The layer

number of target-oriented syntax graph pruning is 2.

1https://spacy.io/.
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Accuracy (Acc) and Macro-F1 (F1) are used as evaluation metrics. Since there

is no official validation set for the datasets, we report the average results over three

random runs.

4.3.1.3 Baselines for Comparison

The baselines can be divided into four categories regarding whether BERT and syntax

are leveraged:

(A) BERT × Syntax ×: 1. IAN [45] separately encodes the target and context, then

models their interactions through an interactive attention mechanism. 2. RAM [5]

uses a GRU attention mechanism to recurrently extracts the target-related semantics.

(B) BERT× Syntax X: 3. ASGCN [105] utilizes GCN to leverage syntactic information.

4. BiGCN [108] employs GCN to convolute over hierarchical syntactic and lexical

graphs.

(C) BERT X Syntax ×: 5. BERT-SPC [9] takes the concatenated context-target

pair as input and uses the output hidden state of [CLS] token for classification. 6.

AEN-BERT [67] employs multiple attention layers to learn target-context interactions.

(D) BERT X Syntax X: 7. ASGCN+BERT [105]. Since the backbone of our Neural

Subgraph Explore is BERT+GCN, we augment the ASGCN model with BERT encoder

to form a baseline. 8. KGCapsAN-BERT [104] utilizes multi-prior knowledge to guide

the capsule attention process and use a GCN-based syntactic layer to integrate the

syntactic knowledge. 9. R-GAT+BERT [79] uses the relational graph attention

network to aggregate the global relational information from all context words into

the target node representation. 10. DGEDT-BERT [70] employs a dual-transformer

network to model the interactions between the flat textual knowledge and dependency

graph empowered knowledge. 11. A-KVMN+BERT [73] uses a key-value memory

network to leverage not only word-word relations but also their dependency types. 12.

BERT+T-GCN [72] leverages the dependency types in T-GCN and uses an attentive

layer ensemble to learn the comprehensive representation from different T-GCN layers.

13. DualGCN+BERT [38] uses orthogonal and differential regularizers to model the

interactions between semantics and syntax.

Note that all of the BERT encoders in baselines are BERT-base uncased version,

the same as ours. And for fair comparison, we reproduce the average results of

R-GAT+BERT, A-KVMN+BERT, BERT+T-GCN and DualGCN+BERT on three

random runs because they report the best results rather than average results in their

original paper.
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4.3.2 Main Results

Model
Laptop14 Restaurant14 Restaurant15

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

IAN‡ [45] 72.05 67.38 79.26 70.09 78.54 52.65

RAM‡ [5] 74.49 71.35 80.23 70.80 79.30 60.49

ASGCN [105] 75.55 71.05 80.77 72.02 79.89 61.89

BiGCN [108] 74.59 71.84 81.97 73.48 81.16 64.79

BERT-SPC [9] 78.47 73.67 84.94 78.00 83.40 65.00

AEN-BERT [67] 79.93 76.31 83.12 73.76 - -

ASGCN+BERT† [105] 78.92 74.35 85.87 79.32 83.85 68.73

KGCapsAN-BERT [104] 79.47 76.61 85.36 79.00 - -

R-GAT+BERT† [79] 79.31 75.40 86.10 80.04 83.95 69.47

DGEDT-BERT [70] 79.8 75.6 86.3 80.0 84.0 71.0

A-KVMN+BERT† [73] 79.20 75.76 85.89 78.29 83.89 67.88

BERT+T-GCN† [72] 80.56 76.95 85.95 79.40 84.81 71.09

DualGCN+BERT† [38] 80.83 77.35 86.64 80.76 84.69 71.58

Neural Subgraph Explorer (ours) 82.13 78.51 87.35 82.04 86.29 74.43

Table 4.2: Performances comparison (in %). † indicates we reproduce the results using
the official source code, and ‡ denotes that the results are retrieved from [Zhang et
al., 2019]. Our Neural Subgraph Explorer outperforms previous SOTA models and
corresponding baselines on all datasets, being statistically significant (p < 0.05 under
t-test.)

The performances of our Neural Subgraph Explorer and baselines are shown in

Table 4.2. We can observe that BERT can significantly boost the performance while

integrating syntactic information into BERT-based models can bring further significant

improvement. And the best-performing models are all based on BERT+Syntax

paradigm.

However, state-of-the-art models neglect the problem that not all words are useful

for expressing the sentiment of the specific target, and they just adopt GNNs to conduct

message passing on the whole syntax graph. As a result, the noisy information from

the target-irrelevant words is aggregated into the target’s and its related words’

node representation, which affects the prediction of the specific target’s sentiment.

To overcome this problem, we propose a Neural Subgraph Explorer model which

can adaptively and dynamically prune the noisy nodes corresponding to the target-

irrelevant words. As shown in Table 4.2, our model achieves new state-of-the-art

performance, obtaining consistent improvements over all baselines in terms of both

Acc and F1. Specifically, our model surpasses previous best scores by 1.30%, 0.71%,

and 1.16% in terms of Acc on Lap14, Res14, and Res15 datasets, respectively. And in

terms of F1, our model surpasses previous best scores by 1.16%, 1.28%, and 3.44% on
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Lap14, Res14, and Res15 datasets, respectively. All the improvements are attributed

to the discarding of noisy information via pruning noisy nodes on the vanilla syntax

graph and introducing first-order dependency to facilitate the aggregation of distant

while crucial target-related information.

4.3.3 Ablation Study

Variants
Laptop14 Restaurant14 Restaurant15

Acc F1 Acc F1 Acc F1

Full Model 82.13 78.51 87.35 82.04 86.29 74.43

NoPrune
79.52 75.70 86.04 79.77 84.50 70.83

↓2.61 ↓2.81 ↓1.31 ↓2.27 ↓1.78 ↓3.60

RandPrune
80.67 76.97 86.49 80.44 84.75 72.10

↓1.46 ↓1.54 ↓ 0.86 ↓1.60 ↓1.54 ↓2.33

NoMerge
81.61 78.25 87.05 81.64 85.79 73.29

↓0.52 ↓0.26 ↓ 0.30 ↓0.40 ↓0.50 ↓1.14

Table 4.3: Results of ablation experiments.

We conduct ablation experiments to look into Neural Subgraph Explorer and

investigate how it works well. The experiment results are shown in Table 4.3.

We first study the effect of target-oriented syntax graph pruning via removing

the pruning operation. In practice, we achieve this by setting all actti as 1 and this

variant is termed NoPrune. From Table 4.3 we can observe that NoPrune obtains

much poorer results compared with the full model. The reason is that without noisy

node pruning, the main advantage of Neural Subgraph Explorer is lost and the noisy

information conveyed in the target-irrelevant nodes harms the prediction.

Then we study the effect of multi-hop action score estimator, which determines

whether a word should be pruned. We design a variant named RandPrune, which

assigns a random value to each gt,T
′

i . Therefore, the nodes in the syntax graphs are

randomly pruned. From Table 4.3 we can find that RandPrune is significantly inferior

to the full model. This is because without the multi-hop action score estimator,

RandPrune cannot identify the crucial words that contribute to the expression of the

target’s sentiment, and the words it prunes may be the critical words and it may

reserve the noisy words that harm the prediction.

Finally, we investigate the effect of graph merging via designing a variant termed

NoMerge, in which the pruned SynGraph is directly used for message passing. From

Table 4.3 we can find that NoMerge has a considerable results drop compared with the

full model. This proves the effectiveness of merging the pruned SynGraph and pruned
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Figure 4.3: The impact of the number of pruning layers.

SatGraph, which can introduce first-order connections to facilitate the information

aggregation of distant target-related words and guarantee the connectivity of the

obtained graph.

4.3.4 Investigation of Layer Number

4.3.4.1 #Target-oriented Syntax Graph Pruning

To investigate the impact of layer number of target-oriented syntax graph pruning,

we vary the value of T from 0 to 4 and illustrate the corresponding Accuracy and

Macro-F1 in Fig. 4.3. T = 0 denotes there is no target-oriented syntax graph pruning.

As a result, the worst performances are obtained. With T increasing from 0 to 2,

the performances increase then reach the peaks. However, continuously increasing T

results in the drop of results. There are two reasons. The first one is that too large T

makes it more difficult to train the model due to a large number of parameters. The

other one is that since there is a linear relationship between T and the total GCN

layer number of Neural Subgraph Explorer, too large T causes the over-smoothing

problem due to too much node aggregation, losing the specific and important features.

4.3.4.2 #Position Weighted GCN

For each position weighted GCN in our model, the layer number T ′ denotes that after

the T ′-layer GCN, the information of node i can be aggregated into node j if node

i is node j’s t′th-order neighbor and t′ < T ′. When T ′ = 1, only a node’s directly

adjacent nodes can transfer information with it, which is intuitively insufficient for

capturing the sentiment features for the target. And as shown in Fig. 4.4, T ′ = 1

results in the worst performances. However, too large T ′ also has a negative impact on

performances because too many GCN layers bring the over-fitting and over-smoothing
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Figure 4.4: The impact of layer number of position weighted GCN.

problem. Finally, as illustrated in Fig. 4.4, the 2-layer position weighted GCN obtains

the best results for our Neural Subgraph Explorer.

4.4 Summary

This paper proposes a novel Neural Subgraph Explorer model to tackle the target

sentiment classification task. On the one hand, it can discard the noisy information

contained in the noisy words regarding the given target through the stacked target-

oriented syntax graph pruning module. On the other hand, it introduces first-order

connections between the target and the crucial words via merging the pruned self-

attention graph with the pruned syntax graph. In this way, more useless information

can be removed and more crucial information can be captured. Finally, experiments

are conducted on benchmark datasets and the effectiveness of our model has been

proven.
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Chapter 5

DARER

5.1 Introduction

Dialog language understanding [103] is the fundamental component of the dialogue

system. It includes several individual tasks, e.g. dialog sentiment classification,

dialog act recognition, slot filling, and (multiple) intent detection. In recent years, as

researchers discover the inherent correlations among some specific task-pair, the joint

task which tackles two tasks simultaneously has attracted increasing attention. For

example, dialog sentiment classification (DSC) and dialog act recognition (DAR) are

two challenging tasks in dialog systems [14], while the task of joint DSC and DAR

aims to simultaneously predict the sentiment label and act label for each utterance in

a dialog [3, 53]. An example is shown in Table 5.1. To predict the sentiment of ub,

besides its semantics, its Disagreement act label and the Positive sentiment label of

its previous utterance (ua) can provide useful references, which contribute a lot when

humans do this task. This is because the Disagreement act label of ub denotes it has

the opposite opinion with ua, and thus ub tends to have a Negative sentiment label,

the opposite one with ua (Positive). Similarly, the opposite sentiment labels of ub and

ua are helpful to infer the Disagreement act label of ub. In this paper, we term this

process as dual-task reasoning, where there are three key factors: 1) the semantics

of ua and ub; 2) the temporal relation between ua and ub; 3) ua’s and ub’s labels for

another task.

In previous works, different models are proposed to model the correlations between

DSC and DAR. [3] propose a multi-task model in which the two tasks share a

single encoder. [33, 37, 53, 55] try to model the semantics-level interactions of the

two tasks. The framework of previous models is shown in Fig. 5.1 (a). For dialog

understanding, Co-GAT [55] applies graph attention network (GAT) [78] over an

undirected disconnected graph which consists of isolated speaker-specific full-connected
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Table 5.1: A dialog snippet from the Mastodon [3] dataset.
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Figure 5.1: Illustration of previous framework and ours.

subgraphs. Therefore, it suffers from the issue that the inter-speaker interactions

cannot be modeled, and the temporal relations between utterances are omitted. For

dual-task reasoning, on the one hand, previous works only consider the parameter

sharing and semantics-level interactions, while the label information is not explicitly

integrated into the dual-task interactions. Consequently, the explicit dependencies

between the two tasks cannot be captured and previous dual-task reasoning processes

are inconsistent with human intuition, which leverages the label information as crucial

clues. On the other hand, previous works do not consider the temporal relations

between utterances in dual-task reasoning, in which they play a key role.

In this paper, we try to address the above issues by introducing temporal relations

and leveraging label information. To introduce temporal relations, we design a speaker-

aware temporal graph (SATG) for dialog understanding, and a dual-task reasoning

temporal graph (DRTG) for dual-task relational reasoning. Intuitively, different

speakers’ semantic states will change as the dialog goes, and these semantic state

transitions trigger different sentiments and acts. SATG is designed to model the

speaker-aware semantic states transitions, which provide essential indicative semantics

for both tasks. In SATG, there is one group of utterance nodes and two kinds of

temporal relations: previous and future. Since the temporal relation is a key factor in

dual-task reasoning, DRTG is designed to integrate inner- and inter-task temporal

relations, making the dual-task reasoning process more rational and effective. In
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SATG, there are two parallel groups of utterance nodes and three kinds of temporal

relations: previous, future, and equal.

To leverage label information, we propose a new framework, as shown in Fig. 5.1

(b). Except for semantics-level interactions, it integrates several kinds of prediction-

level interactions. First, self-interactions of sentiment predictions and act predictions.

In both tasks, there are prediction-level correlations among the utterances in a

dialog. In the DSC task, the sentiment state of each speaker tends to be stable

until the utterances from others trigger the changes [82]. In the DAR task, there

are different patterns (e.g., Questions-Inform and Directives-Commissives) reflecting

the interactions between act labels [39]. Second, interactions between the predictions

and semantics. Intuitively, the predictions can offer feedback to semantics, which can

rethink and then reversely help revise the predictions. Third, prediction-prediction

interactions between DSC and DAR, which model the explicit dependencies. However,

since our objective is to predict the labels of both tasks, there is no ground-truth

label available for prediction-level interactions. To this end, we design a recurrent

dual-task reasoning mechanism that leverages the label distributions estimated in the

previous step as prediction clues of the current step for producing new predictions.

In this way, the label distributions of both tasks are gradually improved along the

step. To implement our framework, we propose Dual-tAsk temporal Relational

rEcurrent Reasoning Network1 (DARER) [93], which includes three main components.

The Dialog Understanding module conducts relation-specific graph transformations

(RSGT) over SATG to generate context-, speaker- and temporal-sensitive utterance

representations. The Initial Estimation module produces the initial label information

which is fed to the Recurrent Dual-task Reasoning module, in which RSGT operates

on DRTG to conduct dual-task relational reasoning. And the RSGTs are achieved

by relational graph convolutional networks [62]. Moreover, we design logic-heuristic

training objectives to force DSC and DAR to gradually prompt each other in the

recurrent dual-task reasoning process.

Then we further propose Relational Temporal Transformer (ReTeFormer) and

DARER2. The main difference between DARER and DARER2 is that in DARER2

the original RGCNs applied over SATG and DRTG are replaced with our proposed

SAT-ReTeFormer and DTR-ReTeFormer. The core of ReTeFormer is the Relation- and

Structure-Aware Disentangled Multi-head Attention, which can achieve fine-grained

relational temporal modeling. Generally, DARER2 has three distinguished advantages

over DARER: (1) ReTeFormer integrates dialog structural information, achieving more

1The content of DARER was presented as a poster in ACL 2022 conference.

