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ABSTRACT 

Förster or fluorescence resonance energy transfer (FRET) is a widely utilised technique 

to analyse protein-protein interactions (PPIs) for exploring biological processes. While 

microscopy was traditionally used to measure FRET, flow cytometry-based FRET has 

become more prominent in the last decade. Flow cytometry allows the multichannel 

high-throughput examination of FRET with great sensitivity and statistically robust 

quantification in many samples. As a superior alternative to traditional manual analysis, 

machine learning (ML) has attracted increasing interest in modern cytometry data 

analysis. It can automatically perform objective data-oriented investigations from large 

datasets with minimal human interventions. 

Moreover, current FRET analyses are limited to chemically linked molecules for FRET 

calibration and lack high-performance data pre-processing. To achieve absolute single-

cell quantification of natural (chemically unlinked) PPIs, this study established ML-

powered algorithms for flow cytometry-based FRET detection of multi-protein 

interactions. This study presents designs, validations, performance tests, and 

application demonstrations of the algorithms in a FRET analysis workflow. The UltraFast 

algorithm presented F1 score over 0.91 for singlet data identification. The collaborative 

filtering-based algorithms' performance demonstrated error rates below 0.01% for both 

the correction of baseline subtraction error and autofluorescence prediction. Moreover, 

the downstream spectral unmixing process accomplished near zero (as low as 0.412) 

residual spillover and near zero (as low as 0.620) spread error, demonstrating more than 

1000 folds of improvement compared to spectral unmixing without the 
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abovementioned pre-processing steps. Together, the pre-processing pipeline with these 

developed algorithms achieved unbiased, accurate and robust flow cytometry data pre-

processing, including singlet identification, fluorescence background-subtraction-error 

correction, autofluorescence prediction and removal, and FRET spectral unmixing.  

The pre-processed flow cytometry data further allowed the complete quantification of 

two-protein three-colour FRET, three-protein six-colour FRET, and investigation of 

multiple simultaneous intercellular signalling activities. In particular, the FRET 

calibration and FRET efficiency are improved to the absolute single-cell level 

quantification compatible with chemically-unliked free-interacting molecules compared 

to the current method using linked calibration approaches. The new FRET analysis 

approaches have been tested on five different machine models, including conventional 

and full-spectrum flow cytometers, and validated using data generated from eleven 

FRET experiments. Further utilising the compositional data analysis (CoDA) techniques, 

this study also provided interpretations for the dynamic FRET energy competitions and 

the compositional activation levels of multiple cellular signalling pathways. In conclusion, 

this study provides powerful solutions for clinical diagnostics and therapeutic screenings, 

enabling the search for the next-generation PPI-specific and signalling pathway-specific 

cures for many human diseases. 
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Over the past two decades, Förster or fluorescence resonance energy transfer (FRET) 

applications in the life sciences have substantially increased (Figure 1). According to 

PubMed, the number of peer-reviewed journals with "Resonance Energy Transfer" as 

the topic increased from 1,499 before the year 2002 to 18,525 from the year 2002 to 

2022 (total of 20,024 since the year 1963) [1], showing both the rapid development and 

the fast expanding speed of FRET methods. 

Figure 1 Publication metric on “FRET”
Publications per year found using “Resonance Energy Transfer” as the primary search string with 
advanced search field as [Title/Abstract] in PubMed https://pubmed.ncbi.nlm.nih.gov (Accessed 
on January 1st, 2023).

The fact that FRET is the most straightforward yet powerful technique for in-situ protein-

protein interaction (PPI) super-resolved optical detection is driving this growth. FRET 

does not require the extraction of protein from samples, nor does it require the 

expression of the protein in the non-native host that may possess different post-

translational modifications. FRET is a sensitive tool for investigating biological processes 

mediated by PPIs providing nanometre scale (<10 nm) resolution about intra- and

intermolecular distances (Figure 2) [2, 3]. However, the fast-expanding popularity of 

https://pubmed.ncbi.nlm.nih.gov/
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FRET has led to a significant variance in the methods of collecting, analysing, and 

interpreting the FRET data. Especially with the frequent advancement of fluorescence 

materials (fluorochrome dyes, fluorescent proteins, and fluorescent nanoparticles) and 

FRET quantification techniques (fluorescence emission, fluorescence-lifetime, 

fluorescence polarization anisotropy), investigations often rely heavily on special 

requirements of the fluorophores and detecting equipment. Moreover, the technical 

difficulties and the slow data acquisition speed are challenges for real-life clinical and 

pharmaceutical applications.

Figure 2 Super-resolved optical detection of FRET
FRET has a super-resolved optical detection range of < 10 nm. The relative size of GFP and the 
detection ranges of many imaging technologies are also displayed for comparison. (The bottom
microscopy resolution section was modified from Yang et al. 2016 [4]).
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Since the middle of the 1990s, FRET has been combined with flow cytometry technology 

to produce t interactions detect interactions with high-throughput rates, low equipment 

requirements, and high signal-to-noise sensitivities [5, 6]. Many studies have established 

standard data analytical workflows for flow cytometry and FRET detection [7, 8], but still, 

many limitations in the existing methods have impeded the true single-cell level full 

quantification of flow cytometry-based FRET detection. In particular, the current single-

cell event identification method heavily depends on human-subjective, labour-intensive, 

and low-throughput manual gating strategies [9]. Moreover, as the sensitised emission, 

FRET has relatively low fluorescent intensity, especially when interacting molecules are 

further apart; therefore, FRET is extremely sensitive to background noise and 

autofluorescence [10]. Unfortunately, error-free background correction and 

autofluorescence removal methods are still yet to be developed. For FRET spectral 

unmixing, the fluorescent intensity-based ratiometric flow cytometry FRET method 

devised by Roszik et al. has provided an excellent formula for each detected fluorescent 

signal's spectral compositions [11]. However, the method requires a FRET calibration 

factor which can only be measured using the chemically linked FRET pairs and deducted 

using the population means, albeit the method has been widely used [12-16]. Using the 

linked calibration control and non-single-cell level calculation inhibits the accurate, true 

single-cell level detection of the PPI using flow cytometry-based FRET. 

Moreover, with the upgrade on the two-protein FRET detection, many three-protein 

FRET systems have been developed for more complex biological PPI investigations [17-

19]. As two different FRET acceptors interact with the same FRET donor in the three-

way FRET, the FRET energy competition can happen among the three fluorophores. 
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However, none of the publications has successfully investigated the dynamic FRET 

energy compositions using three fluorophores on flow cytometry during three-way FRET. 

Furthermore, many flow cytometry-based techniques were developed as stand-alone 

PPI screening tools, although PPIs regulate many cellular signalling activities. Flow 

cytometry has the multi-channel detection capability (up to 64 fluorescence detection 

channels in full-spectrum flow cytometer [20]); therefore, flow cytometry-based FRET 

detection will be more appealing with the simultaneous detection of multiple cellular 

signalling reporters. 

Lastly, traditional data analysis in cytometry utilises the inspection and manual 

classification of the 1-D histogram overlays or multiple 2-D scattering plots to perform 

data quality assessment, pre-processing, and analysis. However, the user-dependent 

bias makes it difficult to replicate among different operators. It becomes impractical 

when the numbers of samples and fluorescence channels vastly increase alongside the 

developments of modern multichannel and hyper-spectrum flow cytometry 

technologies. As a superior alternative, machine learning (ML) algorithms can provide 

automated, objective, and accurate data analysis when combined with the flow 

cytometry-based FRET technology. 

The motivation of this project is to eliminate the obstacles which inhibit flow cytometry-

based FRET from being the accurate single-cell level screening tool for PPI investigations 

with full quantitative power. This study aims to deliver an automated, unbiased, and 

fully quantitated, true single-cell level flow cytometry analytical pipeline powered by ML 

algorithms allowing the simultaneous detection of multi-protein FRET and cellular 

signalling pathway activities.  
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This dissertation starts with an overview of the previously published works on flow 

cytometry-based FRET. Then it presents several chapters oriented around the procedure 

from the construction of the biological samples for FRET investigation, the development 

and validation of the flow cytometry-based FRET algorithms, and the demonstration of 

utilising these algorithms to solve several real-life research problems. 

Chapter one begins with the literature review to deliver background information on 

FRET principles and the FRET biological labelling methods. Followed by the flow 

cytometry-based workflow and currently existing algorithms, along with different flow 

cytometry-based FRET quantification methods. 

Chapter two presents the molecular biology methods to prepare the plasmid vectors for 

fluorescent protein fused target protein expression and cellular signalling reporter 

expression, bacterial methods for plasmid vector maximal production and storage, and 

cell biology methods for mammalian expression of the fluorescently labelled PPI and 

cellular signalling detection. Followed by initial microscopy characteristics methods, 

flow cytometry configuration, and FRET detection methods. The rest and majority of this 

chapter is focused on the algorithm design, validation, performance testing and 

implementation, statistical analysis and data visualisation methods.  

Chapters three to seven constitute the results of this study. Firstly, chapter three 

presents the examination and characterisation of the biological samples prepared for 

flow cytometry-based FRET detection and algorithm development. Then, chapter four 

describes the development of automated unsupervised solutions for data pre-

processing, including (i) high-performance single-cell event identification, (ii) accurate 

baseline-subtraction correction, (iii) error-free nonlinear autofluorescence prediction 
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and removal, and (iv) FRET spectral unmixing for fluorescence spill-over compensation. 

Afterwards, chapter five demonstrates the development of single-cell level, fully 

quantitative two-protein three-colour FRET solutions with advanced FRET calibration 

and unlinked free-interacting FRET efficiency calculations. The algorithms were tested 

using both chemically linked enhanced green fluorescent protein (FP) and monomeric 

red fluorescent protein (eGFP-mRFP) FRET pairs and unlinked free interacting FP-

labelled human tumour necrosis factor receptor (TNFR) proteins. Two applications were 

also demonstrated using the FRET algorithms for small molecule concentration 

detection in plant and human T cells antigen-induced surface protein interactions. 

Moreover, chapter six further upgraded the FRET algorithms for the three-protein six-

colour FRET investigations and validated using the trimeric interacting human TNFR1 

meta-clusters. In addition, FRET algorithms were further combined with the 

compositional data analysis (CoDA) approach to investigate the energy dynamics during 

three-protein FRET. With the compositional perspective, the algorithms were tested on 

TNFR1 germline mutation autoinflammation disease and human-poxvirus interaction 

investigations. Furthermore, chapter seven takes one step beyond FRET and 

demonstrates the simultaneous detection of TNFR1 interactions, cell death reporting, 

and cell inflammation reporting. 

In the final summary and perspective chapter, further attention was given to discussing 

the limitations and advantages of the flow cytometry FRET technique and the newly 

developed ML algorithms-powered workflow. Future study directions are further 

proposed to empower the FRET algorithms for more complex biological investigations. 
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Although no “one-size-fits-all” approach exists, this study provided a PPI-specific and 

cellular signalling pathway-specific screening platform with ML-powered analytical tools 

that should benefit many researchers to conduct next-generation customised 

therapeutic screening and disease diagnosis to provide precise solutions for human 

illness. 
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1.1 Principles and applications of FRET

Förster resonance energy transfer (FRET) is named after its inventor Theodor Förster [2]. 

The term “fluorescence resonance energy transfer” is often used when both the FRET-

donor and FRET-acceptor molecules are fluorescent [21-23], despite FRET's energy not 

actually being transferred by fluorescence. In fact, FRET energy is transferred non-

radiatively from an excited donor molecule to an acceptor molecule through a dipole-

dipole resonance coupling mechanism [24, 25] (Figure 3). 

Figure 3 The energy transfers and fluorescence detection during FRET
FRET illustration using the protein-protein interaction diagrams of target proteins A tagged by 
green fluorescent protein (GFP) and B tagged by red fluorescent protein (RFP), the FRET dipole-
dipole energy transfer Jablonski diagrams, and the spectrum viewer diagrams. FRET donor GFP 
and acceptor RFP are excited by the 488 nm and 561 nm laser (A). Ideally, only GFP will be 
excited by the 488 nm laser when there is no FRET event (B). FRET happens when proteins A-
GFP and B-RFP are within proximity (< 10 nm), and a combination of the GFP donor and FRET 
emissions (yellow histogram) can be detected upon 488 nm laser excitation (C).
In general, three prerequisites must be met for the FRET procedure to take place:



11 
 

(i) The emission spectrum of the FRET-donor molecule must sufficiently overlap 

with the excitation spectrum of the FRET-acceptor [26] 

(ii) The FRET-donor must be in proximity to the FRET-acceptor molecule within 

the Förster radius, which is from 0.5 nm to 10 nm [27, 28] 

(iii) The position between the FRET-donor and FRET-acceptor molecules must 

not be perpendicular to each other. FRET achieves maximal rate when donor 

and acceptor are in parallel and decreases as the angle between them 

increases [29] 

However, FRET is not limited to two fluorophores, and some studies have shown the 

possibility of detecting a two-step, three-way FRET among three fluorophores [30-32]. 

FRET involving the usage of different donor and acceptor fluorophores is termed hetero-

FRET. More interestingly, FRET can also happen using the same fluorophore as both a 

donor and an acceptor, with significantly overlapping excitation and emission from the 

same fluorophore, and it is termed homo-FRET [33]. FRET has many applications (Figure 

4), with the most common usage of FRET being to detect protein-protein interactions 

and measure the relative proximity between two interacting protein entities. Moreover, 

intramolecular FRET can detect the concentration of small molecules with 

bioengineered FRET donor and acceptor on two ends of the same receptor protein, 

whilst the binding of the small molecules to the receptor triggers the conformational 

change, therefore, bringing the two ends closer along with the FRET-donor and FRET-

acceptor molecules [34]. In addition, FRET can detect protease activity utilising 

chemically-linked FRET pairs already within the Förster radius in which the linker 

contains the target cleavage site of the tested protease. Upon enzymatic cleavage of the 
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linker, FRET-donor and FRET-acceptor are released from each other and no longer in 

proximity, and the FRET signal disappears. Beyond the abovementioned applications, 

FRET can also detect the changes in the test environment based on the altered 

properties of the fluorophores under different conditions, i.e., shifted FRET emission 

spectrum under different PH [35].

Figure 4 Applications of FRET
All diagrams show the fluorophore emissions upon donor laser excitation. Two proteins fused 
with GFP and RFP can only produce detectable RFP acceptor emission when interacting (A). 
Intracellular FRET happens on the small molecule binding protein when conformational change 
happens upon small molecule binding to the socket (B). The enzyme cleaves the linker between 
the FRETing donor-acceptor pair and frees the acceptor from the donor, and donor emission 
disappears (C). FRET efficiency changes and achieves different amounts of acceptor emissions 
under different testing environments (D). 
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1.2 FRET fluorophore labelling methods 

Choosing the optimal donor and acceptor FRET pairs is crucial in achieving the highest 

possible FRET events in all cases. The choice should be based on the detecting 

hardware’s configuration, such as laser and optical filters [36], as well as the availability 

of the fluorophores. In addition, the user must assess the spectral compatibility of the 

FRET fluorophores with other fluorescent materials being contemporarily assessed if 

conducting a multi-colour experiment. The biological sample’s intrinsic 

autofluorescence should also be considered [37].  

Fluorophore-conjugated antibodies are the easiest technique for studying interactions 

among endogenous biological proteins with FRET due to their high affinity and specificity 

for their binding domain [38]. Roy et al. (2008) have provided a practical evaluation of 

fluorochromes and conjugation strategies for FRET investigations [39]. The antibody 

labelling method also permits the introduction of numerous distinct fluorophores to a 

single target molecule, therefore providing epitope-specific interpretations of the FRET 

events if monoclonal antibodies are used [40]. If possible, a direct labelling approach 

with primary conjugated antibodies should always be used instead of secondary 

antibody labelling. Due to the increased fluorophore distance separation between the 

secondary antibodies, FRET events are often less efficient and prone to false-negative 

results. For labelling a large molecular complex assembly with secondary antibodies, it 

is also feasible that FRET will occur between otherwise more distant targets [41]. 

However, the polyclonal characteristics of the secondary antibodies may make it 

challenging to interpret the FRET results at the biological level. Even with the direct 

antibody labelling approach, caution is necessary when conducting the FRET experiment. 
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Antibodies are essentially large Y-shaped proteins with a size of around 140 kDa. 

Antibodies have bivalent binding capabilities with two epitope recognition sites that can 

be problematic since antibodies have the propensity to form unnatural clusters and 

interfere with the FRET measurement. Additionally, antibody-binding can potentially 

block the protein-protein interaction domains and act as an antagonist to prevent PPI 

and lead to artificial labelling-induced false-negative FRET results [42]. It can also be 

troublesome if the bivalent binding antibody crosslinks two proteins and artificially 

produces FRET emission and false-positive PPI results [43]. Moreover, the employment 

of antibodies generally eliminates the ability to study living cells because cells must be 

fixed and permeabilised to stain intracellular proteins [44].  

An alternative option is to use fluorescent proteins (FPs) to label the target proteins, and 

cells are transfected with plasmids to express FPs fused to specific proteins of interest 

(POIs) for exogenous expression. One of the earliest well-characterised FPs is the green 

fluorescent protein (GFP), which was firstly purified by Shimomura et al. (1962) from the 

jellyfish Aequorea victoria, and cloned by Prasher et al. (1992), then independently 

expressed in heterologous cells by Chalfie et al. and Inouye et al. in 1994 [45-48]. Since 

then, a wide variety of FPs has been discovered and engineered, offering a broad range 

of options for absorbance and emission spectra, oxygen or pH sensitivity, quantum yield, 

and excitation coefficients [49-51].  

When conducting FRET investigations, monomeric FPs should always be used. Many FPs 

can undergo oligomerisation without needing the target proteins to interact, producing 

FRET-positive results caused by the interacting FPs instead of the target proteins [52]. 

Numerous monomeric FPs variations have been derived and are suitable for FRET 



15 
 

applications [41, 52, 53]. In addition, the folding, maturation rate, photostability, and PH 

sensitivity of the FPs, which ultimately influence the quantum yield (QY) of the FPs, may 

all impact the FRET events [54-60]. For FRET measurements, fluorophores with higher 

QY and photostability are preferable [61-63]. 

Modern fluorescent proteins, blue (BFP), cyan (CFP), green (GFP), yellow (YFP), red (RFP), 

and Infrared (iRFP) encompass the entire visible spectrum, with the majority of them 

originally deriving from GFP [64]. Based on the abovementioned variables, some 

frequently used FRET combinations had previously been examined. For instance, CFP 

and YFP have long been the most widely used FRET fluorophores for FRET [40], but they 

have limitations, such as their pH dependence and the comparatively low QY [65]. Using 

bioengineered eGFP, eCFP, eYFP, mClover3, and mRuby2 exhibited enhanced 

fluorescence properties and provided improved opportunities for detecting rapid 

molecular interactions, and thus more workable options for the detection of 

interactions [32, 66, 67]. Bajar et al. 2016 have provided a comprehensive guide to 

fluorescent protein FRET pair selections depending on their relative strengths and 

weaknesses [68]. 

FPs are commonly expressed as amino (N-) or carboxy (C-) terminus fusions with the  

POIs to explore their biological functions in living cells. Most FPs are relatively large 

molecules with a molecular mass of around 25 kDa [69]. Therefore, the fused fluorescent 

proteins may change the target protein’s folding and interaction and compromise the 

inherent biological functions of these POIs [70]. It is necessary to evaluate FRET signals 

and cellular biological functions with FP-fused receptors as an additional layer of 

experimental control [12, 71, 72]. Additionally, to ensure adequate FP motility, the 
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fluorescent proteins might be linked to the POIs using a linker sequence with up to 2 to 

30 amino acids [12, 32, 70]. However, one should be mindful that introducing a linker 

with a different sequence may change the FP’s distance and orientation, which may 

therefore reduce the effectiveness of FRET. 

Additionally, the fluorophores may be oriented in a turned-away position due to the 

unanticipated complex formation between the two proteins, leading to an interaction 

without FRET. Another option is to introduce the FP into the target protein in the space 

between functional domains, which might cause the FP to coexist undisturbed with the 

target protein [73, 74]. In addition, a study also showed that using a minimal number of 

amino acids in the linker at the C-terminus of cellular receptor proteins can produce a 

higher FRET detection while maintaining the biological function of the receptor proteins 

in activating intracellular signalling pathways [70]. 

1.3 Flow cytometry-based FRET analytical workflow and algorithms 

Traditionally FRET is examined using microscopes. FRET can be measured using the 

fluorescence microscopy-based direct determination of quenched FRET-donor 

fluorescent intensity and increased sensitised FRET-acceptor fluorescent intensity [75]. 

Fluorescence lifetime imaging microscopy (FLIM) measures FRET by examining the time 

change for a FRET-donor fluorophore that stays in its excited state [76, 77]. In addition, 

polarised light microscopy analyses the anisotropy dynamics for homo-FRET [33, 78].  

However, microscopy FRET has limitations due to its low throughput, high equipment 

dependency, low signal-to-noise ratio, and prone to false-positive results. Therefore, 

during the mid-90s, flow cytometry-based FRET was developed and proved 

tremendously successful in detecting protein-protein interaction in live cells. It 
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complements the microscopic FRET technique by allowing the collection of tens of 

thousands of events per second. Modern flow cytometers can also perform data 

acquisition using the robotic high-throughput screening (HTS) module with the capacity 

to collect hundreds of samples in under an hour. In addition, the most attractive feature 

of flow cytometry is the high-parameter detection, with the current full-spectrum flow 

cytometers able to perform the simultaneous detection of 64 fluorescence signals. Flow 

cytometry’s capacity to analyse many samples with multiple parameters in a short time 

makes flow cytometry the most widely used screening tool for drug discovery and 

clinical diagnosis. More importantly, unlike microscopy-based FRET, flow cytometry-

based FRET does not require special equipment, which means FRET can be easily 

detected on almost any conventional flow cytometer.  

The flow cytometry-based FRET analytical workflow consists of logical stages before the 

user can perform fluorescent quantifications, data visualisation and biological 

interpretations, including FRETs and PPIs (Figure 5). The pre-processing stages consist of 

data import, followed by anomaly detection, singlet identification, autofluorescence 

removal, spectral unmixing, data transformation, and subpopulation clustering. There 

are many pieces of software and programming packages/libraries that provide solutions 

for each stage of the flow cytometry analytical pipeline. However, many unresolved 

challenges still hinder truly accurate FRET quantification, and this chapter will review 

them in the following sections.   
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Figure 5 Flow cytometry data pre-processing
Flow cytometry data analysis has many stages after data import. It includes anomaly detection, 
singlet identification, autofluorescence removal, spectral unmixing, data transformation and 
data clustering before one can perform statistical analysis.

1.3.1 Anomaly detection and data cleaning

Anomaly detection and data cleaning are essential as the first step in the cytometry data 

analysis pipeline for achieving highly accurate, statistically robust, and biologically 

meaningful results. Data acquisition in cytometers should occur consistently with the 

sample flow rate. Flow cytometry relies significantly on the data collecting rate's 

consistency to guarantee accurate detection of the data. Numerous variables can cause 

the fluctuation of the collection rate. For example, sample clumps can clog the fluidic 

collection tube, rapidly decreasing the data collection rate. Likewise, air bubbles in the 

fluidic system can also affect the data acquisition quality. In addition, unstable laser 

powers and malfunctioning detectors contribute to erroneous fluorescent intensity 

readouts.

Moreover, flow cytometers often generate negative fluorescence intensity values

during data acquisition. The negative values are due to the background signal’s 

subtraction as part of the baseline removal procedure. In addition, negative numbers in 

fluorescence intensity may also result from compensation calculations and 

autofluorescence removal during post-acquisition data processing. Flow cytometry data,

including any abovementioned anomalies, can compromise downstream analyses. 



19 
 

Currently, flowAI is one of the most popular data anomaly detection algorithms for flow 

cytometry [79]. The flowAI algorithm follows a straightforward logic with three data 

quality assessment stages: (i) the flow rate check – which detects abrupt changes in flow 

rate (ii) the fluorescence signal quality check – which detects instability of signal 

acquisition (iii) the dynamic range check – removes outliers below the lower detection 

limit and margin events beyond the upper detection limit. For fluidic flow rate 

consistency, flowAI reconstructs the flow rate from the number of cells per unit of time 

and defines the consistent flow stream as a flow rate with non-periodic oscillations but 

a constant variation. A generalised extreme studentized deviation (ESD) test is used to 

discover the flow rate irregularity. For the fluorescence signal quality check, flowAI plots 

the fluorescent intensity against the time of each recorded event to determine whether 

the data has a stable distribution over the acquisition time. At the last stage, data logged 

with the same value as the maximal detection range are removed to prevent saturated 

signals. However, for negative values, flowAI employs the Z-score test and only removes 

the ones beyond the default threshold; therefore, a portion of the data with negative 

fluorescent intensity is still presented in the collected signals, which is problematic for 

fluorescence intensity interpretation and many downstream data analyses.  

The flowClean algorithm is another widely used data anomaly detection technique [80]. 

The development idea of flowClean is that a sample has several cell populations, each 

of which should have a uniform data acquisition rate and fluorescence intensity. 

FlowClean splits cells into populations based on the median fluorescence intensity of 

each detection channel. Then, it checks acquisition rate stability using the Poisson 

logarithmic likelihood [80].  Then, the fluorescence intensity stability examination uses 
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CoDA [81] and change point analysis [82] techniques. Nevertheless, flowClean replaces 

data with zero and negative values with small random positive values, which, despite 

making the data acceptable for logarithmic-based transformation, might artificially 

generate errors in data quantification.  

1.3.2 Singlet identification 

One of the advantages of flow cytometry over other population mean-based bulk 

measurement techniques is its ability to identify fluorescent signals with single-cell level 

resolution. Flow cytometry offers information at the single-cell level from numerous 

cellular subtypes in the sample. It displays the binominal distribution and heterogeneity 

of the data (Figure 6A). Identifying true single-cell events (singlets) from the doublets, 

multiplets, debris and background noise is critical in flow cytometry data analysis.  

Failure to distinguish singlet from cell aggregates might result in erroneous data 

interpretation (Figure 6B). For example, when measuring fluorescent intensities, flow 

cytometry measures the total fluorescent intensity (MFI) from doublets, records the MFI 

as a single particle event and produces inaccurate intensity readouts (Figure 6B first row). 

In addition, in cell phenotyping tasks, doublets containing different single markers will 

be recorded as multiple markers expressing cell types (Figure 6B second row). Moreover, 

in FRET measurement, an actual FRET-negative single-cell event requires the cell to be 

double-labelled with both FRET-donor and FRET-acceptor fluorophores, indicating the 

genuine non-interacting status of the POIs. However, false non-interacting results can 

be detected when cells are individually and separately labelled with only the FRET-donor 

fluorophore or only the FRET-acceptor fluorophore and form cell aggregates (Figure 6B 

third row). 
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Figure 6 Detection of singlets is critical for flow cytometry data analysis.
Flow cytometry measurement at single-cell level revealing sample heterogeneity (A). Scenarios 
of unsuccessful singlet events identification for flow cytometry data analysis (B).

Flow cytometers measure scattered light signals on two perpendicular detectors, 

including forward and side scattered light signals (FSC and SSC), in addition to measuring 

fluorescence emissions. The FSC measure the relative cell sizes, and the SSC measure

the relative cell granularity, indicating the cellular content's complexity. For every signal 

being measured by flow cytometers, the machine record three signal characteristics, 

including the width, height, and area of the signal peaks. All modern flow cytometers 

are calibrated such that these six characteristics can be used to determine the position 

of singlets within the entire sample by examining a series of 2D scatterplots (Figure 7), 

FSC-A vs SSC-A, FSC-H vs SSC-H, FSC-A vs FSC-H, SSC-A vs SSC-H, FSC-H vs FSC-W, SSH vs 

SSC-W. In detail, an actual singlet event produces only one signal peak, so the area and 

height of the peak should be in a perfect linear relationship. In addition, the relative time 

of a single cell passing the laser (the peak width) should be independent of the signal 

strength (the peak height) (Figure 7A). 
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Based on the calibration among all six scattered light signals, there is a well-established 

and commonly adopted method for identifying singlets using a six-step manual 

threshold drawing procedure known as gating (Figure 7B) [9]. In software like FlowJo 

[83], a user can automatically apply the six-step manual gating established from one 

sample to the rest of the samples with a few clicks. However, when cells are treated 

differently, the profiles on the six-step gating plots will vastly vary (Figure 7B). For 

example, if the expression of specific proteins is upregulated at different levels, the SSC-

A/H will also increase or decrease according to the change in cellular content complexity. 

Additionally, if cells undergo apoptosis (programmed cell death) or proliferation 

(division), the cell size will also decrease or increase respectively. Such varied profiles in 

the six-step gating plots indicate that manual adjustments are often needed for each 

sample to achieve accurate singlet identification in practice.  

The manual gating approach can be labour-intensive and often subjective when 

investigating a large sample batch. So far, very few studies have developed automated 

approaches for singlet identification. In contrast, most studies in the automated gating 

algorithm development have only focused on cell subtype identification using 

fluorescence detection channels (see section 1.3.4). However, most cell-type 

identification algorithms require the input data to be single-cell data cleaned of debris, 

artefacts, and cell aggregates. Among the very few singlet identification algorithms, 

FlowGateNist is the most recently developed Python algorithm that can perform 

automated processing on small cells, such as bacteria and yeast [84].  
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Figure 7 Flow cytometry FSC and SSC measurement, and singlet manual gating
Flow cytometry measures FSC and SSC, and each has width, height and area parameters (A). A 
well-established 6-step manual gating strategy for singlet identification requires further manual 
adjustments when cells are treated differently (B).

FlowGateNIST uses a GMM technique and a comparison between measured cell samples 

and buffer-only blank samples for automatic gating to distinguish between cell events 

and background events. Then it compares the height, area, and width parameters of the 

FSC/SSC signals to distinguish between singlet and multiplet events using a multi-

dimensional GMM. However, since GMM requires the population to be convex, 

FlowGateNist requires iterative computations with different numbers of clusters and 
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merging them to identify the nonconvex singlet population using BIC, so the 

computation efficiency is slow. In addition, FlowGateNist is not suitable for large-size 

mammalian cell samples, which prevents it from being used in human biology studies, 

and this is also the limitation for FlowCal that was developed using example data for 

engineered bacteria (E. coli) and yeast (S. cerevisiae) [85]. Unlike FlowGateNist which 

uses GMM, FlowCal identifies singlets and uses a 2D histogram binning method to 

identify locations with the highest event density in a two-dimensional plot (typically the 

side-scatter vs. forward-scatter signals). The regions with the highest density, with a 

user-specified proportion of the total events, are gated as cell events, whereas the 

regions with lower densities are classified as non-cell background events. The TASBE 

flow analytics software package primarily focuses on flow cytometry data calibration 

and normalisation, but it also contains automated gating using GMM to discriminate cell 

events from background events [86]. Unlike FlowGateNist, TASBE uses a robust 2D 

Gaussian estimator to fit only the data collected in the FSC-A and SSC-A 2D scatterplots 

and identify the core region with the highest cell density. However, the TASBE algorithm 

also requires a user-specified percentage of the total to be gated as cells, whilst events 

beyond the central region and pre-defined percentage are eliminated as either 

background or multiplet events.  

1.3.3 Spectral unmixing and autofluorescence removal  

Fluorescence spectral unmixing (also known as compensation) is the adjustment process 

to remove spectra overlaps from multiple fluorophores detected across multiple 

detectors in flow cytometry data analysis. For flow cytometry-based FRET investigations, 

the overlap between the emission and excitation spectra of the donor and acceptor 
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molecules is one of the essential requirements for FRET to occur. However, cross 

excitation of the acceptor fluorophore with the donor excitation laser, the donor 

emission bleed-through into the acceptor emission spectrum range, and spillover 

between the acceptor and the sensitised FRET signals due to their similar emission 

spectra can all potentially impact the accuracy for FRET quantification. The spillover can 

be minimised by selecting FRET pairs and assigning detection channels that permit 

optimal donor excitation without acceptor cross-laser excitation. In addition, the 

acceptor detection filter must be chosen with no or minimum donor emission bleed-

through. FRET pairings can also be selected from fluorophores whose spectra are 

maximally separated with large Stoke's shifts, but it should be emphasised that 

decreasing the spectral overlap will also decrease the rate for FRET events. 

The key factor of almost all spectral unmixing algorithms is to minimise the spreading 

error (SE) after compensation since the SE impedes the pure fluorescent intensity 

measurement and reduces the detection sensitivity for the FRET detection. The SE for a 

given detector pair can be empirically determined by taking the square root of the 

squared differences in robust standard deviations of detected fluorescence intensity 

between the unstained sample and the single fluorescence control (see section 2.8.4) 

[87]. The most recently developed AutoSpill spectral unmixing algorithm and many 

other compensation techniques using linear regression models, such as ordinary least 

squares (OLS), non-negative least squares (NNLS), weighted least squares (WLS), or the 

generalized linear model (GLM) to predict the spillover coefficients between each pair 

of the cross-talked fluorescence detection [88]. The spillover coefficients are calculated 

using the single-colour controls and are defined as the linear ratio of the fluorescence 
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signals in the primary detection channel to the signal in the non-primary detection 

channel [89]. For example, in FRET detection, the spillover coefficient of the FRET-donor 

and FRET-acceptor channels is determined using the FRET-donor single colour control. 

It is calculated using the ratio of the donor-laser-excited donor fluorescence emission 

detected in the donor channel over the acceptor-laser-excited donor fluorescence 

emission detected in the acceptor channel.  

Furthermore, many studies have treated autofluorescence as another single 

fluorescence emission and removed it from the labelling fluorescence using spectral 

unmixing algorithms [90-92], and this is also the approach used in flow cytometry-based 

FRET analysis [8]. However, autofluorescence is an intrinsic emission mixed with various 

types of biomaterials from the sample; therefore, treating autofluorescence as a single 

fluorescence emission can potentially induce bias and lead to unresolvable residual 

spreading errors during spectral unmixing [93]. Instead, the autofluorescence should be 

treated as the combination of many fluorescence emissions, and the prediction and 

removal of the autofluorescence should be handled using non-linear-based algorithms. 

Unfortunately, to date, the non-linear approach has still not yet been formally examined. 

1.3.4 Cell subtype identification 
 

Traditionally, cell subtype identification is performed with manual gating in flow 

cytometry data analysis to distinguish positively labelled cells from the unlabelled 

populations. However, with the advancement of the flow cytometer technology with 

more detection parameters, manual cell subtype identification becomes an implausible 

task for human eyes. Unsupervised clustering algorithms quickly became attractive for 

cell subtypes identification in flow cytometry data analysis, and this is because they can 



27

produce unbiased results using multiple detection parameters simultaneously with 

minimal human input. 

The K-Means clustering algorithm is one of the first automated data clustering 

techniques applied to cytometry data analysis in 1985 [94]. The K-Means algorithm 

clusters data by separating them into 𝑘𝑘 groups with equal variance so that data within 

the same group share the same centroid [94]. Despite the fact that K-Means is very 

simple to implement, it has several limitations: (i) it requires a user-specified number of 

clusters 𝑘𝑘 that often requires researchers to have pre-established knowledge about the 

cluster numbers of the sample, (ii) it assumes clusters are convex and isotropic, which 

means that samples with irregular shapes will not be clustered correctly, (iii) the 

accuracy also rely on the initially randomly assigned locations of the centroids, which 

means the algorithm needs to be repeated with various centroids initialization locations 

to achieve optimal results (Figure 8).

Figure 8 Illustration of K-Means clustering algorithm
The first 100 iterations of K-means with user-specified hyperparameter 𝑘𝑘 = 3. The three large 
dots in each graph are the location of the centroids calculated using the data within each cluster. 

Many recent algorithms, including X-Means, G-Means, flowPeaks, flow clustering 

without 𝑘𝑘 (FLOCK) and flowMeans, have been developed for cell subtype clustering 

without needing to input a value for 𝑘𝑘 in flow cytometry data analysis [95-99]. In a sense, 
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these algorithms iteratively cluster data with different 𝑘𝑘  values and use evaluation 

techniques such as Bayesian Information Criterion (BIC), Akaike Information Criterion 

(AIC) or Minimum Description Length (MDL) to find the optimal 𝑘𝑘 value automatically. 

In particular, the FLOCK algorithm uses a grid-based approach to find high-density 

regions that enable K-Means clustering to converge significantly faster than random 

initialization of cluster centroids and simultaneously determines an appropriate value 

for 𝑘𝑘 based on the number of dense regions [99]. While the flowMeans algorithm, like 

the more recently improved K-Means algorithm, is a time-efficient yet accurate 

approach for automatically identifying cell subtypes in cytometry data analysis [95]. The 

flowMeans algorithm can identify cell populations with irregular shapes by using several 

centroids to represent the same population, i.e., spilling the data into many mini-

clusters and merging them. In a sense, flowMeans enables high-throughput FACS data 

analysis pipelines that overcome the initialisation, population shape limitation, and 

repeated model selection issues of the conventional K-Means clustering. 

