*
o UNIVERSITY
)/
v A OF TECHNOLOGY
o SYDNEY

Optimising Multi-Protein Interaction Screening
through Machine Learning Algorithm Development

Enhancing Forster/Fluorescence Resonance Energy Transfer (FRET)
Detection in Flow Cytometry

by Zhongran Edward Ni

Thesis submitted in fulfiiment of the requirements for the degree of
Doctor of Philosophy
under the supervision of

Distinguished Professor Dayong Jin,
Professor lan Menz,
Doctor Leo Zhang

University of Technology Sydney

Faculty of Science

School of Life Sciences (SoLS)

School of Mathematical and Physical Sciences (MaPS)
Institute for Biomedical Materials & Devices (IBMD)

February 2023



CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Zhongran Edward Ni, declare that this thesis is submitted in fulfilment of the
requirements for the award of Doctor of Philosophy, in the School of Life Sciences and
School of Mathematical and Physical Sciences, Faculty of Science at the University of

Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In
addition, | certify that all information sources and literature used are indicated in the

thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Program.

Production Note:
Signatu re: Signature removed prior to publication.

Date: February 1st, 2023



DEDICATION

To my loving parents, who have always believed in me and supported me through every
step of my journey. Your unwavering encouragement and love have made me the person
I am today. This thesis is a small token of my gratitude and a reflection of all the lessons

you have taught me. | dedicate this work to you with all my love and respect.

To my beloved Ms Kerui Zoe Xu, who has been my constant source of love, support, and
inspiration. Your unwavering faith in me has pushed me to reach for the stars and strive
for excellence. Your encouragement and understanding have sustained me through the
toughest of times. This thesis is a testament to the love we share and a reflection of the
journey we have been on together. | dedicate this work to you, my love, with all my heart

and soul.

To the pursuit of scientific knowledge and the belief that advancements in technology
can better the lives of humanity. This thesis represents my passion for understanding the
world around us and using that knowledge to make a positive impact. | dedicate this
work to my scientific career, in the hopes that it will contribute to the ongoing
advancement of technology and the betterment of all people. Let us continue to strive

for a brighter future through the power of science and technology.



ACKNOWLEDGEMENTS

| want to extend my sincerest gratitude to all those who have supported and encouraged

me during these unprecedented times of the Covid-19 pandemic.

| offer my deepest appreciation to my esteemed supervisors, Distinguished Professor
Dayong Jin, Professor lan Menz, and Doctor Le (Leo) Zhang, who have been a source of
unwavering guidance and support. | also want to express my gratitude to Professor Yuen
Yee Cheng for her guidance and support throughout my academic journey. Your insights,
wisdom, and patience have been invaluable during these challenging times. | am grateful

for all you have done to help me succeed.

| offer my sincere thanks to my previous supervisors, Doctor Lisa Sedger and Doctor
Michael Johnson, who have laid the foundation for my education and growth. Your
encouragement and support have been a source of inspiration and profoundly impacted

my academic career.

| offer my sincerest thanks to my friends, Mr Steve Shuquan Su and Mr Daniel Yue Ma,
who have been a constant source of laughter and positivity. Your friendship and
companionship have been a beacon of hope during the last three years, and | am
honoured to have you in my life. Wishing you the very best as you embark on the final
stretch of your PhD journey. May your hard work and determination pay off and may all
your efforts be rewarded with success. | have no doubt that your scientific aptitude and
passion for discovery will carry you far in your career. As we move forward and pursue
new opportunities, | hope we will always look back on this moment with pride and

satisfaction.
iii



Finally, | am deeply grateful for the scholarships (International Research Training
Program Scholarship and UTS President's Scholarship) from the University of Technology
Sydney that have made this journey possible. Your support has allowed me to continue

pursuing my dreams and achieving my goals.

To all of you, | offer my heartfelt thanks. This thesis acknowledges your unwavering

support and guidance during these challenging times.



Table of Contents

CERTIFICATE OF ORIGINAL AUTHORSHIP......ooiiiiiiiiieeieeeesee e i
DEDICATION ...ttt ettt sttt sttt s et e b e san e e neesmne e b e e saneenneesnneenees ii
ACKNOWLEDGEMENTS ...ttt ettt ettt ettt et e st e bt e saeesbeesaeeebeesanas iii
Table Of CONTENES ..ottt s v
[ o) B = (U =TSP SR TPPRP Xii
LISt O TaBI@S....ceieieee ettt Xvi
W o) Lo [T | o] o 1P PP TPPP Xvii
R d oY VoY o T=TaTe [ GRS RPPPPPP Xix
List Of ADDIreVIations .....cc.eeeiiiiieeiee e e XX
ABSTRACT ..ttt e XXV
INTRODUGCTION ...ttt ettt sttt st et sae e e s et e s e saneeneesnneenees 1
CHAPTER ONE LITERATURE REVIEW ..ottt 9
1.1 Principles and applications Of FRET.......c..uiiiiiiiieeiiiiiiee e e e sivne e 10
1.2 FRET fluorophore labelling methods.........ccooviiiiiiiiiiiiiniecieee e 13
1.3 Flow cytometry-based FRET analytical workflow and algorithms........................ 16
1.3.1 Anomaly detection and data cleaning.......cccccevivviieeiiniiiie e 18
1.3.2 Singlet identifiCation .......oocviii i 20
1.3.3 Spectral unmixing and autofluorescence removal.........ccceevvveeeeeieeeicccnnnnen. 24
1.3.4 Cell subtype identifiCation .......ccc.ccoviieeiiieeiiee e 26



1.4 FRET qUANTITICATION wevvviiiiiiiiiiieiiec ettt e eetbare e e e e s eenabbareeeeeeeeas 33

1.5 Prospective iNVESTIZatioNS........ccvviiiieie e 36
CHAPTER TWO METHODS AND ALGORITHM DESIGNS ...t 38
2.1 Molecular biology Methods .........ueeviiiiiiiiiiiiieiee e 39

2.1.1 Generation of human TNFR-fluorescent fusion protein expression plasmids

2.1.2 Generation of TRAPS mutants as -eYFP fusion protein expression plasmids 40

2.1.3 Generation of poxviruses vVTNFR-mRFP fusion protein expression plasmids 42

2.1.4 Generation of pGL4.23.NF-kB-[miniP]-miRFP703 inflammation reporter

(o1 1 41 Te [ USRS 43
2.1.5 DNA qUANTIfiCatioN .ooovceiieeiiiieeccee et 44
2.1.6 Restriction enzyme diSeSTiON .....ccuvieeiiiiiiiiiiiiiee e 45
2.1.7 DNA gel eleCtrOpNOreSiS ..cccuuuiiiiiiiiie ettt 45
2.1.8 DNA el @XEIraCiON ...uuviveeiieiiiiiitiiriieee ettt eeeereibrreee e e e e e e sabrreeeeeeeesseanes 45
2. 1.9 DNA TIZATION cetiiiiiiiiiiiieeeie ettt e e e eesebbar e e e e eeesesenssrsaneeeeesesennnns 46
0 I O I B 1 AN Yo [ U =Y o [ o ¥ =S 46
2.2 Bacterial Methods .......cocuvieiieiieeieeeeeee e 47
2.2.1 Chemically competent bacteria cells preparation.........ccccceeeeevecvvveeeeeeeeniennnns 47
2.2.2 Heat-shock transformation...........cooeeeriieiniieenieceee e 48
2.2.3 DNA mMini-prep purifiCation ... svee e s 49
2.2.4 DNA maxi-prep pUrifiCation ... 49



2.3 Cell Biology Methods — Mammalian EXpression .......ccccveeveeeeeiiccinveeeeeeeeeeescnnnneen, 50

2.3.1 Mammalian cell tisSue CUTUIe.........covviriiiriieeeeeeeeee e 50
2.3.2 Calcium phosphate DNA transfection .......cccceeeeieeiieiciieeeeeieeeeecerreeeeee e 50
2.3.3 Cell RArVESTING «.cooveiteeeeee e e e e e sebr e e e e e e e e seanes 51
2.3.4 Cell Live/Dead STaiNING ...ccvcccueeiieeirieieecteesee ettt et et saeebeesaeesnaesaneens 51
2.4 FIOW CYtOMELIY ceeiieeieieee ettt ettt e e e st e e e s aba e e e ssanaeeesssraeeesnnns 52
2.4.1 SINGIE-CeII SOTTING...ceiiiiiiiieiiiiie et sbae e s e saaes 52
2.4.2 The detection of two-protein three-colour FRET ........cccccveviiviiieeinniieee i, 52
2.4.3 The detection of three-protein six-colour FRET ........cccceecuveeeiriiieeiniiieee e 54

2.4.4 The simultaneous detection of three-protein six-colour FRET with cell

] ={ g - 11T = PSP PPPPROTUPRR 55
S|V, | Tol o Yoo} o 1Y RS 55
2.5.1 EVOS FL cell IMmaging SYSTEM .. ..uuvvieiiiiiiiieiiieieeec ettt eeirreee e e e e 55
2.5.2 LIVe-Cll IMAZING oottt e e e e seabrree e e e e e e s seanes 56
2.5.3 FUll-Spectrum iMagIiNg ......ccoovveiiirrieiiee ettt eeeeretirreee e e e e e e sebrreeeeeeessseanes 57
2.6 Software and ONlINE SEIVET ......cocuiiiiiiieiiieeeee e 57
2.6.1 Primer d@SISN ..ccciuiieeieiiiiee ettt ettt ettt e st s e e s aaae e e s s bae e e s s nabaee e e naeaes 57
2.6.2 SeqUENCING @NAlYSIS ...ccuuiieiiiiiei ettt 57
2.6.3 TRAPS mutation sequencing deSiSN .........cevvvviieeiiriiiee e 58
2.6.4 Flow cytometry singlet manual gating data generation.........cccccceevvvveeeennnnee. 58

Vii



2.6.5 Example FCS data for algorithm validation and application demonstrations 58

2.6.6 Microscopy fluorescent intensity quantification.........ccccccveeeviveiinieeeeeeeiiinnn, 59
2.6.7 Myxoma virus MT2 structure and MT2::TNFR1 interaction predictions ....... 59
2.7 Algorithm Designs and IMplementations.......cccccceoveeeiviveeiiee e 60
2.7.1 Automatic optimal channel selections for full-spectrum flow cytometer.....60
2.7.2 Algorithm design for UltraFast singlet identification ........ccccoccveeiviiieeiinnnee. 60
2.7.3 Algorithm design for baseline subtraction-error correction.......ccccccceeeenneee. 62
2.7.4 Algorithm design for autofluorescence prediction and removal................... 64
2.7.5 FRET spectral UNMiXiNg......ccccuveeiiriiiiieiiiiieeesiiee e esiieee s e e e s svae e s 64
2.7.6 FRET calibration and FRET quantification using FRET efficiency..........cc....... 70
2.7.7 FRET energy dynamic and cellular signalling pathway dynamic analyses......73
2.8 StatiStiCal @NAIYSIS....uurrereiiiiiiiiireeeee e e e e s ab e 75
2.8.1 HYPOThESIS tESTS.ccccueuriiieiiiei ettt e e e e seabrreeeeeeeesseanes 75
2.8.2 Singlet identification @CCUMACY ... .uuviiiiiiiiiiiirieeeee et e e e e 76
2.8.3 Linear model StatiStiCS ......couiiiiiiiiiiieceieeeeeeee e 77
2.8.4 Spectral unMiXing SPread ErTOr ..o..uiie i eeiieee et e e srae e s s saees 77
2.9 Data VISUAISATON ....eiiiiiiiiee e 78
2.9.1 PCA for dimensionality redUcCtion.........cccceeeiiiiieeiiiiieee e 78
2.9.2 Data plots and graphs......ceoiiieiiniiee e 79
2.10 Data and code availability ......ccooveiieiiiiiieec s 79



CHAPTER THREE BIOLOGICAL SAMPLES PREPARATION FOR FRET AND CELL SIGNALLING

......................................................................................................................................... 80
R0 A 1 o o Yo [ Tt 1o o TR 81
A 2= U] S PR 87

3.2.1 Generation of TNFR1, TNFR2, CD27 as -eCFP, -eYFP, -mRFP fusion constructs

3.2.2 Establish the optimal sample harvesting period using live-cell imaging........ 92

3.2.3 Generation of TRAPS mutation-related TNFR1 as -eYFP fusion constructs...96

3.2.4 Generation of VTNFR as -mRFP fusion CONStIUCES.......ccvvuiveiieeeeeeiieeeeeiieeees 99

3.2.5 Generation of pGL4.23.NF-kB-[miniP]-miRFP703 proinflammatory reporter

............................................................................................................................... 104
CHAPTER FOUR FLOW CYTOMETRY DATA PRE-PROCESSING........cccceviuieiniiieniieenieeens 108
A1 INTrOQUCTION...ceiitiiiiiie ettt st e s esbe e e s e e sane 109
B2 RESUILS ..ttt et e ettt e bt e e e e sbe e e s e e 113

4.2.1 UltraFast — an unsupervised algorithm for automatic singlet identification113

4.2.2 The algorithm for single-cell level baseline subtraction-error correction ...119

4.2.3 The algorithm for single-cell level autofluorescence prediction and removal

............................................................................................................................... 124
4.2.4 The pre-processing expansion on the full-spectrum flow cytometer.......... 127
4.2.5 The performance of the spectral unmixing algorithm ........c..cccoevevvvveenneenn. 131



CHAPTER FIVE TWO-PROTEIN THREE-COLOUR FLOW CYTOMETRY-BASED FRET

INVESTIGATIONS ..ottt ettt e e e ettt teeaeeeesseeeeteasanaessseessteessnnssssessreassnnnses 138
L0 A 1 o o Yo [ ot A Y o TR 139
LA 2= ] PR 142

5.2.2 Reliability test using three FRET pairs on two different flow cytometers....145

5.2.3 An application demonstration of small molecule (Auxin) detection in plants

............................................................................................................................... 151
5.2.4 An application demonstration of detecting T-cells response to antigen.....154
CHAPTER SIX THREE-PROTEIN SIX-COLOUR FLOW CYTOMETRY-BASED FRET
INVESTIGATIONS ...ttt ettt sttt sttt e st e e bt e s st e e beesateesbeesaeeeeeas 156
6.1 INErOAUCTION ...ttt st s 157
5.2 RESUIES ..ottt ettt st st s 161
6.2.1 Investigation of the TNFR1 trimeric structures using FRET algorithms........ 161
6.2.2 investigation of WT TNFR1 and TRAPS TNFR1 interactions .........cccccveeennne 165
6.2.3 investigation of human TNFR1-targetted human-poxvirus interactions .....172
CHAPTER SEVEN BEYOND FRET: THE SIMULTANEOUS DETECTION OF FRET AND
CELLULAR SIGNALLING PATHWALYS ...ttt 179
7.0 INErOAUCTION ...ttt 180
7.2 RESUILS ..ottt ettt s e e r e e n e snne e 183



7.2.1 Detection of cell death using the fixable UV-blue live/dead stain............... 183

7.2.2 Detection of TNFR1-induced NF-kB activated proinflammatory signalling.185

7.2.3 Detection of the compositional dynamics of multiple signalling pathways. 188

SUMMARY AND PERSPECTIVE .ovvvueeieeeeeetitieee et eeeteteieee s s e eeeteeasanessssessesessnnnsssessesnes 190
FAY oY o= o Vo 1 PRSPPI 208
RETEIENCES ettt ettt e e et e s et taae s et ta e s e etaaeseetaaeseetannesesaannesessnnn 227

Xi



List of Figures

Figure 1 Publication Metric On “FRET” .....cooiiiiiiieeeiee et eeriirreee e e e e e eenbrareeeeee e 2
Figure 2 Super-resolved optical detection of FRET.......ccccvvvveriieiiiiiciiieeeeec e 3
Figure 3 The energy transfers and fluorescence detection during FRET........ccccvveveeeeenn. 10
Figure 4 Applications Of FRET ......ccuuvviiiiiiiiiiiiieeeeee e eceiiitree e e e eesentreeeeeeeeseesnbrrreresesenas 12
Figure 5 Flow cytometry data pre-proCessing ... cuvreeeeeeeeeeiiiiireeeeeeeeeeesesnneeeeeeseens 18
Figure 6 Detection of singlets is critical for flow cytometry data analysis. .........cce........ 21
Figure 7 Flow cytometry FSC and SSC measurement, and singlet manual gating.......... 23
Figure 8 lllustration of K-Means clustering algorithm ..........cccccviiviiiiiniieeciieec e, 27
Figure 9 lllustration of DBSCAN clustering algorithm........cccoccvveviiviiieiiiniieeeeeee e, 29
Figure 10 Illustration of FMM clustering algorithm..........cccoevviiiiiniiieii e, 30
Figure 11 Illustration of hierarchical cluStEring ........ccovvvveiiiiiiiiiiie e 31
Figure 12 Select members of the TNF and TNFR superfamily .......ccccccevvviieeeinniiieeeinnnen. 82
Figure 13 Biological samples prepared in this study ........cccevvvieeiiiiiieiinniieeceee e, 87
Figure 14 TNFR1-eCFP SeqUENCING FESUIL «.uvvvreeeeeeeeiieiiireeeeee e eeeinreeee e e e eennrrrreeeeee e 89
Figure 15 TNFR1-eYFP sequencCing reSUlt ........vveeveieiiiiiiiiiiieiiec et 90
Figure 16 TNFRI-mMRFP seqQUENCING rESUIT.....uvvveeeeiiiiiiiirieieieee et e eeirrreee e 91
Figure 17 Endotoxin detection of plasmids ........cccccevveieiireeiieiiiiiireeeeee e 93
Figure 18 Live-cell imaging of TNFRs-eCFP/eYFP/mRFP eXpressions.........ccccceevveeeeennee. 95
Figure 19 TRAPS TNFR1 S@QUENCING FESUILS...uuvvveeeieeiiiiirireeeeeeeeeecirreeeee e e eenirrreeeeee e 97
Figure 20 Fluorescence microscopy imaging of TRAPS TNFR1-eYFP expressions.......... 98
Figure 21 MyxMT2-mRFP sequeNnCiNg reSuUlt ..........ceeiviiieeiiriiiee e seee e 100
Figure 22 Codon optimised VarG4R-mRFP sequencing result..........cccceecvveeevniveeeinnnen. 101

Xii



Figure 23 Codon optimised MpxJ2R-mRFP sequencing result .........ccccceeeeeercirvveeeneeenn. 102
Figure 24 Fluorescence microscopy imaging of VTNFRs-mRFP expressions................. 103
Figure 25 Sequencing results of the NF-kB-miRFP703 proinflammatory reporters ....105

Figure 26 Live-cell imaging of NF-kB reporter and TNFR1 co-transfected HEK-293T cells

....................................................................................................................................... 107
Figure 27 Semi-automated batch mode manual singlet identification ....................... 115
Figure 28 Unsupervised clustering algorithms comparison .........cccccevvvveeeiniiieee e, 116
Figure 29 The unsupervised UltraFast singlet identification algorithm ....................... 118
Figure 30 Collaborative filtering algorithm intuition .......ccccccceviiviiiiiiini e, 119
Figure 31 Number of cells with negative fluorescent intensities in seven flow

LoV o] 0 1= =] PSRNt 120
Figure 32 Performance of the baseline subtraction-error correction algorithm ......... 122

Figure 33 Baseline subtraction-error correction results for mock-transfected cells ...123

Figure 34 Performance of the autofluorescence prediction and removal algorithm ..125

Figure 35 Autofluorescence prediction of the mock-transfected cells ..........ccuveeeeee... 126
Figure 36 Fluorescence signals detected on the full-spectrum flow cytometer-.......... 127
Figure 37 Automated optimal detection channel identification using PCA. ................. 129
Figure 38 Full-spectrum microscopy for eCFP, eYFP and mRFP Ex/Em profiles........... 130
Figure 39 Spillover between FRET donor and acceptor fluorophores........ccccuveveenneee. 131

Figure 40 Spectral unmixing after autofluorescence removal with different methods

....................................................................................................................................... 133
Figure 41 Donor and acceptor spillovers in the FRET channel .........ccccocvveeiniiieeninnnen. 134
Figure 42 Spectral unmixing for @CFP—=eYFP FRET .....cuvvvviiiiiiii it 135
Figure 43 The performance evaluation of the entire pre-processing stage................. 137

Xiii



Figure 44 The fluorescence dynamics during FRET .....ccccvvevveeiiiiiiiirieeeeeeeeeecirnreeeeee e 140
Figure 45 Pre-processing for eGFP—-mRFP linked FRET pair......cccovvvveeeeeeeiiiccnrreenneeenn. 143
Figure 46 FRET efficiency quantification for linked eGFP—-mRFP standards ............... 145

Figure 47 The detection of three pairs of TNFR1-FPs fusion proteins for unlinked FRET

Figure 48 LSR-Il and Fortessa X20 flow cytometer configurations........ccccceevvvveeeinnnnen. 147

Figure 49 FRET algorithm reliability test using three FRET pairs on two flow cytometers

Figure 50 Small molecule Auxin/IAA detection using bioengineered FRET sensor...... 153

Figure 51 CD4-TCR interaction detection using flow cytometry-based FRET............... 155
Figure 52 FRET signals of the TNFR hexagonal meta-cluster structure..........ccceeeee..... 158
Figure 53 Three-protein six-colour FRET spectral viewer diagrams.........ccceeevvvvvvereenn. 158
Figure 54 Receptor replacement FRET experiment design for trimeric TNFR1 ........... 162
Figure 55 FRET efficiencies for different TNFR receptor combinations ...........ccce....... 164
Figure 56 TNFR1 TRAPS MUEAtIONS c.vvvueieiiieeeeeecce e 167
Figure 57 CoDA of WT TNFR1 and TRAPS TNFR1 interactions ........cccceeeeeeveicnnveeneneeenn. 169

Figure 58 PCA and multivariate models of the TRAPS TNFR1 and WT TNFR1 interactions

Figure 59 VTNFR sequence alignment and structure predictions........c.cccceeevvvveeeennnen. 174

Figure 60 CoDA of poxvirus-human interactions that target TNFR1 interactions........ 175

Figure 61 PCA of poxvirus-human interactions that target TNFR1 interactions........... 176
Figure 62 Poxvirus-human interactions together with TRAPS mutations.................... 178
Figure 63 The complex TNFR1 intracellular signalling pathways.......ccccccveivviieiinnnen. 181
Figure 64 TNFR1 cell death signalling detection......cccoccvvevivriiieiiiiiieeecnec e 185

Xiv



Figure 65 The proinflammatory NF-kB reporter valiation experiment design ............

Figure 66 NF-xB proinflammatory reporter validation .......ccccccccoevevvvveennennnn.

Figure 67 Correlation between signalling pathways and TNFR1 interactions

XV



List of Tables

Table 1 Primers for site-direct mutagenesis of TRAPS plasmids ......cccceveeeeeievciveveneneeenn. 41
Table 2 Primers for plasmid SEQUENCING.....cccuvveeiieiiiiiiiiireeeee e eeeerirrreee e e 47
Table 3 FRET efficiencies and alpha factors for eGFP—mRFP linked FRET pairs.......... 144

XVi



List of Equations

Equation 1 FRET efficiency and FRET donor-acceptor distance .......cccccvveeeevevcnvvvennnennnn. 34
EQUAtioN 2 The FOSTEI radiUS ...cccuvvvvieiiieiiieiiireeeee ettt eeeeirreee e e e e e e e ebrrrereeeeeeas 34
Equation 3 Linear regression approach to deduct a factor for FRET calibration........... 35
Equation 4 The collaborative filtering recommendation algorithm.........cccceeevvvveeeneeenn. 63
Equation 5 The eCFP—eYFP FRET1 fluorescence components .......ccccceveeeeeeeicnvveeeneeeenn. 65
Equation 6 The eYFP—-mRFP FRET2 fluorescence components........cccecveeeeeeercnvveeneeeeenn. 65
Equation 7 The eCFP-mRFP FRET3 fluorescence components:.......ccccoecuveeeerrvveeeennnnn 66
Equation 8 The eCFP—eYFP—mRFP three-way FRET fluorescence components:.......... 66
Equation 9 Spillover COeffiCientS......coviiiiiiiiiie e 68
Equation 10 Excitation coefficient ratioS........ccccevueiiiiiiiieiiiiiiee e 68
Equation 11 eCFP—->eYFP FRET1 spectral UNmiXiNg ......cccueeeeririeeeiniieeeenniieeeesieee e e 69
Equation 12 eYFP->mRFP FRET2 spectral UnmiXing.......cccceevvvveeiiriieeiinniieeeesiiee e 69
Equation 13 eCFP>mRFP FRET3 spectral UnmiXing.......ccceeevvviereiniiieeinniieeeesrieee e 69
Equation 14 eCFP—->eYFP—mRFP three-way FRET spectral unmixing.........ccccccvveeennnen. 69
Equation 15 The a calibration factor.......ooccviveeeiiiiiiicieeeeee e 70
Equation 16 The ratios R1 and R2 for FRET calibration.........ccccceeevuveeereiceiiiiciineeenneeenn, 71
Equation 17 Single-level unlinked FRET calibration and FRET efficiency ......cccovveeeeeeenn. 71
Equation 18 FRET efficiency for three-way FRET .......ccocvvvveeiieiiiiiiireeeeec e 72
Equation 19 Unquenched fluorescent intensities ........ccvvveeeeeeiiiiiiiiineeeeee e, 72
Equation 20 Data closure for CODA ........ooiiiiiieeiee ettt eeeerreee e e e e e e eesnbrrrereeeeeeas 73

Equation 21 Ratio using the reference data to achieve sub-compositional coherence.73

Equation 22 Logarithmic ratios fOr CODA .......coiiiiiii et 74



Equation 23 Central logarithmic ratios for CODA .........ccovveeiieiiiiiiireeeee e 74

Equation 24 Multivariate linear models for dynamic energy transfers during FRET .....75
EQUAtION 25 WeICh’ S t-1@St..ciiiiiiiieiiiiie ettt e e e ere e e e e 75
Equation 26 Kruskal-Wallis one-way analysis of variance ........ccccocceeeivvcieeeinniiieeeennnen, 76
Equation 27 The F1 score for singlet identification accuracy evaluation ...................... 76
EQUation 28 The SPread @ITOr ...cuuuiii ettt e e e e e s s sbre e e s s sbae e e s naeees 78

XViii



List of Appendix

Appendix Figure 1 Full-spectrum flow cytometer configuration........cccceeevvvveveeeeeinennns 208
Appendix Figure 2 The RANSAC robust linear regression.......ccccceeeeeeeeeeveeivveeeeeeeeniennns 209
Appendix Figure 3 TNFR2-eCFP sequencing reSuUlt........ccccccoevevvveeieeeeieiiiieeeeeeeeeeeanns 210
Appendix Figure 4 TNFR2-eYFP sequUeNCINg rESUIT ......eeevieeiiiicirieeeeeeeeeeieinreeeeeeeeeseanns 211
Appendix Figure 5 TNFR1-MRFP sequencing result.......c..cccceveevvveeereeeiiiiiiireeeeeeeeereanns 212
Appendix Figure 6 CD27-eCFP seqUENCING FESUIT......vvveeeieeiiiiiiireeeeeeeeeeiiinreeeeeeeeeneanns 213
Appendix Figure 7 CD27-eYFP sequencing reSult ........cccoevcveeeieiiieee i 214
Appendix Figure 8 CD27-mRFP sequencing result........cccocueeeieriiieeeiniiieeecnieee s 215

Appendix Figure 9 Live-cell imaging of NF-kB reporter and TNFR2 or CD27 co-

transfected HEK-293T CelIS ..ottt 216
Appendix Figure 10 Live-cell imaging of NF-kB reporter control samples................... 217
Appendix Figure 11 Manual gated singlet examination ........ccceccveeviviiieeiiniieeecniieeennn 218
Appendix Figure 12 Singlet identification using different algorithms............cccccuvee. 219

Appendix Figure 13 Baseline subtraction-error correction for eYFP expressing cells..220
Appendix Figure 14 Autofluorescence prediction for eYFP expressing cells................ 221
Appendix Figure 15 Unsupervised cell subtype clustering for eCFP transfected cells.222
Appendix Figure 16 Unsupervised cell subtype clustering for eYFP transfected cells.223
Appendix Figure 17 Unsupervised cell subtype clustering for mRFP transfected cells224
Appendix Figure 18 Single-cell level FRET distributions of the Auxin detection .......... 225
Appendix Figure 19 Histogram of FRET efficiencies for different TNFR receptor

[o10]10] o 1 =1 4 To L L-TPTT OO OO PRTRPPR 226

XiX



List of Abbreviations

Algorithm related

Abbreviation Full name

AIC Akaike information criterion
ANN Artificial neural network
ANOVA Analysis of variance

BIC Bayesian information criterion
CF Collaborative filtering

CLR Central logarithmic ratio
CoDA Compositional data analysis
cv Coefficient of variation
DBSCAN Density-based spatial clustering of applications with noise
ESD Extreme studentized deviation
FLAME Flow analysis with automated multivariate estimation
FLOCK Flow clustering without k
FMM Finite mixture model

GLM Generalized linear model
GMM Gaussian mixture model

UM Imagel) Macro language

k-NN k-nearest neighbour

IDDT Local distance difference test
LR Logarithmic ratio

MAE Mean absolute error

MDL Minimum description length
ML Machine learning

MST Minimum spanning tree

NNLS Non-negative least squares
oLsS Ordinary least squares

XX



PC

PCA
RANSAC
RMSD
SD

SE

SEM
SOM
SPADE

WLS

Biology related
Abbreviation
BFP

BLAST

BSA

CDh4

CD27

CFP

clAP

CcMmv

CRDs

CRM

DD

DMEM

eCFP

eGFP

eYFP

FADD

Principal component

Principal component analysis

Random sample consensus

Root-mean-square deviation

Standard deviation

Spreading error

Standard errors around the mean

Self-organizing map

Spanning-tree progression analysis of density-normalized events

Weighted least squares

Full name

Blue fluorescent protein

Basic local alignment search tool
Bovine serum albumin

Cluster of differentiation 4

Cluster of differentiation 27

Cyan fluorescent protein

Cellular inhibitor of apoptosis protein
Cytomegalovirus

Cysteine-rich domains

Cytokine response modifiers

Death domain

Dulbecco’s modified Eagle medium
Enhanced cyan fluorescent protein
Enhanced green fluorescent protein
Enhanced yellow fluorescent protein
FAS-associated death domain

XXi



FBS

FP

GFP
HEK-293T
huTNFRs
LB

LUBAC
MCS

miRFP703
nm)

MLKL
MPV
MpvJ2R
mRFP
MYXV
MyxMT2
NCBI
NF-kB
ORFs
PBMCs
PLAD
POls
PPIs
RFP
RIPK
SDM
SOB
socC

SODD

Fetal bovine serum

Fluorescent protein

Green fluorescent protein

Human embryonic kidney cells contains the SV40 large T antigen
Human TNFRs

Luria-Bertani (Broth)

Linear ubiquitin chain assembly complex

Multi-cloning site

Monomeric infrared fluorescent protein (maximum Em at 703

Mixed lineage kinase domain-like

Monkeypox virus

Monkeypox virus encoded J2R protein

Monomeric red fluorescent protein

Myxoma virus

Myxoma virus encoded MT2 protein

National Centre for Biotechnology Information
Nuclear factor kappa-light-chain-enhancer of activated B cells
Open reading frames

Peripheral blood mononuclear cells
Pre-ligand-binding assembly domain

Proteins of interest

Protein-protein interactions

Red fluorescent protein

Receptor-interacting serine/threonine protein kinase
Site-directed mutagenesis

Super optimal broth

Super optimal broth with catabolite repression

Silencer of death domain
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TCR
Tm
TNF
TNFR
TNFRSF
TNFSF
TRADD
TRAF
TRAPS
VARV
VarG4R
VINFR
WT

YFP

Chemistry related
Abbreviation
DMSO

EDTA

HBS

HEPES

IAA/Auxin

PBS

PFA

B

TBE

T-cell receptor
Annealing temperature
Tumour necrosis factor
Tumour necrosis factor receptor
Tumour necrosis factor receptor superfamily
Tumour necrosis factor superfamily
TNFR-associated death domain
TNFR-associated factor
Tumour necrosis factor receptor associated periodic syndrome
Variola virus
Variola virus encoded G4R protein
Viral tumour necrosis factor receptor
Wildtype

Yellow fluorescent protein

Full name

Dimethyl sulfoxide

Ethylenediaminetetraacetic acid

HEPES buffered saline
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid
Indole-3-acetic acid

Phosphate-buffered saline

Paraformaldehyde

Transformation buffer

Tris-borate-EDTA
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Physics related
Abbreviation
Errer

Em

Ex

FLIM

FRET

FRET1

FRET2

FRET3

FRET4

FSC

HTS

LED

MFI

PMT

Qy

RT

SSC

Full name

FRET efficiency

Emission

Excitation

Fluorescence lifetime imaging microscopy
Forster/Fluorescence resonance energy transfer
eCFP—eYFP FRET

eYFP—-mRFP FRET

eCFP—mRFP FRET

eCFP—eYFP-mRFP two-step FRET
Forward scattered light

High-throughput screening

Light-emitting diode

Mean fluorescent intensity
Photomultiplier tube

Quantum yield

Room temperature

Side scattered light
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ABSTRACT

Forster or fluorescence resonance energy transfer (FRET) is a widely utilised technique
to analyse protein-protein interactions (PPls) for exploring biological processes. While
microscopy was traditionally used to measure FRET, flow cytometry-based FRET has
become more prominent in the last decade. Flow cytometry allows the multichannel
high-throughput examination of FRET with great sensitivity and statistically robust
guantification in many samples. As a superior alternative to traditional manual analysis,
machine learning (ML) has attracted increasing interest in modern cytometry data
analysis. It can automatically perform objective data-oriented investigations from large

datasets with minimal human interventions.

Moreover, current FRET analyses are limited to chemically linked molecules for FRET
calibration and lack high-performance data pre-processing. To achieve absolute single-
cell quantification of natural (chemically unlinked) PPIs, this study established ML-
powered algorithms for flow cytometry-based FRET detection of multi-protein
interactions. This study presents designs, validations, performance tests, and
application demonstrations of the algorithms in a FRET analysis workflow. The UltraFast
algorithm presented F1 score over 0.91 for singlet data identification. The collaborative
filtering-based algorithms' performance demonstrated error rates below 0.01% for both
the correction of baseline subtraction error and autofluorescence prediction. Moreover,
the downstream spectral unmixing process accomplished near zero (as low as 0.412)
residual spillover and near zero (as low as 0.620) spread error, demonstrating more than

1000 folds of improvement compared to spectral unmixing without the
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abovementioned pre-processing steps. Together, the pre-processing pipeline with these
developed algorithms achieved unbiased, accurate and robust flow cytometry data pre-
processing, including singlet identification, fluorescence background-subtraction-error

correction, autofluorescence prediction and removal, and FRET spectral unmixing.

The pre-processed flow cytometry data further allowed the complete quantification of
two-protein three-colour FRET, three-protein six-colour FRET, and investigation of
multiple simultaneous intercellular signalling activities. In particular, the FRET
calibration and FRET efficiency are improved to the absolute single-cell level
guantification compatible with chemically-unliked free-interacting molecules compared
to the current method using linked calibration approaches. The new FRET analysis
approaches have been tested on five different machine models, including conventional
and full-spectrum flow cytometers, and validated using data generated from eleven
FRET experiments. Further utilising the compositional data analysis (CoDA) techniques,
this study also provided interpretations for the dynamic FRET energy competitions and
the compositional activation levels of multiple cellular signalling pathways. In conclusion,
this study provides powerful solutions for clinical diagnostics and therapeutic screenings,
enabling the search for the next-generation PPI-specific and signalling pathway-specific

cures for many human diseases.
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INTRODUCTION



Over the past two decades, Forster or fluorescence resonance energy transfer (FRET)
applications in the life sciences have substantially increased (Figure 1). According to
PubMed, the number of peer-reviewed journals with "Resonance Energy Transfer" as
the topic increased from 1,499 before the year 2002 to 18,525 from the year 2002 to
2022 (total of 20,024 since the year 1963) [1], showing both the rapid development and

the fast expanding speed of FRET methods.
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Figure 1 Publication metric on “FRET”

Publications per year found using “Resonance Energy Transfer” as the primary search string with
advanced search field as [Title/Abstract] in PubMed https://pubmed.ncbi.nlm.nih.gov (Accessed
on January 1%, 2023).

The fact that FRET is the most straightforward yet powerful technique for in-situ protein-
protein interaction (PPI) super-resolved optical detection is driving this growth. FRET
does not require the extraction of protein from samples, nor does it require the
expression of the protein in the non-native host that may possess different post-
translational modifications. FRET is a sensitive tool for investigating biological processes
mediated by PPIs providing nanometre scale (<10 nm) resolution about intra- and

intermolecular distances (Figure 2) [2, 3]. However, the fast-expanding popularity of


https://pubmed.ncbi.nlm.nih.gov/

FRET has led to a significant variance in the methods of collecting, analysing, and
interpreting the FRET data. Especially with the frequent advancement of fluorescence
materials (fluorochrome dyes, fluorescent proteins, and fluorescent nanoparticles) and
FRET quantification techniques (fluorescence emission, fluorescence-lifetime,
fluorescence polarization anisotropy), investigations often rely heavily on special
requirements of the fluorophores and detecting equipment. Moreover, the technical
difficulties and the slow data acquisition speed are challenges for real-life clinical and

pharmaceutical applications.

FRET Super-resolution Confocal GFP

wu g

lnm 10nm 100nm 1um 10pm 100pm 1Imm 1cm 10cm
1 1 1 1 1 ]

PET
Fluorescence Microscopy | MRI and Ultrasound |
[ | Optical Coherence Tomography |
. Widefield ad TIRF Microscopy
Super-resolution | Confocal Microscopy
4Pi and I°'M
High Resolution Structured Illumination
| Ground State Depletion
| Saturated Structured lllumination
[ Stimulated Emission Depletion
PALM, FPALM and STORM
Near-Field (NSOM)
Electron Microscopy

Figure 2 Super-resolved optical detection of FRET

FRET has a super-resolved optical detection range of < 10 nm. The relative size of GFP and the
detection ranges of many imaging technologies are also displayed for comparison. (The bottom
microscopy resolution section was modified from Yang et al. 2016 [4]).



Since the middle of the 1990s, FRET has been combined with flow cytometry technology
to produce tinteractions detect interactions with high-throughput rates, low equipment
requirements, and high signal-to-noise sensitivities [5, 6]. Many studies have established
standard data analytical workflows for flow cytometry and FRET detection [7, 8], but still,
many limitations in the existing methods have impeded the true single-cell level full
guantification of flow cytometry-based FRET detection. In particular, the current single-
cell event identification method heavily depends on human-subjective, labour-intensive,
and low-throughput manual gating strategies [9]. Moreover, as the sensitised emission,
FRET has relatively low fluorescent intensity, especially when interacting molecules are
further apart; therefore, FRET is extremely sensitive to background noise and
autofluorescence [10]. Unfortunately, error-free background correction and
autofluorescence removal methods are still yet to be developed. For FRET spectral
unmixing, the fluorescent intensity-based ratiometric flow cytometry FRET method
devised by Roszik et al. has provided an excellent formula for each detected fluorescent
signal's spectral compositions [11]. However, the method requires a FRET calibration
factor which can only be measured using the chemically linked FRET pairs and deducted
using the population means, albeit the method has been widely used [12-16]. Using the
linked calibration control and non-single-cell level calculation inhibits the accurate, true

single-cell level detection of the PPl using flow cytometry-based FRET.

Moreover, with the upgrade on the two-protein FRET detection, many three-protein
FRET systems have been developed for more complex biological PPl investigations [17-
19]. As two different FRET acceptors interact with the same FRET donor in the three-

way FRET, the FRET energy competition can happen among the three fluorophores.



However, none of the publications has successfully investigated the dynamic FRET
energy compositions using three fluorophores on flow cytometry during three-way FRET.
Furthermore, many flow cytometry-based techniques were developed as stand-alone
PPl screening tools, although PPIs regulate many cellular signalling activities. Flow
cytometry has the multi-channel detection capability (up to 64 fluorescence detection
channels in full-spectrum flow cytometer [20]); therefore, flow cytometry-based FRET
detection will be more appealing with the simultaneous detection of multiple cellular

signalling reporters.

Lastly, traditional data analysis in cytometry utilises the inspection and manual
classification of the 1-D histogram overlays or multiple 2-D scattering plots to perform
data quality assessment, pre-processing, and analysis. However, the user-dependent
bias makes it difficult to replicate among different operators. It becomes impractical
when the numbers of samples and fluorescence channels vastly increase alongside the
developments of modern multichannel and hyper-spectrum flow cytometry
technologies. As a superior alternative, machine learning (ML) algorithms can provide
automated, objective, and accurate data analysis when combined with the flow

cytometry-based FRET technology.

The motivation of this project is to eliminate the obstacles which inhibit flow cytometry-
based FRET from being the accurate single-cell level screening tool for PPl investigations
with full quantitative power. This study aims to deliver an automated, unbiased, and
fully quantitated, true single-cell level flow cytometry analytical pipeline powered by ML
algorithms allowing the simultaneous detection of multi-protein FRET and cellular

signalling pathway activities.



This dissertation starts with an overview of the previously published works on flow
cytometry-based FRET. Then it presents several chapters oriented around the procedure
from the construction of the biological samples for FRET investigation, the development
and validation of the flow cytometry-based FRET algorithms, and the demonstration of

utilising these algorithms to solve several real-life research problems.

Chapter one begins with the literature review to deliver background information on
FRET principles and the FRET biological labelling methods. Followed by the flow
cytometry-based workflow and currently existing algorithms, along with different flow

cytometry-based FRET quantification methods.

Chapter two presents the molecular biology methods to prepare the plasmid vectors for
fluorescent protein fused target protein expression and cellular signalling reporter
expression, bacterial methods for plasmid vector maximal production and storage, and
cell biology methods for mammalian expression of the fluorescently labelled PPl and
cellular signalling detection. Followed by initial microscopy characteristics methods,
flow cytometry configuration, and FRET detection methods. The rest and majority of this
chapter is focused on the algorithm design, validation, performance testing and

implementation, statistical analysis and data visualisation methods.

Chapters three to seven constitute the results of this study. Firstly, chapter three
presents the examination and characterisation of the biological samples prepared for
flow cytometry-based FRET detection and algorithm development. Then, chapter four
describes the development of automated unsupervised solutions for data pre-
processing, including (i) high-performance single-cell event identification, (ii) accurate

baseline-subtraction correction, (iii) error-free nonlinear autofluorescence prediction
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and removal, and (iv) FRET spectral unmixing for fluorescence spill-over compensation.
Afterwards, chapter five demonstrates the development of single-cell level, fully
guantitative two-protein three-colour FRET solutions with advanced FRET calibration
and unlinked free-interacting FRET efficiency calculations. The algorithms were tested
using both chemically linked enhanced green fluorescent protein (FP) and monomeric
red fluorescent protein (eGFP-mRFP) FRET pairs and unlinked free interacting FP-
labelled human tumour necrosis factor receptor (TNFR) proteins. Two applications were
also demonstrated using the FRET algorithms for small molecule concentration

detection in plant and human T cells antigen-induced surface protein interactions.

Moreover, chapter six further upgraded the FRET algorithms for the three-protein six-
colour FRET investigations and validated using the trimeric interacting human TNFR1
meta-clusters. In addition, FRET algorithms were further combined with the
compositional data analysis (CoDA) approach to investigate the energy dynamics during
three-protein FRET. With the compositional perspective, the algorithms were tested on
TNFR1 germline mutation autoinflammation disease and human-poxvirus interaction
investigations. Furthermore, chapter seven takes one step beyond FRET and
demonstrates the simultaneous detection of TNFR1 interactions, cell death reporting,

and cell inflammation reporting.

In the final summary and perspective chapter, further attention was given to discussing
the limitations and advantages of the flow cytometry FRET technique and the newly
developed ML algorithms-powered workflow. Future study directions are further

proposed to empower the FRET algorithms for more complex biological investigations.



I”

Although no “one-size-fits-all” approach exists, this study provided a PPI-specific and
cellular signalling pathway-specific screening platform with ML-powered analytical tools
that should benefit many researchers to conduct next-generation customised

therapeutic screening and disease diagnosis to provide precise solutions for human

iliness.



CHAPTER ONE

LITERATURE REVIEW



1.1 Principles and applications of FRET

Forster resonance energy transfer (FRET) is named after its inventor Theodor Forster [2].
The term “fluorescence resonance energy transfer” is often used when both the FRET-
donor and FRET-acceptor molecules are fluorescent [21-23], despite FRET's energy not
actually being transferred by fluorescence. In fact, FRET energy is transferred non-
radiatively from an excited donor molecule to an acceptor molecule through a dipole-

dipole resonance coupling mechanism [24, 25] (Figure 3).
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Figure 3 The energy transfers and fluorescence detection during FRET

FRET illustration using the protein-protein interaction diagrams of target proteins A tagged by
green fluorescent protein (GFP) and B tagged by red fluorescent protein (RFP), the FRET dipole-
dipole energy transfer Jablonski diagrams, and the spectrum viewer diagrams. FRET donor GFP
and acceptor RFP are excited by the 488 nm and 561 nm laser (A). Ideally, only GFP will be
excited by the 488 nm laser when there is no FRET event (B). FRET happens when proteins A-
GFP and B-RFP are within proximity (< 10 nm), and a combination of the GFP donor and FRET
emissions (yellow histogram) can be detected upon 488 nm laser excitation (C).

In general, three prerequisites must be met for the FRET procedure to take place:
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(i) The emission spectrum of the FRET-donor molecule must sufficiently overlap
with the excitation spectrum of the FRET-acceptor [26]

(i) The FRET-donor must be in proximity to the FRET-acceptor molecule within
the Forster radius, which is from 0.5 nm to 10 nm [27, 28]

(iii) The position between the FRET-donor and FRET-acceptor molecules must
not be perpendicular to each other. FRET achieves maximal rate when donor
and acceptor are in parallel and decreases as the angle between them

increases [29]

However, FRET is not limited to two fluorophores, and some studies have shown the
possibility of detecting a two-step, three-way FRET among three fluorophores [30-32].
FRET involving the usage of different donor and acceptor fluorophores is termed hetero-
FRET. More interestingly, FRET can also happen using the same fluorophore as both a
donor and an acceptor, with significantly overlapping excitation and emission from the
same fluorophore, and it is termed homo-FRET [33]. FRET has many applications (Figure
4), with the most common usage of FRET being to detect protein-protein interactions
and measure the relative proximity between two interacting protein entities. Moreover,
intramolecular FRET can detect the concentration of small molecules with
bioengineered FRET donor and acceptor on two ends of the same receptor protein,
whilst the binding of the small molecules to the receptor triggers the conformational
change, therefore, bringing the two ends closer along with the FRET-donor and FRET-
acceptor molecules [34]. In addition, FRET can detect protease activity utilising
chemically-linked FRET pairs already within the Forster radius in which the linker

contains the target cleavage site of the tested protease. Upon enzymatic cleavage of the
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linker, FRET-donor and FRET-acceptor are released from each other and no longer in
proximity, and the FRET signal disappears. Beyond the abovementioned applications,
FRET can also detect the changes in the test environment based on the altered
properties of the fluorophores under different conditions, i.e., shifted FRET emission

spectrum under different PH [35].

Protein-protein interactions B Small molecule binding induced conformational change

e 0

small molecule

D Microenvironment dynamic detections
/ 37°C 30°C 25°C \
PH<2 2<PH<7 PH>7

Linker Linker

Linker

Figure 4 Applications of FRET

All diagrams show the fluorophore emissions upon donor laser excitation. Two proteins fused
with GFP and RFP can only produce detectable RFP acceptor emission when interacting (A).
Intracellular FRET happens on the small molecule binding protein when conformational change
happens upon small molecule binding to the socket (B). The enzyme cleaves the linker between
the FRETing donor-acceptor pair and frees the acceptor from the donor, and donor emission
disappears (C). FRET efficiency changes and achieves different amounts of acceptor emissions
under different testing environments (D).
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1.2 FRET fluorophore labelling methods

Choosing the optimal donor and acceptor FRET pairs is crucial in achieving the highest
possible FRET events in all cases. The choice should be based on the detecting
hardware’s configuration, such as laser and optical filters [36], as well as the availability
of the fluorophores. In addition, the user must assess the spectral compatibility of the
FRET fluorophores with other fluorescent materials being contemporarily assessed if
conducting a multi-colour experiment. The biological sample’s intrinsic

autofluorescence should also be considered [37].