43



Figure 5.2: The overall network architecture of DARER and DARER2. In DARER,
SAT-RSGT and DTR-RSGT are achieved by RGCNs, while in DARER2, they are
achieved by SAT-ReTeFormer and DTR-ReTeFormer, respectively. Without loss of
generality, the step number T in this illustration is set 2.

comprehensive and fine-grained relational temporal graph reasoning; (2) the relational

temporal attention mechanism of ReTeFormer can comprehensively and explicitly

model the correlations among dual tasks semantics and predictions; (3) the relation

specific attention maps derived by ReTeFormer can provide explainable evidence of

relational temporal graph reasoning, making the model more reliable.

In summary, this work has three major contributions. (1) We propose DARER,

which is based on a new framework that for the first time achieves relational temporal

graph reasoning and prediction-level interactions. (2) Our proposed DARER2 further

improves the relational temporal graph reasoning with our proposed ReTeFormer which

is based on the Relation- and Structure-Aware Disentangled Multi-head Attention.

(3) Experiments prove that DARER and DARER2 significantly outperform the state-

of-the-art models in different scenarios of dual-task dialog language understanding.

5.2 Overall Model Architecture

Given a dialog consisting of N utterances: D = (u1, u2, ..., uN), our objective is to

predict both the dialog sentiment labels Y S = ys1, ..., y
s
N and the dialog act labels

Y A=ya1 , ..., y
a
N in a single run.
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The overall network architecture shared by DARER and DARER2 is shown in Fig.

5.2. It consists of three modules, whose details are introduced in this section.

5.2.1 Dialog Understanding

5.2.1.1 Utterance Encoding

In previous works, BiLSTM [21, 91] is widely adopted as the utterance encoder to

generate the initial utterance representation: H = (h0, ..., hN). In this paper, besides

BiLSTM, we also study the effect of different pre-trained language model (PTLM)

encoders in Sec. 5.5.3.3.

BiLSTM: We apply the BiLSTM over the word embeddings of ut to capture the

inner-sentence dependencies and temporal relationships among the words, producing

a series of hidden states Hu,i = (h0u,i, ..., h
li
u,i), where li is the length of ui. Then we

feed Hu,i into a max-pooling layer to get the representation for each ui.

PTLM: We separately feed each utterance into the PTLM encoder and take the

output hidden state of the [CLS] token as the utterance representation.

5.2.1.2 Speaker-aware Temporal RSGT

To capture the inter- and intra-speaker semantic interactions and the speaker-aware

temporal dependencies between utterances, we conduct Speaker-aware Temporal

relation-specific graph transformations (SAT-RSGT). Now we obtain the context-,

speaker- and temporal-sensitive utterance representations: Ĥ = (ĥ0, ..., ĥN).

5.2.2 Initial Estimation

To obtain task-specific utterances representations, we separately apply two BiLSTMs

over Ĥ to obtain the utterance hidden states for sentiments and acts respectively:

H0
s = BiLSTMS(Ĥ), H0

a = BiLSTMA(Ĥ), where H0
s = {h0s,i}Ni=1 and H0

a = {h0a,i}Ni=1.

Then H0
s and H0

a are separately fed into Sentiment Decoder and Act Decoder to

produce the initial estimated label distributions:

P 0
S = {P 0

S,i}Ni=1 P
0
A = {P 0

A,i}Ni=1,

P 0
S,i = softmax(W s

dh
0
a,i + bsd)

=
[
p0s,i[0], ..., p0s,i[k], ..., p0s,i(|Cs| − 1)

]
,

P 0
A,i = softmax(W a

d h
0
s,i + bad)

=
[
p0a,i[0], ..., p0a,i[k], ..., p0a,i(|Ca| − 1)

]
,

(5.1)
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where W ∗
d and b∗d are weight matrices and biases, Cs and Ca are sentiment class set

and act class set.

5.2.3 Recurrent Dual-task Reasoning

At step t, the recurrent dual-task reasoning module takes two streams of inputs: 1)

hidden states H t−1
s ∈ RN×d and H t−1

a ∈ RN×d; 2) label distributions P t−1
S ∈ RN×|Cs|

and P t−1
A ∈ RN×|Ca|.

5.2.3.1 Projection of Label Distribution

To achieve the prediction-level interactions, we should represent the label informa-

tion in vector form to let it participate in calculations. We use P t−1
S and P t−1

A to

respectively multiply the sentiment label embedding matrix M e
s ∈R|Cs|×d and the act

label embedding matrix M e
a ∈R|Ca|×d, obtaining the sentiment label representations

Et
S = {ets,i}Ni=1 and act label representations Et

A = {eta,i}Ni=1. In particular, for each

utterance, its sentiment label representation and act label representation are computed

as:

ets,i =

|Cs|−1∑
k=0

pt−1s,i [k] · vks ,

eta,i =

|Ca|−1∑
k′=0

pt−1a,i [k′] · vk′a ,

(5.2)

where vks and vk
′
a are the label embeddings of sentiment class k and act class k′,

respectively.

5.2.3.2 Dual-task Reasoning RSGT

To achieve the self- and mutual-interactions between the semantics and predictions, for

each node in DRTG, we superimpose its corresponding utterance’s label representations

of both tasks on its hidden state:

ĥts,i =ht−1s,i + ets,i + eta,i,

ĥta,i =ht−1a,i + ets,i + eta,i.
(5.3)

Thus the representation of each node contains the task-specific semantic features

and both tasks’ label information, which are then incorporated into the relational

reasoning process to achieve semantics-level and prediction-level interactions.

The obtained Ĥt
s and Ĥt

a both have N vectors, respectively corresponding to the

N sentiment nodes and N act nodes on DRTG. Then we feed them into the Dual-task
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Reasoning relation-specific graph transformations (DTR-RSGT) conducted on DRTG.

Now we get H
t

s and H
t

a.

5.2.3.3 Label Decoding

For each task, we use a task-specific BiLSTM (TS-LSTM) to generate a new series of

task-specific hidden states:

H t
s = BiLSTMS(H

t

s),

H t
a = BiLSTMA(H

t

a).
(5.4)

Besides, as H
t

s and H
t

a both contain the label information of the two tasks, the two

TS-LSTMs have another advantage of label-aware sequence reasoning, which has been

proven can be achieved by LSTM [110].

Then H t
S and H t

A are separately fed to Sentiment Decoder and Act Decoder to

produce P t
S and P t

A.

5.2.4 Training Objective

Intuitively, there are two important logic rules in our model. First, the produced

label distributions should be good enough to provide useful label information for

the next step. Otherwise, noisy label information would be introduced, misleading

the dual-task reasoning. Second, both tasks are supposed to learn more and more

beneficial knowledge from each other in the recurrent dual-task reasoning process.

Scilicet the estimated label distributions should be gradually improved along steps.

In order to force our model to obey these two rules, we propose a constraint loss

LConstraint that includes two terms: LEstimate and LMargin, which correspond to the

two rules, respectively.

Estimate Loss LEstimate is the cross-entropy loss forcing model to provide good

enough label distributions for the next step. At step t, for DSC task, LS,tEstimate is

defined as:

LS,tEstimate =
N∑
i=1

|Cs|−1∑
k=0

ysi [k]log
(
pts,i[k]

)
. (5.5)

Margin Loss LMargin works on the label distributions of two adjacent steps, and

it promotes the two tasks gradually learning beneficial knowledge from each other

via forcing DARER to produce better predictions at step t than step t− 1. Besides,

although the model can receive more information at step t than t−1, this information is

imperfect because there are some incorrect predictions of the previous step. Therefore,
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we use the margin loss to force the model to leverage the beneficial information to

output better predictions. For DSC task, LS,(t,t−1)Margin is a margin loss defined as:

LS,(t,t−1)Margin =
N∑
i=1

|Cs|−1∑
k=0

ysi [k] max(0, pt−1s,i [k]− pts,i[k]). (5.6)

If the correct class’s possibility at step t is worse than at step t-1, mathcalL
S,(t,t−1)
Margin >

0. Then the negative gradient further force the model to predict better at step t.

Otherwise, the correct class’s possibility at step t is better than or equal to the one at

step t-1. In this case, mathcalL
S,(t,t−1)
Margin = 0.

Constraint loss LConstraint is the weighted sum of LEstimate and LMargin, with a

hyper-parameter γ balancing the two kinds of punishments. For DSC task, LSConstraint
is defined as:

LSConstraint =
T−1∑
t=0

LS,tEstimate + γs ∗
T∑
t=1

LS,(t,t−1)Margin . (5.7)

Final Training Objective The total loss for DSC task (LS) is the sum of

LSConstraint and LSPrediction:

LS = LSPrediction + LSConstraint, (5.8)

where LSPrediction is the cross-entropy loss of the produced label distributions at the

final step T :

LSPrediction =
N∑
i=1

|Cs|−1∑
k=0

ys,i log
(
pTs,i[k]

)
. (5.9)

The total loss of DAR task (LA) can be derivated similarly like eqs. (5.5) to (5.9).

The final training objective of our model is the sum of the total losses of the two

tasks:

L = LS + LA. (5.10)

5.3 DARER

Based on the overall model introduced in Section 3, DARER achieves SAT-RSGT and

DTR-RSGT via applying RGCNs on the speaker-aware temporal graph (SATG) and

dual-task reasoning temporal graph (DRTG), respectively.
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Figure 5.3: An example of SATG. u1, u3 and u5 are from speaker 1 while u2 and u4
are from speaker 2. w.l.o.g, only the edges directed into u3 node are illustrated.

5.3.1 SAT-RSGT

5.3.1.1 Speaker-aware Temporal Graph

We design a SATG to model the information aggregation between utterances in a

dialog. Formally, SATG is a complete directed graph denoted as G = (V , E ,R). In this

paper, the nodes in G are the utterances in the dialog, i.e., |V| = N,V = (u1, ..., uN),

and the edge (i, j, rij) ∈ E denotes the information aggregation from ui to uj under the

relation rij ∈ R. Table 5.2 lists the definitions of all relation types in R. In particular,

there are three kinds of information conveyed by rij: the speaker of ui, the speaker

of uj, and the relative position of ui and uj. Naturally, the utterances in a dialog

are chronologically ordered, so the relative position of two utterances denotes their

temporal relation. An example of SATG is shown in Fig. 5.3. Compared with the

previous dialog graph structure [53,55], our SATG has two main advancements. First,

as a complete directed graph, SATG can model both the intra- and inter-speaker

semantic interactions. Second, incorporating temporal information, SATG can model

the transitions of speaker-aware semantic states as the dialog goes on, which benefits

both tasks.

5.3.1.2 SAT-RGCN

Inspired from [62], we apply SAT-RGCN over SATG to achieve the information

aggregation:

ĥi = W1h
0
i +

∑
r∈R

∑
j∈N r

i

1

|N r
i |
W r

1h
0
j , (5.11)
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Table 5.2: All relation types in SATG (assume there are two speakers). Is(i) indicates
the speaker node i is from. pos(i, j) indicates the relative position of node i and j.

rij 1 2 3 4 5 6 7 8

Is(i) 1 1 1 1 2 2 2 2

Is(j) 1 1 2 2 1 1 2 2
pos(i, j) > ≤ > ≤ > ≤ > ≤



s1 s2 s3 s4 s5

a1 a2 a3 a4 a5 r'=1

r'=2
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r'=9

Figure 5.4: An example of DRTG. si and ai respectively denote the node of DAC task
and DAR task. w.l.o.g, only the edges directed into s3 are illustrated.

where W1 is self-transformation matrix and W r
1 is relation-specific matrix.

5.3.2 DTR-RSGT

5.3.2.1 Dual-task Reasoning Temporal Graph

Inspired by [94–96,98, 99], we design a DRTG to provide an advanced platform for

dual-task relational reasoning. It is also a complete directed graph that consists of 2N

dual nodes: N sentiment nodes and N act nodes. The definitions of all relation types

in R′ are listed in Table 5.3. Intuitively, when predicting the label of a node, the

information of its dual node plays a key role, so we emphasize the temporal relation of

‘=’ rather than merge it with ‘<’ like SATG. Specifically, the relation r′ij conveys three

kinds of information: the task of ni, the task of nj and the temporal relation between

ni and nj. An example of DRTG is shown in Fig. 5.3. Compared with the previous

dual-task graph structure [53, 55], our DRTG has two major advancements. First,

the temporal relations in DRTG can make the DTR-RSGT capture the temporal

information, which is essential for dual-task reasoning, while this cannot be achieved by

the co-attention [53] or graph attention network [55] operating on their non-temporal

graphs. Second, in DRTG, the information aggregated into a node is decomposed

by different relations that correspond to individual contributions, rather than only

depending on the semantic similarity measured by the attention mechanisms.
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Table 5.3: All relation types in DRTG. It(i) indicates that node i is a sentiment (S)
node or act (A) node.

r′ij 1 2 3 4 5 6 7 8 9 10 11 12

It(i)
It(j)

pos(i, j)

S S S S S S A A A A A A
S S S A A A S S S A A A

< = > < = > < = > < = >



Figure 5.5: (a) Illustration of ReTeFormer. (b) Illustration of Relation- and Structure-
Aware Disentangled Multi-head Attention. (c) Illustration of Relational Temporal
Attention corresponding to the i-th relation. Qh,Kh and Vh denote the query matrix,
key matrix and value matrix of input hidden states. Qp and Kp denote the query
matrix and key matrix of the absolute position embeddings. Nr denotes the number
of relations.

5.3.2.2 DTR-RSGT

We apply DTR-RGCN to DRTG to achieve information aggregation. Specifically, the

node updating process of DTR-RGCN can be formulated as:

h
t

i = W2ĥ
t
i +

∑
r∈R′

∑
j∈N r′

i

1∣∣N r′
i

∣∣W r
2 ĥ

t
j, (5.12)

where W2 is self-transformation matrix and W r
2 is relation-specific matrix.

5.4 DARER2

Based on the overall model introduced in Section 3, DARER2 achieves SAT-RSGT and

DTR-RSGT via applying our proposed ReTeFormers on the speaker-aware temporal

graph (SATG) and dual-task reasoning temporal graph (DRTG), respectively. Next,

we first introduce the details of ReTeFormer, then the SAT-RSGT and DTR-RSGT

of DARER2.

5.4.1 Relational Temporal Transformer

The architecture of ReTeFormer is shown in Fig. 5.5. The core of ReTeFormer is the

Relation- and Structure- Aware Disentangled Multi-head Attention, which can handle

the Relation Modeling and Temporal Modeling simultaneously.
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Relational Modeling The relational graph can be disentangled into different

views, each of which corresponds to a specific relation and has its own adjacency

matrix. In ReTeFormer, each head of Relational Temporal Attention corresponds to

a specific relation and has its own parameterization, so as to achieve the relation-

specific information aggregation. To make sure that the information aggregation

of each relation is along the relation-specific structure, we design the Relation- and

Structure-Aware 2-D Mask which uses the relation-specific adjacency matrix to mask

the correlation matrix. Since the final node representation receives information along

multiple relations, we design the Dynamic 1-D Mask and Merge module to extract and

sum each node’s sub-representations obtained from multi-head Relational Temporal

Attentions.

Temporal Modeling A dialog can be regarded as a temporal sequence of utter-

ances. ReTeFormer utilizes position embedding to achieve temporal modeling. The

position embedding is one of the foundations of Transformer [77], which adds the

position embedding to the input representation. However, recently it has been proven

that adding together the position embeddings and word embeddings at input harms

the attention and further limit the model’s expressiveness because this operation brings

mixed correlations between the two heterogeneous information resources (semantics

and position) and unnecessary randomness in the attention [31]. To this end, Ke et al.