Density-based spatial clustering of applications with noise (DBSCAN) is a non-parametric 

data clustering algorithm that does not require a user-specified 𝑘𝑘 value for the number 

of clusters. DBSCAN can detect noise while performing data clustering (without 

assigning the noise data to any group [100, 101]. It begins by detecting core points using 

a user-defined data neighbourhood size (𝜀𝜀) and the minimal number of data required 

within each neighbourhood (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). Once the core points have been identified, data 

within the overlapped core points neighbourhood and the adjacent non-core points are 

clustered together (Figure 9). Intuitively, DBSCAN identifies clusters as high-density 

regions separated by low-density regions. The FlowGrid algorithm, as the more recent 
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DBSCAN-based flow cytometry clustering algorithm, has combined the grid-based 

approach of the FLOCK algorithm with the power of DBSCAN, and it can handle the high-

parameter data with irregular shapes with significantly reduced computation time [102]. 

Figure 9 Illustration of DBSCAN clustering algorithm
The red dots are core points defined by 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 within the 𝜀𝜀 radius of the centre data, and the 
yellow dots are the border data being merged into the core clusters. The purple dots are noise 
data. The little green dots are the data being ‘reached’ by the centre data within each core 
cluster.

A finite mixture model (FMM) is a group of clustering algorithms that, as the name 

implies, performs unsupervised data clustering using a mixture of distribution models

(Figure 10). Popular flow cytometry data clustering algorithms include Gaussian mixture 

model (GMM), flowClust, flowMerge and flow analysis with automated multivariate 

estimation (FLAME). GMM assumes the cell population distribution combines multiple 

Gaussian distributions from each cluster [103-107]. However, adopting Gaussian 

distributions might result in misleading cluster splits due to outliers and skewness in the 

data. The flowClust algorithm solves these issues using a Box-Cox transformation to 

decrease the data probability distribution skewness and then a t-distributions mixture 

model to represent the cell population [105]. The t-distribution enables a higher 

tolerance for outlier impacts in the cell populations because it has higher tails at both 
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ends than the Gaussian distribution data (Figure 10B) [105]. The flowMerge algorithm 

extends the flowClust framework by employing a cluster merging procedure to further 

support a concave cell population represented by multiple probability distribution 

components [104].

Additionally, the flowMerge algorithm provides an automatic cluster number selection 

method, making it compatible with the high-throughput cytometry data analysis 

pipelines with automation. Alternatively, FLAME does not require the Box-Cox 

transformation. It uses a mixture of skew t-distributions to increase the model’s 

flexibility and adaptability to fit cytometry data with skewness [106]. This approach 

permits unsupervised learning with non-Gaussian populations, which are tolerant of

outliers and data probability distribution with heavy tails.

Figure 10 Illustration of FMM clustering algorithm 
FMM clustering three groups of data with the 2D Gaussian models (A). Each coloured contour 
circle (blue, green, orange) indicates a 2D Gaussian model that best fits the data. Data within 
the circles are identified as the same cluster. A comparison of the Gaussian distribution and the 
t-distribution (B). The t-distribution has higher tails and is more tolerant of outliers.

The agglomerative approach of the hierarchical clustering algorithm is a bottom-up 

solution that starts with assigning each cell to its own cluster and sequentially merging 

them (Figure 11). The spanning-tree progression analysis of density-normalized events 

(SPADE) is a versatile machine-learning algorithm for high-dimensional single-cell flow 
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cytometry data clustering using the agglomerative hierarchical method [108]. The 

SPADE algorithm first minimises the data density variation using density-dependent 

down-sampling, which ultimately balances the large and small cell population sizes and 

boosts the relative frequency of rare populations. Then, density-normalised single-cell 

data are merged with their nearest neighbours based on the calculated distances, and 

the merging steps run iteratively until the number of remaining clusters reaches a user-

defined threshold. A minimum spanning tree (MST) that links the density-normalised 

data is constructed to produce a tree-like graphic representation of the sample. Lastly, 

SPADE uses up-sampling to allocate the complete original data to clusters where their 

nearest neighbours belong. 

Figure 11 Illustration of hierarchical clustering
Data is being clustered using the agglomerative hierarchical clustering algorithm (A). The 
dendrogram shows the distance between data and how data are merged and clustered based 
on the distance (B). 

The PhenoGraph flow cytometry clustering algorithm uses an alternative approach 

based on the Louvain community detection method and the 𝑘𝑘-nearest neighbour (𝑘𝑘-NN) 

approach [109]. PhenoGraph is a robust, data-driven clustering algorithm that requires 

only one hyperparameter input 𝑘𝑘 to construct the 𝑘𝑘-NN graph. It is important to note 
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that this differs from the hyperparameter 𝑘𝑘 required in K-Means for cluster numbers. 

Then PhenoGraph assigns single-cell flow cytometry data into different communities 

based on the neighbour density of each cell. It uses the modularity maximisation method 

to maintain the clustering connection between the intracommunity data points and 

removes the intercommunity connections for cluster segmentation. In theory, smaller 𝑘𝑘 

in PhenoGraph will result in more clusters by splitting the community network with 

higher resolution, and higher k will lead to a lower-resolution clustering with fewer 

cluster numbers. In practice, PhenoGraph is not very sensitive to 𝑘𝑘, i.e., the algorithm 

will return the same cluster number with a reasonable range of different 𝑘𝑘 values [109]. 

A self-organizing map (SOM) is a type of artificial neural network (ANN) that is an 

unsupervised learning algorithm for data clustering as well as data visualization by 

producing a low-dimensional data representation [110-112]. The FlowSOM algorithm is 

developed particularly for flow cytometry data clustering, and the workflow of FlowSOM 

has four stages: (i) data normalization, (ii) constructing a SOM artificial neural network 

representation of the data clustering, (iii) building an MST visualization for the SOM 

clustering results, and (iv) perform the meta-clustering using a consensus hierarchical 

clustering algorithm [111]. The consensus hierarchical clustering algorithm works by 

random subsampling the observations multiple times and implements hierarchical 

clustering on each subsample. A final meta-clustering result is made with the initial SOM 

clustering results and based on how often the same clusters are further clustered to 

form a supercluster. The consensus hierarchical clustering approach gets better results 

than the basic hierarchical clustering approach in terms of clustering stability. However, 

FlowSOM requires a user-specified 𝑘𝑘 value for the desired number of final clusters, the 
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size of the network grid, the learning rate, and the start and end neighbourhood radius 

for the neurons in SOM. The requirement of multiple hyperparameters has made 

FlowSOM a complicated yet powerful flow cytometry data clustering algorithm. 

 

1.4 FRET quantification 

FRET detection can be achieved by either measuring the quenching of FET-donor 

emissions or the increase of sensitized FRET-acceptor emissions. These can be achieved 

using chemically-linked single molecules, such as tandem dyes, the PE-Cy7 fluorophore 

[39], or chemically-linked fluorescent biosensor protein molecules using amino acid 

linkers [10, 68, 113]. Alternatively, FRET can be achieved in unlinked interacting 

molecular or protein multimers, such as two individual fluorescently conjugated 

monoclonal antibodies [114], two naturally fluorescent interacting proteins [115], or 

two synthetically expressed fluorescent fusion proteins [32], dependent upon the 

molecular distance between the fluorescent donor and acceptor elements within such 

interactions. Taking the ratio of sensitised FRET emission over the quenched donor 

emission can only provide semi-quantitative results [34] since the FRET fluorescent 

intensity reflects both the PPIs level, the expression level of those fluorescently labelled 

POIs, and the instrument configurations.  

FRET efficiency (𝐸𝐸) is an unbiased full quantification parameter for the FRET event, 

independent of the used flow cytometer configuration, the protein expression level, and 

FRET efficiency is inversely proportional to the sixth power of the distance between 

donor and acceptor fluorophores that come into proximity (Eq.1).  
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Equation 1 FRET efficiency and FRET donor-acceptor distance 

𝐸𝐸 =
1

1 + � 𝑟𝑟𝑅𝑅0
�
6 

The parameter 𝑅𝑅 is the actual distance between donor and acceptor fluorophores, and 

𝑅𝑅0 is the “Förster radius”, which is the distance at which the FRET efficiency is 50% [3, 

25]. The “Förster radius” 𝑅𝑅0 is determined by the spectral properties of the FRET-donor 

and FRET-acceptor fluorophores, which can be calculated using the orientation of the 

fluorophores (𝑘𝑘2), the quantum yield of the donor (𝜙𝜙𝐷𝐷 ), the refractive index of the 

medium surrounding the fluorophores (𝑀𝑀), and the spectral overlap integral of the donor 

and acceptor (𝐽𝐽), as shown in (Eq2.) [116]. 

Equation 2 The Föster radius 

𝑅𝑅0 = 0.211 ∗  �𝑘𝑘2𝑀𝑀−4𝜙𝜙𝐷𝐷𝐽𝐽(𝜆𝜆)6   & 𝐽𝐽(𝜆𝜆) =
∫ 𝐹𝐹𝐷𝐷(𝜆𝜆)𝜀𝜀𝐴𝐴(𝜆𝜆)𝜆𝜆4𝑑𝑑𝜆𝜆∞
0

∫ 𝐹𝐹𝐷𝐷(𝜆𝜆)𝑑𝑑𝜆𝜆∞
0

 

𝐹𝐹𝐷𝐷(𝜆𝜆) is the donor's normalised fluorescence emission (depending on wavelength), 𝜀𝜀𝐴𝐴 

is the acceptor's extinction coefficient (in M-1 cm-1) (dependent on wavelength), and 𝜆𝜆 

is the wavelength. As the actual 𝑘𝑘2 of FPs is unknown, the orientation between 

fluorophores is commonly considered to be 2/3, equivalent to a random orientation. A 

different 𝑘𝑘2  value would result in a different 𝑅𝑅0  value, but the trends between the 

various FRET pairs remain unchanged. Fluorescent proteins of the same spectral class 

frequently exhibit identical excitation and emission spectra. However, their extinction 

coefficients (𝜀𝜀𝐴𝐴) and quantum yields (𝜙𝜙𝐷𝐷) may differ. When the donors have identical 

emission spectra, Eq. 2 predicts that the FP with the greater quantum yield (𝜙𝜙𝐷𝐷) is the 

superior donor. Due to the bigger overlap integral, an acceptor with a more significant 

extinction coefficient than another acceptor with similar excitation spectra is 

anticipated to be a superior acceptor. The 𝑅𝑅0 of several regularly used fluorophores in 
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FRET have already been calculated and discussed [51]. Moreover, FPBase 

(https://www.fpbase.org) is a highly recommended online 𝑅𝑅0 calculation tool [117]. 

In order to achieve FRET efficiency calculations using the flow cytometry-based 

fluorescent intensity values, the detected fluorescence emission needs to be first 

spectrally unmixed to obtain clean donor, acceptor and sensitised FRET emission 

quantities. Spectrally unmixing requires single-colour controls for each fluorescent 

source, but sensitised FRET has no pure single-colour control since simultaneous donor 

and acceptor emissions always exist. FRET spectral unmixing can be accomplished with 

the mathematical formulation of the mixed fluorescent signals within each detection 

channel as the weighted combinations of the donor, acceptor, and FRET emissions with 

all potential spillover signals [10, 16]. This approach requires the FRET calibration factor 

𝛼𝛼 which is defined as the ratio between quenched donor emission and sensitised FRET 

emission (see section 2.7.6) [114, 118]. The 𝛼𝛼 can be determined using linear regression 

to predict the intercept and coefficient (Eq.3) [10]. Chemically linked FRET pairs must be 

used to ensure the intercept and coefficient are constant numbers for 𝛼𝛼 determination. 

Equation 3 Linear regression approach to deduct 𝜶𝜶 factor for FRET calibration 

𝑅𝑅𝐹𝐹 − 1 =
𝐼𝐼𝐷𝐷𝐸𝐸𝛼𝛼

𝐼𝐼𝐷𝐷(1− 𝐸𝐸)
 

𝑅𝑅1 =
𝐼𝐼𝐷𝐷𝐸𝐸𝛼𝛼
𝐼𝐼𝐴𝐴𝑆𝑆2

 

1
𝑅𝑅𝐹𝐹 − 1

=
𝜀𝜀𝜆𝜆𝐷𝐷
𝐷𝐷 𝐶𝐶𝐷𝐷
𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴 𝐶𝐶𝐴𝐴

+
𝜀𝜀𝜆𝜆𝐷𝐷
𝐷𝐷 𝐶𝐶𝐷𝐷
𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴 𝐶𝐶𝐴𝐴

𝛼𝛼
1
𝑅𝑅1

  

Unlinked free-interacting FRET pair can also be used but can be extremely challenging 

and require the expression of the POIs driven by the same promoter and the assumption 

https://www.fpbase.org/
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of the known concentration ratio of the donor and acceptor molecules [32]. Once the 𝛼𝛼 

factor is determined, the FRET efficiency can be calculated (see section 2.7.6).  

1.5 Prospective investigations 

Many limitations in the flow cytometry data analytical workflow still need to be resolved 

before full FRET quantification can be achieved. Especially for the experiment using 

mammalian cells, an accurate, automated, rapid, and unbiased algorithm still needs to 

be developed. The usage of many unsupervised clustering algorithms is well evaluated 

for cell subtype identification using the fluorescence detection parameter from the flow 

cytometry data. Their performance in singlet identification using scattered light signals 

has not been determined. Advancements can be made based on the existing clustering 

algorithms, particularly utilising the FSC/SSC signals, which is a good starting point for 

promising results.  

Currently, the gold-standard flowClean and flowAI algorithms both fail to resolve the 

negative-value issue caused by baseline-subtraction-errors. Flow cytometry produces 

multiparameter data, and for each individual cell data, negative values are often 

detected within some detection parameters and not all detectors. Therefore, the high-

parameter measurements guarantee a great chance of at least one detector producing 

high-quality data for every cell. Furthermore, instead of removing the entire single-cell 

data, the specific poor-quality measurement can be removed and treated as missing 

data. Using collaborative learning algorithms, such as collaborative filtering (CF) 

recommendation algorithm, that predict the missing values using the existing high-

quality data can provide accurate solutions for correcting the baseline subtraction-

errors [119]. The CF recommendation algorithm is also a nonlinear approach for data 
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prediction; therefore, exploring the potential of using CF for autofluorescence 

prediction and removal can also shed light on achieving the clean flow cytometry 

fluorescence readout.  Once the clean fluorescent measurement is achieved, the spread 

error of spectral unmixing based on FRET emission formulation and linear models can 

also be vastly eliminated. In addition, other robust linear fitting algorithms, such as 

random sample consensus (RANSAC), can also be employed as an iterative method for 

estimating the spillover coefficients.  Spillover coefficients from the highly overlapped 

FRET emissions that may contain undetected outliers can further increase the accuracy 

of the linear spectral unmixing results to accomplish purely unmixed fluorescent signals.  

The current FRET calibration using the 𝛼𝛼  factor requires the population mean for 

constructing the linear regression model. Therefore, despite the single-cell resolution of 

the downstream FRET efficiency calculation, the accuracy can only be maintained at the 

population level. Therefore, there is an urgent need for a single-cell level FRET 

calibration algorithm, especially for the challenging chemically unlinked FRET system. 

Furthermore, a few studies have explored the capacity to conduct FRET measurements 

and FRET efficiency quantification using the three-molecule FRET system. However, the 

current approaches still treat each pair of the two molecules within the three-way FRET 

event as independent components. In other words, the energy competition from the 

single FRET donor to two different FRET acceptors has not been thoroughly investigated 

in flow cytometry-based FRET analysis. Algorithms that transform the data into 

compositional data for relative comparisons, such as the CoDA method, should be 

utilised for flow cytometry FRET data interpretation.  
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2.1 Molecular biology methods 

2.1.1 Generation of human TNFR-fluorescent fusion protein expression plasmids 

Human TNFR1 was chosen to examine and validate both the two-protein three-colour 

FRET and three-protein six-colour FRET algorithms. As previously described by Chan et 

al., human TNFR1 can form self-assembled homodimers through the pre-ligand-binding 

assembly domain (PLAD) [72], and Vanamee et al. also indicated that cytokine-recruited 

trimers of dimers in a hexagonal meta-cluster conformation [120]. Human CD27 and 

TNFR2 were used as FRET-negative controls for comparison with the TNFR1 FRET-

positive detection. The major advantage of using TNFR1, TNFR2, and CD27 is that they 

are all from the same tumour necrosis factor receptor superfamily (TNFRSF) with similar 

structures, and TNFR1 does not form heterodimers with either TNFR2 or CD27 [32, 121, 

122].  

The human pcDNA3.TNFR1-eCFP, pcDNA3.TNFR1-eYFP, pcDNA3.TNFR2-eCFP and 

pcDNA3.TNFR2-eYFP plasmids were constructed as previously described and kindly 

provided by Dr Francis Chan [70]. All pcDNA3 plasmids are under the control of a 

cytomegalovirus (CMV) promoter. Human TNFR1 and TNFR2 open reading frames (ORFs) 

(without the stop codon) were cloned into the multi-cloning site (MCS) of pcDNA3 using 

the 5’-HindIII and 3’-XhoI sites, and the downstream eCFP and eYFP ORFs were cloned 

using the 5’-XhoI and 3’-XbaI sites. Therefore, the plasmids have the fused receptor-FP 

sequences with six nucleotides as the linker from the XhoI cloning site. All pcDNA3 

vectors contain ampicillin and neomycin resistance genes for selection in both bacteria 

and mammalian host cells, respectively.  
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To generate the CD27 fusion protein pcDNA3 based -eCFP and -eYFP plasmids, the 

human CD27 cDNA sequence was first amplified from the mRNA that was isolated from 

human peripheral blood mononuclear cells by RT-PCR (First Strand cDNA synthesis kit, 

Life Technologies) using PCR forward primer 5’- AGCAGGTACCATGGCACGGCCACATCCCT 

GGTGG-3’ and reverse primer 5’-TACTAACTCGAGGGGGGAGCAGGCAGGCTCCGGTT-3’. 

The PCR introduced the KpnI and XhoI restriction enzyme sites (underlined) into the 

amplified products and enabled either TNFR1 or TNFR2 cDNA to be replaced with the 

CD27 cDNA. 

To generate pcDNA3.TNFR1-mRFP, pcDNA3.TNFR2-mRFP and pcDNA3.CD27-mRFP 

plasmids, monomeric RFP ORF was PCR amplified from pVitro2-mRFP (a gift from Dr 

Rosetta Martiniello-Wilks) with the forward primer 5’-ATCCTCGAGATGGCCTCCTCCGA 

GGA-3’ and a plasmid specific reverse primer 5’-AACCTGCTCCTAGGGTCGACAATCGAT-3’ 

which contains an XhoI and AvrII (compatible with XbaI) restriction sites. Thus, the mRFP 

cDNA replaced eCFP or eYFP cDNAs in the pcDNA3 vectors. 

2.1.2 Generation of TRAPS mutants as -eYFP fusion protein expression plasmids 

To address the capacity of the FRET algorithms in analysing mutant proteins and WT 

proteins interactions, such as in the scenario of autoinflammatory diseases caused by 

germline mutations, the tumour necrosis factor receptor associated periodic syndrome 

(TRAPS) mutants TNFR1-eYFP were generated through site-directed mutagenesis (SDM). 

The SDM reactions were carried out using the pcDNA3-TNFR1-eYFP plasmid as the 

template and designed forward and reverse primer pairs as listed below (Table 1). 
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Table 1 Primers for site-direct mutagenesis of TRAPS plasmids
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To begin the SDM process, 12.5 μl of Q5 Hot Start High-Fidelity 2X Master Mix (New 

England BioLabs), 1.25 μl of each of the 10 μM forward and reverse primer, 2 μl of 10 

ng/μl WT pcDNA3.TNFR1-eYFP template plasmid DNA, and 9 μl of the nuclease-free 

water, were assembled in a thin-walled PCR tube with a final volume of 25 μl per SDM 

reaction. The reagents are completely mixed before performing the routine PCR on the 

thermocycler (SimpliAmpTM, Thermo Fisher Scientific). After 30 seconds of the initial 

denaturation at 98 °C, a total of 25 cycles of PCR amplification were carried out with 

denaturing at 98 °C for 10 seconds, re-annealing at 1-2 °C below the lowest Tm of the 

primer (Table 1) for 30 seconds and an extension of 30 seconds/Kb DNA at 72 °C. A final 

extension was performed at 72 °C for 2 minutes, and then the PCR products were held 

at 4 °C before collection and storage.  

2.1.3 Generation of poxviruses vTNFR-mRFP fusion protein expression plasmids 

With the aim of further testing the robustness of the FRET algorithms, the investigation 

of human TNFR1 interactions was expanded to include the poxviruses-encoded viral 

TNFRs (vTNFRs). The vTNFRs used in this study include the smallpox Variola virus-

encoded G4R, Myxoma virus-encoded MT2 and Monkeypox virus-encoded J2R. All 

vTNFRs were previously generated as the pcDNA3.VarG4R-MycHis, pcDNA3.MyxMT2-

MycHis and pcDNA3.MpxJ2R-MycHis plasmids and kindly provided by Dr Alexander Gale 

[123]. 

To ensure optimal expression of the Variola G4R and Monkeypox J2R ORFs in both Homo 

sapien and Mus musculus cell lines, the sequence for Variola G4R and Monkeypox J2R 

were codon optimised by Codon Devices Inc., USA, using the Variola India 1967 strain 

sequence (NCBI accession: NP_042240.1) and the Monkeypox 1996 Zaire strain 
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sequence (NCBI accession: AF380138.1), respectively. The codon optimisation altered 

the nucleotide sequences without altering the amino acid sequences to match the 

available tRNA pool of Homo sapien and Mus musculus cell lines. In addition, the cloning 

site sequences of KpnI, XhoI, HindIII and XbaI were also altered to allow subcloning using 

these restriction enzymes at specific cloning sites in the plasmid vector. The plasmids 

containing codon-optimised vTNFRs-MycHis sequences were provided by Dr Sarah 

Sherwood [124]. All vTNFRs-MycHis plasmids were digested with the HindIII and XhoI 

restriction enzymes and cloned into the pcDNA3.TNFR1-mRFP plasmid by replacing the 

human TNFR1 cDNA using the same restriction enzymes. Due to biohazard restrictions 

on handling the Variola virus and Monkeypox virus, the ORFs of G4R and J2R were 

synthesised with WHO and smallpox committee approval.  

2.1.4 Generation of pGL4.23.NF-κB-[miniP]-miRFP703 inflammation reporter 

plasmids 

TNFR1-mediated activation of NF-𝜅𝜅B regulated cellular reporters were generated using 

the pGL4.23.[miniP] vector (Promega) to evaluate the simultaneous detection of the 

TNFR1 receptor interaction FRET emissions and the intercellular inflammation signalling 

pathway activities. The first step of constructing the inflammation reporter plasmid is to 

generate the 2X NF-𝜅𝜅B response element (in bold) using the designed oligonucleotides 

5’-GATCCTAGGGAATTCCCGGGAATTCCCTAGGATC-3’ with the same AvrII restriction 

enzyme digestion sites on each end. The oligonucleotides were diluted with the 

annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl and 1 mM EDTA) to a final 

concentration of 50 μM. A total of 200 μl oligonucleotides solution was then added to a 

thin layer PCR tube on the thermocycler. After an initial incubation at 95 °C for 2 minutes, 
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the temperature was cooled to 25 °C over 45 minutes for self-annealing. Following a 

quick centrifugation, the collected self-annealed 2X NF-𝜅𝜅B response element dsDNA was 

then digested with the AvrII restriction enzyme in the digestion buffer. After 2 hours of 

digestion, the digested dsDNA was further purified using ethanol precipitation.  

To construct 4X and 8X NF-𝜅𝜅B response elements, the purified digested 2X dsDNA was 

ligated using the T4 ligase (New England BioLabs). All NF- 𝜅𝜅 B response element 

fragments were cloned into the pGL4.23.[miniP] vector upstream of the minimal 

promoter sequence using the NheI (AvrII compatible) cloning site and this generated the 

pGL4.23.NF-κB-[miniP] plasmids.  

To clone the miRFP703 fluorescent protein reporter sequence into the pGL4.23.NF-κB-

[miniP] plasmids, the pmiRFP703 plasmid (Addgene) was used. The miRFP703 cDNA was 

first digested from the pmiRFP703 plasmid using NcoI and XbaI restriction enzymes. 

Then, the released miRFP703 cDNA was cloned into the pGL4.23.NF-κB-[miniP] plasmids 

downstream of the minimal promoter sequence using the same NcoI and XbaI cloning 

sites. The final process generated the final pGL4.23.NF-κB-[miniP]-miRFP703 

inflammation reporter plasmids with 2X,  4X and 8X NF- 𝜅𝜅 B response elements. 

Meanwhile, the miRFP703 cDNA was also cloned into the pGL4.23.[miniP] vector using 

the same method without NF-𝜅𝜅B response element for use as the negative control.  

2.1.5 DNA quantification 

Plasmid DNA was measured by 260nm absorbance (A260) using a Nanodrop-One 

Spectrophotometer (Thermo Fisher Scientific) according to the manufacturer’s 

instructions. The quality of DNA was assessed by A260/A280 and A260/A230, where 

ratios of around 1.8 and 1.8-2.2, respectively, are defined as ‘pure’. 
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2.1.6 Restriction enzyme digestion 

Restriction enzyme digestions were performed with 1X optimal enzyme buffer, 

restriction enzymes (10 units/1 µg of DNA), 0.1 µg of plasmid DNA, and 0.1 mg/ml bovine 

serum albumin (BSA) (New England BioLabs). Reactions were incubated at the required 

temperatures for two hours, after which the enzyme was heat-inactivated for 20 min at 

80 °C, except for XhoI and AvrII, which cannot be heat-inactivated.  

2.1.7 DNA gel electrophoresis 

Tris-borate-EDTA (TBE) agarose gels, usually 1% (w/v) unless indicated, were cast by 

dissolving 1 g of agarose (Astral Scientific) into 100 ml of TBE, using the microwave at 

power level-6 until completely dissolved. GelRed (Biotium) was added into the molten 

agarose gel solution at 1:10,000 (v/v) and mixed thoroughly before pouring into a 

casting tray (Bio-Rad) fitted with 8- or 20-well comb and allowed to solidify at RT. DNA 

samples and a 1Kb DNA ladder (Invitrogen) were mixed with 1-2 µL of 10X blue loading 

buffer (TaKaRa Bio) and loaded into wells. The DNA was electrophoresed at 80V (Bio-

Rad PowerPac-300) until the loading buffer indicator dye had run approximately 3/4 of 

the length of the gel. 

2.1.8 DNA gel extraction  

Digested DNA fragments were visualised using InGenius3 UV (302nm) trans-illuminator 

(Syngene), and images were acquired using the GeneSys software (version 1.5.0.0). The 

DNA fragments of interest were excised with a sterile razor blade and collected into a 2 

mL Eppendorf tube. The gel slices were weighted using a scale sensitive to 0.001g (A200S 

Analytical balance, Sartorius) and processed with the PureLink Quick Gel Extraction Kit 

(Invitrogen) following the manufacturer’s protocol. Briefly, gel slices were dissolved with 
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3 gel-volumes of Solubilisation Buffer (L3) by incubation for 15 min at 50 °C in a heat 

block (AccuBlock). One gel-volume equivalent of 100% isopropanol (Sigma-Aldrich) was 

then added and centrifuged (5415D Centrifuge, Eppendorf) at 12,000 × g for 1 min at 

RT. The gel/DNA sample was subsequently purified using a Quick Gel extraction column: 

DNA/gel samples were centrifuged at 12,000 × g for 1 min at RT, washed with 500 µL 

Wash Buffer (W1, containing 80% ethanol) and centrifuged again. Residual ethanol was 

removed by a further centrifugation step at approximately 16,000 × g for 2 min. Finally, 

the DNA was eluted in 50 µL Elution Buffer (E5) by centrifugation.  

2.1.9 DNA ligation  

Plasmid DNA ligations were performed on ice in reaction mixtures containing 1 µL of 10X 

T4 DNA ligase buffer and 1 µL of T4 DNA ligase (New England Biolabs). Generally, 

approximately 100 ng of vector and cDNA insert, often in 3 reactions with vector to 

insert ratios or 1:3, 1:1, or 3:1, using dH2O to a final total volume of 10µL. Reaction 

mixtures were incubated on a single layer of ice at room temperature overnight, where 

the reaction temperature will cover a range of 4 to 20 °C or R/T, i.e. as the ice melts 

overnight. The ligase enzyme was heat-inactivated for 10 min at 65 °C before E. coli 

transformation of the newly ligated plasmid. 

2.1.10 DNA sequencing 

To validate the plasmid cloning results, extracted and purified plasmid DNAs were sent 

to Macrogen Korea for Sanger DNA sequencing using the 3730XL sequencers (Applied 

Biosystems). The plasmid DNA samples were diluted to a concentration of 100 ng/μl for 

delivery via post. The sequencing reactions were carried out by the facility staff, and the 

sequencing results were returned as “.ab1” files. Sequences were analysed as detailed 
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in the following section 2.6.2.  The primers used for sequencing are listed below (Table 

2). 

Table 2 Primers for plasmid sequencing 

 

 

 

2.2 Bacterial Methods 

2.2.1 Chemically competent bacteria cells preparation 

For plasmid DNA storage, chemically competent bacteria cells were made for plasmid 

heat-shock transformation. E.coli DH5 α  bacterial cells (genotype: fhuA2 Δ(argF-

lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) were 

provided by Dr Iain Duggin (UTS). Briefly, 500 mL Super Optimal Broth (SOB) (20 g/L 

 

Primer Names Primer Sequence Sense Tm (°C) 
pcDNA3 FWD (T7) 5’-TAATACGACTCACTATAGG-3’ Sense 53 
pcDNA3 REV (SP6) 5’-ATTTAGGTGACACTATAG-3’ Antisense 51 
eCFP/eYFP-N-REV 5’-CGTCGCCGTCCAGCTC-3’ Antisense 65 
mRFP-N-REV 5’-GTACTGGAACTGAGGGGACAG-3’ Antisense 65 
HuCD27 FWD 5’-TGTGGAGCCTGCAGAGCCTTGTC-3’ Sense 72 
HuTNFR1 FWD 5’-ACTCAGGCACCACAGTGCTGTT-3’ Sense 70 
HuTNFR2 FWD 5’-CCTTGTGCCTGCAGAGAGAAGC-3’ Sense 68 
VarG4R FWD 5’-GACCAGCGAGCTGACTATCACA-3’ Sense 67 
MpvJ2R FWD 5’-TCAATCTCTACTAGCGAGCTGACA-3’ Sense 66 
MyxMT2 FWD 5’-ATGTCCTCGGTACACGTATTCCG-3’ Sense 67 
pGL4.23 FWD (RV primer3) 5’-CTAGCAAAATAGGCTGTCCC-3’ Sense 61 
pGL4.23 REV (EBV-rev) 5’-GTGGTTTGTCCAAACTCATC-3’ Antisense 60 
    

Plasmid Sample Primer Used for Sequencing  
pcDNA3.HuCD27-eCFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuCD27 FWD, eCFP/eYFP-N-REV  
pcDNA3.HuTNFR1-eCFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR1 FWD, eCFP/eYFP-N-REV  
pcDNA3.HuTNFR2-eCFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR2 FWD, eCFP/eYFP-N-REV  
pcDNA3.HuCD27-eYFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuCD27 FWD, eCFP/eYFP-N-REV  
pcDNA3.HuTNFR1-eYFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR1 FWD, eCFP/eYFP-N-REV  
pcDNA3.HuTNFR2-eYFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR2 FWD, eCFP/eYFP-N-REV  
pcDNA3.HuCD27-mRFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuCD27 FWD, mRFP-N-REV 
pcDNA3.HuTNFR1-mRFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR1 FWD, mRFP-N-REV 
pcDNA3.HuTNFR2-mRFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR2 FWD, mRFP-N-REV 
pcDNA3.HuTNFR1(TRAPS)-eYFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuTNFR1 FWD, eCFP/eYFP-N-REV  
pcDNA3.VarG4R-mRFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), VarG4R FWD, mRFP-N-REV 
pcDNA3.MpvJ2R-mRFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), MpvJ2R FWD, mRFP-N-REV 
pcDNA3.MyxMT2-mRFP pcDNA3 FWD (T7), pcDNA3 REV (SP6), MyxMT2 FWD, mRFP-N-REV 
pGL4.23.NF-𝜅𝜅B-[miniP]-miRFP703 pGL4.23 FWD (RV primer3), pGL4.23 REV (EBV-rev) 
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Tryptone, 5 g/L Yeast Extract, 0.584 g/L NaCl, 0.186 g/L KCl, 2.4 g/L MgSO4, pH = 7.0) was 

inoculated by a single colony of DH5α E. coli picked from a freshly streaked Luria-Bertani 

(LB) Agar plate (10 g/L Tryptone, 5 g/L Yeast Extract, 10 g/L NaCl, 15 g/L Agar). The 

inoculated SOB was further incubated at 18 °C with shaking at 200-250 rpm until 

reaching an OD600 of 0.6. All incubations steps of bacteria were performed for 10 min at 

4 °C, and centrifugations (CR-22GIII Centrifuge, Hitachi) at 3220×g for 10 min at 4 °C. 

Briefly, bacteria were incubated and then harvested by centrifugation, then 

resuspended with 80 mL of ice-cold Transformation Buffer (TB) (250 mM KCl, 15 mM 

CaCl2, 55 mM MnCl2, and 10 mM PIPES, pH = 6.7). After incubation, bacteria were 

harvested by centrifugation and resuspended in 20 mL of 93% TB and 7% Dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich). Chemically competent bacteria were dispensed into 

pre-chilled 1.5 mL Eppendorf tubes and stored at -80 °C until use. 

2.2.2 Heat-shock transformation 

For each transformation, 100 µL of ice-cold (thawed) competent E. coli were gently 

mixed with plasmid DNA (5 µL, 100 ng/µL) in a pre-chilled sterile Eppendorf tube and 

incubated on ice for 20 mins. Cells were then incubated in a heat block for 1 min at 42 °C 

and immediately transferred back to on ice for 2 min. A 900 µL aliquot of SOB with 

catabolite repression (20 mM glucose) (SOC) was added, and the E. coli were incubated 

for 60 min at 37°C. Finally, the bacteria were centrifuged at 3000 × g for 5 min at RT 

(Eppendorf 5415D centrifuge), and the bacterial pellet was resuspended in 100 µL of 

fresh SOC, then plated onto LB Agar plates (with or without antibiotics) and cultured 

overnight at 37 °C. Transformed bacteria were stored in 15% (v/v) glycerol solution at -

80 °C until use. 
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2.2.3 DNA mini-prep purification  

Plasmid mini-preparations were performed using ISOLATE-II Plasmid Mini Kit (Bioline) 

following the manufacturer’s instructions. Briefly, centrifugation steps were 12,000g for 

1 min at RT. Transformed DH5α E. coli in 5 mL LB containing 80 µg/mL ampicillin was 

first harvested by centrifugation for 30 s. Cells were then resuspended in 250 µL 

Resuspension Buffer (P1) containing 0.4 mg/mL RNase-A, lysed by incubation with 250 

µL alkaline Lysis Buffer (P2) for 5 min at RT, and neutralised with 300 µL acid 

Neutralisation Buffer (P3). The lysate was clarified by centrifugation for 5 min. A volume 

of 750 µL clarified supernatant was pipetted into a silica column and centrifuged. The 

column was then cleaned by a 2-step washing with 500 µL preheated (50 °C) Wash Buffer 

(PW1) and 600 µL Wash Buffer (PW2, containing 80% ethanol), where each wash step 

was followed by centrifugation. Residual ethanol was removed by centrifugation for 2 

min before finally eluting the plasmid DNA in 50 µl of elution buffer (PE). 

2.2.4 DNA maxi-prep purification  

Plasmid maxipreparation was performed using the PureLink HiPure Plasmid Filter 

Purification Kit (Life Technologies) following a similar protocol, starting with a 200 mL 

culture volume. In addition, eluted plasmid DNA was precipitated with 10.5 mL 

isopropanol followed by centrifugation at 12,000 ×  g for 30 min at 4 °C. After 

centrifugation, and plasmid DNA was resuspended with 5 mL 70% ethanol followed by 

another centrifugation at 12,000 × g for 5 min at 4 °C and air-dried for 15 min at RT then 

finally resuspending in 500 µL TE buffer. 
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2.3 Cell Biology Methods – Mammalian Expression  

2.3.1 Mammalian cell tissue culture 

Human embryonic kidney cells contains the SV40 large T antigen (HEK-293T) were the 

gift of Dr Grant Logan (CMRI, Australia) [125]. HEK-293T cells were grown in Dulbecco’s 

Modified Eagle medium (DMEM, pH = 7.4) (Gibco) supplemented with 5% heat-

inactivated fetal bovine serum (FBS) (Invitrogen), 100 U/ml penicillin and 100 mg/ml 

streptomycin (Gibco), in a 37°C humidified 5% CO2 incubator. HEK-293T cells were sub-

cultured twice weekly at a ratio of ~1:8. In brief, media was discarded, and cells were 

washed with 0.9% normal saline (NaCl) (Baxter) incubated in 5 mL 0.25% (w/v) Trypsin-

0.53 mM EDTA solution (Gibco) for 5-10min at 37 °C, to detach from the plastic culture 

vessel. Fresh DMEM containing 10% FBS was added; then, the cells were harvested by 

centrifugation at 350 × g for 5 min at 4 °C in 50 mL Falcon tubes. The cell pellet was 

resuspended with approximately 10 mL of fresh DMEM5 before transferring it into a 

new tissue culture flask. 