Fluorophore-conjugated antibodies are the easiest technique for studying interactions
among endogenous biological proteins with FRET due to their high affinity and specificity
for their binding domain [38]. Roy et al. (2008) have provided a practical evaluation of
fluorochromes and conjugation strategies for FRET investigations [39]. The antibody
labelling method also permits the introduction of numerous distinct fluorophores to a
single target molecule, therefore providing epitope-specific interpretations of the FRET
events if monoclonal antibodies are used [40]. If possible, a direct labelling approach
with primary conjugated antibodies should always be used instead of secondary
antibody labelling. Due to the increased fluorophore distance separation between the
secondary antibodies, FRET events are often less efficient and prone to false-negative
results. For labelling a large molecular complex assembly with secondary antibodies, it
is also feasible that FRET will occur between otherwise more distant targets [41].
However, the polyclonal characteristics of the secondary antibodies may make it
challenging to interpret the FRET results at the biological level. Even with the direct

antibody labelling approach, caution is necessary when conducting the FRET experiment.
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Antibodies are essentially large Y-shaped proteins with a size of around 140 kDa.
Antibodies have bivalent binding capabilities with two epitope recognition sites that can
be problematic since antibodies have the propensity to form unnatural clusters and
interfere with the FRET measurement. Additionally, antibody-binding can potentially
block the protein-protein interaction domains and act as an antagonist to prevent PPI
and lead to artificial labelling-induced false-negative FRET results [42]. It can also be
troublesome if the bivalent binding antibody crosslinks two proteins and artificially
produces FRET emission and false-positive PPI results [43]. Moreover, the employment
of antibodies generally eliminates the ability to study living cells because cells must be

fixed and permeabilised to stain intracellular proteins [44].

An alternative option is to use fluorescent proteins (FPs) to label the target proteins, and
cells are transfected with plasmids to express FPs fused to specific proteins of interest
(POIs) for exogenous expression. One of the earliest well-characterised FPs is the green
fluorescent protein (GFP), which was firstly purified by Shimomura et al. (1962) from the
jellyfish Aequorea victoria, and cloned by Prasher et al. (1992), then independently
expressed in heterologous cells by Chalfie et al. and Inouye et al. in 1994 [45-48]. Since
then, a wide variety of FPs has been discovered and engineered, offering a broad range
of options for absorbance and emission spectra, oxygen or pH sensitivity, quantum yield,

and excitation coefficients [49-51].

When conducting FRET investigations, monomeric FPs should always be used. Many FPs
can undergo oligomerisation without needing the target proteins to interact, producing
FRET-positive results caused by the interacting FPs instead of the target proteins [52].

Numerous monomeric FPs variations have been derived and are suitable for FRET
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applications [41, 52, 53]. In addition, the folding, maturation rate, photostability, and PH
sensitivity of the FPs, which ultimately influence the quantum yield (QY) of the FPs, may
all impact the FRET events [54-60]. For FRET measurements, fluorophores with higher

QY and photostability are preferable [61-63].

Modern fluorescent proteins, blue (BFP), cyan (CFP), green (GFP), yellow (YFP), red (RFP),
and Infrared (iRFP) encompass the entire visible spectrum, with the majority of them
originally deriving from GFP [64]. Based on the abovementioned variables, some
frequently used FRET combinations had previously been examined. For instance, CFP
and YFP have long been the most widely used FRET fluorophores for FRET [40], but they
have limitations, such as their pH dependence and the comparatively low QY [65]. Using
bioengineered eGFP, eCFP, eYFP, mClover3, and mRuby2 exhibited enhanced
fluorescence properties and provided improved opportunities for detecting rapid
molecular interactions, and thus more workable options for the detection of
interactions [32, 66, 67]. Bajar et al. 2016 have provided a comprehensive guide to
fluorescent protein FRET pair selections depending on their relative strengths and

weaknesses [68].

FPs are commonly expressed as amino (N-) or carboxy (C-) terminus fusions with the
POls to explore their biological functions in living cells. Most FPs are relatively large
molecules with a molecular mass of around 25 kDa [69]. Therefore, the fused fluorescent
proteins may change the target protein’s folding and interaction and compromise the
inherent biological functions of these POls [70]. It is necessary to evaluate FRET signals
and cellular biological functions with FP-fused receptors as an additional layer of

experimental control [12, 71, 72]. Additionally, to ensure adequate FP motility, the
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fluorescent proteins might be linked to the POls using a linker sequence with up to 2 to
30 amino acids [12, 32, 70]. However, one should be mindful that introducing a linker
with a different sequence may change the FP’s distance and orientation, which may

therefore reduce the effectiveness of FRET.

Additionally, the fluorophores may be oriented in a turned-away position due to the
unanticipated complex formation between the two proteins, leading to an interaction
without FRET. Another option is to introduce the FP into the target protein in the space
between functional domains, which might cause the FP to coexist undisturbed with the
target protein [73, 74]. In addition, a study also showed that using a minimal number of
amino acids in the linker at the C-terminus of cellular receptor proteins can produce a
higher FRET detection while maintaining the biological function of the receptor proteins

in activating intracellular signalling pathways [70].

1.3 Flow cytometry-based FRET analytical workflow and algorithms

Traditionally FRET is examined using microscopes. FRET can be measured using the
fluorescence microscopy-based direct determination of quenched FRET-donor
fluorescent intensity and increased sensitised FRET-acceptor fluorescent intensity [75].
Fluorescence lifetime imaging microscopy (FLIM) measures FRET by examining the time
change for a FRET-donor fluorophore that stays in its excited state [76, 77]. In addition,
polarised light microscopy analyses the anisotropy dynamics for homo-FRET [33, 78].
However, microscopy FRET has limitations due to its low throughput, high equipment
dependency, low signal-to-noise ratio, and prone to false-positive results. Therefore,
during the mid-90s, flow cytometry-based FRET was developed and proved

tremendously successful in detecting protein-protein interaction in live cells. It
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complements the microscopic FRET technique by allowing the collection of tens of
thousands of events per second. Modern flow cytometers can also perform data
acquisition using the robotic high-throughput screening (HTS) module with the capacity
to collect hundreds of samples in under an hour. In addition, the most attractive feature
of flow cytometry is the high-parameter detection, with the current full-spectrum flow
cytometers able to perform the simultaneous detection of 64 fluorescence signals. Flow
cytometry’s capacity to analyse many samples with multiple parameters in a short time
makes flow cytometry the most widely used screening tool for drug discovery and
clinical diagnosis. More importantly, unlike microscopy-based FRET, flow cytometry-
based FRET does not require special equipment, which means FRET can be easily

detected on almost any conventional flow cytometer.

The flow cytometry-based FRET analytical workflow consists of logical stages before the
user can perform fluorescent quantifications, data visualisation and biological
interpretations, including FRETs and PPIs (Figure 5). The pre-processing stages consist of
data import, followed by anomaly detection, singlet identification, autofluorescence
removal, spectral unmixing, data transformation, and subpopulation clustering. There
are many pieces of software and programming packages/libraries that provide solutions
for each stage of the flow cytometry analytical pipeline. However, many unresolved
challenges still hinder truly accurate FRET quantification, and this chapter will review

them in the following sections.
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Figure 5 Flow cytometry data pre-processing

Flow cytometry data analysis has many stages after data import. It includes anomaly detection,
singlet identification, autofluorescence removal, spectral unmixing, data transformation and
data clustering before one can perform statistical analysis.

1.3.1 Anomaly detection and data cleaning

Anomaly detection and data cleaning are essential as the first step in the cytometry data
analysis pipeline for achieving highly accurate, statistically robust, and biologically
meaningful results. Data acquisition in cytometers should occur consistently with the
sample flow rate. Flow cytometry relies significantly on the data collecting rate's
consistency to guarantee accurate detection of the data. Numerous variables can cause
the fluctuation of the collection rate. For example, sample clumps can clog the fluidic
collection tube, rapidly decreasing the data collection rate. Likewise, air bubbles in the
fluidic system can also affect the data acquisition quality. In addition, unstable laser
powers and malfunctioning detectors contribute to erroneous fluorescent intensity

readouts.

Moreover, flow cytometers often generate negative fluorescence intensity values
during data acquisition. The negative values are due to the background signal’s
subtraction as part of the baseline removal procedure. In addition, negative numbers in
fluorescence intensity may also result from compensation calculations and
autofluorescence removal during post-acquisition data processing. Flow cytometry data,

including any abovementioned anomalies, can compromise downstream analyses.
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Currently, flowAl is one of the most popular data anomaly detection algorithms for flow
cytometry [79]. The flowAl algorithm follows a straightforward logic with three data
quality assessment stages: (i) the flow rate check — which detects abrupt changes in flow
rate (ii) the fluorescence signal quality check — which detects instability of signal
acquisition (iii) the dynamic range check — removes outliers below the lower detection
limit and margin events beyond the upper detection limit. For fluidic flow rate
consistency, flowAl reconstructs the flow rate from the number of cells per unit of time
and defines the consistent flow stream as a flow rate with non-periodic oscillations but
a constant variation. A generalised extreme studentized deviation (ESD) test is used to
discover the flow rate irregularity. For the fluorescence signal quality check, flowAl plots
the fluorescent intensity against the time of each recorded event to determine whether
the data has a stable distribution over the acquisition time. At the last stage, data logged
with the same value as the maximal detection range are removed to prevent saturated
signals. However, for negative values, flowAl employs the Z-score test and only removes
the ones beyond the default threshold; therefore, a portion of the data with negative
fluorescent intensity is still presented in the collected signals, which is problematic for

fluorescence intensity interpretation and many downstream data analyses.

The flowClean algorithm is another widely used data anomaly detection technique [80].
The development idea of flowClean is that a sample has several cell populations, each
of which should have a uniform data acquisition rate and fluorescence intensity.
FlowClean splits cells into populations based on the median fluorescence intensity of
each detection channel. Then, it checks acquisition rate stability using the Poisson

logarithmic likelihood [80]. Then, the fluorescence intensity stability examination uses
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CoDA [81] and change point analysis [82] techniques. Nevertheless, flowClean replaces
data with zero and negative values with small random positive values, which, despite
making the data acceptable for logarithmic-based transformation, might artificially

generate errors in data quantification.

1.3.2 Singlet identification

One of the advantages of flow cytometry over other population mean-based bulk
measurement techniques is its ability to identify fluorescent signals with single-cell level
resolution. Flow cytometry offers information at the single-cell level from numerous
cellular subtypes in the sample. It displays the binominal distribution and heterogeneity
of the data (Figure 6A). Identifying true single-cell events (singlets) from the doublets,
multiplets, debris and background noise is critical in flow cytometry data analysis.
Failure to distinguish singlet from cell aggregates might result in erroneous data
interpretation (Figure 6B). For example, when measuring fluorescent intensities, flow
cytometry measures the total fluorescent intensity (MFI) from doublets, records the MFI
as a single particle event and produces inaccurate intensity readouts (Figure 6B first row).
In addition, in cell phenotyping tasks, doublets containing different single markers will
be recorded as multiple markers expressing cell types (Figure 6B second row). Moreover,
in FRET measurement, an actual FRET-negative single-cell event requires the cell to be
double-labelled with both FRET-donor and FRET-acceptor fluorophores, indicating the
genuine non-interacting status of the POls. However, false non-interacting results can
be detected when cells are individually and separately labelled with only the FRET-donor
fluorophore or only the FRET-acceptor fluorophore and form cell aggregates (Figure 6B

third row).
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Figure 6 Detection of singlets is critical for flow cytometry data analysis.
Flow cytometry measurement at single-cell level revealing sample heterogeneity (A). Scenarios
of unsuccessful singlet events identification for flow cytometry data analysis (B).

Flow cytometers measure scattered light signals on two perpendicular detectors,
including forward and side scattered light signals (FSC and SSC), in addition to measuring
fluorescence emissions. The FSC measure the relative cell sizes, and the SSC measure
the relative cell granularity, indicating the cellular content's complexity. For every signal
being measured by flow cytometers, the machine record three signal characteristics,
including the width, height, and area of the signal peaks. All modern flow cytometers
are calibrated such that these six characteristics can be used to determine the position
of singlets within the entire sample by examining a series of 2D scatterplots (Figure 7),
FSC-A vs SSC-A, FSC-H vs SSC-H, FSC-A vs FSC-H, SSC-A vs SSC-H, FSC-H vs FSC-W, SSH vs
SSC-W. In detail, an actual singlet event produces only one signal peak, so the area and
height of the peak should be in a perfect linear relationship. In addition, the relative time
of a single cell passing the laser (the peak width) should be independent of the signal

strength (the peak height) (Figure 7A).
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Based on the calibration among all six scattered light signals, there is a well-established
and commonly adopted method for identifying singlets using a six-step manual
threshold drawing procedure known as gating (Figure 7B) [9]. In software like Flowlo
[83], a user can automatically apply the six-step manual gating established from one
sample to the rest of the samples with a few clicks. However, when cells are treated
differently, the profiles on the six-step gating plots will vastly vary (Figure 7B). For
example, if the expression of specific proteins is upregulated at different levels, the SSC-
A/H will also increase or decrease according to the change in cellular content complexity.
Additionally, if cells undergo apoptosis (programmed cell death) or proliferation
(division), the cell size will also decrease or increase respectively. Such varied profiles in
the six-step gating plots indicate that manual adjustments are often needed for each

sample to achieve accurate singlet identification in practice.

The manual gating approach can be labour-intensive and often subjective when
investigating a large sample batch. So far, very few studies have developed automated
approaches for singlet identification. In contrast, most studies in the automated gating
algorithm development have only focused on cell subtype identification using
fluorescence detection channels (see section 1.3.4). However, most cell-type
identification algorithms require the input data to be single-cell data cleaned of debris,
artefacts, and cell aggregates. Among the very few singlet identification algorithms,
FlowGateNist is the most recently developed Python algorithm that can perform

automated processing on small cells, such as bacteria and yeast [84].
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Figure 7 Flow cytometry FSC and SSC measurement, and singlet manual gating

Flow cytometry measures FSC and SSC, and each has width, height and area parameters (A). A
well-established 6-step manual gating strategy for singlet identification requires further manual
adjustments when cells are treated differently (B).

FlowGateNIST uses a GMM technique and a comparison between measured cell samples
and buffer-only blank samples for automatic gating to distinguish between cell events
and background events. Then it compares the height, area, and width parameters of the
FSC/SSC signals to distinguish between singlet and multiplet events using a multi-
dimensional GMM. However, since GMM requires the population to be convex,

FlowGateNist requires iterative computations with different numbers of clusters and
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merging them to identify the nonconvex singlet population using BIC, so the
computation efficiency is slow. In addition, FlowGateNist is not suitable for large-size
mammalian cell samples, which prevents it from being used in human biology studies,
and this is also the limitation for FlowCal that was developed using example data for
engineered bacteria (E. coli) and yeast (S. cerevisiae) [85]. Unlike FlowGateNist which
uses GMM, FlowCal identifies singlets and uses a 2D histogram binning method to
identify locations with the highest event density in a two-dimensional plot (typically the
side-scatter vs. forward-scatter signals). The regions with the highest density, with a
user-specified proportion of the total events, are gated as cell events, whereas the
regions with lower densities are classified as non-cell background events. The TASBE
flow analytics software package primarily focuses on flow cytometry data calibration
and normalisation, but it also contains automated gating using GMM to discriminate cell
events from background events [86]. Unlike FlowGateNist, TASBE uses a robust 2D
Gaussian estimator to fit only the data collected in the FSC-A and SSC-A 2D scatterplots
and identify the core region with the highest cell density. However, the TASBE algorithm
also requires a user-specified percentage of the total to be gated as cells, whilst events
beyond the central region and pre-defined percentage are eliminated as either

background or multiplet events.

1.3.3 Spectral unmixing and autofluorescence removal

Fluorescence spectral unmixing (also known as compensation) is the adjustment process
to remove spectra overlaps from multiple fluorophores detected across multiple
detectors in flow cytometry data analysis. For flow cytometry-based FRET investigations,

the overlap between the emission and excitation spectra of the donor and acceptor
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molecules is one of the essential requirements for FRET to occur. However, cross
excitation of the acceptor fluorophore with the donor excitation laser, the donor
emission bleed-through into the acceptor emission spectrum range, and spillover
between the acceptor and the sensitised FRET signals due to their similar emission
spectra can all potentially impact the accuracy for FRET quantification. The spillover can
be minimised by selecting FRET pairs and assigning detection channels that permit
optimal donor excitation without acceptor cross-laser excitation. In addition, the
acceptor detection filter must be chosen with no or minimum donor emission bleed-
through. FRET pairings can also be selected from fluorophores whose spectra are
maximally separated with large Stoke's shifts, but it should be emphasised that

decreasing the spectral overlap will also decrease the rate for FRET events.

The key factor of almost all spectral unmixing algorithms is to minimise the spreading
error (SE) after compensation since the SE impedes the pure fluorescent intensity
measurement and reduces the detection sensitivity for the FRET detection. The SE for a
given detector pair can be empirically determined by taking the square root of the
squared differences in robust standard deviations of detected fluorescence intensity
between the unstained sample and the single fluorescence control (see section 2.8.4)
[87]. The most recently developed AutoSpill spectral unmixing algorithm and many
other compensation techniques using linear regression models, such as ordinary least
squares (OLS), non-negative least squares (NNLS), weighted least squares (WLS), or the
generalized linear model (GLM) to predict the spillover coefficients between each pair
of the cross-talked fluorescence detection [88]. The spillover coefficients are calculated

using the single-colour controls and are defined as the linear ratio of the fluorescence
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signals in the primary detection channel to the signal in the non-primary detection
channel [89]. For example, in FRET detection, the spillover coefficient of the FRET-donor
and FRET-acceptor channels is determined using the FRET-donor single colour control.
It is calculated using the ratio of the donor-laser-excited donor fluorescence emission
detected in the donor channel over the acceptor-laser-excited donor fluorescence

emission detected in the acceptor channel.

Furthermore, many studies have treated autofluorescence as another single
fluorescence emission and removed it from the labelling fluorescence using spectral
unmixing algorithms [90-92], and this is also the approach used in flow cytometry-based
FRET analysis [8]. However, autofluorescence is an intrinsic emission mixed with various
types of biomaterials from the sample; therefore, treating autofluorescence as a single
fluorescence emission can potentially induce bias and lead to unresolvable residual
spreading errors during spectral unmixing [93]. Instead, the autofluorescence should be
treated as the combination of many fluorescence emissions, and the prediction and
removal of the autofluorescence should be handled using non-linear-based algorithms.

Unfortunately, to date, the non-linear approach has still not yet been formally examined.

1.3.4 Cell subtype identification

Traditionally, cell subtype identification is performed with manual gating in flow
cytometry data analysis to distinguish positively labelled cells from the unlabelled
populations. However, with the advancement of the flow cytometer technology with
more detection parameters, manual cell subtype identification becomes an implausible
task for human eyes. Unsupervised clustering algorithms quickly became attractive for

cell subtypes identification in flow cytometry data analysis, and this is because they can
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produce unbiased results using multiple detection parameters simultaneously with

minimal human input.

The K-Means clustering algorithm is one of the first automated data clustering
techniques applied to cytometry data analysis in 1985 [94]. The K-Means algorithm
clusters data by separating them into k groups with equal variance so that data within
the same group share the same centroid [94]. Despite the fact that K-Means is very
simple to implement, it has several limitations: (i) it requires a user-specified number of
clusters k that often requires researchers to have pre-established knowledge about the
cluster numbers of the sample, (ii) it assumes clusters are convex and isotropic, which
means that samples with irregular shapes will not be clustered correctly, (iii) the
accuracy also rely on the initially randomly assigned locations of the centroids, which
means the algorithm needs to be repeated with various centroids initialization locations

to achieve optimal results (Figure 8).
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Figure 8 lllustration of K-Means clustering algorithm
The first 100 iterations of K-means with user-specified hyperparameter k = 3. The three large
dots in each graph are the location of the centroids calculated using the data within each cluster.

Many recent algorithms, including X-Means, G-Means, flowPeaks, flow clustering
without k (FLOCK) and flowMeans, have been developed for cell subtype clustering

without needing to input a value for k in flow cytometry data analysis [95-99]. In a sense,
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these algorithms iteratively cluster data with different k values and use evaluation
techniques such as Bayesian Information Criterion (BIC), Akaike Information Criterion
(AIC) or Minimum Description Length (MDL) to find the optimal k value automatically.
In particular, the FLOCK algorithm uses a grid-based approach to find high-density
regions that enable K-Means clustering to converge significantly faster than random
initialization of cluster centroids and simultaneously determines an appropriate value
for k based on the number of dense regions [99]. While the flowMeans algorithm, like
the more recently improved K-Means algorithm, is a time-efficient yet accurate
approach for automatically identifying cell subtypes in cytometry data analysis [95]. The
flowMeans algorithm can identify cell populations with irregular shapes by using several
centroids to represent the same population, i.e., spilling the data into many mini-
clusters and merging them. In a sense, flowMeans enables high-throughput FACS data
analysis pipelines that overcome the initialisation, population shape limitation, and

repeated model selection issues of the conventional K-Means clustering.

Density-based spatial clustering of applications with noise (DBSCAN) is a non-parametric
data clustering algorithm that does not require a user-specified k value for the number
of clusters. DBSCAN can detect noise while performing data clustering (without
assigning the noise data to any group [100, 101]. It begins by detecting core points using
a user-defined data neighbourhood size (&) and the minimal number of data required
within each neighbourhood (MinPts). Once the core points have been identified, data
within the overlapped core points neighbourhood and the adjacent non-core points are
clustered together (Figure 9). Intuitively, DBSCAN identifies clusters as high-density

regions separated by low-density regions. The FlowGrid algorithm, as the more recent

28



DBSCAN-based flow cytometry clustering algorithm, has combined the grid-based
approach of the FLOCK algorithm with the power of DBSCAN, and it can handle the high-

parameter data with irregular shapes with significantly reduced computation time [102].

Border
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Y

Figure 9 lllustration of DBSCAN clustering algorithm

The red dots are core points defined by MinPts within the & radius of the centre data, and the
yellow dots are the border data being merged into the core clusters. The purple dots are noise
data. The little green dots are the data being ‘reached’ by the centre data within each core
cluster.

Direct-density reachable Indirect-density reachable

A finite mixture model (FMM) is a group of clustering algorithms that, as the name
implies, performs unsupervised data clustering using a mixture of distribution models
(Figure 10). Popular flow cytometry data clustering algorithms include Gaussian mixture
model (GMM), flowClust, flowMerge and flow analysis with automated multivariate
estimation (FLAME). GMM assumes the cell population distribution combines multiple
Gaussian distributions from each cluster [103-107]. However, adopting Gaussian
distributions might result in misleading cluster splits due to outliers and skewness in the
data. The flowClust algorithm solves these issues using a Box-Cox transformation to
decrease the data probability distribution skewness and then a t-distributions mixture
model to represent the cell population [105]. The t-distribution enables a higher

tolerance for outlier impacts in the cell populations because it has higher tails at both

29



ends than the Gaussian distribution data (Figure 10B) [105]. The flowMerge algorithm
extends the flowClust framework by employing a cluster merging procedure to further
support a concave cell population represented by multiple probability distribution

components [104].

Additionally, the flowMerge algorithm provides an automatic cluster number selection
method, making it compatible with the high-throughput cytometry data analysis
pipelines with automation. Alternatively, FLAME does not require the Box-Cox
transformation. It uses a mixture of skew t-distributions to increase the model’s
flexibility and adaptability to fit cytometry data with skewness [106]. This approach
permits unsupervised learning with non-Gaussian populations, which are tolerant of

outliers and data probability distribution with heavy tails.
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Figure 10 lllustration of FMM clustering algorithm

FMM clustering three groups of data with the 2D Gaussian models (A). Each coloured contour
circle (blue, green, orange) indicates a 2D Gaussian model that best fits the data. Data within
the circles are identified as the same cluster. A comparison of the Gaussian distribution and the
t-distribution (B). The t-distribution has higher tails and is more tolerant of outliers.

The agglomerative approach of the hierarchical clustering algorithm is a bottom-up
solution that starts with assigning each cell to its own cluster and sequentially merging
them (Figure 11). The spanning-tree progression analysis of density-normalized events

(SPADE) is a versatile machine-learning algorithm for high-dimensional single-cell flow
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cytometry data clustering using the agglomerative hierarchical method [108]. The

SPADE algorithm first minimises the data density variation using density-dependent

down-sampling, which ultimately balances the large and small cell population sizes and

boosts the relative frequency of rare populations. Then, density-normalised single-cell

data are merged with their nearest neighbours based on the calculated distances, and

the merging steps run iteratively until the number of remaining clusters reaches a user-

defined threshold. A minimum spanning tree (MST) that links the density-normalised

data is constructed to produce a tree-like graphic representation of the sample. Lastly,

SPADE uses up-sampling to allocate the complete original data to clusters where their

nearest neighbours belong.
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Figure 11 lllustration of hierarchical clustering
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The PhenoGraph flow cytometry clustering algorithm uses an alternative approach

based on the Louvain community detection method and the k-nearest neighbour (k-NN)

approach [109]. PhenoGraph is a robust, data-driven clustering algorithm that requires

only one hyperparameter input k to construct the k-NN graph. It is important to note
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that this differs from the hyperparameter k required in K-Means for cluster numbers.
Then PhenoGraph assigns single-cell flow cytometry data into different communities
based on the neighbour density of each cell. It uses the modularity maximisation method
to maintain the clustering connection between the intracommunity data points and
removes the intercommunity connections for cluster segmentation. In theory, smaller k
in PhenoGraph will result in more clusters by splitting the community network with
higher resolution, and higher k will lead to a lower-resolution clustering with fewer
cluster numbers. In practice, PhenoGraph is not very sensitive to k, i.e., the algorithm

will return the same cluster number with a reasonable range of different k values [109].

A self-organizing map (SOM) is a type of artificial neural network (ANN) that is an
unsupervised learning algorithm for data clustering as well as data visualization by
producing a low-dimensional data representation [110-112]. The FlowSOM algorithm is
developed particularly for flow cytometry data clustering, and the workflow of FlowSOM
has four stages: (i) data normalization, (ii) constructing a SOM artificial neural network
representation of the data clustering, (iii) building an MST visualization for the SOM
clustering results, and (iv) perform the meta-clustering using a consensus hierarchical
clustering algorithm [111]. The consensus hierarchical clustering algorithm works by
random subsampling the observations multiple times and implements hierarchical
clustering on each subsample. A final meta-clustering result is made with the initial SOM
clustering results and based on how often the same clusters are further clustered to
form a supercluster. The consensus hierarchical clustering approach gets better results
than the basic hierarchical clustering approach in terms of clustering stability. However,

FlowSOM requires a user-specified k value for the desired number of final clusters, the
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size of the network grid, the learning rate, and the start and end neighbourhood radius
for the neurons in SOM. The requirement of multiple hyperparameters has made

FlowSOM a complicated yet powerful flow cytometry data clustering algorithm.

1.4 FRET quantification

FRET detection can be achieved by either measuring the quenching of FET-donor
emissions or the increase of sensitized FRET-acceptor emissions. These can be achieved
using chemically-linked single molecules, such as tandem dyes, the PE-Cy7 fluorophore
[39], or chemically-linked fluorescent biosensor protein molecules using amino acid
linkers [10, 68, 113]. Alternatively, FRET can be achieved in unlinked interacting
molecular or protein multimers, such as two individual fluorescently conjugated
monoclonal antibodies [114], two naturally fluorescent interacting proteins [115], or
two synthetically expressed fluorescent fusion proteins [32], dependent upon the
molecular distance between the fluorescent donor and acceptor elements within such
interactions. Taking the ratio of sensitised FRET emission over the quenched donor
emission can only provide semi-quantitative results [34] since the FRET fluorescent
intensity reflects both the PPIs level, the expression level of those fluorescently labelled

POls, and the instrument configurations.

FRET efficiency (E) is an unbiased full quantification parameter for the FRET event,
independent of the used flow cytometer configuration, the protein expression level, and
FRET efficiency is inversely proportional to the sixth power of the distance between

donor and acceptor fluorophores that come into proximity (Eq.1).
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Equation 1 FRET efficiency and FRET donor-acceptor distance
1

1+ (RLO)6

The parameter R is the actual distance between donor and acceptor fluorophores, and

E =

R, is the “Forster radius”, which is the distance at which the FRET efficiency is 50% [3,
25]. The “Forster radius” R, is determined by the spectral properties of the FRET-donor
and FRET-acceptor fluorophores, which can be calculated using the orientation of the
fluorophores (k?), the quantum yield of the donor (¢p), the refractive index of the
medium surrounding the fluorophores (n), and the spectral overlap integral of the donor

and acceptor (J), as shown in (Eq2.) [116].

Equation 2 The Foster radius

Iy Fo(Dea(D)A*dA
= * Vk2n—4 ==
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Fp(A) is the donor's normalised fluorescence emission (depending on wavelength), &,
is the acceptor's extinction coefficient (in M cm™) (dependent on wavelength), and A
is the wavelength. As the actual k? of FPs is unknown, the orientation between
fluorophores is commonly considered to be 2/3, equivalent to a random orientation. A
different k2 value would result in a different R, value, but the trends between the
various FRET pairs remain unchanged. Fluorescent proteins of the same spectral class
frequently exhibit identical excitation and emission spectra. However, their extinction
coefficients (¢4) and quantum vyields (¢pp) may differ. When the donors have identical
emission spectra, Eq. 2 predicts that the FP with the greater quantum yield (¢p) is the
superior donor. Due to the bigger overlap integral, an acceptor with a more significant
extinction coefficient than another acceptor with similar excitation spectra is

anticipated to be a superior acceptor. The R, of several regularly used fluorophores in
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FRET have already been calculated and discussed [51]. Moreover, FPBase

(https://www.fpbase.org) is a highly recommended online R, calculation tool [117].

In order to achieve FRET efficiency calculations using the flow cytometry-based
fluorescent intensity values, the detected fluorescence emission needs to be first
spectrally unmixed to obtain clean donor, acceptor and sensitised FRET emission
qguantities. Spectrally unmixing requires single-colour controls for each fluorescent
source, but sensitised FRET has no pure single-colour control since simultaneous donor
and acceptor emissions always exist. FRET spectral unmixing can be accomplished with
the mathematical formulation of the mixed fluorescent signals within each detection
channel as the weighted combinations of the donor, acceptor, and FRET emissions with
all potential spillover signals [10, 16]. This approach requires the FRET calibration factor
a which is defined as the ratio between quenched donor emission and sensitised FRET
emission (see section 2.7.6) [114, 118]. The a can be determined using linear regression
to predict the intercept and coefficient (Eq.3) [10]. Chemically linked FRET pairs must be

used to ensure the intercept and coefficient are constant numbers for a determination.

Equation 3 Linear regression approach to deduct « factor for FRET calibration

R 1= IpEa
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Unlinked free-interacting FRET pair can also be used but can be extremely challenging

and require the expression of the POls driven by the same promoter and the assumption
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of the known concentration ratio of the donor and acceptor molecules [32]. Once the

factor is determined, the FRET efficiency can be calculated (see section 2.7.6).

1.5 Prospective investigations

Many limitations in the flow cytometry data analytical workflow still need to be resolved
before full FRET quantification can be achieved. Especially for the experiment using
mammalian cells, an accurate, automated, rapid, and unbiased algorithm still needs to
be developed. The usage of many unsupervised clustering algorithms is well evaluated
for cell subtype identification using the fluorescence detection parameter from the flow
cytometry data. Their performance in singlet identification using scattered light signals
has not been determined. Advancements can be made based on the existing clustering
algorithms, particularly utilising the FSC/SSC signals, which is a good starting point for

promising results.

Currently, the gold-standard flowClean and flowAl algorithms both fail to resolve the
negative-value issue caused by baseline-subtraction-errors. Flow cytometry produces
multiparameter data, and for each individual cell data, negative values are often
detected within some detection parameters and not all detectors. Therefore, the high-
parameter measurements guarantee a great chance of at least one detector producing
high-quality data for every cell. Furthermore, instead of removing the entire single-cell
data, the specific poor-quality measurement can be removed and treated as missing
data. Using collaborative learning algorithms, such as collaborative filtering (CF)
recommendation algorithm, that predict the missing values using the existing high-
guality data can provide accurate solutions for correcting the baseline subtraction-

errors [119]. The CF recommendation algorithm is also a nonlinear approach for data
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prediction; therefore, exploring the potential of using CF for autofluorescence
prediction and removal can also shed light on achieving the clean flow cytometry
fluorescence readout. Once the clean fluorescent measurement is achieved, the spread
error of spectral unmixing based on FRET emission formulation and linear models can
also be vastly eliminated. In addition, other robust linear fitting algorithms, such as
random sample consensus (RANSAC), can also be employed as an iterative method for
estimating the spillover coefficients. Spillover coefficients from the highly overlapped
FRET emissions that may contain undetected outliers can further increase the accuracy

of the linear spectral unmixing results to accomplish purely unmixed fluorescent signals.

The current FRET calibration using the a factor requires the population mean for
constructing the linear regression model. Therefore, despite the single-cell resolution of
the downstream FRET efficiency calculation, the accuracy can only be maintained at the
population level. Therefore, there is an urgent need for a single-cell level FRET
calibration algorithm, especially for the challenging chemically unlinked FRET system.
Furthermore, a few studies have explored the capacity to conduct FRET measurements
and FRET efficiency quantification using the three-molecule FRET system. However, the
current approaches still treat each pair of the two molecules within the three-way FRET
event as independent components. In other words, the energy competition from the
single FRET donor to two different FRET acceptors has not been thoroughly investigated
in flow cytometry-based FRET analysis. Algorithms that transform the data into
compositional data for relative comparisons, such as the CoDA method, should be

utilised for flow cytometry FRET data interpretation.

37



CHAPTER TWO

METHODS AND ALGORITHM DESIGNS
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2.1 Molecular biology methods

2.1.1 Generation of human TNFR-fluorescent fusion protein expression plasmids

Human TNFR1 was chosen to examine and validate both the two-protein three-colour
FRET and three-protein six-colour FRET algorithms. As previously described by Chan et
al., human TNFR1 can form self-assembled homodimers through the pre-ligand-binding
assembly domain (PLAD) [72], and Vanamee et al. also indicated that cytokine-recruited
trimers of dimers in a hexagonal meta-cluster conformation [120]. Human CD27 and
TNFR2 were used as FRET-negative controls for comparison with the TNFR1 FRET-
positive detection. The major advantage of using TNFR1, TNFR2, and CD27 is that they
are all from the same tumour necrosis factor receptor superfamily (TNFRSF) with similar
structures, and TNFR1 does not form heterodimers with either TNFR2 or CD27 [32, 121,

122].

The human pcDNA3.TNFR1-eCFP, pcDNA3.TNFR1-eYFP, pcDNA3.TNFR2-eCFP and
pcDNA3.TNFR2-eYFP plasmids were constructed as previously described and kindly
provided by Dr Francis Chan [70]. All pcDNA3 plasmids are under the control of a
cytomegalovirus (CMV) promoter. Human TNFR1 and TNFR2 open reading frames (ORFs)
(without the stop codon) were cloned into the multi-cloning site (MCS) of pcDNA3 using
the 5’-Hindlll and 3’-Xhol sites, and the downstream eCFP and eYFP ORFs were cloned
using the 5’-Xhol and 3’-Xbal sites. Therefore, the plasmids have the fused receptor-FP
sequences with six nucleotides as the linker from the Xhol cloning site. All pcDNA3
vectors contain ampicillin and neomycin resistance genes for selection in both bacteria

and mammalian host cells, respectively.
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To generate the CD27 fusion protein pcDNA3 based -eCFP and -eYFP plasmids, the
human CD27 cDNA sequence was first amplified from the mRNA that was isolated from
human peripheral blood mononuclear cells by RT-PCR (First Strand cDNA synthesis kit,
Life Technologies) using PCR forward primer 5’- AGCAGGTACCATGGCACGGCCACATCCCT
GGTGG-3’ and reverse primer 5-TACTAACTCGAGGGGGGAGCAGGCAGGCTCCGGTT-3'.
The PCR introduced the Kpnl and Xhol restriction enzyme sites (underlined) into the
amplified products and enabled either TNFR1 or TNFR2 cDNA to be replaced with the

CD27 cDNA.

To generate pcDNA3.TNFR1-mRFP, pcDNA3.TNFR2-mRFP and pcDNA3.CD27-mRFP
plasmids, monomeric RFP ORF was PCR amplified from pVitro2-mRFP (a gift from Dr
Rosetta Martiniello-Wilks) with the forward primer 5-ATCCTCGAGATGGCCTCCTCCGA
GGA-3’ and a plasmid specific reverse primer 5’-AACCTGCTCCTAGGGTCGACAATCGAT-3’
which contains an Xhol and Avrll (compatible with Xbal) restriction sites. Thus, the mRFP

cDNA replaced eCFP or eYFP cDNAs in the pcDNA3 vectors.

2.1.2 Generation of TRAPS mutants as -eYFP fusion protein expression plasmids

To address the capacity of the FRET algorithms in analysing mutant proteins and WT
proteins interactions, such as in the scenario of autoinflammatory diseases caused by
germline mutations, the tumour necrosis factor receptor associated periodic syndrome
(TRAPS) mutants TNFR1-eYFP were generated through site-directed mutagenesis (SDM).
The SDM reactions were carried out using the pcDNA3-TNFR1-eYFP plasmid as the

template and designed forward and reverse primer pairs as listed below (Table 1).
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Table 1 Primers for site-direct mutagenesis of TRAPS plasmids

Domain  Llocation  Usualname protein name Sequence change Forward Primer (Sequence) Tm (F) Reversed Primer(Sequence) Tm (R}
PLAD/CRD1 Exocn2 D12E p.(Aspa1Glu) c.123T-G AGAAGAGAGAZAGTGTGTGTCCC 64°C  CCCTGTCCCCTAGGTGAG 67°C
PLAD/CRD1 Exon2 Cisy p.(Cys44Tyr) c.131GxA GATAGTGTGTaTCCCCAAGGAAAATATATC 64°C  TCTCTTCTCCCTGTCCCC B5°C
PLAD/CRD1  Exon2 Y20H p.(TyrdgHis) c.145T=C TGTGTCCCCAAGGAAAACATATCCACCCTC 63°C  TTTTCCTTGGGGACACACACTATCTCT 58°C
PLAD/CRD1 Exocn2 Y200 p.Tyr49Asp) €.145T>G TGTGTCCCCAAGGAAAAZATATCCACCCTC 63'C  TTTTCCTTGGGGACACACACTATCTCT 58°C
PLAD/CRD1 Exon2 Y20C p.{Tyr49Cys) c.1464>G CAAGGAAARTETATCCACCCTC 58°C GGGACACACACTATCTCTC 61°C
PLAD/CRD1 Exon2 H22Y p.[His51Tyr) c.151CT TGTCCCCAAGGAAAATATATCEACCCTCAAAATA 60°C  TTTTCCTTGGGGACACACACTATCTCT 58°C
PLAD/CRD1 Exon2 H22R p.[His51Arg) c.1528-G TGTCCCCAAGGAAAATATATCCECCCTCAAAATA 62°C  TTTTCCTTGGGGACACACACTATCTCT 58'C
PLAD/CRD1  Exon2 H220 p.[His51Gln) c153C=G AATATATCCAZCCTCAAAATAATTCGATTTG 62°C  TTCCTTGGGGACACACAC 64°C
PLAD/CRDL Exon2 NZ5D p.[Asn54Asp) C.160A>G CCACCCTCAAZATAATTCGATTTG 59°C  ATATATTTTCCTTGGGGAC 56°C
PLAD/CRD1 Exon2 1285 p.{1le575er) c.170T>G AATAATTCGAETTGCTGTACC 57'C  TTGAGGGTGGATATATITTC 56°C
PLAD/CRD1  Exon2 C28R p.(Cys58Arg) c172T=C TAATTCGATTcGCTGTACCAAG 56°C  TTTTGAGGGTGGATATATTTIC 58°C
PLAD/CRD1 Exon2 C29G p.ICys58Gly) c172T>G TAATTCGATTEGCTGTACCAAG 58°C  TTTTGAGGGTGGATATATTTIC 58°C
PLAD/CRD1 Exon2 C2sF p.(Cys58Phe) c173G>T TCAAAATAATTCGATTTICTGTACCAAGTG 55'C  AAATCGAATTATTTITGAGGGTGGATATATT 53C
PLAD/CRD1 Exon2 cagyv p.|Cys58Tyr) c.173GxA TCAAAATAATTCGATTTaCTGTACCAAGTG 55°C  AAATCGAATTATTTTGAGGGTGGATATATT 53*C
PLAD/CRD1 Exon2 C295 p.(Cys585er) c173GxC AATTCGATTTCCTGTACCAAGTG 57'C  ATTTTGAGGGTGGATATATTTIC 58'C
PLAD/CRD1  Exon2 Cc2swW p.(Cys58Trp) ci174C=G ATTCGATTTGETGTACCAAGTG 60°C  TATTTTGAGGGTGGATATATITTC 58°C
PLAD/CRDL Exon2 C30R p.(Cys594rg) c175T>C CAAAATAATTCGATTTGCCGTACCAAGTGCCA 60°C  AAATCGAATTATTTTGAGGGTGGATATATT 53°C
PLAD/CRD1 Exon2 C30s p.(Cys595er) c.176G+C CAAAATAATTCGATTTGCTCTACCAAGTGCCA 59°C  AAATCGAATTATTTITGAGGGTGGATATATT 53'C
PLAD/CRD1  Exon2 caoy p.(Cys59Tyr) c.176G=A CAAAATAATTCGATTTGCTaTACCAAGTGCCA 58°C  AAATCGAATTATTTTGAGGGTGGATATATT 53*C
PLAD/CRD1 Exon2 C30F p.(Cys59Phe) c.176G>T CAAAATAATTCGATTTGCTITACCAAGTGCCA 58°C  AAATCGAATTATTTTGAGGGTGGATATATT 53°C
PLAD/CRD1 Exon2 C33G p.(Cys62Gly) C.184T>G CGATTTGCTGTACCAAGEGCCACAAAGGAA 63'C  CTTGGTACAGCAAATCGAATTATTTIG 54'C
PLAD/CRD1 Exon2 33y p.|Cys62Tyr) c.185G+A CGATTTGCTGTACCAAGTaCCACAAAGGAA 60°C  CTTGGTACAGCAAATCGAATTATTTTG 54°C
PLAD/CRD1 Exon3 G36E p.(Gly65GIu) c.194GxA TGCCACAAAGRAACCTACTTG 59°C  CTTGGTACAGCAAATCGAATTATTTIG 63'C
PLAD/CRD1  Exon3 T371 p.(Thré6lle) c197CT CAAGTGCCACAAAGGAMCTACTTGTACAA 59°C  TTCCTTTGTGGCACTTGGTACAGCAAATCGA 62°C
PLAD/CRDL Exon3 Y3BC p.ATyr67Cys) C.200A>G AAMGGAACCTECTTGTACAATGAC 61'C  GTGGCACTTGGTACAGCA 66°C
PLAD/CRD1 Exon3 Y385 p.(Tyr675er) C.2008=C CAAGTGCCACAAAGGAACCTCCTTGTACAA 62°C  AAGTAGGTTCCTTTGTGGCACTTGGTA 58'C
PLAD/CRD1 Exon3 L39F p.{LeuB8Phe) c.204GxC CACAAAGGAACCTACTTCTACAATGACTGT 59°C  AAGTAGGTTCCTTTGTGGCACTTGGTA 58°C
PLAD/CRD1 Exon3 D42DEL p.(Asp71del) .211_213delGAC TGTCCAGGCCCGGGGCAG T7'C  ATTGTACAAGTAGGTTCCTITGTGGCACTTGG  72°C
PLAD/CRD1 Exon3 D42E p.lAsp71GIu) c.213CA TGTACAATGAETGTCCAGGLC 64°C  AGTAGGTTCCTTTGTGGC 62'C
PLAD/CRD1 Exocn3 C43R p.{Cys72Arg) C.214T>C CCTACTTGTACAATGACCGTCCAGGCCCGGE 67°C  GTCATTGTACAAGTAGGTTCCTTTGTG 57°C
PLAD/CRD1 Exon3 C43G p.(Cys72Gly) C.214T>G GTACAATGACEGTCCAGGCCC 65'C  AAGTAGGTTCCTTTGTGGC 62'C
PLAD/CRD1  Exon3 casy p.(Cys72Tyr) c.215G=A TACAATGACTaTCCAGGCCCG 65°C  CAAGTAGGTTCCTTTGTGG 60°C
PLAD/CRD1 Exon3 C435 p.(Cys725er) c.215G+C TACAATGACTCTCCAGGCCCG 63°C  CAAGTAGGTTCCTTTGTGG 60°C
PLAD/CRD1 Exon3 C43F p.{Cys72Phe) C.215G>T TACAATGACTITCCAGGCCCG 63'C  CAAGTAGGTTCCTTTGTGG 60'C
PLAD/CRD1 Exon3 P46L p.{Pro75Leu) c.224CT CAATGACTGTCCAGGCCIGGGGCAGGATA 66°C GGLCTGGACAGTCATTGTACAAGTAGG 61°C
PLAD/CRD1 Exon3 Q77H p.(GIn77His) €.231G>T GCCCGGGGLAIGATACGGACT 70°C  CTGGACAGTCATTGTACAAGTAGGTTC 67'C
PLAD/CRD1 Exon3 T50M pAThr79Met) c.236CT GCCCGGGGLAGGATAIGGACT 70°C  CTGGACAGTCATTGTACAAGTAGGTTC 67'C
PLAD/CRDL Exon3 T50K p.(Thr79Lys) C.236C-A GCCCGGGGLAGGATARGGEACT TO'C  CTGGACAGTCATTGTACAAGTAGGTTC 67°C
PLAD/CRD1 Exon3 C52R p.(Cys81Arg) c.241T=C GGEATACGGACCGCAGGGAGTGTGAGAGC 73'C  TGCCCCGGGLCTGGACAG 77'C
PLAD/CRD1  Exon3 C52F p.(Cy=B1Phe) C.242GxT GATACGGACTICAGGGAGTGTGAGAGLGE 73'C  CTGCCCCGGGCCTGGACA 77C
PLAD/CRD1 Exon3 cs2y p.(CysB1Tyr) C.242GFA GATACGGACTaCAGGGAGTGTGAGAGLGGE 73'C  CTGCCCCGGGLCTGGACA 77°C
PLAD/CRD1 Exon3 C525 p.(Cys815er) C.242GxC GATACGGACTCCAGGGAGTGTGAGAGCG 72'C  CTGCCCCGGGCCTGGACA 77'C
PLAD/CRD1 Exon3 cs2w p.(Cys81Trp) C.243CxG ATACGGACTGEAGGGAGTGTGAGAGCG 73'C  CCTGCCCCGGGLCTGGAC 78°C
PLAD/CRD1 Exon3 R53G p.(ArgB2Gly) C.24485G TACGGACTGCEGGRAGTGTGAGAGC 73'C  TCCTGCCCCGGGCCTGGA 78'C

CRD4 Exon 6 L167_G175del p.leu196_Gly204del] ¢586_612del?7 ACTGAGGACTCAGGCACC 66°C  GCACAACTTCGTGCACTC 64°C
CRD4 Exon s C1385 p.[Cys1395er) C.503G>C GTGTGCACCTCCCATGCAGGT 63°C  GGTGTTCTGTITCTCCTGGC 65°C
CRD4 Exon 5 C1394 p.(Cys139Ala) €.502_508TG>GC CGTGTGCACCEcCCATGCAGET 63'C  GTGTTCTGTITCTCCTGG 59°C
CRD4 ExonS C1505 p.[Cys150Ser) c.536G+C GAAMACGAGTCTGTCTCCTGTAG 58°C  TCTTAGAAAGAAACCTGC 56°C
CRD4 Exon 5 C150A p.(Cys150Alz) €.535_536TG>GC AGAAAACGAGECTGTCTCCTGTAGTAAC 56°C  CTTAGAAAGAAACCTGCATG 58°C
CRD4 Exon 5 C1535 p.(Cys153%r) c.545GxC TGTGTCTCCTCTAGTAACTGTAAG 58°C  CTCGTTTTCTCTTAGAAAGAAAC 59°C
CRD4 Exon 3 C153A p.[Cys153Ala) c.544_545TG>GC GTGTGTCTCCEcTAGTAACTGTAAGAAAAG 55°C  TCETTTTCTCTTAGAAAGAAAC 57°C
CRD4 Exon 6 C1565 p.(Cys156%r) c.554GxC TGTAGTAACTCTAAGAAAAGCCTG 56°C  GGAGACACACTCGTTTTC 59°C
CRD4 Exon 6 C156A p.[Cys156Ala) €.553_554TG>GC CTGTAGTAACECTAAGAAAAGCCTGGAGTG 57'C  GAGACACACTCGTTTTCTC 5g°C
CRD4 Exon 6 C1625 p.(Cys1625er) C572G>C AGCCTGGAGTCCACGAAGTTG 64°C  TTTCTTACAGTTACTACAGGAG 59°C
CRD4 Exon 6 C162A p.(Cys1624la) c.571_572TG-GC AAGCCTGGAGECCACGAAGTTG S8°C  TTCTTACAGTTACTACAGG 56°C
CRD4 Exon 6 C1665 p.[Cys1665er) c.584GxC ACGAAGTTGTCCCTACCCCAG 63°C  GCACTCCAGGCTTTTCTTAC 64°C
CRD4 Exon 6 C166A p.(Cys166Ala) C.583_584TG-GC CACGAAGTTGEcCCTACCCCAG 59°C  CACTCCAGGCTTTTCTTAC 60'C
After CRD4  Exon6 1170N p.{1le199Asn) C.596T=A CTACCCCAGAZTGAGAATGTTAAG 60°C  GCACAACTTCGTGCACTC 64°C
After CRD4  Exon6 1170T p.(1le199Thr C.596T>C CTACCCCAGACTGAGAATGTTAAG 64°C  GCACAACTTCGTGCACTC 64°C
After CRD4  Exon6 V173D p.(Val2024sp) C.B05T=A ATTGAGAATGETAAGGGCACTGAG 61°C  CTGGGGTAGGCACAACTT B5°C
After CRD4  Exon6 G204C p.(Gly2040ys) c.610G=T GAATGTTAAGEGCACTGAGGACTC 60°C  TCAATCTGGGGTAGGCAC 64°C
After CRD4 _ Exon7 5197C p.(Ser2260ys) C.B77CG TGCCTTTTATECCTCCTCTTC 61'C_ AAGACCAAAGAAAATGACC 56°C
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To begin the SDM process, 12.5 pl of Q5 Hot Start High-Fidelity 2X Master Mix (New
England Biolabs), 1.25 pl of each of the 10 puM forward and reverse primer, 2 pul of 10
ng/ul WT pcDNA3.TNFR1-eYFP template plasmid DNA, and 9 ul of the nuclease-free
water, were assembled in a thin-walled PCR tube with a final volume of 25 ul per SDM
reaction. The reagents are completely mixed before performing the routine PCR on the
thermocycler (SimpliAmp™ Thermo Fisher Scientific). After 30 seconds of the initial
denaturation at 98 °C, a total of 25 cycles of PCR amplification were carried out with
denaturing at 98 °C for 10 seconds, re-annealing at 1-2 °C below the lowest Tm of the
primer (Table 1) for 30 seconds and an extension of 30 seconds/Kb DNA at 72 °C. A final
extension was performed at 72 °C for 2 minutes, and then the PCR products were held

at 4 °C before collection and storage.