(2021) [31] propose to model word contextual correlation and positional correlation

separately with different parameterizations and then add them together. And our

ReTeFormer follows this manner.

Next, we introduce the details of Relation- and Structure- Aware Disentangled

Multi-head Attention, which is the core of our ReTeFormer2.

5.4.1.1 Relation-Specific Scaled Dot-Product Attention

For the head corresponding to relation r, the correlation score α̂rij between every two

nodes is obtained via relational modeling and temporal modeling:

α̂rij =
1√
d

(Qr
[h,i])(K

r
[h,j])

T +
1√
d

(Qr
[p,i])(K

r
[p,j])

T ,

Qr
[h,i] = hiW

r
Q, Kr

[h,j] = hjW
r
K ,

Qr
[p,i] = pjU

r
Q, Kr

[p,j] = pjU
r
K ,

(5.13)

where h∗ p∗ denote the input hidden state and position embedding, respectively; W r
Q

and W r
K denote the relation-specific projection matrix for the hidden states; U r

Q and

2In this section, we omit the introduction of the residual connection, the layer normalization, and
the feed-forward layers, whose details are the same as vanilla Transformer [77].
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U r
K denote the relation-specific projection matrix for the position embeddings;

√
d is

the scaling term for retaining the magnitude of α̂rij.

Now we obtain the relation-specific correlation matrix M r for each relation r,

which represents each two nodes’ correlation along the specific relation.

5.4.1.2 Relation- and Structure-Aware 2-D Mask

Although we obtain the relation-specific correlation scores of all node pairs, a specific

relation has its own adjacent structure which is crucial for information aggregation.

And the attention score between two nodes should also be calculated regarding the

relation-specific neighbors. To achieve this, we design the relation- and structure-aware

2-D mask to introduce the relation-specific structure into the attention mechanism.

Specifically, the relational graph can derive Nr relation-specific adjacency matrice via

disentangling. And for each relation r, its adjacency matrix Ar is used to mask its

correlation matrix M r. Finally, the normalized relation-specific attention score αrij is

obtained as follows:
αrij = softmax

(
f 2D
mask(α

r
ij, A

r
ij)
)
,

f 2D
mask =

{
α̂rij Arij = 1

−∞ Arij = 0,

(5.14)

where f 2D
mask denotes the function of the relation- and structure-aware 2-D mask.

5.4.1.3 Output Node Representation

For the attention head corresponding to relation r, the updated sub-representation of

node i (or the information that node i should receive along relation r) is:

ĥri =
∑
j∈N r

i

αijV
r
[h,j].

V r
[h,j] = hjW

r
V

(5.15)

A node is always connected to other nodes along different relations. Therefore,

the final updated representation node i is the sum of its sub-representations of all

attention heads:

ĥi =
∑
r∈R

ĥri . (5.16)

5.4.2 SAT-ReTeFormer

In DARER2, the speaker-aware temporal RSGT (Sec. 5.2.1.2) is achieved by the

SAT-ReTeFormer rather than the RGCN used in DARER. And the speaker-aware
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SP1 to SP2

SP1 to SP1
SP2 to SP1
SP2 to SP2

u1 u3

u2 u4

Figure 5.6: An example of the speaker-aware graph for SAT-ReTeFormer and its four
disentangled views. Assuming there are four utterances: u1 and u3 (in green color)
are from the speaker 1 (SP1); u2 and u4 (in blue color) are from the speaker 2 (SP2).
Each view has its own adjacency matrix for the corresponding head of relational
temporal attention.

graph for SAT-ReTeFormer is shown in Fig. 5.6. The input of SAT-ReTeFormer is

the sequence of the initial utterance representations H = (h0, ..., hN). In the SAT-

ReTeFormer’s speaker-aware graph, each node corresponds to an utterance, whose

representation hi corresponds to its position embedding pi. Compared with RGCN,

our SAT-ReTeFormer can explicitly model the correlations among the utterances,

integrating both the speaker information and the fine-grained temporal information.

After SAT-ReTeFormer, we obtain the context-, speaker- and temporal-sensitive

utterance representations: Ĥ = (ĥ0, ..., ĥN).

5.4.3 DTR-ReTeFormer

In DARER2, the dual-task reasoning RSGT (Sec. 5.2.3.2) is achieved by DTR-

ReTeFormer rather than the RGCN used in DARER. And the dual-task reasoning

graph for DTR-ReTeFormer is illustrated in Fig 5.7.

The input of DTR-ReTeFormer is the concatenation of Ĥt
s and Ĥt

a: Ĥt
s ‖ Ĥt

a =

[ĥts,1, ..., ĥ
t
s,N , ĥ

t
a,1, ..., ĥ

t
a,N ]. Since ĥts,i and ĥta,i corresponds to the same utterance (ui),

they have the same position embedding pi.

Here we demonstrate the details of the semantics- and prediction-level interactions

achieved by DTR-ReTeFormer. Assuming that node i is sentiment node and node j is

act node, the correlative score between i and j is calculated as follows (bringing Eq. 3
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Sentiment to Act

Sentiment to Sentiment
Act to Sentiment
Act to Act

s1 s2

a1 a2

Figure 5.7: An example of the dual-task reasoning graph for SAT-ReTeFormer. W.l.o.g,
the dialog includes two utterances. s1 and s2 (in green color) denote the sentiment
nodes corresponding to the first and second utterances; a1 and a2 (in red color) denote
the act nodes of the first and second utterances. The graph can be disentangled into
four views along the four relations, and each view has its own adjacency matrix used
in the corresponding head of relational temporal attention.

into Eq. 13):

α̂r
′,t
ij =

1√
d

(ĥts,iW
r
Q)(ĥta,jW

r
K)T +

1√
d

(pjU
r
Q)(pjU

r
K)T

=
1√
d

(
(ht−1s,i + ets,i + eta,i)W

r
Q

) (
(ht−1a,j + ets,j + eta,j)W

r
K

)T
+

1√
d

(piU
r
Q)(pjU

r
K)T

=
1√
d
ht−1s,i W

r
Q(W r

K)T (ht−1a,j )T +
1√
d
ht−1s,i W
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Q(W r
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T

+
1√
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ht−1s,i W

r
Q(W r

K)T (eta,j)
T +

1√
d
ets,iW

r
Q(W r

K)T (ht−1a,j )T

+
1√
d
ets,iW

r
Q(W r

K)T (ets,j)
T +

1√
d
ets,iW

r
Q(W r

K)T (eta,j)
T

+
1√
d
eta,iW

r
Q(W r

K)T (ht−1a,j )T +
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eta,iW

r
Q(W r

K)T (ets,j)
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+
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eta,iW
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r
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(5.17)

In α̂r
′,t
ij , r′ denotes the relation of Act to Sentiment and t denotes the time step of

recurrent dual-task reasoning. We can observe that finally, there are 10 terms in

Eq. 17. The 1st term models the semantics-level interaction between node i and

node j. The 2nd-9th terms model the prediction-level interactions. Specifically, the

2nd, 3rd, 4th and 7th terms model the semantics-prediction interactions; the 5th, 6th
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and 9th terms model the prediction-prediction interactions. The 10th term achieves

relation-specific temporal modeling.

Therefore, our proposed DTR-ReTeFormer can explicitly and comprehensively

model the semantics- and prediction-level interactions. And relational modeling

achieves the self-task and cross-task interactions. Besides, in this process, the relation-

specific temporal information is considered, facilitating dual-task reasoning.

5.5 Experiments

5.5.1 Datasets and Metrics

Datasets. We conduct experiments on two publicly available dialogue datasets:

Mastodon [3] and Dailydialog [39]. The Mastodon dataset includes 269 dialogues for

training and 266 dialogues for testing. And there are 3 sentiment classes and 15 act

classes. Since there is no official validation set, we follow the same partition as [55].

Finally, there are 243 dialogues for training, 26 dialogues for validating, and 266

dialogues for testing. As for Dailydialog dataset, we adopt the official train/valid/test/

split from the original dataset [39]: 11,118 dialogues for training, 1,000 for validating,

and 1,000 for testing. And there are 7 sentiment classes and 4 act classes.

Evaluation Metrics. Following previous works [3,53,55], on Dailydialog dataset, we

adopt macro-average Precision (P), Recall (R), and F1 for the two tasks, while on

Mastodon dataset, we ignore the neutral sentiment label in DSC task and for DAR

task we adopt the average of the F1 scores weighted by the prevalence of each dialogue

act.

5.5.2 Implement Details and Baselines

Both of DARER and DARER2 are trained with Adam optimizer with the learning

rate of 1e−3 and the batch size is 16. We exploit 300-dimensional Glove vectors for the

word embeddings. And the epoch number is 100 for Mastodon and 50 for DailyDialog.

Next, we introduce the different settings of other hyper-parameters for DARER and

DARER2

DARER The dimension of hidden states (label embeddings) is 128 for Mastodon

and 256 for DailyDialog. The step number T for recurrent dual-task reasoning is set

to 3 for Mastodon and 1 for DailyDialog. The coefficient γs and γa are 3 for Mastodon

and 1e−4 for DailyDialog. To alleviate overfitting, we adopt dropout, and the ratio is

0.2 for Mastodon and 0.3 for DailyDialog.
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Table 5.4: Experiment results. ∗ denotes we reproduce the results using official code.
† denotes that our DARER and DARER2 significantly outperforms the previous best
model Co-GAT with p < 0.01 under t-test and ‡ denotes p < 0.05. ↑ denotes the
improvement achieved by our model over Co-GAT.

Models
Mastodon DailyDialog

DSC DAR DSC DAR
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

JointDAS [3] 36.1 41.6 37.6 55.6 51.9 53.2 35.4 28.8 31.2 76.2 74.5 75.1
IIIM [33] 38.7 40.1 39.4 56.3 52.2 54.3 38.9 28.5 33.0 76.5 74.9 75.7

DCR-Net [53] 43.2 47.3 45.1 60.3 56.9 58.6 56.0 40.1 45.4 79.1 79.0 79.1
BCDCN [37] 38.2 62.0 45.9 57.3 61.7 59.4 55.2 45.7 48.6 80.0 80.6 80.3
Co-GAT [55] 44.0 53.2 48.1 60.4 60.6 60.5 65.9 45.3 51.0 81.0 78.1 79.4

Co-GAT∗ 45.40 48.11 46.47 62.55 58.66 60.54 58.04 44.65 48.82 79.14 79.71 79.39

DARER
56.04† 63.33† 59.59† 65.08‡ 61.88† 63.43† 59.96‡ 49.51† 53.42† 81.39† 80.80‡ 81.06†

↑23.4% ↑31.6% ↑28.2% ↑4.0% ↑5.5% ↑4.8% ↑3.3% ↑10.9% ↑9.4% ↑2.8% ↑1.4% ↑2.1%

DARER2 58.53† 67.06† 62.38† 68.26† 67.15† 67.70† 65.58† 48.28† 54.34† 81.41† 81.79‡ 81.60†

↑28.9% ↑39.4% ↑34.2% ↑9.1% ↑14.5% ↑11.8% ↑13.0% ↑8.1% ↑11.3% ↑2.9% ↑2.6% ↑2.8%

DARER2 The dimension of hidden states (label embeddings) is 256 for Mastodon

and 300 for DailyDialog. The step number T for recurrent dual-task reasoning is set

to 5 for Mastodon and 3 for DailyDialog. For Mastodon dataset, the coefficients γs

and γa are 10 and 1. For DailyDialog, the coefficients γs and γa are 0.1 and 1e−6. The

dropout ratio is 0.4 for both Mastodon and DailyDialog.

For all experiments, we pick the model performing best on the validation set and

then report the average results on the test set based on three runs with different

random seeds. All computations are conducted on NVIDIA RTX 6000.

We compare our model with: JointDAS [3], IIIM [33], DCR-Net (Co-Attention) [53],

BCDCN [37] and Co-GAT [55].

5.5.3 Main Results

5.5.3.1 Comparison with Baselines

Table 5.4 lists the experiment results on the test sets of the two datasets. We can

observe that:

1. Our models significantly outperform all baselines, achieving new state-of-the-art

(SOTA). In particular, over Co-GAT, the existing SOTA, DARER achieves an absolute

improvement of 13.1% in F1 score on DSC task in Mastodon, a relative improvement

of over 28%. And DARER2 achieves even larger improvements: over 34% improvement

in F1 score on DSC task in Mastodon dataset. The satisfying results of DARERs

come from (1) our framework integrates not only semantics-level interactions but also
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prediction-level interactions, thus capturing explicit dependencies other than implicit

dependencies; (2) our SATG represents the speaker-aware semantic states transitions,

capturing the important basic semantics benefiting both tasks; (3) our DRTG provides

a rational platform on which more effective dual-task relational reasoning is conducted.

(4) the advanced architecture of our DARER models allows DSC and DAR to improve

each other in the recurrent dual-task reasoning process gradually.

2. DARER and DARER2 show more prominent superiority on DSC task than DAR

task. We surmise the probable reason is that generally, the act label is more complicated

to deduce than the sentiment label in dual-task reasoning. For instance, it is easy

to infer ui’s Negative label on DSC given ui’s Agreement label on DAR and ui−1’s

Negative label on DSC. Reversely, given the label information that ui and ui−1 are

both negative on DSC, it is hard to infer the act label of ui because there are several

act labels possibly satisfying this case, e.g., Disagreement, Agreement, Statement.

3. Our models’ improvements on DailyDialog are smaller than those on Mastodon.

We speculate this is caused by the extremely unbalanced sentiment class distribution

in DailyDialog. As shown in Fig. 5.8, in DailyDialog dataset, over 83% utterances do

not express sentiment, while the act labels are rich and varied. This hinders DARER

from learning valuable correlations between the two tasks.

5.5.3.2 Comparison of DARER and DARER2

From Table 5.4, we can find that DARER2 outperforms DARER, further improving the

performance. This can be attributed to the fact that the proposed SAT-ReTeFormer

and DTR-ReTeFormer in DARER2 can more effectively model the relational and

temporal interactions than the RGCNs adopted in DARER. Especially, in DTR-

ReTeFormer, since the input hidden state is superimposed with both tasks’ label

representation of the corresponding utterance, the relation- and structure-aware

disentangled multi-head attention can explicitly and sufficiently model the relation-

specific dual-task interactions, including semantics-semantics interactions, semantics-

prediction interactions, and prediction-prediction interactions.

5.5.3.3 Effect of Pre-trained Language Model

In this section, we study the effects of three PTLM encoders: BERT [9], RoBERTa [44],

and XLNet [102], which replace the BiLSTM utterance encoder in the state-of-the-

art model Co-GAT and our DARER models. We adopt the base versions of the

PTLMs implemented in PyTorch by [87]. In our experiments, the whole models are

trained by AdamW optimizer with the learning rate of 1e−5 and the batch size is
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Figure 5.8: Illustration of class distributions on Mastodon and DailyDialog datasets.

16. And the PTLMs are fine-tuned in the training process. Results are listed in

Table 5.5. We can find that since single PTLM encoders are powerful in language

understanding, they obtain promising results even without any interactions between

utterances or the two tasks. Nevertheless, stacking DARER on PTLM encoders further

obtains around 4%-10% absolute improvements on F1. This is because our DARER

models achieve relational temporal graph reasoning prediction-level interactions, which

complement the high-quality semantics grasped by PTLM encoders. In contrast,

Co-GAT only models the semantics-level interactions, whose advantages are diluted

by the powerful PTLMs. Consequently, based on PTLM encoders, Co-GAT brings

much less improvement than our DARER models.