2.3.2 Calcium phosphate DNA transfection 

HEK-293T cells were seeded into 6- or 24-well tissue culture dishes (Corning) on the 

previous day and at confluency sufficient to reach ~70% confluency by the next day. 

Media was removed and replaced 2 hours before transfection. For 6-well dishes, a 

mixture containing a total of 2 µg of plasmid DNA for each plasmid, plus 10 µL of 2.5M 

CaCl2 (Sigma-Aldrich) diluted to a total volume of 100µL in sterile dH2O water. The DNA 

mixture was then added dropwise with intermittent mixing (by vortexing) into 100 µL of 

N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) buffered saline (HBS) (280 

mM NaCl, 1.5 mM Na2HPO4, 50 mM HEPES, 10 mM KCl, and 12 mM Dextrose, pH = 7.05) 



51 
 

and incubated for 20 min at RT. The precipitated DNA mixture was then evenly added 

to cells by pipetting. Culture media were replaced with fresh DMEM5 after culture for 4 

hours, and the cells were incubated for a further 36 hours before harvesting, depending 

on the experimental needs. Transient transfection volume was scaled down 

proportionally for 48-well dishes.  

2.3.3 Cell harvesting 

Transfected cells were first detached from the bottom of the tissue culture vessel by 

gentle pipetting. Single-cell suspensions were prepared, where cells were gauze-filtered 

(100 µm gauze, Sefar) to remove cell aggregates that would otherwise cause blockage 

in the flow cytometer. Cells were then collected by centrifugation at 350 × g for 5 min 

at 4 °C. To eliminate potential biohazard, harvested cells were fixed with 1 ml 4% (v/v) 

paraformaldehyde (PFA) in 1 × Phosphate-Buffered Saline (PBS: 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4) prior to flow cytometry data acquisition.    

2.3.4 Cell Live/Dead staining 

The LIVE/DEAD™ Fixable Blue Dead Cell Stain Kit (InvitrogenTM) was used to determine 

the viability of cells prior to PFA fixation. The stain is designed to be excited by a UV laser 

(350 nm) and detected at around 450 nm wavelength. For every 40 cell samples, 50 μl 

of anhydrous DMSO was added to one vial of the fluorescent reactive dye, which both 

were freshly thawed and brought to room temperature immediately before use. For 

each cell sample, collect around 1×106 cells in suspension and wash the cells once with 

1 ml of PBS. After resuspending the cells with 1 ml of PBS, 1 μl of the reconstituted 

live/dead dye was added to each cell sample and mixed well with gentle vortexing. 

Following 30 minutes of incubation at RT in the dark, the cells were rewashed using 1 
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mL PBS and then resuspended with 1 ml 4% (v/v) PFA in PBS. PFA fixation was carried 

out at RT for 15 minutes, and then the cells were washed and resuspended for the last 

time using 1 ml PBS with 1 % (w/v) BSA.  

 

2.4 Flow Cytometry 

2.4.1 Single-cell sorting 

To establish the true ground of the singlet and non-singlet populations, single-cell 

sorting was conducted using the non-transfected cells. The Symphony S6 cell sorter 

(Becton-Dickinson) performed cell sorting with samples’ concentration of around 1×106 

cells per ml PBS in suspension. The six-step singlet gating using FSC-A/SSC-A, FSC-H/SSC-

H, FSC-A/FSC-H, SSC-A/SSC-H, FSC-H/FSC-W and SSC-H/SSC-W scatterplots were formed 

on site with the non-singlet identified as events outside those gates. Cells were sorted 

into tissue culture plates and directly examined using microscopy. Of note, there is a 

potential bias from the cell sorting samples due to the possibility that non-singlet events 

at the detection point might be disrupted into single cells by the high-speed fluidic 

sorting procedure.  

2.4.2 The detection of two-protein three-colour FRET 

To test the FRET algorithm for detecting TNFR1 homodimer interactions, cells were 

separately co-transfected using pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-eYFP for 

eCFP → eYFP FRET detection, pcDNA3.TNFR1-eYFP + pcDNA3.TNFR1-mRFP for 

eYFP→mRFP FRET detection, and pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-mRFP for 

eCFP → mRFP FRET detection. For FRET-negative controls, pcDNA3.TNFR1-eCFP + 

pcDNA3.CD27-eYFP, pcDNA3.TNFR1-eYFP + pcDNA3.CD27-mRFP, and pcDNA3.TNFR1-
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eCFP + pcDNA3.CD27-mRFP transfected cells were used for each of the detection of 

above FRET signals, respectively. In order to test the reliability of the FRET algorithm, 

harvested cell samples were divided into duplicate sets of FACS tubes and data were 

acquired on an LSR-II flow cytometer (Becton-Dickinson) equipped with UV 355 nm (20 

mW), violet 405 nm (25 mW), blue 488 nm (20 mW) and red 635 nm (20 mW) lasers and 

a Fortessa X20 flow cytometer (Becton-Dickinson) equipped with violet 405 nm (50 mW), 

blue 488 nm (100 mW) and red 640 nm (40 mW) lasers, on the same day. The cytometry 

acquisition settings were as follows: first, the FSC-A/SSC-A and SSC-A/SSC-H scatterplots 

were drawn to detect cells with the FSC threshold set at 5000, then the FSC-A/FSC-H, 

SSC-A/SSC-H, FSC-H/FSC-W and SSC-H/SSC-W scatterplots were used to define and gate 

on single cells. Next, the unstained pcDNA3 empty vector-transfected cells and single-

colour controls (single transfections with CFP, YFP or RFP expression plasmids) were 

acquired and used to adjust the laser voltages and set the compensation values to 

minimize bleed-through into adjacent channels. This is necessary due to the broad 

emission spectra of these fluorophores.  

For detector configuration, the eCFP donor, eCFP→ eYFP and eCFP→mRFP FRET 

emissions were all detected on the 405 nm violet laser detector array, with 450/50 nm, 

500 LP 546/10 nm and 595 LP 610/20 nm filters on the LSR-II and with 450/50 nm, 505 

LP 540/10 nm and 600 LP 610/20 nm filters on the Fortessa X20. The YFP donor/acceptor, 

mRFP acceptor and eCFP→mRFP FRET emissions were all detected on the 488 nm blue 

laser detector array, and of note, due to the lack of 561 nm laser on both flow 

cytometers, the mRFP was excited with the 488 nm blue laser. In detail, the emissions 

were detected with 500 LP 530/30 nm, 635 LP 670/14 nm and 595 LP 610/20 nm filters 
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on the LSR-II and with 505 LP 542/27 nm, 635 LP 695/40 nm and 600 LP 610/20 nm filters 

on the Fortessa X20, respectively. The co-transfected cells were then examined using 

two-parameter dot plots to define single-colour FP and double-positive (eCFP and eYFP, 

or eYFP and mRFP, or eCFP and mRFP) co-transfected cells. Generally, data from 30,000 

cells were collected using the FACS DIVA software (v8.0.2, Becton-Dickinson). FACS data 

were recorded and exported as 18-bit flow cytometry “.FCS3.0” files. 

2.4.3 The detection of three-protein six-colour FRET  

To test the FRET algorithm for detecting TNF-recruited TNFR1 homotrimer interactions, 

cells were co-transfected using the pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-eYFP + 

pcDNA3.TNFR1-mRFP plasmids. For comparison and validation, at each of the eCFP, 

eYFP and mRFP positions, the TNFR1 fusion protein plasmid was replaced by the TNFR2, 

CD27 fusion protein plasmid or simply replaced by the pcDNA3 empty vector. The LSR-

II was used with the same hardware configuration described in the detection of two-

protein three-colour FRET section for data acquisition. However, all eCFP, eYFP, mRFP, 

eCFP → eYFP, eYFP → mRFP and eCFP → mRFP detection channels were used 

simultaneously.  

The FRET algorithm for the three-protein six-colour FRET analysis was also tested using 

the AuroraTM full-spectrum flow cytometer (Cytek) data and the conventional 

multichannel filter-based LSR-II flow cytometer. The full-spectrum flow cytometer was 

equipped with a 405nm (100mW) laser, a 488nm (50mW) laser, a 561nm (50mW) laser 

and a 640nm (80mW) laser. The laser-detector modules each have 16, 14, 10, and 8 

detector channels, spanning 420-829nm, 498-829nm, 567-829nm, and 652-829nm, 

respectively (Appendix Figure 1). FCS data were recorded using the SpectroFlo software 
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(version 2.2.0.3), with the FSC threshold set to 200,000. With 10,000 events in the single 

cell gate, data were recorded and saved as 22-bit “.FCS3.1” files.  

2.4.4 The simultaneous detection of three-protein six-colour FRET with cell signalling  

To evaluate the possibility of simultaneously detecting multiple cells signalling pathway 

fluorescence reporters and the three-protein six-colour FRET emissions, cells were co-

transfected with the pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-eYFP + pcDNA3.TNFR1-

mRFP plasmids and the pGL4.23.NF- 𝜅𝜅 B-[miniP]-miRFP703 inflammation reporter 

plasmid. The pGL4.23.NF-𝜅𝜅B-[miniP]-miRFP703 inflammation reporter plasmids with 

different copies of NF-𝜅𝜅 B response elements were used for each transfection to 

determine the optimal signal-to-background ratio. Also, live/dead staining was 

performed on transfected cells before sample harvesting.  

For flow cytometry data acquisition, the LSR-II flow cytometer was used, and the 

configuration was upgraded from the three-protein six-colour FRET configuration 

mentioned in the last section. In addition to the eCFP, eYFP, mRFP, eCFP→eYFP, 

eYFP→mRFP and eCFP→mRFP detection channels, a 410LP 450/50 nm detector was 

used on the 355nm UV laser array for live/dead detection, and a 710LP 730/45 nm 

detector was used for the miRFP703 inflammation reporter detection.  

 

2.5 Microscopy 

2.5.1 EVOS FL cell imaging system 

The expression of TNFR-fluorescent fusion proteins in 293 cells was confirmed by the 

EVOS FL cell imaging system (Life Technologies) before harvesting for the flow cytometry 
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detection or live-cell imaging. Cells were inspected, and images were taken under a 

transmitted channel and three fluorescence channels with filter cubes: CFP (445/45 

excitation; 510/42 emission), YFP (500/24 excitation; 524/27 emission) and RFP (531/40 

excitation; 593/40 emission). The light-emitting diode (LED) intensities were fixed for 

illumination in each channel under 10x objective lens (LPlanFL PH2, NA 0.30, WD 1.2 

mm), transmitted (50% LED-intensity), CFP (30% LED-intensity), YFP (30% LED-intensity) 

and RFP (40% LED-intensity). Images were captured with a built-in ICX285AQ colour 

charge-coupled camera (Sony).  

2.5.2 Live-cell imaging 

The live-cell A1R confocal microscopy (Nikon) was used to examine the optimal sample 

harvesting time for the detection of flow cytometry-based FRET. The A1R data 

characterised the expression profiles of the human CD27, TNFR1 and TNFR2 -eCFP, -

eYFP and -mRFP fusion proteins. The HEK-293T cells were transfected, and after the 

initial 6 hours of incubation, a total of 48 hours of live-cell imaging was performed after 

replacing the transfected cell culture with the fresh medium. 

The eCFP, eYFP, and mRFP emission was excited by the 30 mW 458 nm, 514 nm and 561 

nm lasers and detected at 482/35 nm, 540/30 nm and 595/50 nm, respectively. 

Emissions were detected through a Plan Apo λ 20x lens (numerical aperture: 0.75, 

refractive index: 1.0). A cell without expressing TNFR1-RFP was also analysed to 

generate the background. In addition, the expression of miRFP703 inflammation 

reporters were also examined using the Nikon A1R confocal microscopy using the 50 

mW 637 nm laser and detected at 650 nm LP. 



57 
 

2.5.3 Full-spectrum imaging 
 

The maximum detection ranges of the eCFP, eYFP and mRFP fluorophores were 

examined using the Leica Stellaris 8 confocal microscopy platform. The excitation range 

was from 440 nm to 790 nm with a 1 nm step size, and the emission detection range 

was from 450 nm to 830 nm with a 5 nm step size. 

 

2.6 Software and Online Server 

2.6.1 Primer design 

The oligonucleotide primer sequence design was conducted using the Primer Premier 

software (version 6.0). The appropriate oligonucleotide primer annealing temperature 

(Tm) for SDM using the Q5 high-fidelity DNA polymerase (New England BioLabs) was 

estimated using the online NEB Tm calculator (https://tmcalculator.neb.com). For PCR 

using non-NEB polymerase products, the appropriate annealing temperature was 

estimated using the SnapGene software (version 5.2.0).  

2.6.2 Sequencing analysis 

For sequencing analysis, the sequencing chromatogram “.ab1” files were analysed using 

Python with the SeqIO.read function in the Biopython package (version 1.80). Sequences 

were aligned using the Basic local alignment search tool (BLAST) from the National 

Centre for Biotechnology Information (NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

For sequence alignment of human and poxvirus vTNFRs, the Clustal Omega online server 

was used with the default parameters (https://www.ebi.ac.uk/Tools/msa/clustalo/). 

https://tmcalculator.neb.com/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.6.3 TRAPS mutation sequencing design 

The registry of hereditary autoinflammatory disorders mutations website was used 

(https://infevers.umai-montpellier.fr) to design SDM for TRAPS mutations within the 

PLAD/CRD1 and CRD4 homodimer interaction critical domains. The website provides 

TRAPS mutation sequence records of the TNFRSF1A gene. The TRAPS mutation 

sequence map was generated using the SnapGene software (version 5.2.0). 

2.6.4 Flow cytometry singlet manual gating data generation 

To generate the ground truth data for singlet identification using the manual gating 

strategy, the six-step manual gating was performed on collected flow cytometry data 

(as mentioned for single-cell sorting). FCS files were examined using FlowJo (version 

10.8.1), and manual gating was conducted using the polygon gate drawing tool. Gated 

singlet and non-singlet data were exported as “.csv” files and used to evaluate the 

singlet identification algorithm performance.  

2.6.5 Example FCS data for algorithm validation and application demonstrations 

FlowRepository is a database of flow cytometry experiments where data gathered and 

annotated according to the MIFlowCyt standard can be queried and downloaded. It is 

widely utilised as a repository for experimental findings published in peer-reviewed flow 

cytometry journals. In addition to the samples created and relative data collected in this 

study, three collected flow cytometry datasets on FlowRepository 

(https://flowrepository.org/) were used to further validate and demonstrate the 

applications with the FRET algorithms developed in this study. For the chemically linked 

eGFP-mRFP FRET pairs (Repository ID: FR-FCM-ZZGR) [16], the small molecule IAA/Auxin 

detection in plant cells (Repository ID: FR-FCM-Z3FL) [34], and the human cluster of 

https://infevers.umai-montpellier.fr/
https://flowrepository.org/
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differentiation 4 receptor to T-cell receptor (CD4-TCR) interaction detection (Repository 

ID: FR-FCM-ZZR6) [126], the flow cytometry datasets were downloaded and used in this 

study. These datasets were searched using the keyword “FRET” and selected as they 

have the proper single colour controls and are fully described in published peer-

reviewed journals.  

2.6.6 Microscopy fluorescent intensity quantification 

To perform live-cell imaging quantification, the “.nd2” confocal imaging data file was 

analysed using the ImageJ software (version 1.53). Image data files were imported and 

analysed in batch mode using the ImageJ Macro language (IJM). In detail, the files were 

imported using the “Bio-Formats Macro Extensions” function, and then the 

multichannel data were split into several individual channels using the “Split Channels” 

function. Within each fluorescent channel, the MFI was calculated for the entire imaging 

field at each data collection time spot (for live-cell imaging) or at each excitation and 

emission step (for full-spectrum imaging). The measured MFI data were exported as 

“.csv” files.  

2.6.7 Myxoma virus MT2 structure and MT2::TNFR1 interaction predictions 

The Myxoma virus MT2 structure was predicted using the AlphaFold2 Colab online 

server 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold

2.ipynb) [127]. The Myxoma virus MT2 ORF (NCBI accession: AAA46632) was used as the 

query sequence. Sequence alignments/templates were generated through MMseqs2 

and HHsearch. The best-predicted model was created as “.PDB” files and three 

prediction performance plots were also generated: (i) number of sequences per position, 

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb


60 
 

(ii) predicted local distance difference test (lDDT) per position, which is the percentage 

of the model prediction confidence at each position, and (iii) the predicted alignment 

error. The MyxMT2 protein predicted structure was then examined using the ChimeraX 

(version 1.4) to align with the TNFR1 homodimer structure (PDB ID: 1NCF) using the 

Matchmaker function with the default parameters. After structure alignment, the 

alignment score and the root-mean-square deviation (RMSD) were generated. 

2.7 Algorithm Designs and Implementations 

2.7.1 Automatic optimal channel selections for full-spectrum flow cytometer 

Unlike the conventional filter-based flow cytometers that record the fluorescent 

intensity using pre-configured filters, the full-spectrum flow cytometer measures the 

fluorescent data using all 48 channels (for 4-laser Cytek Aurora flow cytometer) or all 64 

channels (for 5-laser Cytek Aurora flow cytometer). Because the fluorescence emission 

is broadly detected in multiple channels, an optimal channel was determined by 

principal component analysis (PCA). The channel with the highest variance contribution 

in the PC1 dimension was selected, indicating the most extensive separation between 

fluorescent-negative and fluorescent-positive populations. PCAs were performed using 

the “decomposition.PCA” function of the scikit-learn package (version 1.2.0) in Python. 

2.7.2 Algorithm design for UltraFast singlet identification  

The UltraFast algorithm was developed for automatic unsupervised flow cytometry data 

singlet identification. The algorithm has a total of six stages. The first stage of UltraFast 

was to remove the background noise data from the primary cell population using the 2D 

gaussian model fitting using the FSC-A and SSC-A channels. The method was previously 

described by Razo-Mejia et al. with the threshold set to 0.4 [128], and for UltraFast, the 
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threshold value was set to 0.95. The second stage was to normalise the data and shrink 

the massive data linear scale differences of the cells and small debris into a closer 

logarithmic scale range. The SSC-A, SSC-H, FSC-A and FSC-H data were transformed into 

the logarithmic scale, and the SSC-W and FSC-W parameters were not transformed 

(linear scale) to maintain the sensitivity for outliers. Bringing the logarithmic and linear 

scale to the same data range, the data were then standardised to have the same mean 

= 0 and variance = 1. The third stage of UltraFast further transforms the six-dimensional 

data (FSC-A/W/H + SSC-A/W/H) into two-dimensional space using the dimensionality 

reduction algorithm PCA. The two-dimensional data further allowed the process in stage 

4 to split the data points into square grids for higher computational efficiency. Moreover, 

the grid number is the only hyperparameter that needs to be specified by users; the 

squared grid number defines the total number of grid boxes used for data 

transformation. Intuitively, the higher the grid number, the more stringent the UltraFast 

algorithm will be toward singlet identification. The data within each grid box was then 

used to calculate the population density, and the elbow point of density change was 

identified using the elbow method in stage 5. The elbow point was identified by 

connecting a line between the curve's start and end. Then, the elbow point method 

calculated the distance of each data point on the curve to the connected line. The data 

point with the largest distance to the line was identified as the elbow point representing 

the cut-off point between high-density and low-density data. In the last stage, the 

DBSCAN algorithm was used for unsupervised clustering. The grid size can be calculated 

from the grid number defined in stage 4, and then it was converted to the 𝜀𝜀 

hyperparameter as the data neighbourhood radius for the DBSCAN algorithm. Moreover, 

the automatically identified population critical cut-off point using the elbow point 
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method was also converted to the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 hyperparameter for the DBSCAN algorithm. 

Therefore, the UltraFast algorithm can be automatically performed using only one user-

specified hyperparameter, the grid number. Additionally, at the last stage, only the 

primary cluster identified by UltraFast was identified as singlets, and other tiny clusters 

that did not merge with the primary cluster were identified as non-singlet events. 

Several well-established unsupervised clustering algorithms were also tested to 

compare the performance of the UltraFast singlet identification algorithms. The data 

was processed the same through stage 1 to stage 3 as UltraFast for a fair comparison. 

The algorithms were run with iterations with different values for the required 

hyperparameters, and the optimal singlet identification results were returned with the 

highest F1 score compared to the manual gating results. In particular, the FlowGrid [102], 

K-Means [94], G-Means [97], X-Means [98], flowMeans [95], GMM [107], flowClust [105], 

TASBE with 2D gaussian covariance chi-squared test [86] were used for comparison with 

the UltraFast algorithm developed in this study. 

2.7.3 Algorithm design for baseline subtraction-error correction  

The unsupervised collaborative filtering (CF) recommendation algorithm was employed 

as the core algorithm with additional data processing and transformation to correct the 

negative fluorescent intensity values generated during baseline subtraction. Firstly, each 

single data point containing at least one negative error value was removed from the 

entire multichannel data, converting the negative data into missing data that needed to 

be predicted.  

For predicting the correct fluorescent intensity of the missing data, the CF algorithm was 

implemented as below (Eq.4), where 𝑀𝑀𝑢𝑢  is the number of cells, 𝑀𝑀𝑚𝑚  is the number of 
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detection channels, 𝑟𝑟(𝑀𝑀, 𝑗𝑗) = 1 if cell 𝑗𝑗 has detected fluorescent intensity in channel 𝑀𝑀, 

and 𝑦𝑦(𝑖𝑖,𝑗𝑗) is the fluorescent intensity from cell 𝑗𝑗 in detection channel 𝑀𝑀, and it only exists 

when 𝑟𝑟(𝑀𝑀, 𝑗𝑗) = 1.  

Equation 4 The collaborative filtering recommendation algorithm 
Given 𝑥𝑥(1),  … ,  𝑥𝑥(𝑛𝑛𝑚𝑚)  and their fluorescent intensities to estimate attributes 

𝜃𝜃(1),𝜃𝜃(2),  … ,𝜃𝜃(𝑛𝑛𝑢𝑢): 

𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 = 𝑚𝑚𝑀𝑀𝑀𝑀
𝜃𝜃(1), …,𝜃𝜃(𝑛𝑛𝑢𝑢)

1
2
� � �(𝜃𝜃(𝑗𝑗))𝐹𝐹𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖,𝑗𝑗)�

2

𝑖𝑖:𝑟𝑟(𝑖𝑖,𝑗𝑗)=1

𝑛𝑛𝑢𝑢

𝑗𝑗=1

+
𝜆𝜆
2
���𝜃𝜃𝑘𝑘

(𝑗𝑗)�
2

𝑛𝑛

𝑘𝑘=1

 

𝑛𝑛𝑢𝑢

𝑗𝑗=1

 

Given 𝜃𝜃(1),  … ,𝜃𝜃(𝑛𝑛𝑢𝑢),  for 𝑀𝑀𝑢𝑢 = number of cells and 𝑀𝑀𝑚𝑚 = number of detection 

channels to predict 𝑥𝑥(𝑖𝑖),…, 𝑥𝑥(𝑛𝑛𝑚𝑚) for all data: 

𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 = 𝑚𝑚𝑀𝑀𝑀𝑀
𝑥𝑥(1), …,𝑥𝑥(𝑛𝑛𝑚𝑚)

1
2
� � �(𝜃𝜃(𝑗𝑗))𝐹𝐹𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖,𝑗𝑗)�

2

𝑗𝑗:𝑟𝑟(𝑖𝑖,𝑗𝑗)=1

𝑛𝑛𝑚𝑚

𝑖𝑖=1

+
𝜆𝜆
2
���𝑥𝑥𝑘𝑘

(𝑖𝑖)�
2

𝑛𝑛

𝑘𝑘=1

 

𝑛𝑛𝑚𝑚

𝑖𝑖=1

 

Minimising 𝑥𝑥(1),  … ,  𝑥𝑥(𝑛𝑛𝑚𝑚) and 𝜃𝜃(1),  … ,𝜃𝜃(𝑛𝑛𝑢𝑢) simultaneously: 

𝐽𝐽�𝑥𝑥(1),  … ,  𝑥𝑥(𝑛𝑛𝑚𝑚), 𝜃𝜃(1),  … ,𝜃𝜃(𝑛𝑛𝑢𝑢)�= 𝑚𝑚𝑀𝑀𝑀𝑀
𝑥𝑥(1), …, 𝑥𝑥(𝑛𝑛𝑚𝑚)

𝜃𝜃(1), …,𝜃𝜃(𝑛𝑛𝑢𝑢)

1
2

� �(𝜃𝜃(𝑗𝑗))𝐹𝐹𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖,𝑗𝑗)�
2

(𝑖𝑖,𝑗𝑗):𝑟𝑟(𝑖𝑖,𝑗𝑗)=1

+
𝜆𝜆
2
���𝑥𝑥𝑘𝑘

(𝑖𝑖)�
2

𝑛𝑛

𝑘𝑘=1

 

𝑛𝑛𝑚𝑚

𝑖𝑖=1

+
𝜆𝜆
2
���𝜃𝜃𝑘𝑘

(𝑗𝑗)�
2

𝑛𝑛

𝑘𝑘=1

 
𝑛𝑛𝑢𝑢

𝑗𝑗=1

,   𝑥𝑥 ∈ ℝ𝑛𝑛,   𝜃𝜃 ∈ ℝ𝑛𝑛 

The number of attributes was set to 50, and the cost functions were iteratively and 

simultaneously updated for both 𝜃𝜃 and 𝑥𝑥, until the differences between the original 

good-quality data and the predicted good-quality data were minimised (< 1×108). Then 

the predicted values for original poor-quality negative data were used to replace those 

negative values in the original data. The formulation and the implementation of this 

background subtraction correction algorithm were performed in Python (version 3.9.0). 
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In particular, the cost function minimisation was designed using the conjugate gradient 

algorithm “optimize.fmin_cg” function in the SciPy package (version 1.9.3). 

2.7.4 Algorithm design for autofluorescence prediction and removal  

For autofluorescence prediction, the exact algorithm logic, design, and implementation 

were performed as the CF recommendation algorithm listed in the baseline subtraction 

correction section. The number of learned attributes was set to 30, and the data was 

structured differently before implementing the CF recommendation algorithm. In detail, 

the fluorescently unlabelled cell sample (e.g., mock-transfected cells) was concatenated 

with each of the fluorescently labelled cell samples, where the autofluorescence 

intensities of the fluorescently unlabelled data were the same as the detected 

fluorescent intensities. For autofluorescence prediction of the fluorescently labelled cell 

sample, the CF algorithm was implemented with the 𝑀𝑀𝑢𝑢 is the total number of cells of 

the concatenated data, 𝑀𝑀𝑚𝑚  is twice the number of the total detection channels, and 

𝑟𝑟(𝑀𝑀, 𝑗𝑗) = 1 for all data except for the upper left block of the autofluorescence values that 

needed to be predicted. Once the autofluorescence values were predicted, the 

autofluorescence was removed from the sample by subtracting the predicted single-cell 

level channel-wise autofluorescence value from the detected fluorescence for each 

individual cell in each detection channel.  

2.7.5 FRET spectral unmixing 

In order to perform FRET spectral unmixing, the original detected and pre-unmixed total 

fluorescent intensity of each detection channel needs to be formulated as the mixture 

of emissions from the involved fluorescence components (Eq.5-Eq.8). The fluorescent 

intensity of each laser-excited emission was notated as 𝐼𝐼 , that 𝐼𝐼1  to 𝐼𝐼7  are the total 
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detected fluorescent intensities from the allocated detection channels for eCFP (cyan 

highlights), eCFP→eYFP FRET1 (green highlights), eCFP→mRFP FRET3 (purple highlights), 

eYFP (yellow highlights), eYFP→mRFP FRET2 (orange highlights), mRFP (red highlights) 

and autofluorescence (grey highlights). Since the autofluorescence was predicted and 

removed using the CF recommendation nonlinear unsupervised algorithm, thus the 

𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴  in each equation can be removed and the 𝐼𝐼1  to 𝐼𝐼6  were detected fluorescent 

intensities after autofluorescence was removed. The 𝐼𝐼7(𝐴𝐴𝑓𝑓𝑀𝑀𝐶𝐶𝐹𝐹𝐴𝐴) should no longer be 

needed and thus require one less detection channel assigned for autofluorescence 

detection.  

 

 
Equation 5 The eCFP→eYFP FRET1 fluorescence components 

𝐼𝐼1(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀)                  =  1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1) + 𝑆𝑆7
𝑆𝑆8
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 + 𝑆𝑆7 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 + 𝑆𝑆19 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼2(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀) = 𝑆𝑆1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1) + 1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 + 𝑆𝑆8 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 + 𝑆𝑆20 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
0
0
  

𝐼𝐼4(𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀)                  = 𝑆𝑆3 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1) + 1
𝑆𝑆8
𝜀𝜀1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 + 1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 + 𝑆𝑆22 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼7(𝐴𝐴𝑓𝑓𝑀𝑀𝐶𝐶𝐹𝐹𝐴𝐴)               = 𝑆𝑆6 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1) + 𝑆𝑆12
𝑆𝑆8
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 + 𝑆𝑆12 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 + 1 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

Equation 6 The eYFP→mRFP FRET2 fluorescence components 
𝐼𝐼4(𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀)                    = 1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) + 𝑆𝑆16

𝑆𝑆17
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆16 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆22 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴    

𝐼𝐼5(𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀) = 𝑆𝑆10 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) + 1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆17 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆23 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
0
0
  

𝐼𝐼6(𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)                  = 𝑆𝑆11 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) + 1
𝑆𝑆17

𝜀𝜀4 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 1 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆24 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼7(𝐴𝐴𝑓𝑓𝑀𝑀𝐶𝐶𝐹𝐹𝐴𝐴)                 = 𝑆𝑆12 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) + 𝑆𝑆18
𝑆𝑆17

𝜀𝜀3 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆18 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 1 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   
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Equation 7 The eCFP→mRFP FRET3 fluorescence components: 
𝐼𝐼1(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀)                    =  1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3) + 𝑆𝑆13

𝑆𝑆15
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3 + 𝑆𝑆13 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆19 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼3(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀) = 𝑆𝑆2 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3) + 1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3 + 𝑆𝑆15 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆21 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
0
0
  

𝐼𝐼6(𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)                  = 𝑆𝑆5 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3) + 1
𝑆𝑆15

𝜀𝜀6 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3 + 1 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆24 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼7(𝐴𝐴𝑓𝑓𝑀𝑀𝐶𝐶𝐹𝐹𝐴𝐴)                = 𝑆𝑆6 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3) + 𝑆𝑆18
𝑆𝑆15

∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3 + 𝑆𝑆18 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 1 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

 

 

Equation 8 The eCFP→eYFP→mRFP three-way FRET fluorescence components: 
𝐼𝐼1(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀)                    =  1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆7

𝑆𝑆8
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆13
𝑆𝑆15

∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆7 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆13
𝑆𝑆17

𝜀𝜀3 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆13 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆19 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼2(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀)   = 𝑆𝑆1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) + 0
0
  

𝑆𝑆14
𝑆𝑆15

∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆8 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆14
𝑆𝑆17

𝜀𝜀3 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆14  ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆20 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼3(𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀) = 𝑆𝑆2 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆9
𝑆𝑆8
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆9 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) + 0
0
  

𝑆𝑆15
𝑆𝑆17

𝜀𝜀3 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆15 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆21 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼4(𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀)                    = 𝑆𝑆3 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 1
𝑆𝑆8
𝜀𝜀1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆16
𝑆𝑆15

𝜀𝜀5 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 1 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆16
𝑆𝑆17

∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆16 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆22 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴    
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𝐼𝐼5(𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀) = 𝑆𝑆4 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆10
𝑆𝑆8
𝜀𝜀1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆17
𝑆𝑆15

𝜀𝜀5 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆10 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

1 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆17 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆23 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
0
0
  

𝐼𝐼6(𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)                  = 𝑆𝑆5 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆11
𝑆𝑆8
𝜀𝜀2 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

1
𝑆𝑆15

𝜀𝜀6 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆11 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

1
𝑆𝑆17

𝜀𝜀4 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 1 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 𝑆𝑆24 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

𝐼𝐼7(𝐴𝐴𝑓𝑓𝑀𝑀𝐶𝐶𝐹𝐹𝐴𝐴)                 = 𝑆𝑆6 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆12
𝑆𝑆8
∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ (1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆18
𝑆𝑆15

∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 + 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) + 𝑆𝑆12 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2) +  

𝑆𝑆18
𝑆𝑆17

𝜀𝜀3 ∗ 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝑆𝑆18 ∗ 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 + 1 ∗ 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴   

 

In each equation above, the 𝑆𝑆 parameters are the spillover coefficients calculated with 

the single colour control samples using the RANSAC robust linear regression (Eq.9) (see 

section 2.8.3 and Appendix Figure 2). The 𝜀𝜀 parameters are the excitation coefficients 

ratios of each FRET-donor and FRET-acceptor fluorophores measured at the specific 

laser excitation wavelength (Eq.10), which the data were obtained from the online 

database FPbase [117]. 

 

 

 

 



68 
 

 

 

Equation 9 Spillover coefficients 

 𝑆𝑆1 =
𝐼𝐼2𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆2 =

𝐼𝐼3𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆3 =

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆4 =

𝐼𝐼5𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆5 =

𝐼𝐼6𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆6 =

𝐼𝐼7𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝑆𝑆7 =
𝐼𝐼1𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆8 =

𝐼𝐼2𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆9 =

𝐼𝐼3𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆10 =

𝐼𝐼5𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆11 =

𝐼𝐼6𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
，𝑆𝑆12 =

𝐼𝐼7𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝐼𝐼4𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝑆𝑆13 =
𝐼𝐼1𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝐼𝐼6𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒，𝑆𝑆14 =
𝐼𝐼2𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝐼𝐼6𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒，𝑆𝑆15 =
𝐼𝐼3𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝐼𝐼6𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒，𝑆𝑆16 =
𝐼𝐼4𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝐼𝐼6𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒，𝑆𝑆17 =
𝐼𝐼5𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝐼𝐼6𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒，𝑆𝑆18 =
𝐼𝐼7𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝐼𝐼6𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝑆𝑆19 =
𝐼𝐼1𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

𝐼𝐼7𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
，𝑆𝑆20 =

𝐼𝐼2𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

𝐼𝐼7𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
，𝑆𝑆21 =

𝐼𝐼3𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

𝐼𝐼7𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
，𝑆𝑆22 =

𝐼𝐼4𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

𝐼𝐼7𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
，𝑆𝑆23 =

𝐼𝐼5𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

𝐼𝐼7𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
，𝑆𝑆24 =

𝐼𝐼6𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

𝐼𝐼7𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

 

Equation 10 Excitation coefficient ratios 

𝜀𝜀1 =
𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 ，𝜀𝜀2 =
𝜀𝜀𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒

𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒  

𝜀𝜀3 =
𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 ，𝜀𝜀4 =
𝜀𝜀𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒

𝜀𝜀𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝜀𝜀𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 𝐴𝐴𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟

𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒  

 

 

 

The pure FRET-donor, FRET-acceptor, FRET emission, and autofluorescence channel 

data were unmixed using matrix calculations: FRET1 (Eq.11), FRET2 (Eq.12), FRET3 

(Eq.13), and three-way FRET (Eq.14). In three-way FRET the eCFP donor contributes to 

eCFP→eYFP FRET1, and eCFP→mRFP FRET3, so the FRET efficiency for FRET1 and FRET3 

are annotated as 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ and 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′  to distinguish them from the FRET efficiency 

notation for the two-molecule FRET. In addition, the three-molecule eCFP→eYFP→mRFP 

two-step relay FRET was termed FRET4 (Eq.15). 
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Equation 11 eCFP→eYFP FRET1 spectral unmixing 

�

𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 1 = 𝐼𝐼𝑞𝑞𝑢𝑢𝑒𝑒𝑛𝑛𝑞𝑞ℎ𝑒𝑒𝑢𝑢 𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 2 = 𝐼𝐼𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑒𝑒𝑢𝑢 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1

𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 4 = 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 7 = 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

�

𝐹𝐹

= �

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1)
𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

�

𝐹𝐹

= �

𝐼𝐼1 
𝐼𝐼2
𝐼𝐼4
𝐼𝐼7

�

𝐹𝐹

×

⎣
⎢
⎢
⎢
⎡

1 𝑆𝑆1 𝑆𝑆3 𝑆𝑆6
𝑆𝑆7
𝑆𝑆8

1
1
𝑆𝑆8
𝜀𝜀1

𝑆𝑆12
𝑆𝑆8

𝑆𝑆7 𝑆𝑆8 1 𝑆𝑆12
𝑆𝑆19 𝑆𝑆20 𝑆𝑆22 1 ⎦

⎥
⎥
⎥
⎤
−1

 

Equation 12 eYFP→mRFP FRET2 spectral unmixing 

�

𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 4 = 𝐼𝐼𝑞𝑞𝑢𝑢𝑒𝑒𝑛𝑛𝑞𝑞ℎ𝑒𝑒𝑢𝑢 𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢  5 = 𝐼𝐼𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑒𝑒𝑢𝑢  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2

𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 6 = 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 7 = 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴
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Equation 13 eCFP→mRFP FRET3 spectral unmixing 

�

𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 1 = 𝐼𝐼𝑞𝑞𝑢𝑢𝑒𝑒𝑛𝑛𝑞𝑞ℎ𝑒𝑒𝑢𝑢 𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 3 = 𝐼𝐼𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑒𝑒𝑢𝑢 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3

𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 6 = 𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢  7 = 𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

�

𝐹𝐹

= �

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒(1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3)
𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3

𝐼𝐼𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒
𝐼𝐼𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴

�

𝐹𝐹

= �

𝐼𝐼1 
𝐼𝐼3
𝐼𝐼6
𝐼𝐼7

�

𝐹𝐹

×

⎣
⎢
⎢
⎢
⎡

1 𝑆𝑆2 𝑆𝑆5 𝑆𝑆6
𝑆𝑆13
𝑆𝑆15

1
1
𝑆𝑆15

𝜀𝜀2
𝑆𝑆18
𝑆𝑆15

𝑆𝑆13 𝑆𝑆15 1 𝑆𝑆18
𝑆𝑆19 𝑆𝑆21 𝑆𝑆24 1 ⎦

⎥
⎥
⎥
⎤
−1

 

Equation 14 eCFP→eYFP→mRFP three-way FRET spectral unmixing 

⎣
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⎢
⎢
⎢
⎡
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𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹4 = 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ × 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 
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2.7.6 FRET calibration and FRET quantification using FRET efficiency 

The FRET efficiency depends on several factors, including (i) the overlap integral of the 

FRET-donor emission and FRET-acceptor excitation spectrum, (ii) the relative orientation 

of the FRET-donor and FRET-acceptor fluorophores in the dipole-dipole coupling, and (iii) 

the distance between the FRET-donor and FRET-acceptor molecules. However, in this 

FRET intensity-based study, FRET efficiency calculations require a previously defined 𝛼𝛼 

factor (Eq.15) [118, 129].  