2.1.3 Generation of poxviruses vTNFR-mRFP fusion protein expression plasmids

With the aim of further testing the robustness of the FRET algorithms, the investigation
of human TNFR1 interactions was expanded to include the poxviruses-encoded viral
TNFRs (VTNFRs). The vINFRs used in this study include the smallpox Variola virus-
encoded G4R, Myxoma virus-encoded MT2 and Monkeypox virus-encoded J2R. All
VTNFRs were previously generated as the pcDNA3.VarG4R-MycHis, pcDNA3.MyxMT2-
MycHis and pcDNA3.MpxJ2R-MycHis plasmids and kindly provided by Dr Alexander Gale

[123].

To ensure optimal expression of the Variola G4R and Monkeypox J2R ORFs in both Homo
sapien and Mus musculus cell lines, the sequence for Variola G4R and Monkeypox J2R
were codon optimised by Codon Devices Inc., USA, using the Variola India 1967 strain
sequence (NCBI accession: NP_042240.1) and the Monkeypox 1996 Zaire strain
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sequence (NCBI accession: AF380138.1), respectively. The codon optimisation altered
the nucleotide sequences without altering the amino acid sequences to match the
available tRNA pool of Homo sapien and Mus musculus cell lines. In addition, the cloning
site sequences of Kpnl, Xhol, Hindlll and Xbal were also altered to allow subcloning using
these restriction enzymes at specific cloning sites in the plasmid vector. The plasmids
containing codon-optimised VTNFRs-MycHis sequences were provided by Dr Sarah
Sherwood [124]. All vTNFRs-MycHis plasmids were digested with the Hindlll and Xhol
restriction enzymes and cloned into the pcDNA3.TNFR1-mRFP plasmid by replacing the
human TNFR1 cDNA using the same restriction enzymes. Due to biohazard restrictions
on handling the Variola virus and Monkeypox virus, the ORFs of G4R and J2R were

synthesised with WHO and smallpox committee approval.

2.1.4 Generation of pGL4.23.NF-kB-[miniP]-miRFP703 inflammation reporter
plasmids

TNFR1-mediated activation of NF-xB regulated cellular reporters were generated using
the pGL4.23.[miniP] vector (Promega) to evaluate the simultaneous detection of the
TNFR1 receptor interaction FRET emissions and the intercellular inflammation signalling
pathway activities. The first step of constructing the inflammation reporter plasmid is to
generate the 2X NF-kB response element (in bold) using the designed oligonucleotides
5’-GATCCTAGGGAATTCCCGGGAATTCCCTAGGATC-3’ with the same Auvrll restriction
enzyme digestion sites on each end. The oligonucleotides were diluted with the
annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl and 1 mM EDTA) to a final
concentration of 50 uM. A total of 200 pl oligonucleotides solution was then added to a

thin layer PCR tube on the thermocycler. After an initial incubation at 95 °C for 2 minutes,
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the temperature was cooled to 25 °C over 45 minutes for self-annealing. Following a
quick centrifugation, the collected self-annealed 2X NF-kB response element dsDNA was
then digested with the Avrll restriction enzyme in the digestion buffer. After 2 hours of

digestion, the digested dsDNA was further purified using ethanol precipitation.

To construct 4X and 8X NF-kB response elements, the purified digested 2X dsDNA was
ligated using the T4 ligase (New England Biolabs). All NF-k B response element
fragments were cloned into the pGL4.23.[miniP] vector upstream of the minimal
promoter sequence using the Nhel (Avrll compatible) cloning site and this generated the

pGL4.23.NF-kB-[miniP] plasmids.

To clone the miRFP703 fluorescent protein reporter sequence into the pGL4.23.NF-kB-
[miniP] plasmids, the pmiRFP703 plasmid (Addgene) was used. The miRFP703 cDNA was
first digested from the pmiRFP703 plasmid using Ncol and Xbal restriction enzymes.
Then, the released miRFP703 cDNA was cloned into the pGL4.23.NF-kB-[miniP] plasmids
downstream of the minimal promoter sequence using the same Ncol and Xbal cloning
sites. The final process generated the final pGL4.23.NF-kB-[miniP]-miRFP703
inflammation reporter plasmids with 2X, 4X and 8X NF-k B response elements.
Meanwhile, the miRFP703 cDNA was also cloned into the pGL4.23.[miniP] vector using

the same method without NF-kB response element for use as the negative control.

2.1.5 DNA quantification

Plasmid DNA was measured by 260nm absorbance (A260) using a Nanodrop-One
Spectrophotometer (Thermo Fisher Scientific) according to the manufacturer’s
instructions. The quality of DNA was assessed by A260/A280 and A260/A230, where

ratios of around 1.8 and 1.8-2.2, respectively, are defined as ‘pure’.
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2.1.6 Restriction enzyme digestion

Restriction enzyme digestions were performed with 1X optimal enzyme buffer,
restriction enzymes (10 units/1 pg of DNA), 0.1 ug of plasmid DNA, and 0.1 mg/ml bovine
serum albumin (BSA) (New England BiolLabs). Reactions were incubated at the required
temperatures for two hours, after which the enzyme was heat-inactivated for 20 min at

80 °C, except for Xhol and Avrll, which cannot be heat-inactivated.

2.1.7 DNA gel electrophoresis

Tris-borate-EDTA (TBE) agarose gels, usually 1% (w/v) unless indicated, were cast by
dissolving 1 g of agarose (Astral Scientific) into 100 ml of TBE, using the microwave at
power level-6 until completely dissolved. GelRed (Biotium) was added into the molten
agarose gel solution at 1:10,000 (v/v) and mixed thoroughly before pouring into a
casting tray (Bio-Rad) fitted with 8- or 20-well comb and allowed to solidify at RT. DNA
samples and a 1Kb DNA ladder (Invitrogen) were mixed with 1-2 pL of 10X blue loading
buffer (TaKaRa Bio) and loaded into wells. The DNA was electrophoresed at 80V (Bio-
Rad PowerPac-300) until the loading buffer indicator dye had run approximately 3/4 of

the length of the gel.

2.1.8 DNA gel extraction

Digested DNA fragments were visualised using InGenius3 UV (302nm) trans-illuminator
(Syngene), and images were acquired using the GeneSys software (version 1.5.0.0). The
DNA fragments of interest were excised with a sterile razor blade and collected into a 2
mL Eppendorf tube. The gel slices were weighted using a scale sensitive to 0.001g (A200S
Analytical balance, Sartorius) and processed with the PureLink Quick Gel Extraction Kit

(Invitrogen) following the manufacturer’s protocol. Briefly, gel slices were dissolved with
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3 gel-volumes of Solubilisation Buffer (L3) by incubation for 15 min at 50 °C in a heat
block (AccuBlock). One gel-volume equivalent of 100% isopropanol (Sigma-Aldrich) was
then added and centrifuged (5415D Centrifuge, Eppendorf) at 12,000 X g for 1 min at
RT. The gel/DNA sample was subsequently purified using a Quick Gel extraction column:
DNA/gel samples were centrifuged at 12,000 X g for 1 min at RT, washed with 500 pL
Wash Buffer (W1, containing 80% ethanol) and centrifuged again. Residual ethanol was
removed by a further centrifugation step at approximately 16,000 X g for 2 min. Finally,

the DNA was eluted in 50 pL Elution Buffer (E5) by centrifugation.

2.1.9 DNA ligation

Plasmid DNA ligations were performed on ice in reaction mixtures containing 1 plL of 10X
T4 DNA ligase buffer and 1 uL of T4 DNA ligase (New England Biolabs). Generally,
approximately 100 ng of vector and cDNA insert, often in 3 reactions with vector to
insert ratios or 1:3, 1:1, or 3:1, using dH20 to a final total volume of 10uL. Reaction
mixtures were incubated on a single layer of ice at room temperature overnight, where
the reaction temperature will cover a range of 4 to 20 °C or R/T, i.e. as the ice melts
overnight. The ligase enzyme was heat-inactivated for 10 min at 65 °C before E. coli

transformation of the newly ligated plasmid.

2.1.10 DNA sequencing

To validate the plasmid cloning results, extracted and purified plasmid DNAs were sent
to Macrogen Korea for Sanger DNA sequencing using the 3730XL sequencers (Applied
Biosystems). The plasmid DNA samples were diluted to a concentration of 100 ng/ul for
delivery via post. The sequencing reactions were carried out by the facility staff, and the

sequencing results were returned as “.ab1” files. Sequences were analysed as detailed
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in the following section 2.6.2. The primers used for sequencing are listed below (Table

2).

Table 2 Primers for plasmid sequencing

Primer Names Primer Sequence Sense Tm (°C)
pcDNA3 FWD (T7) 5’-TAATACGACTCACTATAGG-3’ Sense 53
pcDNA3 REV (SP6) 5’-ATTTAGGTGACACTATAG-3’ Antisense 51
eCFP/eYFP-N-REV 5’-CGTCGCCGTCCAGCTC-3’ Antisense 65
mRFP-N-REV 5’-GTACTGGAACTGAGGGGACAG-3’ Antisense 65
HuCD27 FWD 5’-TGTGGAGCCTGCAGAGCCTTGTC-3’ Sense 72
HUTNFR1 FWD 5’-ACTCAGGCACCACAGTGCTGTT-3’ Sense 70
HUTNFR2 FWD 5’-CCTTGTGCCTGCAGAGAGAAGC-3’ Sense 68
VarG4R FWD 5’-GACCAGCGAGCTGACTATCACA-3’ Sense 67
MpvJ2R FWD 5’-TCAATCTCTACTAGCGAGCTGACA-3’ Sense 66
MyxMT2 FWD 5’-ATGTCCTCGGTACACGTATTCCG-3’ Sense 67
pGL4.23 FWD (RV primer3) 5’-CTAGCAAAATAGGCTGTCCC-3’ Sense 61
pGL4.23 REV (EBV-rev) 5-GTGGTTTGTCCAAACTCATC-3’ Antisense 60

Plasmid Sample

Primer Used for Sequencing

pcDNA3.HuCD27-eCFP
pcDNA3.HUTNFR1-eCFP
pcDNA3.HUTNFR2-eCFP
pcDNA3.HuCD27-eYFP
pcDNA3.HUTNFR1-eYFP
pcDNA3.HUTNFR2-eYFP
pcDNA3.HuCD27-mRFP
pcDNA3.HUTNFR1-mRFP
pcDNA3.HUTNFR2-mRFP
pcDNA3.HUTNFR1(TRAPS)-eYFP
pcDNA3.VarG4R-mRFP
pcDNA3.MpvJ2R-mRFP
pcDNA3.MyxMT2-mRFP
pGL4.23.NF-kB-[miniP]-miRFP703

2.2 Bacterial Methods

pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuCD27 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR1 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR2 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuCD27 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR1 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR2 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HuCD27 FWD, mRFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR1 FWD, mRFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR2 FWD, mRFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), HUTNFR1 FWD, eCFP/eYFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), VarG4R FWD, mRFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), MpvJ2R FWD, mRFP-N-REV
pcDNA3 FWD (T7), pcDNA3 REV (SP6), MyxMT2 FWD, mRFP-N-REV
pGL4.23 FWD (RV primer3), pGL4.23 REV (EBV-rev)

2.2.1 Chemically competent bacteria cells preparation

For plasmid DNA storage, chemically competent bacteria cells were made for plasmid

heat-shock transformation. E.coli DH5 a bacterial cells (genotype: fhuA2 A(argF-

lacZ)U169 phoA ginV44 ®80 A(lacZ)M15 gyrA96 recAl relAl endAl thi-1 hsdR17) were

provided by Dr lain Duggin (UTS). Briefly, 500 mL Super Optimal Broth (SOB) (20 g/L
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Tryptone, 5 g/L Yeast Extract, 0.584 g/L NaCl, 0.186 g/L KCl, 2.4 g/L MgS0O?*, pH = 7.0) was
inoculated by a single colony of DH5a E. coli picked from a freshly streaked Luria-Bertani
(LB) Agar plate (10 g/L Tryptone, 5 g/L Yeast Extract, 10 g/L NaCl, 15 g/L Agar). The
inoculated SOB was further incubated at 18 °C with shaking at 200-250 rpm until
reaching an OD®% of 0.6. All incubations steps of bacteria were performed for 10 min at
4 °C, and centrifugations (CR-22GlIl Centrifuge, Hitachi) at 3220xg for 10 min at 4 °C.
Briefly, bacteria were incubated and then harvested by centrifugation, then
resuspended with 80 mL of ice-cold Transformation Buffer (TB) (250 mM KCl, 15 mM
CaClz, 55 mM MnCly, and 10 mM PIPES, pH = 6.7). After incubation, bacteria were
harvested by centrifugation and resuspended in 20 mL of 93% TB and 7% Dimethyl
sulfoxide (DMSQ) (Sigma-Aldrich). Chemically competent bacteria were dispensed into

pre-chilled 1.5 mL Eppendorf tubes and stored at -80 °C until use.

2.2.2 Heat-shock transformation

For each transformation, 100 pL of ice-cold (thawed) competent E. coli were gently
mixed with plasmid DNA (5 pL, 100 ng/uL) in a pre-chilled sterile Eppendorf tube and
incubated on ice for 20 mins. Cells were then incubated in a heat block for 1 min at 42 °C
and immediately transferred back to on ice for 2 min. A 900 plL aliquot of SOB with
catabolite repression (20 mM glucose) (SOC) was added, and the E. coli were incubated
for 60 min at 37°C. Finally, the bacteria were centrifuged at 3000 X g for 5 min at RT
(Eppendorf 5415D centrifuge), and the bacterial pellet was resuspended in 100 uL of
fresh SOC, then plated onto LB Agar plates (with or without antibiotics) and cultured
overnight at 37 °C. Transformed bacteria were stored in 15% (v/v) glycerol solution at -

80 °C until use.
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2.2.3 DNA mini-prep purification

Plasmid mini-preparations were performed using ISOLATE-II Plasmid Mini Kit (Bioline)
following the manufacturer’s instructions. Briefly, centrifugation steps were 12,000g for
1 min at RT. Transformed DH5a E. coli in 5 mL LB containing 80 pg/mL ampicillin was
first harvested by centrifugation for 30 s. Cells were then resuspended in 250 pL
Resuspension Buffer (P1) containing 0.4 mg/mL RNase-A, lysed by incubation with 250
puL alkaline Lysis Buffer (P2) for 5 min at RT, and neutralised with 300 upL acid
Neutralisation Buffer (P3). The lysate was clarified by centrifugation for 5 min. A volume
of 750 ulL clarified supernatant was pipetted into a silica column and centrifuged. The
column was then cleaned by a 2-step washing with 500 pL preheated (50 °C) Wash Buffer
(PW1) and 600 pL Wash Buffer (PW2, containing 80% ethanol), where each wash step
was followed by centrifugation. Residual ethanol was removed by centrifugation for 2

min before finally eluting the plasmid DNA in 50 pl of elution buffer (PE).

2.2.4 DNA maxi-prep purification

Plasmid maxipreparation was performed using the PurelLink HiPure Plasmid Filter
Purification Kit (Life Technologies) following a similar protocol, starting with a 200 mL
culture volume. In addition, eluted plasmid DNA was precipitated with 10.5 mL
isopropanol followed by centrifugation at 12,000 X g for 30 min at 4 °C. After
centrifugation, and plasmid DNA was resuspended with 5 mL 70% ethanol followed by
another centrifugation at 12,000 X g for 5 min at 4 °C and air-dried for 15 min at RT then

finally resuspending in 500 uL TE buffer.
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2.3 Cell Biology Methods — Mammalian Expression

2.3.1 Mammalian cell tissue culture

Human embryonic kidney cells contains the SV40 large T antigen (HEK-293T) were the
gift of Dr Grant Logan (CMRI, Australia) [125]. HEK-293T cells were grown in Dulbecco’s
Modified Eagle medium (DMEM, pH = 7.4) (Gibco) supplemented with 5% heat-
inactivated fetal bovine serum (FBS) (Invitrogen), 100 U/ml penicillin and 100 mg/ml
streptomycin (Gibco), in a 37°C humidified 5% CO; incubator. HEK-293T cells were sub-
cultured twice weekly at a ratio of ~1:8. In brief, media was discarded, and cells were
washed with 0.9% normal saline (NaCl) (Baxter) incubated in 5 mL 0.25% (w/v) Trypsin-
0.53 mM EDTA solution (Gibco) for 5-10min at 37 °C, to detach from the plastic culture
vessel. Fresh DMEM containing 10% FBS was added; then, the cells were harvested by
centrifugation at 350 X g for 5 min at 4 °C in 50 mL Falcon tubes. The cell pellet was
resuspended with approximately 10 mL of fresh DMEMS5 before transferring it into a

new tissue culture flask.

2.3.2 Calcium phosphate DNA transfection

HEK-293T cells were seeded into 6- or 24-well tissue culture dishes (Corning) on the
previous day and at confluency sufficient to reach ~70% confluency by the next day.
Media was removed and replaced 2 hours before transfection. For 6-well dishes, a
mixture containing a total of 2 ug of plasmid DNA for each plasmid, plus 10 pL of 2.5M
CaCl; (Sigma-Aldrich) diluted to a total volume of 100uL in sterile dH20 water. The DNA
mixture was then added dropwise with intermittent mixing (by vortexing) into 100 uL of
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) buffered saline (HBS) (280

mM NaCl, 1.5 mM Na;HPQO4, 50 mM HEPES, 10 mM KCI, and 12 mM Dextrose, pH = 7.05)
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and incubated for 20 min at RT. The precipitated DNA mixture was then evenly added
to cells by pipetting. Culture media were replaced with fresh DMEMS5 after culture for 4
hours, and the cells were incubated for a further 36 hours before harvesting, depending
on the experimental needs. Transient transfection volume was scaled down

proportionally for 48-well dishes.

2.3.3 Cell harvesting

Transfected cells were first detached from the bottom of the tissue culture vessel by
gentle pipetting. Single-cell suspensions were prepared, where cells were gauze-filtered
(100 um gauze, Sefar) to remove cell aggregates that would otherwise cause blockage
in the flow cytometer. Cells were then collected by centrifugation at 350 x g for 5 min
at 4 °C. To eliminate potential biohazard, harvested cells were fixed with 1 ml 4% (v/v)
paraformaldehyde (PFA) in 1 X Phosphate-Buffered Saline (PBS: 137 mM NaCl, 2.7 mM

KCl, 10 mM NazHPO4 and 1.8 mM KHPOa) prior to flow cytometry data acquisition.

2.3.4 Cell Live/Dead staining

The LIVE/DEAD™ Fixable Blue Dead Cell Stain Kit (Invitrogen™) was used to determine
the viability of cells prior to PFA fixation. The stain is designed to be excited by a UV laser
(350 nm) and detected at around 450 nm wavelength. For every 40 cell samples, 50 pl
of anhydrous DMSO was added to one vial of the fluorescent reactive dye, which both
were freshly thawed and brought to room temperature immediately before use. For
each cell sample, collect around 1x108 cells in suspension and wash the cells once with
1 ml of PBS. After resuspending the cells with 1 ml of PBS, 1 ul of the reconstituted
live/dead dye was added to each cell sample and mixed well with gentle vortexing.

Following 30 minutes of incubation at RT in the dark, the cells were rewashed using 1

51



mL PBS and then resuspended with 1 ml 4% (v/v) PFA in PBS. PFA fixation was carried
out at RT for 15 minutes, and then the cells were washed and resuspended for the last

time using 1 ml PBS with 1 % (w/v) BSA.

2.4 Flow Cytometry

2.4.1 Single-cell sorting

To establish the true ground of the singlet and non-singlet populations, single-cell
sorting was conducted using the non-transfected cells. The Symphony S6 cell sorter
(Becton-Dickinson) performed cell sorting with samples’ concentration of around 1x10°
cells per ml PBS in suspension. The six-step singlet gating using FSC-A/SSC-A, FSC-H/SSC-
H, FSC-A/FSC-H, SSC-A/SSC-H, FSC-H/FSC-W and SSC-H/SSC-W scatterplots were formed
on site with the non-singlet identified as events outside those gates. Cells were sorted
into tissue culture plates and directly examined using microscopy. Of note, there is a
potential bias from the cell sorting samples due to the possibility that non-singlet events
at the detection point might be disrupted into single cells by the high-speed fluidic

sorting procedure.

2.4.2 The detection of two-protein three-colour FRET

To test the FRET algorithm for detecting TNFR1 homodimer interactions, cells were
separately co-transfected using pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-eYFP for
eCFP — eYFP FRET detection, pcDNA3.TNFR1-eYFP + pcDNA3.TNFR1-mRFP for
eYFP - mRFP FRET detection, and pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-mRFP for
eCFP - mRFP FRET detection. For FRET-negative controls, pcDNA3.TNFR1-eCFP +

pcDNA3.CD27-eYFP, pcDNA3.TNFR1-eYFP + pcDNA3.CD27-mRFP, and pcDNA3.TNFR1-
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eCFP + pcDNA3.CD27-mRFP transfected cells were used for each of the detection of
above FRET signals, respectively. In order to test the reliability of the FRET algorithm,
harvested cell samples were divided into duplicate sets of FACS tubes and data were
acquired on an LSR-Il flow cytometer (Becton-Dickinson) equipped with UV 355 nm (20
mW), violet 405 nm (25 mW), blue 488 nm (20 mW) and red 635 nm (20 mW) lasers and
a Fortessa X20 flow cytometer (Becton-Dickinson) equipped with violet 405 nm (50 mW),
blue 488 nm (100 mW) and red 640 nm (40 mW) lasers, on the same day. The cytometry
acquisition settings were as follows: first, the FSC-A/SSC-A and SSC-A/SSC-H scatterplots
were drawn to detect cells with the FSC threshold set at 5000, then the FSC-A/FSC-H,
SSC-A/SSC-H, FSC-H/FSC-W and SSC-H/SSC-W scatterplots were used to define and gate
on single cells. Next, the unstained pcDNA3 empty vector-transfected cells and single-
colour controls (single transfections with CFP, YFP or RFP expression plasmids) were
acquired and used to adjust the laser voltages and set the compensation values to
minimize bleed-through into adjacent channels. This is necessary due to the broad

emission spectra of these fluorophores.

For detector configuration, the eCFP donor, eCFP — eYFP and eCFP - mRFP FRET
emissions were all detected on the 405 nm violet laser detector array, with 450/50 nm,
500 LP 546/10 nm and 595 LP 610/20 nm filters on the LSR-Il and with 450/50 nm, 505
LP 540/10 nm and 600 LP 610/20 nm filters on the Fortessa X20. The YFP donor/acceptor,
mMRFP acceptor and eCFP->mRFP FRET emissions were all detected on the 488 nm blue
laser detector array, and of note, due to the lack of 561 nm laser on both flow
cytometers, the mRFP was excited with the 488 nm blue laser. In detail, the emissions

were detected with 500 LP 530/30 nm, 635 LP 670/14 nm and 595 LP 610/20 nm filters
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on the LSR-1l and with 505 LP 542/27 nm, 635 LP 695/40 nm and 600 LP 610/20 nm filters
on the Fortessa X20, respectively. The co-transfected cells were then examined using
two-parameter dot plots to define single-colour FP and double-positive (eCFP and eYFP,
or eYFP and mRFP, or eCFP and mRFP) co-transfected cells. Generally, data from 30,000
cells were collected using the FACS DIVA software (v8.0.2, Becton-Dickinson). FACS data

were recorded and exported as 18-bit flow cytometry “.FCS3.0” files.

2.4.3 The detection of three-protein six-colour FRET

To test the FRET algorithm for detecting TNF-recruited TNFR1 homotrimer interactions,
cells were co-transfected using the pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-eYFP +
pcDNA3.TNFR1-mRFP plasmids. For comparison and validation, at each of the eCFP,
eYFP and mRFP positions, the TNFR1 fusion protein plasmid was replaced by the TNFR2,
CD27 fusion protein plasmid or simply replaced by the pcDNA3 empty vector. The LSR-
Il was used with the same hardware configuration described in the detection of two-
protein three-colour FRET section for data acquisition. However, all eCFP, eYFP, mRFP,
eCFP — eYFP, eYFP - mRFP and eCFP — mRFP detection channels were used

simultaneously.

The FRET algorithm for the three-protein six-colour FRET analysis was also tested using
the Aurora™ full-spectrum flow cytometer (Cytek) data and the conventional
multichannel filter-based LSR-Il flow cytometer. The full-spectrum flow cytometer was
equipped with a 405nm (100mW) laser, a 488nm (50mW) laser, a 561nm (50mW) laser
and a 640nm (80mW) laser. The laser-detector modules each have 16, 14, 10, and 8
detector channels, spanning 420-829nm, 498-829nm, 567-829nm, and 652-829nm,
respectively (Appendix Figure 1). FCS data were recorded using the SpectroFlo software
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(version 2.2.0.3), with the FSC threshold set to 200,000. With 10,000 events in the single

cell gate, data were recorded and saved as 22-bit “.FCS3.1” files.

2.4.4 The simultaneous detection of three-protein six-colour FRET with cell signalling
To evaluate the possibility of simultaneously detecting multiple cells signalling pathway
fluorescence reporters and the three-protein six-colour FRET emissions, cells were co-
transfected with the pcDNA3.TNFR1-eCFP + pcDNA3.TNFR1-eYFP + pcDNA3.TNFR1-
mMRFP plasmids and the pGL4.23.NF- k B-[miniP]-miRFP703 inflammation reporter
plasmid. The pGL4.23.NF-kB-[miniP]-miRFP703 inflammation reporter plasmids with
different copies of NF-k B response elements were used for each transfection to
determine the optimal signal-to-background ratio. Also, live/dead staining was

performed on transfected cells before sample harvesting.

For flow cytometry data acquisition, the LSR-Il flow cytometer was used, and the
configuration was upgraded from the three-protein six-colour FRET configuration
mentioned in the last section. In addition to the eCFP, eYFP, mRFP, eCFP — eYFP,
eYFP—-mRFP and eCFP—>mRFP detection channels, a 410LP 450/50 nm detector was
used on the 355nm UV laser array for live/dead detection, and a 710LP 730/45 nm

detector was used for the miRFP703 inflammation reporter detection.

2.5 Microscopy

2.5.1 EVOS FL cell imaging system
The expression of TNFR-fluorescent fusion proteins in 293 cells was confirmed by the

EVOS FL cell imaging system (Life Technologies) before harvesting for the flow cytometry
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detection or live-cell imaging. Cells were inspected, and images were taken under a
transmitted channel and three fluorescence channels with filter cubes: CFP (445/45
excitation; 510/42 emission), YFP (500/24 excitation; 524/27 emission) and RFP (531/40
excitation; 593/40 emission). The light-emitting diode (LED) intensities were fixed for
illumination in each channel under 10x objective lens (LPlanFL PH2, NA 0.30, WD 1.2
mm), transmitted (50% LED-intensity), CFP (30% LED-intensity), YFP (30% LED-intensity)
and RFP (40% LED-intensity). Images were captured with a built-in ICX285AQ colour

charge-coupled camera (Sony).

2.5.2 Live-cell imaging

The live-cell A1R confocal microscopy (Nikon) was used to examine the optimal sample
harvesting time for the detection of flow cytometry-based FRET. The A1R data
characterised the expression profiles of the human CD27, TNFR1 and TNFR2 -eCFP, -
eYFP and -mRFP fusion proteins. The HEK-293T cells were transfected, and after the
initial 6 hours of incubation, a total of 48 hours of live-cell imaging was performed after

replacing the transfected cell culture with the fresh medium.

The eCFP, eYFP, and mRFP emission was excited by the 30 mW 458 nm, 514 nm and 561
nm lasers and detected at 482/35 nm, 540/30 nm and 595/50 nm, respectively.
Emissions were detected through a Plan Apo A 20x lens (numerical aperture: 0.75,
refractive index: 1.0). A cell without expressing TNFR1-RFP was also analysed to
generate the background. In addition, the expression of miRFP703 inflammation
reporters were also examined using the Nikon A1R confocal microscopy using the 50

mW 637 nm laser and detected at 650 nm LP.
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2.5.3 Full-spectrum imaging

The maximum detection ranges of the eCFP, eYFP and mRFP fluorophores were
examined using the Leica Stellaris 8 confocal microscopy platform. The excitation range
was from 440 nm to 790 nm with a 1 nm step size, and the emission detection range

was from 450 nm to 830 nm with a 5 nm step size.

2.6 Software and Online Server

2.6.1 Primer design

The oligonucleotide primer sequence design was conducted using the Primer Premier
software (version 6.0). The appropriate oligonucleotide primer annealing temperature
(Tm) for SDM using the Q5 high-fidelity DNA polymerase (New England BiolLabs) was

estimated using the online NEB Tm calculator (https://tmcalculator.neb.com). For PCR

using non-NEB polymerase products, the appropriate annealing temperature was

estimated using the SnapGene software (version 5.2.0).

2.6.2 Sequencing analysis

For sequencing analysis, the sequencing chromatogram “.ab1” files were analysed using
Python with the SeqlO.read function in the Biopython package (version 1.80). Sequences
were aligned using the Basic local alignment search tool (BLAST) from the National

Centre for Biotechnology Information (NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

For sequence alignment of human and poxvirus vVTNFRs, the Clustal Omega online server

was used with the default parameters (https://www.ebi.ac.uk/Tools/msa/clustalo/).
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2.6.3 TRAPS mutation sequencing design
The registry of hereditary autoinflammatory disorders mutations website was used

(https://infevers.umai-montpellier.fr) to design SDM for TRAPS mutations within the

PLAD/CRD1 and CRD4 homodimer interaction critical domains. The website provides
TRAPS mutation sequence records of the TNFRSF1A gene. The TRAPS mutation

sequence map was generated using the SnapGene software (version 5.2.0).

2.6.4 Flow cytometry singlet manual gating data generation

To generate the ground truth data for singlet identification using the manual gating
strategy, the six-step manual gating was performed on collected flow cytometry data
(as mentioned for single-cell sorting). FCS files were examined using FlowJo (version
10.8.1), and manual gating was conducted using the polygon gate drawing tool. Gated
singlet and non-singlet data were exported as “.csv” files and used to evaluate the

singlet identification algorithm performance.

2.6.5 Example FCS data for algorithm validation and application demonstrations

FlowRepository is a database of flow cytometry experiments where data gathered and
annotated according to the MIFlowCyt standard can be queried and downloaded. It is
widely utilised as a repository for experimental findings published in peer-reviewed flow
cytometry journals. In addition to the samples created and relative data collected in this
study, three collected flow cytometry datasets on  FlowRepository

(https://flowrepository.org/) were used to further validate and demonstrate the

applications with the FRET algorithms developed in this study. For the chemically linked
eGFP-mRFP FRET pairs (Repository ID: FR-FCM-ZZGR) [16], the small molecule IAA/Auxin

detection in plant cells (Repository ID: FR-FCM-Z3FL) [34], and the human cluster of
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differentiation 4 receptor to T-cell receptor (CD4-TCR) interaction detection (Repository
ID: FR-FCM-ZZR6) [126], the flow cytometry datasets were downloaded and used in this
study. These datasets were searched using the keyword “FRET” and selected as they
have the proper single colour controls and are fully described in published peer-

reviewed journals.

2.6.6 Microscopy fluorescent intensity quantification

To perform live-cell imaging quantification, the “.nd2” confocal imaging data file was
analysed using the Imagel software (version 1.53). Image data files were imported and
analysed in batch mode using the ImageJ) Macro language (IJM). In detail, the files were
imported using the “Bio-Formats Macro Extensions” function, and then the
multichannel data were split into several individual channels using the “Split Channels”
function. Within each fluorescent channel, the MFI was calculated for the entire imaging
field at each data collection time spot (for live-cell imaging) or at each excitation and
emission step (for full-spectrum imaging). The measured MFI data were exported as

“.csv” files.

2.6.7 Myxoma virus MT2 structure and MT2::TNFR1 interaction predictions
The Myxoma virus MT2 structure was predicted using the AlphaFold2 Colab online
server

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold

2.ipynb) [127]. The Myxoma virus MT2 ORF (NCBI accession: AAA46632) was used as the
query sequence. Sequence alignments/templates were generated through MMseqs2
and HHsearch. The best-predicted model was created as “.PDB” files and three

prediction performance plots were also generated: (i) number of sequences per position,
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(i) predicted local distance difference test (IDDT) per position, which is the percentage
of the model prediction confidence at each position, and (iii) the predicted alignment
error. The MyxMT2 protein predicted structure was then examined using the ChimeraX
(version 1.4) to align with the TNFR1 homodimer structure (PDB ID: 1NCF) using the
Matchmaker function with the default parameters. After structure alignment, the

alignment score and the root-mean-square deviation (RMSD) were generated.

2.7 Algorithm Designs and Implementations

2.7.1 Automatic optimal channel selections for full-spectrum flow cytometer

Unlike the conventional filter-based flow cytometers that record the fluorescent
intensity using pre-configured filters, the full-spectrum flow cytometer measures the
fluorescent data using all 48 channels (for 4-laser Cytek Aurora flow cytometer) or all 64
channels (for 5-laser Cytek Aurora flow cytometer). Because the fluorescence emission
is broadly detected in multiple channels, an optimal channel was determined by
principal component analysis (PCA). The channel with the highest variance contribution
in the PC1 dimension was selected, indicating the most extensive separation between
fluorescent-negative and fluorescent-positive populations. PCAs were performed using

the “decomposition.PCA” function of the scikit-learn package (version 1.2.0) in Python.

2.7.2 Algorithm design for UltraFast singlet identification

The UltraFast algorithm was developed for automatic unsupervised flow cytometry data
singlet identification. The algorithm has a total of six stages. The first stage of UltraFast
was to remove the background noise data from the primary cell population using the 2D
gaussian model fitting using the FSC-A and SSC-A channels. The method was previously

described by Razo-Mejia et al. with the threshold set to 0.4 [128], and for UltraFast, the
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threshold value was set to 0.95. The second stage was to normalise the data and shrink
the massive data linear scale differences of the cells and small debris into a closer
logarithmic scale range. The SSC-A, SSC-H, FSC-A and FSC-H data were transformed into
the logarithmic scale, and the SSC-W and FSC-W parameters were not transformed
(linear scale) to maintain the sensitivity for outliers. Bringing the logarithmic and linear
scale to the same data range, the data were then standardised to have the same mean
= 0 and variance = 1. The third stage of UltraFast further transforms the six-dimensional
data (FSC-A/W/H + SSC-A/W/H) into two-dimensional space using the dimensionality
reduction algorithm PCA. The two-dimensional data further allowed the process in stage
4 to split the data points into square grids for higher computational efficiency. Moreover,
the grid number is the only hyperparameter that needs to be specified by users; the
squared grid number defines the total number of grid boxes used for data
transformation. Intuitively, the higher the grid number, the more stringent the UltraFast
algorithm will be toward singlet identification. The data within each grid box was then
used to calculate the population density, and the elbow point of density change was
identified using the elbow method in stage 5. The elbow point was identified by
connecting a line between the curve's start and end. Then, the elbow point method
calculated the distance of each data point on the curve to the connected line. The data
point with the largest distance to the line was identified as the elbow point representing
the cut-off point between high-density and low-density data. In the last stage, the
DBSCAN algorithm was used for unsupervised clustering. The grid size can be calculated
from the grid number defined in stage 4, and then it was converted to the ¢
hyperparameter as the data neighbourhood radius for the DBSCAN algorithm. Moreover,

the automatically identified population critical cut-off point using the elbow point
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method was also converted to the MiniPts hyperparameter for the DBSCAN algorithm.
Therefore, the UltraFast algorithm can be automatically performed using only one user-
specified hyperparameter, the grid number. Additionally, at the last stage, only the
primary cluster identified by UltraFast was identified as singlets, and other tiny clusters

that did not merge with the primary cluster were identified as non-singlet events.

Several well-established unsupervised clustering algorithms were also tested to
compare the performance of the UltraFast singlet identification algorithms. The data
was processed the same through stage 1 to stage 3 as UltraFast for a fair comparison.
The algorithms were run with iterations with different values for the required
hyperparameters, and the optimal singlet identification results were returned with the
highest F1 score compared to the manual gating results. In particular, the FlowGrid [102],
K-Means [94], G-Means [97], X-Means [98], flowMeans [95], GMM [107], flowClust [105],
TASBE with 2D gaussian covariance chi-squared test [86] were used for comparison with

the UltraFast algorithm developed in this study.

2.7.3 Algorithm design for baseline subtraction-error correction

The unsupervised collaborative filtering (CF) recommendation algorithm was employed
as the core algorithm with additional data processing and transformation to correct the
negative fluorescent intensity values generated during baseline subtraction. Firstly, each
single data point containing at least one negative error value was removed from the
entire multichannel data, converting the negative data into missing data that needed to

be predicted.

For predicting the correct fluorescent intensity of the missing data, the CF algorithm was

implemented as below (Eq.4), where n,, is the number of cells, n,, is the number of
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detection channels, r(i,j) = 1if cell j has detected fluorescent intensity in channel i,
and y(®J) is the fluorescent intensity from cell j in detection channel i, and it only exists

whenr(i,j) = 1.

Equation 4 The collaborative filtering recommendation algorithm
Given x@, ..., xm) and their fluorescent intensities to estimate attributes

oW @ g,
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The number of attributes was set to 50, and the cost functions were iteratively and
simultaneously updated for both 8 and x, until the differences between the original
good-quality data and the predicted good-quality data were minimised (< 1x108). Then
the predicted values for original poor-quality negative data were used to replace those
negative values in the original data. The formulation and the implementation of this

background subtraction correction algorithm were performed in Python (version 3.9.0).
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In particular, the cost function minimisation was designed using the conjugate gradient

algorithm “optimize.fmin_cg” function in the SciPy package (version 1.9.3).

2.7.4 Algorithm design for autofluorescence prediction and removal

For autofluorescence prediction, the exact algorithm logic, design, and implementation
were performed as the CF recommendation algorithm listed in the baseline subtraction
correction section. The number of learned attributes was set to 30, and the data was
structured differently before implementing the CF recommendation algorithm. In detail,
the fluorescently unlabelled cell sample (e.g., mock-transfected cells) was concatenated
with each of the fluorescently labelled cell samples, where the autofluorescence
intensities of the fluorescently unlabelled data were the same as the detected
fluorescent intensities. For autofluorescence prediction of the fluorescently labelled cell
sample, the CF algorithm was implemented with the n,, is the total number of cells of
the concatenated data, n,, is twice the number of the total detection channels, and
r(i,j) = 1 for all data except for the upper left block of the autofluorescence values that
needed to be predicted. Once the autofluorescence values were predicted, the
autofluorescence was removed from the sample by subtracting the predicted single-cell
level channel-wise autofluorescence value from the detected fluorescence for each

individual cell in each detection channel.

2.7.5 FRET spectral unmixing

In order to perform FRET spectral unmixing, the original detected and pre-unmixed total
fluorescent intensity of each detection channel needs to be formulated as the mixture
of emissions from the involved fluorescence components (Eq.5-Eq.8). The fluorescent

intensity of each laser-excited emission was notated as I, that I; to I; are the total
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detected fluorescent intensities from the allocated detection channels for eCFP (cyan
highlights), eCFP—eYFP FRET1 (green highlights), eCFP—mRFP FRET3 (purple highlights),
eYFP (yellow highlights), eYFP—mRFP FRET2 (orange highlights), mRFP (red highlights)
and autofluorescence (grey highlights). Since the autofluorescence was predicted and
removed using the CF recommendation nonlinear unsupervised algorithm, thus the
Lyutor1 In each equation can be removed and the I; to I; were detected fluorescent
intensities after autofluorescence was removed. The I;(AutoFl) should no longer be
needed and thus require one less detection channel assigned for autofluorescence

detection.

Equation 5 The eCFP—eYFP FRET1 fluorescence components

I,(eCFP) = 1 Icpp(1 — Eppgr1) + z_; * @prer1lecrpEprers + S7 * leyrp + S19 * Lautort
I,(eCFP — eYFP) = Sy * loepp(1 = Epggra) + 1 * @prerilecrpErrera + Ss * leyrp + S20 * lautort
I,(eYFP) = S3 * loepp(1 = Epgpry)| + é& * @prer1lecrp Eprers + 1 * loyrp + S22 * Lautor
I (AutoFl) = S * lecpp(1 — Epgpry) + 551_82 * @prer1lecrp EFRET1 t+ S12 * leyrp + 1 % Lyytor

Equation 6 The eYFP-mRFP FRET2 fluorescence components

s
1,(eYFP) = 1% loypp(1 — Epgpr2) + 5 *\@prer2leyrp EprET2 + S16 * 100089 T S22 * Lautort

Is(eYFP - mRFP) = S * loypp(1 — Epggrz) + 1 * @preraleyrpErrera + S17 *+ S23 * Lautort
1
I¢(mRFP) = S11 * Loyrp (1 — Epggra) + S E rrer2leyrp Eprerz| + 1 * 180923 + S24 * Lautort

s
I;(AutoF1) = S12 * leypp (1 — Epgpr2) + 553 *\@pper2leyrp Eprera + S1s *10000d + 1 * Liutor:
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Equation 7 The eCFP—-mRFP FRET3 fluorescence components:

I, (eCFP) =1 *_+ iﬁ *+ S13 *[BNFA + S10 * Lautor
I;(eCFP — mRFP) = S, + IgeRpilirners) + | [T ) + Sis * [+ S21 * Laucor
Wonkeey =, - D) + <. - [+ 1 [ ..+ o
I, (AutoF1) =S, *_+ jﬁ *+ Sig [ & 15 [yom

Equation 8 The eCFP—eYFP—mRFP three-way FRET fluorescence components:

1 (eCFP) = 1+ lecep (L = Efners = Etners) + 3, » @eneralecerEfners (1 = Epners) +
:—Z *+ S7 * leyrp (1 — Epgera) +
2—353 *_+ Sz * BT+ S10 * Lyytort

I,(eCFP - eYFP) =5, « [ECRpCU N RRET I JERRETS) + 1 * @rrerilecrpbrnera(l — Erpera) +
2—‘5’ *+ Sg * leypp(1 — Epperz) +
:—:83 *_+ S14 B89 + S20 * Lautort

2 (eCFP ~ mRFP) = 5, » locrn(1 = Eners = Efera) + 5 » @rnrslecer Efners (L~ Ernera) +
1 *+ So * leypp(1 — Epper2) +
:—jsg, *_+ Sis * BT+ S21 * Latort

L4 (eYFP) = S * lecer(L = Efners = Efnera) + 5, €1+ enarslecrr Epners (1 = Ernera) +
e s R T ee) -+ 1+ Loyep (1 = Ergpra) +
2_: *_+ Si6 * B33+ S22 * Lautort
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8

I,(mRFP)

I, (AutoFl)

In each equation above, the S parameters are the spillover coefficients calculated with
the single colour control samples using the RANSAC robust linear regression (Eq.9) (see
section 2.8.3 and Appendix Figure 2). The € parameters are the excitation coefficients
ratios of each FRET-donor and FRET-acceptor fluorophores measured at the specific

laser excitation wavelength (Eg.10), which the data were obtained from the online

S. !
ﬁSS * IR BT (I W Y] + S0 * leyrp(1 — Epper2) +
L+ @rngraleverBrnera + Si7 [ + 525 * o

1 ’
SLf6* TSy T U T AT Y) + S 1 * loypp(1 — Epgpra) +
1
S Ee* + 1« VNI + Sou * Lautort
s
BB -t~
Sg
S18 ’
e i e P AT T e R ST ted + S12 * leyrp (1 — Epgpra) +
518 ¢, + S, x|t +1x1
;33 18 * QI AutoFl

database FPbase [117].
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Equation 9 Spillover coefficients

eCFP eCFP eCFP eCFP eCFP eCFP
P A S S R U S S A
1= 7eCFP’ 2 =~ jeCFP’ “3 ~ jeCFP’ “4 ~ jeCFP’ “5 ~ jeCFP’ “6 ~ jeCFP
I Iy Iy Iy I I
JEYFP ISYFP ISYFP IEYFP [EYFP JSYFP
S7 = JeYFP / Sg = JEYFP Sq = JeYFP / S10 = JEYFP S = JEYFP S12 = eYFP
4 4 4 4 4 4
m m m m m m
[mRFP [IRFP [IRFP [[PRFP [IRFP [IRFP
S13 = [MRFP + O14 = [MRFP / S15 = JmRFP / S16 = [mRFP 1 ©17 = [mRFP + 918 = [mMRFP
6 6 6 6 6 6
IAutoFl IAutoFl IAutoFl IAutoFl IAutoFl IAutoFl
_ha _12 _ 13 g — 4 _5 s, =20
S19 = JAutoFL’ 20 — JAutoFl’ 21 — JAutoFl’ 22 — JAutoFL’ 23 — JAutoFL’ 24 — JAutoFl
7 7 7 7 7 7

Equation 10 Excitation coefficient ratios

eCFP

eYFP

_ €eYFP laser €eCFP laser

1 ™ _eCFP

eYFP ’

€eCFP laser€eYFP laser

eYFP

MRFP

_ €eCFP laser€eYFP laser

€3 = —ovFp

MRFP ’

€eYFP laser €eCFP laser

€4 = —ovFP

SeCFP SeYFP
__ “MmRFP laser“eCFP laser
2 =™ _eCFP eYFP

€eCFP laser EmRFP laser

eYFP MRFP
_ EMRFP laser€eYFP laser

stFP
eYFP laser “mRFP laser

&

The pure FRET-donor, FRET-acceptor, FRET emission, and autofluorescence channel

data were unmixed using matrix calculations: FRET1 (Eq.11), FRET2 (Eq.12), FRET3

(Eq.13), and three-way FRET (Eqg.14). In three-way FRET the eCFP donor contributes to

eCFP—eYFP FRET1, and eCFP—>mRFP FRET3, so the FRET efficiency for FRET1 and FRET3

are annotated as Ergpr;and Epgprs to distinguish them from the FRET efficiency

notation for the two-molecule FRET. In addition, the three-molecule eCFP—eYFP—>mRFP

two-step relay FRET was termed FRET4 (Eq.15).
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Equation 11 eCFP->eYFP FRET1 spectral unmixing

Si Sy Se1t
Iunmixed 1= quenched eCFP eCFP (1 - EFRETl) 1 512
Iunmtxed 2 = Isensmsed FRET1 aFRETlleCFPEFRETl 1 < & o
Iunmtxecl 4 — IeYFP eYFP
Iunmtxecl 7 — IAutoFl IAutoFl 58 ! 512
S0 S22 1
Equation 12 eYFP->mRFP FRET2 spectral unmixing
T 1 S S11 Si2 -
Iunmixecl 4= Iquenched eYFP Ieypp (1 - EFRETZ) 14 516 1 518
Lunmixed s = Lsensitisea FreT2| _ | @rreT2! EpREr2 I5 — 1 & &
— = L %517 Si7 - Sy
Iunmixed 6 — ImRFP ImRFP 6
Iunmixecl 7= IAutoFl IAutoFl 17 516 517 ! 518
S22 S23 S2a 1
Equation 13 eCFP->mRFP FRET3 spectral unmixing
Il S S5 Se1t
Lynmixed 1 = lquenched ecrp Lecrp(1 — EFRET3) L Si3 1 Sis
Linmixed 3 = Lsensitised FRET3 aFRET3IeCFPEFRET3 I3 — 1 —& —
— Ll %S Sis © Sis
Iunmixecl 6 — ImRFP mRFP 6
Iunmixecl 7= IAutoFl IAutoFl 17 513 515 ! 518
S19 S21 S2a 1

Equation 14 eCFP—)eYFP—>mRFP three-way FRET spectral unmixing

[ Iunmlxecl 1= Iquenched eCFP |
Iunmlxecl 2= IsenSLtlsed FRET1
Lunmixea 3 = Isensitised FRET3
Lynmixed 4 = Iquenched eYFP
Lunmixea s = Isensitised FRET2
Lunmixea 6 = Imrrp
Lunmixea 7 = lautort

1 Si S,
e s
S S
Iz S13 S14

3 -— -— 1
12 ] S S
; S, S S
5
| (S, S, Sis,
L[, ] Si7 % S0 Sy C
S13 S1a Sis
L S19 S20 S21

T
eCFP (1 EFRETI EFRET3)
aFRETIIeCFPEFRETl (1 - EFRETZ)
i
aFRET3IeCFP (EFRET4 + EFRETS)

IEYFP (1 - EFRETZ)

leFRETZI(&‘YF'I:’EFRETZ
ImRFP
IAutoFl
S3 Sy Ss Se 1°
L, Sw, Su S
Sg ' Sg ' Sg % Sy
S0, S o1 S
Sis ' Sis ' Sis © Sis
1 510 Sll 512
S0 1, S,
517 517 * 517 :
516 517 1 518
522 523 524- 1

!
EFRET4- - EFRETl X EFRETZ
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2.7.6 FRET calibration and FRET quantification using FRET efficiency

The FRET efficiency depends on several factors, including (i) the overlap integral of the
FRET-donor emission and FRET-acceptor excitation spectrum, (ii) the relative orientation
of the FRET-donor and FRET-acceptor fluorophores in the dipole-dipole coupling, and (iii)
the distance between the FRET-donor and FRET-acceptor molecules. However, in this
FRET intensity-based study, FRET efficiency calculations require a previously defined a

factor (Eq.15) [118, 129].