5.5.4 Ablation Study

Our DARER and DARER2 share the same overall model architectures, which include

label embeddings, constraint loss, SAT-RSGT, DTR-RSGT, TS-LSTMs,

SATG and DRTG. To study the effectiveness of each component, we conduct

ablation experiments on DARER and Table 5.6 lists the results.
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Figure 5.9: Illustration of confusion matrices and F1 score on each class on Mastodon
and DailyDialog test sets. Note that on Mastodon test set, following previous works,
the F1 score of the Neutral class is not counted for the final F1 score.

From Table 3.5, we have the following observations:

(1) Removing label embeddings causes prediction-level interactions not to be

achieved. The sharp drops in results prove that our method of leveraging label

information to achieve prediction-level interactions effectively improves dual-task

reasoning via capturing explicit dependencies.

(2) Without constraint loss, the two logic rules can hardly be met, so there is no

constraint forcing DSC and DAR to gradually prompt each other, resulting in the dra-

matic decline of performances. (3) As the core of Dialog Understanding, SAT-RSGT

captures speaker-aware semantic states transitions, which provides essential basic

task-free knowledge for both tasks. Without it, some essential indicative semantics

would be lost, then the results decrease.

(4) The worst results of ‘w/o DTR-RSGT’ prove that DTR-RSGT is the core of
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Table 5.5: Results comparison based on different PTLM encoders.

Models
Mastodon

DSC DAR
P(%) R(%) F1(%) P(%) R(%) F1(%)

B
E
R
T

+ Linear 61.79 61.09 60.60 70.20 67.49 68.82
+ Co-GAT 66.03 58.13 61.56 70.66 67.62 69.08
+ DARER 65.98 67.39 66.42 73.82 71.67 72.73
+ DARER2 64.47 71.10 67.61 75.34 73.04 74.17

R
oB

E
R
T
a + Linear 57.83 60.54 57.83 62.49 61.93 62.20

+ Co-GAT 61.28 57.25 58.26 66.46 64.01 65.21
+ DARER 61.36 67.27 63.66 70.87 68.68 69.75
+ DARER2 63.78 71.44 66.49 73.86 72.87 73.36

X
L
N
et

+ Linear 61.42 67.80 63.35 67.31 63.04 65.09
+ Co-GAT 64.01 65.30 63.71 67.19 64.09 65.60
+ DARER 68.05 69.47 68.66 72.04 69.63 70.81
+ DARER2 67.20 74.24 70.42 72.45 71.47 71.96

Table 5.6: Results (in F1 score) of ablation experiments on DARER.

Variants
Mastodon DailyDialog

DSC DAR DSC DAR

DARER 59.59 63.43 53.42 81.06
w/o Label Embeddings 56.76 62.15 50.64 79.87

w/o Lconstraint 56.22 61.99 49.94 79.76
w/o SAT-RSGT 57.37 62.96 50.25 80.52
w/o DTR-RSGT 56.69 61.69 50.11 79.76
w/o TS-LSTMs 56.30 61.49 51.61 80.33

w/o Tpl Rels in SATG 58.23 62.21 50.99 80.70
w/o Tpl Rels in DRTG 57.22 62.15 50.52 80.28

DARER, and it plays a vital role in conducting dual-task relational reasoning over

the semantics and label information.

(5) The significant results decrease of ‘w/o TS-LSTMs’ prove that TS-LSTMs also

plays an important role in DARER by generating task-specific hidden states for both

tasks and have some capability of sequence label-aware reasoning.

(6) Removing of the temporal relations (Tpl Rels) in SATG or DRTG causes distinct

results decline. This can prove the necessity and effectiveness of introducing temporal

relations into dialog understanding and dual-task reasoning.

To further study the necessity of Lconstraint, we compare DARER2 and the variant

w/o Lconstraint on the detailed performances of each single step, as shown in Table

5.7. We can observe that the Lconstraint in DARER2 can make the model generate

better predictions at each step than w/o Lconstraint. Besides, thanks to the margin loss,

DARER2 can generate better and better predictions along the time step. However,
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DARER    DARER2

Figure 5.10: Performances of DARER and DARER2 over different T .

Table 5.7: The comparison of DARER2 and Lconstraint on the performances of each
single step.

Model metric
step

0 1 2 3 4 5

DARER2
F1 57.34 59.41 61.70 62.30 62.38 62.53
P 59.24 59.94 59.35 58.08 57.48 57.00
R 55.65 59.29 64.96 67.19 68.36 69.41

w/o Lconstraint

F1 54.15 58.66 58.89 59.51 58.54 58.75
P 58.56 62.04 55.33 57.83 55.57 55.46
R 51.73 62.04 62.95 61.36 61.88 62.45

removing Lconstraint leads to fluctuations and significant drops in performance. The

reason is that without the estimate loss and margin loss, the two rules cannot be

integrated into the training process. Only relying on the cross-entropy loss at the

final step cannot effectively improve the predictions of the previous step nor make the

model generate better and better predictions along the step.

5.5.5 Superiority of ReTeFormer

In DARER2 the SAT-RSGT and DTR-RSGT are achieved by our proposed SAT-

ReTeFormer and DTR-ReTeFormer respectively, rather than RGCNs. To verify the

superiorities of the two ReTeFormers over their RGCN counterparts in DARER, we

change the setting of the two ReTeFormers and show the performances in Table 5.8.

We can observe that for both SATG and DTRG, our ReTeFomer shows significant

superiority over RGCN. There are two main reasons. First, our proposed ReTeFormer

can conduct fine-grained relational temporal modeling, while RGCN can only handle

the coarse-grained relative temporal relations. Intuitively, fine-grained relational tem-

poral modeling can better model the latent structures of the dialog than coarse-grained

one, further benefiting dual-task reasoning. Second, the Relation- and Structure-Aware
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Table 5.8: Results (in F1 score) of different settings of ReTeFormers. × denotes the
corresponding ReTeFormer is replaced with the RGCN counterpart used in DARER.

Variants
-ReTeFormer Mastodon DailyDialog
SAT DTR DSC DAR DSC DAR

DARER2 X X 62.38 67.70 54.34 81.60
M1 × X 61.85 66.57 54.16 81.54
M2 X × 60.25 64.23 53.98 81.22

DARER × × 59.59 63.43 53.42 81.06

Disentangled Multi-head Attention in our proposed ReTeFormer can explicitly model

the correlations between the nodes. Especially, our DTR-ReTeFormer can explicitly

and comprehensively model the self-task and cross-task interactions that are of both

semantics- and prediction-level.

5.5.6 Impact of Step Number T

The performances of DARER and DARER2 over different T are plotted in Fig. 5.10.

T = 0 denotes the output of the Initial Estimation module is regarded as final

predictions. We can find that appropriately increasing T brings results improvements.

Particularly, with T increasing from 0 to 1, the results increase sharply. This verifies

that the Initial Estimation module can provide useful label information for dual-task

reasoning. Furthermore, DARER can learn beneficial mutual knowledge from recurrent

dual-task reasoning in which DSC and DAR prompt each other. Generally, when T

surpasses a certain point, the performances decline slightly. The possible reason is

that after the peak, more dual-task interactions cause too much deep information

fusion of the two tasks, leading to the loss of some important task-specific features

and overfitting.

5.5.7 Case Study

To better understand how our model works well, we compare the final predictions of

Co-GAT and our DARER2, as shown in Fig. 5.11 (a). We can find that our DARER2

can correctly predict all labels of both tasks, while there are some errors in Co-GAT’s

predictions: the act label of u3 is incorrectly inferred as Answer, and the sentiment

label of u4 is incorrectly inferred as Negative. We suppose there are two reasons: (1)

Co-GAT works on a homogeneous fully-connected dual-task graph, losing the intra-

and cross-task dependencies and temporal information among the nodes; (2) Co-GAT

63



u1: My face?

u3: It's more likely than you think

u2: Ugly?

u4: Very wrong

Final Predictions of Co-GAT Final Predictions of DARER2

Act Sentiment (Senti) Act Sentiment (Senti)
U1 Question (Q) Neutral (Neu) Question (Q) Neutral (Neu)
U2 Question (Q) Negative (Neg) Question (Q) Negative (Neg)
U3 Answer (A) Negative (Neg) Statement (S) Negative (Neg)
U4 Disagreement (D) Negative (Neg) Disagreement (D) Positive (Pos)

t=0
Act Senti

U1 Q Neu
U2 Q Neg
U3 A Neu
U4 D Neg

t=1
Act Senti

U1 Q Neu
U2 Q Neg
U3 S Neg
U4 D Neg

t=3
Act Senti

U1 Q Neu
U2 Q Neg
U3 S Neg
U4 D Pos
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Figure 5.11: Case study. (a) The example dialog and the final predictions of Co-GAT
and our DARER2. The red color denotes error. (b) Illustration of the estimated
labels at each time step and the reasoning process. For simplification, we only list the
highest probability label rather than the whole label distribution. The dashed box
denotes the label estimated at the previous step. ai and si denote the act node and
sentiment node of ui, respectively. The blue solid arrows denote the edges between
act nodes. The green solid arrows denote the edges between sentiment nodes. The
blue dashed arrows denote the edges from act nodes to sentiment nodes. Deeper color
denotes a larger attention weight.

only achieves semantics-level to implicitly models the dual-task dependencies, without

incorporating prediction-level interactions.

To show how our DARER2 conducts the dual-task relational temporal graph

reasoning, we illustrate the dual-task reasoning process in Fig. 5.11 (b). At step 0,

the initial estimation module produces the initial label distributions. In the first step

of dual-task reasoning, some errors in the previously estimated labels are corrected

through the intra-task interactions of act recognition task and sentiment classification

task. Specifically, in act nodes, the semantics and label information of node a4 is

assigned a large weight and aggregated into node a3. The Disagreement label of a4

can indicate the Statement label of a3. This is because in the dataset, if an utterance

has a Disagreement act label, in most cases, its previous utterance has a Statement

act label, which is also consistent with the real-world scenarios. In sentiment nodes,

s2 is assigned large weight and aggregated into node s3. Combining the semantics
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Table 5.9: Comparison with SOTA on model parameters, training time, GPU memory
required, and performance.

Models
Number of
Parameters ↓

Training Time
per Epoch ↓

GPU ↓
Memory

Avg. F1↑

Co-GAT 3.61M 1.86s 1531MB 53.66%

DARER 2.50M 1.81s 1187MB 61.51%
Improve -30.7% -2.7% -22.4% +14.6%

DARER2 3.83M 2.16s 1191MB 65.04%
Improve +6.1% +16.1% -22.2% +21.2%

‘more’ of s3 and the Negative label of s2, the Negative label of s3 can be correctly

inferred. Then in the third step of dual-task reasoning, the wrong label of s4 node is

fixed. Specifically, node a3, a4 and s3 are assigned relatively large attention weights for

s4. Regarding the labels of a3 and a4, u4 disagrees u3, indicating s3 and s4 may have

opposite sentiments. And further considering the Negative label of s4, our model

can produce the correct Positive sentiment label for u4. In this way, our model can

gradually generate better labels through recurrent relational temporal graph reasoning.

5.5.8 Computation Efficiency

In practical application, in addition to the performance, the number of parameters,

the time cost, and GPU memory required are important factors. Taking Mastodon as

the testbed, we compare our DARER models with the up-to-date SOTA (Co-GAT)

on these factors, and the results are shown in Table 5.9. Avg. F1 denotes the average

of the F1 scores on the two tasks. We can find that although our DARER models

surpass SOTA by a large margin, they do not significantly cost more computation

resources. Especially, DARER is even more efficient than Co-GAT. As for DARER2,

although it has some more parameters and costs more training time, this is acceptable

considering that it can save about 22% GPU memory and improve 21% performance.

Therefore, our DARER models are relatively efficient for practical application.

5.5.9 Experiment on joint Multiple Intent Detection and Slot
Filling

To verify the generality of our method, we further conduct experiments on the task of

joint multiple intent detection and slot filling.
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5.5.9.1 Task Definition

The input is an utterance that can be denoted as U = {ui}n1 . Multiple intent detection

can be formulated as a multi-label classification task that predicts multiple intents

expressed in the input utterance. And slot filling is a sequence labeling task that maps

each ui into a slot label.

5.5.9.2 Model Architecture

We apply our relational temporal graph reasoning to the state-of-the-art model GL-

GIN [57], forming DARER and DARER2 in this joint task scenario. In GL-GIN, the

dual-task graph is a semantics-label graph, which is a homogeneous graph including

two groups of nodes: predicted intent label nodes and slot semantics nodes. And

vanilla GAT is utilized for graph reasoning. In our DARER, the dual-task graph is a

relational temporal graph, in which there are (1) intra- and cross-task relations among

the two tasks’ nodes; (2) coarse-grained temporal relations among the slot semantics

nodes. And RGCN is utilized for relational temporal graph reasoning In our DARER2,

the dual-task graph is also a relational temporal graph, including intra- and cross-task

relations. And our proposed DTR-ReTeFormer is used for relational temporal graph

reasoning. Since DTR-ReTeFormer can achieve the fine-grained temporal modeling,

compared with GL-GIN and DARER, DARER2 can capture the dependencies between

B- slot labels and their I- slot labels, and this advantage is proven in Fig. 5.12.

5.5.9.3 Datasets and Metrics

Datasets.Following previous works, the two benchmarks: MixATIS and MixSNIPS

[8, 20, 58] are used as testbeds for evaluation. In MixATIS, the split of train/dev/test

set is 13162/756/828 (utterances). In MixSNIPS, the split of train/dev/test set is

39776/2198/2199 (utterances).

Evaluation Metrics. Following previous works, multiple intent detection is evaluated

by accuracy (Acc); slot filling is evaluated using F1 score; sentence-level semantic frame

parsing is evaluated using overall Acc. Overall Acc denotes the ratio of utterances for

which both intents and slots are predicted correctly.

5.5.9.4 Implement Details and Baselines

Following GL-GIN [57], the word and label embeddings are randomly initialized

and trained with the model. The dimension of the word/label embedding is 128 on

MixATIS and 256 on MixSNIPS. The dimension of the hidden state is 200. We adopt
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DARER2GL-GIN

Figure 5.12: Visualizations of slot hidden states generated by GL-GIN and our
DARER2.

Table 5.10: Results comparison. † denotes our model significantly outperforms baselines
with p < 0.01 under t-test.

Models
MixATIS MixSNIPS

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Attention BiRNN [42] 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated [16] 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model [84] 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID [11] 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation [54] 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF [13] 36.1 84.6 73.4 62.9 90.6 95.1
AGIF [58] 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN [57] 43.0 88.2 76.3 73.7 94.0 95.7

DARER 44.7† 88.4 76.7† 74.7† 94.4† 96.5†

DARER2 49.0† 89.2† 77.3† 76.3† 94.9† 96.7†

Adam optimizer for model training with the default setting. For all experiments, we

select the best model on the dev set and report its results on the test set.