Equation 15 The 𝜶𝜶 calibration factor 

𝛼𝛼 =
𝐼𝐼𝐴𝐴𝑆𝑆𝜀𝜀𝜆𝜆𝐷𝐷

𝐷𝐷 𝐶𝐶𝐷𝐷
𝐼𝐼𝐷𝐷𝜀𝜀𝜆𝜆𝐷𝐷

𝐴𝐴 𝐶𝐶𝐴𝐴
 

 

To conduct accurate single-cell level FRET efficiency calculations and FRET calibration for 

the unlinked naturally free-interacting FRET pairs, the ratio of 𝑅𝑅2/𝑅𝑅1 was used (Eq.16), 

where 𝑅𝑅1 is the ratio of sensitised FRET emission and the acceptor emission detected 

both in the FRET channel, and 𝑅𝑅2  is the ratio of excitation coefficients-weighted 

quenched donor emission and the acceptor emission detected in the donor and 

acceptor channels, respectively. All fluorescent intensity values were the spectrally 

unmixed values from the previous steps. The 𝑆𝑆  parameter is the sFRET-acceptor 

fluorophore's spillover coefficient calculated by the amount of emission detected in the 

FRET channel over the acceptor channel using the robust RANSAC linear regression. The 

𝐶𝐶𝐷𝐷 and 𝐶𝐶𝐴𝐴 are the concentrations of FRET-donor and FRET-acceptor, which cannot be 

measured directly from the flow cytometry data due to donor quenching during FRET. 
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Equation 16 The ratios 𝑹𝑹𝟏𝟏 and 𝑹𝑹𝟐𝟐 for FRET calibration 

𝑅𝑅1 =
𝐼𝐼𝐷𝐷𝐸𝐸𝛼𝛼
𝐼𝐼𝐴𝐴𝑆𝑆

      &     𝑅𝑅2 =
𝐼𝐼𝐷𝐷(1− 𝐸𝐸)𝜀𝜀𝜆𝜆𝐴𝐴

𝐴𝐴

𝐼𝐼𝐴𝐴𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴  

𝑅𝑅2
𝑅𝑅1

=  
𝐼𝐼𝐷𝐷(1− 𝐸𝐸)𝜀𝜀𝜆𝜆𝐴𝐴

𝐴𝐴

𝐼𝐼𝐴𝐴𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴 ∗

𝐼𝐼𝐴𝐴𝑆𝑆
𝐼𝐼𝐷𝐷𝐸𝐸𝛼𝛼

 =  
𝐼𝐼𝐷𝐷(1− 𝐸𝐸)𝜀𝜀𝜆𝜆𝐴𝐴

𝐴𝐴

𝐼𝐼𝐴𝐴𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴 ∗

𝐼𝐼𝐴𝐴𝑆𝑆
𝐼𝐼𝐷𝐷𝐸𝐸

∗
𝐼𝐼𝐷𝐷𝜀𝜀𝜆𝜆𝐷𝐷

𝐴𝐴 𝐶𝐶𝐴𝐴
𝐼𝐼𝐴𝐴𝑆𝑆𝜀𝜀𝜆𝜆𝐷𝐷

𝐷𝐷 𝐶𝐶𝐷𝐷
=  

𝐼𝐼𝐷𝐷(1 − 𝐸𝐸)
𝐼𝐼𝐴𝐴

∗
𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴 𝐶𝐶𝐴𝐴
𝜀𝜀𝜆𝜆𝐷𝐷
𝐷𝐷 𝐶𝐶𝐷𝐷

∗
1
𝐸𝐸

 

 

The Beer-Lambert Law was used to eliminate the requirement of the FRET-donor and 

FRET-acceptor fluorophore concentrations (Eq.17). The flow cytometry collects cell 

fluorescence through the hyperdynamic focusing system, where the cells pass through 

a thin cuvette with the fixed diameter length 𝐿𝐿 and are excited by multiple lasers. 

Therefore, the concentration terms were cancelled in the 𝑅𝑅2/𝑅𝑅1 ratio (see Eq.16) that 

permitted the true single-cell level FRET efficiency and 𝛼𝛼 factor calculations for the two-

molecule FRET.  

Equation 17 Single-level unlinked FRET calibration and FRET efficiency 
𝐼𝐼𝐷𝐷 = 𝜀𝜀𝜆𝜆𝐷𝐷

𝐷𝐷 𝐶𝐶𝐷𝐷 ∙ 𝐿𝐿     𝐼𝐼𝐴𝐴 = 𝜀𝜀𝜆𝜆𝐷𝐷
𝐴𝐴 𝐶𝐶𝐴𝐴 ∙ 𝐿𝐿      (𝐵𝐵𝑒𝑒𝑒𝑒𝑟𝑟– 𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑒𝑒𝑟𝑟𝑀𝑀 𝐴𝐴𝐿𝐿𝑙𝑙) 

𝑅𝑅2
𝑅𝑅1

=
1 − 𝐸𝐸
𝐸𝐸

=
1
𝐸𝐸
− 1         ⇒            𝐸𝐸 =

1
𝑅𝑅2
𝑅𝑅1

+ 1
         ⇒          𝛼𝛼 =

𝐼𝐼𝐷𝐷𝐸𝐸𝛼𝛼
𝐼𝐼𝐷𝐷𝐸𝐸

=
𝐼𝐼𝐷𝐷𝐸𝐸𝛼𝛼

𝐼𝐼𝐷𝐷(1− 𝐸𝐸)
(1 − 𝐸𝐸) 𝐸𝐸

 

 

For three-molecule FRET as described in the eCFP→eYFP→mRFP relay FRET, the eCFP 

donor contributes to eCFP → eYFP FRET1, and eCFP →mRFP FRET3, so the FRET 

efficiencies (𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ and 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ ) need to be adjusted (Eq.18). For eYFP→mRFP in the 

three-molecule FRET, because there is only one donor and one acceptor involved when 

using the eYFP laser, i.e., the eCFP-related FRETs are not being excited, so the 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 

can be calculated using the equation listed above (Eq.17).   



72 
 

 
Equation 18 FRET efficiency for three-way FRET 

𝑅𝑅2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′
𝑅𝑅1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′

=
1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′

𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′  & 
𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′

1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ =
1

𝑅𝑅2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′
𝑅𝑅1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′

+ 1
= 𝜃𝜃1   ⇒    𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ =

𝜃𝜃1 − 𝜃𝜃1𝜃𝜃3  
1 + 𝜃𝜃1𝜃𝜃3

 

𝑅𝑅2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′
𝑅𝑅1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′

=
1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′

𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′  & 
𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′

1 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1′ =
1

𝑅𝑅2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′
𝑅𝑅1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′

+ 1
= 𝜃𝜃3    ⇒    𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3′ =

𝜃𝜃3 − 𝜃𝜃1𝜃𝜃3  
1 + 𝜃𝜃1𝜃𝜃3

 

 

Additionally, the unquenched fluorescent intensity of each fluorophore before energy 

donation during FRET can also be deducted from the unmixed fluorescent intensities 

and calculated 𝛼𝛼 factors (Eq.19). Of note, the accuracy of the FRET quantification using 

FRET efficiencies and FRET calibration factor 𝛼𝛼 are heavily dependent on the accuracy 

of the pure fluorescent intensities calculated during spectral unmixing. Therefore, since 

spectral unmixing is primarily based on the baseline subtraction-error correction and 

autofluorescence removal, the accuracy level and the algorithm performance of all pre-

processing stages are crucial for accurate FRET quantification. 

 

Equation 19 Unquenched fluorescent intensities 

 𝑰𝑰𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒃𝒃𝒃𝒃𝒃𝒃𝑫𝑫𝑫𝑫𝒃𝒃 𝒅𝒅𝑫𝑫𝑫𝑫𝒅𝒅𝒅𝒅𝒅𝒅𝑫𝑫𝑫𝑫 = 𝑰𝑰𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅𝒃𝒃𝒅𝒅𝒃𝒃𝑫𝑫 𝒅𝒅𝑫𝑫𝑫𝑫𝒅𝒅𝒅𝒅𝒅𝒅𝑫𝑫𝑫𝑫 +
𝑰𝑰𝑺𝑺𝒃𝒃𝑫𝑫𝑺𝑺𝒅𝒅𝒅𝒅𝒅𝒅𝑺𝑺𝒃𝒃𝒅𝒅 𝑭𝑭𝑹𝑹𝑭𝑭𝑭𝑭 𝒃𝒃𝒆𝒆𝒅𝒅𝑺𝑺𝑺𝑺𝒅𝒅𝑫𝑫𝑫𝑫
𝟏𝟏

𝜶𝜶
𝟏𝟏

 

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 = 𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 1 +
𝐼𝐼𝑢𝑢𝑛𝑛𝑛𝑛𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 2

𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1
 (𝑓𝑓𝐶𝐶𝑟𝑟 𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀)

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 = 𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 4 +
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 5

𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2
 (𝑓𝑓𝐶𝐶𝑟𝑟 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 = 𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 1 +
𝐼𝐼𝑢𝑢𝑛𝑛𝑛𝑛𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 3

𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3
 (𝑓𝑓𝐶𝐶𝑟𝑟 𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 = 𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 1 +
𝐼𝐼𝑢𝑢𝑛𝑛𝑛𝑛𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 2

𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1
+
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 3

𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3
 (𝑓𝑓𝐶𝐶𝑟𝑟 𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)

𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 = 𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 4 +
𝐼𝐼𝑢𝑢𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥𝑒𝑒𝑢𝑢 5

𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2
 (𝑓𝑓𝐶𝐶𝑟𝑟 𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)
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2.7.7 FRET energy dynamic and cellular signalling pathway dynamic analyses 

In the three-protein FRET system, the same eCFP donor simultaneously donates energy 

to both the eYFP acceptor and the mRFP acceptor. In order to resolve the energy 

dynamics, i.e., the competition between two acceptors, the relative FRET efficiencies 

can be used to reflect the relative energy flow using the CoDA algorithm. The 

compositional value transformation was conducted using data closure (Eq.20), taking 

the individual real space value and divided by the sum of all involved compositions.  

Equation 20 Data closure for CoDA 
𝐶𝐶�𝑀𝑀1, … ,𝑀𝑀𝑗𝑗� = �𝑥𝑥𝑖𝑖,  … , 𝑥𝑥𝑗𝑗�  𝑙𝑙ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑥𝑥𝑗𝑗 =

𝑀𝑀𝑗𝑗
∑ 𝑀𝑀𝑗𝑗′𝑗𝑗′

 

The compositional ratio was further used by dividing each transformed value by the 

same reference value (Eq.21) to ensure sub-compositional coherence and eliminate the 

impact of the undiscovered hidden composition or other compositions not taken into 

account during data closure [130].  

Equation 21 Ratio using the reference data to achieve sub-compositional coherence 

𝑅𝑅�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑞𝑞𝑒𝑒� = �
𝑥𝑥𝑖𝑖

𝑥𝑥𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑞𝑞𝑒𝑒
�  ,   𝑀𝑀 = 1, … ,𝑀𝑀 

Logarithmic transformation was further conducted on the ratio values since the 

logarithmic ratio (LR) will bring the multiplicative ratio values into the additive vector 

scale, allowing the LR values to be directly used for downstream statistical analysis 

(Eq.22). These approaches were also applied to the detection of multiple cellular 

signalling pathway reporters. When the cells were spending energy to activate multiple 

signalling, the activation levels detected as the reporter fluorescent intensities were also 

compositional data; therefore, they needed to be interpreted using their LRs after data 

closure.  
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Equation 22 Logarithmic ratios for CoDA 

𝐿𝐿𝑅𝑅�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑞𝑞𝑒𝑒� = 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝑥𝑥𝑖𝑖

𝑥𝑥𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑞𝑞𝑒𝑒
�  , 𝑀𝑀 = 1, … ,𝑀𝑀 

In this study, the geometric mean of the data was used as the reference value, and by 

dividing the logarithmic transformation on geometric mean balanced ratios, the data 

was centred with zero means. The final transformed values are called the central 

logarithmic ratios (CLR) (Eq.23). Having the zero mean will allow the direct application 

of PCA, which requires mean zero-centred input values, for data dimensionality 

reduction and data visualisation in the 2D scatterplot.  

Equation 23 Central logarithmic ratios for CoDA 
 

𝑪𝑪𝑪𝑪𝑹𝑹(𝒋𝒋) = 𝒍𝒍𝑫𝑫𝒍𝒍�
𝒙𝒙𝒋𝒋

�∏ 𝒙𝒙𝒋𝒋𝒋𝒋 �
𝟏𝟏
𝑱𝑱=𝟑𝟑

� = 𝒍𝒍𝑫𝑫𝒍𝒍�𝒙𝒙𝒋𝒋� −
𝟏𝟏

𝑱𝑱 = 𝟑𝟑
�𝒍𝒍𝑫𝑫𝒍𝒍�𝒙𝒙𝒋𝒋�
𝒋𝒋

 , 

𝑗𝑗 = [𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝑀𝑀𝐶𝐶 (𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀), 𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝑀𝑀𝐶𝐶 (𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)] & [𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝑀𝑀𝐶𝐶 (𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀 → 𝑚𝑚𝑅𝑅𝐹𝐹𝑀𝑀)] 

 

Multivariate linear models were constructed to explain how FRET efficiencies 

(𝐸𝐸′𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒  and 𝐸𝐸′𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒 ) were impacted by the competing dynamic energy 

transfers from eCFP to eYFP and mRFP acceptors (Eq.24). In addition, the model also 

included the impact of the energy transfer from the eYFP donor to the mRFP acceptor. 

The independent variables are the CLR of the sensitised FRET emission values after CoDA 

transformation, and the dependent variables are the logarithmically transformed FRET 

efficiencies of eCFP→eYFP or eCFP→mRFP, respectively. An error term is also added to 

capture the residue errors. The parameters 𝜃𝜃1, 𝜃𝜃2 and 𝜃𝜃3 represent the magnitudes of 

the impacts. 
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Equation 24 Multivariate linear models for dynamic energy transfers during FRET 

𝐴𝐴𝐶𝐶𝑙𝑙(𝐸𝐸′𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒) = 𝜃𝜃1 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝐼𝐼𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒 𝑀𝑀𝐶𝐶 (𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀 → 𝑒𝑒𝑒𝑒𝐹𝐹𝑀𝑀) 
𝑙𝑙𝑀𝑀𝑒𝑒𝐿𝐿𝑀𝑀�𝑒𝑒𝐶𝐶𝐹𝐹𝑀𝑀𝑞𝑞𝐴𝐴𝑚𝑚𝑐𝑐𝐴𝐴𝑛𝑛𝑒𝑒𝑛𝑛𝐴𝐴𝑙𝑙�

� + 

𝜃𝜃2 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒) 
𝑔𝑔𝑔𝑔𝑒𝑒𝑙𝑙𝑛𝑛�𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐�

� + 𝜃𝜃3 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒) 
𝑔𝑔𝑔𝑔𝑒𝑒𝑙𝑙𝑛𝑛�𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐�

� + 𝑒𝑒  

𝐴𝐴𝐶𝐶𝑙𝑙(𝐸𝐸′𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒) = 𝜃𝜃1 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒) 
𝑔𝑔𝑔𝑔𝑒𝑒𝑙𝑙𝑛𝑛�𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐�

� +

𝜃𝜃2 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒) 
𝑔𝑔𝑔𝑔𝑒𝑒𝑙𝑙𝑛𝑛�𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐�

� + 𝜃𝜃3 𝐴𝐴𝐶𝐶𝑙𝑙 �
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒→𝑚𝑚𝐹𝐹𝐹𝐹𝑒𝑒) 
𝑔𝑔𝑔𝑔𝑒𝑒𝑙𝑙𝑛𝑛�𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐�

� + 𝑒𝑒  

 

2.8 Statistical analysis 

2.8.1 Hypothesis tests 

Permutation t-test for the means of two independent samples that does not assume 

equal variance was used for the hypothesis test (Python “stats.ttest_ind” function from 

SciPy package version 1.9.3) with the number of random permutations set to 100. The 

null hypothesis of the permutation t-test is that two independent samples have identical 

averages, and the null hypothesis rejection significance levels were 𝑝𝑝 < 0.05 *, 𝑝𝑝 < 0.01 

**, and 𝑝𝑝 < 0.001 ***.  

The two-sided independent t-test (Welch's t-test) was also used for the hypothesis test 

between two groups of samples with the calculated means (𝑋𝑋� ), variances (𝑀𝑀 ), and 

sample size (𝑁𝑁𝑖𝑖).  

Equation 25 Welch’s t-test 

𝑀𝑀 =
𝑋𝑋1��� − 𝑋𝑋2���

�𝑀𝑀𝑋𝑋1����
2 − 𝑀𝑀𝑋𝑋2����

2
 ,   𝑀𝑀𝑋𝑋𝚤𝚤���

2 =
𝑀𝑀𝑖𝑖
�𝑁𝑁𝑖𝑖
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The Kruskal-Wallis H-test was used for the median of more than two independent 

samples. The H-test is a non-parametric version of the analysis of variance (ANOVA), 

which does not assume equal data size or variance (Eq.26). The null hypothesis of the 

Kruskal-Wallis H-test is that the population median of all of the groups is equal. The null 

hypothesis rejection significance levels were 𝑝𝑝 < 0.05 *, 𝑝𝑝 < 0.01 **, and 𝑝𝑝 < 0.001 ***. 

Equation 26 Kruskal–Wallis one-way analysis of variance 

𝐻𝐻 = (𝑁𝑁 − 1)
∑ 𝑀𝑀𝑖𝑖(�̅�𝑟𝚤𝚤∙̇ − �̅�𝑟)𝑔𝑔
𝑖𝑖=1

2

∑ ∑ �𝑟𝑟𝑖𝑖𝑗𝑗 − �̅�𝑟�𝑛𝑛𝑖𝑖
𝑗𝑗=1

2𝑔𝑔
𝑖𝑖=1

 

For notation details, see Kruskal and Wallis  [131]. 

 

2.8.2 Singlet identification accuracy 

The 𝐹𝐹1 score was used as the harmonic mean of the precision and recall to determine 

the accuracy of singlet identification algorithms (Eq.27). The 𝐹𝐹1 score has the most 

excellent value of 1 and the worst value of 0. Precision and recall both contribute equally 

to the 𝐹𝐹1 score. The manual gated samples were used as the ground truth values. The 

𝐹𝐹1 score was calculated as follows, where 𝑇𝑇𝑀𝑀 is the true-positive count, 𝐹𝐹𝑀𝑀 is the false-

positive count, and the 𝐹𝐹𝑁𝑁 is the false-negative count: 

Equation 27 The F1 score for singlet identification accuracy evaluation 

𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 =
𝑇𝑇𝑀𝑀

(𝑇𝑇𝑀𝑀 + 𝐹𝐹𝑀𝑀)
 

𝑟𝑟𝑒𝑒𝑓𝑓𝐿𝐿𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑀𝑀

(𝑇𝑇𝑀𝑀 + 𝐹𝐹𝑁𝑁)   

𝐹𝐹1 = 2 ∗
𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 ∗ 𝑟𝑟𝑒𝑒𝑓𝑓𝐿𝐿𝐴𝐴𝐴𝐴
𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 + 𝑟𝑟𝑒𝑒𝑓𝑓𝐿𝐿𝐴𝐴𝐴𝐴
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2.8.3 Linear model statistics 

The robust linear regression was used to determine the spillover coefficients for spectral 

unmixing and the small molecule concentration detection linearity. The random sample 

consensus (RANSAC) algorithm was used as the iterative robust linear regression 

approach for accurate estimation of the parameters using random inliers from the 

datasets because it is more robust towards datasets with potential outliers. The Python 

function “linear_model.RANSACRegressor” was used from the scikit-learn package 

(version 1.2.0), and the 𝑅𝑅2  scores and mean absolute errors were calculated as the 

spillover linearity scores and the spillover coefficients fitting errors.  

The Pearson correlation coefficient was used to measure the linear relationship 

between two fluorescent intensity values from two different detection channels using 

the Python SciPy (version 1.9.3) package’s “stats.pearsonr” function. 

For fitting the multivariate linear regression model for the three-protein FRET energy 

dynamic analysis, the ordinary least squares linear regression was used with Python 

scikit-learn (version 1.2.0) package’s “linear_model.LinearRegression” function. The 𝑅𝑅2 

score was used to evaluate the amount of data explained by the linear model. 

2.8.4 Spectral unmixing spread error 

The spectral unmixing spread error was previously formulated by Nguyen et al. as the 

compensation spread error [87]. The spillover spreading for a given detector/spillover 

channel pair can be estimated by taking the square root of the difference in squared 

robust standard deviations of recorded fluorescence intensity from unstained negative 

and single-colour control populations (Eq.28): 
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Equation 28 The spread error 
𝛿𝛿𝐹𝐹𝐹𝐹1 = 𝐶𝐶𝐹𝐹𝐹𝐹1∗ (95) − 

𝐹𝐹 𝐶𝐶𝐹𝐹𝐹𝐹1∗ (50) 
𝐹𝐹

 
𝐹𝐹  

𝛿𝛿𝐹𝐹𝐹𝐹1 = 𝐶𝐶𝐹𝐹𝐹𝐹1∗ (95) − 
𝑆𝑆 𝐶𝐶𝐹𝐹𝐹𝐹1∗ (50) 

𝑆𝑆
 
𝑆𝑆  

∆𝐶𝐶𝐹𝐹𝐹𝐹2∗ = 𝐶𝐶𝐹𝐹𝐹𝐹2∗ (50) 
𝑆𝑆 − 𝐶𝐶𝐹𝐹𝐹𝐹2∗ (50) 

𝐹𝐹  

∆𝛿𝛿𝐹𝐹𝐹𝐹1 = � 𝛿𝛿 𝑆𝑆 𝐹𝐹𝐹𝐹1
2 − 𝛿𝛿 𝐹𝐹 𝐹𝐹𝐹𝐹1

2         𝑆𝑆𝐸𝐸𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹2 = ∆𝛿𝛿𝑒𝑒𝐹𝐹1
�∆𝐹𝐹𝑒𝑒𝐹𝐹2

 

In the equation above, the optimal and secondary detection channels are notated as 

𝐹𝐹𝐿𝐿1 and 𝐹𝐹𝐿𝐿2, and the single-colour and unstained reference controls are 𝑆𝑆 and 𝑅𝑅. For 

detected emissions, the parameters (𝐶𝐶∗) are the fluorescence intensity values of the 

spectrally unmixed single-colour control samples, and the 𝛿𝛿 are the standard deviations 

adjusted to use the 50th and 95th percentiles of the fluorescent intensity values. The 

calculated spread errors were the final SE values. Of note, the SE was originally 

calculated using the 50th and 84th percentiles [87] but was set to use the 50th and 95th 

percentiles to increase robustness when evaluating the FRET algorithm performance.  

2.9 Data visualisaton 

2.9.1 PCA for dimensionality reduction 

To visualise the CoDA transformed data with the five-dimensional quenched eCFP, 

quenched eYFP, sensitised eCFP → eYFP FRET, sensitised eCFP → mRFP FRET and 

sensitised eYFP→mRFP FRET data, PCA was used with the CLR transformed five-

dimensional data to reduce them into a two-dimensional scatter plot for easy data 

visualisation. Again, PCAs were performed using the “decomposition.PCA” function of 

the scikit-learn package (version 1.2.0) in Python. 



79 
 

2.9.2 Data plots and graphs 

All histograms, scatter plots, violin plots, bar graphs, radar plots, spectrum viewer 

graphs and flow cytometer configuration graphs were generated using the python 

matplotlib (version 3.6.2) and seaborn (version 0.12.1) packages.  

 

2.10 Data and code availability 

All data and codes used in this study are available on the GitHub host server 

(https://github.com/Edward-Z-Ni/CUBE) and the University of Technology Sydney 

eResearch GitLab server (https://code.research.uts.edu.au/12831196/cube). Access 

can be granted upon request. The GitHub and GitLab repositories are called “CUBE”, 

which stands for the “Cytometry Utilities Box Expansion”.  
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FRET AND CELL SIGNALLING  

 

  



81 
 

3.1 Introduction 

This thesis presents the development of an in-situ flow cytometry-based PPI detection 

platform at the true single-cell level. The platform provides unsupervised ML-powered 

FRET algorithms to analyse the simultaneous detection of multiprotein FRET and 

numerous intracellular signalling pathway activities. For the accurate quantification of 

unlinked and naturally free interacting PPIs involving two and three protein molecules, 

the algorithms achieve error-free baseline corrected, autofluorescence removed, and 

spectrally unmixed FRET readouts. Human receptor proteins from the tumour necrosis 

factor receptor superfamily (TNFRSF) and poxviridae-encoded human TNFR homologous 

– viral TNFRs (vTNFRs) biological samples were prepared in this study to evaluate the 

capability of applying this flow cytometry-based PPI detection platform in conducting 

biologically meaningful and clinically significant investigations. The human TNFRs 

(huTNFRs) and vTNFRs were constructed as the fluorescent protein (FP) fused proteins 

to permit the mammalian cell expression and fluorescence detection by this flow 

cytometry-based FRET platform. 

The human TNFRSF consists of cytokine receptors which are identified by their highly 

conserved, cysteine-rich domains (CRDs) in the extracellular region [132]. TNFRSF 

proteins are categorised by their ability to bind cytokine ligands from the tumour 

necrosis factor superfamily (TNFSF) via those conserved CRDs (Figure 12). TNFR1 

receptors contain four extracellular CRDs (CRD1, CDR2, CRD3, and CRD4) [133]. Previous 

studies have suggested that the TNF ligand binds to the CRD2 and CRD3 of the TNFR1 

receptors, and the ligand-induced TNFR receptor trimerization causes the cell surface 

TNFR1 aggregation and intracellular signalling activations [134].  
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Figure 12 Select members of the TNF and TNFR superfamily 
TNF superfamily ligands (TNFSP, purple; top) are trimeric proteins that bind to TNF superfamily 
receptors (TNFRSF, blue; bottom) and contain variable copies of cysteine-rich domains (CRDs). 
It also displays the primary cell types that respond to TNF-TNFR signalling. Receptors containing 
death domains (DD, red) can promote apoptotic cell death (TNFR1, Fas, TRAIL1 and TRAIL2).  
(Reprint license number: 5461390797269, license data: Jan 03, 2023) [132] 
 
 

 

More recent studies showed that there is also a “pre-ligand assembly domain” (PLAD) 

located within the N-terminus of CRD1 on TNFR1 [71, 135]. Thus, it has been suggested 

that TNFRs exist as pre-assembled dimeric complexes prior to TNF binding and can 

further form, a more complex trimeric conformation as trimers of dimers upon TNF 

binding [136]. Therefore, TNFR1 was utilised for this study due to its inherent capacity 

to form transmembrane dimers and symmetrical ligand-bound trimers [120, 137-139] 

that allow the validation of both the 2-protein 3-colour FRET and the 3-protein 6-colour 

FRET algorithms (see section 5.2.2 and section 6.2.1). For FRET-negative controls, CD27 
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and TNFR2 were used as non-TNFR1-interacting structurally similar proteins from the 

same protein superfamily [134]. 

Fluorescent proteins served as versatile probes for all biological protein samples 

prepared in this study. Green fluorescent protein (GFP) is a naturally arising fluorescent 

protein (FP), first described in the jellyfish Aequorea victoria [22] but also found in many 

other organisms [64, 140, 141], and red fluorescent protein (DsRed) was characterised 

from the Discosoma coral. The molecular characterisation of GFP has led to the careful 

strategic mutation of specific amino acids that alters GFP's absorption, excitation and 

emission spectra [14, 50]. Cyan FP (CFP) and yellow FP (YFP), or their enhanced versions 

eCFP and eYFP, are molecular derivatives of GFP [142], whereas monomeric RFP (mRFP) 

is derived from DsRed [51, 53]. The detection of naturally occurring fluorescence in 

these organisms can be utilised to monitor their existence (i.e. relative abundance) and, 

thereby, the health of ecosystems. Moreover, these FPs are now typical reagents used 

for molecular biological investigations – both as recombinant fluorescent fusion proteins 

and as FRET reporters [32]. Furthermore, their biophysical properties have been well-

characterised, including photon absorption efficiencies, quantum yields, fluorescence 

excitation and emission coefficients [51, 62, 63]. 

All the above mentioned FPs have been previously reported as FRET reporters for TNFR1 

dimeric PPI investigations. In this study, human TNFR1, TNFR2 and CD27 were 

constructed as the -eCFP, -eYFP and -mRFP fusion proteins for the detection of TNFR1 

dimeric PPI using three FRET pairs, i.e., eCFP→eYFP, eYFP→mRFP, and eCFP→mRFP. 

These FRETs are possible because the eCFP and eYFP FRET donors' emission spectrums 

are largely overlapped with the excitation spectrums of their respective eYFP and mRFP 
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FRET acceptors. However, given the role of TNFR1 as a trimer, there is an urgent need 

to develop the FRET assay with trichrome FRET capabilities. Since the eCFP donor 

emission spectrum overlaps with both the eYFP and mRFP excitation spectrums, the 

three-way FRETs (concurrent eCFP→eYFP, eYFP→mRFP and eCFP→mRFP) and a two-

step FRET (eCFP→eYFP→mRFP) can all be detected for the trimeric TNFR1 examination 

(see section 5.2.2 and section 6.2.1). 

The cell surface TNFR1 interactions permit the regulation of various human intracellular 

signalling pathways. In particular, the cell death pathway and the nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-𝜅𝜅B) activated proinflammatory pathway 

are critical for human anti-tumour and antiviral immune responses [134, 143, 144]. 

Many pharmaceutical therapeutics screens and clinical diagnostics target the TNFR1-

regulated cell death and proinflammatory signalling pathways as a tool to search  for 

anti-inflammatory, anti-viral, and anti-tumour drugs and detecting autoinflammation 

diseases, respectively [145-149]. Therefore, it is crucial to deliver the simultaneous 

detection of the TNFR1 PPI FRET reporters and the cellular signalling reporters to 

understand how TNFR1 receptor interactions link to the intracellular signalling pathway 

activities. This study uses the UV-violet fixable live/dead dye (Thermo Scientific) for cell 

death detection. Since there is no commercial reporter for detecting the NF-𝜅𝜅B activated 

proinflammatory signalling pathway that can be easily adapted to the FRET system, I 

generated the pGL4.23.NF-𝜅𝜅B-[miniP]-miRFP703 reporters for the detection of NF-𝜅𝜅B 

activation. The proinflammatory reporter uses the pGL4.23 minimal promoting 

expression vector cloned with the NF-𝜅𝜅 B response elements and the monomeric 

infrared fluorescent protein (miRFP703) for the detection of fluorescence signals.  
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In addition to the normal TNFR1 receptor biology, the germline mutation of TNFR1 can 

cause a rare autoinflammatory disease termed TNFR-associated periodic syndrome 

(TRAPS). TRAPS is a condition characterised by recurrent episodes of fevers that typically 

last three weeks to a few months, with frequencies varying between 6 weeks to a few 

years [150-152]. The mechanism of TRAPS pathology has not been fully understood, and 

how TRAPS-related mutations in TNFR1 protein alter the TNFR1 PPIs has not been 

thoroughly investigated. Therefore, to demonstrate the possibility of utilising the FRET 

platform developed in this study to detect the aberrant PPIs caused by germline 

mutations, TNFR1 TRAPS mutants have also been generated using site-direct 

mutagenesis. All TRAPS mutations located in the TNFR1 CRD1 and CRD4 (PPI critical 

domains) ORFs were used to generate TRAPS TNFR1-eYFP fusion constructs and 

compared with the wildtype (WT) TNFR1-eYFP in the abovementioned three-way FRET 

system.  

The virulence of a virus infection is strongly influenced by the capacity of the virus to 

subvert the hosts’ anti-viral defences. Therefore, it is unsurprising that many viruses 

have adopted multiple strategies to counteract the TNFR1 biology [153-157]. For 

poxviruses (poxviridae), a family of large dsDNA enveloped viruses, their large genome 

size (180-230 kb dsDNA45) confers the capacity to include multiple ORFs that encode 

vTNFRs whose function appears to subvert the hosts’ TNFR1-mediated antiviral immune 

responses. These vTNFRs can be detected as soluble glycoproteins in the supernatant of 

poxvirus-infected cells [158], which bind and potently neutralise TNFR1-mediated cell 

death [159]. The functional importance of vTNFR is exemplified by the fact that vTNFR 

ORFs are found within the genomes of virtually all poxviruses [160, 161], and vTNFRs 
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sometimes are known by the more general term “cytokine response modifiers” (CRM) 

[162]. Previous studies primarily focused on the TNF cytokine “decoy” mechanisms of 

the vTNFR, and few studies were concentrated on the interactions between vTNFR and 

huTNFR1 receptor proteins. In this study, to demonstrate the power of the FRET 

platform in detecting the PPIs between vTNFR and huTNFR1, the vTNFR cDNAs from 

selected poxviruses (variola virus, myxoma virus, and monkeypox virus) were used to 

generate the -mRFP FRET component and replace the huTNFR1-mRFP in the FRET assay. 

By combining with the huTNFR1-eCFP and TRAPS-eYFP, it further permits the detection 

of protein interactions among human WT TNFR1, human TRAPS TNFR1, and vTNFR. In 

this study, I hypothesise that TRAPS mutations of TNFR1 are potential evolutionary 

trade-offs, and TRAPS TNFR1 mutants can disarm the poxvirus’s immune evasion 

mechanism, which targets the human WT TNFR1 proteins. This further demonstrates 

the power of the FRET platform developed in this study for more complex viral-host 

interaction and evolutionary competition studies. In summary, this chapter reports the 

generation of all the biological components (all summarised in Figure 13) that were 

required to establish the FRET assays and to demonstrate the capabilities and 

robustness of the ML-powered flow cytometry-based FRET platform.  
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Figure 13 Biological samples prepared in this study
Human TNFR1, TNFR2, and CD27 were generated as the -eCFP, -eYFP, and -mRFP pcDNA3 fusion 
constructs. A total of 62 human TNFR1 TRAPS mutants were also generated as the -eYFP pcDNA3 
fusion constructs. In addition, the myxoma virus MT2, variola virus G4R and monkeypox J2R viral 
TNFRs were generated as the -mRFP pcDNA3 fusion constructs. For proinflammatory signalling 
detection, the pGL4.23 minimal promoter plasmid was used to generate miRFP fluorescence 
reporters with 0, 2, 4, and 8 copies of NF-𝜅𝜅B response elements. 