Equation 15 The «a calibration factor
I,Sep Cp

- A
IDS/'LDCA

To conduct accurate single-cell level FRET efficiency calculations and FRET calibration for
the unlinked naturally free-interacting FRET pairs, the ratio of R, /R, was used (Eq.16),
where R; is the ratio of sensitised FRET emission and the acceptor emission detected
both in the FRET channel, and R, is the ratio of excitation coefficients-weighted
qguenched donor emission and the acceptor emission detected in the donor and
acceptor channels, respectively. All fluorescent intensity values were the spectrally
unmixed values from the previous steps. The S parameter is the sFRET-acceptor
fluorophore's spillover coefficient calculated by the amount of emission detected in the
FRET channel over the acceptor channel using the robust RANSAC linear regression. The
Cp and C, are the concentrations of FRET-donor and FRET-acceptor, which cannot be

measured directly from the flow cytometry data due to donor quenching during FRET.
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Equation 16 The ratios Ry and R, for FRET calibration
IpEa (1 -E)eg,
LTS 2T Lel

Ry _ Ip(1-E)ei, . LS 1

Ip(1— E)sz . 1S . IDstCA _ Ib(1-E) . stCA . 1
R, L&l IpEa Inef IpE  1,Sep Cp Iy e, Cp E

The Beer-Lambert Law was used to eliminate the requirement of the FRET-donor and
FRET-acceptor fluorophore concentrations (Eq.17). The flow cytometry collects cell
fluorescence through the hyperdynamic focusing system, where the cells pass through
a thin cuvette with the fixed diameter length L and are excited by multiple lasers.
Therefore, the concentration terms were cancelled in the R, /R, ratio (see Eq.16) that
permitted the true single-cell level FRET efficiency and a factor calculations for the two-

molecule FRET.

Equation 17 Single-level unlinked FRET calibration and FRET efficiency
Ip = s,{’DCD LIy = stCA L (Beer-Lambert law)

Ry _1-E_1 g1 IpEa IpEa

—_——— = — — = = — = = =

R, E E Ry “TThE LU-B,
Ry (1-E)

For three-molecule FRET as described in the eCFP—eYFP—mRFP relay FRET, the eCFP
donor contributes to eCFP — eYFP FRET1, and eCFP - mRFP FRET3, so the FRET
efficiencies (Epggriand Ergrgrs) need to be adjusted (Eq.18). For eYFP—mRFP in the
three-molecule FRET, because there is only one donor and one acceptor involved when
using the eYFP laser, i.e., the eCFP-related FRETs are not being excited, so the Epgrgra

can be calculated using the equation listed above (Eq.17).
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Equation 18 FRET efficiency for three-way FRET

R2pppr1s _ 1 — Ergpr1 — Eggers & Errera _ 1 —0 = F _ 0, — 6.6

Rlprpris Egrer 1—Efpgrs  RZprery +1 ' rRET 1+6,6;
FRET11

R2pper3: _ 1 — Exggr1 — Eggers & Errers _ 1 —0. > E _ 03 — 6,65

Rlprgrs, Egrers 1—Efpgry  R2rrerss | 4 : PRES 146,65

FRET3/

Additionally, the unquenched fluorescent intensity of each fluorophore before energy
donation during FRET can also be deducted from the unmixed fluorescent intensities
and calculated a factors (Eq.19). Of note, the accuracy of the FRET quantification using
FRET efficiencies and FRET calibration factor a are heavily dependent on the accuracy
of the pure fluorescent intensities calculated during spectral unmixing. Therefore, since
spectral unmixing is primarily based on the baseline subtraction-error correction and
autofluorescence removal, the accuracy level and the algorithm performance of all pre-

processing stages are crucial for accurate FRET quantification.

Equation 19 Unquenched fluorescent intensities

I =1 ISensitized FRET emission
Donor before donation — *Donor after donation + a

1 .
lecrp = Lunmixea1 + Lnnived2 (fOT' eCFP — eYFP)

XFRET1

I unmixed 5

Leyrp = Linmixea s + (fOT eYFP —» mRFP)

OFRET2
Iunnixed 3

lecrp = lunmixea1 + ———— (for eCFP - mRFP)
QFRET3

Iunnixed 2 Iunmixed 3

Locrp = Lynmixed 1 + + (for eCFP - eYFP - mRFP)
XFRET1 XFRET3

I ,
unmixed 5 (for eCFP — eYFP — mRFP)

leyrp = Linmixea s +
OFRET2
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2.7.7 FRET energy dynamic and cellular signalling pathway dynamic analyses

In the three-protein FRET system, the same eCFP donor simultaneously donates energy
to both the eYFP acceptor and the mRFP acceptor. In order to resolve the energy
dynamics, i.e., the competition between two acceptors, the relative FRET efficiencies
can be used to reflect the relative energy flow using the CoDA algorithm. The
compositional value transformation was conducted using data closure (Eq.20), taking

the individual real space value and divided by the sum of all involved compositions.

Equation 20 Data closure for CoDA

n;j

Zjln'l

C(nl, ...,nj) = {xi, ...,xj} where x; =

The compositional ratio was further used by dividing each transformed value by the
same reference value (Eq.21) to ensure sub-compositional coherence and eliminate the
impact of the undiscovered hidden composition or other compositions not taken into

account during data closure [130].

Equation 21 Ratio using the reference data to achieve sub-compositional coherence

Xi .
R(xi'xreference) = <—> , 1=1,..,n

Xre ference

Logarithmic transformation was further conducted on the ratio values since the
logarithmic ratio (LR) will bring the multiplicative ratio values into the additive vector
scale, allowing the LR values to be directly used for downstream statistical analysis
(Eq.22). These approaches were also applied to the detection of multiple cellular
signalling pathway reporters. When the cells were spending energy to activate multiple
signalling, the activation levels detected as the reporter fluorescent intensities were also
compositional data; therefore, they needed to be interpreted using their LRs after data

closure.
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Equation 22 Logarithmic ratios for CoDA

Xi .
LR(xi'xreference) =log| —, i=1..,n

Xre ference

In this study, the geometric mean of the data was used as the reference value, and by
dividing the logarithmic transformation on geometric mean balanced ratios, the data
was centred with zero means. The final transformed values are called the central
logarithmic ratios (CLR) (Eq.23). Having the zero mean will allow the direct application
of PCA, which requires mean zero-centred input values, for data dimensionality

reduction and data visualisation in the 2D scatterplot.

Equation 23 Central logarithmic ratios for CoDA

CLR(j) = log — N =log(x;) — —Z log(x;)

(I 1)’ 3
Jj = [locrp to (eCFP — eYFP), locpp to (eCFP - mRFP)] & [loyrp to (eYFP — mRFP)]

Multivariate linear models were constructed to explain how FRET efficiencies
(E'ecrpoeyrp and E'ocppomrrp) Were impacted by the competing dynamic energy
transfers from eCFP to eYFP and mRFP acceptors (Eg.24). In addition, the model also
included the impact of the energy transfer from the eYFP donor to the mRFP acceptor.
The independent variables are the CLR of the sensitised FRET emission values after CoDA
transformation, and the dependent variables are the logarithmically transformed FRET
efficiencies of eCFP—eYFP or eCFP—mRFP, respectively. An error term is also added to
capture the residue errors. The parameters 68, 6, and 65 represent the magnitudes of

the impacts.
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Equation 24 Multivariate linear models for dynamic energy transfers during FRET

l (El ) 0. 1 (IeCFP to (QCFP - eYFP) )
0g CFP—eyFp) = U1 l0g
: ) gMean(eCFPcomponents)

1 to (eCFP-mRFP) 1 to (eYFP-mRFP)
9210g<eCFP >+63log<eYFP +e
gMean(eCFPcomponents) gMean(eYFPcomponents)

Iecrp to (eCFP—eYFP) >+
gMean(eCFPcomponents)

log(E' ccrp—mrrp) = 61 log (

0 log(leCFp to (eCFP->mRFP) ) Iy log(leYFp to (eYFP>mRFP) ) te
2 gMean(eCchomponents) 3 gMean(eYchomponents)

2.8 Statistical analysis

2.8.1 Hypothesis tests

Permutation t-test for the means of two independent samples that does not assume
equal variance was used for the hypothesis test (Python “stats.ttest_ind” function from
SciPy package version 1.9.3) with the number of random permutations set to 100. The
null hypothesis of the permutation t-test is that two independent samples have identical
averages, and the null hypothesis rejection significance levels were p < 0.05 *, p < 0.01

** and p < 0.001 ***,

The two-sided independent t-test (Welch's t-test) was also used for the hypothesis test
between two groups of samples with the calculated means (X), variances (s), and

sample size (N;).

Equation 25 Welch’s t-test
X1 — X 2 Si

’2 2 SO
Sk~ Sx;

t =

B
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The Kruskal-Wallis H-test was used for the median of more than two independent
samples. The H-test is a non-parametric version of the analysis of variance (ANOVA),
which does not assume equal data size or variance (Eq.26). The null hypothesis of the
Kruskal-Wallis H-test is that the population median of all of the groups is equal. The null

hypothesis rejection significance levels were p < 0.05 *, p < 0.01 **, and p < 0.001 ***,

Equation 26 Kruskal-Wallis one-way analysis of variance
_ 2
Zle n (7. —7)

X X (ry - )’

H=(NN-1)

For notation details, see Kruskal and Wallis [131].

2.8.2 Singlet identification accuracy

The F1 score was used as the harmonic mean of the precision and recall to determine
the accuracy of singlet identification algorithms (Eq.27). The F1 score has the most
excellent value of 1 and the worst value of 0. Precision and recall both contribute equally
to the F1 score. The manual gated samples were used as the ground truth values. The
F1 score was calculated as follows, where TP is the true-positive count, FP is the false-

positive count, and the FN is the false-negative count:

Equation 27 The F1 score for singlet identification accuracy evaluation

TP
preClSlon = (TP n FP)
TP
reCat =P ¥ FN)

precision * recall

F1 = 2 * —
precision + recall
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2.8.3 Linear model statistics

The robust linear regression was used to determine the spillover coefficients for spectral
unmixing and the small molecule concentration detection linearity. The random sample
consensus (RANSAC) algorithm was used as the iterative robust linear regression
approach for accurate estimation of the parameters using random inliers from the
datasets because it is more robust towards datasets with potential outliers. The Python
function “linear_model.RANSACRegressor” was used from the scikit-learn package
(version 1.2.0), and the R? scores and mean absolute errors were calculated as the

spillover linearity scores and the spillover coefficients fitting errors.

The Pearson correlation coefficient was used to measure the linear relationship
between two fluorescent intensity values from two different detection channels using

7 "

the Python SciPy (version 1.9.3) package’s “stats.pearsonr” function.

For fitting the multivariate linear regression model for the three-protein FRET energy
dynamic analysis, the ordinary least squares linear regression was used with Python
scikit-learn (version 1.2.0) package’s “linear_model.LinearRegression” function. The R?

score was used to evaluate the amount of data explained by the linear model.

2.8.4 Spectral unmixing spread error

The spectral unmixing spread error was previously formulated by Nguyen et al. as the
compensation spread error [87]. The spillover spreading for a given detector/spillover
channel pair can be estimated by taking the square root of the difference in squared
robust standard deviations of recorded fluorescence intensity from unstained negative

and single-colour control populations (Eq.28):
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Equation 28 The spread error
R(SFLI = RC;L1(95) - RC;‘LI(SO)

S5FL1 = SC;m (95) - SC;m (50)

ACr, = SC;'LZ (50) — RC;LZ (50)

Mdry = S0, — RoF,  SEFE =t
In the equation above, the optimal and secondary detection channels are notated as
FL1 and FL2, and the single-colour and unstained reference controls are S and R. For
detected emissions, the parameters (C*) are the fluorescence intensity values of the
spectrally unmixed single-colour control samples, and the § are the standard deviations
adjusted to use the 50" and 95™ percentiles of the fluorescent intensity values. The
calculated spread errors were the final SE values. Of note, the SE was originally
calculated using the 50t and 84" percentiles [87] but was set to use the 50" and 95

percentiles to increase robustness when evaluating the FRET algorithm performance.

2.9 Data visualisaton

2.9.1 PCA for dimensionality reduction

To visualise the CoDA transformed data with the five-dimensional quenched eCFP,
guenched eYFP, sensitised eCFP — eYFP FRET, sensitised eCFP - mRFP FRET and
sensitised eYFP - mRFP FRET data, PCA was used with the CLR transformed five-
dimensional data to reduce them into a two-dimensional scatter plot for easy data
visualisation. Again, PCAs were performed using the “decomposition.PCA” function of

the scikit-learn package (version 1.2.0) in Python.
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2.9.2 Data plots and graphs
All histograms, scatter plots, violin plots, bar graphs, radar plots, spectrum viewer
graphs and flow cytometer configuration graphs were generated using the python

matplotlib (version 3.6.2) and seaborn (version 0.12.1) packages.

2.10 Data and code availability

All data and codes used in this study are available on the GitHub host server

(https://github.com/Edward-Z-Ni/CUBE) and the University of Technology Sydney

eResearch GitLab server (https://code.research.uts.edu.au/12831196/cube). Access

can be granted upon request. The GitHub and GitLab repositories are called “CUBE”,

which stands for the “Cytometry Utilities Box Expansion”.
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CHAPTER THREE

BIOLOGICAL SAMPLES PREPARATION FOR

FRET AND CELL SIGNALLING
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3.1 Introduction

This thesis presents the development of an in-situ flow cytometry-based PPI detection
platform at the true single-cell level. The platform provides unsupervised ML-powered
FRET algorithms to analyse the simultaneous detection of multiprotein FRET and
numerous intracellular signalling pathway activities. For the accurate quantification of
unlinked and naturally free interacting PPIs involving two and three protein molecules,
the algorithms achieve error-free baseline corrected, autofluorescence removed, and
spectrally unmixed FRET readouts. Human receptor proteins from the tumour necrosis
factor receptor superfamily (TNFRSF) and poxviridae-encoded human TNFR homologous
— viral TNFRs (VTNFRs) biological samples were prepared in this study to evaluate the
capability of applying this flow cytometry-based PPl detection platform in conducting
biologically meaningful and clinically significant investigations. The human TNFRs
(huTNFRs) and vTNFRs were constructed as the fluorescent protein (FP) fused proteins
to permit the mammalian cell expression and fluorescence detection by this flow

cytometry-based FRET platform.

The human TNFRSF consists of cytokine receptors which are identified by their highly
conserved, cysteine-rich domains (CRDs) in the extracellular region [132]. TNFRSF
proteins are categorised by their ability to bind cytokine ligands from the tumour
necrosis factor superfamily (TNFSF) via those conserved CRDs (Figure 12). TNFR1
receptors contain four extracellular CRDs (CRD1, CDR2, CRD3, and CRD4) [133]. Previous
studies have suggested that the TNF ligand binds to the CRD2 and CRD3 of the TNFR1
receptors, and the ligand-induced TNFR receptor trimerization causes the cell surface

TNFR1 aggregation and intracellular signalling activations [134].
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Figure 12 Select members of the TNF and TNFR superfamily

TNF superfamily ligands (TNFSP, purple; top) are trimeric proteins that bind to TNF superfamily
receptors (TNFRSF, blue; bottom) and contain variable copies of cysteine-rich domains (CRDs).
It also displays the primary cell types that respond to TNF-TNFR signalling. Receptors containing
death domains (DD, red) can promote apoptotic cell death (TNFR1, Fas, TRAIL1 and TRAIL2).
(Reprint license number: 5461390797269, license data: Jan 03, 2023) [132]

More recent studies showed that there is also a “pre-ligand assembly domain” (PLAD)
located within the N-terminus of CRD1 on TNFR1 [71, 135]. Thus, it has been suggested
that TNFRs exist as pre-assembled dimeric complexes prior to TNF binding and can
further form, a more complex trimeric conformation as trimers of dimers upon TNF
binding [136]. Therefore, TNFR1 was utilised for this study due to its inherent capacity
to form transmembrane dimers and symmetrical ligand-bound trimers [120, 137-139]
that allow the validation of both the 2-protein 3-colour FRET and the 3-protein 6-colour

FRET algorithms (see section 5.2.2 and section 6.2.1). For FRET-negative controls, CD27
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and TNFR2 were used as non-TNFR1-interacting structurally similar proteins from the

same protein superfamily [134].

Fluorescent proteins served as versatile probes for all biological protein samples
prepared in this study. Green fluorescent protein (GFP) is a naturally arising fluorescent
protein (FP), first described in the jellyfish Aequorea victoria [22] but also found in many
other organisms [64, 140, 141], and red fluorescent protein (DsRed) was characterised
from the Discosoma coral. The molecular characterisation of GFP has led to the careful
strategic mutation of specific amino acids that alters GFP's absorption, excitation and
emission spectra [14, 50]. Cyan FP (CFP) and yellow FP (YFP), or their enhanced versions
eCFP and eYFP, are molecular derivatives of GFP [142], whereas monomeric RFP (mRFP)
is derived from DsRed [51, 53]. The detection of naturally occurring fluorescence in
these organisms can be utilised to monitor their existence (i.e. relative abundance) and,
thereby, the health of ecosystems. Moreover, these FPs are now typical reagents used
for molecular biological investigations —both as recombinant fluorescent fusion proteins
and as FRET reporters [32]. Furthermore, their biophysical properties have been well-
characterised, including photon absorption efficiencies, quantum yields, fluorescence

excitation and emission coefficients [51, 62, 63].

All the above mentioned FPs have been previously reported as FRET reporters for TNFR1
dimeric PPl investigations. In this study, human TNFR1, TNFR2 and CD27 were
constructed as the -eCFP, -eYFP and -mRFP fusion proteins for the detection of TNFR1
dimeric PPl using three FRET pairs, i.e., eCFP—eYFP, eYFP—->mRFP, and eCFP—mRFP.
These FRETSs are possible because the eCFP and eYFP FRET donors' emission spectrums

are largely overlapped with the excitation spectrums of their respective eYFP and mRFP
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FRET acceptors. However, given the role of TNFR1 as a trimer, there is an urgent need
to develop the FRET assay with trichrome FRET capabilities. Since the eCFP donor
emission spectrum overlaps with both the eYFP and mRFP excitation spectrums, the
three-way FRETs (concurrent eCFP—eYFP, eYFP>mRFP and eCFP—»mRFP) and a two-
step FRET (eCFP—eYFP—mRFP) can all be detected for the trimeric TNFR1 examination

(see section 5.2.2 and section 6.2.1).

The cell surface TNFR1 interactions permit the regulation of various human intracellular
signalling pathways. In particular, the cell death pathway and the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-xB) activated proinflammatory pathway
are critical for human anti-tumour and antiviral immune responses [134, 143, 144].
Many pharmaceutical therapeutics screens and clinical diagnostics target the TNFR1-
regulated cell death and proinflammatory signalling pathways as a tool to search for
anti-inflammatory, anti-viral, and anti-tumour drugs and detecting autoinflammation
diseases, respectively [145-149]. Therefore, it is crucial to deliver the simultaneous
detection of the TNFR1 PPl FRET reporters and the cellular signalling reporters to
understand how TNFR1 receptor interactions link to the intracellular signalling pathway
activities. This study uses the UV-violet fixable live/dead dye (Thermo Scientific) for cell
death detection. Since there is no commercial reporter for detecting the NF-kB activated
proinflammatory signalling pathway that can be easily adapted to the FRET system, |
generated the pGL4.23.NF-kB-[miniP]-miRFP703 reporters for the detection of NF-xB
activation. The proinflammatory reporter uses the pGL4.23 minimal promoting
expression vector cloned with the NF-k B response elements and the monomeric

infrared fluorescent protein (miRFP703) for the detection of fluorescence signals.

84



In addition to the normal TNFR1 receptor biology, the germline mutation of TNFR1 can
cause a rare autoinflammatory disease termed TNFR-associated periodic syndrome
(TRAPS). TRAPS is a condition characterised by recurrent episodes of fevers that typically
last three weeks to a few months, with frequencies varying between 6 weeks to a few
years [150-152]. The mechanism of TRAPS pathology has not been fully understood, and
how TRAPS-related mutations in TNFR1 protein alter the TNFR1 PPIs has not been
thoroughly investigated. Therefore, to demonstrate the possibility of utilising the FRET
platform developed in this study to detect the aberrant PPls caused by germline
mutations, TNFR1 TRAPS mutants have also been generated using site-direct
mutagenesis. All TRAPS mutations located in the TNFR1 CRD1 and CRD4 (PPI critical
domains) ORFs were used to generate TRAPS TNFR1-eYFP fusion constructs and
compared with the wildtype (WT) TNFR1-eYFP in the abovementioned three-way FRET

system.

The virulence of a virus infection is strongly influenced by the capacity of the virus to
subvert the hosts’ anti-viral defences. Therefore, it is unsurprising that many viruses
have adopted multiple strategies to counteract the TNFR1 biology [153-157]. For
poxviruses (poxviridae), a family of large dsDNA enveloped viruses, their large genome
size (180-230 kb dsDNA45) confers the capacity to include multiple ORFs that encode
VTNFRs whose function appears to subvert the hosts’ TNFR1-mediated antiviral immune
responses. These VTNFRs can be detected as soluble glycoproteins in the supernatant of
poxvirus-infected cells [158], which bind and potently neutralise TNFR1-mediated cell
death [159]. The functional importance of VTNFR is exemplified by the fact that vINFR

ORFs are found within the genomes of virtually all poxviruses [160, 161], and vTNFRs
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sometimes are known by the more general term “cytokine response modifiers” (CRM)
[162]. Previous studies primarily focused on the TNF cytokine “decoy” mechanisms of
the vTNFR, and few studies were concentrated on the interactions between vTNFR and
huTNFR1 receptor proteins. In this study, to demonstrate the power of the FRET
platform in detecting the PPIs between VTNFR and huTNFR1, the vTNFR cDNAs from
selected poxviruses (variola virus, myxoma virus, and monkeypox virus) were used to
generate the -mRFP FRET component and replace the huTNFR1-mRFP in the FRET assay.
By combining with the huTNFR1-eCFP and TRAPS-eYFP, it further permits the detection
of protein interactions among human WT TNFR1, human TRAPS TNFR1, and vTNFR. In
this study, | hypothesise that TRAPS mutations of TNFR1 are potential evolutionary
trade-offs, and TRAPS TNFR1 mutants can disarm the poxvirus’s immune evasion
mechanism, which targets the human WT TNFR1 proteins. This further demonstrates
the power of the FRET platform developed in this study for more complex viral-host
interaction and evolutionary competition studies. In summary, this chapter reports the
generation of all the biological components (all summarised in Figure 13) that were
required to establish the FRET assays and to demonstrate the capabilities and

robustness of the ML-powered flow cytometry-based FRET platform.
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pcDNA3 plasmids expressing huTNFRs-FPs

(numners (ecrp [)  (rurnert (H{ ever ) (Hurnrre ()—m)
(numner2 (J{lecrp [)  (rurnerz (H{ ever ) (Hutnrr2 ()—m)
(Huco27 (Hecrp [)  (Hucoar (Hever ) (Huco2r ()—m)

pcDNAS3 plasmids expressing huTNFR1(TRAPS)-eYFP p(.;L4.23vminim::1I promoter reporter plasmids @ = NF-KB response element
HUTRAPS e . %62 with varied copies of NF-kB response elements
miniP ‘ miRFP703 ’ miRFP703
pcDNAS3 plasmids expressing VTNFRs-mFP ((’

Myx.MT2 mRFP . Var.G4R mRFP . Mpx.J2R mRFP . ((((e‘ miRFP703 ((((((((‘ ’ miRFP703

subcloning subcloning

pcDNA3 pGL4.23.[miniP]
vector vector

Figure 13 Biological samples prepared in this study

Human TNFR1, TNFR2, and CD27 were generated as the -eCFP, -eYFP, and -mRFP pcDNA3 fusion
constructs. A total of 62 human TNFR1 TRAPS mutants were also generated as the -eYFP pcDNA3
fusion constructs. In addition, the myxoma virus MT2, variola virus G4R and monkeypox J2R viral
TNFRs were generated as the -mRFP pcDNA3 fusion constructs. For proinflammatory signalling
detection, the pGL4.23 minimal promoter plasmid was used to generate miRFP fluorescence
reporters with 0, 2, 4, and 8 copies of NF-kB response elements.

3.2 Results:

3.2.1 Generation of TNFR1, TNFR2, CD27 as -eCFP, -eYFP, -mRFP fusion constructs

A total of nine TNFRs-FP fusion plasmid vectors, pcDNA3.TNFR1-eCFP, pcDNA3.TNFR1-
eYFP, pcDNA3.TNFR1-mRFP, pcDNA3.TNFR2-eCFP, pcDNA3.TNFR2-eYFP,
pcDNA3.TNFR2-mRFP, pcDNA3.CD27-eCFP, pcDNA3.CD27-eYFP and pcDNA3.CD27-
mRFP were sequenced to confirm no mutation or miss-paired DNAs from the subcloning
process. The sequences were compared to the NCBI nucleotide database using blast
search, in which the TNFR1, TNFR2, and CD27 sequences were aligned with the Homo
sapiens references, NCBI accession: AH003016.2, NCBI accession: AHO06638.2, and NCBI
accession: BC012160.1 respectively. The eCFP, eYFP, and mRFP sequences were aligned

with the cloning vector and synthetic construct references, NCBI accession: OL452018.1,
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NCBI accession: LT727258.1, and NCBI accession: AF506027.1 respectively. In detail, for
human TNFRs’ sequencing results, the TNFR1 sequence showed 99.82% identity to the
reference data with a different nucleotide at the 36th position (CCG — CCA,
proline—proline, see Figure 14 and Figure 15). The TNFR2 and CD27 sequences both
showed 100% identity to the reference data (Appendix Figure 3 to Appendix Figure 8).
For FP sequencing results, the eCFP and eYFP both showed 100% identity to the online
reference sequence (see Figure 14, Figure 15, Appendix Figure 3, Appendix Figure 4,
Appendix Figure 6 and Appendix Figure 7), while the mRFP showed 99.85% identity to
the online reference sequence with a varied nucleotide at the 525 position (GCC—GCT,
alanine — alanine, see Figure 16, Appendix Figure 5 and Appendix Figure 8). The
sequencing variations can result from either the PCR error or single nucleotide
polymorphisms in the original sequence template. In both cases, the variations do not
impact the translated protein amino acid sequences or the protein structures. Thus, all
pcDNA3.TNFR1-eCFP, pcDNA3.TNFR1-eYFP, pcDNA3.TNFR1-mRFP, pcDNA3.TNFR2-
eCFP, pcDNA3.TNFR2-eYFP, pcDNA3.TNFR2-mRFP, pcDNA3.CD27-eCFP, pcDNA3-
CD27.eYFP, and pcDNA3.CD27-mRFP have been successfully constructed and verified by

DNA sequencing and can be utilised in FRET assays.
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MGLSTVPDLILILPLVYVILILETLTILVSGTIY?PSGGVI GLVYV P HLTGDT REIKR
ATGGGCCTCTCCACCGT GCCT GACCT GCT GCTGC GGTGCTCCTGGAGCTGTTGGT GGGAAT AT ACCCCT CAGGGGT T ATT GGACT GGT CCCT CACCT AGGGGAC AGGGAGAAGAGA
ATGGGCCTCTCCACCGT GCCT GACCT GET GCTGC GGTGCTCCTGGAGCTGTTGGT GGGAAT AT ACCCCT CAGGGGTT ATT GGACT GGT CCCT CACCT AGGGGAC AGGGAGAAGAGA

DS VCeCPQGEKY T HP QNNSI CCTKOCHE KGTYLYNDC C?PGPGOQDT D
GATAGT GT GI GTCCCCAAGGAAAAT AT AT CCACCCTCAAAAT AATT CGATTTGCT GTACCAAGT GCCACAAAGGAACCT ACTTGT ACAAT GACT GT CCAGGCCCGGGGC AGGAT ACGGAC
GATAGT GTGT GTCCCCAAGGAAAAT AT AT CCACCCTCAAAAT AATT CGATTTGCTGTACCAAGT GCCACAAAGGAACCT ACTTGT ACAAT GACT GT CCAGGCCCGGGGC AGGAT ACGGAC

C RECESGS FTASENUHILURHCILSTCS KCRIEKEMGOQYETIS S CT VD
TGCAGGGAGT GTGAGAGCGGCT CCTT CACCGCTT CAGAAAACCACCT CAGACACT GCCTCAGCT GCT CCAAAT GCCGAAAGGAAAT GGGT CAGGTGGAGAT CTCTTCTTGCACAGT GGAC
TGCAGGGAGT GTGAGAGCGGCT CCTT CACCGCTT CAGAAAACCACCT CAGACACT GCCTCAGCT GCT CCAAAT GCCGAAAGGAAAT GGGT CAGGTGGAGAT CTCTTCTTGCACAGT GGAC

R DTV CGUCRIEKNQ QYU RHY WS ENTILF C F NCSLCLNGTV HLSTCOQE
CGGGACACCGTGT GTGGCT GCAGGAAGAACCAGT ACCGGCATT ATT GGAGT GAAAACCTTTTCCAGT GCTT CAATT GCAGCCTCT GCCT CAAT GGGACCGT GCACCTCT CCTGCCAGGAG
CGGGACACCGTGTGTGGCT GCAGGAAGAACCAGT ACCGGCATT ATT GGAGT GAAAACCTTTTCCAGT GCTT CAATT GCAGCCTCT GCCT CAAT GGGACCGT GCACCTCTCCTGCCAGGAG

KQNTUV CTOCHAGT FFILRENETCVSCSNU CIKI KT ST LETCTI KTLT CTILU?POQTI E
AMACAGAACACCGTGTGCACCT GCCAT GCAGGTTTCTTTCT AAGAGAAAACGAGT GTGT CTCCTGT AGI AACT GT AAGAAAAGCCT GGAGTGCACGAAGT TGTGCCTACCCCAGATT GAG
AMCAGAACACCGT GTGCACCT GCCAT GCAGGTTTCTTT CT AAGAGAAAACGAGT GTGT CTCCT GT AGE AACT GT AAGAAAAGCCT GGAGTGCACGAAGTTGTGCCTACCCCAGATT GAG

NV KGGTEDS GGTTVLLPILVI FFGLCILILSILILFIGLMYRY QR WK
AATGTTAAGGGCACTGAGGACT CAGGCACCACAGT GCT G TGCCCCTGGT CATTTTCTTTGGTCI TT GCCTTT T AT CCCT CCTCTT CATTGGTT T AAT GT AT CGCTACCAACGGT GGAAG
AATGTTAAGGGCACTGAGGACT CAGGCACCACAGT GCTGT TGCCCCTGGT CATTTTCTTTGGT CT TT GCCTTT T AT CCCT CCTCTTCATT GGTT T AAT GT AT CGCTACCAACGGE GGAAG

S XK LY s1 VvVvcee6GKSTPEZ KEGETLEGTTTE K?PLAPNUPSTFSPTUPGFT
TCCAAGCT CTACTCCATT GT'TT GTGGGAAAT CGACACCT GAAAAAGAGGGGGAGCT TGAAGGAACT ACT ACT AAGCCCCT GGCC CCAAACCC AAGCTT CAGT CCCACTCCAGGCT TCACC
TCCAAGCTCTACTCCATT GITT GTGGGAAAT CGACACCT GAAAAAGAGGGGGAGCT TGAAGGAACT ACT ACT AAGCCCCT GGCCCCAAACCCAAGCTT CAGT CCCACTCCAGGCTTCACC

pPTLGPF S PV PSSTFTSSSTYT?PGDCPNTFAAPRREVATPP Y
CCCACCCTGGGCTTCAGT CCCGI GCCCAGTT CCACCTTCACCT CCAGCTCCACCTATACCCCCGGTGACTGT CCCAACTTT GCGGCTCCCCGCAGAGAGGT GGCACCACCCT AT CAGGGG
CCCACCCTGGGCTTCAGT CCCGT GCCCAGTTCCACCTTCACCT CCAGCTCCACCTATACCCCCGGTGACTGT CCCAACTTT GCGGCTC CCCGCAGAGAGGT GGCACCACCCT AT CAGGGG

A DPI L ATALASDUPTI P NP L K WE DS A HK P S L DT DD©P ATL Y
GCTGACCCCATCCT TGCGACAGCCCT CGCCT CCGACCCCATCOCCAACCCOCTTCAGAAGT GGGAGGACAGCGCCCACAAGCCACAGAGCCT AGACACT GAT GACCCCGOGACGCTGT AC
GCTGACCCCATCCT TGCGACAGCCCT CGCCT CCGACCCCATCOCCAACCCOCTTCAGAAGT GGGAGGACAGCGCCCACAAGCCACAGAGCCT AGACACT GAT GACCCCGOGACGCTGT AC

AV VENUV?PPLRWEKETFVRRLUGILSDHETIDRILETL®QNGIRTCTLZREADQQ
GCCGTGGTGGAGAACGT GCCCCCGTT GCGCT GGAAGGAAT TCGT GC GGCGOCTAGGGCT GAGCGACCACGAGATC GATCGGCTGGAGCT GC AGAAC GGGC GCTGC CTGCGCGAGGCGCAA
GCCGTGGT GGAGAACGT GCCCCCGTT GCGCT GGAAGGAAT TCGT GC GGCGCCTAGGGCT GAGCGACCACGAGATC GATCGGCTGGAGCT GC AGAAC GGGC GCTGC CTGCGCGAGGCGCAA

Y S ML AT WRRRTPRREATILETILILUGRVLRDMDILILSGTCTILEDTI EE A
TACAGCATGCTGGCGAC CT GGAGGC GGCGCACGC CGCGGLGC GAGGCCAC GCTGGAGCT GCTGGGAC GCGT GCTCCGCGACATGGACCT GCT GGGCT GCCT GGAGGAC AT CGAGGAGGCG
TACAGCATGCTGGCGAC CT GGAGGC GGCGCACGC COCGOOGC GAGGOCAC GCTGGAGCT GCTGOGAC GCGT GCTCCGCGACATGGACCT GCT GGGCT GOCT GGAGGAC ATCGAGGAGGCG

L ¢CGP A AL PP AP S LLRILE|MYVY 8 KGEEULVFTGV V PI L V ELDGDV
CTTTGCGGCCCCGCCGCCCTCCCGCCCGCGCCCAGTCTTCTC 'CGAGNTGGT GAGCAAGGGCGAGGAGCTGTT CACCGGGGT GGT GCCCATCCT GGT CGAGCTGGACGGCGACGT A
CTTTGCGGCCCCGCCGCCCTCCCGCCCGCGCCCAGTCTT CTC AL 'CGAGANTGGT GAGCAAGGGCGAGGAGCTGTT CACCGGGGT GGT GCCCATCCT GGT CGAGCTGGACGGCGACGT A

N G HKF S VS GEGEGDATYSGIKTILTILI KTFTI CTTGKTLZPV P WPT L VT
AACGGCCACAAGTTCAGCGTGT CCGGCGAGGGCGAGGGCGAT GCCACCT ACGGC AAGCT GACCCT GAAGTT CATCT GCAC CACCGGCAAGCT GCCC G GCCCTGGCCCACCCT CGTGACC
AACGGCCACAAGTTCAGCGTGT COGGCGAGGGCGAGGGUGAT GCCACCT ACGGC AAGCT GACCCT GAAGI T CATCT GCACCACCGGCAAGCT GOCCGIGCCCTGGCCCACCCT CGTGACC

T LT WGV QCF S RY PDHMEKOOHDF F KS AMPETGYVQERTTI F F KD
ACCCTGACCT GGGGCGT GCAGT GCTT CAGCCGCT ACCCCGACCACAT GAAGCAGCACGACTTCTT CAAGTCCGCCAT GCC CGAAGGCT ACGT CCAGGAGC GCACCATCTTCTTCAAGGAC
ACCCTGACCT GGGGCGT GCAGT GCTT CAGCCGCT ACCCCGACCAC AT GAAGCAGCACGACTTCTT CAAGTCCGCCAT GCC CGAAGGCT ACGT CCAGGAGC GCACCATCTTCTTCAAGGAC

D GNY KT RAEVIEKTFEGDTILVNZ RIETLIE KTGIDTFI KEDUGNTIILGHTE KITLE
GACGGCAACT ACAAGAC CCGCGCCGAGGT GAAGTT CGAGGGC GAC ACCCT GETGAACCGCATC GAGCT GAAGGGC AT CGACTTC AAGGAGGACGGC AACAT CCTGGGGC ACAAGCTGGAG
GACGGCAACT ACAAGAC CCGC GCCGAGGT GAAGTT CGAGGGC GAC ACCCT GGTGAACCGCATCGAGCT GAAGGGC AT CGACTTC AAGGAGGACGGC AACAT CCTGGGGC ACAAGCTGGAG

Y NY I §s HN V Y I T A DI KQQKNUGTI KANTFE XKI RHNTIEDGS SV QLATDUHY
TACAACTACATCAGCCACAACGI CT AT AT CACCGCCGACAAGCAGAAGAACGGC AT CAAGGCCAACTT CAAGATC CGCCACAAC AT CGAGGACGGC AGCGT GCAGCTCGUCGACCACT AC
TACAACTACATCAGCCACAACGT CT AT AT CACCGCCGACAAGCAGAAGAACGGC ATCAAGGCCAACTT CAAGATCCGCCACAAC ATCGAGGACGGC AGCGT GCAGCTCGCCGACCACT AC

Q G D GP VYV LLPDNUHYTLST S AL S KDPNEIE KT RTD E
CAGCAGAACACCCCCAT CGGCGACGGCCCCGTGCT GCT GCCCGAC AACCACT ACCT GAGCACCCAGT CCGC CCTGAGCAAAGAC CCCAACGAGAAGCGCGAT CACATGGT CCTGCTGGAG
CAGCAGAACACCCCCAT CGGCGACGGCCCCGTGCT GCT GCCCGACAACCACT ACCT GAGCACCCAGT CCGCCCTGAGCAAAGAC CCCAACGAGAAGCGCGAT CACATGGT CCT GCTGGAG

F VT AAGI TLGMDETLY K *
TTCGTGACCGCCGCCGGGATCACTCT CGGCATGGACGAGCTGTACAAGT AA | 2091
TTCGTGACCGCCGCCGGGATCACTCT CGGCATGGACGAGCTGTACAAGT AA | 2091

Figure 14 TNFR1-eCFP sequencing result
Human TNFR1 (black box) subcloned with the eCFP (cyan box) to form a fusion fluorescence
receptor TNFR1-eCFP. The sequencing result of human TNFR1 shows a silent mutation:
CCG->CCA, proline->proline (red) at the 36™ nucleotide. No mutation in the eCFP sequence.
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MGLSTV?PDLILILPLVILILETLILVSGIY?PSGVI GLV?P HLUGTDZREKR
ATGGGCCTCT CCACCGT GCCT GACCT GCT GETGC GGTGCT CCT GGAGCTGTTGGT GGGAAT AT ACCCCT CAGGGGTTATT GGACT GGT COCT CACCT AGGGGAC AGGGAGAAGAGA
ATGGGCCTCTCCACCGT GCCT GACCT GCT GETGC GGTGCT CCTGGAGCTGTTGGTGGGAAT AT ACCCCT CAGGGGTT ATT GGACT GGT COCT CACCT AGGGGAC AGGGAGAAGAGA

pD s VvVcCe?PQGKYI HP QNNGSTI CCT KTCHE KGTYULYDNDC CTPGPGOQDT D
GATAGT GTGI GTCCCCAAGGAAAAT AT AT CCACCCTCAAAAT AATT CGATTTGCT GTACCAAGT GCCACAAAGGAACCT ACTTGT ACAAT GACT GT CCAGGCCCGGGGC AGGAT ACGGAC
GATAGTGT GI GTCCCCAAGGAAAAT AT AT CCACC CTCAAAAT AATT CGATTTGCT GTACCAAGT GCCACAAAGGAACCT ACTTGT ACAAT GACT GT CCAGGCCCGGGGC AGGAT ACGGAC

C RECESGS FTASENUHILURHCLSTOCSKCRIEKEMGOQYVYETILIS S CT VD
TGCAGGGAGT GTGAGAGCGGCT CCTT CAC CGCTT CAGAAAACCACCT CAGACACT GCCT CAGCTGCT CCAAAT GC CGAAAGGAAAT GGGT CAGGT GGAGAT CTCTTCTT GCACAGT GGAC
TGCAGGGAGT GTGAGAGCGGCT CCTT CACCGCTT CAGAAAACCACCT CAGACACT GCCT CAGCT GCT CCAAAT GCCGAAAGGAAAT GGGT CAGGTGGAGAT CTCTTCTTGCACAGT GGAC

R DTV CGCRIEKNOQYRHY WS ENIULTFQCFNTCSILC CLNGTVHLSTCOQE
CGGGACACCGTGT GTGGCT GCAGGAAGAACCAGT ACCGGCATT ATT GGAGT GAAAACCTTTTCCAGT GCTT CAATT GCAGCCTCT GOCT CAAT GGGACCGT GCACCTCT CCTGCCAGGAG
CGGGACACCGTGT GTGGCT GCAGGAAGAACCAGT ACCGGCATT ATT GGAGT GAAAACCTTTTCCAGT GCTT CAATT GCAGCCTCT GCCT CAAT GGGACCGT GCACCTCT CCTGCCAGGAG

KQNTWVCTOCHAGT FFLRENETCVSCSNU CIKIEKSTILETCTI KTILTCTLT?PQTIE
AAACAGAACACCGT GTGCACCT GCCAT GCAGGTTT CTTT CTAAGAGAAAACGAGT GTGT CTCCT GT AGI AACT GT AAGAAAAGC CT GGAGT GCACGAAGT T GTGCCTACCCCAGATT GAG
AMACAGAACACCGT GTGCACCT GCCAT GCAGGTTTCTTTCT AAGAGAAAACGAGT GTGT CTCCT GT AGI AACT GT AAGAAAAGC CT GGAGT GCACGAAGT TGTGCCTACCCCAGATT GAG

NV KGGT EDS GTTVLLPILVI FFGILCILILSILILFTIGILMY®RY QR WK
AATGTTAAGGGCACTGAGGACT CAGGCACCACAGT GCTGT TGCCCCTGGT CATTTTCTTTGGTCT TTGCCTTT TAT CCCT CCTCTTCATTGGTTT AATGT ATCGCT ACCAACGGT GGAAG
AATGTTAAGGGCACTGAGGACT CAGGCACCACAGT GCTGI TGCCCCT GGT CATTTTCTTTGGT CT TT GCCTTTT AT CCCT CCTCTT CATTGGTT T AAT GT AT CGCTACCAACGGE GGAAG

S K L Y s 1 vcecG6GKSTPEZKEGETLEGTTTE K?PLAPNUPSFSPTUPGFT
TCCAAGCTCTACTCCATT GT'TT GTGGGAAAT CGACACCT GAAAAAGAGGGGGAGCT TGAAGGAACT ACT ACT AAGCCCCT GGCC CCAAACCC AAGCTT CAGI CCCACTCCAGGCT TCACC
TCCAAGCTCTACTCCATT GITT GTGGGAAAT CGACACCT GAAAAAGAGGGGGAGCT TGAAGGAACT ACT ACT AAGCCCCT GGCCCCAAACCCAAGCTT CAGT CCCACTCCAGGCT TCACC

P T LGPF S PV P S STFTS S S TYTZPGDCPNTFAAPRREWVATPTPY QG
CCCACCCTGGGCTTCAGT CCCGI GCCCAGTT CCACCTTCACCT CCAGCTCCACCT ATACCCCCGGT GACTGT CCCAACTTT GCGGCTCCCCGCAGAGAGGT GGCACCACCCT AT CAGGGG
CCCACCCTGGGCTTCAGT CCCGT GCCCAGTTCCACCTTCACCT CCAGCTCCACCT ATACCCCCGGTGACT GT CCCAACTTT GCGGCTC COCGCAGAGAGGT GGCACCACCCT AT CAGGGG

A DPIT L ATALASDUPTI P NP L K WE DS A HK P S L DT DDUP AT L Y
GCTGACCCCATCCT TGCGACAGCCCT CGCCT CCGACCCCATCCCCAACCCCCTT CAGAAGTGGGAGGACAGCGCCCACAAGCC ACAGAGCCT AGACACTGAT GACCCCGOGACGCTGT AC
GCTGACCCCATCCT TGCGACAGCCCT CGCCT CCGACCCCATCCCC AACCCOCT T CAGAAGTGGGAGGACAGCGCCCACAAGCC ACAGAGCCT AGACACTGAT GACCCCGUGACGCTGT AC

AV VENUV?PPILIRWEKETFV VI RRLUGILSDHETITDIRILTETILOQNSGHRTCTILT®RE A
GCCGTGGTGGAGAACGT GCCCCCGTT GCGCT GGAAGGAAT TCGT GC GGCGCCTAGGGCT GAGCGACCACGAGATC GATCGGCTGGAGCT GC AGAAC GGGC GCTGC CTGCGCGAGGCGCAA
‘GCCGTGGT GGAGAACGT GCCCCCGTT GCGCT GGAAGGAAT TCGT' GC GGCGCCTAGGGCT GAGCGACCACGAGATC GATCGGCTGGAGCT GC AGAAC GGGC GCTGC CTGCGCGAGGCGCAA