We compare our model with Attention BiRNN [42], Slot-Gated [16], Bi-Model [84],

SF-ID [11], Stack-Propagation [54], Joint Multiple ID-SF [13], AGIF [58] and GL-

GIN [57]

5.5.9.5 Results and Analysis

The results comparison is shown in Table 5.10. We can observe that our DARER

models significantly outperform the state-of-the-art model GL-GIN on all datasets. In

particular, DARER2 significantly surpasses GL-GIN on MixATIS dataset in terms

of Overall Acc, achieving 14% relative improvement. The superior performances of

our DARER models verify the advantages of our proposed relation temporal graph
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reasoning. On one hand, relation temporal graph reasoning can effectively model

the intra- and cross-task relation-specific interactions. On the other hand, it can

model the temporal information among the slot semantics nodes. Especially, the

DTR-ReTeFormer in DARER2 can comprehensively model the fine-grained temporal

information, capturing the slot dependencies. To further verify this, we visualize

the slot hidden state generated by DARER2 and GL-GIN, as shown in Fig. 5.12

We can observe that DARER2’s clusters are clearer than GL-GIN’s. Besides, the

B- slot clusters of DARER2 and their corresponding I- slot clusters are separated

clearly. In contrast, some GL-GIN’s generated B- slot clusters and their corresponding

I- slot clusters even overlap. The high quality of our DARER2’s generated hidden

states can be attributed to three facts. First, GL-GIN uses the vanilla GAT for

information aggregation, leading to a disadvantage: for each slot node, the different

information of the intent label nodes and other slot nodes are directly fused to it.

Differently, the DTR-ReTeFormer in DARER2 can achieve relation-specific information

aggregation, which can better leverage the beneficial information via discriminating

the contributions of the two tasks’ nodes. Second, the GAT in GL-GIN cannot model

the temporal information, losing the dependencies among slot nodes. Since each slot

node corresponds to a word in utterance, the group of slot nodes can be regarded as a

sequence, where there are temporal dependencies (e.g. I-Singer can only occur behind

B-Singer). And our DARER models can achieve the relational temporal modeling,

then capture the beneficial slot dependencies.

5.6 Summary

In this paper, we present a new framework, which for the first time achieves relational

temporal graph reasoning and integrates prediction-level interactions to leverage esti-

mated label distribution as explicit and important clues other than implicit semantics.

We design the SATG and DRTG to facilitate relational temporal graph reasoning of dia-

log understanding and dual-task reasoning. To achieve our framework, we first propose

a novel model named DARER to model the relational interactions between temporal

information, label information, and semantics to let two tasks gradually promote each

other, which is further forced by the proposed logic-heuristic training objective. Then

we propose DARER2, which further enhances relational temporal graph reasoning by

adopting our proposed SAT-ReTeFormer and DTR-ReTeFormer. Experimental results

demonstrate the superiority of our DARER models, which surpasses previous models

by a large margin in different dual-task dialog language understanding scenarios.
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Our work brings two insights for dialog understanding and multi-task reasoning

in dialog systems: (1) exploiting the relational temporal information of the dialog

for graph reasoning; (2) leveraging estimated label distributions to capture explicit

correlations between the multiple tasks. In the future, we will apply our method to

other multi-task learning scenarios in dialog systems.
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Chapter 6

Co-guiding Net

6.1 Introduction

Spoken language understanding (SLU) [103] is a fundamental task in dialog systems.

Its objective is to capture the comprehensive semantics of user utterances, and it

typically includes two subtasks: intent detection and slot filling [74]. Intent detection

aims to predict the intention of the user utterance and slot filling aims to extract

additional information or constraints expressed in the utterance.

Recently, researchers discovered that these two tasks are closely tied, and a bunch

of models [11,16,36,43,54] are proposed to combine the single-intent detection and

slot filling in multi-task frameworks to leverage their correlations.

However, in real-world scenarios, a user usually expresses multiple intents in a

single utterance. To this end, [32] begin to tackle the multi-intent detection task

and [13] make the first attempt to jointly model the multiple intent detection and slot

filling in a multi-task framework. [58] propose an AGIF model to adaptively integrate

the fine-grained multi-intent prediction information into the autoregressive decoding

process of slot filling via graph attention network (GAT) [78]. And [57] further propose

a non-autoregressive GAT-based model which enhances the interactions between the

predicted multiple intents and the slot hidden states, obtaining state-of-the-art results

and significant speedup.

Despite the promising progress that existing multi-intent SLU joint models have

achieved, we discover that they suffer from two main issues:

(1) Ignoring the guidance from slot to intent. Since previous researchers

realized that “slot labels could depend on the intent” [13], existing models leverage

the information of the predicted intents to guide slot filling, as shown in Fig. 6.1(a).

However, they ignore that slot labels can also guide the multi-intent detection task.

Based on our observations, multi-intent detection and slot filling are bidirectionally
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shared encoder

input utterance

multi-intent 
decoding

slot 
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 initial intents  initial slots
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input utterance

multi-intent 
decoding

slot 
decoding

output intents output slots

(a) (b)
semantics flow prediction guidance

Figure 6.1: (a) Previous framework which only models the unidirectional guidance
from multi-intent predictions to slot filling. (b) Our framework which models the
mutual guidances between the two tasks.

interrelated and can mutually guide each other. For example, in Fig 6.2, not only

the intents can indicate the slots, but also the slots can infer the intents. However,

in previous works, the only guidance that the multiple intent detection task can get

from the joint model is sharing the basic semantics with the slot filling task. As a

result, the lack of guidance from slot to intent limits multiple intent detection, and so

the joint task.

(2) Node and edge ambiguity in the semantics-label graph. [57, 58] apply

GATs over the constructed graphs to model the interactions among the slot semantics

nodes and intent label nodes. However, their graphs are homogeneous, in which

all nodes and edges are treated as the same type. For a slot semantics node, the

information from intent label nodes and other slot semantics nodes play different roles,

while the homogeneous graph cannot discriminate their specific contributions, causing

ambiguity. Therefore, the heterogeneous graphs should be designed to represent the

relations among the semantic nodes and label nodes to facilitate better interactions.

In this paper, we propose a novel model termed Co-guiding Net to tackle the above

two issues. For the first issue, Co-guiding Net implements a two-stage framework as

shown in Fig. 6.1 (b). The first stage produces the initial estimated labels for the two

tasks and the second stage leverages the estimated labels as prior label information to

allow the two tasks mutually guide each other. For the second issue, we propose two

heterogeneous semantics-label graphs (HSLGs): (1) a slot-to-intent semantics-label
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Figure 6.2: Illustration of the bidirectional interrelations between intent (blue) and
slot (red) labels. The sample is retrieved from MixSNIPS dataset.

graph (S2I-SLG) that effectively represents the relations among the intent semantics

nodes and slot label nodes; (2) an intent-to-slot semantics-label graph (I2S-SLG) that

effectively represents the relations among the slot semantics nodes and intent label

nodes. Moreover, two heterogeneous graph attention networks (HGATs) are proposed

to work on the two proposed graphs for modeling the guidances from slot to intent

and intent to slot, respectively. Experiment results show that our Co-guiding Net

significantly outperforms previous models, and model analysis further verifies the

advantages of our model.

The contributions of our work are three-fold: (1) We propose Co-guiding Net1,

which implements a two-stage framework allowing multiple intent detection and slot

filling mutually guide each other. We make the first attempt to achieve the mutual

guidances between the two tasks. (2) We propose two heterogeneous semantics-label

graphs as appropriate platforms for interactions between semantics nodes and label

nodes. And we propose two heterogeneous graph attention networks to model the

mutual guidances between the two tasks. (3) Experiment results demonstrate that

our model achieves new state-of-the-art performance.

6.2 Co-guiding

Problem Definition Given a input utterance denoted as U = {ui}n1 , multiple intent

detection can be formulated as a multi-label classification task that outputs multiple

intent labels corresponding to the input utterance. And slot filling is a sequence

labeling task that maps each ui into a slot label.

1https://github.com/XingBowen714/Co-guiding
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I1 I2 I3 I4 I5

SL1 SL2 SL3 SL4 SL5

(a) Slot-to-Intent Semantics-Label Graphs (S2I-SLG)

SL

I

: ( SL, slot_label_dependence, SL )

SL

SL

: ( SL, slot_to_intent_guidance, I )

I

I

I

SL

: ( I, intent_semantics_dependence, I )

: ( I, intent_semantics_fused_into, SL )

(b) Relation types of S2I-SLG

Figure 6.3: The illustration of S2I-SLG and its relation types. w.l.o.g, only the edges
directed into SL3 and I3 are shown, and the local window size is 1.

Next, before diving into the details of Co-guiding Net’s architecture, we first

introduce the construction of the two heterogeneous graphs.

6.2.1 Graph Construction

6.2.1.1 Slot-to-Intent Semantics-Label Graph

To provide an appropriate platform for modeling the guidance from the estimated slot

labels to multiple intent detection, we design a slot-to-intent semantics-label graph

(S2I-SLG), which represents the relations among the semantics of multiple intent

detection and the estimated slot labels. S2I-SLG is a heterogeneous graph and an

example is shown in Fig. 6.3 (a). It contains two types of nodes: intent semantics

nodes (e.g., I1, ..., I5) and slot label (SL) nodes (e.g., SL1, ..., SL5). And there are

four types of edges in S2I-SLG, as shown in Fig. 6.3 (b). Each edge type corresponds

to an individual kind of information aggregation on the graph.

Mathematically, the S2I-SLG can be denoted as Gs2i = (Vs2i, Es2i,As2i,Rs2i), in

which Vs2i is the set of all nodes, Es2i is the set of all edges, As2i is the set of two

node types and Rs2i is the set of four edge types. Each node vs2i and each edge

es2i are associated with their type mapping functions τ(vs2i) : Vs2i → As2i and

φ(es2i) : Es2i → Rs2i. For instance, in Fig. 6.3, the SL2 node belongs to Vs2i, while

its node type SL belongs to As2i; the edge from SL2 to I3 belongs to Es2i, while its

edge type slot to intent guidance belongs to Rs2i. Besides, edges in S2I-SLG are
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(a) Intent-to-Slot Semantics-Label Graphs (I2S-SLG)
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(b) Relation types of I2S-SLG

IL

Figure 6.4: The illustration of I2G-SLG and its relation types. w.l.o.g, only the edges
directed into IL3 and S3 are shown, and the local window size is 1.

based on local connections. For example, node Ii is connected to {Ii−w, ..., Ii+w} and

{SLi−w, ..., SLi+w}, where w is a hyper-parameter of the local window size.

6.2.1.2 Intent-to-Slot Semantics-Label Graph

To present a platform for accommodating the guidance from the estimated intent

labels to slot filling, we design an intent-to-slot semantics-label graph (I2S-SLG) that

represents the relations among the slot semantics nodes and the intent label nodes.

I2S-SLG is also a heterogeneous graph and an example is shown in Fig. 6.4 (a). It

contains two types of nodes: slot semantics nodes (e.g., S1, ..., S5) and intent label

(IL) nodes (e.g., IL1, ..., IL5). And Fig. 6.4 (b) shows the four edge types. Each edge

type corresponds to an individual kind of information aggregation on the graph.

Mathematically, the I2S-SLG can be denoted as Gi2s = (Vi2s, Ei2s,Ai2s,Ri2s). Each

node vi2s and each edge ei2s are associated with their type mapping functions τ(vi2s)

and φ(ei2s). The connections in I2S-SLG are a little different from S2I-SLG. Since

intents are sentence-level, each IL node is globally connected with all nodes. For

Si node, it is connected to {Si−w, ..., Si+w} and {IL1, ..., ILm}, where w is the local

window size and m is the number of estimated intents.
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6.2.2 Model Architecture

In this section, we introduce the details of our Co-guiding Net, whose architecture is

shown in Fig.6.5.

6.2.2.1 Shared Self-Attentive Encoder

Following [57,58], we adopt a shared self-attentive encoder to produce the initial hidden

states containing the basic semantics. It includes a BiLSTM and a self-attention

module. BiLSTM captures the temporal dependencies:

hi = BiLSTM
(
xi, hi−1, hi+1

)
, (6.1)

where xi is the word vector of ui. Now we obtain the context-sensitive hidden states

Ĥ = {ĥi}n1 .

Self-attention captures the global dependencies:

H ′ = softmax

(
QK>
√
dk

)
V , (6.2)

where H ′ is the global contextual hidden states output by self-attention; Q,K and V

are matrices obtained by applying different linear projections on the input utterance

word vector matrix.

Then we concatenate the output of BiLSTM and self-attention to form the output

of the shared self-attentive encoder: H = Ĥ‖H ′, where H = {hi}n1 and ‖ denotes

concatenation operation.

6.2.2.2 Initial Estimation

Multiple Intent Detection To obtain the task-specific features for multiple intent

detection, we apply a BiLSTM layer over H :

h
[I,0]
i = BiLSTMI

(
hi, h

[I,0]
i−1 , h

[I,0]
i+1

)
. (6.3)

Following [57,58], we conduct token-level multi-intent detection. Each h
[I,0]
i is fed

into the intent decoder. Specifically, the intent label distributions of the i-th word are

obtained by:

y
[I,0]
i = sigmoid

(
W 1

I

(
σ(W 2

Ih
[I,0]
i +b2I)

)
+b1I

)
, (6.4)

where σ denotes the non-linear activation function; W∗ and b∗ are model parameters.

Then the estimated sentence-level intent labels {IL1, ..., ILm} are obtained by the

token-level intent voting [57].
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Figure 6.5: The architecture of Co-guiding Net. Each HGAT is triggered by its own
task’s semantics and the counterpart’s predicted labels. The green and blue dashed
arrow lines denote the projected label representations from the predicted intents and
slots, respectively. The green solid arrow line denotes the intent distribution generated
by the Intent Decoder at the first stage.

Slot Filling [57] propose a non-autoregressive paradigm for slot filling decoding,

which achieves significant speedup. In this paper, we also conduct parallel slot filling

decoding.

We first apply a BiLSTM over H to obtain the task-specific features for slot filling:

h
[S,0]
i = BiLSTMS(hi, h

[S,0]
i−1 , h

[S,0]
i+1 ). (6.5)

Then use a softmax classifier to generate the slot label distribution for each word:

y
[S,0]
i = softmax

(
W 1

S

(
σ(W 2

Sh
[S,0]
i +b2S)

)
+b1S

)
. (6.6)

And the estimated slot label for each word is obtained by SLi = arg max(y
[S,0]
i ).

76

Shared Self-Attentive Encoder

BiLSTMI BiLSTMS

Intent Decoder Slot Decoder

IL1 IL2 IL3

SL1 SL2 SL3 SL4 SL5

Slot-to-Intent
Hetegeneous Graph
Attention Network

Intent-to-Slot
Hetegeneous Graph
Attention Network

Intent-aware
BiLSTMS

concat

Intent Decoder

Slot Decoder

output intents output slots

Token-level Intent Voting

Token-level Intent Voting



6.2.2.3 Heterogeneous Graph Attention Network

State-of-the-art models [57, 58] use a homogeneous graph to connect the semantic

nodes of slot filling and the intent label nodes. And GAT [78] is adopted to achieve

information aggregation. In Sec. 6.1, we propose that this manner cannot effectively

learn the interactions between one task’s semantics and the estimated labels of the

other task. To tackle this issue, we propose two heterogeneous graphs (S2I-SLG and

I2S-SLG) to effectively represent the relations among the semantic nodes and label

nodes. To model the interactions between semantics and labels on the proposed graphs,

we propose a Heterogeneous Graph Attention Network (HGAT). When aggregating

the information into a node, HGAT can discriminate the specific information from

different types of nodes along different relations. And two HGATs (S2I-HGAT and

I2S-HGAT) are applied on S2I-SLG and I2S-SLG, respectively. Specifically, S2I-HGAT

can be formulated as follows:

hl+1
i =

K

‖
k=1

σ

 ∑
j∈N i

s2i

W
[r,k,1]
s2i α

[r,k]
ij hlj

, r = φ
(
e
[j,i]
s2i

)
,

α
[r,k]
ij =

exp

((
W

[r,k,2]
s2i hli

)(
W

[r,k,3]
s2i hlj

)T
/
√
d

)
∑

u∈N r,i
s2i

exp

((
W

[r,k,2]
s2i hli

)(
W

[r,k,3]
s2i hlu

)T
/
√
d

) , (6.7)

where K denotes the total head number; N i
s2i denotes the set of incoming neighbors of

node i on S2I-SLG; W
[r,k,∗]
s2i are weight matrices of edge type r on the k-th head; e

[j,i]
s2i

denotes the edge from node j to node i on S2I-SLG; N r,i
s2i denotes the nodes connected

to node i with r-type edges on S2I-SLG; d is the dimension of node hidden state.