3.2 Results: 

3.2.1 Generation of TNFR1, TNFR2, CD27 as -eCFP, -eYFP, -mRFP fusion constructs

A total of nine TNFRs-FP fusion plasmid vectors, pcDNA3.TNFR1-eCFP, pcDNA3.TNFR1-

eYFP, pcDNA3.TNFR1-mRFP, pcDNA3.TNFR2-eCFP, pcDNA3.TNFR2-eYFP, 

pcDNA3.TNFR2-mRFP, pcDNA3.CD27-eCFP, pcDNA3.CD27-eYFP and pcDNA3.CD27-

mRFP were sequenced to confirm no mutation or miss-paired DNAs from the subcloning 

process. The sequences were compared to the NCBI nucleotide database using blast 

search, in which the TNFR1, TNFR2, and CD27 sequences were aligned with the Homo 

sapiens references, NCBI accession: AH003016.2, NCBI accession: AH006638.2, and NCBI 

accession: BC012160.1 respectively. The eCFP, eYFP, and mRFP sequences were aligned 

with the cloning vector and synthetic construct references, NCBI accession: OL452018.1, 
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NCBI accession: LT727258.1, and NCBI accession: AF506027.1 respectively. In detail, for 

human TNFRs’ sequencing results, the TNFR1 sequence showed 99.82% identity to the 

reference data with a different nucleotide at the 36th position (CCG → CCA, 

proline→proline, see Figure 14 and Figure 15). The TNFR2 and CD27 sequences both 

showed 100% identity to the reference data (Appendix Figure 3 to Appendix Figure 8). 

For FP sequencing results, the eCFP and eYFP both showed 100% identity to the online 

reference sequence (see Figure 14, Figure 15, Appendix Figure 3, Appendix Figure 4, 

Appendix Figure 6 and Appendix Figure 7), while the mRFP showed 99.85% identity to 

the online reference sequence with a varied nucleotide at the 525th position (GCC→GCT, 

alanine→ alanine, see Figure 16, Appendix Figure 5 and Appendix Figure 8). The 

sequencing variations can result from either the PCR error or single nucleotide 

polymorphisms in the original sequence template. In both cases, the variations do not 

impact the translated protein amino acid sequences or the protein structures. Thus, all 

pcDNA3.TNFR1-eCFP, pcDNA3.TNFR1-eYFP, pcDNA3.TNFR1-mRFP, pcDNA3.TNFR2-

eCFP, pcDNA3.TNFR2-eYFP, pcDNA3.TNFR2-mRFP, pcDNA3.CD27-eCFP, pcDNA3-

CD27.eYFP, and pcDNA3.CD27-mRFP have been successfully constructed and verified by 

DNA sequencing and can be utilised in FRET assays.  
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Figure 14 TNFR1-eCFP sequencing result
Human TNFR1 (black box) subcloned with the eCFP (cyan box) to form a fusion fluorescence 
receptor TNFR1-eCFP. The sequencing result of human TNFR1 shows a silent mutation: 
CCG→CCA, proline→proline (red) at the 36th nucleotide. No mutation in the eCFP sequence.
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Figure 15 TNFR1-eYFP sequencing result
Human TNFR1 (black box) subcloned with the eYFP (yellow box) to form a fusion fluorescence 
receptor TNFR1-eYFP. The sequencing result of human TNFR1 shows a silent mutation: 
CCG→CCA, proline→proline (red) at the 36th nucleotide. No mutation in the eYFP sequence.
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Figure 16 TNFR1-mRFP sequencing result
Human TNFR1 (black box) subcloned with the mRFP (red box) to form a fusion fluorescence 
receptor TNFR1-mRFP. Two silent mutations were identified, one in the TNFR1 ORF: CCG→CCA, 
proline→proline (red) at the 36th nucleotide, and the other one in the mRFP ORF: GCC→GCT, 
alanine→alanine (red) at the 525th nucleotide.



92 
 

3.2.2 Establish the optimal sample harvesting period using live-cell imaging 

Human cells recycle excess or unusable proteins into amino acids, which balances the 

need for other protein syntheses. The energy preserved during protein recycling also 

provides the capacity to rapidly mobilise proteins to their sites of action when the proper 

signal is received [163]. Transiently transfected HEK-293T cells express the fusion 

proteins from plasmid vectors without host genome integration. The plasmid DNAs will 

not be replicated during cell replication, and the expressed fusion protein level will 

decrease after maximal expression due to the transient transfection and protein 

recycling process. It is necessary to determine the optimal cell culture times post 

transfection to ensure the HEK-293T cells express each of the TNFR1, TNFR2, CD27-eCFP, 

-eYFP and -mRFP fusion constructs at high levels. The culturing time cannot be so long 

that the expressed fusion proteins or the transiently transfected plasmid DNAs undergo 

degradation and recycling. 

Another factor that can also impact the plasmid transfection and expression efficiency 

is the potential endotoxin contamination from the E.coli bacterial host during the 

plasmid DNA maxiprep extraction procedure. Therefore, endotoxin levels of the 

maxiprep plasmid DNAs were examined using the chromogenic LAL endotoxin assay to 

rule out any influence on the final fusion protein level from endotoxin contamination. 

The concentrations of endotoxins from the nine TNFRSF receptor-FPs samples were 

examined with values below the contamination threshold based on the industrial 

standard (Figure 17). This result is often described as “endotoxin-free” in commercial-

level endotoxin-free plasmid extraction kits.  
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Figure 17 Endotoxin detection of plasmids
The concentrations of residual endotoxin were examined within two linear 
concentration ranges (black dots and lines). All samples have low endotoxin levels 
(green cross) that meet the industrial standard (red dashed line).

The expression dynamics of each TNFRs-FP fusion construct were examined utilising the 

Nikon A1R confocal live-cell time course imaging and the HEK-293T cells transfected with 

the endotoxin-free plasmids. After the initial 6 hours of incubation, the expression levels 

were recorded and calculated as the mean fluorescent intensity of each sample for a 48-

hour (6 hours to 54 hours) tissue culture period post-transfection. The fluorescent 

intensity values have been normalised to the same scale. All TNFRs-eCFP expressions 

reached the maximum between 42 to 48 hours post-transfection and started to decline 

after 48 hours, with the TNFR1-eCFP starting to decrease slightly earlier after 47 hours 

(Figure 18 cyan plots). All TNFRs receptor-eYFP expressions reached the maximum 

between 38-46 hours post-transfection, except for TNFR1-eYFP reached the maximum 
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at 29 hours and started to decline afterwards (Figure 18 yellow plots). All TNFRs-mRFP 

expressions are similar to the -eCFP expressions, but no expression decrease was 

observed within the 48 hours recording period (Figure 18 red plots). The varied 

expression dynamics are potentially caused by the codon bias of the different receptor 

and fluorescent protein sequence combinations which depend on the HEK-293T host 

cell tRNA pool that is used for making those fusion proteins. The early declines of the 

TNFR1 constructs are also the results of the cell death mediated by the TNFR1 signalling. 

Therefore, the optimal harvesting time between 30-36 hours post-transfection has been 

chosen to ensure the maximal fluorescence detection levels for all fluorescence-fused 

receptors. In addition, TNFR1-expressed cells were observed with shrunk cell sizes 

compared to TNFR2 and CD27-expressed cells (Figure 18B), which is an early indicator 

for cell apoptosis. 
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Figure 18 Live-cell imaging of TNFRs-eCFP/eYFP/mRFP expressions
The dynamic expression profiles of TNFR1 (solid lines), TNFR1 (dashed lines), and CD27 (dotted 
lines) as the -FP fusion proteins (cyan, yellow, and red) (A). Microscopy images were captured 
for TNFRs-eCFP/eYFP/mRFP 48 hours post-transfection (B).
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3.2.3 Generation of TRAPS mutation-related TNFR1 as -eYFP fusion constructs 

A total of 62 TRAPS TNFR1-eYFP constructs were generated using site-direct 

mutagenesis with the primers designed as listed in the method section (see section 

2.1.2). TRAPS mutation constructs were confirmed by plasmid DNA sequencing and 

further compared with the WT TNFR1 sequence, and the results indicated that all 62 

TRAPS TNFR1-eYFP have been successfully constructed with the designated mutations 

(Figure 19). Moreover, the expression of each TRAPS-eYFP fusion protein has been 

examined in HEK-293T cells with the EVOS microscope 36 hours after transient 

transfections. All generated TRAPS TNFR1-eYFP fusion proteins were successfully 

expressed and detected using the YFP (500/24 nm excitation, 542/27 nm emission) EVOS 

light cube (Figure 20).  
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Figure 19 TRAPS TNFR1 sequencing results
A total of 44 naturally-existing TRAPS mutations in the CRD1/PLAD of TNFR1 (A), six naturally-
existing TRAPS mutations around the CRD4 region (B), and 12 artificially generated 
cysteine→alanine and cysteine→serine generated mutations (C) were sequenced against the WT 
TNFR1 and indicated all desired mutations were successfully generated (red boxes).
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Figure 20 Fluorescence microscopy imaging of TRAPS TNFR1-eYFP expressions 
A total of 62 TRAPS TNFR1-eYFP pcDNA3 plasmids were generated and transfected with the HEK-
293T cells. All TRAPS TNFR1-eYFP mutant -eYFP fusion proteins were successfully generated and 
expressed in the mammalian cell line. Within all generated TRAPS mutants, 44 are naturally 
existing TRAPS mutations in the CRD1/PLAD of TNFR1 (A), six are naturally existing TRAPS 
mutations around the CRD4 region (B), and 12 artificially generated cysteine→alanine and 
cysteine→serine mutations in CRD4 (C).  
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3.2.4 Generation of vTNFR as -mRFP fusion constructs 

A group of 3 poxviruses-encoded vTNFRs (MT2 encoded by the myxoma virus, G4R 

encoded by the variola virus and J2R encoded by the monkeypox virus) were selected to 

make the -mRFP fusion constructs. These were combined with the human TNFR1-eCFP 

and TNFR1-eYFP to demonstrate the FRET platform's capacity to investigate virus-host 

protein interactions. The vTNFR-mRFP fusion constructs were validated with the plasmid 

DNA sequencing and compared with the reference sequences from the NCBI database 

(NCBI accession: M95181.1 for MT2, NCBI accession: NC_001611.1 for G4R, and NCBI 

accession: JX878429.1 for J2R). In particular, the G4R and J2R were subcloned using the 

codon-optimised DNA plasmid template to guarantee the expression in human cells 

(Figure 22 yellow highlights and Figure 23 purple highlights). Therefore, the sequencing 

results showed that MyxMT2 has 100% sequence identity as the reference sequence 

(Figure 21), while VarG4R and MpxJ2R have 73.48% and 74.76% sequence identity as 

the reference sequence due to codon optimisation. When those subcloned sequences 

translated into protein, all vTNFR-mRFP have 100% amino acids sequence identity as 

their reference sequences in the NCBI database (Figure 21, Figure 22 and Figure 23 

amino acid sequences). 
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Figure 21 MyxMT2-mRFP sequencing result
Myxoma virus-encoded MT2 vTNFR (black box) subcloned with the mRFP (red box) to form a 
fusion fluorescence receptor MyxMT2-mRFP. One silent mutation was identified in the mRFP 
ORF: GCC→GCT, alanine→alanine (red). No mutation in the MyxT2 ORF region was detected. 
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Figure 22 Codon optimised VarG4R-mRFP sequencing result
Variola virus-encoded G4R vTNFR (black box) subcloned with the mRFP (red box) to form a fusion 
fluorescence receptor VarG4R-mRFP. One silent mutation was identified in the mRFP ORF: 
GCC→GCT, alanine→alanine (red). All desired codon optimisations (yellow highlights) were 
identified, and no undesired mutation in the G4R ORF was detected. 
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Figure 23 Codon optimised MpxJ2R-mRFP sequencing result
Monkeypox virus-encoded J2R vTNFR (black box) subcloned with the mRFP (red box) to form a 
fusion fluorescence receptor MpxJ2R-mRFP. One silent mutation was identified in the mRFP ORF: 
GCC→GCT, alanine→alanine (red). All desired codon optimisations (purple highlights) were 
identified, and no undesired mutation in the J2R ORF was detected. 
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The expression of each vTNFR-mRFP construct was also examined using the EVOS 

microscope, and HEK-293T cells transfected with the pcDNA3.MyxMT2-mRFP, 

pcDNA3.VarG4R-mRFP and pcDNA3.MpvJ2R-mRFP plasmids. All plasmids encoded 

vTNFR-mRFP fusion proteins were detectable using the RFP (531/40 nm excitation, 

593/40 nm emission) EVOS light cube, substantiating that the newly constructed fusion 

proteins (MyxMT2, VarG4R and MpvJ2R) were each successfully expressed as mRFP

labelled fusion proteins (i.e., red in colour) in HEK-293T cells (Figure 24). 

Figure 24 Fluorescence microscopy imaging of vTNFRs-mRFP expressions
Microscopy images captured in the transmitted and RFP fluorescence channels demonstrate the 
successful subcloning and mammalian expression of newly constructed pcDNA3.MyxT2-mRFP 
(top), pcDNA3.VarG4R-mRFP (middle), and pcDNA3.MpvJ2R-mRFP (bottom).
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3.2.5 Generation of pGL4.23.NF-𝜿𝜿B-[miniP]-miRFP703 proinflammatory reporter 

Firstly, the AvrII digested 2× NF-𝜅𝜅B response element oligonucleotides were incubated 

in T4 ligation buffer for self-ligation to achieve higher copies of insert NF-𝜅𝜅B response 

element fragments (i.e., 4× and 8×). Then, the NheI digested pGL4.23.[miniP] vector 

was added to the subcloning reaction to form the pGL4.23.NF-𝜅𝜅B-[miniP] plasmid with 

different numbers of insert copies. The ligation can be achieved because AvrII and NheI 

restriction enzymes generate compatible sticky ends during digestion (Figure 25A).  

The newly constructed potential pGL4.23.NF-𝜅𝜅B-[miniP] plasmids were then double-

digested with SacI and XhoI to release the entire insert fragment. Plasmids with different 

lengths of released insert fragments were selected for sequencing (Figure 25B). The 

sequencing results indicated pGL4.23.NF-𝜅𝜅B-[miniP] with 2×,  4×, and 8× copies of 

inserts were successfully generated with the response element sequences located 

before the minimal promoter sequence (Figure 25C). Furthermore, the sequencing data 

also indicated that NcoI and XbaI double-digested miRFP703 reporter sequence was 

successfully cloned after the minimal promoter using the pGL4.23.NF- 𝜅𝜅 B-[miniP] 

plasmids as the backbone (one example is shown in Figure 25D). 
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Figure 25 Sequencing results of the NF-𝜿𝜿B-miRFP703 proinflammatory reporters
The construction of 2× NF-𝜅𝜅B response elements insert fragments, which were subcloned into 
the pGL4.23 minimal promoter plasmid vector using the compatible AvrII and NheI sites (A).
Insert fragments released by SacI and XhoI double digestion (B). Sequencing results of the NF-
𝜅𝜅B response elements were successfully subcloned into the pGL4.23 vector before the minimal 
promoter sequence (C). The sequencing result indicated that the miRFP703 fluorescent protein 
reporter was successfully subcloned into the pGL4.23 vector after the minimal promoter 
sequence (D). 
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The NF-𝜅𝜅B can be selectively activated when co-transfected with the non-fluorescence 

TNFR1 plasmids (Figure 26). In comparison, cells co-transfected with the non-

fluorescence TNFR2 or CD27 plasmid and NF-𝜅𝜅B reporter plasmids showed no NF-𝜅𝜅B 

activation (Appendix Figure 9).  The medium-only cells, pcDNA3 empty vector-

transfected cells, and pGL4.23.[miniP]-miRFP703 plasmid (without NF-𝜅𝜅B response 

element) transfected cells also showed no detectable miRFP fluorescence (Appendix 

Figure 10). Moreover, different number of copies of the NF-𝜅𝜅B response elements 

induced different levels of miRFP703 expression. When co-transfected with TNFR1 

plasmids, the 4× and 8× NF-𝜅𝜅B response element samples both demonstrated higher 

miRFP703 expression levels higher than the sample without NF-𝜅𝜅B response element, 

while the 2× NF-𝜅𝜅B response element sample showed the same expression level as the 

no NF-𝜅𝜅B response element sample, this means more than two copies of the NF-𝜅𝜅B 

response element sequences are required to activate the miRFP703 expression through 

the minimal promoter. When this NF-𝜅𝜅B proinflammatory reporter was used with the 

FRET reporters, the cells were harvested at 36 hours post-transfection. Thus, the 

miRFP703 detection levels were also calculated at 36 hours post-transfection to 

compare the activation using different number of copies of NF-𝜅𝜅B response elements. 

The 2× NF-𝜅𝜅B response element sample showed no significant difference (t-statistic = 

0.088, 𝑝𝑝-value = 0.936) when compared to the NF-𝜅𝜅B response element negative control, 

while both 4× and 8× NF-𝜅𝜅B response element samples showed significantly higher 

miRFP703 expression than the negative control (t-statistic = -19.239, 𝑝𝑝-value = 0.002 

and t-statistic = -15.498, 𝑝𝑝-value = 0.0004). The miRFP703 expression levels between the 

4× and 8× NF-𝜅𝜅B response element samples were not significantly different from each 

other (t-statistic = 2.949, 𝑝𝑝-value = 0.084). 
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Figure 26 Live-cell imaging of NF-𝜿𝜿B reporter and TNFR1 co-transfected HEK-293T cells
The NF-𝜅𝜅B reporter with zero or 2× response elements had minimal miRFP expression, and the 
NF-𝜅𝜅B reporter with 4× or 8× response elements started to express miRFP from 14 hours post-
transfection (A). The expression dynamics of the NF-𝜅𝜅B reporter with different number of copies 
of response elements (B). Normalised miRFP703 detection level calculated at the 36 hours post-
transfection (C).  
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4.1 Introduction 

Flow cytometry data pre-processing involves a series of logical stages before one can 

perform accurate downstream data analyses like FRET quantification. While the 

detection of FRET has been used to characterise many intracellular interactions, 

quantifying and comparing the FRET results are particularly difficult due to the complex 

nature of these processes within living cells; often, many variances can be produced 

during data pre-processing. Many software and programmed packages/libraries in 

python and R offer solutions for each pre-processing stage (see literature review section 

1.3). Still, challenges in singlet identification, anomaly detection, autofluorescence 

removal, and spectral unmixing impede investigators from achieving error-free flow 

cytometry measurements. This lack of high-quality pre-proceed data has largely 

decreased the sensitivity, accuracy, and reliability of flow cytometry-based assays 

(including FRET assays) in academic research, clinical diagnosis, and pharmaceutical 

therapeutics screening.  

Firstly, there are two most essential gating steps in a typical flow cytometry data analysis: 

(i) singlet identification to separate single cell events from cell aggregates (doublets or 

multiplets), cell debris and non-cell background events, and (ii) subtype identification to 

separate different cell types with distinct phenotypes into groups. The majority of 

automated flow cytometry gating algorithms have been focused on the second one in 

detecting various cell subpopulations utilising multidimensional fluorescence signals 

(see literature review section 1.3.4). On the one hand, flow cytometers detect well-

calibrated scattered light signals that permit a series of gold-standard manual gating 

procedures to separate singlets from other data events. On the other hand, cells can 
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display varied scattered light profiles upon different treatments and require manual 

adjustment for individual samples. Therefore, the manual gating approach can be 

subjective, labour-intensive, and time-consuming for big-batch data analysis. To date, 

only a few methods have presented unsupervised algorithms for cell event and singlet 

identification to provide automated and objective solutions. The TASBE software 

package incorporates automated cell gating using a GMM to fit the scattered light data 

but can only identify cells from background events, not singlets from doublets or cell 

aggregates [86]. Razo-Mejia et al. established an unsupervised two-dimensional 

Gaussian function-based gating algorithm that fits the log10(FSC) and log10(SSC) data 

using covariance and chi-squared test. However, only events within the centre, high-

density region (usually 40% of the total) are gated as cells using this approach [128]. The 

most recent algorithm is FlowGateNIST which uses iterative GMM with different cluster 

numbers to discriminate between cells and background events and, subsequently, 

between singlet and multiplet events. However, an optimised GMM model based on the 

BIC needs repetitive GMM fitting, which increases processing time. In addition, 

FlowGateNIST is limited to analysing small particles such as bacterial cells and is 

unsuitable for large mammalian cells [84]. Therefore, the desired singlets identification 

algorithm must be automatic, objective, rapid, and suitable for mammalian cell 

applications. 

Secondly, flow cytometers constantly measure baseline fluorescence signals and 

subtract them from the detected fluorescent signals during data acquisition. Abnormal 

baseline subtractions can sometimes result in negative fluorescent intensity readout 

without actual physical or biological meaning. The negative values can also lead to 
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significant data loss since downstream statistical analyses require the removal of those 

negative values. The current widely used algorithms FlowClean and FlowAI can resolve 

aberrant detection errors such as saturated margin data, data with irregular fluidic flow 

rate and data with abnormal fluorescent intensity measurement. However, when 

handling the baseline subtraction-error, FlowClean simply replaces negative values with 

small random numbers, and flowAI only removes a portion of the negative data based 

on the calculated threshold, which both leave unresolved fluorescence quantification 

errors [79, 80]. A single-cell level baseline subtraction correction algorithm is urgently 

needed to prevent flow cytometry data loss and to achieve the detection of error-free 

fluorescent intensity values.  

Thirdly, autofluorescence is a mixed fluorescent signal of various biomaterials in the 

biological sample. Autofluorescence can be problematic because it reduces the signal-

to-noise ratio, resulting in decreased sensitivity and false-positives. Furthermore, 

autofluorescence spill-over can also obscure low-emitting signals, such as fluorophore-

tagged proteins with low expression levels, weak sensitised FRET emissions and cellular 

signalling pathway reporters with low activation levels. The current methods are 

inaccurate for autofluorescence removal. They either subtract the sample-level mean 

autofluorescence intensity calculated from the non-fluorescent control samples or treat 

autofluorescence as a single colour and remove it with the linear spectral unmixing 

approach. The former conducts subtraction at the non-single-cell level, and the latter 

requires an extra detection channel with increased hardware requirements. Both 

approaches ignore that autofluorescence varies from cell to cell and reflects the 

biomaterials' heterogeneity in each sample. Therefore, a non-linear single-cell algorithm 
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is needed for precise autofluorescence prediction and removal to increase the signal-to-

noise ratio, detection sensitivity and fluorescent intensity quantification accuracy. 

Lastly, spectral unmixing is a fluorescent signal compensation technique that removes 

the spillovers from the spectrally overlapped photon emissions and cross-laser excited 

photon emissions from samples labelled with multiple fluorophores. All current spectral 

unmixing methods essentially minimise the spread error, indicating the level of residue 

error spreading after compensation. The major contribution to the spread errors are 

unresolved anomaly detection signals and autofluorescence, so the performance of the 

spectral unmixing is significantly dependent on the baseline subtraction correction and 

autofluorescence removal mentioned earlier. Moreover, compensation is especially 

challenging for FRET assays since it requires single-colour controls for all detected 

fluorescence signals since FRET signals have no true single-colour control because the 

FRET-donor and FRET-acceptor fluorescence emissions are simultaneously detected 

with the sensitised FRET fluorescence. Therefore, the spectral unmixing algorithm that 

can handle the FRET emissions is needed to achieve accurate flow cytometry-based FRET 

quantification. 

In this chapter, I have developed several unsupervised algorithms to overcome the 

abovementioned unresolved challenges in flow cytometry data pre-processing. The 

performance of each pre-processing step and the overall pre-processing pipeline have 

been evaluated using a total of 11 flow cytometry-based FRET experiments consisting of 

three cell types and five different FRET pairs detected by five distinct flow cytometers 

(including conventional and spectral flow cytometers). This chapter provides ML-

powered solutions that achieve automatic, objective, ultra-fast singlet identification, 
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followed by an error-free baseline-subtraction correction, autofluorescence removal 

and spectral unmixing. Together, they remove the obstacle in achieving accurate and 

unbiased flow cytometry data quantification and significantly increase the sensitivity 

and robustness of all flow cytometry assays, including the detection of FRET.   

4.2 Results 

4.2.1 UltraFast – an unsupervised algorithm for automatic singlet identification 

Flow cytometers measure the relative cell size and granularity with forward-scattered 

(FSC) light and side-scattered (SSC) light detectors (Figure 27A). Each of the FSC and SSC 

signals has three measurable parameters, the heights (FSC-H, SSC-H) indicate the signal 

strength, the widths (FSC-W, SSC-W) indicate the relative time cost by a particle to pass 

through the laser, and the areas (FSC-A, SSC-A) represent the integrated area of the 

overall detected signal (Figure 27B). Despite the well-calibrated nature of flow 

cytometers allowing for a standardized six-step approach to separate singlets from 

other events, cells under different treatments or expressing different proteins can 

exhibit diverse profiles in these gating panels (Figure 27C). For instance, cells transfected 

with plasmid DNAs, especially those overexpressing human TNFR1 proteins, show 

noticeable enlargement and increased granularity (Figure 27C last row).  

To elucidate, the use of manual gating in this study is primarily for baseline comparison. 

The ground truths of singlet identities were initially established using carefully adjusted 

manual gates for each sample, this approach was also assessed by cell sorting and 

microscopy imaging (see Appendix Figure 11). The performance of conventional manual 

gating baseline was performed on identifying singlets in a semi-automated way. In detail, 

the six-step gates were established on one sample, and the same set of gates was 
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automatically applied across the rest of the samples to test the accuracy of the batch 

manual gating approach.  

This semi-automated approach separately used each of the untransfected sample, 

pcDNA3 empty vector transfected sample, pcDNA3.TNFR1 transfected sample and 

pcDNA3.CD27 transfected sample as the establishment control sample to generate an 

averaged performance. On average, the semi-automatic batch manual approach 

achieved an average F1 score of 0.7767 with an average precision of 0.9057 and an 

average recall of 0.7327 (Figure 27D). The standard deviation of the performance also 

has an extensive range from 0.0561 to 0.3802, indicating that the manual gating 

strategy’s performance can be varied when utilised in the semi-automated batch mode. 

Contrastingly, the UltraFast algorithm in the below sections operates on an entirely 

automated, unsupervised basis, eliminating the necessity for manual gating. It’s 

essential to clarify that the semi-automated approach mentioned is utilised to provide 

a comparative baseline, not as a component of the UltraFast technique. UltraFast’s 

innovation lies in its capability to automatically identify singlets, offering an improved, 

more consistent performance over manual or semi-automated strategies.  
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Figure 27 Semi-automated batch mode manual singlet identification 
Flow cytometers measure FSC and SSC signals on two perpendicular detectors (A). Each FSC and 
SSC signal has width, height and area parameters (B). The six-step manual gatings were applied 
on HEK-293T cells with different transfections (C). The performance of singlet identification 
when utilising the semi-automated batch mode manual gating approach. The F1 scores, 
precision, and recall were presented as the bar graphs using different sample as the 
establishment control sample that generated the gates (D).
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The unsupervised clustering algorithm, density-based spatial clustering of applications 

with noise (DBSCAN), has superior performance when clustering flow cytometry data 

with irregular shapes and much background noise (see Figure 29A). Several commonly 

used unsupervised clustering algorithms, K-Means, Ward, agglomerative clustering and 

GMM, were used to compare with the DBSCAN algorithm on four sets of synthetic data 

(Figure 28). Although all algorithms can handle the data with regular shapes and equal-

size clusters well (Figure 28, first row), only DBSCAN perfectly clusters the irregularly

shaped data (Figure 28, second row). DBSCAN also has a unique feature of noise 

identification (as those purple dots) that prevents the forced assignment of the noise 

into clusters (Figure 28, third row).  Lastly, DBSCAN does not require user-supplied 

cluster numbers, preventing the incorrect separation of one group into numerous 

clusters (Figure 28, last row).

Figure 28 Unsupervised clustering algorithms comparison
K-Means, Ward, Agglomerative clustering, and GMM compared with the DBSCAN algorithm. 
Each data has 1000 data points. Each of the blue, red and yellow colour represents one cluster 
after unsupervised clustering, and the numbers at the lower right corners are indicating the 
computing time of the clustering task. The clustering comparison was performed on data with 
regular shapes and equal size (1st row), irregular shapes (2nd row), and different sizes with noise
(purple colour dots) (3rd row). In addition, DBSCAN does not require user-supplied 
hyperparameter for cluster number, so it did not perform the incorrect separation of one group 
into numerous clusters (4th row).
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For this project, I have developed a six-stage unsupervised algorithm called UltraFast 

that further raised the power of DBSCAN. The algorithm flowchart is summarised with 

graph illustrations (Figure 29A), and the detailed methods are described in section 2.7.2. 

The UltraFast algorithm can achieve unbiased, automated, singlet identification with 

less than half a second processing time per sample with 30,000 cells. The UltraFast 

algorithm achieves an average F1 score of 0.9193 with SD = 0.0090 (precision = 0.9305, 

recall = 0.9084), indicating a high true-positive singlet identification with low false-

negative and low false-positive detection rates. This result outperforms many other 

clustering algorithms, including FlowGrid (mean F1 = 0.7484, SD = 0.0579). K-Means 

(mean F1 = 0.4300, SD = 0.0676), G-Means (mean F1 = 0.4257, SD = 0.0666), X-Means 

(mean F1 = 0.4247, SD = 0.0662), flowMeans (mean F1 = 0.7607, SD = 0.0586), GMM 

(mean F1 = 0.6053, SD = 0.0577), flowClust (mean F1 =0 .7171, SD = 0.0064), 2D gaussian 

fitting with covariance and chi-squared test (mean F1 = 0.6821, SD = 0.0624) (Figure 29B), 

for each algorithm the same data transformation from UltraFast stage-1 to stage-3 were 

utilised to achieve fair comparison (Figure 29B). The singlet identification results have 

been validated with several cell lines, including U2OS, HL60, HEK293T, THP1 and human 

T cells from human peripheral blood mononuclear cells (PBMCs), and the gating profiles 

were compared with the six-step manual gating using scatterplots (see Appendix Figure 

12 with an example using HEK293T cell line). In addition, the UltraFast provides a “grid 

number” hyperparameter in step four which is approximate to the strictness of singlet 

identification that can be further fine-tuned by human experts. The optimisation of this 

hyperparameter can also be automatically tuned through iterations which shows a 

relatively stable performance from a broad range of grid numbers (50×50 to 150×150), 
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in which the F1 scores>0.9 was maintained using 82×82 to 122×122 number of grids 

(Figure 29C).

Figure 29 The unsupervised UltraFast singlet identification algorithm
The UltraFast algorithm's design consists of six stages (i) primary population identification (blue 
dots), (ii) data logarithmic transformation, (iii) PCA dimensionality reduction, (iv) generation of 
grid boxes, (v) finding the critical point using elbow method, and (vi) DBSCAN clustering (A).  
The F1 score of singlet identification results from different clustering algorithms, using the 
manual gated samples as the ground truth (B). The performance of UltraFast with different grid 
numbers (C).  
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4.2.2 The algorithm for single-cell level baseline subtraction-error correction

The baseline subtraction errors were corrected using the unsupervised collaborative 

filtering algorithm. This algorithm is currently used in many online streaming websites 

in their movie recommendation system. The algorithm learns from the original data 

containing rated and unrated movie scores from every user, and it generates attributes 

such as sci-fi, action, and romance (Figure 30 attributes in red). Those attributes are 

further used in model formulation to predict the unrated movie scores for each user. 

The prediction is achieved by minimising the cost function between predicted and 

known-rated scores using iterative gradient descent (see chapter two, section 2.7.3). 

Figure 30 Collaborative filtering algorithm intuition
The collaborative filtering (CF) recommendation algorithm can perform unsupervised movie 
score prediction for unrated movies by users (red question marks and red scores). CF uses the 
existing data (black numbers) to learn attributes (red attributes) and use them to model and 
predict the move rating score while minimising the differences (costs) between the existing 
scores and predicted scores for rated movies. Meanwhile, unrated movie scores are also 
predicted.



120

Baseline subtraction errors can cause huge flow cytometry data loss since they lead to 

negative fluorescent readouts with no physical or biological meaning, and those values 

need to be removed before any statistical analysis. By examining the fluorescent 

intensity measured with seven different flow cytometers that used fluorescent 

detection channels ranging from 4 to 48, the average percentage of cells with negative 

fluorescent intensities was 10.53%-74.29% (Figure 31). Further, by examining both the 

fluorescent intensity heatmap and the fluorescent positive/negative binary plot

generated from the full-spectrum flow cytometer data, even within the red-boxed 

primary detection channels, which had strong fluorescent signals, there are more than 

half of the population had negative value in at least one detector (Figure 32A and B). 

Figure 31 Number of cells with negative fluorescent intensities in seven flow cytometers
All seven flow cytometers examined here generated negative fluorescent intensity values. The 
percentage of cells with negative fluorescent values varied among different flow cytometers (A). 
The number of detection channels used in each flow cytometer was also different (B). Samples 
tested here were fluorescently tagged cell lines, including THP-1, HEK293T cell lines and human 
PBMCs. The fluorescent colours used here includes eGFP, eCFP, eYFP, mRFP, FITC, Violet-Blue, 
Aquamarine, and mNeoGreen. 
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The baseline subtraction-error correction was implemented with successfully identified 

singlet data using the UltraFast algorithm. Here we treat single cells as online streaming 

users, the detection channel as movies, the fluorescent intensities as movie rating scores, 

and negative data need to be predicted as the question marked unrated movie scores 

(Figure 30). The algorithm automatically learns pseudo-attributes from the original flow 

cytometry measurements, and it minimises the cost function between the predicted 

values and the good-quality data measurements to predict and recover the baseline 

over-subtracted fluorescent intensity values. The performance results demonstrated a 

100% data recovery rate with an evaluation 𝑅𝑅2 score > 0.998 and the mean absolute 

error (MAE) < 0.01% using the number of pseudo-attributes >= 40, where the algorithm 

performance became stable (Figure 32C). The data centres have been successfully 

recovered from the margin to the middle of the populations by examining the 

multichannel scatterplots and histogram overlays (Figure 33 and Appendix Figure 13), 

which achieved nearly error-free baseline subtraction correction with a 100% data 

recovery rate.  
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Figure 32 Performance of the baseline subtraction-error correction algorithm
The fluorescent intensity heatmaps (A) and positive/negative binary plots (B) indicate the 
fluorescent intensity levels and data recovery rate, respectively. Red boxes show the detection 
channels with strong signals. The profiles show a 100% data recovery rate after the baseline 
correction (B bottom) with highly identical fluorescent intensity profiles (A bottom). The 
performance of the baseline subtraction-error correction algorithm using 𝑅𝑅2 and MAE%. The 
data in this figure was generated using the full-spectrum flow cytometer.
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Figure 33 Baseline subtraction-error correction results for mock-transfected cells
Scatterplot and histogram overlays of the mock-transfected sample before (red histograms) and 
after (blue histograms) baseline subtraction-error correction. The scatter plots are symmetric 
along the diagonal histogram plots. The data centre returned to the main population from the 
edge (red arrows).
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4.2.3 The algorithm for single-cell level autofluorescence prediction and removal 

The unsupervised CF algorithm also achieves autofluorescence prediction and removal, 

and the algorithm can accomplish error-free results that generate pure 

autofluorescence-free fluorescent intensity readouts. The concept and algorithm 

formulation used here is the same as in the baseline subtraction correction section, but 

with differently manufactured structures (Figure 34A). Here, the bottom two blocks 

illustrate autofluorescence-only cells transfected with the pcDNA3 empty plasmid 

vector and have identical values for autofluorescence and total detected fluorescence. 

The top blocks are the test sample, with autofluorescence that needed to be predicted 

(on the left) and the total detected fluorescent (on the right) (Figure 34A).  When the 

algorithm becomes stable (i.e., learned numbers of attributes > 20), it achieved 𝑅𝑅2 

score > 0.999 and percentage MAE < 0.001% indicating the near-perfect prediction 

accuracy (Figure 34B). The algorithm performance is more stable than the baseline 

correction step because the input data had already been cleaned during the baseline 

correction process. The outstanding performance was also evident by examining the 

multidimensional scatterplots and histogram overlays of the predicted autofluorescence 

over the known autofluorescence from the mock-transfected cells (Figure 35 and 

Appendix Figure 14). The algorithm learned from the separate pcDNA3 empty plasmid 

transfected sample and used to predict the mock transfection sample using only the 

transfection buffer and no plasmid DNA. Both the scatterplots and histograms show 

identical profiles tested by the Kolmogorov-Smirnov test with all 𝑝𝑝-values > 0.98. The 

results did not reject the null hypothesis of no significant difference and demonstrated 

that the predicted values and real values are from the same distribution, indicating the 

perfect accuracy produced by the autofluorescence prediction algorithm (Figure 35).  
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Figure 34 Performance of the autofluorescence prediction and removal algorithm
The data of the autofluorescence-only control sample and the test sample’s data were 
concatenated into a new dataset (A). The performance of the autofluorescence prediction 
algorithm using the 𝑅𝑅2 score and MAE% with numbers of attributes ranging from 1 to 100 (B).
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Figure 35 Autofluorescence prediction of the mock-transfected cells
Scatterplot and histogram overlays of the mock-transfected sample with the total fluorescence 
(red histograms) and autofluorescence (blue histograms) detection values. The scatter plots are 
symmetric along the diagonal histogram plots. Blue and red histograms are extremely identical. 