Y S ML AT WRRRTPRREATILETILILUGRVLRDMDILILGT CTILEDTI EE A
TACAGCAT GCTGGCGAC CT GGAGGC GGCGCACGC CGCGGCGC GAGGCCAC GCTGGAGCT GCTGGGAC GCGT GCTCCGCGACATGGACCT GCT GGGCT GOCT GGAGGAC AT CGAGGAGGCG
TACAGCATGCTGGCGAC CT GGAGGC GGCGCACGC CECGGOGCGAGGOCACGCTGGAGCT GCTGGGAC GCGT GCTC CGCGACATGGACCT GCT GGOCT GCCT GGAGGAC AT CGAGGAGGCG

L €GP A ALPPAPSLILRILE/MYV S KGEETLTFTGV V PIT L VELUDGTDV
CTTTGCGGCCCCGCCGCCCTCCCGCCCGCGCCCAGTCTTCTCAGAL TCGAGATGGT GAGCAAGGGCGAGGAGCT GTT CAC CGGGGT GGT GCC CATCCT GET CGAGCTGGACGGCGACGT A
CTTTGCGGCCCCGCCGCCCTCCCGCCCGCGCCCAGTCTTCTCAGAL T CGAGATGGT GAGCAAGGGCGAGGAGCT GTT CACCGGGGT GGT GCC CATCCT GGT CGAGCTGGACGGCGACGT A

N G HKVF S VS GEGEGDATYUGI KT LTULI KTFTI CTTGIKTLZPV P WPT L VT
AACGGCCACAAGT TCAGCGTGT CCGGLGAGGGCGAGGGUGAT GCCACCT ACGGC AAGCT GACCCT GAAGT T CATCT GCAC CACCGGCAAGCT GOCCGIGCCCTGGCCCACCCT CGTGACC
AACGGCCACAAGTTCAGCGTGT CCGGCGAGGGCGAGGGLGAT GCCACCT ACGGC AAGCT GACCCT GAAGTT CATCT GCACCACCGGCAAGCT GOCCGIGCCCTGGCCCACCCT CGTGACC

T FGY 66L@Q@CFARYVPDHMEKOQHDTFTFI KSAMPEGYVQETRTTITFTFKTD
ACCTTCGGCT ACGGCCT GCAGT GCTT CGCCCGCT ACCCCGACCACAT GAAGCAGCACGACTTCTT CAAGT CCGCCAT GCC CGAAGGCT ACGT CCAGGAGC GCACCATCTTCTTCAAGGAC
ACCTTCGGCT ACGGCCT GCAGT GCTT CGCCCGCT ACCCCGACCAC AT GAAGCAGCACGACTTCTT CAAGICCGCCAT GCCCGAAGGCT ACGT CCAGGAGC GCACCATCTTCTTCAAGGAC

D GNY KTRAEV KFEGDTULVNR RIUELZI KSGIDTFI KEDGNIULOGHE KTLE
‘GACGGCAACT ACAAGACCCGCGCCGAGGT GAAGT T CGAGGGC GACACCCT GGTGAACCGCATCGAGCT GAAGGGC AT CGACTTC AAGGAGGACGGC AACAT CCTGGGGC ACAAGCTGGAG
GACGGCAACT ACAAGAC CCGC GCCGAGGT GAAGT T CGAGGGC GAC ACCCT GGTGAACCGCATCGAGCT GAAGGGC AT CGACTTC AAGGAGGACGGC AACAT CCTGGGGC ACAAGCTGGAG

Y NY NS HNV YI MA DI KOQQ KNG GTI KV NTFE XKI RHNTIEDGS SV QLATDUHY
TACAACTACAACAGCCACAACGI CT AT AT CATGGCCGACAAGCAGAAGAACGGC ATCAAGGTGAACTT CAAGATC CGCCACAAC AT CGAGGACGGC AGCGT GCAGCTCGUCGACCACT AC
TACAACTACAACAGCCACAACGT CT AT AT CATGGCCGACAAGCAGAAGAACGGC ATCAAGGTGAACTT CAAGATC CGCC ACAAC AT CGAGGACGGC AGCGT GCAGCTCGCCGACCACT AC

Q 1 G bGPV LLPDNUHYULSY QS ALSKDZPNEIE KT RDUHMYVL E
CAGCAGAACACCCCCAT CGGCGACGGCCCCGTGCT GCT GCCCGAC AACCACT ACCT GAGCTACCAGT CCGC CCTGAGCAAAGAC COCAACGAGAAGCGCGAT CACATGGT CCT GCTGGAG
CAGCAGAACACCCCCAT CGGCGACGGCCCCGTGCT GCT GCCCGACAACCACT ACCT GAGCTACCAGT CCGC CCTGAGCAAAGAC COCAACGAGAAGCGCGAT CACATGGT CCTGCTGGAG
F VT AAGI1 TLGMDETLY K *

TTCGTGACCGCCGCCGGGATCACTCT CGGCATGGACGAGCTGTACAAGT AA | 2091
TTCGTGACCGCCGCCGGGATCACTCT CGGCATGGACGAGCTGTACAAGT AA | 2091

Figure 15 TNFR1-eYFP sequencing result
Human TNFR1 (black box) subcloned with the eYFP (yellow box) to form a fusion fluorescence
receptor TNFR1-eYFP. The sequencing result of human TNFR1 shows a silent mutation:
CCG->CCA, proline->proline (red) at the 36™ nucleotide. No mutation in the eYFP sequence.
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MGLSTV?PDLILILPLVILILETLILVSGIY?PSGVI GLV?P HLUGTDZ REKR
ATGGGCCTCT CCACCGT GCCT GACCT GCT GETGC GGTGCT CCT GGAGCTGTTGGT GGGAAT AT ACCCCT CAGGGGTTATT GGACT GGT COCT CACCT AGGGGAC AGGGAGAAGAGA
ATGGGCCTCTCCACCGT GCCT GACCT GCT GETGC GGTGCT CCTGGAGCTGTTGGTGGGAAT AT ACCCCT CAGGGGTTATT GGACT GGT COCT CACCT AGGGGAC AGGGAGAAGAGA

pD s VvVcCe?PQGKYI HP QNNUSTICCT KTCHE KGTYULYDNDC CTPGPGOQDT D
GATAGT GT GI GTCCCCAAGGAAAAT AT AT CCACCCTCAAAAT AATT CGATTTGCT GTACCAAGT GCCACAAAGGAACCT ACTTGT ACAAT GACT GT CCAGGCCCGGGGC AGGAT ACGGAC
GATAGT GT GI GTCCCCAAGGAAAAT AT AT CCACC CTCAAAAT AATTCGATTTGCTGTACCAAGT GCCACAAAGGAACCT ACTTGT ACAAT GACT GT CCAGGCCCGGGGC AGGAT ACGGAC

C RECESGS FTASENUHILURHCLSTOCSKCRIEKEMGOQYVYETILIS S CT VD
TGCAGGGAGT GTGAGAGCGGCT CCTT CACCGCTT CAGAAAAC CACCT CAGACACT GCCT CAGCT GCT CCAAAT GC CGAAAGGAAAT GGGT CAGGTGGAGAT CTCTT CTTGCACAGT GGAC
TGCAGGGAGT GTGAGAGCGGCT CCTT CACCGCTT CAGAAAACCACCT CAGACACT GCCT CAGCT GCT CCAAAT GCCGAAAGGAAAT GGGT CAGGTGGAGAT CTCTTCTTGCACAGT GGAC

R DTV CGCRIEKNOQYRHY WS ENULTFQCFNTCSTILC CLNGTVHLSTCOQE
CGGGACACCGTGT GTGGCT GCAGGAAGAACCAGT ACCGGCATT ATT GGAGT GAAAACCTTTTCCAGT GCTT CAATT GCAGCCTCT GOCT CAAT GGGACCGT GCACCTCT CCTGCCAGGAG
CGGGACACCGTGT GTGGCT GCAGGAAGAACCAGT ACCGGCATT ATT GGAGT GAAAACCTTTTCCAGT GCTT CAATT GCAGCCTCT GCCT CAAT GGGACCGT GCACCTCT CCTGCCAGGAG

KQNTWVCTOCHAGT FFLRENETCVSCSNU CIKIEKSTILETCTI KTILTCTLT?P?QTI E
AAACAGAACACCGT GTGCACCT GCCAT GCAGGTTT CTTT CTAAGAGAAAACGAGT GTGT CTCCT GT AGI AACT GT AAGAAAAGC CT GGAGT GCACGAAGT T GTGCCTACCCCAGATT GAG
AMACAGAACACCGT GTGCACCT GCCATGCAGGTTT CTTTCT AAGAGAAAACGAGT GTGT CTCCT GT AGI AACT GT AAGAAAAGC CT GGAGT GCACGAAGT TGTGCCTACCCCAGATT GAG

NV KGGT EDS GTTVLLPILVI FFGILCILILSILILFTIGILMY®RY QR WK
AATGTTAAGGGCACTGAGGACT CAGGCACCACAGT GCTGT TGCCCCTGGT CATTTTCTTTGGTCT TTGCCTTT TAT CCCT CCTCTTCATTGGTTT AATGT ATCGCT ACCAACGGT GGAAG
AATGTTAAGGGCACTGAGGACT CAGGCACCACAGT GCTGI TGCCCCTGGT CATTTTCTTTGGT CT TT GCCTTTT AT CCCT CCTCTT CATTGGTT T AAT GT AT CGCTACCAACGGE GGAAG

S K L Y s 1 vcecG6GKSTPEZKEGETLEGTTTE KPLAPNUPSFSPTUPGFT
TCCAAGCTCTACTCCATT GI'TT GTGGGAAAT CGACACCT GAAAAAGAGGGGGAGCT TGAAGGAACT ACT ACT AAGCCCCT GGCC CCAAACCC AAGCTT CAGI CCCACTCCAGGCT TCACC
TCCAAGCTCTACTCCATT GITT GTGGGAAAT CGACACCT GAAAAAGAGGGGGAGCT TGAAGGAACT ACT ACT AAGCCCCT GGCC CCAAACCCAAGCTT CAGT CCCACTCCAGGCT TCACC

P T LGF S PV P S STFTS S S TYTZPGDCPNTFAAPRREWVATPTPY QG
CCCACCCTGGGCTTCAGT CCCGI GCCCAGTT CCACCTTCACCT CCAGCTCCACCT ATACCCCCGGT GACTGT CCCAACTTT GCGGCTCCCCGCAGAGAGGT GGCACCACCCT AT CAGGGG
CCCACCCTGGGCTTCAGT CCCGT GCCCAGTT CCACCTTCACCT CCAGCTCCACCT ATACCCCCGGTGACT GT CCCAACTTT GCGGCTC CCCGCAGAGAGGT GGCACCACCCT AT CAGGGG

A DPI1 L ATALASDUPTI P NP L K WE DS A HK P S L DT DDUP AT L Y
GCTGACCCCATCCT TGCGACAGCCCT CGCCT CCGACCCCATCCCCAACCCCCTT CAGAAGTGGGAGGACAGCGCCCACAAGCC ACAGAGCCT AGACACTGAT GACCCCGOGACGCTGT AC
GCTGACCCCATCCT TGCGACAGCCCT CGCCT CCGACCCCATCCCC AACCCOCT T CAGAAGTGGGAGGACAGCGCCCACAAGCC ACAGAGCCT AGACACTGAT GACCCCGOGACGCTGT AC

AV VENUV?PPILIRWEKETFV VI RRLUGILSDHETITDIRILTETILIQNSGHRTCTILT®RE A
GCCGTGGTGGAGAACGT GCCCCCGTT GCGCT GGAAGGAAT TCGT GC GGCGCCTAGGGCT GAGCGACCACGAGATC GATCGGCTGGAGCT GC AGAAC GGGC GCTGC CTGCGCGAGGCGCAA
‘GCCGTGGT GGAGAACGT GCCCCCGTT GCGCT GGAAGGAAT TCGT GC GGCGCCTAGGGCT GAGCGACCACGAGATC GATCGGCTGGAGCT GC AGAAC GGGC GCTGC CTGCGCGAGGCGCAA

Y S ML AT WRRRTPRREATILETILILUGRVLRDMDILILSGT CTILEDTI EE A
TACAGCAT GCTGGCGAC CT GGAGGC GGCGCACGC CECGGCGC GAGGCCAC GCTGGAGCT GCTGGGAC GCGT GCTCCGCGACATGGACCT GCT GGGCT GOCT GGAGGAC AT CGAGGAGGCG
TACAGCATGCTGGCGAC CT GGAGGC GGCGCACGC CECGGOGCGAGGOCACGCTGGAGCT GCTGGGAC GCGT GCTC CGCGACATGGACCT GCT GGOCT GCCT GGAGGAC AT CGAGGAGGCG

L €GP A ALUPUPAPSILILTER|LE[MXSS EDVI KEFMNMETFT RKTVEMNMETGSUVRN

CTTTGCGGCCCCGCCGCCCTCCCGCCCGCGCCCAGTCTTCTCAGAL TCGAGRTGGCCTCCTCCGAGGACGT CATC AAGGAGT TC AT GCGCTT CAAGGT GCGCATGGAGGGCTCCGTGAA
CTTTGCGGCCCCGCCGCCCTCCCGCCCGCGECCAGTCTT CTCAGAL T CGAGATGGCCTCCTCCGAGGACGT CATCAAGGAGT TCAT GCGCTT CAAGGT GCGCATGGAGGGCTCCGTGAAC

G HEF EI EGEGEUGRPYEGTQQTAIKTILIE KVTE KU GO GPILUPTF A WDTI LS P
GGCCACGAGT TCGAGAT CGAGGGUGAGGGLGAGGGUCGLCCCT ACGAGGGCACCCAGACCGCCAAGCT GAAGGT GACCAAGGGC GGCCCCCT GOCCTTCGCCTGGGACATCCT G CCCCT
GGCCACGAGT TCGAGAT CGAGGGUGAGGGLGAGGGUCGLCCCT ACGAGGGCACCCAGACCGCCAAGCT GAAGGT GACCAAGGGC GGCCCCCT GOCCTTCGCCTGGGACATCCT Gl CCCCT

Y G S KAY VKHPADIPDYILZKTILSTFZPEGTFI KWETRVMNTFETDGSGSG
CAGTTCCAGT ACGGCTCCAAGGCCT ACGT GAAGC ACCCCGCCGACAT CCCCGACT ACTTGAAGCT GT CCTT CCCCGAGGGCTTC AAGT GGGAGCGC GT GAT GAACT TCGAGGACGGC GGC
CAGITCCAGT ACGGCTCCAAGGCCT ACGT GAAGC ACCCCGCCGACAT CCCCGACT ACTTGAAGCT GT CCTT CCCCGAGGGCTTCAAGT GGGAGCGC GI'GAT GAACT TCGAGGACGGC GGC

vVvTVTqgDSSsSsLggDGETFTI YKV KLRGTNTFUPSDGPVMQEKTE KTMGW
GT GGTGACCGTGACCCAGGACT CCT CCCT GCAGGACGGCGAGTTCAT CT ACAAGGT GAAGCTGCGCGGCACCAACTT CCCCTCC GACGGCCCCGT AAT GCAGAAGAAGACCAT GGGCT GG
GT GGTGACCGTGACCCAGGACT CCT CCCT GCAGGACGGUGAGTTC AT CT ACAAGGT GAAGCTGCGCGGCACCAACTT CCCCTCC GACGGUCCCGT AAT GCAGAAGAAGACCAT GGGCT GG

E AS TEW RMYPEDGALI KTGETIKMRILIEKILIE KDGG GHYDATEV
GAGGCCTCCACCGAGCGGATGT ACC CCGAGGACGGUGC CCTGAAGGGUGAGATC AAGAT GAGGCT GAAGCT GAAGGACGGCGGC CACT ACGAC AGGT CAAGACCACCT ACATGGCC
GAGGCCTCCACCGAGCGGATGT ACCCCGAGGACGGUGC CCTGAAGGGUGAGATC AAGAT GAGGCT GAAGCT GAAGGACGGCGGC CACT ACGAC \GGT CAAGACCACCT ACATGGCC

K K P V L P GA Y KTWDTI KTULDTI TS HNEDYTTIVEQYZETRAEUGTRHST

AAGAAGCCCGTGCAGCT GCCCGGCGCCT ACAAGACCGACATC AAGCT GGACATCACCTCCCACAACGAGGACT ACACCAT CGTGGAACAGT ACGAGCGCGCOGAGGGCCGCCACT CCACC
AAGAAGCCCGTGCAGCT GCCCGGCGCCT ACAAGACCGACATC AAGCT GGACATCACCTCCCACAACGAGGACT ACACCAT CGTGGAACAGT ACGAGCGCGCOGAGGGCCGCCACT CCACC

G A *
GGCGCCTAA | 2049
‘GGCGCCTAA | 2049

Figure 16 TNFR1-mRFP sequencing result
Human TNFR1 (black box) subcloned with the mRFP (red box) to form a fusion fluorescence
receptor TNFR1-mRFP. Two silent mutations were identified, one in the TNFR1 ORF: CCG->CCA,
proline>proline (red) at the 36th nucleotide, and the other one in the mRFP ORF: GCC—GCT,
alanine—alanine (red) at the 525" nucleotide.
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3.2.2 Establish the optimal sample harvesting period using live-cell imaging

Human cells recycle excess or unusable proteins into amino acids, which balances the
need for other protein syntheses. The energy preserved during protein recycling also
provides the capacity to rapidly mobilise proteins to their sites of action when the proper
signal is received [163]. Transiently transfected HEK-293T cells express the fusion
proteins from plasmid vectors without host genome integration. The plasmid DNAs will
not be replicated during cell replication, and the expressed fusion protein level will
decrease after maximal expression due to the transient transfection and protein
recycling process. It is necessary to determine the optimal cell culture times post
transfection to ensure the HEK-293T cells express each of the TNFR1, TNFR2, CD27-eCFP,
-eYFP and -mRFP fusion constructs at high levels. The culturing time cannot be so long
that the expressed fusion proteins or the transiently transfected plasmid DNAs undergo

degradation and recycling.

Another factor that can also impact the plasmid transfection and expression efficiency
is the potential endotoxin contamination from the E.coli bacterial host during the
plasmid DNA maxiprep extraction procedure. Therefore, endotoxin levels of the
maxiprep plasmid DNAs were examined using the chromogenic LAL endotoxin assay to
rule out any influence on the final fusion protein level from endotoxin contamination.
The concentrations of endotoxins from the nine TNFRSF receptor-FPs samples were
examined with values below the contamination threshold based on the industrial
standard (Figure 17). This result is often described as “endotoxin-free” in commercial-

level endotoxin-free plasmid extraction kits.
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Endotoxin Concentration Detection Plot

0.6

0.4

0.2 1

Absorbance at 405 nm

Industrial standard threshold :

0.0

0.00 0.02 0.04 0.06 0.08 0.10
concentration (EU/ug)

concentration Linear regression model | R? p-value | S.E.

0.001-0.01EU/ug |4 = 26.583 X C — 0.011 [0.995(3.075e-05| 1.270

0.01-0.1EU/pug | A =2.756 X C + 0.239 |0.991(1.857e-07| 0.137

Figure 17 Endotoxin detection of plasmids

The concentrations of residual endotoxin were examined within two linear
concentration ranges (black dots and lines). All samples have low endotoxin levels
(green cross) that meet the industrial standard (red dashed line).

The expression dynamics of each TNFRs-FP fusion construct were examined utilising the
Nikon A1R confocal live-cell time course imaging and the HEK-293T cells transfected with
the endotoxin-free plasmids. After the initial 6 hours of incubation, the expression levels
were recorded and calculated as the mean fluorescent intensity of each sample for a 48-
hour (6 hours to 54 hours) tissue culture period post-transfection. The fluorescent
intensity values have been normalised to the same scale. All TNFRs-eCFP expressions
reached the maximum between 42 to 48 hours post-transfection and started to decline
after 48 hours, with the TNFR1-eCFP starting to decrease slightly earlier after 47 hours
(Figure 18 cyan plots). All TNFRs receptor-eYFP expressions reached the maximum

between 38-46 hours post-transfection, except for TNFR1-eYFP reached the maximum
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at 29 hours and started to decline afterwards (Figure 18 yellow plots). All TNFRs-mRFP
expressions are similar to the -eCFP expressions, but no expression decrease was
observed within the 48 hours recording period (Figure 18 red plots). The varied
expression dynamics are potentially caused by the codon bias of the different receptor
and fluorescent protein sequence combinations which depend on the HEK-293T host
cell tRNA pool that is used for making those fusion proteins. The early declines of the
TNFR1 constructs are also the results of the cell death mediated by the TNFR1 signalling.
Therefore, the optimal harvesting time between 30-36 hours post-transfection has been
chosen to ensure the maximal fluorescence detection levels for all fluorescence-fused
receptors. In addition, TNFR1-expressed cells were observed with shrunk cell sizes
compared to TNFR2 and CD27-expressed cells (Figure 18B), which is an early indicator

for cell apoptosis.
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Figure 18 Live-cell imaging of TNFRs-eCFP/eYFP/mRFP expressions

The dynamic expression profiles of TNFR1 (solid lines), TNFR1 (dashed lines), and CD27 (dotted
lines) as the -FP fusion proteins (cyan, yellow, and red) (A). Microscopy images were captured
for TNFRs-eCFP/eYFP/mRFP 48 hours post-transfection (B).
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3.2.3 Generation of TRAPS mutation-related TNFR1 as -eYFP fusion constructs

A total of 62 TRAPS TNFR1-eYFP constructs were generated using site-direct
mutagenesis with the primers designed as listed in the method section (see section
2.1.2). TRAPS mutation constructs were confirmed by plasmid DNA sequencing and
further compared with the WT TNFR1 sequence, and the results indicated that all 62
TRAPS TNFR1-eYFP have been successfully constructed with the designated mutations
(Figure 19). Moreover, the expression of each TRAPS-eYFP fusion protein has been
examined in HEK-293T cells with the EVOS microscope 36 hours after transient
transfections. All generated TRAPS TNFR1-eYFP fusion proteins were successfully
expressed and detected using the YFP (500/24 nm excitation, 542/27 nm emission) EVOS

light cube (Figure 20).
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B

C

D12E: p.{(Asp41Glu) / €.123T>G
GAGAAGAGAGATAGTGTGTGT

C15Y: p.(Cys44Tyr) / c.131G=>A
GATAGTGTGTGTCCCCAAGG A

Y20C: p.(Tyr49Cys) / ¢.146A>G
CAAGG AAAAT ATATCCACCCET

Y20D: p.(Tyr49Asp) / c.145T>G
CCAAGGAAAATATATCCACCC

AGAAGAG A

AEAGT GT T

Y20H: p.(Tyr49His) / c.145T=>C
CCAAGGAAAATATATCCACCC

CAn AAAATTATCCACCCT

CAnR

AAAAMRTATCCACCC

H22Q: p.(His51GIn) / c.153C>G
AAATATATCCACCCTCAAAAT

H22R: p.(His51Arg) / c.152A>G
AAATATATCCACCCTCAAAAT

H22Y: p.(His51Tyr) / c.151C>T
AAATATAT CCACCCTCAAAAT

T AR AAAA@RTATCCACCC

AAATATATCCACCTCAAARAT

=~ ~ TATCCECCTCAARAAT

AAATATATCJACCCTCAAAAT

N25D: p.(Asn54Asp) / ¢.160A>G
CACCECTCAAAATAATTCGATT

128S: p.(lle575er) / c.170T>G
AATAATTCGATTTGCT GTACC

C29F: p.(Cys58Phe) / €.173G=>T
AATTCGATTTGCTGTACCAAG

C29G: p.(Cys58Gly) / c.172T>G
AATTCGATTTGCTGTACCAAG

CACCCTCAABATAATTCGAT T

C29R: p.(Cys58Arg) / €.172T>C
AATTCGATTTGCTGTACCAAG

AATAATTCGATTGCT GTACC]

[ ATTCoATTIETCTACCAA

€295: p.(Cys585er) / ¢.173G>C
AATTCGATTTGCTGTACCAAG

C29W: p.(Cys58Trp) / €.174C>G
AATTCGATTTGCTGTACCAAG

AATTC TACCARA

C29Y: p.(Cys58Tyr) / c.173G=>A
AATTCGATTTGCTGTACCAAG

AATTCGATTIGCTGTACCAA G

ARV W

TACCAA

ATTTGETGTACCAA

C30F: p.(Cys59Phe) / ¢.176G>T
TCGATTTGCTGTACCAAGT GC

C30R: p.(Cys59Arg) / c.175T>C
TCGATTTGCTGTACCAAGTGC

C€30S: p.{Cys595er) / c.176G>C
TCGATTTGCTGTACCAAGTGC

AATTCGATTTACTGTACCAA

C30Y: p.(CysS9Tyr) / €.176G>A
TCGATTTGETGTACCAAGTGE

TCGATTT

Ty ~

CeancToC

C33G: p.(Cys62Gly) / c.184T=>G
TGTACCAAGTGCCACAAAGGA

Y38C: p.(Tyr67Cys) / ¢.200A>G
AAAGGAACCTACTTGTACAAT

TCGATTTGCEGTACCAAGTGC

C33Y: p.(Cys62Tyr) / c.185G=>A
TGTACCAAGTGCCACAAAGGA

TCCATTITGCTO ACCAAGTGC

G36E: p.(Gly65Glu) / c.194G>A
TGCCACAAAGGAACCTACTTG

TCGATTTGCTJMTACCAAGTGC

A AAN

£
T371: p.(Thré6lle) / c.197C>T
CACAAAGGAACCTACTTGTAC

TGTACCARA

TRIE C A C A A A B

Y385: p.(Tyr675er) / c.200A>C
AAAGGAACCTACTTGTACAAT

TGCCACAAAGMAACCTACTT

L39F: p.(Leu68Phe) / c.204G>C
GAACCTACTTGTACAATGACT

ACAAR

AAETACTT

TacC

DA42DEL: p.(Asp71del) / c.211_213delGAC
TTGTACAATGACTGTCCAGGC

AACCTHC T T

D42E: p.(Asp71Glu) / €.213C>A
TTGTACAATGACTGTCCAGGC

A A A AACCTGC TTGTACAAT

C43F: p.(Cys72Phe) / c.215G>T
TACAATGACTGTCCAGGCCEG

"AACCTACTIJO ACAATGACT

CA43G: p.(Cys72Gly) / ¢.214T>G
TACAATGACTGTCCAGGCCCG

TTGTACAATHIRIIT GTCCA

C43R: p.(Cys72Arg) / €.214T>C
GTACAATGACTGTCCAGGCCC

TTGTACAATGAMT GTCCA c|

m ACTWT CCA ccc

ACHGTCCA ccc

C43S: p.(Cys72Ser) / ¢.215G>C
TACAATGACTGTCCAGGCCCG

C43Y: p.(Cys72Tyr) / c.215G=A
TACAATGACTGTCCAGGCCCG

P46L: p.(Pro75Leu) / €.224C>T
TGTCCAGGCCCGGGGCAGG AT

TACAATGACE TCCaA ccc

Q77H: p.(GIN77His) / €.231G>T
GGCCCGGGGCAGGATACGGAC

TACAAT

GACT[@TCCAGGECC C g

TSOK: p.(Thr79Lys) / c.236C>A
GGGCAGGATACGGACTGCAGG

TACAAT Acu]lrcc.\ ccec

AWV

T50M: p(Thr79Met) / ¢.236C>T
GGGCAGGATACGGACTGCAGG

TGTCCAGGC i CAGG AT

ccec CcAflcATAC ad

M

C52F: p.(CysB1Phe) / €.242G>T

C52R: p.(CysBlArg) / €.241T>C

e ATABIGGACTGCAG

CAGGATARNE CACTGC A

GATACGGACTGCAGGGAGTGT
ATAC ACTWCAC AGTGT

GATACGGACTGCAGGGAGTGT
ATAC ACEGCA AGTGT]

€52W: p.(CysB1Trp) / ¢.243C>G
GATACGGACTGCAGGGAGTGT

C52Y: pACys81Tyr) / €.242G>A
GATACGGACTGECAGGGAGTGT

R53G: p.(ArgB2Gly) / €.244A>G
ACGGACTGCAGGGAGTGTGAG

ATAC

.‘F‘l‘ J\[\N\

ACT|ECA

‘_."ﬁ".f\{\/\N\[\ﬂ,‘hu'\.\ N

ATACGGACTGH A AGTGT

ATACGGACTMCA AGTGT

L167_G175del: p.(Leul96_Gly204del) f c.586_612del27
TTGTGCCTACCCCAGATTGAGAATGTTAAGGGCACTGAG

I170N: p.(lle199Asn) / c.596T>A
CTACCCCAGATTGAGAATGTT

& A

1170T: p.(1le199Thr) / c.596T=>C
CTACCCCAGATTGAGAATGTT

TTGT GO

LA

BIACTGA

CTACCCCACATCACAATCTT
I‘\NVWW\.‘""‘NV\.""" i"‘./W\."\L

AATGTT

V173D: p.(Val202Asp) / c.605T=A
ATTGAGAATGTTAAGGGCACT

G204C: p.(Gly204Cys) / ¢.610G>T
AATGTTAAGGGCACTGAGG AC

S5197C: p.{Ser226Cys) / c.677C>G
TGCCTTTTATCCCTCETCTTC

ATTGAGAATGNT A A cAcCT

C139A: p.(Cysl68Ala) f ¢.502_503TG>GC
GTGTGCACCTGECATGCAGGT

"

Mrwa.\ MGCACT G A A
\

N

TGCCTTTTATCCT CCTCT T

C139S: p.(Cys168Ser) / ¢.503G>C
GTGTGCACCTGCCATGCAGGT

C150A: p.(Cys179Ala) / €.535_536TG>GC
GAAAACGAGTGTGTETCCTGT

C1505: p.(Cys179Ser) / €.536G>C
GAAAACGAGTGTGTCTCCTGT

CACCBGCCAT

TGTGCACCT|ECCATGCA T

C153A: p.(Cys1B82Ala) f c.544_545TG>GC
TGTGTCTCCTGTAGTAACTGT

€153S: p.(Cys1825er) / €.545G>C
TGTGTCTCCTGTAGTAACTGT

AAAACGAGIIET GTCTCCTGT

C156A: p.(Cysl85Ala) / ¢.553_554TG=>GC
TGTAGTAACTGTAAGAAAAGE

TETGTCTCCT G

C1565: p.(Cys1855er) / €.554G>C
TGTAGTAACTGTAAGAAAAGC

TGTGTCTCCETAGT AACT G 1]

TGTGTCTCCTGTAGTAACT G T

C162A: p.(Cysl91Ala) f c.571_572TG=>GC
AGCCTGGAGTGCACGAAGTTG

C162S: p.{Cys191Ser) / ¢.572G>C
AGCCTGGAGTGCACGAAGTTG

T TA TAACHIC T AAGAAAACGCC
Ay

JAUY

C166A: p.(Cys195Ala) / ¢.583_584TG>GC
ACGAAGTTGIGCCTACCCCAG

TGTAGTAACTOT AAGAAAAGC

C166S: p.(Cys1955er) / c.584G>C
ACGAAGTT GTGCCTACCCCAG

N N

ccr A |||:cnc AAGTT

R N

ACGAAGTTGHECCTACCCCA
Aanf n
TATATAY \ /

3

AAGTT GIJCCTACCCCA

Figure 19 TRAPS TNFR1 sequencing results

A total of 44 naturally-existing TRAPS mutations in the CRD1/PLAD of TNFR1 (A), six naturally-
existing TRAPS mutations around the CRD4 region (B), and 12 artificially generated
cysteine—alanine and cysteine—serine generated mutations (C) were sequenced against the WT
TNFR1 and indicated all desired mutations were successfully generated (red boxes).
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Figure 20 Fluorescence microscopy imaging of TRAPS TNFR1-eYFP expressions

Atotal of 62 TRAPS TNFR1-eYFP pcDNA3 plasmids were generated and transfected with the HEK-
293T cells. All TRAPS TNFR1-eYFP mutant -eYFP fusion proteins were successfully generated and
expressed in the mammalian cell line. Within all generated TRAPS mutants, 44 are naturally
existing TRAPS mutations in the CRD1/PLAD of TNFR1 (A), six are naturally existing TRAPS
mutations around the CRD4 region (B), and 12 artificially generated cysteine—alanine and
cysteine—serine mutations in CRD4 (C).
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3.2.4 Generation of VTNFR as -mRFP fusion constructs

A group of 3 poxviruses-encoded VINFRs (MT2 encoded by the myxoma virus, G4R
encoded by the variola virus and J2R encoded by the monkeypox virus) were selected to
make the -mRFP fusion constructs. These were combined with the human TNFR1-eCFP
and TNFR1-eYFP to demonstrate the FRET platform's capacity to investigate virus-host
protein interactions. The vTNFR-mRFP fusion constructs were validated with the plasmid
DNA sequencing and compared with the reference sequences from the NCBI database
(NCBI accession: M95181.1 for MT2, NCBI accession: NC_001611.1 for G4R, and NCBI
accession: JX878429.1 for J2R). In particular, the G4R and J2R were subcloned using the
codon-optimised DNA plasmid template to guarantee the expression in human cells
(Figure 22 yellow highlights and Figure 23 purple highlights). Therefore, the sequencing
results showed that MyxMT2 has 100% sequence identity as the reference sequence
(Figure 21), while VarG4R and MpxJ2R have 73.48% and 74.76% sequence identity as
the reference sequence due to codon optimisation. When those subcloned sequences
translated into protein, all VTNFR-mRFP have 100% amino acids sequence identity as
their reference sequences in the NCBI database (Figure 21, Figure 22 and Figure 23

amino acid sequences).
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MF RLTILILILAYVACVY GGGAUPYGADRGIEKTCRGNDYEZKDGTLTC CC
ATGITTCGTTTAACGCT ACT ACT CGCGT ACGTCGCGT GCGT AT ACGGGGGCGGT GCCCOGT AT GGCGCGGAT CGAGGAAAAT GT AGAGGGAACGACT ACGAAAAGGACGGACT GTGITGT
ATGTTTCGTTTAACGCT ACT ACT CGCGT ACGTCGCGT GCGT AT ACGGGGGOGGT GCCCOGTAT GGCGCGGAT CGAGGAAAAT GT AGA GGGAACGACT ACGAAAAGGACGGACT GTGI T GT

T 8 CP PGS Y ASRLUCGPOGS DTV CS PCEKNETTFTASTNUHATPATCV
ACCTCCTGTCCTCCCGGGTCGT ACGCCTCT AGGTT AT GCGGACCCGGGTCCGACACGGT ATGIT CTCCGTGCAAGAACGAAACCT TT ACGGC GAGT ACGAACCACGCT CCCGCGTGCGTA
ACCTCCTGTCCTCCCGGGTCGT ACGCCTCT AGGTT AT GLGGACCCGGGTCOGACACGGT ATGIT CTCCGTGCAAGAACGAAACCT TTACGGC GAGT ACGAACCACGCT CCCGCGTGCGTA

s CRGRCTGHILSES QS CDI KT®RDRVCDCSAGNTYCILILIEKGOQETGHTC
AGTTGT CGAGGGCGGT GCACAGGCC ACCT AT CC GAGT CT CAAT CGT GTGAT AAAACCCGCGAT AGAGT CTGCGACT GI'T CT GCGGGGAACT ATTGT CT GT T GAAAGGACAGGAGGGGT GT
AGTTGTCGAGGGCGGTGCACAGGCCACCT AT CCGAGT CT CAAT CGT GT GAT AAAACCCGOGAT AGAGT CTGCGACT GTT CT GC GGGGAACT ATTGT CTGTT GAAAGGACAGGAGGGGT GT

R I € AP KTIKTCPAGY GV S GGHTRTGDVLCTEKCPIRYTTYSDAVS S
AGGAT ATGCGCT CCCAAAACGAAGT GT CCCGCGGGGT AT GGCGTCT CCGGACAT ACGCGT ACGGGCGACGT GCTCT GCACAAAAT GT CCTCGGTACACGT ATTCCGACGCCGT ATCCT CC
AGGAT ATGCGCT CCCAAAACGAAGT GI CCCGCGGGET AT GGCGTCT COGGACAT ACGC GT ACGGGCGACGT GCTCT GCACAAAAT GT CCTCGGTACACGT ATTCCGACGCCGT ATCCT CC

T ETCT S S§ FNY 11T 8§ VETFNILY®PVNDTSCTTTAGZPNZEVV KT S EF
ACGGAGACGT GTACCTCGTCGTT TAACT ACATCAGCGT GGAAT TCAACCT ATAT CCCGT AAACGACACGT CTT GT ACGACGAC CGCC GGACCCAAC GAAGT GGTTAAAACGT CGGAGT TC
ACGGAGACGT GTACCTCGTCGTT TAACT ACATCAGCGT GGAAT TCAACCT ATAT CCCGT AAACGACACGTCTT GT ACGACGAC CGCC GGACCCAAC GAAGT GGTTAAAACGT CGGAGT TC

s vV TLNMHTDOCDPVF HTEYYGTS GS EGAGGTFFTG MDRY
TCGGTTACGCTAAATCACACGGATT GI GAT CCCGI CTT CCACACGGAAT ACT ACGGAACGAGCGGC AGCGAGGGC GCGGGAGGAT TCTT CACCGGGAT GGAT AGGT ACCAGAAT ACGACC
TCGGTTACGCTAAATCACACGGATT GT GAT CCCGT CTT CCACACGGAAT ACT ACGGAACGAGCGGC AGCGAGGGC GCGGGAGGAT TCTT CACCGGGAT GGAT AGGT ACCAGAAT ACGACC

KMCTULNIETI RCVEGDAVYVYRTTIPRTS DGV GV LSHSETTITVI G
AAAATGTGTACGCT TAAT AT AGAGAT ACGGT GCGT CGAGGGAGACGCCGT GCGT ACT AT ACCGAGGACGAGCGAC GGGGT CGGCGTCCT ATCT CATT CGGAAACGATT ACCGT GAT AGGA
AAAATGTGTACGCT TAAT AT AGAGAT ACGGT GC G CGAGGGAGACGCCGT GCGT ACT AT ACCGAGGACGAGCGAC GGGGT CGGCGTCCTATCT CATT CGGAAACGATTACCGT GAT AGGA

G C L S DV NV DI EY S DSNUHPEEVDDTFVEYHWGTRILIRILTFPS P K
‘GGGTGCCT GT CCGACGT GAACGT AGAT AT CGAGT ACAGCGACAGT AAT CAT CCCGAGGAGGT CGACGACTT CGTGGAAT ACCATT GGGGT ACACGCCTCCGI CTCTTTCCCTCACCCAAA
GGGTGCCTGT CCGACGT GAACGI AGAT AT CGAGT ACAGCGACAGT AAT CAT CCCGAGGAGGT CGACGACTT CGTGGAAT ACCATT GGGGTACACGCCTCCGICT CTTTCCCT CACCCAAA

R CRLV SIL EIMA S S EDVY 1 KETFMRTFI KVRMETG®GSVNGHETFETIETGE

CGATGIAGACTCGI TTCALTCGAGIT GGCCT CCTCCGAGGACGTC AT CAAGGAGT TC AT GCGCT TCAAGGT GCGC AT GGAGGGCT CCGT GAACGGCCACGAGT T CGAGAT CGAGGGCGAG
L CGATGIAGACTCGITTCA

| TCGAGIT GGCCT CCT CCGAGGACGT CAT CAAGGAGT TC AT GCGCT TCAAGGT GCGC AT GGAGGGCT CCGI GAACGGC CACGAGT TCGAGAT CGAGGGC GAG

G EGRPY EGT T A KL KV TI KGO GPIULUPTFAWDTIILS P F Y G S K A Y
GGCGAGGGCCGCCCCT ACGAGGGC ACCCAGACC GOCAAGCTGAAGGT GACCAAGGGCGGCCCCCTGCCCTT CGCCT GGGACAT CCTGT CCCCT CAGTTCCAGT ACGGCT CCAAGGCCT AC
GGCGAGGGCCGCCCCT ACGAGGGCACCCAGACC GCCAAGCTGAAGGT GACCAAGGGCGGCCCCCTGCCCTT CGCCT GGGACAT CCTGT CCCCT CAGTTCCAGT ACGGCT CCAAGGCCT AC

V XHPADI PDYLEKLS ST F?PEGT FIE KWEU RVMNTFEDTGGVVTVTQ
G GAAGC ACCCCGCCGACATCCCCGACT ACT TGAAGCT GTCCTTCCCCGAGGGCTT CAAGT GGGAGC GCGT GATGAACTT CGAGGAC GGCGGCGTGGT GACCGT GACCCAGGACTCCT CC
GT GAAGCACCCCGCCGACATC CCCGACT ACT TGAAGCT GTCCT TCCCCGAGGGCTT CAAGT GGGAGC GCGT GATGAACTT CGAGGAC GGCGGCGTGGT GACCGT GACCCAGGACTCCT CC

L QDGEFI ¥ KV KLRGTNTFPSDGPVMOQEKTIEKTMGWE A E R
CTGCAGGACGGCGAGTT CATCT ACAAGGT GAAGCT GC GCGGCACCAACTT CCCCT CCGACGGCCCCGT AAT GCAGAAGAAGAC CATGGGCTGGGAGGCCT CCACCGAGCGGAT GTACCCC
CTGCAGGACGGCGAGTT CATCT ACAAGGT GAAGCT GC GCGGC ACC AACT T CCCCT CCGACGGCCCCGT AAT GCAGAAGAAGAC CATGGGCTGGGAGGCCT CCACCGAGCGGAT GTACCCC

EDGALIEKGETI KMRILIEKTLIEKDGGHYDAEUVE KTTYMAZEKTEKT?PVQLPGA
GAGGACGGCGCCCT GAAGGGC GAGAT CAAGATGAGGCT GAAGCTGAAGGACGGC GGCCACTACGAC AGGTCAAGACCACCT ACAT GGC CAAGAAGCCCGT GCAGCT GCCCGGCGCC
GAGGACGGCGCCCT GAAGGGC GAGAT CAAGATGAGGCT GAAGCTGAAGGACGGC GGCCACTACGAC AGGTCAAGACCACCT ACAT GGC CAAGAAGC CCGT GCAGCT GCCCGGCGCC

Y KT DI KL DI TS HNEDYTTI V E®QQYEZRAETGIRHSTG A *
TACAAGACCGACAT CAAGCTGGACAT CACCT CCCACAACGAGGACT ACACCATC GTGGAACAGI ACGAGCGCGCC GAGGGCCGCCACT CCACCGGCGCCTAA | 1662
TACAAGACCGACAT CAAGCTGGACAT CACCT CCCACAACGAGGACT ACACCATC GTGGAACAGI ACGAGCGCGCC GAGGGCCGCCACT CCACCGGCGCCTAA | 1662

Figure 21 MyxMT2-mRFP sequencing result
Myxoma virus-encoded MT2 vTNFR (black box) subcloned with the mRFP (red box) to form a
fusion fluorescence receptor MyxMT2-mRFP. One silent mutation was identified in the mRFP
ORF: GCC—>GCT, alanine—>alanine (red). No mutation in the MyxT2 ORF region was detected.
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MKS VLY LY LFIULSTCTITITIINGRDAAPYT®PPNGI KT CI KT DTETYKTRH
ATGAAGTCCGTATT AT ACTTGT AT AT ATT GI' TTCT CTCAT GT AT AAT AAT AAACGGAAGAGAT GCAGCACCGI AT ACACCACCCAATGGAAAGT GT AAAGACACCGAAT ACAAACGCCAT
ATGAAGAGCGTCCTCTATCTGT AT AT CCT GI' TCCT GTCCT GCAT TAT CATTAACGGCAGGGACGCCGCT CCCT ACACCCCT CCAAACGGAAAAT GT AAGGAT ACAGAGT ATAAAAGACAC

NLCCLSCPPGTTYASRLTCDS S KTNTOQCT®PCGS GTFT S RNNHL
AATCTGTGITGITTATCGI GT CCTCCGGGAACAT ACGCTT CCAGATT ATGT GATAGCAAGACT AACACACAAT GTACACCGI'GT GGTT CGGGT ACCTTTACATCT CGCAATAAT CATTTA
AACCTGTGCT GTCT CTCCT GECCOC CT GGGACAT ATGCT AGT CGGCT GTGOGACT CAAAGACCAAT ACACAGT GCACCCC GTGT GGAAGOGGCACTTTTACT TCCCGCAACAATCATCTG

?ACI,%CNGRCN‘:.‘JQVFTRSC]\TTHNR!CFCSPGYYCI.LK(‘
CCCGCTTGTCTAAGTTGT AACGGAAGATGCAAT AGTAAT CAGGT AGAGACGCGAT CGTGT AACACGACT CACAAT AGAAT CTGT GAAT GCTCT CCCGGAT ATTATT GTCTTCTTAAAGGA
CCCGOCTGOCTCTCCTGT AACGGGCGATGCAAT AGTAACCAAGT CGAAACTAGGT CATGT AATACCACT CACAACAGAAT CTGCGAGT GTAGCCCT GGAT ACTATT GTCTCCT GAAAGGT

S 8§ 6 C K A C V § T KC¢CGI 6Y¥Y GV S 6HT SV GGDVI CS P CGF GT Y S H
TCATCCGGAT GCAAGGC AT GT GI TT CCC AAACAAAATGT GGAAT AGGAT ACGGAGT ATCCGGACACACGTCT GITGGAGACGTC AT CT GI'TCT CCGT GTGGT TTCGGAACAT ATTCTCAC
TCCTCTGGCT GTAAGGCTT GCGT GAGE CAGACAAAATGT GGAAT TGGGT ATGGT GI'CTCAGGT CATACAAGT GTGGGAGAT GTC AT CT GCAGT CCTT GCGGGTTC GGCACAT ACT CACAT

T VS S A DKZ CEZPVPNNTFNYTI DVETITILY®PVNDTSCTIRTTTT G
ACCGTCTCTTCCGCAGAT AAAT GCGAACC CGTAC CCAACAAT ACATTTAACT AT AT CGAT GTGGAAATTAC ACTGT ATCCAGTTAACGACACATCGT GTACT CGGACGACCACT ACCGGT
ACCGTTTCCAGIGCCGAT AAGT GCGAACCCGTGC CTAATAAT ACTTTCAACT AT ATTGAT GTTGAAAT AACACT GT ATCCT GTGAACGACACT AGCT GCACCCGCACAACCACT ACAGGC

L §$ ES 1 LTS EULTTITMNUHTDOCNUPVFRETETYTFSVILNIEKVYVATSGTF F
CTCAGCGAAT CCATCTT AACGT CGGAACT AACT ATTACT ATGAATC AT ACAGATT GCAAT CCCGT ATTT CGT GAGGAAT ACTTCT CTGT CCTTAAT AAGGT AGCAACTTCAGGAT TTTTT
CTCTCCGAAT CTATTCT GACCAGCGAGCT GACT AT CACAATGAACC ACACT GACT GCAACCCCGT TTTCCGCGAAGAGT ACTTTT CAGT GCT GAACAAAGT GGCCACTTCCGGAT TCTTT

T GE N R Y NI S KV CcTILNTFETI KCNNIKTGS 5 F K L T KAKNDUDGM
ACAGGAGAAAAT AGAT AT CAAAAT ATT TCAAAGGT GTGTACTTT AAAT TTTGAGAT TAAATGT AAT AACAAAGGTTCTTC CTTC AAAC AGCT AACGAAAGCAAAGAATGATGACGGT AT G
ACAGGGGAAAATCGCTACCAGAAT ATT TCAAAAGT GTGCACT CT GAACTTCGAGAT TAAGTGCAAT AACAAAGGCAGI TCCTTC AAAC AACT GACCAAAGCT AAGAATGACGATGGTATG

MS$S HS ETVTLAGDCILS S VDI YIULYSNTNAOQDYETDTTI S Y RV
ATGTOGCATTCGGAGACGGT AACTCT AGC GGGTGACTGT CT ATCT AGCGT CGACAT CTATATACT AT AT AGT AAT ACCAAT GCT CAAGACT ACGAAACTGATACAATCT CTTATCGTGI G
ATGTCCCACAGTGAAACAGTGACCCT GGCAGGAGATTGT CTGAGT TCAGT CGAT AT CT AT ATCCT CT AT TCAAAT ACTAACGCCCAGGACT AT GAGACAGACACTATCT CCT ACAGGGT G

G NVLDDDSHMPGSCNIHEK®PTITNSI KT PTRTFILJLEIMA S S E DV I K
GGTAAT GTTCTCGATGAT GAT AGCCAT AT GCCCGGTAGTT GCAAT ATAC AT AAACCGAT CACTAATT CCAAACCCACCCGCTTTTT AT CGAGNTGGCCT CCTCCGAGGACGT CATCAAG
GGGAAT GTGCTCGACGAT GACAGICAT AT GCCTGGCTCAT GCAAT ATTCACAAACCAAT CACCAATT CTAAGCCCACTAGATTCCT F T CGAGNTGGCCT CCTCCGAGGACGT CATCAAG

EFMRTF KV RMEGSVNGHETFETIESGESGEGRPYEGTOQTAZEKTILIE KWVT
‘GAGTTCATGCGCTT CAAGGTGCGCAT GGAGGGCT CCGT GAAC GGCCACGAGT TCGAGAT CGAGGGCGAGGGCGAGGGCCGCCCCT ACGAGGGCACCCAGACCGCCAAGCT GAAGGTGACC
GAGTTCATGCGCTTCAAGGTGCGCAT GGAGGGCT CCGT GAAC GGCCACGAGT TCGAGAT CGAGGGCGAGGGLGAGGGCCGCCCCT ACGAGGGCACC CAGACCGCCAAGCT GAAGGTGACC

K GG P L PF A WDTI L P Q F QY G S KAY VKHPADTIPDYLIKTILSTFPE
MGSGCGECCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGITCCAGTACGGCTCCAAGGCCTACGTGAAGCACCC CGCCGACAT CCCCGACTACTTGAAGCTGT CCTTCCCCGAG
AAGGGCGGCCCCCTGCCCT TCGCCT GGGACATCCT GTCCCCT CAGTT CCAGT ACGGCTCCAAGGCCT ACGT GAAGCACCC CGCC GACAT CCCCCACT ACTTGAAGCTGT CCTTCCCCGAG

G F KWERV MNTFEDGOGV VTVT D S S L D G EF I ¥ KV KL RGT N F
GGCTTCAAGT GGGAGCGCGTGAT GAACTT CGAGGACGGCGGC GT GGT GACCGTGACCCAGGACT CCT CCCT GCAGGACGGCGAGTT CAT CT ACAAGGT GAAGCTGCGCGGCACCAACTTC
‘GGCTTCAAGT GGGAGCGCGTGAT GAACTT CGAGGACGGCGGC GT'GGT GAC OGTGACCC AGGACT CCT CCCT GCAGGACGGCGAGTT CAT CT ACAAGGT GAAGCTGCGCGGCACCAACTTC

P S DGP V MQ KKTMGWEASTERMYPEDSGATLIE KU GETIKMRILIEKILIEKD
CCCTCCGACGGCCCCGT AATGCAGAAGAAGACC AT GGGCT GGGAGGCCTC CACCGAGCGGATGT ACCCCGAGGAC GGCGC CCTGAAGGGCGAGATC AAGAT GAGGCTGAAGCT GAAGGAC
CCCTCCGACGGCCCCGT AATGCAGAAGAAGACCAT GGGCT GGGAGGCCTC CACCGAGCGGATGT ACCCCGAGGAC GGCGC CCTGAAGGGUGAGATC AAGAT GAGGCTGAAGCT GAAGGAC

G G HY D AEV KTTYMAIZ KE KZPVQLPGAY KTDI KILDI TS HNEDYT
GGCGGCCACT ACGACGCEGAGGT CAAGAC CACCT ACAT GGCCAAGAAGCCCGTGCAGCT GCCCGGCGCCT ACAAGACCGACATC AAGCT GGACATCACCT CCCACAACGAGGACT ACACC
GGCGGCCACT ACGAC AGGT CAAGACCACCT ACAT GGCCAAGAAGCCCGTGCAGCT GCCCGGCGCCT ACAAGACCGACATC AAGCT GGACATCACCT COCACAACGAGGACT ACACC

I vV E Y ER A EGURHST G A *
ATCGTGGAACAGT ACGAGCGC GCCGAGGGCCGCCACTCCACCGGCGUCT AA | 1731
ATCGTGGAACAGT ACGAGCGC GCCGAGGGCCGCCACTCCACCGGCGUCT AA | 1731

Figure 22 Codon optimised VarG4R-mRFP sequencing result
Variola virus-encoded G4R vTNFR (black box) subcloned with the mRFP (red box) to form a fusion
fluorescence receptor VarG4R-mRFP. One silent mutation was identified in the mRFP ORF:
GCC->GCT, alanine—>alanine (red). All desired codon optimisations (yellow highlights) were
identified, and no undesired mutation in the G4R ORF was detected.
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H
MT%TGE‘ T GCCC i: A'.l‘ AAACT GAT CACT &t T GGCCT OCT CCGAGGACGT CATCAAGGAG
AAT! \TGT' \T GCCC AT AAACTGAT CACTAN T GGCCT CCT CCGAGGACGT CATCAAGGAG

R § V L I NG RD

M L A
e R e e
ATAI CACAT ‘GTAAAG CGAAT.
N L C S P G T Y A S R L CDS KT NT C T P C G S 5 H
e e
C 'GTGAT A AT A TA! \TAATC.