I2S-HGAT can be derived like Eq. 6.7.

6.2.2.4 Intent Decoding with Slot Guidance

In the first stage, we obtain the initial intent features H [I,0] = {hI,0i }ni and the initial

estimated slot labels sequence {SL1, ..., SLn}. Now we project the slot labels into

vector form using the slot label embedding matrix, obtaining Esl = {e1sl, ..., ensl}.
Then we feed H [I,0] and Esl into S2I-HGAT to model their interactions, allowing

the estimated slot label information to guide the intent decoding:

H [I,L] = S2I-HGAT
(
[H [I,0], Esl],Gs2i, θI

)
, (6.8)

where [H [I,0], Esl] denotes the input node representation; θI denotes S2I-HGAT’s

parameters. L denotes the total layer number.
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Finally, H [I,L] is fed to intent decoder, producing the intent label distributions

for the utterance words: Y [I,1] = {y[I,1]i , ..., y
[I,1]
n }. And the final output sentence-level

intents are obtained via applying token-level intent voting over Y [I,1].

6.2.2.5 Slot Decoding with Intent Guidance

Intent-aware BiLSTM Since the B-I-O tags of slot labels have temporal depen-

dencies, we use an intent-aware BiLSTM to model the temporal dependencies among

slot hidden states with the guidance of estimated intents:

h̃
[S,0]
i = BiLSTM(y

[I,0]
i ‖h[S,0]i , h̃

[S,0]
i−1 , h̃

[S,0]
i+1 ). (6.9)

I2S-HGAT We first project the estimated intent labels {ILj}m1 into vectors using

the intent label embedding matrix, obtaining Eil = {e1il, ..., emil }. Then we feed H̃S and

Eil into I2S-HGAT to model their interactions, allowing the estimated intent label

information to guide the slot decoding:

H [S,L] = I2S-HGAT
(

[H̃S, Eil],Gi2s, θS
)
, (6.10)

where [H̃ [S], Eil] denotes the input node representation; θS denotes I2S-HGAT’s

parameters.

Finally, H [S,L] is fed to slot decoder, producing the slot label distributions for

each word: Y [S,1] = {y[S,1]i , ..., y
[S,1]
n }. And the final output slot labels are obtained by

applying arg max over Y [S,1].

6.2.2.6 Training Objective

Loss Function The loss function for multiple intent detection is:

CE(ŷ, y) = ŷ log(y) + (1− ŷ) log(1− y),

LI =
1∑
t=0

n∑
i=1

NI∑
j=1

CE
(
ŷIi [j], y

[I,t]
i [j]

)
.

(6.11)

And the loss function for slot filling is:

LS =
1∑
t=0

n∑
i=1

NS∑
j=1

ŷSi [j] log
(
y
[S,t]
i [j]

)
, (6.12)

where NI and NS denote the total numbers of intent labels and slot labels; ŷIi and ŷSi

denote the ground-truth intent labels and slot labels.
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Margin Penalty The core of our model is to let the two tasks mutually guide each

other. Intuitively, the predictions in the second stage should be better than those

in the first stage. To force our model obey this rule, we design a margin penalty

(Lmp) for each task, whose aim is to improve the probabilities of the correct labels.

Specifically, the formulations of LmpI and LmpS are:

LmpI =
n∑
i=1

NI∑
j=1

ŷIi [j] max
(

0, y
[I,0]
i [j]− y[I,1]i [j]

)
,

LmpS =
n∑
i=1

NS∑
j=1

ŷSi [j] max
(

0, y
[S,0]
i [j]− y[S,1]i [j]

)
.

(6.13)

Model Training The training objective L is the weighted sum of loss functions

and margin regularizations of the two tasks:

L = γ (LI + βILmpI ) + (1− γ) (LS + βSLmpS ) , (6.14)

where γ is the coefficient balancing the two tasks; βI and βS are the coefficients of the

margin regularization for the two tasks.

6.3 Experiments

6.3.1 Datasets and Metrics

Following previous works, MixATIS and MixSNIPS [8,20,58] are taken as testbeds.

MixATIS includes 13,162 utterances for training, 756 ones for validation and 828

ones for testing. MixSNIPS includes 39,776 utterances for training, 2,198 ones for

validation and 2,199 ones for testing.

As for evaluation metrics, following previous works, we adopt accuracy (Acc)

for multiple intent detection, F1 score for slot filling, and overall accuracy for the

sentence-level semantic frame parsing. Overall accuracy denotes the ratio of sentences

whose intents and slots are all correctly predicted.

6.3.2 Implementation Details

Following previous works, the word and label embeddings are trained from scratch2.

The dimensions of word embedding, label embedding, and hidden state are 256 on

MixATIS, while on MixSNIPS they are 256, 128, and 256. The layer number of all

2Due to space limitation, the experiments using pre-trained language model as the encoder are
presented in Appendix.
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Models
MixATIS MixSNIPS

Overall(Acc) Slot (F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Attention BiRNN [42] 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated [16] 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model [84] 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID [11] 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation [54] 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF [13] 36.1 84.6 73.4 62.9 90.6 95.1
AGIF [58] 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN [57] 43.0 88.2 76.3 73.7 94.0 95.7

Co-guiding Net (ours) 51.3† 89.8† 79.1† 77.5† 95.1† 97.7†

Table 6.1: Results comparison. † denotes our model significantly outperforms baselines
with p < 0.01 under t-test.

GNNs is 2. Adam [34] is used to train our model with a learning rate of 1e−3 and a

weight decay of 1e−6. As for the coefficients Eq.6.14, γ is 0.9 on MixATIS and 0.8 on

MixSNIPS; on both datasets, βI is 1e−6 and βS is 1e0. The model performing best on

the dev set is selected then we report its results on the test set. All experiments are

conducted on RTX 6000.

6.3.3 Main Results

The performance comparison of Co-guiding Net and baselines are shown in Table 6.1,

from which we have the following observations:

(1) Co-guiding Net gains significant and consistent improvements on all tasks and

datasets. Specifically, on MixATIS dataset, it overpasses the previous state-of-the-art

model GL-GIN by 19.3%, 1.8%, and 3.7% on sentence-level semantic frame parsing, slot

filling, and multiple intent detection, respectively; on MixSNIPS dataset, it overpasses

GL-GIN by 5.2%, 1.2% and 2.1% on sentence-level semantic frame parsing, slot filling

and multiple intent detection, respectively. This is because our model achieves the

mutual guidances between multiple intent detection and slot filling, allowing the two

tasks to provide crucial clues for each other. Besides, our designed HSLGs and HGATs

can effectively model the interactions among the semantics nodes and label nodes,

extracting the indicative clues from initial predictions.

(2) Co-guiding Net achieves a larger improvement on multiple intent detection than

slot filling. The reason is that except for the guidance from multiple intent detection

to slot filling, our model also achieves the guidance from slot filling to multiple intent

detection, while previous models all ignore this. Besides, previous methods model the

semantics-label interactions by homogeneous graph and GAT, limiting the performance.
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Models
MixATIS MixSNIPS

Overall(Acc) Slot (F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Co-guiding Net 51.3 89.8 79.1 77.5 95.1 97.7

w/o S2I-guidance 47.7 (↓3.6) 88.8 (↓1.0) 77.1 (↓2.0) 76.6 (↓0.9) 94.7 (↓0.4) 96.9 (↓0.8)
w/o I2S-guidance 47.7 (↓3.6) 88.7 (↓1.1) 77.5 (↓1.6) 76.5 (↓1.0) 94.9 (↓0.2) 97.5 (↓0.2)
w/o relations 46.0 (↓5.3) 88.3 (↓1.5) 77.8 (↓1.3) 76.3 (↓1.2) 94.7 (↓0.5) 97.2 (↓0.4)
+ Local Slot-aware GAT 51.1 (↓0.2) 89.4 (↓0.4) 79.0 (↓0.1) 75.9 (↓1.6) 94.7 (↓0.4) 96.4 (↓1.4)

Table 6.2: Results of ablation experiments.

Differently, our model uses the heterogeneous semantics-label graphs to represent

different relations among the semantic nodes and the label nodes, then applies the

proposed HGATs over the graphs to achieve the interactions. Consequently, their

performances (especially on multiple intent detection) are significantly inferior to our

model.

(3) The improvements in overall accuracy are much sharper. We suppose the

reason is that the achieved mutual guidances make the two tasks deeply coupled and

allow them to stimulate each other using their initial predictions. For each task, its

final outputs are guided by its and another task’s initial predictions. By this means,

the correct predictions of the two tasks can be better aligned. As a result, more test

samples get correct sentence-level semantic frame parsing results, and then overall

accuracy is boosted.

6.3.4 Model Analysis

We conduct a set of ablation experiments to verify the advantages of our work from

different perspectives, and the results are shown in Table 6.2.

6.3.4.1 Effect of Slot-to-Intent Guidance

One of the core contributions of our work is achieving the mutual guidances between

multiple intent detection and slot filling, while previous works only leverage the one-

way message from intent to slot. Therefore, compared with previous works, one of

the advantages of our work is modeling the slot-to-intent guidance. To verify this, we

design a variant termed w/o S2I-guidance and its result is shown in Table 6.2. We can

observe that Intent Acc drops by 2.0% on MixATIS and 0.8% on MixSNIPS. Moreover,

Overall Acc drops more significantly: 3.6% on MixATIS and 0.9% on MixSNIPS. This

proves that the guidance from slot to intent can effectively benefit multiple intent
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detection, and achieving the mutual guidances between the two tasks can significantly

improve Overall Acc.

Besides, although both of w/o S2I-guidance and GL-GIN only leverage the one-

way message from intent to slot, w/o S2I-guidance outperforms GL-GIN by large

margins. We attribute this to our proposed heterogeneous semantics-label graphs and

heterogeneous graph attention networks, whose advantages are verified in Sec. 6.3.4.3.

6.3.4.2 Effect of Intent-to-Slot Guidance

To verify the effectiveness of intent-to-slot guidance, we design a variant termed w/o

I2S-guidance and its result is shown in Table 6.2. We can find that the intent-to-slot

guidance has a significant impact on performance. Specifically, w/o I2S-guidance cause

nearly the same extent of performance drop on Overall Acc, proving that both of the

intent-to-slot guidance and slot-to-intent guidance are indispensable and achieving

the mutual guidances can significantly boost the performance.

6.3.4.3 Effect of HSLGs and HGATs

In this paper, we design two HSLGs: (i.e., S2I-SLG, I2S-SLG) and two HGATs (i.e.,

S2I-HGAT, I2S-HGAT). To verify their effectiveness, we design a variant termed w/o

relations by removing the relations on the two HSLGs. In this case, S2I-SLG/I2S-

SLG collapses to a homogeneous graph, and S2I-HGAT/I2S-HGAT collapses to a

general GAT based on multi-head attentions. From Table 6.2, we can observe that

w/o relations obtains dramatic drops on all metrics on both datasets. The apparent

performance gap between w/o relations and Co-guiding Net verifies that (1) our

proposed HSLGs can effectively represent the different relations among the semantics

nodes and label nodes, providing appropriate platforms for modeling the mutual

guidances between the two tasks; (2) our proposed HGATs can sufficiently and

effectively model interactions between the semantics and indicative label information

via achieving the relation-specific attentive information aggregation on the HSLGs.

Besides, although w/o relations obviously underperforms Co-guiding Net, it still

significantly outperforms all baselines. We attribute this to the fact that our model

achieves the mutual guidances between the two tasks, which allows them to promote

each other via cross-task correlations.

6.3.4.4 Effect of I2S-HGAT for Capturing Local Slot Dependencies

[57] propose a Local Slot-aware GAT module to alleviate the uncoordinated slot

problem (e.g., B-singer followed by I-song) [88] caused by the non-autoregressive
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New    York    city    to    Las    Vegas     and    Memphis   to   Las    Vegas    on   SundayUtterance:
B-fromloc.
city_name

I-fromloc.
city_name

I-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-depart_date.
day_name

 Slot:

Intent: atis_airport     atis_flight
Sentence-level Semantic Frame Parsing: Incorrect Stage I

B-fromloc.
city_name

I-fromloc.
city_name

I-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-depart_date.
day_name

 Slot:

Intent: atis_flight
Sentence-level Semantic Frame Parsing: Correct Stage II

(A)

Tell   me   about    the   m80     aircraft   and   also   how   much   is   the   limousine    service   in   BostonUtterance:
O O O O B-mod O O O O O O O B-transport_type O O B-city_name Slot:

Intent: atis_aircraft     atis_ground_fare
Sentence-level Semantic Frame Parsing: Incorrect Stage I

(B)
O O O O B-aircraft

_code
O O O O O O O B-transport_type O O B-city_name Slot:

Intent: atis_aircraft     atis_ground_fare
Sentence-level Semantic Frame Parsing: Correct Stage II

Figure 6.6: Case study of slot-to-intent guidance (A) and intent-to-slot guidance (B).
Red color denotes error.

fashion of slot filling. And the ablation study in [57] proves that this module effectively

improves the slot filling performance by modeling the local dependencies among slot

hidden states. In their model (GL-GIN), the local dependencies are modeled in both

of the local slot-aware GAT and subsequent global intent-slot GAT. We suppose the

reason why GL-GIN needs the local Slot-aware GAT is that the global intent-slot GAT

in GL-GIN cannot effectively capture the local slot dependencies. GL-GIN’s global

slot-intent graph is homogeneous, and the GAT working on it treats the slot semantics

nods and the intent label nodes equally without discrimination. Therefore, each slot

hidden state receives indiscriminate information from both of its local slot hidden

states and all intent labels, making it confusing to capture the local slot dependencies.

In contrast, we believe our I2S-HLG and I2S-HGAT can effectively capture the slot

local dependencies along the specific slot semantics dependencies relation, which is

modeled together with other relations. Therefore, our Co-guiding Net does not include

another module to capture the slot local dependencies.

To verify this, we design a variant termed +Local Slot-aware GAT, which is

implemented by augmenting Co-guiding Net with the Local Slot-aware GAT [57]

located after the Intent-aware BiLSTMs (the same position with GL-GIN). And its

result is shown in Table 6.2. We can observe that not only the Local Slot-aware GAT

does not bring improvement, it even causes performance drops. This proves that our

I2S-HGAT can effectively capture the local slot dependencies.
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6.3.5 Case Study

To demonstrate how our model allows the two tasks to guide each other, we present

two cases in Fig. 6.6.