Mock transfection
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4.2.4 The pre-processing expansion on the full-spectrum flow cytometer

Unlike the conventional flow cytometer which detects fluorescence emissions with the 

designated detection channels. The full spectrum detects normalised fluorescence

signals using the entire detector array. For example, the 4L Cytek Aurora full-spectrum

flow cytometer detects fluorescence signals using a total of 48 detection channels (see

Figure 36 and Appendix Figure 1). For the mock transfection sample, it displayed the 

background autofluorescence profile across the entire 48 detection channels. For 

fluorescent protein-expressing cells, the primary detection channel can be chosen based 

on the fluorescent intensity histograms. In detail, the eCFP, eYFP and mRFP primary 

detection channels were the 405 nm violet laser-excited V5 channel, 488 nm blue lase-

excited B3 channel, and the 561 nm laser-excited YG3 channel, respectively (Figure 36).

Figure 36 Fluorescence signals detected on the full-spectrum flow cytometer
A total of 48 detection channels recorded fluorescence signals for mock-transfected cells (A), 
eCFP expressing cells (B), eYFP expressing cells (C), and the mRFP expressing cells.



128 
 

The process of Principal Component Analysis (PCA) in this study is primarily focused on 

the identification of optimal detection channels for fluorescent signals. Geometrically, 

PCA identifies the directions in the data that explain the maximal amount of variance. In 

this context, the first principal component (PC-1) is pivotal as it captures the most 

significant percentage of the variance, enabling the highest separation between 

fluorescence-positive and fluorescence-negative populations in fluorescent protein-

expressing cells. This allows us to determine which detection channel contributes most 

significantly to the variance captured by PC-1, thereby identifying the primary detection 

channel with the best fluorescence positive-to-negative signal ratio. 

However, it is crucial to differentiate between the role of PCA in detection channel 

identification and the process of FRET quantification. Once the optimal detection 

channels are identified (e.g., for FRET-donor, FRET-acceptor and FRET emission), the 

actual FRET quantification is performed using the direct fluorescent intensity 

measurements from these channels. This method ensures that the FRET quantification 

is based on actual detected intensities, rather than on compressed or transformed data. 

Thus, the PCA-based channel identification step does not introduce data compression in 

the quantification of FRET signals. It merely serves as a pre-processing step to enhance 

the accuracy and reliability of the subsequent FRET analysis by selecting the most 

appropriate channels for fluorescence detection. 

The results demonstrated that the optimal primary detection channels for eCFP, eYFP 

and mRFP were V5 (508/20 nm), B3 (542/17 nm) and YG3 (615/20 nm) detection 

channels, respectively (Figure 37A). The results completely agreed with the decision 

made by investigating the fluorescent intensities manually. The FRET detection can be 
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automatically assigned to the same channels as the acceptor’s filter range but on the 

donor-laser array. For example, the eCFP→eYFP (FRET1) detection channel can be 

assigned to V7 (542/17 nm) which is on the eCFP donor violet-laser detector array and 

with the same filter range as the eYFP acceptor using B3 (542/17 nm). Similarly, the 

eYFP→mRFP (FRET2) detection channel can be assigned to the blue-laser detection 

channel B6 (615/20 nm), and the eCFP→mRFP (FRET3) detection channel can be 

assigned to the violet detection channel V10 (615/20 nm), both were same as the mRFP 

detection channel YG3 (615/20 nm) off the yellow-green laser (Figure 37B).

Figure 37 Automated optimal detection channel identification using PCA
PCA reveals the optimal detection channels as the V5, B3, and YG3 detection channels for eCFP, 
eYFP and mRFP expressing cells, respectively (A). The full-spectrum flow cytometer detection 
configuration for each of the fluorophores and the FRET signals, eCFP (V5), eYFP (B3), mRFP 
(YG3), eCFP→eYFP (FRET1, V7), eYFP→mRFP (FRET2, B6) and eCFP→mRFP (FRET3, V10) (B).

The full-spectrum microscopy MFI data were also used to validate the automated 

primary detection channel identification results generated using the full-spectrum flow 
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cytometry data (Figure 38). The detection was conducted using a 1 nm excitation step

size ranging from 440 nm to 790 nm with a 5 nm emission detection step size ranging

from 452/5 nm to 827/5 nm (Figure 38A). The optimal detection ranges for eCFP, eYFP 

and mRFP were 507/5 nm, 542/5 nm and 607/5 nm (Figure 38B). These results further 

supported the automated optimal detection channel identification results using PCA, 

which were 508/20 nm, 541/17 nm and 615/20 nm, overlapping with the full-spectrum

microscopy results. 

Figure 38 Full-spectrum microscopy for eCFP, eYFP and mRFP Ex/Em profiles 
The contour plots for eCFP, eYFP and mRFP MFIs were calculated from the full-spectrum
microscopy data (A). The excitation range was 440 nm to 790 nm with a 1 nm step size, and the 
emission range was 452/5 nm to 827/5 nm with a 5 nm step size. The emission profiles using 
fixed excitation, 440 nm for eCFP, 488 nm for eYFP and 561 nm for mRFP (B).
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4.2.5 The performance of the spectral unmixing algorithm 

First, this section examines the spillovers between the FRET donor and acceptor

fluorophores, and it also demonstrates how the pre-processing steps mentioned above 

(i.e., baseline correction and autofluorescence removal) impacted the spectral unmixing 

results. For example, the spectral viewer illustrations display the spillovers between the 

donor and acceptor fluorophores for eCFP→eYFP FRET. On the one hand, upon 405 nm 

donor-laser excitation, eCFP is excited, and eYFP is also excited with suboptimal 

efficiency so that the eCFP primary emission can be detected by the eCFP filter along 

with some eYFP emission (Figure 39A red area). On the other hand, upon 488 nm 

acceptor-laser excitation, eYFP is excited, and eCFP is also excited with suboptimal 

efficiency so that the eYFP primary emission can be detected by the eYFP filter along 

with some spillovers from eCFP emission (Figure 39B red area).

Figure 39 Spillover between FRET donor and acceptor fluorophores
The eYFP FRET acceptor can be suboptimally excited by the 405 nm donor laser, and the 
emission of 405 nm laser-excited eYFP can be detected in the donor channel as the spillover 
emission (A, red area). The eCFP FRET donor can be suboptimally excited by the 488 nm acceptor 
laser, and the emission of 488 nm laser-excited eCFP can be detected in the acceptor channel as 
the spillover emission (B, red area). 

The 2-step collaborative filtering with the baseline correction and the autofluorescence 

removal steps has vastly enhanced the spectral unmixing result. Further, using the eCFP 
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and eYFP as an example, before spectral unmixing, the uncompensated emission of eCFP 

was detected with a MFI of 649.383 in the acceptor channel, and the eYFP was detected 

with an MFI of 617.518 in the donor channel (Figure 40A, dark grey bar). Here, the same 

spectral unmixing algorithm described in this study was used (see section 2.7.5) to 

compare the unmixed results for samples with different autofluorescence handling 

methods. The compared samples were (i) cells without autofluorescence removal, (ii) 

cells that used mean autofluorescence subtraction for autofluorescence removal, (iii) 

cells treated autofluorescence as an additional colour during autofluorescence removal, 

and (iv) cells cleaned with the collaborative filtering methods for autofluorescence 

removal before spectral unmixing. For cells without autofluorescence removal, spectral 

unmixing resolved fluorescence spillovers and demonstrated three-fold decreases in 

eCFP donor and eYFP acceptor spillovers with spreading errors (SE) = 426.868 for eCFP 

and SE = 581.453 for eYFP (Figure 40B). The SEs were the same for using the mean 

subtraction method since the data was moved downward by the mean value along the 

y-axis for each fluorophore. The residual spillovers decreased more than five times for 

the eCFP detected in the eYFP channel compared to the sample without 

autofluorescence removal. However, the eYFP detection demonstrated an 

overcompensation effect with the negative mean residual spillover value of eYFP 

detected in the eCFP channel (Figure 40C).  Surprisingly, when performing spectral 

unmixing on samples that treated autofluorescence as a single colour for 

autofluorescence removal, the performance was worse than the other methods. 

Although the unmixed results demonstrated no positive spillover, they demonstrated 

around ten times worse overcompensations than the mean subtraction method for both 

eCFP and eYFP. In addition, the SE was also increased by around 2.5 times for eCFP and 
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around the same value for eYFP when compared to no autofluorescence removal and 

mean autofluorescence subtracted samples (Figure 40D). In contrast, the 2-step 

collaborative filtering achieved approximately zero spillovers for both the eCFP and eYFP. 

Moreover, it achieved around two thousand times reduced SE compared to the sample 

before spectral unmixing (Figure 40E). 

Figure 40 Spectral unmixing after autofluorescence removal with different methods
The summarised spillover and spread error results for spectral unmixing (A). The eCFP before 
(grey) and after (cyan) spectral unmixing and the eYFP before (grey) and after (yellow) spectral 
unmixing with different autofluorescence removal methods. Cells without autofluorescence 
removal (B). Data using the mean autofluorescence subtraction method (C). Data treated 
autofluorescence as a single colour and removed it during spectral unmixing (D). Data used the 
2-step collaborative filtering method described in this study (D). Zeros are indicated as red 
dashed lines. SE and spillover MFIs are indicated in each graph.

Furthermore, when FRET is happening, the sensitised eCFP→eYFP FRET emission can be 

detected upon donor laser excitation (Figure 41 green histogram), which is the FRET 

emission is the same as the eYFP acceptor but with different intensities. Even using a 10 
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nm narrow range filter for FRET detection, the eCFP-donor and eYFP-acceptor will have 

high spillovers into the FRET detection channel due to the extensive spectrum overlaps 

between donor and acceptor fluorophores which are required for FRET to happen.  

 

Figure 41 Donor and acceptor spillovers in the FRET channel 
When FRET happens, the sensitised FRET emission (green histogram) can be detected through 
the FRET filter (black box). Even using a narrow bandpass filter, the eCFP donor spillover 
emission (red area under the cyan histogram) can be detected in the FRET channel. The eYFP 
acceptor spillover emission (red area under the yellow histogram) can also be detected in the 
FRET channel. 
 
 
The FRET spectral unmixing was achieved using mathematical formulations to represent 

the detected fluorescent signals in each detector as the combined fluorescence from 

donor, acceptor and sensitised FRET emissions (see section 2.7.5). Here, the 

background-corrected and autofluorescence-removed data were utilised using 

eCFP→eYFP FRET as an example with the detection configuration shown (Figure 39A). 

After the two-step collaborative filtering pre-processing, the fluorescence correlations 

detected between each pair of the donor, acceptor and FRET channels increased near 

to one (Figure 42B). The linearities of each fluorophore detected among the three 

channels were vastly increased, and the spillover coefficients were calculated using the 

RANSAC linear fitting algorithm (Figure 42C and Appendix Figure 2). The spectral 

unmixing matrix was constructed for efficient single-cell level spectral unmixing (Figure 

42D). The spectrally unmixed results indicated that the spillovers from eCFP and eYFP in 
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the FRET channel had been eliminated (Figure 42E, compare original data: grey dots, 

pre-processed data: black dots, and unmixed data: cyan and yellow dots).

Figure 42 Spectral unmixing for eCFP→eYFP FRET
The spectral viewer diagrams and the detection configurations for eCFP donor, eYFP acceptor 
and sensitised FRET emissions (A). The correlation between each pair of the eCFP, eYFP, and the 
FRET channels before and after 2-step CF pre-processing (B). Spillover coefficient plots between 
each pair of the three detection channels (C), the data before (grey) and after (cyan and yellow)
2-step CF prep-processing are both displayed. The spectral unmixing matrix was generated using 
the spillover coefficients (D). The fluorescence detection scatter plots with uncompensated data 
before (grey) and (after) 2-step CF pre-processing and the spectrally unmixed data (yellow and 
cyan) after the 2-step CF pre-processing (E).

In this study, a total of 11 examinations were performed using five different FRET pairs 

and five different flow cytometers to evaluate the performance of the overall pre-

processing and spectral unmixing procedures. In particular, I have used TNFR1-FP fusion 

constructs with eCFP→eYFP, eYFP→mRFP and eCFP→mRFP FRET pairs on LSR-II, 

Fortessa X20, and Aurora flow cytometers (total of nine experiments). I have also used 

eGFP→mRFP soluble FRET pairs on the FACS Calibur flow cytometer and violet 

blue→FITC conjugated antibody as FRET pairs on the MACSQuant X flow cytometer 
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(Figure 43A). Light and dark grey bars show the results before and after the overall pre-

processing (Figure 43B and C). The performances were indicated by the channel-to-

channel correlation and spillover linearity, which were all close to one (Figure 43B). In 

detail, the fluorescence correlations between donor and acceptor channels were 

improved from mean = 0.493 (SD = 0.353) to mean = 0.997 (SD = 0.010), the fluorescence 

correlations between donor and FRET channels were improved from the mean = 0.726 

(SD = 0.281) to the mean = 1.000 (SD = 0.0002), and the fluorescence correlations 

between acceptor and FRET channels were improved from the mean = 0.692 (SD = 0.354) 

to the mean = 0.997 (SD = 0.010). The linearities were calculated using the 𝑅𝑅2 scores. 

For FRET-donor fluorophore, the 𝑅𝑅2 scores between donor and acceptor channels were 

improved from the mean = 0.465 (SD = 0.452) to the mean = 0.987 (SD = 0.028), the 𝑅𝑅2 

scores between donor and FRET channels were improved from the mean = 0.925 (SD = 

0.114) to the mean = 1.000 (SD = 0.000007). For FRET-acceptor fluorophore, the 𝑅𝑅2 

scores between acceptor and donor channels were improved from the mean = 0.244 

(SD = 0.280) to the mean = 1.000 (SD = 0.0007), the 𝑅𝑅2 scores between acceptor and 

FRET channels were improved from the mean = 0.722 (SD = 0.385) to the mean = 1.000 

(SD = 0.00002).  

Furthermore, the errors were represented by model fitting errors and the spread errors 

after spectral unmixing, which are nearly zero (Figure 43C). The donor spillovers 

detected in acceptor and FRET channels were eliminated from the MFI = 148.010 (SD = 

64.281) and the MFI = 168.192 (SD = 90.744) to the MFI = 1.278 (SD = 1.871) and the 

MFI = 0.412 (SD = 0.500) respectively. The acceptor spillovers detected in donor and 

FRET channels were eliminated from the MFI = 203.254 (SD = 197.167) and the MFI = 
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284.622 (SD = 365.516) to the MFI = 4.411 (SD = 9.485) and the MFI = 8.016 (SD = 19.952) 

respectively.

Figure 43 The performance evaluation of the entire pre-processing stage
The pre-processing stage includes singlet identification, baseline subtraction-error correction, 
autofluorescence prediction and removal, and spectral unmixing. The performance data were 
generated using a total of 11 experiments conducted on five different flow cytometers using five 
different FRET pairs (A). Channel-to-channel correlation and spillover coefficient linearity scores 
were reported for the performance evaluation (B). The spillover linear model fitting errors and 
the spectral unmixing spread errors were used to report errors (C).

The residual SEs of donor fluorophores calculated from the acceptor and FRET channels 

were decreased from the mean =  752.044 (SD = 706.322) and the mean = 5615.603 (SD 

= 6368.435) to the mean = 0.950 (SD = 1.390) and the mean = 0.620 (SD = 0.664) 

respectively. Lastly, the residual SE of acceptor fluorophores calculated from the donor 

and FRET channels decreased from the mean= 435.896 (SD = 416.894) and the mean = 

7883.443 (SD = 15128.669) to the mean = 3.855 (SD = 8.508) and the mean = 6.612 (SD 

= 17.111) respectively. This level of accuracy and data cleansing has never been achieved 

previously, and it will allow investigators to perform the absolute data quantification of 

any flow cytometry analysis, including FRET experiments.
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5.1 Introduction 

Protein conformation and association state regulate biological processes, and the 

distance between two interacting protein molecules can be measured by FRET [28]. 

FRET can be qualified or semi-quantified with the physically altered emission spectral 

properties of the fluorescent tags [164, 165]. Upon donor-laser excitation, the quenched 

donor fluorescent intensity and sensitised FRET emission become evident (Figure 44). In 

order to fully quantify the FRET physical phenomenon, state of the art methods measure 

changes in fluorescence lifetime [166-168] or polarisation of emitted light [169-172], 

which require complex mathematical modelling and expensive specialised equipment. 

Another popular approach for FRET quantification uses the recovery of quenched donor 

fluorescent intensity upon photobleaching of the acceptor [173, 174]. It cannot be 

employed in flow cytometry because detecting donor fluorescence intensity before and 

after acceptor photobleaching is usually implausible due to the fast sample flow rate 

(millisecond per cell event). Therefore, simple fluorescent intensity-based methods are 

mostly used because of their fast, simple, non-destructive nature, with a standard 

hardware requirement referred to as  “three-filter FRET” [114, 170, 175, 176]. The three 

filters measure (i) the donor-laser excited FRET-donor emission, (ii) the acceptor-laser 

excited FRET-acceptor emission, (iii) and the donor-laser excited FRET-donor to FRET-

acceptor sensitised emission (Figure 44 grey boxes). However, the three-filter FRET 

emissions are not only sensitive to the protein-protein interaction levels but also 

impacted by the expression levels of interacting protein molecules [176].   
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Figure 44 The fluorescence dynamics during FRET
An example of eGFP→mRFP FRET using the 488 nm donor laser and the 561 nm acceptor laser. 
When FRET happens, eGFP donor emission quenches in 𝐼𝐼1 channel (the green histogram), and 
sensitised FRET emission increases in 𝐼𝐼2 channel (the yellow histogram) (A). The donor emission 
is detected in the 𝐼𝐼3 channel (B). Each of the 𝐼𝐼1 , 𝐼𝐼2 , and 𝐼𝐼3 detection channel also picks up 
spillover emissions.  

FRET efficiency is defined as the proportion of excited donor molecules undergoing 

energy transfer to the acceptor molecule [2]. The rate of FRET efficiency depends on the 

sixth power of the separation distance between the donor and the acceptor, thus 

providing a sensitive tool for measuring protein interactions within the 10-nm range. 

FRET efficiency is not impacted by the expression level of the protein molecules and can 

be derived from the fluorescent intensity, thus serving as the absolute quantitative 

solution for the detection of PPIs. Many approaches exist that use flow cytometry [118, 

177] or microscopy [178, 179] to determine FRET efficiencies based on detecting

fluorescent intensities. The fluorescent intensity-based FRET efficiency calculation 

requires a calibration factor, also known as the 𝛼𝛼 factor [118, 129, 178] or the 𝐺𝐺 factor 

[19, 179]. The 𝛼𝛼 factor relates to the ratio of donor fluorescent intensity quenching to 

the sensitised acceptor fluorescent intensity gain during energy transfer. Because flow 

cytometry is statistically superior to fluorescence microscopy [180], it is an attractive 

method for FRET measurements using this approach. Once the 𝛼𝛼 factor is determined, 

sensitized acceptor emission intensity can be converted to FRET efficiency (𝐸𝐸).
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Because protein expression of donor and acceptor varies among cells, the 𝛼𝛼  factor 

requires the knowledge of the donor and acceptor expression ratios. The current 

methods are accomplished by varying the length and composition of the linker residues 

connecting the FRET donor and FRET acceptor. This way, the FRET-donor and FRET-

acceptor always have a concentration ratio of one. However, implementing this method 

to non-linked, naturally free-interacting proteins is inaccurate. To achieve the 

calibration of unlinked FRET samples, I have established a single-cell level FRET efficiency 

algorithm together with the single-cell level 𝛼𝛼 factor formulation that does not require 

chemically linked FRET-donor and -acceptor pairs. This chapter describes the flow 

cytometry single-cell level two-protein three-colour FRET efficiency algorithm with 

novel calibration components that can be utilised for both chemically linked and 

unlinked protein pairs. The algorithm's reliability has been tested with three sets of free-

interacting human TNFR1-FPs FRET pairs on both a BD LSR-II and a BD Fortessa X20 flow 

cytometers with varied laser powers, filters, and photomultiplier tube (PMT) detector 

voltages. The current flow cytometry-based detection of FRET from TNFR1 homodimer 

interaction have already proven powerful in pharmaceutical therapeutics screening [181, 

182]. The single-cell total quantification algorithm presented in this chapter will provide 

a detection platform with higher sensitivity and robustness. In addition, the 

performance of the two-protein three-colour FRET quantification algorithm will be 

demonstrated with two applications, which the data were collected from the online 

FlowRepository database: (i) small molecule Auxin detection in the plant Arabidopsis 

thaliana (Repository ID: FR-FCM-Z3FL)  [34] and (ii) immune activation detection in 

human T-cells with TCR-CD4 interactions (Repository ID: FR-FCM-ZZR6) [126]. 



142 
 

5.2 Results 

5.2.1 Fully quantitative FRET efficiency algorithm with unlinked FRET calibration 

Spectral unmixing using pre-processed flow cytometry data with formulated donor, 

acceptor, and FRET emission spillovers allows the absolute quantification of FRET 

efficiency, which reflects the PPI proximity. The FRET efficiency was computed using the 

standard linked FRET pairs with eGFP and mRFP as the FRET donor and acceptor. The 

pre-processed data showed significantly increased channel-to-channel fluorescence 

spillover correlations (Figure 45).  

For eGFP→mRFP FRET, the spillover correlation increased from 0.037 to 0.994 between 

donor-to-acceptor channels, increased from 0.998 to 1.000 between donor-to-FRET 

channels, and increased from 0.055 to 0.994 between acceptor-to-FRET channels. All 

correlations were close to one, representing the actual physical properties of single-

colour fluorescence emissions from either eGFP donor or mRFP acceptor with any 

impact from baseline subtraction-errors and autofluorescence completely eliminated. 

The clean fluorescence signals guarantee the accurate downstream formulation of the 

donor, acceptor, and the detection of FRET using these pure single-colour fluorescence 

signals and ensure accurate spectral unmixing outputs with minimal spread errors.  
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Figure 45 Pre-processing for eGFP→mRFP linked FRET pair
The spectral viewer diagrams of the detection configurations (A). The changes in channel-to-
channel correlations and the spillover linearities after baseline correction and the 
autofluorescence removal (B). The strength of the correlation are displayed from weak to strong 
as from circles to linear lines, as well as from yellow to red. In each of the dot plots, the grey 
dots are data before pre-processing, with eGFP and mRFP single-colour controls at top and 
bottom, respectively. The coloured dots are data after pre-processing overlaid on top of the grey 
dots, where green colour dots represent the eGFP FRET donor, and the red colour dots represent 
the mRFP FRET acceptor. 

Using the spillover coefficients, a formulated spectral unmixing matrix achieved single-

cell level detection of pure single-fluorescence-components within each designated 

detection channel for each FRET donor, acceptor and sensitised FRET emissions (Figure 

46A). After spectral unmixing, the spread error of the eGFP donor detected in the 

acceptor channel is 0.001, and in the FRET channel is 0.006, the spread error of mRFP 

FRET-acceptor detected in the donor channel is 0.118, and in the FRET channel is 0.443

(Figure 46B). Those near-zero spread errors guarantee the ultrasensitive detection of 

the sensitised FRET emissions and ensure accurate FRET efficiency quantifications. By 
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comparison, the previously published FRET efficiency calculations displayed huge 

variances and negative FRET efficiency values [16]. The limitations from the previously 

published data indicated the lack of accuracy because the linked system should have 

uniform donor-acceptor distances and FRET efficiencies. The negative FRET efficiency 

values from the original publication have no physical or biological meaning (Figure 46C). 

In contrast, the method presented in this chapter achieved all positive FRET efficiencies 

with more than 1000 fold decrease in SD and standard errors around the mean (SEM) 

(Table 2). Each linked standard displayed uniformed FRET efficiency reflecting the fixed 

amino acid linker length for each of the standard eGFP-AAs-mRFP FRET pairs (Figure 46). 

Table 3 FRET efficiencies and alpha factors for eGFP→mRFP linked FRET pairs
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Figure 46 FRET efficiency quantification for linked eGFP→mRFP standards
The spillover bar plot and spectral unmixing matrix for eGFP FRET donor and mRFP FRET 
acceptor (A). The spectrally unmixing signals for eGFP and mRFP single-colour controls (B). The 
previously published FRET efficiency data [16] (C). Uniformed FRET efficiencies were achieved 
using the advanced flow cytometry-based FRET algorithms developed in this study for each 
linked FRET pair with fixed length (7AAs, 19AAs, and 32AAs) (D).

5.2.2 Reliability test using three FRET pairs on two different flow cytometers

The two-protein, three-colour FRET spectral unmixing formulation and FRET efficiency 

algorithm also showed excellent reliability when detecting PPIs for unlinked naturally 

existing free-interacting proteins. Homo-dimeric human TNFR1 interactions were 

detected by subcloning TNFR1 as fluorescent protein fusion constructs and expressing

them in HEK293T cells. In total, three TNFR1-FP FRET pairs were utilised, including

TNFR1-eCFP→TNFR1-eYFP, TNFR1-eYFP→TNFR1-mRFP, and TNFR1-eCFP→TNFR1-mRFP 

(Figure 47). 
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Figure 47 The detection of three pairs of TNFR1-FPs fusion proteins for unlinked FRET 
The detection of unlinked FRET signals used human TNFR1 fluorescent protein fusion constructs 
with three different pairs of the FRET. The three FRET pairs include TNFR1-eCFP→TNFR1-eYFP, 
TNFR1-eYFP→TNFR1-mRFP, and TNFR1-eCFP→TNFR1-mRFP.

Each FRET pairs were separately detected on two distinctly configured flow cytometers,

the LSR-II and the Fortessa X20 (Figure 48 and see section 2.4.2). In particular, the LSR-

II had a 355 nm 20 mW UV laser trigon detector array, a 405 nm 25 mW violet laser 

trigon detector array, and a 635 nm 20 mW red laser trigon detector array, as well as a 

488 nm 20 mW blue laser octagon detector array. While the Fortessa X-20 had three 

octagon laser detector arrays with a 405 nm 50 mW violet laser, a 488 nm 100 mW blue 

laser, and a 640 nm 40 mW red laser, but no trigon detector array.
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Figure 48 LSR-II and Fortessa X20 flow cytometer configurations
LSR-II with three trigon detector arrays (UV, violet, and red) and one octagon detector array 
(blue) (top). Fortessa X20 with three octagon detector arrays (violet, blue and red) (bottom).

The FRET efficiencies of each FRET pair were calculated using two approaches. One used 

the linked calibration method with sample means, i.e., the linear relation between 

quenched donor fluorescent intensity and increased sensitised FRET fluorescent 

intensity to conduct population mean-based calibration using the 𝛼𝛼 factors. The other 

one used newly established single-cell level FRET efficiency calculation in this chapter

(see section 2.7.6). Moreover, the linked calibration method requires FRET-donor to 

FRET-acceptor concentration ratios 𝐶𝐶𝐷𝐷/𝐶𝐶𝐴𝐴 is fixed, so it assumes 𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐴𝐴. The single-
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cell level FRET efficiency calculation developed in this chapter has no assumption on the 

FRET-donor and FRET-acceptor concentrations. Both approaches used the same pre-

processing steps to achieve spectrally unmixed fluorescence readouts for a fair 

comparison. To find the FRET baseline of random PPIs, the human CD27-FPs 

fluorescently tagged receptor was used as the FRET acceptor, with the human TNFR1-

FPs as the FRET donor. CD27 is a structurally similar receptor protein to TNFR1, and they 

are from the same human TNFRSF, but CD27 does not interact with TNFR1. By 

comparison, the new method achieved significantly reduced baseline signals with mean 

baseline values decreased from 0.442 (SD = 0.205) to 0.132 (SD = 0.085) on LSR-II 

(𝑝𝑝<0.001) and from 0.435 (SD = 0.216) to 0.052 (SD = 0.043) on Fortessa X20 (𝑝𝑝<0.001) 

for TNFR1-eCFP→CD27-eYFP (Figure 49A and B). Similar results were also observed with 

TNFR1-eYFP→ CD27-mRFP and TNFR1-eCFP→ CD27-mRFP. For TNFR1-eYFP→ CD27-

mRFP, the mean baseline FRET efficiencies dropped from 0.410 (SD = 0.165) to 0.102 

(SD = 0.043) on LSR-II (𝑝𝑝<0.001) and from 0.561 (SD = 0.143) to 0.091 (SD = 0.058) on 

Fortessa X20 ( 𝑝𝑝 <0.001). For TNFR1-eCFP→ CD27-mRFP, the mean baseline FRET 

efficiencies dropped from 0.237 (SD = 0.127) to 0.067 (SD = 0.025) on LSR-II (𝑝𝑝<0.001) 

and from 0.258 (SD = 0.133) to 0.038 (SD = 0.011) on Fortessa X20 (𝑝𝑝<0.001) (Figure 49A 

and B).  

For the detection of TNFR1 interaction FRET-positive signals, the results demonstrated 

improved consistency between the FRET efficiencies calculated from two flow 

cytometers’ data.  In detail, comparing the improvement from the linked population-

wise calibration method to the single-cell level calibration method, the TNFR1-

eCFP→TNFR1-eYFP efficiency calculations had similar differences of 0.008 and 0.015 
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between the detected signals from the LSR-II and the Fortessa X20 flow cytometers with 

total variance declined from 0.044 to 0.018 (see Figure 49 green histograms and bars). 

Meanwhile, for the detection of TNFR1-eYFP→ TNFR1-mRFP FRET, the difference 

decreased from 0.065 to 0.015, with the total variance dropping from 0.011 to 0.005 

(see Figure 49 orange histograms bars).  Similar results were also observed from TNFR1-

eCFP→TNFR1-mRFP FRET efficiency calculations, in which the difference decreased from 

0.083 to 0.025 with the total variance dropped from 0.029 to 0.006 (see Figure 49 purple 

histograms and bars). 
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Figure 49 FRET algorithm reliability test using three FRET pairs on two flow cytometers
Histogram overlays of the single-cell level distributions of each FRET pair TNFR1-eCFP→TNFR1-
eYFP (green), TNFR1-eYFP→TNFR1-mRFP (orange), and TNFR1-eCFP→TNFR1-mRFP (purple)
tested on LSR-II and Fortessa X20 (A). The FRET efficiencies were calculated using the linked 
population mean approach for 𝛼𝛼 factor calibration (top) and the single-cell level 𝛼𝛼 factor 
calibration method developed in this study for unlinked FRET pairs (bottom). Negative controls 
(grey) used CD27 as the FRET acceptor proteins. The mean FRET efficiencies were calculated for 
statistical comparisons and displayed as bar graphs, and the error bars are standard deviations
of the FRET efficiencies (B).
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5.2.3 An application demonstration of small molecule (Auxin) detection in plants 

The two-protein three-colour FRET algorithm introduced in this study also 

demonstrated more robust and sensitive small molecule detection capability. Here, a 

bioengineered FRET sensor detected the small molecule tryptophan-derived metabolite 

indole-3-acetic acid (IAA, also known as Auxin). IAA/Auxin is vital in plant bioprocessing 

and gravity sensing, and tracking the IAA/Auxin concentration in plant samples is crucial 

to study plant physiology [183]. The data was collected from online FlowRepository 

database (Repository ID: FR-FCM-Z3FL) [34], where the FRET sensor was engineered 

using two linked tryptophan receptors with the FRET donor Aquamarine and FRET 

acceptor mNeoGreen also linked to the tryptophan receptors (Figure 50A). Together, 

the overall linked FRET sensor forms a unique fusion protein in which the tryptophan 

receptors undergo conformational changes upon IAA/Auxin binding and bring the 

Aquamarine→mNeoGreen FRET pairs in proximity. In other words, the higher the 

concentration of IAA/Auxin in the sample, the higher the average FRET emission can be 

detected for each individual cell until binding saturation is reached. This time, the newly 

developed FRET efficiency-based two-protein three-colour FRET algorithm was 

compared to the FRET quantification method introduced in the original publication. The 

original method utilised the FRET emission detection ratio of the detected sensitised 

FRET emission in the FRET channel over the quenched donor emission detected in the 

donor channel [34].  

The originally published approach has limited detection sensitivity. It uses raw detection 

readouts which did not resolve the fluorescence spillover. Another factor that caused 

the sensitivity limitation was the population-wise calculation of fluorescence ratios. It 
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lacks the single-cell level resolution, which could not perform quality assessments using 

single-cell level distribution. Moreover, the fluorescence ratio approach is only semi-

quantifiable and can only be used to predict the small molecule concentration from the 

same experiment. When conducting small molecule concentration prediction from 

separately acquired data, the fluorescence ratio will be highly impacted by the hardware 

configurations, i.e., the laser power, filter bandpass range, and detector voltages, since 

the fluorescence ratio does not directly represent protein-protein proximity as defined 

in FRET efficiency.  

Therefore, using the FRET efficiency quantification approach, the sensitivity of 

IAA/Auxin detection has been notably enhanced. Originally, the detection range for 

IAA/Auxin was between 10-4 M and 10-5 M, now encompassing lower concentrations 

from 10-5 M to 10-6 M (Figure 50B). In addition, even with more concentration data 

within the linear concentration detection range, a higher 𝑅𝑅2 value was achieved (Figure 

50B). In details, 𝑅𝑅2 = 0.982 with three linear concentration data using the FRET 

fluorescence ratio approach, while 𝑅𝑅2= 0.993 with four linear concentration data using 

the single-cell level FRET calibration and FRET efficiency quantification algorithm. 

Moreover, the single-cell level absolute quantification using the FRET efficiency reflects 

the physical interaction proximities of the bioengineered FRET-donor FRET-acceptor 

molecules. Therefore, it allows the FRET detection quantity assessment across different 

experiments along with the negative control sample values using the single-cell level 

FRET efficiency distribution (Appendix Figure 18). The improved small molecule FRET 

quantification allows more sensitive concentration detection that is not limited to 

IAA/Auxin. The same approach can also detect small molecule diagnostic markers 
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related to human diseases and monitor the concentration of small molecule 

therapeutics for effective cure of human diseases.

Figure 50 Small molecule Auxin/IAA detection using bioengineered FRET sensor
The Aquamarine → mNeoGreen FRET sensor detected the Auxin/IAA concentration by 
conformational changes induced upon Auxin/IAA binding to the tryptophan repressors (A). The
detection of Auxin/IAA concentration using FRET ratios method from the original publication
(black, top) [34] and new FRET efficiencies calculation in this study (blue, bottom) (B). 
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5.2.4 An application demonstration of detecting T-cells response to antigen  

The two-protein three-colour FRET algorithm also demonstrated improved detection of 

the human immunological TCR to CD4 receptor interactions that can completely 

distinguish the positive interacting samples from the background controls. When B cells 

present foreign antigens to T cells, the TCR of T cells recruits CD4 to form a complex that 

activates immune responses [126]. The original study used the staphylococcal 

enterotoxin B (SEB) superantigen to activate the TCR-CD4 interactions (data collected 

from the FlowRepository database, Repository ID: FR-FCM-ZZR6). TCR and CD4 

receptors were tagged with antibodies conjugated using Violet blue and FITC. Here, TCR-

Violet blue functioned as the FRET donor and CD4-FITC as the FRET acceptor. When SEB 

was added to the sample, TCR and CD4 interacted at proximity and produced FRET 

emissions. However, TCR-CD4 interaction also responds to many other factors, including 

environmental triggers during sample handling and can produce high background FRET 

emissions. This was observed in the original publication [126], where the SEB-positive 

sample heavily overlapped with the SEB-negative sample. In addition, the original 

published FRET efficiency results have physically and biologically meaningless negative 

FRET efficiencies. By comparison, the two-protein, three-colour FRET algorithm 

introduced in this study accomplished a complete separation of the FRET efficiencies 

detected and calculated from the SEB-positive and SEB-negative samples (Figure 51B). 

In addition, the negative FRET efficiency is also eliminated, instead the positive FRET 

efficiencies represents the actual physical behaviours bewteen the FRET donor and FRET 

acceptor fluorophores and biological interactions between the CD4 and TCR molecules. 

The SD reduced from 0.083 to 0.010, decreasing the coefficient of variation (CV) from 

0.666 to 0.078. In addition, the mean signal-to-noise ratio also increased from 1.304 to 
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1.324. The improved detection results indicated that the newly developed FRET 

algorithm is more suitable for clinical applications which require higher sensitivities, 

such as screening for drugs that modulate immune cell receptor proximities and disease 

diagnosis for immunocompromised individuals with impaired receptor interactions.