Q A C L 8 C N G R L L
R B S R B B R
CAl GT ‘GT GATAGT. GT. CCAGGAT,
S G C R T G Y T S T G D V
1' Accrc.u ch
C TAOGGA ACGTCAT CAT
TVSSTDKCEPVTSNTFNYIDVEINLYPVNDTSCTRTTTTG
Accgl:ga;im GCAAT Al ACT AT ATCGAT GT \I'TAACCTGT ATC/ CGACA ﬁ \CCACTACC
ACCH GCGAA GCAAT A ACTATATCGATGT T'TAACCTGT AT CGACA GTA \CCACTACC
5 r s T I T MNHEKDTCDPVF RAETYTF S V AT S G F F
AR SRR B
GAATCAATCT \TTACCATGAATCAT AAA GTGATC! TCTTT
T G E N R Y K1 C T L NFE./I

K C N H K D s § L T KTEKNDTTI M
Al GAT. AATA G T]' GAATG CTATEATG
A GAT. \GAAT MTG CTATEATG

PHSFTVTLV

e i mmﬂmmm illlﬂﬂ:m Rﬁ:lit“ﬁﬁ:@ﬁ&ﬁﬁflﬁtﬂﬁ

NV L DV

N _§ M P A N M A S § E DV I KE

FMRF KV RMETGSVNGHETFETIEGETGEUGRZPYEGT QT A KTILZKVT K
TTCATGCGCT TCAAGGT GCGCAT GGAGGGCT CCGT GAACGGC CACGAGT T CGAGAT CGAGGGC GAGGGCGAGGGC CGCCC CTAC GAGGGCAC CCAGACCGCCAAGCTGAAGGT GACCAAG
TTCATGCGCTTCAAGGT GCGCAT GGAGGGCT COGT GAACGGC CACGAGT T CGAGAT CGAGGGC GAGGGCGAGGGC CGCCC CTAC GAGGGCACCCAGACCGCCAAGCTGAAGGT GACCAAG

G G P L PFAWDTILSUPOQF QY GS KAY VKHPADTIPDYTLI KTLSTFPEG
GGCGGCCCCCTGCCCTT CGCCT GGGACAT CCTGT CCCCTCAGT T CCAGT ACGGCT CCAAGGCCT ACGT GAAGCACCCCGC CGACAT CCCCGACT ACTTGAAGCTGT CCTTCCCCGAGGGC
GGCGGCCCCCTGCCCTT COCCT GGGACAT CCTGT CCCCT CAGTT CCAGT ACGGCT CCAAGGCCT ACGT GAAGCACCCCGC CGACAT CCCCGACT ACTTGAAGCTGT CCTT CCCCGAGGGC

F KWERVMNTFEDGGVY YTVTQQDSSLQDOGETFTIYIEKY KILZRGTNTFP
TTCAAGTGOGAGCGCGT GATGAACTT CGAGGACGGCGGCGTGET GACCGT GACCCAGGACTCCTCCCT GCAGGAC GGCGAGTTC AT CT ACAAGGTGAAGCT GCGCGGC ACCAACT TCCCC
TTCAAGTGGGAGCGCGT GATGAACTT CGAGGACGGCGGCGTGGT GACCGT GACCCAGGACTCCTCCCT GCAGGAC GGCGAGTTC AT CT ACAAGGTGAAGCT GCGCGGCACCAACTTCCCC

S DG PV M@ K KTMGWEASTEU RMYPETDGATLI KGETIKMEPRILIEKTILIKDG
TCCGACGGCCCCGT AAT GCAGAAGAAGAC CATGGGCTGGGAGGCCT CCACCGAGCGGAT GTACCCCGAGGACGGC GCCCT GAAGGGUGAGAT CAAGAT GAGGCTGAAGCT GAAGGACGGC
TCCGACGGCCCCGT AAT GCAGAAGAAGAC CATGGGCTGGGAGGCCT CCACCGAGUGGAT GTACCCCGAGGACGGC GCCCT GAAGGGUGAGAT CAAGAT GAGGCTGAAGCT GAAGGACGGC

G HY DAEV KTTYMAEKI KT PVQQLUPGAYE XTWDTI KILDITSHNEDYT!I
GGCCACTACGACT AGGTCAAGACCACCT ACAT GGCCAAGAAGC COGT GCAGCT GCCCGGCGCCT ACAAGACC GACAT CAAGCT GGACAT CACCT CCC ACAACGAGGACT ACACCAT C
‘GGCCACTACGAC AGGTCAAGACCACCT ACAT GGCCAAGAAGC COGT GCAGCT GCCCGGCGCCT ACAAGACCGACAT CAAGCT GGACAT CACCT CCCACAACGAGGACTACACCAT C

V EQ Y ERAEGRHSTG A *
‘GT GGAACAGT ACGAGCGCGCCGAGGGCCGCCACT CCACCGGCGCCTAA | 1728
GTGGAACAGT ACGAGCGCGCC GAGGGCCGCCACT CCACCGGCGUCTAA | 1728

Figure 23 Codon optimised MpxJ2R-mRFP sequencing result
Monkeypox virus-encoded J2R VTNFR (black box) subcloned with the mRFP (red box) to form a
fusion fluorescence receptor MpxJ2R-mRFP. One silent mutation was identified in the mRFP ORF:
GCC->GCT, alanine—>alanine (red). All desired codon optimisations (purple highlights) were
identified, and no undesired mutation in the J2R ORF was detected.
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The expression of each VTNFR-mRFP construct was also examined using the EVOS
microscope, and HEK-293T cells transfected with the pcDNA3.MyxMT2-mRFP,
pcDNA3.VarG4R-mRFP and pcDNA3.MpvJ2R-mRFP plasmids. All plasmids encoded
VINFR-mRFP fusion proteins were detectable using the RFP (531/40 nm excitation,
593/40 nm emission) EVOS light cube, substantiating that the newly constructed fusion
proteins (MyxMT2, VarG4R and MpvJ2R) were each successfully expressed as mRFP

labelled fusion proteins (i.e., red in colour) in HEK-293T cells (Figure 24).

RFP Channel
Transmitted (531/40 Ex;
Channel 593/40 Em) Merged

TF:
pcDNA3.MyxT2-mRFP

TF:
pcDNA3.VarG4R-mRFP

TF: i
pcDNA3.MpvJ2R-mRFP (&

200 pm,

Figure 24 Fluorescence microscopy imaging of vTNFRs-mRFP expressions

Microscopy images captured in the transmitted and RFP fluorescence channels demonstrate the
successful subcloning and mammalian expression of newly constructed pcDNA3.MyxT2-mRFP
(top), pcDNA3.VarG4R-mRFP (middle), and pcDNA3.MpvJ2R-mRFP (bottom).
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3.2.5 Generation of pGL4.23.NF-kB-[miniP]-miRFP703 proinflammatory reporter

Firstly, the Avrll digested 2X NF-kB response element oligonucleotides were incubated
in T4 ligation buffer for self-ligation to achieve higher copies of insert NF-kB response
element fragments (i.e., 4X and 8X). Then, the Nhel digested pGL4.23.[miniP] vector
was added to the subcloning reaction to form the pGL4.23.NF-kB-[miniP] plasmid with
different numbers of insert copies. The ligation can be achieved because Avrll and Nhel

restriction enzymes generate compatible sticky ends during digestion (Figure 25A).

The newly constructed potential pGL4.23.NF-kB-[miniP] plasmids were then double-
digested with Sacl and Xhol to release the entire insert fragment. Plasmids with different
lengths of released insert fragments were selected for sequencing (Figure 25B). The
sequencing results indicated pGL4.23.NF-kB-[miniP] with 2X, 4X, and 8X copies of
inserts were successfully generated with the response element sequences located
before the minimal promoter sequence (Figure 25C). Furthermore, the sequencing data
also indicated that Ncol and Xbal double-digested miRFP703 reporter sequence was
successfully cloned after the minimal promoter using the pGL4.23.NF- k B-[miniP]

plasmids as the backbone (one example is shown in Figure 25D).
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A Avrll (compatible with Nhel) Avrll B pGL4.23.NF-kB-[miniP] digested with Sacl + Xhol

2 X NF-kB response element -
5'— GATCCTAGGGAATTCCCRGGAATTCCCTAGGATC—3 - - — -
3’—CTAGGA§16¢CITAAGGGCCCITAAGGGETECTAG—S’ =

Nhel (compatible with Avrll)

Sacl Xhol

GAGCRCGCTAGCCICGAG
CTCGAGCGATCGGAGC

pGL4.23. [miniP]

50 bp -

2 x NF-xB response element minimal promoter (miniP) Kozak
Alm—%hcnc_ AT AT G AT T 00T O 000 C] T ATAGACT AGA S TAT ATART. un:wrwh cateormacraTarafocacoaTa]
c |A.I 1/’“4 2}“«1 VA A mh\\n‘m A MY Al [lli'\u"—‘- AL 'i\l\-‘."\ M“-h i -;":.‘"‘If}\'f\pl“l I

4 X NF KB response element

AN Mq\f\ A

STl irP703 Ko
GATC

201 [ A A Y U M Ny E
Neol ¥ pa T A e T
l l o1 [ AMAAMAAN Ao AN e AN A A Ao N e A M Mo
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Figure 25 Sequencing results of the NF-kB-miRFP703 proinflammatory reporters

The construction of 2X NF-kB response elements insert fragments, which were subcloned into
the pGL4.23 minimal promoter plasmid vector using the compatible Avrll and Nhel sites (A).
Insert fragments released by Sacl and Xhol double digestion (B). Sequencing results of the NF-
KB response elements were successfully subcloned into the pGL4.23 vector before the minimal
promoter sequence (C). The sequencing result indicated that the miRFP703 fluorescent protein
reporter was successfully subcloned into the pGL4.23 vector after the minimal promoter
sequence (D).
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The NF-xB can be selectively activated when co-transfected with the non-fluorescence
TNFR1 plasmids (Figure 26). In comparison, cells co-transfected with the non-
fluorescence TNFR2 or CD27 plasmid and NF-kB reporter plasmids showed no NF-kB
activation (Appendix Figure 9). The medium-only cells, pcDNA3 empty vector-
transfected cells, and pGL4.23.[miniP]-miRFP703 plasmid (without NF-k B response
element) transfected cells also showed no detectable miRFP fluorescence (Appendix
Figure 10). Moreover, different number of copies of the NF-kB response elements
induced different levels of miRFP703 expression. When co-transfected with TNFR1
plasmids, the 4X and 8X NF-kB response element samples both demonstrated higher
miRFP703 expression levels higher than the sample without NF-kB response element,
while the 2X NF-kB response element sample showed the same expression level as the
no NF-xB response element sample, this means more than two copies of the NF-xB
response element sequences are required to activate the miRFP703 expression through
the minimal promoter. When this NF-kB proinflammatory reporter was used with the
FRET reporters, the cells were harvested at 36 hours post-transfection. Thus, the
miRFP703 detection levels were also calculated at 36 hours post-transfection to
compare the activation using different number of copies of NF-kB response elements.
The 2X NF-kB response element sample showed no significant difference (t-statistic =
0.088, p-value =0.936) when compared to the NF-xB response element negative control,
while both 4Xx and 8X NF-kB response element samples showed significantly higher
miRFP703 expression than the negative control (t-statistic = -19.239, p-value = 0.002
and t-statistic =-15.498, p-value = 0.0004). The miRFP703 expression levels between the
4x and 8X NF-kB response element samples were not significantly different from each

other (t-statistic = 2.949, p-value = 0.084).
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A NF-xB activation live-cell imaging

Co-transfection: pGL4.23.[miniP]-miRFP703 + pcDNA3.TNFR1 200 pm

Co-transfection: pGL4.23.NF-kB(2)-[miniP]-miRFP703 +pcDNA3.TNFR1

Co-transfection: pGL4.23.NF-kB(4)-[miniP]-miRFP703 +pcDNA3.TNFR1
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Figure 26 Live-cell imaging of NF-xB reporter and TNFR1 co-transfected HEK-293T cells
The NF-kB reporter with zero or 2X response elements had minimal miRFP expression, and the

NF-kB reporter with 4X or 8X response elements started to express miRFP from 14 hours post-

transfection (A). The expression dynamics of the NF-xB reporter with different number of copies

of response elements (B). Normalised miRFP703 detection level calculated at the 36 hours post-

transfection (C).
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CHAPTER FOUR

FLOW CYTOMETRY

DATA PRE-PROCESSING
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4.1 Introduction

Flow cytometry data pre-processing involves a series of logical stages before one can
perform accurate downstream data analyses like FRET quantification. While the
detection of FRET has been used to characterise many intracellular interactions,
guantifying and comparing the FRET results are particularly difficult due to the complex
nature of these processes within living cells; often, many variances can be produced
during data pre-processing. Many software and programmed packages/libraries in
python and R offer solutions for each pre-processing stage (see literature review section
1.3). Still, challenges in singlet identification, anomaly detection, autofluorescence
removal, and spectral unmixing impede investigators from achieving error-free flow
cytometry measurements. This lack of high-quality pre-proceed data has largely
decreased the sensitivity, accuracy, and reliability of flow cytometry-based assays
(including FRET assays) in academic research, clinical diagnosis, and pharmaceutical

therapeutics screening.

Firstly, there are two most essential gating steps in a typical flow cytometry data analysis:
(i) singlet identification to separate single cell events from cell aggregates (doublets or
multiplets), cell debris and non-cell background events, and (ii) subtype identification to
separate different cell types with distinct phenotypes into groups. The majority of
automated flow cytometry gating algorithms have been focused on the second one in
detecting various cell subpopulations utilising multidimensional fluorescence signals
(see literature review section 1.3.4). On the one hand, flow cytometers detect well-
calibrated scattered light signals that permit a series of gold-standard manual gating

procedures to separate singlets from other data events. On the other hand, cells can
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display varied scattered light profiles upon different treatments and require manual
adjustment for individual samples. Therefore, the manual gating approach can be
subjective, labour-intensive, and time-consuming for big-batch data analysis. To date,
only a few methods have presented unsupervised algorithms for cell event and singlet
identification to provide automated and objective solutions. The TASBE software
package incorporates automated cell gating using a GMM to fit the scattered light data
but can only identify cells from background events, not singlets from doublets or cell
aggregates [86]. Razo-Mejia et al. established an unsupervised two-dimensional
Gaussian function-based gating algorithm that fits the logio(FSC) and log10(SSC) data
using covariance and chi-squared test. However, only events within the centre, high-
density region (usually 40% of the total) are gated as cells using this approach [128]. The
most recent algorithm is FlowGateNIST which uses iterative GMM with different cluster
numbers to discriminate between cells and background events and, subsequently,
between singlet and multiplet events. However, an optimised GMM model based on the
BIC needs repetitive GMM fitting, which increases processing time. In addition,
FlowGateNIST is limited to analysing small particles such as bacterial cells and is
unsuitable for large mammalian cells [84]. Therefore, the desired singlets identification
algorithm must be automatic, objective, rapid, and suitable for mammalian cell

applications.

Secondly, flow cytometers constantly measure baseline fluorescence signals and
subtract them from the detected fluorescent signals during data acquisition. Abnormal
baseline subtractions can sometimes result in negative fluorescent intensity readout

without actual physical or biological meaning. The negative values can also lead to
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significant data loss since downstream statistical analyses require the removal of those
negative values. The current widely used algorithms FlowClean and FlowAl can resolve
aberrant detection errors such as saturated margin data, data with irregular fluidic flow
rate and data with abnormal fluorescent intensity measurement. However, when
handling the baseline subtraction-error, FlowClean simply replaces negative values with
small random numbers, and flowAl only removes a portion of the negative data based
on the calculated threshold, which both leave unresolved fluorescence quantification
errors [79, 80]. A single-cell level baseline subtraction correction algorithm is urgently
needed to prevent flow cytometry data loss and to achieve the detection of error-free

fluorescent intensity values.

Thirdly, autofluorescence is a mixed fluorescent signal of various biomaterials in the
biological sample. Autofluorescence can be problematic because it reduces the signal-
to-noise ratio, resulting in decreased sensitivity and false-positives. Furthermore,
autofluorescence spill-over can also obscure low-emitting signals, such as fluorophore-
tagged proteins with low expression levels, weak sensitised FRET emissions and cellular
signalling pathway reporters with low activation levels. The current methods are
inaccurate for autofluorescence removal. They either subtract the sample-level mean
autofluorescence intensity calculated from the non-fluorescent control samples or treat
autofluorescence as a single colour and remove it with the linear spectral unmixing
approach. The former conducts subtraction at the non-single-cell level, and the latter
requires an extra detection channel with increased hardware requirements. Both
approaches ignore that autofluorescence varies from cell to cell and reflects the

biomaterials' heterogeneity in each sample. Therefore, a non-linear single-cell algorithm
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is needed for precise autofluorescence prediction and removal to increase the signal-to-

noise ratio, detection sensitivity and fluorescent intensity quantification accuracy.

Lastly, spectral unmixing is a fluorescent signal compensation technique that removes
the spillovers from the spectrally overlapped photon emissions and cross-laser excited
photon emissions from samples labelled with multiple fluorophores. All current spectral
unmixing methods essentially minimise the spread error, indicating the level of residue
error spreading after compensation. The major contribution to the spread errors are
unresolved anomaly detection signals and autofluorescence, so the performance of the
spectral unmixing is significantly dependent on the baseline subtraction correction and
autofluorescence removal mentioned earlier. Moreover, compensation is especially
challenging for FRET assays since it requires single-colour controls for all detected
fluorescence signals since FRET signals have no true single-colour control because the
FRET-donor and FRET-acceptor fluorescence emissions are simultaneously detected
with the sensitised FRET fluorescence. Therefore, the spectral unmixing algorithm that
can handle the FRET emissions is needed to achieve accurate flow cytometry-based FRET

guantification.

In this chapter, | have developed several unsupervised algorithms to overcome the
abovementioned unresolved challenges in flow cytometry data pre-processing. The
performance of each pre-processing step and the overall pre-processing pipeline have
been evaluated using a total of 11 flow cytometry-based FRET experiments consisting of
three cell types and five different FRET pairs detected by five distinct flow cytometers
(including conventional and spectral flow cytometers). This chapter provides ML-
powered solutions that achieve automatic, objective, ultra-fast singlet identification,
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followed by an error-free baseline-subtraction correction, autofluorescence removal
and spectral unmixing. Together, they remove the obstacle in achieving accurate and
unbiased flow cytometry data quantification and significantly increase the sensitivity

and robustness of all flow cytometry assays, including the detection of FRET.

4.2 Results

4.2.1 UltraFast — an unsupervised algorithm for automatic singlet identification

Flow cytometers measure the relative cell size and granularity with forward-scattered
(FSC) light and side-scattered (SSC) light detectors (Figure 27A). Each of the FSC and SSC
signals has three measurable parameters, the heights (FSC-H, SSC-H) indicate the signal
strength, the widths (FSC-W, SSC-W) indicate the relative time cost by a particle to pass
through the laser, and the areas (FSC-A, SSC-A) represent the integrated area of the
overall detected signal (Figure 27B). Despite the well-calibrated nature of flow
cytometers allowing for a standardized six-step approach to separate singlets from
other events, cells under different treatments or expressing different proteins can
exhibit diverse profiles in these gating panels (Figure 27C). For instance, cells transfected
with plasmid DNAs, especially those overexpressing human TNFR1 proteins, show

noticeable enlargement and increased granularity (Figure 27C last row).

To elucidate, the use of manual gating in this study is primarily for baseline comparison.
The ground truths of singlet identities were initially established using carefully adjusted
manual gates for each sample, this approach was also assessed by cell sorting and
microscopy imaging (see Appendix Figure 11). The performance of conventional manual
gating baseline was performed on identifying singlets in a semi-automated way. In detail,

the six-step gates were established on one sample, and the same set of gates was
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automatically applied across the rest of the samples to test the accuracy of the batch

manual gating approach.

This semi-automated approach separately used each of the untransfected sample,
pcDNA3 empty vector transfected sample, pcDNA3.TNFR1 transfected sample and
pcDNA3.CD27 transfected sample as the establishment control sample to generate an
averaged performance. On average, the semi-automatic batch manual approach
achieved an average F1 score of 0.7767 with an average precision of 0.9057 and an
average recall of 0.7327 (Figure 27D). The standard deviation of the performance also
has an extensive range from 0.0561 to 0.3802, indicating that the manual gating

strategy’s performance can be varied when utilised in the semi-automated batch mode.

Contrastingly, the UltraFast algorithm in the below sections operates on an entirely
automated, unsupervised basis, eliminating the necessity for manual gating. It's
essential to clarify that the semi-automated approach mentioned is utilised to provide
a comparative baseline, not as a component of the UltraFast technique. UltraFast’s
innovation lies in its capability to automatically identify singlets, offering an improved,

more consistent performance over manual or semi-automated strategies.
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Figure 27 Semi-automated batch mode manual singlet identification

Flow cytometers measure FSC and SSC signals on two perpendicular detectors (A). Each FSC and
SSC signal has width, height and area parameters (B). The six-step manual gatings were applied
on HEK-293T cells with different transfections (C). The performance of singlet identification
when utilising the semi-automated batch mode manual gating approach. The F1 scores,
precision, and recall were presented as the bar graphs using different sample as the
establishment control sample that generated the gates (D).
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The unsupervised clustering algorithm, density-based spatial clustering of applications
with noise (DBSCAN), has superior performance when clustering flow cytometry data
with irregular shapes and much background noise (see Figure 29A). Several commonly
used unsupervised clustering algorithms, K-Means, Ward, agglomerative clustering and
GMM, were used to compare with the DBSCAN algorithm on four sets of synthetic data
(Figure 28). Although all algorithms can handle the data with regular shapes and equal-
size clusters well (Figure 28, first row), only DBSCAN perfectly clusters the irregularly
shaped data (Figure 28, second row). DBSCAN also has a unique feature of noise
identification (as those purple dots) that prevents the forced assignment of the noise
into clusters (Figure 28, third row). Lastly, DBSCAN does not require user-supplied
cluster numbers, preventing the incorrect separation of one group into numerous

clusters (Figure 28, last row).

Agglomerative Gaussian
KMeans Ward Clustering Mixture DBSCAN
® © * Clusters
i E k) £ * Noise
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Figure 28 Unsupervised clustering algorithms comparison

K-Means, Ward, Agglomerative clustering, and GMM compared with the DBSCAN algorithm.
Each data has 1000 data points. Each of the blue, red and yellow colour represents one cluster
after unsupervised clustering, and the numbers at the lower right corners are indicating the
computing time of the clustering task. The clustering comparison was performed on data with
regular shapes and equal size (1% row), irregular shapes (2" row), and different sizes with noise
(purple colour dots) (3™ row). In addition, DBSCAN does not require user-supplied
hyperparameter for cluster number, so it did not perform the incorrect separation of one group
into numerous clusters (4™ row).
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For this project, | have developed a six-stage unsupervised algorithm called UltraFast
that further raised the power of DBSCAN. The algorithm flowchart is summarised with
graph illustrations (Figure 29A), and the detailed methods are described in section 2.7.2.
The UltraFast algorithm can achieve unbiased, automated, singlet identification with
less than half a second processing time per sample with 30,000 cells. The UltraFast
algorithm achieves an average F1 score of 0.9193 with SD = 0.0090 (precision = 0.9305,
recall = 0.9084), indicating a high true-positive singlet identification with low false-
negative and low false-positive detection rates. This result outperforms many other
clustering algorithms, including FlowGrid (mean F1 = 0.7484, SD = 0.0579). K-Means
(mean F1 = 0.4300, SD = 0.0676), G-Means (mean F1 = 0.4257, SD = 0.0666), X-Means
(mean F1 = 0.4247, SD = 0.0662), flowMeans (mean F1 = 0.7607, SD = 0.0586), GMM
(mean F1=0.6053, SD =0.0577), flowClust (mean F1=0.7171, SD = 0.0064), 2D gaussian
fitting with covariance and chi-squared test (mean F1 =0.6821, SD = 0.0624) (Figure 29B),
for each algorithm the same data transformation from UltraFast stage-1 to stage-3 were
utilised to achieve fair comparison (Figure 29B). The singlet identification results have
been validated with several cell lines, including U20S, HL60, HEK293T, THP1 and human
T cells from human peripheral blood mononuclear cells (PBMCs), and the gating profiles
were compared with the six-step manual gating using scatterplots (see Appendix Figure
12 with an example using HEK293T cell line). In addition, the UltraFast provides a “grid
number” hyperparameter in step four which is approximate to the strictness of singlet
identification that can be further fine-tuned by human experts. The optimisation of this
hyperparameter can also be automatically tuned through iterations which shows a

relatively stable performance from a broad range of grid numbers (50x50 to 150x150),
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in which the F1 scores>0.9 was maintained using 82X82 to 122X122 number of grids

(Figure 29C).
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Figure 29 The unsupervised UltraFast singlet identification algorithm

The UltraFast algorithm's design consists of six stages (i) primary population identification (blue
dots), (ii) data logarithmic transformation, (iii) PCA dimensionality reduction, (iv) generation of
grid boxes, (v) finding the critical point using elbow method, and (vi) DBSCAN clustering (A).
The F1 score of singlet identification results from different clustering algorithms, using the
manual gated samples as the ground truth (B). The performance of UltraFast with different grid
numbers (C).
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4.2.2 The algorithm for single-cell level baseline subtraction-error correction

The baseline subtraction errors were corrected using the unsupervised collaborative
filtering algorithm. This algorithm is currently used in many online streaming websites
in their movie recommendation system. The algorithm learns from the original data
containing rated and unrated movie scores from every user, and it generates attributes
such as sci-fi, action, and romance (Figure 30 attributes in red). Those attributes are
further used in model formulation to predict the unrated movie scores for each user.
The prediction is achieved by minimising the cost function between predicted and

known-rated scores using iterative gradient descent (see chapter two, section 2.7.3).

Collaborative filter algorism intuition

Movie Scores Predicted Movie Scores
Movies Movies

Users | “Iron Man” | “Super Man” ["Transformer”{"Harry Potter”|  “Titanic” Users | “Iron Man” | “Super Man” [Transformer”{"Harry Potter”| “Titanic”
Alice 8.0 79 65 9.3 4.5 Alice 2.0 7.9 6.5 9.3 4.5
Bob 7.0 6.0 7.0 6.5 8.9 Bob 7.0 6.0 7.0 6.5 8.9
Carol 4.0 7 48 7.3 9.2 Carol 4.0 4.5 48 7.3 9.2
Dave 8.2 7.9 75 9.3 6.5 Dave 8.2 7.9 75 93 6.5
Eva 7.2 6.1 7.3 " 7.9 Eva 7.2 6.1 73 6.2 7.9
Fred 8.0 7.4 6.5 2.0 "7 Fred 8.0 7.4 6.5 9.0 6.3
Grace 4.2 4.4 48 7.0 9.1 Grace 4.2 4.4 48 7.0 8.1
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[Attributes| “Iron Man” | “Super Man” [“Transformer”[“Harry Potter”| “Titanic”
Sci-fi 63% 60% 72% 0% 0%
Action 17% 15% 8% 8% 0%

Romance 5% 15% 7% 12% 94%
Fantasy 10% 5% 10% 70% 1%
Drama 5% 5% 3% 10% 5%
etc..

Figure 30 Collaborative filtering algorithm intuition

The collaborative filtering (CF) recommendation algorithm can perform unsupervised movie
score prediction for unrated movies by users (red question marks and red scores). CF uses the
existing data (black numbers) to learn attributes (red attributes) and use them to model and
predict the move rating score while minimising the differences (costs) between the existing
scores and predicted scores for rated movies. Meanwhile, unrated movie scores are also
predicted.
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Baseline subtraction errors can cause huge flow cytometry data loss since they lead to
negative fluorescent readouts with no physical or biological meaning, and those values
need to be removed before any statistical analysis. By examining the fluorescent
intensity measured with seven different flow cytometers that used fluorescent
detection channels ranging from 4 to 48, the average percentage of cells with negative
fluorescent intensities was 10.53%-74.29% (Figure 31). Further, by examining both the
fluorescent intensity heatmap and the fluorescent positive/negative binary plot
generated from the full-spectrum flow cytometer data, even within the red-boxed
primary detection channels, which had strong fluorescent signals, there are more than

half of the population had negative value in at least one detector (Figure 32A and B).
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Figure 31 Number of cells with negative fluorescent intensities in seven flow cytometers
All seven flow cytometers examined here generated negative fluorescent intensity values. The
percentage of cells with negative fluorescent values varied among different flow cytometers (A).
The number of detection channels used in each flow cytometer was also different (B). Samples
tested here were fluorescently tagged cell lines, including THP-1, HEK293T cell lines and human
PBMCs. The fluorescent colours used here includes eGFP, eCFP, eYFP, mRFP, FITC, Violet-Blue,
Aquamarine, and mNeoGreen.
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The baseline subtraction-error correction was implemented with successfully identified
singlet data using the UltraFast algorithm. Here we treat single cells as online streaming
users, the detection channel as movies, the fluorescent intensities as movie rating scores,
and negative data need to be predicted as the question marked unrated movie scores
(Figure 30). The algorithm automatically learns pseudo-attributes from the original flow
cytometry measurements, and it minimises the cost function between the predicted
values and the good-quality data measurements to predict and recover the baseline
over-subtracted fluorescent intensity values. The performance results demonstrated a
100% data recovery rate with an evaluation R? score > 0.998 and the mean absolute
error (MAE) < 0.01% using the number of pseudo-attributes >= 40, where the algorithm
performance became stable (Figure 32C). The data centres have been successfully
recovered from the margin to the middle of the populations by examining the
multichannel scatterplots and histogram overlays (Figure 33 and Appendix Figure 13),
which achieved nearly error-free baseline subtraction correction with a 100% data

recovery rate.
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Figure 32 Performance of the baseline subtraction-error correction algorithm
The fluorescent intensity heatmaps (A) and positive/negative binary plots (B) indicate the
fluorescent intensity levels and data recovery rate, respectively. Red boxes show the detection
channels with strong signals. The profiles show a 100% data recovery rate after the baseline
correction (B bottom) with highly identical fluorescent intensity profiles (A bottom). The
performance of the baseline subtraction-error correction algorithm using R? and MAE%. The
data in this figure was generated using the full-spectrum flow cytometer.
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Figure 33 Baseline subtraction-error correction results for mock-transfected cells
Scatterplot and histogram overlays of the mock-transfected sample before (red histograms) and
after (blue histograms) baseline subtraction-error correction. The scatter plots are symmetric
along the diagonal histogram plots. The data centre returned to the main population from the
edge (red arrows).
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4.2.3 The algorithm for single-cell level autofluorescence prediction and removal

The unsupervised CF algorithm also achieves autofluorescence prediction and removal,
and the algorithm can accomplish error-free results that generate pure
autofluorescence-free fluorescent intensity readouts. The concept and algorithm
formulation used here is the same as in the baseline subtraction correction section, but
with differently manufactured structures (Figure 34A). Here, the bottom two blocks
illustrate autofluorescence-only cells transfected with the pcDNA3 empty plasmid
vector and have identical values for autofluorescence and total detected fluorescence.
The top blocks are the test sample, with autofluorescence that needed to be predicted
(on the left) and the total detected fluorescent (on the right) (Figure 34A). When the
algorithm becomes stable (i.e., learned numbers of attributes > 20), it achieved R?
score > 0.999 and percentage MAE < 0.001% indicating the near-perfect prediction
accuracy (Figure 34B). The algorithm performance is more stable than the baseline
correction step because the input data had already been cleaned during the baseline
correction process. The outstanding performance was also evident by examining the
multidimensional scatterplots and histogram overlays of the predicted autofluorescence
over the known autofluorescence from the mock-transfected cells (Figure 35 and
Appendix Figure 14). The algorithm learned from the separate pcDNA3 empty plasmid
transfected sample and used to predict the mock transfection sample using only the
transfection buffer and no plasmid DNA. Both the scatterplots and histograms show
identical profiles tested by the Kolmogorov-Smirnov test with all p-values > 0.98. The
results did not reject the null hypothesis of no significant difference and demonstrated
that the predicted values and real values are from the same distribution, indicating the

perfect accuracy produced by the autofluorescence prediction algorithm (Figure 35).
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Figure 34 Performance of the autofluorescence prediction and removal algorithm

The data of the autofluorescence-only control sample and the test sample’s data were
concatenated into a new dataset (A). The performance of the autofluorescence prediction
algorithm using the R? score and MAE% with numbers of attributes ranging from 1 to 100 (B).
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Figure 35 Autofluorescence prediction of the mock-transfected cells

Scatterplot and histogram overlays of the mock-transfected sample with the total fluorescence
(red histograms) and autofluorescence (blue histograms) detection values. The scatter plots are
symmetric along the diagonal histogram plots. Blue and red histograms are extremely identical.
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4.2.4 The pre-processing expansion on the full-spectrum flow cytometer

Unlike the conventional flow cytometer which detects fluorescence emissions with the
designated detection channels. The full spectrum detects normalised fluorescence
signals using the entire detector array. For example, the 4L Cytek Aurora full-spectrum
flow cytometer detects fluorescence signals using a total of 48 detection channels (see
Figure 36 and Appendix Figure 1). For the mock transfection sample, it displayed the
background autofluorescence profile across the entire 48 detection channels. For
fluorescent protein-expressing cells, the primary detection channel can be chosen based
on the fluorescent intensity histograms. In detail, the eCFP, eYFP and mRFP primary
detection channels were the 405 nm violet laser-excited V5 channel, 488 nm blue lase-

excited B3 channel, and the 561 nm laser-excited YG3 channel, respectively (Figure 36).
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Figure 36 Fluorescence signals detected on the full-spectrum flow cytometer
A total of 48 detection channels recorded fluorescence signals for mock-transfected cells (A),
eCFP expressing cells (B), eYFP expressing cells (C), and the mRFP expressing cells.
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The process of Principal Component Analysis (PCA) in this study is primarily focused on
the identification of optimal detection channels for fluorescent signals. Geometrically,
PCA identifies the directions in the data that explain the maximal amount of variance. In
this context, the first principal component (PC-1) is pivotal as it captures the most
significant percentage of the variance, enabling the highest separation between
fluorescence-positive and fluorescence-negative populations in fluorescent protein-
expressing cells. This allows us to determine which detection channel contributes most
significantly to the variance captured by PC-1, thereby identifying the primary detection

channel with the best fluorescence positive-to-negative signal ratio.

However, it is crucial to differentiate between the role of PCA in detection channel
identification and the process of FRET quantification. Once the optimal detection
channels are identified (e.g., for FRET-donor, FRET-acceptor and FRET emission), the
actual FRET quantification is performed using the direct fluorescent intensity
measurements from these channels. This method ensures that the FRET quantification
is based on actual detected intensities, rather than on compressed or transformed data.
Thus, the PCA-based channel identification step does not introduce data compression in
the quantification of FRET signals. It merely serves as a pre-processing step to enhance
the accuracy and reliability of the subsequent FRET analysis by selecting the most

appropriate channels for fluorescence detection.

The results demonstrated that the optimal primary detection channels for eCFP, eYFP
and mRFP were V5 (508/20 nm), B3 (542/17 nm) and YG3 (615/20 nm) detection
channels, respectively (Figure 37A). The results completely agreed with the decision

made by investigating the fluorescent intensities manually. The FRET detection can be
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automatically assigned to the same channels as the acceptor’s filter range but on the
donor-laser array. For example, the eCFP—eYFP (FRET1) detection channel can be
assigned to V7 (542/17 nm) which is on the eCFP donor violet-laser detector array and
with the same filter range as the eYFP acceptor using B3 (542/17 nm). Similarly, the
eYFP—>mRFP (FRET2) detection channel can be assigned to the blue-laser detection
channel B6 (615/20 nm), and the eCFP - mRFP (FRET3) detection channel can be
assigned to the violet detection channel V10 (615/20 nm), both were same as the mRFP

detection channel YG3 (615/20 nm) off the yellow-green laser (Figure 37B).
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Figure 37 Automated optimal detection channel identification using PCA

PCA reveals the optimal detection channels as the V5, B3, and YG3 detection channels for eCFP,
eYFP and mRFP expressing cells, respectively (A). The full-spectrum flow cytometer detection
configuration for each of the fluorophores and the FRET signals, eCFP (V5), eYFP (B3), mRFP
(YG3), eCFP—eYFP (FRET1, V7), eYFP->mRFP (FRET2, B6) and eCFP—mRFP (FRET3, V10) (B).

The full-spectrum microscopy MFI data were also used to validate the automated

primary detection channel identification results generated using the full-spectrum flow
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cytometry data (Figure 38). The detection was conducted using a 1 nm excitation step
size ranging from 440 nm to 790 nm with a 5 nm emission detection step size ranging
from 452/5 nm to 827/5 nm (Figure 38A). The optimal detection ranges for eCFP, eYFP
and mRFP were 507/5 nm, 542/5 nm and 607/5 nm (Figure 38B). These results further
supported the automated optimal detection channel identification results using PCA,

which were 508/20 nm, 541/17 nm and 615/20 nm, overlapping with the full-spectrum

microscopy results.
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Figure 38 Full-spectrum microscopy for eCFP, eYFP and mRFP Ex/Em profiles

The contour plots for eCFP, eYFP and mRFP MFIs were calculated from the full-spectrum
microscopy data (A). The excitation range was 440 nm to 790 nm with a 1 nm step size, and the
emission range was 452/5 nm to 827/5 nm with a 5 nm step size. The emission profiles using
fixed excitation, 440 nm for eCFP, 488 nm for eYFP and 561 nm for mRFP (B).
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4.2.5 The performance of the spectral unmixing algorithm

First, this section examines the spillovers between the FRET donor and acceptor
fluorophores, and it also demonstrates how the pre-processing steps mentioned above
(i.e., baseline correction and autofluorescence removal) impacted the spectral unmixing
results. For example, the spectral viewer illustrations display the spillovers between the
donor and acceptor fluorophores for eCFP—eYFP FRET. On the one hand, upon 405 nm
donor-laser excitation, eCFP is excited, and eYFP is also excited with suboptimal
efficiency so that the eCFP primary emission can be detected by the eCFP filter along
with some eYFP emission (Figure 39A red area). On the other hand, upon 488 nm
acceptor-laser excitation, eYFP is excited, and eCFP is also excited with suboptimal
efficiency so that the eYFP primary emission can be detected by the eYFP filter along

with some spillovers from eCFP emission (Figure 39B red area).
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Figure 39 Spillover between FRET donor and acceptor fluorophores

The eYFP FRET acceptor can be suboptimally excited by the 405 nm donor laser, and the
emission of 405 nm laser-excited eYFP can be detected in the donor channel as the spillover
emission (A, red area). The eCFP FRET donor can be suboptimally excited by the 488 nm acceptor
laser, and the emission of 488 nm laser-excited eCFP can be detected in the acceptor channel as
the spillover emission (B, red area).

The 2-step collaborative filtering with the baseline correction and the autofluorescence

removal steps has vastly enhanced the spectral unmixing result. Further, using the eCFP
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and eYFP as an example, before spectral unmixing, the uncompensated emission of eCFP
was detected with a MFl of 649.383 in the acceptor channel, and the eYFP was detected
with an MFl of 617.518 in the donor channel (Figure 40A, dark grey bar). Here, the same
spectral unmixing algorithm described in this study was used (see section 2.7.5) to
compare the unmixed results for samples with different autofluorescence handling
methods. The compared samples were (i) cells without autofluorescence removal, (ii)
cells that used mean autofluorescence subtraction for autofluorescence removal, (iii)
cells treated autofluorescence as an additional colour during autofluorescence removal,
and (iv) cells cleaned with the collaborative filtering methods for autofluorescence
removal before spectral unmixing. For cells without autofluorescence removal, spectral
unmixing resolved fluorescence spillovers and demonstrated three-fold decreases in
eCFP donor and eYFP acceptor spillovers with spreading errors (SE) = 426.868 for eCFP
and SE = 581.453 for eYFP (Figure 40B). The SEs were the same for using the mean
subtraction method since the data was moved downward by the mean value along the
y-axis for each fluorophore. The residual spillovers decreased more than five times for
the eCFP detected in the eYFP channel compared to the sample without
autofluorescence removal. However, the eYFP detection demonstrated an
overcompensation effect with the negative mean residual spillover value of eYFP
detected in the eCFP channel (Figure 40C). Surprisingly, when performing spectral
unmixing on samples that treated autofluorescence as a single colour for
autofluorescence removal, the performance was worse than the other methods.
Although the unmixed results demonstrated no positive spillover, they demonstrated
around ten times worse overcompensations than the mean subtraction method for both

eCFP and eYFP. In addition, the SE was also increased by around 2.5 times for eCFP and
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around the same value for eYFP when compared to no autofluorescence removal and
mean autofluorescence subtracted samples (Figure 40D). In contrast, the 2-step
collaborative filtering achieved approximately zero spillovers for both the eCFP and eYFP.
Moreover, it achieved around two thousand times reduced SE compared to the sample

before spectral unmixing (Figure 40E).
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Figure 40 Spectral unmixing after autofluorescence removal with different methods
The summarised spillover and spread error results for spectral unmixing (A). The eCFP before
(grey) and after (cyan) spectral unmixing and the eYFP before (grey) and after (yellow) spectral
unmixing with different autofluorescence removal methods. Cells without autofluorescence
removal (B). Data using the mean autofluorescence subtraction method (C). Data treated
autofluorescence as a single colour and removed it during spectral unmixing (D). Data used the
2-step collaborative filtering method described in this study (D). Zeros are indicated as red
dashed lines. SE and spillover MFls are indicated in each graph.

Furthermore, when FRET is happening, the sensitised eCFP—eYFP FRET emission can be
detected upon donor laser excitation (Figure 41 green histogram), which is the FRET

emission is the same as the eYFP acceptor but with different intensities. Even using a 10
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nm narrow range filter for FRET detection, the eCFP-donor and eYFP-acceptor will have
high spillovers into the FRET detection channel due to the extensive spectrum overlaps

between donor and acceptor fluorophores which are required for FRET to happen.
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Figure 41 Donor and acceptor spillovers in the FRET channel

When FRET happens, the sensitised FRET emission (green histogram) can be detected through
the FRET filter (black box). Even using a narrow bandpass filter, the eCFP donor spillover
emission (red area under the cyan histogram) can be detected in the FRET channel. The eYFP
acceptor spillover emission (red area under the yellow histogram) can also be detected in the
FRET channel.

The FRET spectral unmixing was achieved using mathematical formulations to represent
the detected fluorescent signals in each detector as the combined fluorescence from
donor, acceptor and sensitised FRET emissions (see section 2.7.5). Here, the
background-corrected and autofluorescence-removed data were utilised using
eCFP->eYFP FRET as an example with the detection configuration shown (Figure 39A).
After the two-step collaborative filtering pre-processing, the fluorescence correlations
detected between each pair of the donor, acceptor and FRET channels increased near
to one (Figure 42B). The linearities of each fluorophore detected among the three
channels were vastly increased, and the spillover coefficients were calculated using the
RANSAC linear fitting algorithm (Figure 42C and Appendix Figure 2). The spectral
unmixing matrix was constructed for efficient single-cell level spectral unmixing (Figure

42D). The spectrally unmixed results indicated that the spillovers from eCFP and eYFP in
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the FRET channel had been eliminated (Figure 42E, compare original data: grey dots,

pre-processed data: black dots, and unmixed data: cyan and yellow dots).
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Figure 42 Spectral unmixing for eCFP—eYFP FRET

The spectral viewer diagrams and the detection configurations for eCFP donor, eYFP acceptor
and sensitised FRET emissions (A). The correlation between each pair of the eCFP, eYFP, and the
FRET channels before and after 2-step CF pre-processing (B). Spillover coefficient plots between
each pair of the three detection channels (C), the data before (grey) and after (cyan and yellow)
2-step CF prep-processing are both displayed. The spectral unmixing matrix was generated using
the spillover coefficients (D). The fluorescence detection scatter plots with uncompensated data
before (grey) and (after) 2-step CF pre-processing and the spectrally unmixed data (yellow and
cyan) after the 2-step CF pre-processing (E).