Slot-to-Intent Guidance From Fig. 6.6 (A), we can observe that in the first stage,

all slots are correctly predicted, while multiple intent detection obtains a redundant

intent atis airport. In the second stage, our proposed S2I-HGAT operates on S2I-

HLG. It aggregates and analyzes the slot label information from the slot predictions

of the first stage, extracting the indicative information that most slot labels are about

city name while no information about airport is mentioned. Then this beneficial

guidance information is passed into intent semantics nodes whose representations are

then fed to the intent decoder for prediction. In this way, the guidance from slot filling

helps multiple intent detection predict correctly.

Intent-to-Slot Guidance In the example shown in Fig. 6.6 (B), in the first stage,

correct intents are predicted, while there is an error in the predicted slots. In the second

stage, our proposed I2S-HGAT operates on I2S-HLG. It comprehensively analyzes the

indicative information of airecraft from both of slot semantics node aircraft and intent

label node atis aircraft. Then this beneficial guidance information is passed into

the slot semantics of m80, whose slot is therefore correctly inferred.

6.4 Summary

In this paper, we propose a novel Co-guiding Net based on a two-stage framework that

allows the two tasks to guide each other in the second stage using the predicted labels

at the first stage. To represent the relations among the semantics node and label nodes,

we propose two heterogeneous semantics-label graphs, and two heterogeneous graph

attention networks are proposed to model the mutual guidances between intents and

slots. Experiment results on benchmark datasets show that our model significantly

outperforms previous models.
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Chapter 7

ReLa-Net

7.1 Introduction

Intent detection and slot filling [74] are two fundamental tasks in spoken language

understanding (SLU) [103] which is a core component in the dialog systems. In recent

years, a bunch of joint models [11, 16, 36, 42, 43, 54, 56, 106] have been proposed to

tackle single intent detection and slot filling at once via modeling their correlations.

In real-world scenarios, a single utterance usually expresses multiple intents. To

handle this, multi-intent SLU [32] is explored and [13] first propose to jointly model

the multiple intent detection and slot filling in a multi-task framework. [58] and [57]

further utilize graph attention networks (GATs) [78] which model the interactions

between the embeddings of predicted intent labels and the semantic hidden states

of slot filling task to leverage the dual-task correlations in an explicit way. And

significantly improvements have been achieved.

However, we argue that previous works are essentially limited by ignoring the rich

topological structures and relations in the joint label space of the two tasks because

they treat the embeddings of intent labels and slot labels as individual parameter

vectors to be learned. Based on our observation, there are two kinds of potential

topological structures in the joint label space. (1) The global statistical dependencies

among the labels based on their co-occurrence patterns, which we discover are widely-

existing phenomenons. Fig. 7.1 shows an example of label co-occurance. (2) The

hierarchies in the slot labels. Although there is no officially predefined slot label

hierarchy in the datasets, we discover and define two kinds of hierarchies. An example

is shown in Fig. 7.2. Firstly, it is intuitive that there is an intrinsic dependency

between a B- slot label and its I- slot label: in the slot sequence of an utterance,

an I- slot label must occur after its B- slot label, and an I- slot cannot occur solely.

Therefore, in the label space, there should be a hierarchy between a B- slot and its I-
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Figure 7.1: Illustration of top-3 high-probability occurring intent (in blue) and slot (in
green) labels when B-depart date.date relative (Label A) occurs in the training
samples of MixATIS dataset.

arrive_time

B-arrive_time.end_time B-arrive_time.start_time

I-arrive_time.end_time I-arrive_time.start_time

...

Figure 7.2: Illustration of the hierarchy between the pseudo label arrive time and
B- slot labels, and the hierarchy between the B- slot label and its I- label.

slot, while existing methods regard all slot labels as independent ones. Secondly, we

discover that some B- slot labels share the same prefix, which indicates their shared

semantics. Therefore, the prefix can be regarded as a pseudo slot label connecting

these slot labels. We believe the above statistical dependencies and hierarchies can

help to capture the inner- and inter-task label correlations which benefit the joint

task reasoning. Thus in this paper, we focus on exploiting the label topologies and

relations for tackling the joint task.

Besides, previous models decode the two tasks’ hidden states independently without

leveraging the dual-task correlations. This causes the misalignment of the two tasks’

correct predictions. As a result, the performance (Overall Accuracy) on sentence-level

semantic frame parsing is much worse than the two tasks. Therefore, we argue that the

label embeddings conveying the dual-task correlative information should be leveraged

in the decoders to guide the decoding process.

To overcome the above challenges, in this paper, we first construct a heterogeneous

label graph (HLG) including both the global statistical dependencies and slot label

hierarchies, based on which we define a bunch of edge types to represent the topological
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structures and rich relations among the labels. Then we propose a novel model

termed Recurrent heterogeneous Label matching Network (ReLa-Net) to capture

the beneficial label correlative information from HLG and sufficient leverage them

for tackling the joint task. To capture the label correlative information from HLG,

we design a Heterogeneous Label Graph Transformations (HLGT) module, which

conducts relation-specific information aggregation among the label nodes. We design

a recurrent dual-task interacting module to leverage label correlations for semantics-

label interactions. At each step, it takes both tasks’ semantic hidden states and

label knowledge generated at the previous step as input. Then sequence-reasoning

BiLSTM [21] and GATs [78] are utilized for interactions. As for decoding, we design

a novel label-aware inter-dependent decoding mechanism that takes both the hidden

states and label embeddings as input and measures their correlation scores in the

joint label embedding space. By this means, the joint label embedding space serves

as a bridge to connect the two tasks’ decoding processes which then can be guided

by the dual-task inter-dependencies conveyed in the learned label embeddings. We

evaluate our ReLa-Net1 on benchmark datasets and the results show that ReLa-Net

achieves new state-of-the-art performance. Further analysis proves that our method

can capture nontrivial correlations among the two tasks’ labels and effectively leverage

them to tackle the joint task.

7.2 Problem Definition

Given a utterance U , the task of joint multiple intent detection and slot filling aims to

output a intent label set OI ={oI1, ..., oIm} and a slot label sequence OS ={oS1 , ..., oSn},
where n is the length of U and m is the number of intents expressed in U .

7.3 Heterogeneous Label Graph

Mathematically, the HLG can be denoted as G = (V , E ,A,R), where V is the set of

nodes, E is the set of edges, A is the set of node types and R is the set of relations

or edge types. As shown in Fig. 7.3, there are three types of nodes: intent nodes,

slot nodes, and pseudo nodes, which correspond to the intent labels, slot labels, and

pseudo slot labels.

In HLG, there are two kinds of topologies, which correspond to statistical and

hierarchical dependencies, respectively. To represent and capture these dependencies,

1https://github.com/XingBowen714/ReLa-Net
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Figure 7.3: Illustration of a snippet from the whole HLG.

we define 12 relations on HLG: r1 ∼ r8 for statistical dependencies and r9 ∼ r12

for hierarchical dependencies, whose definitions are shown in Table 7.1. And |V| =
N I +NS +NP , in which N I , NS and NP denote the numbers of intent nodes, slot

nodes and pseudo nodes.

r1 ∼ r8 are based on the conditional probability between two labels, and two

thresholds (λ1, λ2) are used to determine whether there is statistical dependency or

strong statistical dependency from node i to node j regarding P (j|i). A high value

of P (j|i) denotes that when label i occurs, there always exists label j in the sample.

Namely, label j can be potentially deduced when label i is predicted. In this case,

an edge is established from node i to node j with the corresponding relation. Note

that in each sample, most slot labels are O which denotes the word has no meaningful

slot. Considering the slot label O cannot provide valuable clues, although it has high

conditional probabilities (always 1.0) with other labels. Therefore, the slot node O is

set as an isolated node in HLG.

r1 ∼ r8 are based on the hierarchies we discovered in slot labels. A B- slot node

can connect and interact with many nodes, including intent nodes, other B- slot nodes,

its parent pseudo node, and its I- slot node. Differently, an I- slot node only connects

with its B- slot nodes because there is a natural affiliation relation between a pair of

B- and I- slot labels: an I- slot label can only appear after its B-slot label. As for

the pseudo labels we defined, there is a parent-child relationship between the parent

pseudo labels and their child B- slot labels. In HLG, a pseudo label works like an

information station, which allows its children (B- slot nodes) to share their semantics

and features.



φ(eij) τ(i) τ(j) P (j|i)

r1: i2i stat dep intent intent λ1 ≤ p < λ2
r2: i2s stat dep intent slot-B λ1 ≤ p < λ2
r3: s2s stat dep slot-B slot-B λ1 ≤ p < λ2
r4: s2i stat dep slot-B intent λ1 ≤ p < λ2

r5: i2i stat strong dep intent intent p ≥ λ2
r6: i2s stat strong dep intent slot-B p ≥ λ2
r7: s2s stat strong dep slot-B slot-B p ≥ λ2
r8: s2i stat strong dep slot-B intent p ≥ λ2
r9: b2i hierarchy slot-B slot-I \
r10: i2b hierarchy slot-I slot-B \

r11: parent2child hierarchy pseudo slot-B \
r12: child2parent hierarchy slot-B pseudo \

Table 7.1: Illustration of the definition of the 12 relations in HLG. φ(eij) denotes
the relation of edge eij (from i to j). τ(i) denotes what kinds of label the node i
corresponds to. P (j|i) denotes the conditional probability of a sample having a label
j when it has a label j.

7.4 ReLa-Net

Overview. The architecture of our ReLa-Net is shown in Fig. 7.4. Firstly, the

initial label embeddings containing beneficial label correlations are generated by the

proposed Heterogeneous Label Graph Transformations (HLGT) module, and the

initial semantic hidden states are generated by the Self-Attentive Semantics Encoder.

Then we allow the two tasks to interact recurrently. At each time step, for each

task, the semantic hidden states and the label knowledge of both tasks are fused,

and their correlations are learned in a BiLSTM and then a GAT. Then the designed

Label-Aware Inter-Dependent Decoding mechanism produces the estimated labels via

measuring the correlations between the hidden state and the label embeddings. The

obtained labels are fed to the designed Dynamically-Masked Heterogeneous Label

Graph Transformations (DM-HLGT) module, which dynamically derives the sample-

specific label knowledge via operating on a DM subgraph of HLG. Then the obtained

label knowledge is used at the next time step. Finally, after T step, the last produced

labels are taken as the final predictions.

Next, we introduce the details of each module.

7.4.1 HLGT

To capture the correlations among the intent and slot labels, inspired by [62,92], we

conduct relation-specific graph transformations to achieve information aggregation on

89



HLG:

eli = ReLU(W1e
l−1
i +

∑
r∈R

∑
j∈N r

i

1

|N r
i |
W r

1 e
l−1
j ), (7.1)

where l denotes the layer number; N r
i denotes the set of node i’s neighbors which are

connected to it with r-type edges; W1 is self weight matrix and W r
1 is relation-specific

weight matrix. The initial node representations are obtained from an initialized matrix

which is trained with the model.

After L layers, the initial intent label embedding matrix EI and slot label em-

bedding matrix ES are obtained. Although EI and ES contain beneficial correlative

information, the HLG is globally built on the whole train set. Therefore, they are not

flexible enough for every sample, whose labels may form a local subgraph on HLG.

And we believe capturing the sample-specific label correlations can further enhance

the reasoning by discovering potential neighbor labels. To this end, we propose the

Dynamically-Masked HLGT, which will be introduced in Sec. 7.4.3.4.
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7.4.2 Self-Attentive Semantics Encoder

Following previous works, we adopt the self-attentive encoder [57, 58] to generate

the initial semantic hidden states. It includes a BiLSTM [21] and a self-attention

mechanism [77]. The input utterance’s word embeddings are fed to the BiLSTm

and self-attention separately. Then the two streams of word representations are

concatenated as the output semantic hidden states.

7.4.3 Recurrent Dual-Task Interacting

7.4.3.1 Semantics-Label Interaction

BiLSTM has been proven to be capable of sequence reasoning [30, 76, 111]. In this

paper, we utilize two BiLSTMs for intent and slot to achieve the fusion and interactions

among the semantics and label knowledge of both tasks. Specifically, the two BiLSTMs

can be formulated as:

ĥI,it = BiLSTMI(h
I,i
t ‖KI

t ‖KS
t , ĥ

I,i−1
t , ĥI,i+1

t ),

ĥS,it = BiLSTMS(hS,it ‖KI
t ‖K

S,i
t , ĥS,i−1t , ĥS,i+1

t ),
(7.2)

where ‖ denotes concatenation operation.

For Intent BiLSTM (BiLSTMI), the input is the concatenation of intent semantic

hidden states hI,it , sentence-level intent label knowledge KI
t and the sentence-level slot

label knowledge KS
t , where t denotes the step number of recurrent dual-task interacting.

Here we use sentence-level label knowledge because multiple intent detection is on

sentence-level. For Slot BiLSTM (BiLSTMS), the input is the concatenation of slot

semantic hidden states hS,it , sentence-level intent label knowledge KI
t and the token-

level slot label knowledge KS,i
t . Here we use token-level slot label knowledge because

slot filling is a token-level task. And we use sentence-level intent label knowledge here

because it can provide indicative clues of potential slot labels regarding the captured

inter-task dependencies among intent and slot labels.

At the first step, there is no available label knowledge, so the inputs of the

two BiLSTMs are the initial hidden states generated in Sec. 7.4.2. How to obtain

KI
t , K

S
t , K

S,i
t is depicted in Sec. 7.4.3.5.

7.4.3.2 Graph Attention Networks

Global-GAT Since multiple intent detection is a sentence-level task, we believe it

is beneficial to further capture the global dependencies among the words. We first

construct a fully-connected graph on the input utterance. There are n nodes in this
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graph and each one corresponds to a word. And we adopt the GAT [78] for information

aggregation. The initial representation of node i is ĥI,it generated by BiLSTMI. After

L layers, we obtain H̃I
t = {h̃I,it }Ni=1.

Local-GAT Since slot filling is on token-level, we adopt a Local-GAT to capture

the token-level local dependencies.The Local-GAT works on a locally-connected graph

where node i is connected to nodes {i− w, ..., i+ w}, where sliding window size w is

a hyper-parameter. The initial representation of node i is ĥS,it generated by BiLSTMS.

After L layers, we obtain H̃S
t = {h̃S,it }Ni=1. And we adopt the GAT [78] for information

aggregation.

7.4.3.3 Label-Aware Inter-Dependent Decoding

In this work, we design a novel label-aware inter-dependent decoding mechanism

(shown in Fig. 7.5) to leverage the dual-task correlative information conveyed in the

learned label embeddings to guide the decoding process. Concretely, the hidden state

is first projected into the joint label embedding space, and then the dot products

are conducted between it and all label embeddings of a specific task to obtain the

correlation score vector. The larger correlation score indicates the shorter distance

between the hidden state’s projection and the label embedding. Thus the hidden state

more likely belongs to the corresponding class. In this way, the joint label embedding

space serves as a bridge that connects the decoding processes of the two tasks, and

the beneficial correlative information conveyed in the learned label embeddings can

guide the inter-dependent decoding for the two tasks. Next, we introduce the intent

and slot decoders in detail.