Figure 51 CD4-TCR interaction detection using flow cytometry-based FRET
CD4 interacted with TCR when SEB was added to the sample. CD4 was tagged using a FITC-
conjugated antibody, and TCR was tagged using a violet-blue-conjugated antibody. When CD4 
interacts with TCR, FRET happens between violet-blue and FITC (A). FRET efficiencies were 
calculated for samples with (red) and without (red) SEB. The comparison was made between the 
original published data and the data calculated using FRET algorithms developed in this study 
(B). The left figure of panel B is adapted from the original publication of von Kolontaj et al. [126], 
allowing for a direct comparison with the FRET quantification method developed in this study. 
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6.1 Introduction 

Many biological processes arise from complex protein-protein interactions with more 

than just two protein entities. For example, TNFR1 has an inherent capacity to form 

transmembrane homodimers through the pre-ligand-binding assembly domain (PLAD) 

(Figure 52A) [71]. The previous chapter has demonstrated the detection of interactions 

between two protomers within a TNFR1 homodimer complex using the two-protein 

three-colour FRET assays. Moreover, TNFR1 interacts with the symmetrical trimeric 

ligand TNF [138], and each TNF can recruit three TNFR1 homodimers at the interface 

between every two TNF protomers (Figure 52B) [137]. Therefore, the TNFR1 dimers are 

arranged in a tightly packed hexagonal arrangement with room only for ligand binding 

and the formation of a large hexagonal network through the [homotrimer ligand]-to-

[homodimer receptor]-to-[homotrimer ligand] interactions (Figure 52C) [120].  

Within each set of dimeric TNFR1s interaction with the same trimeric TNF ligand, a 

three-protein six-colour FRET can be detected with the combination of all three pairs of 

the two-protein three-colour FRETs (Figure 52). In detail, the three-protein six-colour 

FRET consists of the simultaneous detection of eCFP→eYFP FRET1, eYFP→mRFP FRET2, 

eCFP→mRFP FRET3, and the two-step eCFP→eYFP→mRFP FRET4. The FRET4 is detected 

on the same lasers and detectors as the three two-protein FRETs. Together, there are 

three protein molecules (TNFR1-eCFP, TNFR1-eYFP and TNFR1-mRFP) and six detection 

colours (eCFP, eYFP, mRFP, FRET1, FRET2, and FRET3, to note: FRET4 = 

FRET1+FRET2+FRET3) (Figure 53). 
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Figure 52 FRET signals of the TNFR hexagonal meta-cluster structure
TNFR can form a homodimer through the PLAD (A). Each TNFR homodimer interacts with the 
trimeric TNF cytokine at the interface of each two TNF protomers (B). The TNF recruits three 
TNFR homodimers and forms the hexagonal meta-cluster (C). The meta-cluster allows the 
detection of three sets of two-protein three-colour FRETs and the two-step three-protein six-
colour FRET.

Figure 53 Three-protein six-colour FRET spectral viewer diagrams
The spectral viewer diagrams for eCFP→eYFP FRET1 (first row), eYFP→mRFP FRET2 (second row), 
eCFP→mRFP FRET3 (third row), and the two-step eCFP→eYFP→mRFP FRET4 (last row).
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The complexity of protein-protein interactions does not stop at the number of 

interacting proteins; this complexity is manifested in the mechanism of interaction of 

biological phenomena at multiple levels. Therefore, achieving FRET detection with more 

than two protein entities opens the gate for more sophisticated biological investigations. 

On the one hand, take human TNFR1 as an example; germline mutations in TNFR1 cause 

the autoinflammation disease termed TNFR1-associated periodic syndrome (TRAPS) 

[184-186]. TRAPS is clinically significant due to its long-term recurrent inflammation 

symptoms that cause tissue and organ damage [152, 187, 188], but the exact cause of 

TRAPS has not been fully understood to date [184, 189, 190]. On the other hand, many 

viruses from the poxviridae encode human viral TNFR1 homologies (vTNFR, also called 

cytokine response modifiers, CRM) that can interact with human TNFR1 to evade TNFR1-

related immune response [191-196]. The most infamous variola poxvirus, causes 

smallpox with up to 30% mortality during the Smallpox era [197]. With such strong 

natural selection, it is possible to hypothesise that humans and poxviruses are 

evolutionary rivals. Therefore, utilising the three-protein FRET platform can 

simultaneously reveal biological interactions involving human TNFR1 with at least five 

folds, (i) the wildtype TNFR1 dimeric interactions, (ii) the wildtype TNFR1 trimeric 

interactions, (iii) the wildtype TNFR1 and TRAPS mutant interactions, (iv) the human 

wildtype TNFR1 and poxvirus vTNFR interactions, and lastly (v) the impact of how TRAPS 

mutants alter the interactions between human wildtype TNFR1 and the poxvirus vTNFR. 

The existing 3-protein FRET methods rely on the calibration of linked FRET pairs and 

artificially linked target protein samples [17-19, 75, 198]. Calibration using linked FRET 

pairs to determine the 𝛼𝛼 factor is calculated at the population level and has a fixed FRET-
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donor FRET-acceptor concentration and interaction ratio. This approach has low 

accuracy, poor representation, and lack of the capacity for the detection of unlinked 

free-interacting proteins. Using linked detecting protein samples for FRET assays is also 

inappropriate since the protein entities are brought in proximity in advance by amino 

acid linkers, which makes it prone to false-positive FRET results. Notably, few of the 

existing flow cytometry-based methods for analysing FRET between a single donor and 

multiple acceptors account for the change in relative energy transfer dynamics. Such 

dynamics result from competing interactions between fluorescent protein energy 

transfers when a single FRET donor provides energy to multiple fluorescent acceptors. 

To achieve the sensitive and accurate quantification of complex interactions among 

three unlinked free-interacting protein entities, I have formulated a three-protein six-

colour spectral unmixing algorithm that resolves the absolute unmixed clean fluorescent 

readouts for single-cell level efficiency quantifications. In addition, I have also resolved 

the energy transfer dynamics among the same donor different acceptor FRET system 

using the CoDA technique. This chapter presents the formulation of the three-protein 

six-colour FRET algorithms and demonstrates the application in detecting the aberrant 

PPIs between the wildtype human TNFR1 and six prototypical TRAPS mutant receptors 

from the 62 SDM-generated TRAPS-YFP constructs based on the real-life patients’ 

sequencing data [199]. In addition, this chapter also shows that myxoma poxvirus 

encodes MT2 (a vTNFR) that interacts with human TNFR1 and provides evidence for 

proving that TRAPS mutations are evolutionary trade-offs that can disarm the poxvirus 

immune evasion mechanisms act on human TNFR1. 
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6.2 Results 

6.2.1 Investigation of the TNFR1 trimeric structures using FRET algorithms 

While the upgraded three-protein six-colour FRET algorithm represents a significant 

advancement over the traditional two-protein three-colour FRET algorithm, it is 

imperative to acknowledge the increased complexity and challenges it presents. This 

algorithm facilitates the study of more intricate molecular interactions, such as 

confirming the existence of TNFR1 hexagonal meta-clusters in HEK293T cells co-

transfected with pcDNA3.huTNFR1-eCFP, pcDNA3.huTNFR1-eYFP, and 

pcDNA3.huTNFR1-mRFP overexpression plasmids. However, managing the more 

complex spectrum components in the six-colour FRET system poses substantial 

challenges. 

The complexity arises not only from the increased number of fluorescent proteins 

involved but also from the intricate spectral overlap and cross-excitation issues inherent 

to a six-colour system. These factors significantly complicate the process of accurately 

quantifying FRET efficiency and necessitate more advanced and precise control and 

calibration techniques. 

To illustrate these complexities, in this chapter, I investigated human TNFR1 trimeric 

interactions, using structurally similar but non-interacting human TNFR2 and CD27 as 

background controls (Figure 54, shown in grey and pink). The experimentation involved 

replacing the cyan, yellow, and red positions separately with the non-interacting TNFR2 

or CD27 receptors or replacing them with the pcDNA3 empty vector plasmid as the third 

component. This approach was necessary to manage the complexities of the three-way 
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FRET system and to effectively isolate and remove specific donor and/or acceptor 

interactions (Figure 54).

These experiments underscore the heightened level of difficulty in implementing a 

three-protein six-colour FRET quantification approach compared to its two-protein 

three-colour counterpart. The increased number of fluorescent proteins and their 

interactions require meticulous experimental design and analysis, highlighting the 

significant advancement yet complexity of this technique.

Figure 54 Receptor replacement FRET experiment design for trimeric TNFR1
TNFR1 (blue), TNFR2 (grey), and CD27 (pink) are structurally similar and non-interacting proteins 
to each other. The eCFP, eYFP or mRFP position of the TNFR1 trimer was replaced by the TNFR2, 
CD27 component or replaced with the empty pcDNA3 vector. 

Triple transfected HEK293T cells expressing TNFR1-eCFP, TNFR1-eYFP and TNFR1-mRFP 

were analysed. The first genuine indication of the TNFR1 molecular trimerization 

interaction producing FRET emissions was demonstrated by examining the FRET 

efficiency of the TNFR1-eCFP, TNFR1-eYFP, and TNFR1-mRFP triple-expressing samples. 

All three TNFR1 FRET pairs demonstrated FRET emissions irrespective of the FRET pair 
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combination: eCFP→ eYFP, eYFP→mRFP or eCFP→mRFP, with the average FRET 

efficiency for eCFP→eYFP was 0.514 with SD = 0.056, the average FRET efficiency for 

eYFP→mRFP was 0.554 with SD = 0.062, and with the mean = 0.550 and SD = 0.010 for 

eCFP→mRFP FRET (Figure 55).  

When the FRET-donor and/or FRET-acceptor was replaced with the non-interacting 

receptors or empty pcDNA3 vector, the FRET efficiency that involves the particular FRET-

donor and/or FRET-acceptor dramatically decreased close to zero, indicating the 

disappearance of the FRET event (Figure 55, red boxes). In detail, when replacement 

happened at the eCFP position since eCFP is the donor for eCFP→eYFP and eCFP→mRFP 

FRETs, the FRET efficiency near completely diminished (second, third and fourth samples 

in Figure 55A and C) but remained positive for eYFP→mRFP FRET which did not involve 

eCFP (second, third and fourth samples in Figure 55B). Similarly, when replacement 

happened at the eYFP position since eYFP is the FRET-acceptor for eCFP→eYFP FRET and 

is the FRET donor in eYFP→mRFP FRET, the FRET efficiency reduced to near zero (fifth, 

sixth, seventh samples in Figure 55A and B) but remained positive for eCFP→mRFP FRET 

which did not involve eYFP (fifth, sixth, seventh samples in Figure 55C). Lastly, the same 

phenomenon was observed in mRFP replacement samples, with the positive FRET 

efficiency remaining for eCFP→eYFP FRET-positive samples since it did not involve mRFP 

(eighth, ninth, tenth samples in Figure 55A) but produced FRET-negative results for 

eYFP→mRFP and eCFP→mRFP FRETs (eighth, ninth, tenth samples in Figure 55B and C). 
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Figure 55 FRET efficiencies for different TNFR receptor combinations
The eCFP → eYFP FRET efficiencies (A), the eYFP → mRFP FRET efficiencies (B), and the 
eCFP → mRFP FRET efficiencies (C) for TNFR1-eCFP + TNFR1-eYFP + TNFR1-mRFP triple-
transfected cells. In addition, TNFR2, CD27 and empty pcDNA3 vectors were used to replace the 
fluorescent components in the TNFR1 trimeric FRET system to compare alterations to the FRET 
efficiencies. The median FRET efficiencies of the control sample transfected with three TNFR1-
FPs expressing plasmids are indicated as the red dashed lines. *** indicates p<0.01 from the z-
test result, and n.s. indicates not significant from the z-test result, when compares with the 
control samples. The table below indicates the details of the plasmid used for cell transfection 
align with the violin plot in panel A, B and C.

When the same eCFP FRET-donor donated energy to both the eYFP FRET-acceptor and 

the mRFP FRET-acceptor simultaneously in the three-way FRET scenario, the FRET 

efficiencies for eCFP→eYFP and eCFP→mRFP FRETs are lower than those samples having 

only the eCFP→eYFP or eCFP→mRFP FRET in the two-protein independent interacting 

manner (Figure 55 and Appendix Figure 19). The lower FRET efficiencies further prove 

the genuine detection of the three-way trimeric interactions among TNFR1 receptors 

and prove the existence of the TNFR1 hexagonal meta-cluster conformation. The 
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median FRET efficiencies for the TNFR1-eCFP, TNFR1-eYFP, and TNFR1-mRFP triple-

expressing samples were shown with the dashed red lines in each violin plot (Figure 55).  

Furthermore, an interesting pattern emerges when altering the acceptors in the FRET 

system. When the mRFP acceptor was replaced with non-interacting proteins CD27 or 

TNFR2, the eCFP→eYFP FRET efficiencies consistently showed higher values compared 

to the control group with both TNFR1-eYFP and TNFR1-mRFP acceptors (p<0.01 for all 

mRFP-replaced or mRFP-removed samples). This trend is evident in the green-coloured 

group in Figure 55 and Appendix Figure 19. A similar increase in efficiency was noted for 

eCFP→mRFP FRET when the eYFP acceptor was replaced or removed (p<0.01 for all 

eYFP-replaced or eYFP-removed samples), as shown in the purple-coloured group in the 

same figures. 

In contrast, the FRET efficiencies for eYFP→mRFP interactions remained consistent 

across samples, regardless of the presence or absence of the eCFP component. This is 

represented in the orange-coloured group in Figure 55 and Appendix Figure 19. The 

consistency of eYFP → mRFP FRET efficiencies across different scenarios can be 

attributed to the fact that this interaction does not involve eCFP, which in the three-way 

FRET scenario, eCFP donates energy to two acceptors simultaneously. 

6.2.2 investigation of WT TNFR1 and TRAPS TNFR1 interactions 

In the last section, the FRET efficiency results have demonstrated the outstanding 

formulation of the three-protein six-colour three-way FRET algorithm. However, the 

energy competition dynamics were not fully analysed with the successful detection of 

the same eCFP FRET-donor simultaneously donating energy to both eYFP and mRFP 
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FRET-acceptors. Here, I utilised the CoDA algorithms, treating the entire eCFP energy as 

one or 100%, and each composition that involves the eCFP energy dynamics were used 

to constitute the overall 100% of the total eCFP energy. In detail, the total eCFP energy 

contains three compositions (i) quenched eCFP donor fluorescent intensity after FRET, 

(ii) eCFP energy donated to eYFP results in sensitised eCFP→eYFP FRET emission, and (iii) 

eCFP energy donated to mRFP results in sensitised eCFP→mRFP FRET emission. Each 

composition’s percentage value can be calculated by dividing the individual components 

by the sum of all, so increasing one composition cause reduction in the others.  All 

individual cells can be further visualised in a triangular simplex space with the total sum 

distance to the three edges always equal to one, and each distance reflects each of the 

eCFP compositional values. With further logarithmic-ratio transformation, it achieves 

sub-compositional coherence that ensures the data is not impacted by any undiscovered 

hidden composition [124]; this also brings the data to a comparable interval scale that 

permits direct comparison and mathematic modelling between the energy dynamics 

and the FRET efficiencies.  

Here, six TNFR1 TRAPS mutations were used as examples, all located within the 

CRD1/PLAD of the TNFR1 (Figure 56) and critical for receptor::receptor interactions. In 

addition, the six mutations are Y20H, C29Y, C30S, C30R, C43R, and P46L, where the Y20H 

represents the non-critical mutation that has little impact on the protein structure, the 

cysteine-involved mutations (C29Y, C30S, C30R, C43R) represent the structural-critical 

mutations since cysteine forms the disulphide bond responsible for the stable protein 

folding. The proline-involved mutation P46L represents another structural-critical 

mutation since proline is responsible for the structure rigidity. Moreover, the C30S and 
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C30R served as the same location mutations to different amino acids, and the C30R and 

C43R mutations showed the same mutations at different locations (Figure 56). Each of 

the six TRAPS mutant receptors were generated as the -eYFP fusion construct and co-

expressed at the centre eYFP position with its eCFP FRET-donor and mRFP FRET-acceptor 

as the WT TNFR1-FP fusion proteins. 

Figure 56 TNFR1 TRAPS mutations
TNFR1 CDS (white arrow) contains ten exons, four CRDs and one death domain. TRAPS 
mutations were found across the whole TNFR1 CDS, but most TRAPS mutations were found in 
the four CRDs. The WT TNFR1 trimeric FRET was compared to the same samples with 
replacement at the eYFP position with the TRAPS TNFR1 mutated receptors (grey).



168 
 

Within the triangular CoDA simplex space, the mean position of the Y20H, C30S, C43R 

and P46L are close to the WT control sample with slight mean value shifts to the right, 

and the C29R and C30R TRAPS mutations are further away from the WT control with 

more shift to the right. The shift to the right indicates there are relatively higher 

interaction preference between the WT TNFR1-eCFP to the WT TNFR1-mRFP and 

relatively less interaction preference between the WT TNFR1-eCFP to the TRAPS TNFR1-

mRFP, meaning the C29R and C30R TRAPS mutations produced mutated TNFR1 receptor 

conformations that have reduced interactions to the WT TNFR1 receptor compared to 

Y20H, C30S, C43R and P46L (Figure 57A). However, when examining the single-cell level 

data within the triangular CoDA simplex space, the C43R showed a very different 

distribution to the WT control even though their mean values are close (Figure 57B, blue 

colour vs grey colour). Within each of the single-cell level plots, as the data distributed 

from left to right the relative CoDA-resolved eCFP energy shifted from eCFP→eYFP to 

eCFP→mRFP. When examining the FRET efficiency heatmaps overlays onto the single-

cell CoDA data (Figure 57B last 4 columns), negative correlations were observed 

between the eCFP→eYFP FRET efficiency and the eCFP energy as the data distributed 

from left to right. Meanwhile, positive correlations were observed between the 

eYFP→mRFP FRET efficiencies and the relative CoDA-resolved eCFP energy flow from 

eCFP→eYFP to eCFP→mRFP (from left to right within each single-cell level plot), as well 

as between the eCFP→mRFP FRET efficiencies and the same relative CoDA-resolved 

eCFP energy flow.  
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Figure 57 CoDA of WT TNFR1 and TRAPS TNFR1 interactions
The CoDA triangular simplex space has three corners, and each indicates the three compositions 
of the eCFP energy: (i) the quenched remaining eCFP, (ii) eCFP donated to eYFP, and (iii) eCFP 
donated to mRFP. The data includes the WT control sample and six TRAPS mutation samples. 
The mean values of the compositional eCFP energy are displayed in the large triangle (A). The 
single cell level data (first column) and heatmap overlays of each of the involved FRET 
efficiencies are displayed for all samples (B).
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PCA produces dimensionality-reduced two-dimensional plots that allow direct 

visualisation of all of the WT and TRAPS mutation data in one plot. The eYFP→mRFP 

sensitised FRET emission and quenched eYFP donor emission constitute a two-

composition CoDA space. Together with the three-composition eCFP data, the 

comprehensive three-way FRET results revealed that only the Y20H structurally non-

critical TRAPS mutation has the near-identical profile as the WT controls (Figure 58A, 

pink and grey overlays), all the other TRAPS mutations showed different profiles on the 

PCA plot when compared to the WT control sample (Figure 58).  
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Figure 58 PCA and multivariate models of the TRAPS TNFR1 and WT TNFR1 
interactions
PCA dimensionality reduction using standardised CLR-transformed data of eCFP energy to eYFP, 
eCFP energy to mRFP, and eYFP energy to mRFP (A). Multivariate modelling using logarithmic 
eCFP→eYFP and eCFP→mRFP FRET efficiencies as dependent variables and the CLR-transformed 
three compositions in PCA as independent variables (B). The first three bar graphs in each group 
indicate the coefficient of the multivariate models, and the last bar graph in each group indicates 
the 𝑅𝑅2 values. The colours of the bar graphs correspond to those used in the PCA plots.
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Interestingly, based on the multivariate model, both Y20H and C30S have highly similar 

patterns as the WT control sample in terms of explaining the FRET efficiencies with the 

impacts from energy dynamic from each of the compositional energy flows eCFP→eYFP, 

eCFP→mRFP, and eYFP→mRFP. Surprisingly, the C30S has different profiles from the WT 

control in the PCA plot (Figure 58). The close-to-one 𝑅𝑅2  values indicated the perfect 

model explanation, and it shows that the energy flow from eYFP to mRFP has little 

impact on the eCFP→eYFP or eCFP→mRFP FRET efficiencies (Figure 58B) and reveals the 

contribution to the profile difference between C30S and WT control was ignored by pure 

eCFP energy calculated CoDA results but was captured by the PCA after CoDA 

transformation which included the eYFP energy calculated CoDA results. The distinct 

interaction mechanism of each TRAPS mutant receptor to the WT TNFR1 can potentially 

explain the causation of TRAPS autoinflammation, which has not been fully explored to 

date. The algorithm can also be used as a high-performance screening tool to find TRAPS 

therapeutics that can recover the aberrant interactions. 

 

6.2.3 investigation of human TNFR1-targetted human-poxvirus interactions  

This section tests the hypothesis that human and poxvirus are evolutionary competitors 

in that poxviruses encode vTNFR1, which target human TNFR1 to evade TNFR1-related 

immune response, and human TRAPS mutations are evolutionary results that also target 

TNFR1, which subvert the poxvirus TNFR1-related immune evasion. In other words, the 

periodic inflammatory symptoms from TRAPS are evolutionary trade-offs when they 

prevent the more severe consequence, such as mortality caused by smallpox variola 

poxvirus. Sequence alignment showed that the investigated poxvirus members, 

myxoma virus, variola virus and monkeypox virus all encode human TNFR-homologous 
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receptors that share highly conserved sequences within the PLAD receptor::receptor 

interaction-critical domain (Figure 59A). For biosafety concerns, the non-permissive 

myxoma virus was used to replace the huTNFR1-mRFP in the tree-way FRET, together 

with the WT huTNFR1-eCFP and TRAPS huTNFR1-eYFP (Figure 59A). Due to the lack of 

protein structure study on the MT2 (vTNFR) encoded by the myxoma virus, the MyxMT2 

protein structure was predicted using AlphaFold (for method see section 2.6.7) [127]. 

The prediction results generated a protein structure with reference sequence coverage 

ranging from 5 to 6746 sequences for each amino acid position, 95.183 prediction score 

in the PLAD region (67.866 mean prediction score for the entire sequence) (Figure 59B). 

In addition, the structure alignment of predicted MyxMT2 to the TNFR1 dimeric complex 

demonstrated the interaction possibility between the myxoma virus MT2 and human 

TNFR1 proteins with alignment score = 229.9 and root-mean-square deviation (RMSD) 

= 5.929 (for method see section 2.6.7) (Figure 59B). 

The CoDA results demonstrated the different impacts of TRAPS TNFR1 mutated 

receptors on the interaction between myxoma poxvirus MT2 and WT human TNFR1. The 

CoDA plots revealed great shifts of the mean values to the left-side triangle edge 

compared to the sample without myxoma MT2 protein (Figure 60A, mean data in the 

black box are from the TRAPS experiment in the last section for comparison). From the 

single-cell level distribution, only the Y20H sample has obvious interactions between WT 

huTNFR1-eCFP and myxoma poxvirus MyxMT2-mRFP with a reduced amount of 

interaction compared to the WT control sample with WT human TNFR1 as both the eCFP 

and eYFP FRET components (Figure 60B).  
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Figure 59 vTNFR sequence alignment and structure predictions
The human TNFR1, human TNFR2, and poxviruses-encoded MyxMT2, VarG4R, and MpvJ2R have 
highly conservatived sequences within the PLAD as demonstrated with the sequence alignment
(A). MyxMT2 was selected as a safe prototype vTNFR to replace the mRFP FRET component in 
TNFR1 trimeric FRET system. The protein structure prediction and amino acid alignment of 
MyxT2 to the TNFR1 self-interacting dimer structure (B). The sequence coverage plot shows how 
many sequence entries from the database were used for the prediction at each amino acid 
position of the query protein amino acid sequence. The prediction plot score displays the IDDT 
scores of the top 5 ranked prediction models. The model error plot demonstrates the aligned 
residue errors from each amino acid position from the best prediction model. The TNFR1 dimer 
(pink and purple) is displayed at the bottom left, and the grey protein 3D structure is the 
predicted MyxMT2 protein structure rendered using the ribbon structure on the right. Within 
the predicted ribbon structure, the prediction errors from high to low are indicated from red to 
blue colours. 
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Figure 60 CoDA of poxvirus-human interactions that target TNFR1 interactions
The CoDA triangular simplex space has three corners, and each indicates the three compositions 
of the eCFP energy: (i) the quenched remaining eCFP, (ii) eCFP donated to eYFP, and (iii) eCFP 
donated to mRFP. The data includes the WT TNFR1 at the eCFP position, the WT TNFR1 and six 
TRAPS TNFR1 at the eYFP position, and MyxMT2 at the mRFP position. The mean values of the 
compositional eCFP energy are displayed in the large triangle (on the left). The single cell level 
data (first column) and heatmap overlays of each of the involving FRET efficiencies are displayed 
for all samples (on the right). The mean data in the black box are from the TRAPS experiment in 
the last section for comparison.
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All other TRAPS TNFR1-eYFP expressing samples have near complete reduction between 

WT huTNFR1-eCFP and myxoma poxvirus MyxMT2-mRFP and with varied degrees of 

interactions between WT huTNFR1-eCFP and TRAPS TNFR1-eYFP (Figure 60B). 

Interestingly, when myxoma MT2 protein presents, the C29Y mutant demonstrated the 

most decreased interaction between WT huTNFR1-eCFP and TRAPS TNFR1-eYFP. At the 

same time, other TRAPS mutations displayed a broad range of interaction levels 

between WT huTNFR1-eCFP and TRAPS TNFR1-eYFP and overall similar mean values 

compared to the control sample (Figure 60). The two-dimensional reduced visualisation 

from the PCA plots indicated the Y20H had the most similar profile to the WT control 

sample when myxoma MT2 protein presented with the P46L showed heterogenous 

patterns, indicating more than one interaction mechanisms of P46L to both WT huTNFR1 

and MyxMT2 vTNFR (Figure 61).

Figure 61 PCA of poxvirus-human interactions that target TNFR1 interactions
PCA dimensionality reduction using standardised CLR-transformed data of eCFP energy to eYFP, 
eCFP energy to mRFP, and eYFP energy to mRFP. Different TRAPS mutations are coloured.
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The three-protein, six-colour FRET algorithm demonstrated different virus-host 

interactions and TRAPS mutation protective mechanisms. This was demonstrated by 

further summarization of results from the two studies investigated (i) WT TNFR1-eCFP + 

TRAPS TNFR1-eYFP + WT TNFR1-mRFP (ii) WT TNFR1-eCFP + TRAPS TNFR1-eYFP + 

MyxMT2-mRFP and presented the data together using radar plots. Six components on 

the left and right indicate with or without the virus vTNFR. On the left side, the middle 

component indicates the WT TNFR1::WT TNFR1 interaction, and the top and bottom 

both symmetrically indicate the WT TNFR1::TRAPS TNFR1 interactions (Figure 62). The 

three components on top to bottom (on the right) display the interactions between WT 

TNFR1::TRAPS TNFR1, human WT TNFR1::MyxMT2, and TRAPS TNFR1::MyxMT2, 

respectively. The distance from each corner to the plot centre denotes the extent of the 

FRET signals and interaction levels. The Y20H mutation showed the most similar 

interaction pattens for all six PPIs compared to the WT control sample (Figure 62 

magenta sample). The C29Y mutation showed a more obvious evolutionary advantage 

with a decoy protection model, and it demonstrated reduced myxoma MT2 to WT 

TNFR1 interactions and vastly increased preference towards interactions between 

TRAPS TNFR1 and myxoma MT2 (Figure 62 yellow sample). In addition, the C30S also 

displayed a different non-decoy protective mechanism, and it demonstrated overall 

reduced human-viral interactions between C30S TNFR1 and myxoma T2, as well as 

between WT TNFR1 and myxoma T2. In addition, the interactions between the C30S 

TNFR1 and WT TNFR1 remained high (Figure 62 cyan sample), unlike in the C29Y TRAPS 

mutation sample. The other TRAPS mutations indicated different extents of the 

combined mechanisms as the C29Y and C30S. This summarised result further 

demonstrated the robustness of the three-protein six-colour FRET algorithm. Together 
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with the FRET detection pipeline, this chapter established a prototypic study for 

screening mutant-protein-based biosimilar drugs that can disarm viral immune evasion 

and for finding therapeutic candidates against virus infections. 

Figure 62 Poxvirus-human interactions together with TRAPS mutations
The radar plots show summarised results for the WT TNFR1 and TRAPS TNFR1 interaction 
experiments and the WT TNFR1 (left three corners), TRAPS TNFR1 and MyxMT2 interaction 
experiments (right three corners). Each radar plot shows the interaction between WT TNFR1 
and TRAPS TNFR1 (top, both sides), between two WT TNFR1 (middle, left side) or between WT 
TNFR1 and MyxMT2 (middle, right side), and between TRAPS TNFR1 and MyxMT2 (bottom, both 
sides). Samples with different TRAPS mutations are coloured.
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CHAPTER SEVEN 

BEYOND FRET: 

THE SIMULTANEOUS DETECTION OF FRET 

AND CELLULAR SIGNALLING PATHWAYS 
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7.1 Introduction 

Protein-protein interactions often result in the conformational change of the interacting 

proteins and lead to the association or dissociation of other protein complexes to 

activate cellular signalling pathways. Therapeutics target the protein-protein 

interactions that can regulate the downstream cellular signalling pathways and provide 

treatments for human diseases caused by abnormal activation of cellular signalling. 

However, current therapeutics block or promote cellular signalling in a broad, and non-

specific way. Indeed, the ‘holy grail’ of pharmaceutical research into signalling pathway 

regulatory therapeutics is to identify a signalling pathway-specific inhibitory drug 

molecule. Therefore, the simultaneous detection of the protein-protein interactions and 

how changes in PPIs regulate multiple related cellular signalling pathways is crucial for 

finding the next-generation, pathway-specific therapeutics to treat and cure human 

diseases. 

For example, TNFR1 interactions cause the disassociation of the silencer of death 

domain (SODD) protein from the TNFR1 intracellular death domain (DD) [200]. The DD 

of TNFR1 is then permitted to recruit and form four protein complexes, namely complex-

I, -IIa, -IIb, and -IIc, for different TNFR1 signalling pathways (Figure 63). Complex-I is 

composed of TNFR-associated death domain (TRADD) [201], receptor-interacting 

serine/threonine protein kinase 1 (RIPK1) [202], TNFR-associated factor 2 or 5 (TRAF2/5) 

[203], the cellular inhibitor of apoptosis protein 1 or 2 (cIAP1/2) and linear ubiquitin 

chain assembly complex (LUBAC) [204], which leads to NF- 𝜅𝜅 B activation and 

proinflammatory response [205]. Complex-IIa composed of FAS-associated death 

domain (FADD), TRADD, RIPK1, and pro-caspase-8, complex IIb composed of RIPK1, 
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RIPK3, and pro-caspase-8 and the formation of both complexes can lead to cellular 

apoptosis [153, 206, 207]. When RIPK1 and RIPK3 accumulate, they form complex-IIc, 

which leads to mixed lineage kinase domain-like (MLKL) protein activation, and cause 

cell necroptosis [201, 208]. 

Figure 63 The complex TNFR1 intracellular signalling pathways
TNFR1 interactions recruit different protein complexes. Complex-I activates the pro-
inflammatory signalling pathway through JNK-AP1 (blue) and NF-𝜅𝜅B (yellow). Complex-IIa and 
complex-IIb activate apoptotic cell death signalling pathways through the caspase cascade 
(orange). Complex-IIc activates necroptotic cell death (green).
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Aberrant TNF/TNFR signalling, such as increased TNF or altered TNFR expression, can 

cause many inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, 

ankylosing spondylitis, Crohn’s disease, and inflammatory bowel disease [143]. 

TNF/TNFR signalling-related gene mutations can also cause autoinflammation [151]. 

Therapeutic targeting of TNF/TNFR signalling has been developed to involve TNF-specific 

monoclonal antibodies (e.g., infliximab, adalimumab, Humicade, Golimumab, 

Certolizumab Pegol) and recombinant fusion proteins (Etanercept) that function by 

sequestering TNF and inhibiting ligand binding to the receptor [209]. However, TNF-

targeting therapeutics have been found to be associated with immunosuppressive 

adverse effects, including reactivation of chronic or latent bacterial and virus infections, 

such as tuberculosis [210], adenoviral pneumonia [211, 212], and varicella-zoster [213, 

214]. Other adverse effects include an increased risk of demyelinating disorders [215] 

and lymphomas [207], which are believed to be mostly caused by unselectively blocking 

all TNF-TNFR1 biological activities. 

Current detection methods are still limited to separately detecting the PPIs using FRET 

and then investigating the signalling pathway activations using total cell lysate and other 

molecular biology approaches or detecting the single-cell level signalling requires a 

separate independent experiment [71, 216]. In addition, many investigations ignore the 

fact that cells contribute energy to activate multiple cellular signalling pathways 

simultaneously and treat different cellular signalling results independently. This chapter 

further upgraded the spectral unmixing methodology to include two cellular signalling 

fluorescent reporters and integrated the three-protein six-colour FRET, two cellular 

signalling fluorescent reporters. Together with the CoDA technique for dynamic 
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compositional interpretations, it allows simultaneous detection of FRET for PPI and the 

dynamic changes of the multiple signalling pathways activities. This chapter 

demonstrates the flow cytometry analysis of the simultaneous detection of TNFR1 

protein interactions in correlation with the relative changes between the NF- 𝜅𝜅 B 

activated inflammation and the cell death reporters. 

7.2 Results 

7.2.1 Detection of cell death using the fixable UV-blue live/dead stain 

Utilising the fixable UV-blue live/dead stain with the unsupervised GMM clustering 

algorithm has accomplished automatic unbiased distinguishment of unstained 

background noise from the DMSO buffer, the stained live population and the stained 

dead population (Figure 64A). The results demonstrated the successful detection of the 

cell death signalling pathways’ activities without impact on detection of the eCFP, eYFP 

or mRFP fluorescent components and vice versa. The positive control for cell death was 

generated by five minutes of 50 °C heat shock to induce partial population cell death. 

The medium-only sample treated with DMSO (Figure 64A, black histogram), the mock 

transfection sample (Figure 64A, green histogram) and the positive control sample 

(Figure 64A, purple histogram) stained with the fixable UV-blue live/dead stain were 

concatenated to train the unsupervised GMM. The test samples are cells transfected 

with human CD27, TNFR1 or TNFR2 receptor expressing plasmids, to examine whether 

the live/dead stain can be used for TNFR1-induced cell death detection. In order to 

investigate the whether the pre-processing steps can resolve the independent 

fluorescent signals of the live/dead, eCFP, eYFP, mRFP and FRET emissions, HEK-293T 

cells were transfected with human CD27, TNFR1 or TNFR2 receptor expressing plasmids 
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with or without the fused fluorescent protein components. In detail, for data analysis, 

the concatenated data was transformed using bi-exponential transformation to achieve 

better normality and then fitted to the GMM algorithm with the cluster number set to 

three. The trained GMM automatically generated thresholds for the concatenated data 

to distinguish each of the control samples (Figure 64A) and then was used to fit the HEK-

293T cell samples transfected with the pcDNA3 overexpression plasmids to 

independently express human CD27, human TNFR2 and human TNFR1 as the non-

fluorescently tagged full-length receptors (Figure 64B, left). The GMM was also used to 

fit the sample co-expressed the same human receptors as the fluorescent protein-

tagged -eCFP, -eYFP and -mRFP fusion proteins, as mentioned in the previous chapters 

(Figure 64B, right). By comparison, there is no significant difference between the 

fluorescently tagged fusion protein expressing sample and the non-tagged full-length 

receptor sample, for CD27-FPs and CD27 𝑀𝑀 = -0.114 𝑝𝑝 = 0.920, for TNFR2-FPs and TNFR2 

𝑀𝑀 = -0.112 𝑝𝑝 = 0.921, and for TNFR1-FPs and TNFR1 𝑀𝑀 = -0.297 𝑝𝑝 = 0.795  (Figure 64B). 

The result indicated (i) the C-terminus fused fluorescent component does not interfere 

with the receptor biology compared with the original non-tagged full-length receptors, 

(ii) the whole analytical pipeline has outstanding pre-processing procedures that 

eliminated the fluorescence spillover effects of all three fluorescent proteins, i.e., eCFP, 

eYFP and mRFP from the live/dead signals (as no significant difference between samples 

with and without fused fluorescent protein). In addition, the results showed that CD27 

does not cause cell death compared to the mock transfection negative control sample 

(𝐹𝐹 = 0.009, 𝑝𝑝 = 0.991) (Figure 64C). Both TNFR2 and TNFR1 can cause cell death with 

significant differences from the negative control sample, in which TNFR2 caused around 

one-fold more cell death than the negative control (𝐹𝐹 = 11.619, 𝑝𝑝 = 0.022), and TNFR1 
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caused around five to six folds more cell death than the negative control (𝐹𝐹 = 63.016, 𝑝𝑝

= 0.0009) (Figure 64C). 

Figure 64 TNFR1 cell death signalling detection
Unstained control, cell death negative control and cell death positive control were concatenated 
for GMM training and unsupervised thresholds establishment (A). The GMM thresholds were 
applied to CD27-, TNFR1-, and TNFR2-expressing cells with or without the fluorescent fusion 
proteins (B). The percentage of cell death detected using live/dead stain and GMM thresholds 
(C).   