FRET1

ES
Wavelength (nm)

In this study, a total of 11 examinations were performed using five different FRET pairs
and five different flow cytometers to evaluate the performance of the overall pre-
processing and spectral unmixing procedures. In particular, | have used TNFR1-FP fusion
constructs with eCFP — eYFP, eYFP - mRFP and eCFP - mRFP FRET pairs on LSR-II,
Fortessa X20, and Aurora flow cytometers (total of nine experiments). | have also used
eGFP - mRFP soluble FRET pairs on the FACS Calibur flow cytometer and violet
blue—FITC conjugated antibody as FRET pairs on the MACSQuant X flow cytometer
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(Figure 43A). Light and dark grey bars show the results before and after the overall pre-
processing (Figure 43B and C). The performances were indicated by the channel-to-
channel correlation and spillover linearity, which were all close to one (Figure 43B). In
detail, the fluorescence correlations between donor and acceptor channels were
improved from mean =0.493 (SD =0.353) to mean =0.997 (SD = 0.010), the fluorescence
correlations between donor and FRET channels were improved from the mean = 0.726
(SD = 0.281) to the mean = 1.000 (SD = 0.0002), and the fluorescence correlations
between acceptor and FRET channels were improved from the mean =0.692 (SD = 0.354)
to the mean = 0.997 (SD = 0.010). The linearities were calculated using the R? scores.
For FRET-donor fluorophore, the R? scores between donor and acceptor channels were
improved from the mean = 0.465 (SD = 0.452) to the mean = 0.987 (SD = 0.028), the R?
scores between donor and FRET channels were improved from the mean = 0.925 (SD =
0.114) to the mean = 1.000 (SD = 0.000007). For FRET-acceptor fluorophore, the R?
scores between acceptor and donor channels were improved from the mean = 0.244
(SD = 0.280) to the mean = 1.000 (SD = 0.0007), the R? scores between acceptor and
FRET channels were improved from the mean = 0.722 (SD = 0.385) to the mean = 1.000

(SD = 0.00002).

Furthermore, the errors were represented by model fitting errors and the spread errors
after spectral unmixing, which are nearly zero (Figure 43C). The donor spillovers
detected in acceptor and FRET channels were eliminated from the MFI = 148.010 (SD =
64.281) and the MFI = 168.192 (SD = 90.744) to the MFI = 1.278 (SD = 1.871) and the
MFI = 0.412 (SD = 0.500) respectively. The acceptor spillovers detected in donor and

FRET channels were eliminated from the MFI = 203.254 (SD = 197.167) and the MFI =
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284.622 (SD =365.516) to the MFI =4.411 (SD = 9.485) and the MFI =8.016 (SD = 19.952)

respectively.
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Figure 43 The performance evaluation of the entire pre-processing stage

The pre-processing stage includes singlet identification, baseline subtraction-error correction,
autofluorescence prediction and removal, and spectral unmixing. The performance data were
generated using a total of 11 experiments conducted on five different flow cytometers using five
different FRET pairs (A). Channel-to-channel correlation and spillover coefficient linearity scores
were reported for the performance evaluation (B). The spillover linear model fitting errors and
the spectral unmixing spread errors were used to report errors (C).

The residual SEs of donor fluorophores calculated from the acceptor and FRET channels
were decreased from the mean = 752.044 (SD = 706.322) and the mean = 5615.603 (SD
= 6368.435) to the mean = 0.950 (SD = 1.390) and the mean = 0.620 (SD = 0.664)
respectively. Lastly, the residual SE of acceptor fluorophores calculated from the donor
and FRET channels decreased from the mean= 435.896 (SD = 416.894) and the mean =
7883.443 (SD = 15128.669) to the mean = 3.855 (SD = 8.508) and the mean = 6.612 (SD
=17.111) respectively. This level of accuracy and data cleansing has never been achieved
previously, and it will allow investigators to perform the absolute data quantification of

any flow cytometry analysis, including FRET experiments.
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CHAPTER FIVE

TWO-PROTEIN THREE-COLOUR

FLOW CYTOMETRY-BASED

FRET INVESTIGATIONS
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5.1 Introduction

Protein conformation and association state regulate biological processes, and the
distance between two interacting protein molecules can be measured by FRET [28].
FRET can be qualified or semi-quantified with the physically altered emission spectral
properties of the fluorescent tags [164, 165]. Upon donor-laser excitation, the quenched
donor fluorescent intensity and sensitised FRET emission become evident (Figure 44). In
order to fully quantify the FRET physical phenomenon, state of the art methods measure
changes in fluorescence lifetime [166-168] or polarisation of emitted light [169-172],
which require complex mathematical modelling and expensive specialised equipment.
Another popular approach for FRET quantification uses the recovery of quenched donor
fluorescent intensity upon photobleaching of the acceptor [173, 174]. It cannot be
employed in flow cytometry because detecting donor fluorescence intensity before and
after acceptor photobleaching is usually implausible due to the fast sample flow rate
(millisecond per cell event). Therefore, simple fluorescent intensity-based methods are
mostly used because of their fast, simple, non-destructive nature, with a standard
hardware requirement referred to as “three-filter FRET” [114, 170, 175, 176]. The three
filters measure (i) the donor-laser excited FRET-donor emission, (ii) the acceptor-laser
excited FRET-acceptor emission, (iii) and the donor-laser excited FRET-donor to FRET-
acceptor sensitised emission (Figure 44 grey boxes). However, the three-filter FRET
emissions are not only sensitive to the protein-protein interaction levels but also

impacted by the expression levels of interacting protein molecules [176].
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Figure 44 The fluorescence dynamics during FRET

An example of eGFP—mRFP FRET using the 488 nm donor laser and the 561 nm acceptor laser.
When FRET happens, eGFP donor emission quenches in I; channel (the green histogram), and
sensitised FRET emission increases in I, channel (the yellow histogram) (A). The donor emission
is detected in the I3 channel (B). Each of the I;, I,, and I3 detection channel also picks up
spillover emissions.

FRET efficiency is defined as the proportion of excited donor molecules undergoing
energy transfer to the acceptor molecule [2]. The rate of FRET efficiency depends on the
sixth power of the separation distance between the donor and the acceptor, thus
providing a sensitive tool for measuring protein interactions within the 10-nm range.
FRET efficiency is not impacted by the expression level of the protein molecules and can
be derived from the fluorescent intensity, thus serving as the absolute quantitative
solution for the detection of PPIs. Many approaches exist that use flow cytometry [118,
177] or microscopy [178, 179] to determine FRET efficiencies based on detecting
fluorescent intensities. The fluorescent intensity-based FRET efficiency calculation
requires a calibration factor, also known as the a factor [118, 129, 178] or the G factor
[19, 179]. The a factor relates to the ratio of donor fluorescent intensity quenching to
the sensitised acceptor fluorescent intensity gain during energy transfer. Because flow
cytometry is statistically superior to fluorescence microscopy [180], it is an attractive
method for FRET measurements using this approach. Once the a factor is determined,
sensitized acceptor emission intensity can be converted to FRET efficiency (E).
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Because protein expression of donor and acceptor varies among cells, the a factor
requires the knowledge of the donor and acceptor expression ratios. The current
methods are accomplished by varying the length and composition of the linker residues
connecting the FRET donor and FRET acceptor. This way, the FRET-donor and FRET-
acceptor always have a concentration ratio of one. However, implementing this method
to non-linked, naturally free-interacting proteins is inaccurate. To achieve the
calibration of unlinked FRET samples, | have established a single-cell level FRET efficiency
algorithm together with the single-cell level a factor formulation that does not require
chemically linked FRET-donor and -acceptor pairs. This chapter describes the flow
cytometry single-cell level two-protein three-colour FRET efficiency algorithm with
novel calibration components that can be utilised for both chemically linked and
unlinked protein pairs. The algorithm's reliability has been tested with three sets of free-
interacting human TNFR1-FPs FRET pairs on both a BD LSR-1l and a BD Fortessa X20 flow
cytometers with varied laser powers, filters, and photomultiplier tube (PMT) detector
voltages. The current flow cytometry-based detection of FRET from TNFR1 homodimer
interaction have already proven powerful in pharmaceutical therapeutics screening [181,
182]. The single-cell total quantification algorithm presented in this chapter will provide
a detection platform with higher sensitivity and robustness. In addition, the
performance of the two-protein three-colour FRET quantification algorithm will be
demonstrated with two applications, which the data were collected from the online
FlowRepository database: (i) small molecule Auxin detection in the plant Arabidopsis
thaliana (Repository ID: FR-FCM-Z3FL) [34] and (ii) immune activation detection in

human T-cells with TCR-CD4 interactions (Repository ID: FR-FCM-ZZR6) [126].
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5.2 Results

5.2.1 Fully quantitative FRET efficiency algorithm with unlinked FRET calibration

Spectral unmixing using pre-processed flow cytometry data with formulated donor,
acceptor, and FRET emission spillovers allows the absolute quantification of FRET
efficiency, which reflects the PPI proximity. The FRET efficiency was computed using the
standard linked FRET pairs with eGFP and mRFP as the FRET donor and acceptor. The
pre-processed data showed significantly increased channel-to-channel fluorescence

spillover correlations (Figure 45).

For eGFP—mRFP FRET, the spillover correlation increased from 0.037 to 0.994 between
donor-to-acceptor channels, increased from 0.998 to 1.000 between donor-to-FRET
channels, and increased from 0.055 to 0.994 between acceptor-to-FRET channels. All
correlations were close to one, representing the actual physical properties of single-
colour fluorescence emissions from either eGFP donor or mRFP acceptor with any
impact from baseline subtraction-errors and autofluorescence completely eliminated.
The clean fluorescence signals guarantee the accurate downstream formulation of the
donor, acceptor, and the detection of FRET using these pure single-colour fluorescence

signals and ensure accurate spectral unmixing outputs with minimal spread errors.
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Figure 45 Pre-processing for e GFP—mRFP linked FRET pair

The spectral viewer diagrams of the detection configurations (A). The changes in channel-to-
channel correlations and the spillover linearities after baseline correction and the
autofluorescence removal (B). The strength of the correlation are displayed from weak to strong
as from circles to linear lines, as well as from yellow to red. In each of the dot plots, the grey
dots are data before pre-processing, with eGFP and mRFP single-colour controls at top and
bottom, respectively. The coloured dots are data after pre-processing overlaid on top of the grey
dots, where green colour dots represent the eGFP FRET donor, and the red colour dots represent
the mRFP FRET acceptor.

Using the spillover coefficients, a formulated spectral unmixing matrix achieved single-
cell level detection of pure single-fluorescence-components within each designated
detection channel for each FRET donor, acceptor and sensitised FRET emissions (Figure
46A). After spectral unmixing, the spread error of the eGFP donor detected in the
acceptor channel is 0.001, and in the FRET channel is 0.006, the spread error of mRFP
FRET-acceptor detected in the donor channel is 0.118, and in the FRET channel is 0.443
(Figure 46B). Those near-zero spread errors guarantee the ultrasensitive detection of

the sensitised FRET emissions and ensure accurate FRET efficiency quantifications. By
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comparison, the previously published FRET efficiency calculations displayed huge
variances and negative FRET efficiency values [16]. The limitations from the previously
published data indicated the lack of accuracy because the linked system should have
uniform donor-acceptor distances and FRET efficiencies. The negative FRET efficiency
values from the original publication have no physical or biological meaning (Figure 46C).
In contrast, the method presented in this chapter achieved all positive FRET efficiencies
with more than 1000 fold decrease in SD and standard errors around the mean (SEM)
(Table 2). Each linked standard displayed uniformed FRET efficiency reflecting the fixed

amino acid linker length for each of the standard eGFP-AAs-mRFP FRET pairs (Figure 46).

Table 3 FRET efficiencies and alpha factors for eGFP—mRFP linked FRET pairs

FRET EFFICIENCY (%) ALPHA FACTOR
SAMPLE METHOD
MEAN STD SEM MEAN STD SEM
Nedbal et. al. 37.1 10 0.2 0.1020 N.A. N.A.
GFP-7AA-RFP
Adv. Method 2| 33.607280 0.012273 0.000203 0.1492 7.6566e-15  4.5684e-19
Nedbal et. al. 31.6 11 0.2 0.1020 N.A. N.A.
GFP-19AA-RFP
Adv. Method 2| 27.059180 0.000444 0.000008 0.1492 9.8489¢-15 5.9612e-19
Nedbal et. al. 27.4 12 0.2 0.1020 N.A. N.A.
GFP-32AA-RFP
Adv. Method 2| 24.143029 0.302862 0.004800 0.1492 4.4916e-15  4.5740e-19
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Figure 46 FRET efficiency quantification for linked eGFP—mRFP standards

The spillover bar plot and spectral unmixing matrix for eGFP FRET donor and mRFP FRET
acceptor (A). The spectrally unmixing signals for eGFP and mRFP single-colour controls (B). The
previously published FRET efficiency data [16] (C). Uniformed FRET efficiencies were achieved
using the advanced flow cytometry-based FRET algorithms developed in this study for each
linked FRET pair with fixed length (7AAs, 19AAs, and 32AAs) (D).

5.2.2 Reliability test using three FRET pairs on two different flow cytometers

The two-protein, three-colour FRET spectral unmixing formulation and FRET efficiency
algorithm also showed excellent reliability when detecting PPIs for unlinked naturally
existing free-interacting proteins. Homo-dimeric human TNFR1 interactions were
detected by subcloning TNFR1 as fluorescent protein fusion constructs and expressing
them in HEK293T cells. In total, three TNFR1-FP FRET pairs were utilised, including
TNFR1-eCFP—TNFR1-eYFP, TNFR1-eYFP—-TNFR1-mRFP, and TNFR1-eCFP—-TNFR1-mRFP

(Figure 47).

145

;
$ 888 $ 888 $ $
P

401

100



Experimental design

huTNFR1 protein huTNFR1 protein huTNFR1::huTNFR1 dimer

XA
Ajf e
< e S

(U )

\
Ly
Jod

5%

Figure 47 The detection of three pairs of TNFR1-FPs fusion proteins for unlinked FRET
The detection of unlinked FRET signals used human TNFR1 fluorescent protein fusion constructs
with three different pairs of the FRET. The three FRET pairs include TNFR1-eCFP—-TNFR1-eYFP,
TNFR1-eYFP-TNFR1-mRFP, and TNFR1-eCFP—-TNFR1-mRFP.

Each FRET pairs were separately detected on two distinctly configured flow cytometers,
the LSR-Il and the Fortessa X20 (Figure 48 and see section 2.4.2). In particular, the LSR-
Il had a 355 nm 20 mW UV laser trigon detector array, a 405 nm 25 mW violet laser
trigon detector array, and a 635 nm 20 mW red laser trigon detector array, as well as a
488 nm 20 mW blue laser octagon detector array. While the Fortessa X-20 had three
octagon laser detector arrays with a 405 nm 50 mW violet laser, a 488 nm 100 mW blue

laser, and a 640 nm 40 mW red laser, but no trigon detector array.
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Flow cytometer configuration

Figure 48 LSR-Il and Fortessa X20 flow cytometer configurations
LSR-II with three trigon detector arrays (UV, violet, and red) and one octagon detector array
(blue) (top). Fortessa X20 with three octagon detector arrays (violet, blue and red) (bottom).

The FRET efficiencies of each FRET pair were calculated using two approaches. One used
the linked calibration method with sample means, i.e., the linear relation between
guenched donor fluorescent intensity and increased sensitised FRET fluorescent
intensity to conduct population mean-based calibration using the a factors. The other
one used newly established single-cell level FRET efficiency calculation in this chapter
(see section 2.7.6). Moreover, the linked calibration method requires FRET-donor to

FRET-acceptor concentration ratios Cp/C, is fixed, so it assumes C, = C4. The single-
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cell level FRET efficiency calculation developed in this chapter has no assumption on the
FRET-donor and FRET-acceptor concentrations. Both approaches used the same pre-
processing steps to achieve spectrally unmixed fluorescence readouts for a fair
comparison. To find the FRET baseline of random PPls, the human CD27-FPs
fluorescently tagged receptor was used as the FRET acceptor, with the human TNFR1-
FPs as the FRET donor. CD27 is a structurally similar receptor protein to TNFR1, and they
are from the same human TNFRSF, but CD27 does not interact with TNFR1. By
comparison, the new method achieved significantly reduced baseline signals with mean
baseline values decreased from 0.442 (SD = 0.205) to 0.132 (SD = 0.085) on LSR-II
(p<0.001) and from 0.435 (SD = 0.216) to 0.052 (SD = 0.043) on Fortessa X20 (p<0.001)
for TNFR1-eCFP—CD27-eYFP (Figure 49A and B). Similar results were also observed with
TNFR1-eYFP — CD27-mRFP and TNFR1-eCFP — CD27-mRFP. For TNFR1-eYFP — CD27-
mMRFP, the mean baseline FRET efficiencies dropped from 0.410 (SD = 0.165) to 0.102
(SD = 0.043) on LSR-II (p<0.001) and from 0.561 (SD = 0.143) to 0.091 (SD = 0.058) on
Fortessa X20 (p <0.001). For TNFR1-eCFP — CD27-mRFP, the mean baseline FRET
efficiencies dropped from 0.237 (SD = 0.127) to 0.067 (SD = 0.025) on LSR-1l (p<0.001)
and from 0.258 (SD = 0.133) t0 0.038 (SD = 0.011) on Fortessa X20 (p<0.001) (Figure 49A

and B).

For the detection of TNFR1 interaction FRET-positive signals, the results demonstrated
improved consistency between the FRET efficiencies calculated from two flow
cytometers’ data. In detail, comparing the improvement from the linked population-
wise calibration method to the single-cell level calibration method, the TNFR1-

eCFP—TNFR1-eYFP efficiency calculations had similar differences of 0.008 and 0.015
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between the detected signals from the LSR-1l and the Fortessa X20 flow cytometers with
total variance declined from 0.044 to 0.018 (see Figure 49 green histograms and bars).
Meanwhile, for the detection of TNFR1-eYFP — TNFR1-mRFP FRET, the difference
decreased from 0.065 to 0.015, with the total variance dropping from 0.011 to 0.005
(see Figure 49 orange histograms bars). Similar results were also observed from TNFR1-
eCFP—-TNFR1-mRFP FRET efficiency calculations, in which the difference decreased from
0.083 t0 0.025 with the total variance dropped from 0.029 to 0.006 (see Figure 49 purple

histograms and bars).
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Figure 49 FRET algorithm reliability test using three FRET pairs on two flow cytometers
Histogram overlays of the single-cell level distributions of each FRET pair TNFR1-eCFP—TNFR1-
eYFP (green), TNFR1-eYFP—-TNFR1-mRFP (orange), and TNFR1-eCFP—TNFR1-mRFP (purple)
tested on LSR-Il and Fortessa X20 (A). The FRET efficiencies were calculated using the linked
population mean approach for a factor calibration (top) and the single-cell level a factor
calibration method developed in this study for unlinked FRET pairs (bottom). Negative controls
(grey) used CD27 as the FRET acceptor proteins. The mean FRET efficiencies were calculated for
statistical comparisons and displayed as bar graphs, and the error bars are standard deviations

of the FRET efficiencies (B).
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5.2.3 An application demonstration of small molecule (Auxin) detection in plants

The two-protein three-colour FRET algorithm introduced in this study also
demonstrated more robust and sensitive small molecule detection capability. Here, a
bioengineered FRET sensor detected the small molecule tryptophan-derived metabolite
indole-3-acetic acid (IAA, also known as Auxin). IAA/Auxin is vital in plant bioprocessing
and gravity sensing, and tracking the IAA/Auxin concentration in plant samples is crucial
to study plant physiology [183]. The data was collected from online FlowRepository
database (Repository ID: FR-FCM-Z3FL) [34], where the FRET sensor was engineered
using two linked tryptophan receptors with the FRET donor Aquamarine and FRET
acceptor mNeoGreen also linked to the tryptophan receptors (Figure 50A). Together,
the overall linked FRET sensor forms a unique fusion protein in which the tryptophan
receptors undergo conformational changes upon IAA/Auxin binding and bring the
Aguamarine - mNeoGreen FRET pairs in proximity. In other words, the higher the
concentration of IAA/Auxin in the sample, the higher the average FRET emission can be
detected for each individual cell until binding saturation is reached. This time, the newly
developed FRET efficiency-based two-protein three-colour FRET algorithm was
compared to the FRET quantification method introduced in the original publication. The
original method utilised the FRET emission detection ratio of the detected sensitised
FRET emission in the FRET channel over the quenched donor emission detected in the

donor channel [34].

The originally published approach has limited detection sensitivity. It uses raw detection
readouts which did not resolve the fluorescence spillover. Another factor that caused

the sensitivity limitation was the population-wise calculation of fluorescence ratios. It
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lacks the single-cell level resolution, which could not perform quality assessments using
single-cell level distribution. Moreover, the fluorescence ratio approach is only semi-
qguantifiable and can only be used to predict the small molecule concentration from the
same experiment. When conducting small molecule concentration prediction from
separately acquired data, the fluorescence ratio will be highly impacted by the hardware
configurations, i.e., the laser power, filter bandpass range, and detector voltages, since
the fluorescence ratio does not directly represent protein-protein proximity as defined

in FRET efficiency.

Therefore, using the FRET efficiency quantification approach, the sensitivity of
IAA/Auxin detection has been notably enhanced. Originally, the detection range for
IAA/Auxin was between 10 M and 10 M, now encompassing lower concentrations
from 10> M to 10® M (Figure 50B). In addition, even with more concentration data
within the linear concentration detection range, a higher R? value was achieved (Figure
50B). In details, R? = 0.982 with three linear concentration data using the FRET
fluorescence ratio approach, while R?= 0.993 with four linear concentration data using
the single-cell level FRET calibration and FRET efficiency quantification algorithm.
Moreover, the single-cell level absolute quantification using the FRET efficiency reflects
the physical interaction proximities of the bioengineered FRET-donor FRET-acceptor
molecules. Therefore, it allows the FRET detection quantity assessment across different
experiments along with the negative control sample values using the single-cell level
FRET efficiency distribution (Appendix Figure 18). The improved small molecule FRET
guantification allows more sensitive concentration detection that is not limited to

IAA/Auxin. The same approach can also detect small molecule diagnostic markers
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related to human diseases and monitor the concentration of small molecule

therapeutics for effective cure of human diseases.
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Figure 50 Small molecule Auxin/IAA detection using bioengineered FRET sensor

The Aquamarine » mNeoGreen FRET sensor detected the Auxin/IAA concentration by
conformational changes induced upon Auxin/IAA binding to the tryptophan repressors (A). The
detection of Auxin/IAA concentration using FRET ratios method from the original publication
(black, top) [34] and new FRET efficiencies calculation in this study (blue, bottom) (B).
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5.2.4 An application demonstration of detecting T-cells response to antigen

The two-protein three-colour FRET algorithm also demonstrated improved detection of
the human immunological TCR to CD4 receptor interactions that can completely
distinguish the positive interacting samples from the background controls. When B cells
present foreign antigens to T cells, the TCR of T cells recruits CD4 to form a complex that
activates immune responses [126]. The original study used the staphylococcal
enterotoxin B (SEB) superantigen to activate the TCR-CD4 interactions (data collected
from the FlowRepository database, Repository ID: FR-FCM-ZZR6). TCR and CD4
receptors were tagged with antibodies conjugated using Violet blue and FITC. Here, TCR-
Violet blue functioned as the FRET donor and CD4-FITC as the FRET acceptor. When SEB
was added to the sample, TCR and CD4 interacted at proximity and produced FRET
emissions. However, TCR-CD4 interaction also responds to many other factors, including
environmental triggers during sample handling and can produce high background FRET
emissions. This was observed in the original publication [126], where the SEB-positive
sample heavily overlapped with the SEB-negative sample. In addition, the original
published FRET efficiency results have physically and biologically meaningless negative
FRET efficiencies. By comparison, the two-protein, three-colour FRET algorithm
introduced in this study accomplished a complete separation of the FRET efficiencies
detected and calculated from the SEB-positive and SEB-negative samples (Figure 51B).
In addition, the negative FRET efficiency is also eliminated, instead the positive FRET
efficiencies represents the actual physical behaviours bewteen the FRET donor and FRET
acceptor fluorophores and biological interactions between the CD4 and TCR molecules.
The SD reduced from 0.083 to 0.010, decreasing the coefficient of variation (CV) from

0.666 to 0.078. In addition, the mean signal-to-noise ratio also increased from 1.304 to
154



1.324. The improved detection results indicated that the newly developed FRET
algorithm is more suitable for clinical applications which require higher sensitivities,
such as screening for drugs that modulate immune cell receptor proximities and disease

diagnosis for immunocompromised individuals with impaired receptor interactions.
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Figure 51 CD4-TCR interaction detection using flow cytometry-based FRET

CD4 interacted with TCR when SEB was added to the sample. CD4 was tagged using a FITC-
conjugated antibody, and TCR was tagged using a violet-blue-conjugated antibody. When CD4
interacts with TCR, FRET happens between violet-blue and FITC (A). FRET efficiencies were
calculated for samples with (red) and without (red) SEB. The comparison was made between the
original published data and the data calculated using FRET algorithms developed in this study
(B). The left figure of panel B is adapted from the original publication of von Kolontaj et al. [126],
allowing for a direct comparison with the FRET quantification method developed in this study.
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CHAPTER SIX

THREE-PROTEIN SIX-COLOUR

FLOW CYTOMETRY-BASED

FRET INVESTIGATIONS
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6.1 Introduction

Many biological processes arise from complex protein-protein interactions with more
than just two protein entities. For example, TNFR1 has an inherent capacity to form
transmembrane homodimers through the pre-ligand-binding assembly domain (PLAD)
(Figure 52A) [71]. The previous chapter has demonstrated the detection of interactions
between two protomers within a TNFR1 homodimer complex using the two-protein
three-colour FRET assays. Moreover, TNFR1 interacts with the symmetrical trimeric
ligand TNF [138], and each TNF can recruit three TNFR1 homodimers at the interface
between every two TNF protomers (Figure 52B) [137]. Therefore, the TNFR1 dimers are
arranged in a tightly packed hexagonal arrangement with room only for ligand binding
and the formation of a large hexagonal network through the [homotrimer ligand]-to-

[homodimer receptor]-to-[homotrimer ligand] interactions (Figure 52C) [120].

Within each set of dimeric TNFR1s interaction with the same trimeric TNF ligand, a
three-protein six-colour FRET can be detected with the combination of all three pairs of
the two-protein three-colour FRETs (Figure 52). In detail, the three-protein six-colour
FRET consists of the simultaneous detection of eCFP—eYFP FRET1, eYFP—mRFP FRET2,
eCFP—mRFP FRET3, and the two-step eCFP—eYFP—mRFP FRET4. The FRET4 is detected
on the same lasers and detectors as the three two-protein FRETs. Together, there are
three protein molecules (TNFR1-eCFP, TNFR1-eYFP and TNFR1-mRFP) and six detection
colours (eCFP, eYFP, mRFP, FRET1, FRET2, and FRET3, to note: FRET4 =

FRET1+FRET2+FRET3) (Figure 53).
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Figure 52 FRET signals of the TNFR hexagonal meta-cluster structure

TNFR can form a homodimer through the PLAD (A). Each TNFR homodimer interacts with the
trimeric TNF cytokine at the interface of each two TNF protomers (B). The TNF recruits three
TNFR homodimers and forms the hexagonal meta-cluster (C). The meta-cluster allows the
detection of three sets of two-protein three-colour FRETs and the two-step three-protein six-
colour FRET.
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Figure 53 Three-protein six-colour FRET spectral viewer diagrams
The spectral viewer diagrams for eCFP—eYFP FRET1 (first row), eYFP-mRFP FRET2 (second row),
eCFP—mRFP FRET3 (third row), and the two-step eCFP—eYFP—mRFP FRET4 (last row).
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The complexity of protein-protein interactions does not stop at the number of
interacting proteins; this complexity is manifested in the mechanism of interaction of
biological phenomena at multiple levels. Therefore, achieving FRET detection with more
than two protein entities opens the gate for more sophisticated biological investigations.
On the one hand, take human TNFR1 as an example; germline mutations in TNFR1 cause
the autoinflammation disease termed TNFR1-associated periodic syndrome (TRAPS)
[184-186]. TRAPS is clinically significant due to its long-term recurrent inflammation
symptoms that cause tissue and organ damage [152, 187, 188], but the exact cause of
TRAPS has not been fully understood to date [184, 189, 190]. On the other hand, many
viruses from the poxviridae encode human viral TNFR1 homologies (VTNFR, also called
cytokine response modifiers, CRM) that can interact with human TNFR1 to evade TNFR1-
related immune response [191-196]. The most infamous variola poxvirus, causes
smallpox with up to 30% mortality during the Smallpox era [197]. With such strong
natural selection, it is possible to hypothesise that humans and poxviruses are
evolutionary rivals. Therefore, utilising the three-protein FRET platform can
simultaneously reveal biological interactions involving human TNFR1 with at least five
folds, (i) the wildtype TNFR1 dimeric interactions, (ii) the wildtype TNFR1 trimeric
interactions, (iii) the wildtype TNFR1 and TRAPS mutant interactions, (iv) the human
wildtype TNFR1 and poxvirus VTNFR interactions, and lastly (v) the impact of how TRAPS

mutants alter the interactions between human wildtype TNFR1 and the poxvirus vTNFR.

The existing 3-protein FRET methods rely on the calibration of linked FRET pairs and
artificially linked target protein samples [17-19, 75, 198]. Calibration using linked FRET

pairs to determine the a factor is calculated at the population level and has a fixed FRET-
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donor FRET-acceptor concentration and interaction ratio. This approach has low
accuracy, poor representation, and lack of the capacity for the detection of unlinked
free-interacting proteins. Using linked detecting protein samples for FRET assays is also
inappropriate since the protein entities are brought in proximity in advance by amino
acid linkers, which makes it prone to false-positive FRET results. Notably, few of the
existing flow cytometry-based methods for analysing FRET between a single donor and
multiple acceptors account for the change in relative energy transfer dynamics. Such
dynamics result from competing interactions between fluorescent protein energy
transfers when a single FRET donor provides energy to multiple fluorescent acceptors.
To achieve the sensitive and accurate quantification of complex interactions among
three unlinked free-interacting protein entities, | have formulated a three-protein six-
colour spectral unmixing algorithm that resolves the absolute unmixed clean fluorescent
readouts for single-cell level efficiency quantifications. In addition, | have also resolved
the energy transfer dynamics among the same donor different acceptor FRET system
using the CoDA technique. This chapter presents the formulation of the three-protein
six-colour FRET algorithms and demonstrates the application in detecting the aberrant
PPIs between the wildtype human TNFR1 and six prototypical TRAPS mutant receptors
from the 62 SDM-generated TRAPS-YFP constructs based on the real-life patients’
sequencing data [199]. In addition, this chapter also shows that myxoma poxvirus
encodes MT2 (a VTNFR) that interacts with human TNFR1 and provides evidence for
proving that TRAPS mutations are evolutionary trade-offs that can disarm the poxvirus

immune evasion mechanisms act on human TNFR1.
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6.2 Results

6.2.1 Investigation of the TNFR1 trimeric structures using FRET algorithms

While the upgraded three-protein six-colour FRET algorithm represents a significant
advancement over the traditional two-protein three-colour FRET algorithm, it is
imperative to acknowledge the increased complexity and challenges it presents. This
algorithm facilitates the study of more intricate molecular interactions, such as
confirming the existence of TNFR1 hexagonal meta-clusters in HEK293T cells co-
transfected with pcDNA3.huTNFR1-eCFP, pcDNA3.huTNFR1-eYFP, and
pcDNA3.huTNFR1-mRFP overexpression plasmids. However, managing the more
complex spectrum components in the six-colour FRET system poses substantial

challenges.

The complexity arises not only from the increased number of fluorescent proteins
involved but also from the intricate spectral overlap and cross-excitation issues inherent
to a six-colour system. These factors significantly complicate the process of accurately
quantifying FRET efficiency and necessitate more advanced and precise control and

calibration techniques.

To illustrate these complexities, in this chapter, | investigated human TNFR1 trimeric
interactions, using structurally similar but non-interacting human TNFR2 and CD27 as
background controls (Figure 54, shown in grey and pink). The experimentation involved
replacing the cyan, yellow, and red positions separately with the non-interacting TNFR2
or CD27 receptors or replacing them with the pcDNA3 empty vector plasmid as the third

component. This approach was necessary to manage the complexities of the three-way
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FRET system and to effectively isolate and remove specific donor and/or acceptor

interactions (Figure 54).

These experiments underscore the heightened level of difficulty in implementing a
three-protein six-colour FRET quantification approach compared to its two-protein
three-colour counterpart. The increased number of fluorescent proteins and their
interactions require meticulous experimental design and analysis, highlighting the

significant advancement yet complexity of this technique.

R1

Partial protein structures

Sy o
Vector

TNFR1 TNFR2 D27
PDB ID: INCF PDB ID: 3ALQ PDB ID: 7KX0

R1

Figure 54 Receptor replacement FRET experiment design for trimeric TNFR1

TNFR1 (blue), TNFR2 (grey), and CD27 (pink) are structurally similar and non-interacting proteins
to each other. The eCFP, eYFP or mRFP position of the TNFR1 trimer was replaced by the TNFR2,
CD27 component or replaced with the empty pcDNA3 vector.

Triple transfected HEK293T cells expressing TNFR1-eCFP, TNFR1-eYFP and TNFR1-mRFP
were analysed. The first genuine indication of the TNFR1 molecular trimerization
interaction producing FRET emissions was demonstrated by examining the FRET
efficiency of the TNFR1-eCFP, TNFR1-eYFP, and TNFR1-mRFP triple-expressing samples.

All three TNFR1 FRET pairs demonstrated FRET emissions irrespective of the FRET pair
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combination: eCFP — eYFP, eYFP - mRFP or eCFP - mRFP, with the average FRET
efficiency for eCFP—eYFP was 0.514 with SD = 0.056, the average FRET efficiency for
eYFP—mRFP was 0.554 with SD = 0.062, and with the mean = 0.550 and SD = 0.010 for

eCFP—mRFP FRET (Figure 55).

When the FRET-donor and/or FRET-acceptor was replaced with the non-interacting
receptors or empty pcDNA3 vector, the FRET efficiency that involves the particular FRET-
donor and/or FRET-acceptor dramatically decreased close to zero, indicating the
disappearance of the FRET event (Figure 55, red boxes). In detail, when replacement
happened at the eCFP position since eCFP is the donor for eCFP—eYFP and eCFP—mRFP
FRETs, the FRET efficiency near completely diminished (second, third and fourth samples
in Figure 55A and C) but remained positive for eYFP—mRFP FRET which did not involve
eCFP (second, third and fourth samples in Figure 55B). Similarly, when replacement
happened at the eYFP position since eYFP is the FRET-acceptor for eCFP—eYFP FRET and
is the FRET donor in eYFP—-mRFP FRET, the FRET efficiency reduced to near zero (fifth,
sixth, seventh samples in Figure 55A and B) but remained positive for eCFP->mRFP FRET
which did not involve eYFP (fifth, sixth, seventh samples in Figure 55C). Lastly, the same
phenomenon was observed in mRFP replacement samples, with the positive FRET
efficiency remaining for eCFP—eYFP FRET-positive samples since it did not involve mRFP
(eighth, ninth, tenth samples in Figure 55A) but produced FRET-negative results for

eYFP—mRFP and eCFP->mRFP FRETSs (eighth, ninth, tenth samples in Figure 55B and C).
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Figure 55 FRET efficiencies for different TNFR receptor combinations

The eCFP — eYFP FRET efficiencies (A), the eYFP - mRFP FRET efficiencies (B), and the
eCFP - mRFP FRET efficiencies (C) for TNFR1-eCFP + TNFR1-eYFP + TNFR1-mRFP triple-
transfected cells. In addition, TNFR2, CD27 and empty pcDNA3 vectors were used to replace the
fluorescent components in the TNFR1 trimeric FRET system to compare alterations to the FRET
efficiencies. The median FRET efficiencies of the control sample transfected with three TNFR1-
FPs expressing plasmids are indicated as the red dashed lines. *** indicates p<0.01 from the z-
test result, and n.s. indicates not significant from the z-test result, when compares with the
control samples. The table below indicates the details of the plasmid used for cell transfection
align with the violin plot in panel A, B and C.

When the same eCFP FRET-donor donated energy to both the eYFP FRET-acceptor and
the mRFP FRET-acceptor simultaneously in the three-way FRET scenario, the FRET
efficiencies for eCFP—eYFP and eCFP->mRFP FRETs are lower than those samples having
only the eCFP—eYFP or eCFP->mRFP FRET in the two-protein independent interacting
manner (Figure 55 and Appendix Figure 19). The lower FRET efficiencies further prove
the genuine detection of the three-way trimeric interactions among TNFR1 receptors

and prove the existence of the TNFR1 hexagonal meta-cluster conformation. The
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median FRET efficiencies for the TNFR1-eCFP, TNFR1-eYFP, and TNFR1-mRFP triple-

expressing samples were shown with the dashed red lines in each violin plot (Figure 55).

Furthermore, an interesting pattern emerges when altering the acceptors in the FRET
system. When the mRFP acceptor was replaced with non-interacting proteins CD27 or

TNFR2, the eCFP—eYFP FRET efficiencies consistently showed higher values compared

to the control group with both TNFR1-eYFP and TNFR1-mRFP acceptors (p<0.01 for all
MRFP-replaced or mRFP-removed samples). This trend is evident in the green-coloured
group in Figure 55 and Appendix Figure 19. A similar increase in efficiency was noted for

eCFP—mRFP FRET when the eYFP acceptor was replaced or removed (p<0.01 for all

eYFP-replaced or eYFP-removed samples), as shown in the purple-coloured group in the

same figures.

In contrast, the FRET efficiencies for eYFP—mRFP interactions remained consistent

across samples, regardless of the presence or absence of the eCFP component. This is
represented in the orange-coloured group in Figure 55 and Appendix Figure 19. The

consistency of eYFP — mRFP FRET efficiencies across different scenarios can be

attributed to the fact that this interaction does not involve eCFP, which in the three-way

FRET scenario, eCFP donates energy to two acceptors simultaneously.

6.2.2 investigation of WT TNFR1 and TRAPS TNFR1 interactions

In the last section, the FRET efficiency results have demonstrated the outstanding
formulation of the three-protein six-colour three-way FRET algorithm. However, the
energy competition dynamics were not fully analysed with the successful detection of

the same eCFP FRET-donor simultaneously donating energy to both eYFP and mRFP
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FRET-acceptors. Here, | utilised the CoDA algorithms, treating the entire eCFP energy as
one or 100%, and each composition that involves the eCFP energy dynamics were used
to constitute the overall 100% of the total eCFP energy. In detail, the total eCFP energy
contains three compositions (i) quenched eCFP donor fluorescent intensity after FRET,
(ii) eCFP energy donated to eYFP results in sensitised eCFP—eYFP FRET emission, and (iii)
eCFP energy donated to mRFP results in sensitised eCFP>mRFP FRET emission. Each
composition’s percentage value can be calculated by dividing the individual components
by the sum of all, so increasing one composition cause reduction in the others. All
individual cells can be further visualised in a triangular simplex space with the total sum
distance to the three edges always equal to one, and each distance reflects each of the
eCFP compositional values. With further logarithmic-ratio transformation, it achieves
sub-compositional coherence that ensures the data is not impacted by any undiscovered
hidden composition [124]; this also brings the data to a comparable interval scale that
permits direct comparison and mathematic modelling between the energy dynamics

and the FRET efficiencies.

Here, six TNFR1 TRAPS mutations were used as examples, all located within the
CRD1/PLAD of the TNFR1 (Figure 56) and critical for receptor::receptor interactions. In
addition, the six mutations are Y20H, C29Y, C30S, C30R, C43R, and P46L, where the Y20H
represents the non-critical mutation that has little impact on the protein structure, the
cysteine-involved mutations (C29Y, C30S, C30R, C43R) represent the structural-critical
mutations since cysteine forms the disulphide bond responsible for the stable protein
folding. The proline-involved mutation P46L represents another structural-critical

mutation since proline is responsible for the structure rigidity. Moreover, the C30S and
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C30R served as the same location mutations to different amino acids, and the C30R and
C43R mutations showed the same mutations at different locations (Figure 56). Each of
the six TRAPS mutant receptors were generated as the -eYFP fusion construct and co-
expressed at the centre eYFP position with its eCFP FRET-donor and mRFP FRET-acceptor

as the WT TNFR1-FP fusion proteins.

TNFR1 and TRAPS sequence analysis
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Figure 56 TNFR1 TRAPS mutations

TNFR1 CDS (white arrow) contains ten exons, four CRDs and one death domain. TRAPS
mutations were found across the whole TNFR1 CDS, but most TRAPS mutations were found in
the four CRDs. The WT TNFR1 trimeric FRET was compared to the same samples with
replacement at the eYFP position with the TRAPS TNFR1 mutated receptors (grey).
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Within the triangular CoDA simplex space, the mean position of the Y20H, C30S, C43R
and P46L are close to the WT control sample with slight mean value shifts to the right,
and the C29R and C30R TRAPS mutations are further away from the WT control with
more shift to the right. The shift to the right indicates there are relatively higher
interaction preference between the WT TNFR1-eCFP to the WT TNFR1-mRFP and
relatively less interaction preference between the WT TNFR1-eCFP to the TRAPS TNFR1-
mMRFP, meaning the C29R and C30R TRAPS mutations produced mutated TNFR1 receptor
conformations that have reduced interactions to the WT TNFR1 receptor compared to
Y20H, C30S, C43R and P46L (Figure 57A). However, when examining the single-cell level
data within the triangular CoDA simplex space, the C43R showed a very different
distribution to the WT control even though their mean values are close (Figure 57B, blue
colour vs grey colour). Within each of the single-cell level plots, as the data distributed
from left to right the relative CoDA-resolved eCFP energy shifted from eCFP—eYFP to
eCFP—mRFP. When examining the FRET efficiency heatmaps overlays onto the single-
cell CoDA data (Figure 57B last 4 columns), negative correlations were observed
between the eCFP—eYFP FRET efficiency and the eCFP energy as the data distributed
from left to right. Meanwhile, positive correlations were observed between the
eYFP—>mRFP FRET efficiencies and the relative CoDA-resolved eCFP energy flow from
eCFP—eYFP to eCFP->mRFP (from left to right within each single-cell level plot), as well
as between the eCFP—mRFP FRET efficiencies and the same relative CoDA-resolved

eCFP energy flow.
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Figure 57 CoDA of WT TNFR1 and TRAPS TNFR1 interactions
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The data includes the WT control sample and six TRAPS mutation samples.

The mean values of the compositional eCFP energy are displayed in the large triangle (A). The

single cell level data (first column) and heatmap overlays of each of the involved FRET

of the eCFP energy: (i) the quenched remaining eCFP, (ii) eCFP donated to eYFP, and (iii) eCFP
efficiencies are displayed for all samples (B).

The CoDA triangular simplex space has three corners, and each indicates the three compositions

donated to mRFP



PCA produces dimensionality-reduced two-dimensional plots that allow direct
visualisation of all of the WT and TRAPS mutation data in one plot. The eYFP—-mRFP
sensitised FRET emission and quenched eYFP donor emission constitute a two-
composition CoDA space. Together with the three-composition eCFP data, the
comprehensive three-way FRET results revealed that only the Y20H structurally non-
critical TRAPS mutation has the near-identical profile as the WT controls (Figure 58A,
pink and grey overlays), all the other TRAPS mutations showed different profiles on the

PCA plot when compared to the WT control sample (Figure 58).
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Figure 58 PCA and multivariate models of the TRAPS TNFR1 and WT TNFR1
interactions

PCA dimensionality reduction using standardised CLR-transformed data of eCFP energy to eYFP,
eCFP energy to mRFP, and eYFP energy to mRFP (A). Multivariate modelling using logarithmic
eCFP—eYFP and eCFP—>mRFP FRET efficiencies as dependent variables and the CLR-transformed
three compositions in PCA as independent variables (B). The first three bar graphs in each group
indicate the coefficient of the multivariate models, and the last bar graph in each group indicates
the R? values. The colours of the bar graphs correspond to those used in the PCA plots.
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Interestingly, based on the multivariate model, both Y20H and C30S have highly similar
patterns as the WT control sample in terms of explaining the FRET efficiencies with the
impacts from energy dynamic from each of the compositional energy flows eCFP—eYFP,
eCFP—mRFP, and eYFP—>mRFP. Surprisingly, the C30S has different profiles from the WT
control in the PCA plot (Figure 58). The close-to-one R? values indicated the perfect
model explanation, and it shows that the energy flow from eYFP to mRFP has little
impact on the eCFP—eYFP or eCFP->mRFP FRET efficiencies (Figure 58B) and reveals the
contribution to the profile difference between C30S and WT control was ignored by pure
eCFP energy calculated CoDA results but was captured by the PCA after CoDA
transformation which included the eYFP energy calculated CoDA results. The distinct
interaction mechanism of each TRAPS mutant receptor to the WT TNFR1 can potentially
explain the causation of TRAPS autoinflammation, which has not been fully explored to
date. The algorithm can also be used as a high-performance screening tool to find TRAPS

therapeutics that can recover the aberrant interactions.

6.2.3 investigation of human TNFR1-targetted human-poxvirus interactions

This section tests the hypothesis that human and poxvirus are evolutionary competitors
in that poxviruses encode VTNFR1, which target human TNFR1 to evade TNFR1-related
immune response, and human TRAPS mutations are evolutionary results that also target
TNFR1, which subvert the poxvirus TNFR1-related immune evasion. In other words, the
periodic inflammatory symptoms from TRAPS are evolutionary trade-offs when they
prevent the more severe consequence, such as mortality caused by smallpox variola
poxvirus. Sequence alignment showed that the investigated poxvirus members,

myxoma virus, variola virus and monkeypox virus all encode human TNFR-homologous
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receptors that share highly conserved sequences within the PLAD receptor::receptor
interaction-critical domain (Figure 59A). For biosafety concerns, the non-permissive
myxoma virus was used to replace the huTNFR1-mRFP in the tree-way FRET, together
with the WT huTNFR1-eCFP and TRAPS huTNFR1-eYFP (Figure 59A). Due to the lack of
protein structure study on the MT2 (VTNFR) encoded by the myxoma virus, the MyxMT2
protein structure was predicted using AlphaFold (for method see section 2.6.7) [127].
The prediction results generated a protein structure with reference sequence coverage
ranging from 5 to 6746 sequences for each amino acid position, 95.183 prediction score
in the PLAD region (67.866 mean prediction score for the entire sequence) (Figure 59B).
In addition, the structure alignment of predicted MyxMT2 to the TNFR1 dimeric complex
demonstrated the interaction possibility between the myxoma virus MT2 and human
TNFR1 proteins with alignment score = 229.9 and root-mean-square deviation (RMSD)

=5.929 (for method see section 2.6.7) (Figure 59B).