Intent Decoder Following previous works, we conduct token-level multi-label classi-

fication. Firstly, the intent hidden state h̃I,it is projected into the joint label embedding

space via an MLP. Then the correlation score vector CI,i
t is calculated via dot products

between it and all intent label embeddings. This process can be formulated as:

CI,i
t = (WI(LeakyReLU(W I

h h̃
I,i
t + bh)) + bI) Ê

I
t , (7.3)

where CI,i
t is a N I-dimensional vector; ÊI

t is the sample-specific intent label embedding

matrix at step t; W∗ and b∗ are model parameters.

Then CI,i
t is fed to the sigmoid function to obtain the token-level intent probability

vector. And a threshold (0.5) is used to select the intents. Finally, we obtain the

predicted sentence-level intents by voting for all tokens’ intents [57].
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Figure 7.5: Illustration of our proposed label-aware co-decoding mechanism.
Blue/green circles denote slot labels and red/yellow circles denote intent labels. The
dash arrow denotes the distance between the hidden state projection and the label.
The shorter the distance, the greater the probability that the label is correct. Xdenotes
that the label is selected as the prediction.

Slot Decoder Following [57], we conduct parallel decoding. Similar to Eq. 7.3, the

slot correlation score vector CS,i
t is obtained by:

CS,i
t = (WS(LeakyReLU(W S

h h̃
S,i
t + bS)) + bS) ÊS

t , (7.4)

where CS,i
t is a NS-dimensional vector; ÊS

t is the sample-specific slot label embedding

matrix at step t; W∗ and b∗ are model parameters.

Then CI,i
t is fed to the softmax function to obtain the slot probability distribution.

Finally, the argmax function is used to select the predicted slot.

7.4.3.4 DM-HLGT

After decoding, we obtain the predicted intents and slots at step t. To capture the

sample-specific label correlations, which we believe further benefit the reasoning in

the next step, we first construct a DM subgraph of HLG for each sample. The process

is simple: the nodes of predicted intent labels and slot labels and their first-order

neighbors are reserved, while other nodes on HLG are masked out. Then relation-

specific graph transformations are conducted on this graph to achieve information

aggregation, whose formulation is similar to Eq. 7.1. At the first step, the ÊI
0 and ÊS

0

are EI and ES.
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7.4.3.5 Label Knowledge Projection

To provide label knowledge for next time step, the predicted labels should be projected

into vectors. In Sec. 7.4.3.1, we use three kinds of label knowledge: KI
t , K

S
t , K

S,i
t . KI

t

and KS
t are sentence-level intent and slot label knowledge, respectively. KI

t is the sum

of label embeddings of the predicted intents and KS
t is the sum of label embeddings of

the predicted slots while the O slot is excluded. KS,i
t is token-level slot label knowledge,

which is the label embedding of the predicted slot of token t.

7.4.4 Optimization

Following previous works, the standard loss function for intent task (LI) and slot task

(LS) are:

l(ŷ, y) = ŷ log(y) + (1− ŷ) log(1− y),

LI =
T∑
t=1

n∑
i=1

NI∑
j=1

l(ŷIi [j], y
I,t
i [j]),

LS =
T∑
t=1

n∑
i=1

NS∑
j=1

ŷSi [j] log(y
[S,t]
i [j]).

(7.5)

Besides, we design a constraint loss (Lcst) to push ReLa-Net to generate better label

distributions at step t than step t− 1:

LIcons=
T∑
t=2

n∑
i=1

NI∑
j=1

ŷIi [j] max(0, y
[I,t−1]
i [j]−y[I,t]i [j]). (7.6)

And LScst can be derived similarly.

Then the final training objective is:

L = γI
(
LI + βILIcst

)
+ γS

(
LS + βSLScst

)
, (7.7)

where γI = 0.1 and γS = 0.9 balance the two tasks; βI = 0.01 and βS = 1.0 balance

the standard loss and constraint loss for the two tasks.

7.5 Experiments

7.5.1 Settings

Datasets. Following previous works, we conduct experiments on two benchmarks:

MixATIS and MixSNIPS [8, 20, 58]. In MixATIS, the split of train/dev/test set
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is 13162/756/828 (utterances). In MixSNIPS, the split of train/dev/test set is

39776/2198/2199 (utterances).

Evaluation Metrics. Following previous works, we evaluate multiple intent detection

using accuracy (Acc), slot filling using F1 score, and sentence-level semantic frame

parsing using overall Acc. Overall Acc denotes the ratio of utterances for which both

intents and slots are predicted correctly.

Implementation Details. Following previous works, the word and label embed-

dings are randomly initialized and trained with the model. Due to limited space, the

experiments using pre-trained language model is presented in the Appendix. The

dimension of the word/label embedding is 128 on MixATIS and 256 on MixSNIPS.

For HLG, λ1 = 0.4 and λ2 = 0.9. The hidden dim is 200. The max layer number of all

GNNs is 2. Max time step T is 2. We adopt Adam [34] optimizer to train our model

using the default setting. For all experiments, we select the best model on the dev set

and report its results on the test set. Our source code will be released.

7.5.2 Main Results

We compare our model with: (1) Attention BiRNN [42]; (2) Slot-Gated [16]; (3)

Bi-Model [84]; (4) SF-ID Network [11]; (5) Stack-Propagation [54]; (6) Joint Multiple

ID-SF [74]; (7) AGIF [58]; (8) GL-GIN [57]. Table 7.2 lists the results on the test sets.

We can observe that:

1. Our Rela-Net consistently outperforms all baselines by large margins on all datasets

and tasks. Specifically, compared with Gl-GIN, the previous best model, ReLa-Net

achieves an absolute improvement of 9.2% in terms of Overall Acc on MixATIS, a

relative improvement of over 20%.

2. ReLa-Net gains larger improvements on the intent task than slot task. The reason

is that ReLa-Net is the first model to allow the two tasks to interact with each other,

while previous models only leverage the predicted intents to guide slot filling.

3. Generally, the results on overall Acc are obviously worse than slot F1 and intent

Acc, indicating that it is hard to align the correct prediction of intents and slots.

Compared with baselines, our ReLa-Net achieves especially significant improvements

on overall Acc and effectively reduces the performance gap between overall Acc and

slot F1/intent Acc. This can be attributed to the fact that our model can capture

sufficient and beneficial label correlations from HLG, and the designed label-aware

inter-dependent decoding mechanism can leverage the label correlations to guide

decoding, making the two tasks’ decoding processes correlative. As a result, the

correct predictions of the two tasks are better aligned.
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Models
MixATIS MixSNIPS

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Attention BiRNN 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF 36.1 84.6 73.4 62.9 90.6 95.1
AGIF 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN 43.0 88.2 76.3 73.7 94.0 95.7

ReLa-Net (ours) 52.2 90.1 78.5 76.1 94.7 97.6

Table 7.2: Main results. ReLa-Net obtains statistically significant improvements over
baselines with p < 0.01.

4. ReLa-Net gains more significant improvements on MixATIS dataset than MixSNIPS.

The reason is that MixATIS dataset includes much more labels than MixSNIPS:

MixATIS includes 17 intent labels and 117 slot labels, while MixSNIPS only include

7 intent labels and 72 slot labels. More labels in MixATIS dataset cause it is much

harder for correct predictions, which can be proved by the lower Overall Acc scores

of all models on MixATIS than MixSNIPS. However, the core strength of our model

is leveraging the label topologies and relations. Therefore, more labels in MixATIS

dataset result in larger improvements.

7.5.3 Ablation Study

We conduct two groups of ablation experiments on HLG and ReLa-Net to verify the

necessities of their components. Table 7.3 shows the results.

HLG. w/o stat dep denotes the statistical dependencies are removed, which means

there are no edges between intent and slot label nodes on HLG. We can observe sharp

Variants
MixATIS

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

ReLa-Net 52.2 90.1 78.5
w/o stat dep 45.3 (↓6.9) 87.5(↓2.6) 76.9(↓1.6)
w/o hierarchy 48.4 (↓3.8) 87.9(↓2.2) 78.1(↓0.4)
w/o relation 45.1(↓7.1) 88.2(↓1.9) 75.4(↓3.1)
w/o matching 45.2(↓7.0) 88.1(↓2.0) 77.4(↓1.1)
w/o GATs 47.6(↓4.6) 88.3(↓1.8) 77.2(↓1.3)
w/o DM-HLGT 50.2(↓2.0) 89.2(↓0.9) 78.0(↓0.5)

Table 7.3: Results of ablation experiments.
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Figure 7.6: Visualization of ReLa-Net’s slot clusters.

Figure 7.7: Visualization of GL-GIN’s slot clusters.

drops in the performances of two tasks and the semantic frame parsing. This proves

that statistical dependencies can effectively capture beneficial inter-task dependencies.

w/o hierarchy denotes the slot hierarchies are removed. We can find although

Intent Acc is not seriously affected, the Slot F1 and Overall Acc are both significantly

reduced. This proves that slot hierarchies can effectively bring improvements via

capturing the beneficial structural dependencies among slot labels. w/o relation

denotes HLG collapses into a homogeneous graph without specific relations. Its poor

performances prove that the defined rich relations on HLG are crucial for capturing the

label correlations, which play key roles in dual-task reasoning and label-aware inter-

dependent decoding. ReLa-Net. w/o matching denotes the designed matching
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decoders in ReLa-Net are replaced with the linear decoders used in previous models.

Its worse results prove that our designed matching decoders can effectively improve

the decoding quality via leveraging the beneficial label correlations captured from

HLG. w/o GATs denotes the Global-GAT and Local-GAT are removed. Its worse

results prove that the sentence-level global dependencies and the token-level local

dependencies are important for the intent task and slot task, respectively. However,

even if its semantics and semantics-label interactions are only modeled via LSTM,

it still outperforms all baselines. This can be attributed to the fact that ReLa-Net

can learn beneficial label correlations from HLG and sufficiently leverage them for

decoding. w/o DM-HLGT denotes the DM-HGT is removed. And its results

verify that DM-HLGT can effectively enhance the performance via capturing the

sample-specific label correlations and discovering potential neighbor labels.

7.5.4 Visualization of Hidden State Clusters

To better understand the promising results of ReLa-Net, we perform TSNE [75]

visualization on the final hidden states of the utterances words in the test set of

MixATIS. It is hard to visualize intent states because a single hidden state usually

corresponds to multiple intents. Therefore, we visualize the final slot hidden state of

each word in the utterances. Since there are more than 100 slot labels, to simplify the

visualization, we rank the slot labels regarding their frequencies in the test set, and

we show the results of the top-24 labels. Besides, most slot labels in the test set are O,

and we randomly pick 500 ones. The slot clusters visualization of our ReLa-Net is

shown in Fig. 7.6.

From Fig. 7.6, we can observe that the boundaries of the clusters are clear, and

the data points in the same cluster are tightly closed to each other. And we can find

that the B- slot clusters and their corresponding I- slot clusters are clearly separated.

Besides, there is nearly no incorrect I- slot data point. The high accuracy of I- slot

labels prove that our ReLa-Net effectively resolves the uncoordinated slot problem (e.g.,

B-singer followed by I-song). This is attributed to the beneficial slot hierarchies we

discovered and leveraged.

For comparison, we visualize GL-GIN’s slot clusters in the same way, as shown in

Fig. 7.7. We can observe that GL-GIN’s slot clusters boundaries are not clear. Some

data points of ‘O’ slot are close to other clusters. And some B- clusters and their I-

clusters even significantly overlap each other.

The above observations prove that our method can learn better hidden states via

effectively capturing and leveraging the label correlations.
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Figure 7.8: Visualization of label co-occurrence matrix and learned label correlation
matrix.

7.5.5 Visualization of Label Correlations

To further look into the label correlations, we visualize the label co-occurrence prob-

ability matrix constructed from MixATIS training set and the correlation matrix

of ReLa-Net’s learned label embeddings, as shown in Fig. 7.8 (a) and (b). Label

correlations of two labels are measured by the cosine similarity of their embeddings.

For simplification, we visualize all intent labels (17 ones) and some slot labels (18 ones).

From Fig.7.8 (a), we can observe that there exist many distinct co-occurrence patterns

among the labels of the two tasks. The core of this work is capturing and leveraging

the beneficial label correlations, and promising improvements have been observed from

the experiment results, while previous works neglect this point. From Fig.7.8 (b), we

can find that our ReLa-Net learns non-trivial label embeddings. From the patterns

of label correlations in Fig. 7.8 (b), we can hardly observe the label co-occurrence

patterns in Fig. 7.8 (a). This proves that ReLa-Net can comprehensively leverage the

label co-occurrences to learn robust and effective label embeddings, rather than just

mechanically memorize them.
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Chapter 8

Conclusion and Future work

In this thesis, we improve natural language understanding from the perspective of

multi-graph architectures, which have not been paid enough attention to. Generally,

we argue that in both of single-task and multi-task scenarios, the graph architectures

that combine multi-source information can be constructed for more efficient and

sufficient interactions, which can enhance the inference.

For single-task scenarios, we focus on aspect or target sentiment analysis. In

Chapter 5, we point out that existing works omit the integration of external knowledge

and the joint consideration of both global and local syntactic information. To solve

the issue, we propose KaGRMN to adaptively and recurrently incorporate the required

aspect knowledge from external knowledge base. Besides, we propose DSG to integrate

the two kinds of syntactic information for comprehensive reasoning. In Chapter 6,

we argue that previous graph-based models cannot effectively solve the issue of noisy

information aggregation and Loss of distant correlations. To this end, we propose a

syntax-graph pruning model to remove the noisy word’s node from both the syntax

graph and the self-attention-derived semantics graph. And we combine the two pruned

graphs to guarantee the graph connectivity and the distant beneficial correlations can

be introduced via first-order connections.

For multi-task scenarios, we focus on two dual-task language understanding task:

1) joint dialog sentiment classification and act recognition; 2) joint multiple intent

detection and slot filling. In Chapter 7, we argue that previous model for joint dialog

sentiment classification and act recognition neglect the prediction-level interactions

between the two tasks and the temporal relational information among the utterances.

To solve the issue, we propose DARER and DARER2 to model the sufficient temporal

relational interactions among the semantics and prediction information of the two

tasks. In Chapter 8, we argue that not only the guidance from intent to slot, but

also the one from slot to intent is also beneficial, while previous works ignore this.
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To solve the issue, we propose a two-stage framework, Co-guiding Net, which first

predicts the initial label distributions of the two tasks, and then leverage the encoded

prediction information to achieve mutual guidances between the two tasks. And we

propose the semantics-label heterogeneous graph and heterogeneous graph attention

networks to model the sufficient and relational interactions between the two tasks. In

Chapter 9, we argue that previous works pay little attention to the label dependencies

between the two tasks, which can be leveraged to enhance the label embeddings and

then benefit dual-task reasoning. To solve the issue, we propose ReLa-Net, which can

encode the dual-task label dependencies into the label embeddings and leverage them

for inter-dependent dual-task decoding.

More recently, prompt-based learning has achieved stunning performances in

various of NLP tasks. In the future, I will investigate the multi-task and multi-

graph framework based on prompt-based learning. For multi-task learning, via

designing specific prompting templates, the large language models can be guided

to comprehensively understand the semantics and capture the correlations between

different tasks. For multi-graph learning, multi-graph architectures can be leveraged

to enhance the semantics understanding in the fine-tuning procedure, and prompt

learning can be used in the inference procedure to guide the large language model to

sufficiently reach its potential.
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