7.2.2 Detection of TNFR1-induced NF-𝜿𝜿B activated proinflammatory signalling 

This section reports the newly constructed NF-𝜅𝜅B inflammation reporter achieved 

TNFR1 receptor-specific detection of the inflammatory signalling pathway activation 

and demonstrated full compatibility with the eCFP, eYFP, mRFP three-way FRET system, 

as well as the cell death reporter. In detail, the robustness of the inflammatory reporter 

was tested to deliver four layers of outcomes, (i) the reporter is TNFR1 specific, (ii) the 

eCFP, eYFP, mRFP and FRET spillovers were completely unmixed from the reporter 

emissions, (iii) identification of the optimal copies of the NF-𝜅𝜅B response element that 

can produce the highest signal-to-background ratio, and (iv) the reporter and the 

live/dead stain are compatible (Figure 65). 
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Figure 65 The proinflammatory NF-𝜿𝜿B reporter valiation experiment design
Four layers of the experiment to test (1) whether the reporter is TNFR1 specific, (2) whether the 
fluorescent protein tags will impact the reporters, (3) find how many copies of NF-𝜅𝜅B response 
elements achieve the best signal-to-background ratio, and (4) whether the reporter is 
compatible with the cell death detection.

The results showed that the pcDNA3.empty plasmid transfected negative control 

sample produced minimal miRFP703 emission with the reporter having NF-𝜅𝜅B response 

element ranging from 0, 2, 4 and 8 copies (Figure 66A). The result also showed that 

neither CD27 nor TNFR2 expressing samples activated the inflammation signalling 

pathway significantly above the negative control samples, tested using ANOVA with 𝑝𝑝 = 

0.321 (Figure 66, top and middle group). Meanwhile, TNFR1 group samples produced no 

significant detection of inflammation signalling with zero or two copies of NF-𝜅𝜅 B 

response element in the reporter plasmids compared to the negative control samples 

(𝑝𝑝 = 0.646) (Figure 66, bottom group top two rows). However, significant NF-𝜅𝜅B reporter 

emissions was detected for reporter plasmid having four copies of the NF-𝜅𝜅B response 
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element (𝑝𝑝 = 1.334e-7) and with eight copies of the NF-𝜅𝜅B response element (𝑝𝑝 = 

2.864e-8) (Figure 66, bottom group bottom two rows). In addition, the samples with 

four copies of the NF-𝜅𝜅B response elements delivered the highest signal-to-background 

ratios (Figure 66C).

Figure 66 NF-𝜿𝜿B proinflammatory reporter validation
Negative controls that transfected with proinflammatory reporters with different copies of NF-
𝜅𝜅B response elements and no receptor plasmid, with or without live/dead stain (A). Cells co-
transfected with proinflammatory reporter plasmids having different copies of the NF-𝜅𝜅B 
response elements and the receptor plasmids. The receptor plasmids were CD27, TNFR2, and 
TNFR1 with or without fluorescent protein fusion components. The samples were treated with 
or without live/dead staining (B). Signal-to-background ratios were detected using the 
proinflammatory reporters with different copies of NF-𝜅𝜅B response elements (C).
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7.2.3 Detection of the compositional dynamics of multiple signalling pathways  

Furthermore, integrating the CoDA algorithm into the signalling reporter fluorescent 

emissions revealed the balance between cell death and inflammation signalling pathway 

activities. It also allows the detection of the relative dynamics of the two signalling 

pathways regarding TNFR1 receptor interactions at the single-cell level. When directly 

correlating the logarithmic transformed cell death reporter emission with the TNFR1 

FRET reporter emissions, a highly scattered weak positive correlation was observed with 

𝑓𝑓𝐶𝐶𝑟𝑟𝑟𝑟 = 0.235, 0.522, 0.186, 0.526 and 𝑝𝑝 = 2.578e-35, 4.2311e-188, 1.630e-22, 3.730e-

192 for eCFP→eYFP, eYFP→mRFP, eCFP→mRFP, eCFP→eYFP→mRFP respectively (Figure 

67A, purple). The inflammation reporter also demonstrated weak negative correlations 

to the TNFR1 FRET reporter emissions with 𝑓𝑓𝐶𝐶𝑟𝑟𝑟𝑟 = -0.434, -0.029, -0.485, -0.170 and 𝑝𝑝 = 

1.968e-124, 0.128, 2.933e-159, 6.065e-19 for eCFP→eYFP, eYFP→mRFP, eCFP→mRFP, 

eCFP→eYFP→mRFP respectively (Figure 67A, dark red). After performing closure and 

logarithmic ratio transformation using CoDA, the relative compositional intensity of the 

cell death reporter showed an increased positive correlation with the TNFR1 

receptor::receptor interactions, and the relative compositional intensity of the 

inflammation reporter presented an increased negative correlation with the normalised 

TNFR1 FRET emissions (Figure 67B). In detail, the correlation was 0.575 (𝑝𝑝 = 2.814e-237) 

between CoDA-transformed cell death and TNFR1 eCFP→eYFP FRET, and the correlation 

was 0.483 (𝑝𝑝 = 1.636e-157) between cell death and eYFP→mRFP FRET, with correlation 

was 0.561 (𝑝𝑝 = 2.997e-223) between cell death and eCFP→mRFP FRET, and correlation 

equalled 0.606 (𝑝𝑝 = 9.299e-270)  between cell death and eCFP→eYFP→mRFP two-step 

FRET (Figure 67B). Meanwhile, because the LR balanced between cell death and 

inflammation, the correlations are -0.575, -0.483, -0.561 and -0.606 between CoDA-
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transformed inflammation reporter emissions and each of the eCFP→ eYFP FRET, 

eYFP→mRFP FRET, eYFP→eYFP FRET and eCFP→eYFP→mRFP two-step FRET with the 

same levels of significance, respectively. Thus, the algorithm provided insights into 

relative signalling activities regarding receptor::receptor interactions and provided 

solutions to design and screen drugs that can fine-tune the balance between multiple 

signaling pathways. They can help us find the ‘Holy Grail' of the next-generation cellular 

signalling pathway-specific therapeutics for human diseases.

Figure 67 Correlation between signalling pathways and TNFR1 interactions
Correlations between logarithmic normalised cellular signalling pathway readouts and 
normalised FRET efficiencies (A). Correlations between CoDA-transformed signalling pathway 
readouts and normalised FRET efficiencies (B). 
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SUMMARY AND PERSPECTIVE  
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This research project aimed to develop a comprehensive and fully automated analytical 

workflow that can detect multi-protein interactions with FRET and assess the activities 

of various cellular signalling pathways at a single-cell level. The workflow relies on a 

combination of high-throughput flow cytometry techniques and advanced machine-

learning algorithms. With the presented approach, researchers can accurately quantify 

cytometry data and achieve more efficient and reliable results. The analytical workflow 

covers every single stage of the multiparameter flow cytometry analysis together with 

the FRET investigation. The DBSCAN-based UltraFast singlet identification algorithm 

achieved outstanding accuracy compared to many existing unsupervised flow cytometry 

clustering algorithms and turned the previously unaddressed labour-intensive, 

subjective, time-consuming process into an easy, objective, and rapid automated 

process. The collaborative filtering recommendation-based algorithms accomplished 

error-free baseline subtraction-error correction, and autofluorescence prediction and 

removal, which recovered the pure single fluorescence emission of each individual 

fluorescent component through simple linear matrix-based spectral unmixing, therefore 

allowing the absolute quantification of flow cytometry analysis, including FRET 

experiments.  

This study accomplished the detection of sensitive, robust, and true single-cell level FRET 

signals of two-protein, three-colour FRET emissions. Using the chemically linked eGFP-

mRFP FRET pair, this study validated the FRET calibration and spectral unmixing 

formulation developed for naturally existing free-interacting PPIs. The algorithms were 

proved to be highly reliable using three unliked FRET pairs (TNFR-eCFP→TNFR-eYFP, 

TNFR-eYFP→TNFR-mRFP, and TNFR-eCFP→TNFR-mRFP) on two distinctly configured 
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flow cytometers (LSR-II and Fortessa X20). After demonstrating the usage with 

IAA/Auxin concentration detection and T cell antigen response assay, the FRET analytical 

pipeline was validated to be suitable for both small molecule detection and 

immunological diagnosis.  

The performance of further upgraded, more complex three-protein six-colour FRET 

detection was evaluated using expression vectors that encode human TNFR1, TNFR2, 

and CD27 as -eCFP, -eYFP and -mRFP fusion proteins. In addition, a panel of 62 TRAPS 

TNFR1 mutant receptors (six were used as a prototype) as -eYFP fusion constructs, as 

well as vTNFR-mRFP fusion proteins from the poxvirus – myxoma virus (MT2 protein) 

were also used in this study. The three-way single-cell level FRET analysis established 

the possibility of TNFR1 forming hexagonal meta-clusters and revealed aberrant 

receptor interactions that potentially caused the human autoinflammatory disease 

TRAPS. The results also uncovered the human TNFR1-targeted mechanism of poxvirus 

immune evasion using vTNFR and ultimately discovered that human TRAPS mutations 

are a possible evolutionary trade-off in exchange for the disarming of poxvirus immune 

evasion to protect humans from poxviruses. In summary, these data demonstrated a set 

of prototype studies as a high-performance screening tool to find autoinflammation 

therapeutics that can recover the aberrant protein-protein interactions and for 

screening mutant-protein-based bio-similar drugs that can disarm viral immune evasion 

and for uncovering therapeutic candidates against virus infections.  

Utilising CoDA and LR-based algorithms with the cell live/dead reporter and newly 

constructed NF-𝜅𝜅B miRFP inflammatory reporter, the correlations among multiple 

intracellular signalling activities and the energy dynamics within the three-way FRET 
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system became evident. Thus, this approach provides insights into relative signalling 

activities concerning receptor::receptor interactions and provides solutions to design 

and screen drugs that can fine-tune the balance between multiple signal pathways. The 

entire ML-powered FRET analytical pipeline can help us find the ‘Holy Grail' of next-

generation cellular signalling pathway-specific therapeutics for human diseases. 

When conducting the in-situ PPI detection in laboratories, the first step of using FRET is 

to achieve fluorescence labelling of the proteins of interest. There are currently two 

commonly used approaches, one uses fluorophore-conjugated antibodies for protein 

labelling as demonstrated by the TCR-CD4 experiment, and the other uses subcloning 

techniques to bioengineer the expression of the target proteins as fluorescent protein 

fusion entities as presented in chapter 3. There are many limitations in the antibody 

staining approach in FRET studies. Several reports have shown that there lacks an 

absolute quantification of the fluorophore-to-antibody conjugation ratio or the 

antibody-to-protein binding ratio, which heavily relies on the mean value calculated 

from the whole population perspective and sacrifices the single-cell level resolution 

accuracy and sensitivity [17]. In addition, antibody-targeting epitopes can also be PPI-

critical domains and lead to false-negative FRET detection if the antibody works as 

antagonist molecules that effectively block PPI.  Antibodies can also lead to false-

positive FRET detection if the antibody cross-links two proteins and artificially brings 

them in proximity. 

Moreover, if the target proteins express intracellularly, i.e., not on the cell surface, this 

will require permeabilization of the cell membrane before antibody staining, which can 

also cause unpredicted biologically irrelevant results. Therefore, the construction of a 
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fluorescent fusion is a superior solution for labelling the target proteins for FRET-based 

PPI investigations, as it always labels the protein in a one-to-one ratio. The entire fusion 

protein is also expressed as a single entity throughout the entire in-situ protein 

manufacture, assembly and trafficking processes. However, Chan et al. evaluated TNFR1 

as fluorescent protein fusion constructs and observed inconsistent results on the FRET 

detection capacities when placing the CFP and YFP moieties at the N-terminus or C-

terminus of the receptor protein [70]. In this study, the C-terminus TNFRSF-eCFP, -eYFP, 

and -mRFP fusion constructs were subcloned and were found to achieve the successful 

detection of FRET signals and have no significant difference in biological signalling 

activations when compared to the original unlabelled receptor proteins. This finding is 

consistent with that of Chan (2001), who described that the fluorescence of fusions at 

the N-terminal is sensitive to the linker length, and the intracellular C-terminus fusions 

of CFP and YFP were found to be far less sensitive to the length of the linker between 

fluorescent protein and receptor. Therefore, when conducting FRET investigations in the 

future, the biological function of the newly constructed fusion proteins must be tested 

before FRET experiments. 

Furthermore, the selection of the fluorescent protein is also critical for the success of 

the detection of FRET signals. The FRET-donor and FRET-acceptor must have sufficient 

quantum yield 𝑄𝑄𝑒𝑒 for efficient energy transfer. Excitation coefficients 𝜀𝜀, especially for 

the FRET-acceptor, play an important role in resonance FRET emission. The protein 

maturation rate can also impact the abundance of stable fluorophores. One surprising 

variable in this study was that TNFR1-eYFP has a more rapid expression decline observed 

with the live-cell imaging compared to other TNFR-FP fusion constructs prepared in 
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chapter three. A potential explanation is that the different combinations of fluorescent 

protein and receptor sequences may have varying codon biases, contributing to the 

variable expression dynamics. The tRNA pool from HEK-293T cells, which produces those 

fusion proteins, may also play a role. The cell death caused by TNFR1 signalling is another 

cause of the early decrease in TNFR1-eYFP. Therefore, this study also demonstrated that 

characterising each FRET component's expression and fluorescent emission profiles is 

crucial for FRET experiment design and have important implications for developing the 

FRET assay. Moreover, there is abundant room for further exploration with the newly 

developed UV-excited violet fluorescent proteins and red laser-excited infrared 

fluorescent proteins, as well as the potential of utilising upconverting fluorescent 

particles in the FRET system to free up the availability within the blue-green-yellow-red 

spectrum range for utilising widely well-established commercial dyes for the 

simultaneous detection of other biological activities.  

Regarding the ML-powered flow cytometry singlet identification, this study aimed to 

provide an automated, unbiased, efficient solution based on the unsupervised DBSCAN 

algorithm. Therefore, the UltraFast algorithm developed in this study further enhanced 

the power of DBSCAN as the density-based clustering algorithm. The most satisfactory 

performance evaluation results demonstrated that UltraFast handles flow cytometry 

data with irregular shapes and outcompeted many other unsupervised clustering 

algorithms developed or utilised for flow cytometry data. In this study, I utilised the 

elbow method to automatically choose the hyperparameters 𝜀𝜀 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and this 

mirrors those of the previous studies that have utilised such application for more 

efficient automated hyperparameter tuning [100, 101, 217]. In addition, converting the 
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data into grids increases the computational efficiency and allows the tuning of 𝜀𝜀 and 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  becomes tuning of a physically meaningful “grid number” hyperparameter, 

approximately equivalent to the strictness of the singlet gating. However, the density-

based property of DBSCAN also becomes the most challenging aspect of implementing 

DBSCAN for singlet identification since DBSCAN cannot cluster populations with large 

differences in densities well. This is particularly problematic since the data collected in 

many flow cytometry studies displays small cell debris and large cell aggregates along 

with various background noises, demonstrating dramatically different densities as the 

true singlet population. Small debris can often be eliminated by applying a threshold 

during data collection, and I have used a covariance and chi-squared test 2D gaussian 

algorithm to exclude the majority of those large aggregates and background noise. 

In contrast to the previous study, which used this approach with a more stringent 

threshold to consequently exclude 60% population to achieve singlet data [128], this 

study only applies a permissive threshold to exclude 5% of those non-singlet data to 

assist the proper function of DBSCAN. In fact, the 2D gaussian step can be optional if the 

data quality is good from the beginning. Undoubtedly, it is always more import to 

maintain a high-standard laboratory sample handling and harvesting protocol that can 

effectively prevent background noise, small debris, and large cell aggregates. This will 

also improve the efficiency of the DBSCAN-based UltraFast singlet identification 

algorithm. Furthermore, in this study, the true ground of the singlet and non-singlet 

events were established using the current gold-standard manual gating strategy using 

FSC and SSC signals. In addition, the results were double confirmed by cell sorting 

followed by widefield microscopy. One unanticipated finding was that the non-singlet 
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population sorted outside the manual singlet gate also has around 10% singlets. Instead 

of challenging the gold-standard manual gating strategy, this is more likely to be that 

the non-singlets were shredded into singlets during cell sorting by the high-speed fluidic 

flow rate and vibration at the sorting point. However, these results need to be further 

validated using the flow cytometry-based technique that allows imaging outputs 

without cell sorting in place. This is an important issue for future research to utilise 

techniques such as imaging flow cytometry to confirm the true ground of the manual 

gating identified singlet and non-singlet population. Regardless, the singlet was 

validated to be nearly 100% accurate from the manual gating and still guaranteed the 

singlet identification algorithm performance using 𝐹𝐹1 scores, which should help us to 

maintain the confidence of the robustness and usefulness of the UltraFast algorithm for 

singlet identification. 

This study's collaborative filtering (CF) recommendation algorithm is a novel approach 

to correct the baseline subtraction error and predict autofluorescence. Although the CF 

algorithm was first used in 1992 [115] and has been widely used in websites such as 

Netflix and Amazon with large user databases, this is the first time CF has been used in 

flow cytometry analysis for data pre-processing. The most significant finding in this study 

is the power of CF in predicting the nonlinear single-cell level of fluorescent signals, such 

as baseline and autofluorescence. The error-free performance of CF in flow cytometry 

data analysis is a remarkable finding and provides new insights into the potential and 

direction of developing flow cytometry-based algorithms. The CF algorithm outperforms 

many recently developed linear-based algorithms in removing autofluorescence [90-92, 

218].  
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Moreover, many iterative algorithms have been developed for the downstream spectral 

unmixing procedure to minimise the spread error caused by spectral compensation, 

such as the spectral compensation method developed by Roederer (2001) [219, 220], 

the spillover spreading matrix-based method developed by Nguyen et al. (2013) [87], 

the generalized unmixing model developed by Novo et al. (2013) [221], and the latest 

AutoSpill algorithm developed by Roca et al. (2021) [88]. However, all above mentioned 

approaches ignores the influence of baseline subtraction error and autofluorescence to 

the fluorescence spillover linearity. Therefore, the errors are always embedded in the 

fluorescence intensity calculations used in these methods that limits the degree of 

accuracy they can achieve. In this study, the pre-processing steps exceptionally 

improved the quality of the fluorescence intensity data by correcting the baseline 

subtraction error and removing the autofluorescence prior to spectral unmixing, so a 

simple single-step matrix-based noniterative linear unmixing can fully resolve the 

fluorescence spillover issue. Thus, it saves computational time without the need for 

iterative computations. In general, therefore, the results suggest that when predicting 

flow cytometry data influenced by many factors, the non-linear CF algorithm is 

preferable to the linear algorithms and opens the possibility of examining many 

nonlinear-based algorithms in flow cytometry data pre-processing for future studies. 

One major limitation of the CF algorithm that did not emerge in this study but should be 

mentioned is that it may face the challenge of data sparsity. As the CF predicts data 

based on existing high-quality data, a poor flow cytometry dataset can make CF 

unreliable. Luckily, this can be prevented by performing hardware QA and configuration 

baseline checking prior to data acquisition with flow cytometry QA beads. If, in rare 

situations, when an experiment cannot be conducted repetitively, such as using precious 
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clinical samples, or the machine has sudden abnormal performance, flowAI and 

flowClean can be integrated into the pre-processing pipeline to remove data with 

aberrant flow rate and fluorescence signals, therefore decreasing the relative data 

sparsity.  

Furthermore, the CF algorithm will suffer serious scalability problems as the number of 

cells and detection parameters grow. For example, in this study, a sample with 30,000 

cells and eight fluorescence parameters takes around one minute of the CF processing 

time for baseline correction and autofluorescence removal. Current spectral flow 

cytometers have 64 detection channels and can perform staining of cell surface markers 

simultaneously using 40 colours in a single tube. The CF processing time will dramatically 

increase when using full-spectrum flow cytometry. This raises intriguing questions 

regarding how to improve the CF algorithm's efficiency or perhaps find a more efficient 

strategy for applying the CF algorithm. In future research, users can first apply 

unsupervised clustering algorithms to perform cell subtype identification and then only 

carry out the CF processing for this cell population as a potential solution to maintain 

efficiency if the cell number is increased. Meanwhile, users can apply the linear 

parametric dimensionality reduction algorithm PCA to compress the high-parameter 

flow cytometry data into a dataset with lower parameters and perform CF processing, 

followed by uncompressing data to the original high-parameter/dimensional space. 

These investigations are required to evaluate the data information loss and CF accuracy 

by combining with the PCA or finding a more efficient non-linear algorithm with the 

same level of accuracy. 



200 
 

The present study was designed to determine the α FRET calibration factor using the 

unlinked FRET data for the detection of two-protein three-colour FRET signals and the 

three-protein six-colour FRET signals. The current result indicates that the unlinked 

single-cell level alpha calibration can achieve higher accuracy and detection sensitivity 

than the existing calibration method using chemically linked FRET pairs. Surprisingly, the 

unlinked calibration algorithm formulation has not been fully proposed in previous 

studies, and most existing single-cell level flow cytometry-based FRET still use chemically 

linked controls. The chemically linked controls produce artificial readouts and can never 

represent the naturally existing free-interacting PPIs. This study confirms that the single-

cell level unlinked FRET calibration algorithm shares the same physical properties with 

the previously published method, which used linked controls, and can produce higher 

FRET accuracy, detection sensitivity, lower background random PPIs readout, and higher 

reproducibility. 

Interestingly, the successful formulation of the unlinked calibration is achieved by and 

highly relies on the quality of the data pre-processing. It is important to consider the 

possible restrictions in these approaches, including both previously mentioned linked or 

newly proposed unlinked calibration methods, as both require the knowledge of the 

excitation coefficients of the fluorophores used in the FRET analysis. This information 

can be obtained from many previous publications, and the FPbase online database [117] 

has a large collection of the property information for many fluorophores, including the 

eCFP, eGFP, eYFP, mRFP, Violet-Blue, FITC, Aquamarine, NeoGreen, as well as the UV-

violet live/dead stain and the miRFP703 for inflammation reporters. Of course, the 

excitation coefficient can also be measured using a spectrometer. 



201 
 

Moreover, unlike the linked calibration method, the unlinked calibration method 

removed the requirement of pre-established knowledge or assumption on FRET-donor 

and FRET-acceptor concentrations. This is a rather useful outcome since the 

concentration of the FRET-donor and FRET-acceptor cannot be quantitated for most of 

the naturally existing free-interacting proteins. This is because the donor emission no 

longer solely correlates to the protein expression level, and it is also impacted by PPI 

levels that cause FRET-donor emission quenching effects.  

Furthermore, the FRET results generated with the flow cytometers in this study should 

only represents the averaged PPIs at the single-cell level instead of the single FRET-pair 

level. This is because the unlinked fluorescently tagged proteins might not all participate 

in the FRET pairs, which means they may not interact with each other, or a proportion 

of the interacting complex may only have the donor or acceptor fluorophores, i.e., 

eCFP::eCFP and eYFP::eYFP in dimeric interactions. This interpretation is consistent with 

our previous observations in which the single-cell level unlinked FRET represent the 

average interaction level of all fluorescently tagged proteins with different PPI degrees 

at the single-cell level [32]. Despite many available single-molecule level FRET detection 

techniques, flow cytometry-based single-cell level FRET detection demonstrates 

significantly high sampling power and throughput that guarantees unexcelled statistical 

power.   

The compositional data analysis (CoDA) algorithm has recently emerged as a new 

paradigm for the analysis of omics data, including genomic next-generation sequencing 

data, proteomic data, and transcriptomics [222]. One of the initial objectives of this 

study was to use CoDA to describe the three-protein six-colour competitive energy 
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dynamics among the same FRET donor to two different FRET acceptors. Another 

objective is to use the CoDA algorithm to resolve the compositional cellular signalling 

pathway activities activated by the same receptor::receptor interactions in the same cell. 

Compositional data are multivariate data where relative values rather than absolute 

values are essential. A compositional sample's constituents, or parts, are often stated as 

ratios adding up to one or 100% as percentage values. The most obvious finding to 

emerge from the analysis is that the data can reveal the compositional impacts of each 

three-way FRET component to the rest of them and maintain sub-compositional 

coherence using LR transformation. Although the CoDA application and LR 

transformation has been mentioned in many biological investigations, this study 

innovatively resolved the FRET energy competition dynamics and relative cellular 

singling correlations using the CoDA algorithm. The CoDA results demonstrated the 

capacity to understand the complex PPIs such as TNFR1 trimeric meta-clusters, 

complicated biological phenomena of human TRAPS autoinflammatory disease, human-

poxvirus interactions, and understand the balance between cell death and inflammation 

signalling pathway activations upon TNFR1 interactions. Despite these promising results, 

zeros in compositional data are a major issue since taking a logarithmic ratio on zeros is 

impossible. Although the zero-value issue did not emerge in this study, various zero 

substitution algorithms have been proposed [223-225], and the impact of any of these 

on the FRET results can be investigated in the future. In addition to the purely statistical 

approach to solve the zero-value issue, using domain knowledge to combine 

components to produce new components can also solve the issue. 
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Without imaging outputs, flow cytometry measures the fluorescence intensity at the 

single-cell level in a fluidic system. As a result, it has little information about the 

morphology of individual cells, and it lacks spatial information that is important for the 

understanding of living tissues and animals. The cellular morphological data can be 

investigated for future study using high-throughput multi-channel imaging flow 

cytometers. It exposes detailed information on the cell size, shape, and circularity, as 

well as the localisation and colocalization of multiparameter fluorescently tagged 

markers, including FRETs. The imaging flow cytometry data can also be used to increase 

singlet identification accuracy without the need for cell sorting. 

Moreover, combining the FRET algorithm with the imaging flow cytometry technique 

exposes the signalling pathways' morphological details, such as the cell's 

location/organelle where signalling is initiated. More intriguingly, examining the doublet 

events may permit the examination of the intercellular protein-protein interactions. For 

spatial information, there is a currently developed live mouse, fluorescent lifetime (FLIM) 

assay for the detection of the FRET signals using GFP-RFP FRET pair [226]. For future 

studies, it is also worth exploring the possibility of directly applying the fluorescent 

intensity-based algorithm to the live animal FRET system because it can be upgraded to 

more than two protein molecules, and the data acquisition is more rapid than the FLIM 

assay. Furthermore, utilising the FLIM technique to evaluate each two-protein FRET 

control can further confirm the fluorescent-based result to achieve better algorithm 

quality assessment. With the potential to achieve the simultaneous detection of cellular 

signalling activities and three-protein FRET signals as presented in this study, if 

integrated with the live animal model, it is possible to monitor malfunctioning PPIs in 
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organ-specific malignancies and measure the course of the disease in real-time while 

also visualising the spatial information from many fluorescence readouts. It will provide 

more biologically relevant information on the connections between FRET and cellular 

signals, resulting in more effective diagnostic and pharmacological screening tools in 

animal model-based investigations. 

Another direction to expand the future flow cytometry technology is combining it with 

Raman spectroscopy. In addition to flow cytometry which measures the forward and 

side scattered light from a suspension of cells or particles as they pass through a laser 

beam, Raman spectroscopy is a technique that measures inelastic scattered light from a 

sample [227]. In flow cytometry, FSC measures the size of the cell or particle, while the 

SSC measures the granularity or internal complexity of the cell or particle. These 

measurements provide information about the physical properties of the cells or particles 

and are used to identify and analyze different cell types or subpopulations. On the other 

hand, Raman spectroscopy provides information about the sample's chemical 

composition by measuring the inelastic scattered light from the sample's vibrational 

modes and spectrum shifts [228]. Raman spectroscopy and flow cytometry are both 

powerful techniques in the field of biotechnology and medical research [229, 230]. 

Combining these two techniques has the potential to provide even more detailed and 

accurate information about cells and other biological samples. By integrating Raman 

spectroscopy with flow cytometry, researchers can simultaneously measure a wide 

range of properties of individual cells, including their size, shape, and chemical 

composition. One major advantage of this approach is that it allows for high-throughput 

analysis of large numbers of cells. The flow cytometry component of the system allows 
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for the rapid sorting and analysis of cells, while the Raman spectroscopy component 

provides detailed chemical information. This can be particularly useful for applications 

such as cancer research, where large numbers of cells need to be analysed to identify 

specific markers or characteristics associated with the disease. Another advantage of 

this approach is that Raman spectroscopy can provide information on the chemical 

composition of cells, which is impossible with traditional flow cytometry methods. This 

can be useful for identifying specific biomolecules or for detecting changes in cell 

metabolism. However, one limitation of this approach is that Raman spectroscopy is 

typically a relatively low signal-to-noise technique, making it difficult to obtain accurate 

and reliable data in some cases. Additionally, integrating Raman spectroscopy with flow 

cytometry can be a complex and technically challenging task, requiring specialised 

equipment and expertise. Overall, the integration of Raman spectroscopy with flow 

cytometry has the potential to provide powerful new insights into the biology of cells 

and other biological samples. However, it is important to keep in mind the limitations of 

this approach and to carefully consider the specific experimental goals and 

requirements when planning and executing these types of experiments. 

In the foreseeable future, the detection parameters of flow cytometry-based technology 

will grow by expanding the number of fluorescence detection channels and the 

combination of other technologies. Meanwhile, the complexity of data visualisation will 

also grow exponentially as the detection parameter increases, this phenomenon is 

known as "the curse of dimensionality". Currently, the most advanced full spectral flow 

cytometer has 64 fluorescence detection channels, which requires 2,016 two-

dimensional scatterplots to examine the data, if all channels are used adequately. Finally, 
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to resolve the visualisation complexity when the detection parameter expands, there 

are many parametric and non-parametric dimension reduction algorithms. PCA, t-

distributed stochastic neighbour embedding (t-SNE) [231], uniform manifold 

approximation and projection (UMAP)[232], the dimensionality reduction technique 

based on triplet constraints (TriMap) [233], and pairwise controlled manifold 

approximation (PaCMAP) [234], are all dimensionality reduction techniques available to 

compress the high parameter/dimensional data in a single reduced two-dimensional 

scatter plot. PCA is a linear parametric technique that seeks to find the principal 

components of the data, which are the directions of greatest variance. It is simple to 

implement and computationally efficient, but it can be sensitive to outliers and may not 

preserve the local structure of the data. The t-SNE algorithm is a non-parametric 

technique that seeks to preserve the local structure of the data by minimising the 

divergence between probability distributions of similar data points. UMAP, like t-SNE, 

also preserves the local structure of the data, but also preserves the global structure by 

approximating the underlying manifold of the data. TriMap and PaCMAP are also non-

parametric techniques, but they are based on triplet constraints and pairwise controlled 

manifold approximation, respectively. These non-parametric techniques can preserve 

both the local and global structure of the data by hyperparameter tuning, but they can 

be more computationally expensive than PCA. In summary, the choice of dimensionality 

reduction technique will depend on the specific characteristics of the cells and sample 

populations and the goals of the biological investigations. 

Despite the limitations of flow cytometry-based assay, it still has distinct advantages 

over many other technologies. It enables the user to carry out single-cell level cell-
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sorting, which opens doors to deeper investigations, including single-cell DNA and RNA 

sequencing, single-cell proliferation and progression modelling on selected and sorted 

cell subtypes. This will help researchers better understand diseases like cancer, which 

can develop from a single mutated cell. Together with the FRET and cellular signalling 

reporters, flow cytometry still holds an unbeatable sample acquisition rate, sampling 

power, statistical robustness, detection sensitivity, and high-parameter capacity. Linking 

flow cytometry data with genomic, proteomic, and transcriptomic data permits multi-

level investigation of the causation for physiological conditions or biological phenomena 

and allows the high-throughput diagnosis of human diseases and screening of 

personalised therapeutics that can contribute greatly to human health.  
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Appendix

Appendix Figure 1 Full-spectrum flow cytometer configuration
The violet, blue, yellow-green and red lasers and their detector arrays. The detector arrays each 
have 16, 14,10, and 8 detector channels. 
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Appendix Figure 2 The RANSAC robust linear regression
OLS (orange lines), robust MAE (pink lines), Huber (red lines), Theil-Sen (green lines), and 
RANSAC (blue lines) were compared using data with different outliers. The ground truth 
coefficient was 3, with no outlier (A), outliers at the x-axis direction (B), outliers at the y-axis 
direction (C), and outliers at both the x-axis and y-axis directions (D).
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Appendix Figure 3 TNFR2-eCFP sequencing result
Human TNFR2 (black box) subcloned with the eCFP (cyan box) to form a fusion fluorescence 
receptor TNFR2-eCFP. The sequencing result showed no mutation.
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Appendix Figure 4 TNFR2-eYFP sequencing result
Human TNFR2 (black box) subcloned with the eYFP (yellow box) to form a fusion fluorescence 
receptor TNFR2-eYFP. The sequencing result showed no mutation.
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Appendix Figure 5 TNFR1-mRFP sequencing result
Human TNFR2 (black box) subcloned with the mRFP (red box) to form a fusion fluorescence 
receptor TNFR2-mRFP. No mutation in the TNFR2 sequence. One silent mutation was found in 
the mRFP ORF: GCC→GCT, alanine→alanine (red) at the 525th nucleotide.
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Appendix Figure 6 CD27-eCFP sequencing result
Human CD27 (black box) subcloned with the eCFP (cyan box) to form a fusion fluorescence 
receptor CD27-eCFP. The sequencing result showed no mutation.
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Appendix Figure 7 CD27-eYFP sequencing result
Human CD27 (black box) subcloned with the eYFP (yellow box) to form a fusion fluorescence 
receptor CD27-eYFP. The sequencing result showed no mutation.
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Appendix Figure 8 CD27-mRFP sequencing result
Human CD27 (black box) subcloned with the mRFP (red box) to form a fusion fluorescence 
receptor CD27-mRFP. No mutation in the CD27 sequence. One silent mutation was found in the 
mRFP ORF: GCC→GCT, alanine→alanine (red) at the 525th nucleotide.
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Appendix Figure 9 Live-cell imaging of NF-𝜿𝜿B reporter and TNFR2 or CD27 co-
transfected HEK-293T cells
No significant expression of miRFP703 was detected for HEK-293T cells co-transfected with the 
TNFR2 or CD27 expressing plasmids and the NF-𝜅𝜅B reporter plasmids with 0×, 2×, 4×, or 8×
response elements.
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Appendix Figure 10 Live-cell imaging of NF-𝜿𝜿B reporter control samples
No significant expression of miRFP703 was detected for untransfected or mock-transfected HEK-
293T cells. No significant expression of miRFP703 was detected for HEK-293T cells transfected 
with only the NF-𝜅𝜅B reporter plasmids (i.e., not co-transfection with receptor plasmid). Positive 
expression of miRFP703 was detected for cells transfected with pmiRFP703 plasmid with the
constitutive CMV promoter.
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Appendix Figure 11 Manual gated singlet examination
Harvested cells were sorted into singlets and non-singlets and examined by widefield 
microscopy.
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Appendix Figure 12 Singlet identification using different algorithms
The scatter plot profiles of the ungated cells, manually gated singlets, and singlets were 
identified with different algorithms. The six scatter plots are the same ones described in the 
well-established manual gating approach. 
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Appendix Figure 13 Baseline subtraction-error correction for eYFP expressing cells
Scatterplot and histogram overlays of the eYFP expressing sample before (red histograms) and 
after (blue histograms) baseline subtraction-error correction. The scatter plots are symmetric 
along the diagonal histogram plots. 



221

Appendix Figure 14 Autofluorescence prediction for eYFP expressing cells
Scatterplot and histogram overlays of the eYFP expressing sample with the total fluorescence 
(red histograms) and autofluorescence (blue histograms) detection values. The scatter plots are 
symmetric along the diagonal histogram plots. 
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Appendix Figure 15 Unsupervised cell subtype clustering for eCFP transfected cells
The GMM unsupervised algorithm identified the eCFP-positive and eCFP-negative populations 
within the sample. A total of 48 channels from the full-spectrum flow cytometers were used.
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Appendix Figure 16 Unsupervised cell subtype clustering for eYFP transfected cells
The GMM unsupervised algorithm identified the eYFP-positive and eYFP-negative populations 
within the sample. A total of 48 channels from the full-spectrum flow cytometers were used.
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Appendix Figure 17 Unsupervised cell subtype clustering for mRFP transfected cells
The GMM unsupervised algorithm identified the mRFP-positive and mRFP-negative populations 
within the sample. A total of 48 channels from the full-spectrum flow cytometers were used.



225

Appendix Figure 18 Single-cell level FRET distributions of the Auxin detection 
Histograms demonstrate the distributions of calculated FRET efficiencies from three replicate 
experiments (A). Each can be used for data quality assessment for the small molecule Auxin 
concentration detection profile (B). Meanwhile, the single-cell level data also allowed the quality 
assessment of the negative control sample (C).
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Appendix Figure 19 Histogram of FRET efficiencies for different TNFR receptor 
combinations

Histograms demonstrate the distributions of calculated FRET efficiencies with CFP→YFP FRET as 
green, YFP→RFP FRET as orange, and CFP→RFP FRET as purple. Cells transfected with TNFR1-
CFP + TNFR1-YFP + TNFR1-RFP are as control sample (top row). The z values and p values are 
results from z-test for each sample compared with the relative control sample.
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