The CoDA results demonstrated the different impacts of TRAPS TNFR1 mutated
receptors on the interaction between myxoma poxvirus MT2 and WT human TNFR1. The
CoDA plots revealed great shifts of the mean values to the left-side triangle edge
compared to the sample without myxoma MT2 protein (Figure 60A, mean data in the
black box are from the TRAPS experiment in the last section for comparison). From the
single-cell level distribution, only the Y20H sample has obvious interactions between WT
huTNFR1-eCFP and myxoma poxvirus MyxMT2-mRFP with a reduced amount of
interaction compared to the WT control sample with WT human TNFR1 as both the eCFP

and eYFP FRET components (Figure 60B).
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Figure 59 vTNFR sequence alignment and structure predictions

The human TNFR1, human TNFR2, and poxviruses-encoded MyxMT2, VarG4R, and MpvJ2R have
highly conservatived sequences within the PLAD as demonstrated with the sequence alighment
(A). MyxMT2 was selected as a safe prototype VTNFR to replace the mRFP FRET component in
TNFR1 trimeric FRET system. The protein structure prediction and amino acid alignment of
MyxT2 to the TNFR1 self-interacting dimer structure (B). The sequence coverage plot shows how
many sequence entries from the database were used for the prediction at each amino acid
position of the query protein amino acid sequence. The prediction plot score displays the IDDT
scores of the top 5 ranked prediction models. The model error plot demonstrates the aligned
residue errors from each amino acid position from the best prediction model. The TNFR1 dimer
(pink and purple) is displayed at the bottom left, and the grey protein 3D structure is the
predicted MyxMT2 protein structure rendered using the ribbon structure on the right. Within
the predicted ribbon structure, the prediction errors from high to low are indicated from red to
blue colours.
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Figure 60 CoDA of poxvirus-human interactions that target TNFR1 interactions

The CoDA triangular simplex space has three corners, and each indicates the three compositions
of the eCFP energy: (i) the quenched remaining eCFP, (ii) eCFP donated to eYFP, and (iii) eCFP
donated to mRFP. The data includes the WT TNFR1 at the eCFP position, the WT TNFR1 and six
TRAPS TNFR1 at the eYFP position, and MyxMT2 at the mRFP position. The mean values of the
compositional eCFP energy are displayed in the large triangle (on the left). The single cell level
data (first column) and heatmap overlays of each of the involving FRET efficiencies are displayed
for all samples (on the right). The mean data in the black box are from the TRAPS experiment in
the last section for comparison.
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All other TRAPS TNFR1-eYFP expressing samples have near complete reduction between
WT huTNFR1-eCFP and myxoma poxvirus MyxMT2-mRFP and with varied degrees of
interactions between WT huTNFR1-eCFP and TRAPS TNFR1-eYFP (Figure 60B).
Interestingly, when myxoma MT2 protein presents, the C29Y mutant demonstrated the
most decreased interaction between WT huTNFR1-eCFP and TRAPS TNFR1-eYFP. At the
same time, other TRAPS mutations displayed a broad range of interaction levels
between WT huTNFR1-eCFP and TRAPS TNFR1-eYFP and overall similar mean values
compared to the control sample (Figure 60). The two-dimensional reduced visualisation
from the PCA plots indicated the Y20H had the most similar profile to the WT control
sample when myxoma MT2 protein presented with the P46L showed heterogenous
patterns, indicating more than one interaction mechanisms of P46Lto both WT huTNFR1

and MyxMT2 vTNFR (Figure 61).
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Figure 61 PCA of poxvirus-human interactions that target TNFR1 interactions
PCA dimensionality reduction using standardised CLR-transformed data of eCFP energy to eYFP,
eCFP energy to mRFP, and eYFP energy to mRFP. Different TRAPS mutations are coloured.
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The three-protein, six-colour FRET algorithm demonstrated different virus-host
interactions and TRAPS mutation protective mechanisms. This was demonstrated by
further summarization of results from the two studies investigated (i) WT TNFR1-eCFP +
TRAPS TNFR1-eYFP + WT TNFR1-mRFP (ii) WT TNFR1-eCFP + TRAPS TNFR1-eYFP +
MyxMT2-mRFP and presented the data together using radar plots. Six components on
the left and right indicate with or without the virus vTNFR. On the left side, the middle
component indicates the WT TNFR1::WT TNFR1 interaction, and the top and bottom
both symmetrically indicate the WT TNFR1::TRAPS TNFR1 interactions (Figure 62). The
three components on top to bottom (on the right) display the interactions between WT
TNFR1::TRAPS TNFR1, human WT TNFR1::MyxMT2, and TRAPS TNFR1::MyxMT2,
respectively. The distance from each corner to the plot centre denotes the extent of the
FRET signals and interaction levels. The Y20H mutation showed the most similar
interaction pattens for all six PPls compared to the WT control sample (Figure 62
magenta sample). The C29Y mutation showed a more obvious evolutionary advantage
with a decoy protection model, and it demonstrated reduced myxoma MT2 to WT
TNFR1 interactions and vastly increased preference towards interactions between
TRAPS TNFR1 and myxoma MT2 (Figure 62 yellow sample). In addition, the C30S also
displayed a different non-decoy protective mechanism, and it demonstrated overall
reduced human-viral interactions between C30S TNFR1 and myxoma T2, as well as
between WT TNFR1 and myxoma T2. In addition, the interactions between the C30S
TNFR1 and WT TNFR1 remained high (Figure 62 cyan sample), unlike in the C29Y TRAPS
mutation sample. The other TRAPS mutations indicated different extents of the
combined mechanisms as the C29Y and C30S. This summarised result further

demonstrated the robustness of the three-protein six-colour FRET algorithm. Together
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with the FRET detection pipeline, this chapter established a prototypic study for
screening mutant-protein-based biosimilar drugs that can disarm viral immune evasion

and for finding therapeutic candidates against virus infections.
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Figure 62 Poxvirus-human interactions together with TRAPS mutations

The radar plots show summarised results for the WT TNFR1 and TRAPS TNFR1 interaction
experiments and the WT TNFR1 (left three corners), TRAPS TNFR1 and MyxMT2 interaction
experiments (right three corners). Each radar plot shows the interaction between WT TNFR1
and TRAPS TNFR1 (top, both sides), between two WT TNFR1 (middle, left side) or between WT
TNFR1 and MyxMT2 (middle, right side), and between TRAPS TNFR1 and MyxMT2 (bottom, both
sides). Samples with different TRAPS mutations are coloured.
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CHAPTER SEVEN

BEYOND FRET:

THE SIMULTANEOUS DETECTION OF FRET

AND CELLULAR SIGNALLING PATHWAYS
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7.1 Introduction

Protein-protein interactions often result in the conformational change of the interacting
proteins and lead to the association or dissociation of other protein complexes to
activate cellular signalling pathways. Therapeutics target the protein-protein
interactions that can regulate the downstream cellular signalling pathways and provide
treatments for human diseases caused by abnormal activation of cellular signalling.
However, current therapeutics block or promote cellular signalling in a broad, and non-
specific way. Indeed, the ‘holy grail’ of pharmaceutical research into signalling pathway
regulatory therapeutics is to identify a signalling pathway-specific inhibitory drug
molecule. Therefore, the simultaneous detection of the protein-protein interactions and
how changes in PPIs regulate multiple related cellular signalling pathways is crucial for
finding the next-generation, pathway-specific therapeutics to treat and cure human

diseases.

For example, TNFR1 interactions cause the disassociation of the silencer of death
domain (SODD) protein from the TNFR1 intracellular death domain (DD) [200]. The DD
of TNFR1 is then permitted to recruit and form four protein complexes, namely complex-
[, -lla, -llb, and -lic, for different TNFR1 signalling pathways (Figure 63). Complex-I is
composed of TNFR-associated death domain (TRADD) [201], receptor-interacting
serine/threonine protein kinase 1 (RIPK1) [202], TNFR-associated factor 2 or 5 (TRAF2/5)
[203], the cellular inhibitor of apoptosis protein 1 or 2 (clAP1/2) and linear ubiquitin
chain assembly complex (LUBAC) [204], which leads to NF- k B activation and
proinflammatory response [205]. Complex-lla composed of FAS-associated death

domain (FADD), TRADD, RIPK1, and pro-caspase-8, complex llb composed of RIPK1,
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RIPK3, and pro-caspase-8 and the formation of both complexes can lead to cellular

apoptosis [153, 206, 207]. When RIPK1 and RIPK3 accumulate, they form complex-lic,

which leads to mixed lineage kinase domain-like (MLKL) protein activation, and cause

cell necroptosis [201, 208].
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Figure 63 The complex TNFR1 intracellular signalling pathways

TNFR1 interactions recruit different protein complexes. Complex-l activates the pro-
inflammatory signalling pathway through JNK-AP1 (blue) and NF-«B (yellow). Complex-lla and
complex-llb activate apoptotic cell death signalling pathways through the caspase cascade
(orange). Complex-llc activates necroptotic cell death (green).
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Aberrant TNF/TNFR signalling, such as increased TNF or altered TNFR expression, can
cause many inflammatory diseases, including rheumatoid arthritis, multiple sclerosis,
ankylosing spondylitis, Crohn’s disease, and inflammatory bowel disease [143].
TNF/TNFR signalling-related gene mutations can also cause autoinflammation [151].
Therapeutic targeting of TNF/TNFR signalling has been developed to involve TNF-specific
monoclonal antibodies (e.g., infliximab, adalimumab, Humicade, Golimumab,
Certolizumab Pegol) and recombinant fusion proteins (Etanercept) that function by
sequestering TNF and inhibiting ligand binding to the receptor [209]. However, TNF-
targeting therapeutics have been found to be associated with immunosuppressive
adverse effects, including reactivation of chronic or latent bacterial and virus infections,
such as tuberculosis [210], adenoviral pneumonia [211, 212], and varicella-zoster [213,
214]. Other adverse effects include an increased risk of demyelinating disorders [215]
and lymphomas [207], which are believed to be mostly caused by unselectively blocking

all TNF-TNFR1 biological activities.

Current detection methods are still limited to separately detecting the PPIs using FRET
and then investigating the signalling pathway activations using total cell lysate and other
molecular biology approaches or detecting the single-cell level signalling requires a
separate independent experiment [71, 216]. In addition, many investigations ignore the
fact that cells contribute energy to activate multiple cellular signalling pathways
simultaneously and treat different cellular signalling results independently. This chapter
further upgraded the spectral unmixing methodology to include two cellular signalling
fluorescent reporters and integrated the three-protein six-colour FRET, two cellular

signalling fluorescent reporters. Together with the CoDA technique for dynamic
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compositional interpretations, it allows simultaneous detection of FRET for PPl and the
dynamic changes of the multiple signalling pathways activities. This chapter
demonstrates the flow cytometry analysis of the simultaneous detection of TNFR1
protein interactions in correlation with the relative changes between the NF-k B

activated inflammation and the cell death reporters.

7.2 Results

7.2.1 Detection of cell death using the fixable UV-blue live/dead stain

Utilising the fixable UV-blue live/dead stain with the unsupervised GMM clustering
algorithm has accomplished automatic unbiased distinguishment of unstained
background noise from the DMSO buffer, the stained live population and the stained
dead population (Figure 64A). The results demonstrated the successful detection of the
cell death signalling pathways’ activities without impact on detection of the eCFP, eYFP
or mRFP fluorescent components and vice versa. The positive control for cell death was
generated by five minutes of 50 °C heat shock to induce partial population cell death.
The medium-only sample treated with DMSO (Figure 64A, black histogram), the mock
transfection sample (Figure 64A, green histogram) and the positive control sample
(Figure 64A, purple histogram) stained with the fixable UV-blue live/dead stain were
concatenated to train the unsupervised GMM. The test samples are cells transfected
with human CD27, TNFR1 or TNFR2 receptor expressing plasmids, to examine whether
the live/dead stain can be used for TNFR1-induced cell death detection. In order to
investigate the whether the pre-processing steps can resolve the independent
fluorescent signals of the live/dead, eCFP, eYFP, mRFP and FRET emissions, HEK-293T

cells were transfected with human CD27, TNFR1 or TNFR2 receptor expressing plasmids
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with or without the fused fluorescent protein components. In detail, for data analysis,
the concatenated data was transformed using bi-exponential transformation to achieve
better normality and then fitted to the GMM algorithm with the cluster number set to
three. The trained GMM automatically generated thresholds for the concatenated data
to distinguish each of the control samples (Figure 64A) and then was used to fit the HEK-
293T cell samples transfected with the pcDNA3 overexpression plasmids to
independently express human CD27, human TNFR2 and human TNFR1 as the non-
fluorescently tagged full-length receptors (Figure 64B, left). The GMM was also used to
fit the sample co-expressed the same human receptors as the fluorescent protein-
tagged -eCFP, -eYFP and -mRFP fusion proteins, as mentioned in the previous chapters
(Figure 64B, right). By comparison, there is no significant difference between the
fluorescently tagged fusion protein expressing sample and the non-tagged full-length
receptor sample, for CD27-FPs and CD27 t =-0.114 p = 0.920, for TNFR2-FPs and TNFR2
t =-0.112 p = 0.921, and for TNFR1-FPs and TNFR1 t = -0.297 p = 0.795 (Figure 64B).
The result indicated (i) the C-terminus fused fluorescent component does not interfere
with the receptor biology compared with the original non-tagged full-length receptors,
(i) the whole analytical pipeline has outstanding pre-processing procedures that
eliminated the fluorescence spillover effects of all three fluorescent proteins, i.e., eCFP,
eYFP and mRFP from the live/dead signals (as no significant difference between samples
with and without fused fluorescent protein). In addition, the results showed that CD27
does not cause cell death compared to the mock transfection negative control sample
(F =0.009, p = 0.991) (Figure 64C). Both TNFR2 and TNFR1 can cause cell death with
significant differences from the negative control sample, in which TNFR2 caused around

one-fold more cell death than the negative control (F = 11.619, p = 0.022), and TNFR1
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caused around five to six folds more cell death than the negative control (F = 63.016, p

=0.0009) (Figure 64C).
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Figure 64 TNFR1 cell death signalling detection

Unstained control, cell death negative control and cell death positive control were concatenated
for GMM training and unsupervised thresholds establishment (A). The GMM thresholds were
applied to CD27-, TNFR1-, and TNFR2-expressing cells with or without the fluorescent fusion
proteins (B). The percentage of cell death detected using live/dead stain and GMM thresholds

(C).

7.2.2 Detection of TNFR1-induced NF-kB activated proinflammatory signalling

This section reports the newly constructed NF-xB inflammation reporter achieved
TNFR1 receptor-specific detection of the inflammatory signalling pathway activation
and demonstrated full compatibility with the eCFP, eYFP, mRFP three-way FRET system,
as well as the cell death reporter. In detail, the robustness of the inflammatory reporter
was tested to deliver four layers of outcomes, (i) the reporter is TNFR1 specific, (ii) the
eCFP, eYFP, mRFP and FRET spillovers were completely unmixed from the reporter
emissions, (iii) identification of the optimal copies of the NF-kB response element that
can produce the highest signal-to-background ratio, and (iv) the reporter and the

live/dead stain are compatible (Figure 65).
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Figure 65 The proinflammatory NF-kB reporter valiation experiment design

Four layers of the experiment to test (1) whether the reporter is TNFR1 specific, (2) whether the
fluorescent protein tags will impact the reporters, (3) find how many copies of NF-kB response
elements achieve the best signal-to-background ratio, and (4) whether the reporter is
compatible with the cell death detection.

The results showed that the pcDNA3.empty plasmid transfected negative control
sample produced minimal miRFP703 emission with the reporter having NF-xB response
element ranging from 0, 2, 4 and 8 copies (Figure 66A). The result also showed that
neither CD27 nor TNFR2 expressing samples activated the inflammation signalling
pathway significantly above the negative control samples, tested using ANOVA with p =
0.321 (Figure 66, top and middle group). Meanwhile, TNFR1 group samples produced no
significant detection of inflammation signalling with zero or two copies of NF-kB
response element in the reporter plasmids compared to the negative control samples
(p =0.646) (Figure 66, bottom group top two rows). However, significant NF-kB reporter

emissions was detected for reporter plasmid having four copies of the NF-xB response
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element (p = 1.334e-7) and with eight copies of the NF-xB response element (p =

2.864e-8) (Figure 66, bottom group bottom two rows). In addition, the samples with

four copies of the NF-kB response elements delivered the highest signal-to-background

ratios (Figure 66C).

>

Negative controls

pcDNA3.empty vector
MSO buffer onfPMSO + L/D staining

i

D
\
|
|

1
0x

2X

4 x

Negative control group
1

0

8x

NF-xB reporter detection intensity

Signal-to-Background Ratio

Copies of NF-xB RE )

8x 4x 2x 0x
II-

(=]
8
8
8

mean of signal-to-background ratio

TNFR2 group CD27 group

TNFR1 group

Detection of NF-kB signalling reporter

Receptors + no fluorescent tag Receptors + 1Y ~FPIRFP fusion FPs

JAx 2x 0x

Ox | 8x

- azx.

Bx

. 4x
g

0x.

2x

4 x

I L 1
DMSO buffer onfPpMSO + L/D staininddMSO buffer onlfDMSO + L/D staining

]

m‘ ‘
m‘ 4| w
0 o

SESSSf CEE=Er e ===l VNl

. ‘

NF-xB reporter detection intensity

Figure 66 NF-kB proinflammatory reporter validation

Negative controls that transfected with proinflammatory reporters with different copies of NF-
KB response elements and no receptor plasmid, with or without live/dead stain (A). Cells co-
transfected with proinflammatory reporter plasmids having different copies of the NF-xB
response elements and the receptor plasmids. The receptor plasmids were CD27, TNFR2, and
TNFR1 with or without fluorescent protein fusion components. The samples were treated with
or without live/dead staining (B). Signal-to-background ratios were detected using the
proinflammatory reporters with different copies of NF-kB response elements (C).
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7.2.3 Detection of the compositional dynamics of multiple signalling pathways

Furthermore, integrating the CoDA algorithm into the signalling reporter fluorescent
emissions revealed the balance between cell death and inflammation signalling pathway
activities. It also allows the detection of the relative dynamics of the two signalling
pathways regarding TNFR1 receptor interactions at the single-cell level. When directly
correlating the logarithmic transformed cell death reporter emission with the TNFR1
FRET reporter emissions, a highly scattered weak positive correlation was observed with
corr = 0.235, 0.522, 0.186, 0.526 and p = 2.578e-35, 4.2311e-188, 1.630e-22, 3.730e-
192 for eCFP—eYFP, eYFP>mRFP, eCFP->mRFP, eCFP—eYFP—mRFP respectively (Figure
67A, purple). The inflammation reporter also demonstrated weak negative correlations
to the TNFR1 FRET reporter emissions with corr =-0.434, -0.029, -0.485, -0.170 and p =
1.968e-124, 0.128, 2.933e-159, 6.065e-19 for eCFP—eYFP, eYFP->mRFP, eCFP—>mRFP,
eCFP—eYFP—mRFP respectively (Figure 67A, dark red). After performing closure and
logarithmic ratio transformation using CoDA, the relative compositional intensity of the
cell death reporter showed an increased positive correlation with the TNFR1
receptor::receptor interactions, and the relative compositional intensity of the
inflammation reporter presented an increased negative correlation with the normalised
TNFR1 FRET emissions (Figure 67B). In detail, the correlation was 0.575 (p = 2.814e-237)
between CoDA-transformed cell death and TNFR1 eCFP—eYFP FRET, and the correlation
was 0.483 (p = 1.636e-157) between cell death and eYFP—mRFP FRET, with correlation
was 0.561 (p = 2.997e-223) between cell death and eCFP-mRFP FRET, and correlation
equalled 0.606 (p = 9.299e-270) between cell death and eCFP—eYFP—mRFP two-step
FRET (Figure 67B). Meanwhile, because the LR balanced between cell death and

inflammation, the correlations are -0.575, -0.483, -0.561 and -0.606 between CoDA-
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transformed inflammation reporter emissions and each of the eCFP — eYFP FRET,
eYFP—mRFP FRET, eYFP—eYFP FRET and eCFP—eYFP—mRFP two-step FRET with the
same levels of significance, respectively. Thus, the algorithm provided insights into
relative signalling activities regarding receptor::receptor interactions and provided
solutions to design and screen drugs that can fine-tune the balance between multiple
signaling pathways. They can help us find the ‘Holy Grail' of the next-generation cellular

signalling pathway-specific therapeutics for human diseases.
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Figure 67 Correlation between signalling pathways and TNFR1 interactions
Correlations between logarithmic normalised cellular signalling pathway readouts and
normalised FRET efficiencies (A). Correlations between CoDA-transformed signalling pathway
readouts and normalised FRET efficiencies (B).
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SUMMARY AND PERSPECTIVE
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This research project aimed to develop a comprehensive and fully automated analytical
workflow that can detect multi-protein interactions with FRET and assess the activities
of various cellular signalling pathways at a single-cell level. The workflow relies on a
combination of high-throughput flow cytometry techniques and advanced machine-
learning algorithms. With the presented approach, researchers can accurately quantify
cytometry data and achieve more efficient and reliable results. The analytical workflow
covers every single stage of the multiparameter flow cytometry analysis together with
the FRET investigation. The DBSCAN-based UltraFast singlet identification algorithm
achieved outstanding accuracy compared to many existing unsupervised flow cytometry
clustering algorithms and turned the previously unaddressed labour-intensive,
subjective, time-consuming process into an easy, objective, and rapid automated
process. The collaborative filtering recommendation-based algorithms accomplished
error-free baseline subtraction-error correction, and autofluorescence prediction and
removal, which recovered the pure single fluorescence emission of each individual
fluorescent component through simple linear matrix-based spectral unmixing, therefore
allowing the absolute quantification of flow cytometry analysis, including FRET

experiments.

This study accomplished the detection of sensitive, robust, and true single-cell level FRET
signals of two-protein, three-colour FRET emissions. Using the chemically linked eGFP-
mMRFP FRET pair, this study validated the FRET calibration and spectral unmixing
formulation developed for naturally existing free-interacting PPIs. The algorithms were
proved to be highly reliable using three unliked FRET pairs (TNFR-eCFP—TNFR-eYFP,

TNFR-eYFP—-TNFR-mRFP, and TNFR-eCFP—TNFR-mRFP) on two distinctly configured
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flow cytometers (LSR-Il and Fortessa X20). After demonstrating the usage with
IAA/Auxin concentration detection and T cell antigen response assay, the FRET analytical
pipeline was validated to be suitable for both small molecule detection and

immunological diagnosis.

The performance of further upgraded, more complex three-protein six-colour FRET
detection was evaluated using expression vectors that encode human TNFR1, TNFR2,
and CD27 as -eCFP, -eYFP and -mRFP fusion proteins. In addition, a panel of 62 TRAPS
TNFR1 mutant receptors (six were used as a prototype) as -eYFP fusion constructs, as
well as VTNFR-mRFP fusion proteins from the poxvirus — myxoma virus (MT2 protein)
were also used in this study. The three-way single-cell level FRET analysis established
the possibility of TNFR1 forming hexagonal meta-clusters and revealed aberrant
receptor interactions that potentially caused the human autoinflammatory disease
TRAPS. The results also uncovered the human TNFR1-targeted mechanism of poxvirus
immune evasion using VTNFR and ultimately discovered that human TRAPS mutations
are a possible evolutionary trade-off in exchange for the disarming of poxvirus immune
evasion to protect humans from poxviruses. In summary, these data demonstrated a set
of prototype studies as a high-performance screening tool to find autoinflammation
therapeutics that can recover the aberrant protein-protein interactions and for
screening mutant-protein-based bio-similar drugs that can disarm viral immune evasion

and for uncovering therapeutic candidates against virus infections.

Utilising CoDA and LR-based algorithms with the cell live/dead reporter and newly
constructed NF-xB miRFP inflammatory reporter, the correlations among multiple

intracellular signalling activities and the energy dynamics within the three-way FRET
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system became evident. Thus, this approach provides insights into relative signalling
activities concerning receptor::receptor interactions and provides solutions to design
and screen drugs that can fine-tune the balance between multiple signal pathways. The
entire ML-powered FRET analytical pipeline can help us find the ‘Holy Grail' of next-

generation cellular signalling pathway-specific therapeutics for human diseases.

When conducting the in-situ PPl detection in laboratories, the first step of using FRET is
to achieve fluorescence labelling of the proteins of interest. There are currently two
commonly used approaches, one uses fluorophore-conjugated antibodies for protein
labelling as demonstrated by the TCR-CD4 experiment, and the other uses subcloning
techniques to bioengineer the expression of the target proteins as fluorescent protein
fusion entities as presented in chapter 3. There are many limitations in the antibody
staining approach in FRET studies. Several reports have shown that there lacks an
absolute quantification of the fluorophore-to-antibody conjugation ratio or the
antibody-to-protein binding ratio, which heavily relies on the mean value calculated
from the whole population perspective and sacrifices the single-cell level resolution
accuracy and sensitivity [17]. In addition, antibody-targeting epitopes can also be PPI-
critical domains and lead to false-negative FRET detection if the antibody works as
antagonist molecules that effectively block PPI. Antibodies can also lead to false-
positive FRET detection if the antibody cross-links two proteins and artificially brings

them in proximity.

Moreover, if the target proteins express intracellularly, i.e., not on the cell surface, this
will require permeabilization of the cell membrane before antibody staining, which can
also cause unpredicted biologically irrelevant results. Therefore, the construction of a
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fluorescent fusion is a superior solution for labelling the target proteins for FRET-based
PPl investigations, as it always labels the protein in a one-to-one ratio. The entire fusion
protein is also expressed as a single entity throughout the entire in-situ protein
manufacture, assembly and trafficking processes. However, Chan et al. evaluated TNFR1
as fluorescent protein fusion constructs and observed inconsistent results on the FRET
detection capacities when placing the CFP and YFP moieties at the N-terminus or C-
terminus of the receptor protein [70]. In this study, the C-terminus TNFRSF-eCFP, -eYFP,
and -mRFP fusion constructs were subcloned and were found to achieve the successful
detection of FRET signals and have no significant difference in biological signalling
activations when compared to the original unlabelled receptor proteins. This finding is
consistent with that of Chan (2001), who described that the fluorescence of fusions at
the N-terminal is sensitive to the linker length, and the intracellular C-terminus fusions
of CFP and YFP were found to be far less sensitive to the length of the linker between
fluorescent protein and receptor. Therefore, when conducting FRET investigations in the
future, the biological function of the newly constructed fusion proteins must be tested

before FRET experiments.

Furthermore, the selection of the fluorescent protein is also critical for the success of
the detection of FRET signals. The FRET-donor and FRET-acceptor must have sufficient
quantum vyield QY for efficient energy transfer. Excitation coefficients &, especially for
the FRET-acceptor, play an important role in resonance FRET emission. The protein
maturation rate can also impact the abundance of stable fluorophores. One surprising
variable in this study was that TNFR1-eYFP has a more rapid expression decline observed

with the live-cell imaging compared to other TNFR-FP fusion constructs prepared in
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chapter three. A potential explanation is that the different combinations of fluorescent
protein and receptor sequences may have varying codon biases, contributing to the
variable expression dynamics. The tRNA pool from HEK-293T cells, which produces those
fusion proteins, may also play a role. The cell death caused by TNFR1 signalling is another
cause of the early decrease in TNFR1-eYFP. Therefore, this study also demonstrated that
characterising each FRET component's expression and fluorescent emission profiles is
crucial for FRET experiment design and have important implications for developing the
FRET assay. Moreover, there is abundant room for further exploration with the newly
developed UV-excited violet fluorescent proteins and red laser-excited infrared
fluorescent proteins, as well as the potential of utilising upconverting fluorescent
particles in the FRET system to free up the availability within the blue-green-yellow-red
spectrum range for utilising widely well-established commercial dyes for the

simultaneous detection of other biological activities.

Regarding the ML-powered flow cytometry singlet identification, this study aimed to
provide an automated, unbiased, efficient solution based on the unsupervised DBSCAN
algorithm. Therefore, the UltraFast algorithm developed in this study further enhanced
the power of DBSCAN as the density-based clustering algorithm. The most satisfactory
performance evaluation results demonstrated that UltraFast handles flow cytometry
data with irregular shapes and outcompeted many other unsupervised clustering
algorithms developed or utilised for flow cytometry data. In this study, | utilised the
elbow method to automatically choose the hyperparameters € and MiniPts, and this
mirrors those of the previous studies that have utilised such application for more

efficient automated hyperparameter tuning [100, 101, 217]. In addition, converting the
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data into grids increases the computational efficiency and allows the tuning of € and

Ill

MiniPts becomes tuning of a physically meaningful “grid number” hyperparameter,
approximately equivalent to the strictness of the singlet gating. However, the density-
based property of DBSCAN also becomes the most challenging aspect of implementing
DBSCAN for singlet identification since DBSCAN cannot cluster populations with large
differences in densities well. This is particularly problematic since the data collected in
many flow cytometry studies displays small cell debris and large cell aggregates along
with various background noises, demonstrating dramatically different densities as the
true singlet population. Small debris can often be eliminated by applying a threshold

during data collection, and | have used a covariance and chi-squared test 2D gaussian

algorithm to exclude the majority of those large aggregates and background noise.

In contrast to the previous study, which used this approach with a more stringent
threshold to consequently exclude 60% population to achieve singlet data [128], this
study only applies a permissive threshold to exclude 5% of those non-singlet data to
assist the proper function of DBSCAN. In fact, the 2D gaussian step can be optional if the
data quality is good from the beginning. Undoubtedly, it is always more import to
maintain a high-standard laboratory sample handling and harvesting protocol that can
effectively prevent background noise, small debris, and large cell aggregates. This will
also improve the efficiency of the DBSCAN-based UltraFast singlet identification
algorithm. Furthermore, in this study, the true ground of the singlet and non-singlet
events were established using the current gold-standard manual gating strategy using
FSC and SSC signals. In addition, the results were double confirmed by cell sorting

followed by widefield microscopy. One unanticipated finding was that the non-singlet
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population sorted outside the manual singlet gate also has around 10% singlets. Instead
of challenging the gold-standard manual gating strategy, this is more likely to be that
the non-singlets were shredded into singlets during cell sorting by the high-speed fluidic
flow rate and vibration at the sorting point. However, these results need to be further
validated using the flow cytometry-based technique that allows imaging outputs
without cell sorting in place. This is an important issue for future research to utilise
techniques such as imaging flow cytometry to confirm the true ground of the manual
gating identified singlet and non-singlet population. Regardless, the singlet was
validated to be nearly 100% accurate from the manual gating and still guaranteed the
singlet identification algorithm performance using F1 scores, which should help us to
maintain the confidence of the robustness and usefulness of the UltraFast algorithm for

singlet identification.

This study's collaborative filtering (CF) recommendation algorithm is a novel approach
to correct the baseline subtraction error and predict autofluorescence. Although the CF
algorithm was first used in 1992 [115] and has been widely used in websites such as
Netflix and Amazon with large user databases, this is the first time CF has been used in
flow cytometry analysis for data pre-processing. The most significant finding in this study
is the power of CF in predicting the nonlinear single-cell level of fluorescent signals, such
as baseline and autofluorescence. The error-free performance of CF in flow cytometry
data analysis is a remarkable finding and provides new insights into the potential and
direction of developing flow cytometry-based algorithms. The CF algorithm outperforms
many recently developed linear-based algorithms in removing autofluorescence [90-92,

218].
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Moreover, many iterative algorithms have been developed for the downstream spectral
unmixing procedure to minimise the spread error caused by spectral compensation,
such as the spectral compensation method developed by Roederer (2001) [219, 220],
the spillover spreading matrix-based method developed by Nguyen et al. (2013) [87],
the generalized unmixing model developed by Novo et al. (2013) [221], and the latest
AutoSpill algorithm developed by Roca et al. (2021) [88]. However, all above mentioned
approaches ignores the influence of baseline subtraction error and autofluorescence to
the fluorescence spillover linearity. Therefore, the errors are always embedded in the
fluorescence intensity calculations used in these methods that limits the degree of
accuracy they can achieve. In this study, the pre-processing steps exceptionally
improved the quality of the fluorescence intensity data by correcting the baseline
subtraction error and removing the autofluorescence prior to spectral unmixing, so a
simple single-step matrix-based noniterative linear unmixing can fully resolve the
fluorescence spillover issue. Thus, it saves computational time without the need for
iterative computations. In general, therefore, the results suggest that when predicting
flow cytometry data influenced by many factors, the non-linear CF algorithm is
preferable to the linear algorithms and opens the possibility of examining many
nonlinear-based algorithms in flow cytometry data pre-processing for future studies.
One major limitation of the CF algorithm that did not emerge in this study but should be
mentioned is that it may face the challenge of data sparsity. As the CF predicts data
based on existing high-quality data, a poor flow cytometry dataset can make CF
unreliable. Luckily, this can be prevented by performing hardware QA and configuration
baseline checking prior to data acquisition with flow cytometry QA beads. If, in rare

situations, when an experiment cannot be conducted repetitively, such as using precious
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clinical samples, or the machine has sudden abnormal performance, flowAl and
flowClean can be integrated into the pre-processing pipeline to remove data with
aberrant flow rate and fluorescence signals, therefore decreasing the relative data

sparsity.

Furthermore, the CF algorithm will suffer serious scalability problems as the number of
cells and detection parameters grow. For example, in this study, a sample with 30,000
cells and eight fluorescence parameters takes around one minute of the CF processing
time for baseline correction and autofluorescence removal. Current spectral flow
cytometers have 64 detection channels and can perform staining of cell surface markers
simultaneously using 40 colours in a single tube. The CF processing time will dramatically
increase when using full-spectrum flow cytometry. This raises intriguing questions
regarding how to improve the CF algorithm's efficiency or perhaps find a more efficient
strategy for applying the CF algorithm. In future research, users can first apply
unsupervised clustering algorithms to perform cell subtype identification and then only
carry out the CF processing for this cell population as a potential solution to maintain
efficiency if the cell number is increased. Meanwhile, users can apply the linear
parametric dimensionality reduction algorithm PCA to compress the high-parameter
flow cytometry data into a dataset with lower parameters and perform CF processing,
followed by uncompressing data to the original high-parameter/dimensional space.
These investigations are required to evaluate the data information loss and CF accuracy
by combining with the PCA or finding a more efficient non-linear algorithm with the

same level of accuracy.
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The present study was designed to determine the a FRET calibration factor using the
unlinked FRET data for the detection of two-protein three-colour FRET signals and the
three-protein six-colour FRET signals. The current result indicates that the unlinked
single-cell level alpha calibration can achieve higher accuracy and detection sensitivity
than the existing calibration method using chemically linked FRET pairs. Surprisingly, the
unlinked calibration algorithm formulation has not been fully proposed in previous
studies, and most existing single-cell level flow cytometry-based FRET still use chemically
linked controls. The chemically linked controls produce artificial readouts and can never
represent the naturally existing free-interacting PPls. This study confirms that the single-
cell level unlinked FRET calibration algorithm shares the same physical properties with
the previously published method, which used linked controls, and can produce higher
FRET accuracy, detection sensitivity, lower background random PPIs readout, and higher

reproducibility.

Interestingly, the successful formulation of the unlinked calibration is achieved by and
highly relies on the quality of the data pre-processing. It is important to consider the
possible restrictions in these approaches, including both previously mentioned linked or
newly proposed unlinked calibration methods, as both require the knowledge of the
excitation coefficients of the fluorophores used in the FRET analysis. This information
can be obtained from many previous publications, and the FPbase online database [117]
has a large collection of the property information for many fluorophores, including the
eCFP, eGFP, eYFP, mRFP, Violet-Blue, FITC, Aquamarine, NeoGreen, as well as the UV-
violet live/dead stain and the miRFP703 for inflammation reporters. Of course, the

excitation coefficient can also be measured using a spectrometer.
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Moreover, unlike the linked calibration method, the unlinked calibration method
removed the requirement of pre-established knowledge or assumption on FRET-donor
and FRET-acceptor concentrations. This is a rather useful outcome since the
concentration of the FRET-donor and FRET-acceptor cannot be quantitated for most of
the naturally existing free-interacting proteins. This is because the donor emission no
longer solely correlates to the protein expression level, and it is also impacted by PPI

levels that cause FRET-donor emission quenching effects.

Furthermore, the FRET results generated with the flow cytometers in this study should
only represents the averaged PPIs at the single-cell level instead of the single FRET-pair
level. This is because the unlinked fluorescently tagged proteins might not all participate
in the FRET pairs, which means they may not interact with each other, or a proportion
of the interacting complex may only have the donor or acceptor fluorophores, i.e.,
eCFP::eCFP and eYFP::eYFP in dimeric interactions. This interpretation is consistent with
our previous observations in which the single-cell level unlinked FRET represent the
average interaction level of all fluorescently tagged proteins with different PPl degrees
at the single-cell level [32]. Despite many available single-molecule level FRET detection
techniques, flow cytometry-based single-cell level FRET detection demonstrates
significantly high sampling power and throughput that guarantees unexcelled statistical

power.

The compositional data analysis (CoDA) algorithm has recently emerged as a new
paradigm for the analysis of omics data, including genomic next-generation sequencing
data, proteomic data, and transcriptomics [222]. One of the initial objectives of this
study was to use CoDA to describe the three-protein six-colour competitive energy
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dynamics among the same FRET donor to two different FRET acceptors. Another
objective is to use the CoDA algorithm to resolve the compositional cellular signalling
pathway activities activated by the same receptor::receptor interactions in the same cell.
Compositional data are multivariate data where relative values rather than absolute
values are essential. A compositional sample's constituents, or parts, are often stated as
ratios adding up to one or 100% as percentage values. The most obvious finding to
emerge from the analysis is that the data can reveal the compositional impacts of each
three-way FRET component to the rest of them and maintain sub-compositional
coherence using LR transformation. Although the CoDA application and LR
transformation has been mentioned in many biological investigations, this study
innovatively resolved the FRET energy competition dynamics and relative cellular
singling correlations using the CoDA algorithm. The CoDA results demonstrated the
capacity to understand the complex PPIs such as TNFR1 trimeric meta-clusters,
complicated biological phenomena of human TRAPS autoinflammatory disease, human-
poxvirus interactions, and understand the balance between cell death and inflammation
signalling pathway activations upon TNFR1 interactions. Despite these promising results,
zeros in compositional data are a major issue since taking a logarithmic ratio on zeros is
impossible. Although the zero-value issue did not emerge in this study, various zero
substitution algorithms have been proposed [223-225], and the impact of any of these
on the FRET results can be investigated in the future. In addition to the purely statistical
approach to solve the zero-value issue, using domain knowledge to combine

components to produce new components can also solve the issue.
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Without imaging outputs, flow cytometry measures the fluorescence intensity at the
single-cell level in a fluidic system. As a result, it has little information about the
morphology of individual cells, and it lacks spatial information that is important for the
understanding of living tissues and animals. The cellular morphological data can be
investigated for future study using high-throughput multi-channel imaging flow
cytometers. It exposes detailed information on the cell size, shape, and circularity, as
well as the localisation and colocalization of multiparameter fluorescently tagged
markers, including FRETs. The imaging flow cytometry data can also be used to increase

singlet identification accuracy without the need for cell sorting.

Moreover, combining the FRET algorithm with the imaging flow cytometry technique
exposes the signalling pathways' morphological details, such as the cell's
location/organelle where signalling is initiated. More intriguingly, examining the doublet
events may permit the examination of the intercellular protein-protein interactions. For
spatial information, there is a currently developed live mouse, fluorescent lifetime (FLIM)
assay for the detection of the FRET signals using GFP-RFP FRET pair [226]. For future
studies, it is also worth exploring the possibility of directly applying the fluorescent
intensity-based algorithm to the live animal FRET system because it can be upgraded to
more than two protein molecules, and the data acquisition is more rapid than the FLIM
assay. Furthermore, utilising the FLIM technique to evaluate each two-protein FRET
control can further confirm the fluorescent-based result to achieve better algorithm
quality assessment. With the potential to achieve the simultaneous detection of cellular
signalling activities and three-protein FRET signals as presented in this study, if

integrated with the live animal model, it is possible to monitor malfunctioning PPIs in
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organ-specific malignancies and measure the course of the disease in real-time while
also visualising the spatial information from many fluorescence readouts. It will provide
more biologically relevant information on the connections between FRET and cellular
signals, resulting in more effective diagnostic and pharmacological screening tools in

animal model-based investigations.

Another direction to expand the future flow cytometry technology is combining it with
Raman spectroscopy. In addition to flow cytometry which measures the forward and
side scattered light from a suspension of cells or particles as they pass through a laser
beam, Raman spectroscopy is a technique that measures inelastic scattered light from a
sample [227]. In flow cytometry, FSC measures the size of the cell or particle, while the
SSC measures the granularity or internal complexity of the cell or particle. These
measurements provide information about the physical properties of the cells or particles
and are used to identify and analyze different cell types or subpopulations. On the other
hand, Raman spectroscopy provides information about the sample's chemical
composition by measuring the inelastic scattered light from the sample's vibrational
modes and spectrum shifts [228]. Raman spectroscopy and flow cytometry are both
powerful techniques in the field of biotechnology and medical research [229, 230].
Combining these two techniques has the potential to provide even more detailed and
accurate information about cells and other biological samples. By integrating Raman
spectroscopy with flow cytometry, researchers can simultaneously measure a wide
range of properties of individual cells, including their size, shape, and chemical
composition. One major advantage of this approach is that it allows for high-throughput

analysis of large numbers of cells. The flow cytometry component of the system allows
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for the rapid sorting and analysis of cells, while the Raman spectroscopy component
provides detailed chemical information. This can be particularly useful for applications
such as cancer research, where large numbers of cells need to be analysed to identify
specific markers or characteristics associated with the disease. Another advantage of
this approach is that Raman spectroscopy can provide information on the chemical
composition of cells, which is impossible with traditional flow cytometry methods. This
can be useful for identifying specific biomolecules or for detecting changes in cell
metabolism. However, one limitation of this approach is that Raman spectroscopy is
typically a relatively low signal-to-noise technique, making it difficult to obtain accurate
and reliable data in some cases. Additionally, integrating Raman spectroscopy with flow
cytometry can be a complex and technically challenging task, requiring specialised
equipment and expertise. Overall, the integration of Raman spectroscopy with flow
cytometry has the potential to provide powerful new insights into the biology of cells
and other biological samples. However, it is important to keep in mind the limitations of
this approach and to carefully consider the specific experimental goals and

requirements when planning and executing these types of experiments.

In the foreseeable future, the detection parameters of flow cytometry-based technology
will grow by expanding the number of fluorescence detection channels and the
combination of other technologies. Meanwhile, the complexity of data visualisation will
also grow exponentially as the detection parameter increases, this phenomenon is
known as "the curse of dimensionality". Currently, the most advanced full spectral flow
cytometer has 64 fluorescence detection channels, which requires 2,016 two-

dimensional scatterplots to examine the data, if all channels are used adequately. Finally,
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to resolve the visualisation complexity when the detection parameter expands, there
are many parametric and non-parametric dimension reduction algorithms. PCA, t-
distributed stochastic neighbour embedding (t-SNE) [231], uniform manifold
approximation and projection (UMAP)[232], the dimensionality reduction technique
based on triplet constraints (TriMap) [233], and pairwise controlled manifold
approximation (PaCMAP) [234], are all dimensionality reduction techniques available to
compress the high parameter/dimensional data in a single reduced two-dimensional
scatter plot. PCA is a linear parametric technique that seeks to find the principal
components of the data, which are the directions of greatest variance. It is simple to
implement and computationally efficient, but it can be sensitive to outliers and may not
preserve the local structure of the data. The t-SNE algorithm is a non-parametric
technique that seeks to preserve the local structure of the data by minimising the
divergence between probability distributions of similar data points. UMAP, like t-SNE,
also preserves the local structure of the data, but also preserves the global structure by
approximating the underlying manifold of the data. TriMap and PaCMAP are also non-
parametric techniques, but they are based on triplet constraints and pairwise controlled
manifold approximation, respectively. These non-parametric techniques can preserve
both the local and global structure of the data by hyperparameter tuning, but they can
be more computationally expensive than PCA. In summary, the choice of dimensionality
reduction technique will depend on the specific characteristics of the cells and sample

populations and the goals of the biological investigations.

Despite the limitations of flow cytometry-based assay, it still has distinct advantages

over many other technologies. It enables the user to carry out single-cell level cell-
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sorting, which opens doors to deeper investigations, including single-cell DNA and RNA
sequencing, single-cell proliferation and progression modelling on selected and sorted
cell subtypes. This will help researchers better understand diseases like cancer, which
can develop from a single mutated cell. Together with the FRET and cellular signalling
reporters, flow cytometry still holds an unbeatable sample acquisition rate, sampling
power, statistical robustness, detection sensitivity, and high-parameter capacity. Linking
flow cytometry data with genomic, proteomic, and transcriptomic data permits multi-
level investigation of the causation for physiological conditions or biological phenomena
and allows the high-throughput diagnosis of human diseases and screening of

personalised therapeutics that can contribute greatly to human health.
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Appendix

Appendix Figure 1 Full-spectrum flow cytometer configuration
The violet, blue, yellow-green and red lasers and their detector arrays. The detector arrays each
have 16, 14,10, and 8 detector channels.
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Appendix Figure 2 The RANSAC robust linear regression

OLS (orange lines), robust MAE (pink lines), Huber (red lines), Theil-Sen (green lines), and
RANSAC (blue lines) were compared using data with different outliers. The ground truth
coefficient was 3, with no outlier (A), outliers at the x-axis direction (B), outliers at the y-axis

direction (C), and outliers at both the x-axis and y-axis directions (D).
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Appendix Figure 3 TNFR2-eCFP sequencing result
Human TNFR2 (black box) subcloned with the eCFP (cyan box) to form a fusion fluorescence
receptor TNFR2-eCFP. The sequencing result showed no mutation.
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M APV AV WA ALAVGLETLWAAAHATL®PAGQ@VAFTUPY APETZPGSTC
ATGGOGCCCGTCGCCGT CT GGGCCGCGCT GGOCGT CGGACTGGAGCT CTGGGCT GCGGC GCACGCCTT GCCCGCCCAGGT GGCATT T ACACC CT ACGCCC CGGAGCCCGGGAGCACAT GC
ATGGOGCCCGTCGCCGT CT GGGCCGCGLT GGCCGT CGGACTGGAGCT CTGGGCT GCGGCGCACGCCTT GCCCGCC CAGGT GGCATTTACACCCT ACGCCC CGGAGCCCGGGAGCAC AT GC

RLREYYDOQETAQMCCSEKCSPGQHAZKYFCT KT S DTV CDSCED
CGGCTCAGAGAAT ACT AT GACCAGACAGCT CAGAT GTGCT GCAGC AAATGCT CGCCOGGGCCAACATGCAAAAGT CTT CTGT ACCAAGACCTCGGACACCGT GTGT GACT CCTGT GAGGAC
CGGCTCAGAGAAT ACT AT GACCAGACAGCT CAGAT GTGCT GCAGC AAATGCT CGCOGGGCCAACATGCAAAAGT CTT CTGT ACCAAGACCTCGGACACCGT GTGT GACT CCTGT GAGGAC

S T Y T ¢ L WN WV P ECLSCGS RCS S D@V ETOQQATGCTREQNZ RICTC
AGCACATACACCCAGCT CT GGAACT GGGTT CCCGAGTGCT TGAGCT GT' GGCT CCCOCTGT AGCT CTGACCAGGT GGAAACT CAAGCCT GCACT COGGAAC AGAACCGC AT CTGCACCT GC
AGCACATACACCCAGCT CT GGAACT GGGTT CCCGAGTGCT TGAGCT GT GGCT CCCGCTGT AGCT CTGACCAGGT GGAAACT CAAGCCT GCACT CGGGAACAGAACCGCATCTGCACCT GC

R PGWYCALSKQq@EGC CRILTCAPILRIEKT CRPGFGVARPUGTETSDVYV
AGGCCCGGCT GET ACTGCGCGCT GAGCAAGCAGGAGGGET GCCGGCT GTGOGCGCCGCT GCGC AAGT GCCGCCCGGGCTT CGGC GT GGCCAGACCAGGAACT GAAACAT CAGACGTGGT G
AGGCCCGGCT GGTACTGCGCGCT GAGCAAGCAGGAGGGGT GCCGGCT GTGCGCGCCGCT GCGCAAGT GCCGCCCGGGLTT CGGC GT GGCCAGACCAGGAACT GAAACAT CAGACGTGGT G

C K P CAPGTFS NTTS S TDI CRPHOQI CNWVV AI PGNASMDAUVC
TGCAAGCCCTGTGCCCCGGGGACGTT CTCCAACACGACTT CAT CCACGGAT ATTT GCAGGCCCCACCAGAT CT GT AACGT GGTGGCC AT CCCT GGGAATGCAAGCATGGAT GCAGT CT GC
TGCAAGCCCTGTGCCCCGGGGACGTT CTCCAACACGACTTCATCCACGGAT ATTT GCAGGCCCCACCAGAT CT GT AACGT GGTGGCC AT CCCT GGGAATGCAAGCATGGAT GCAGTCT GC

T s TS PTRSMAPGAVYVY HILZPOQ?P VS TRSQQHTQ?PTUPEUPSTAPSTS
ACGTCCACGT CCCCCACCCGGAGT AT GGC CCCAGGGGCAGT ACACTT ACCCCAGCCAGT GTCCACACGATCCCAACACAC GCAGCCAACT CCAGAACCCAGCACT GCTCCAAGCACCT CC
ACGTCCACGT CCCCCACCCGGAGT AT GGC CCCAGGGGCAGT ACACTTACCOCAGCCAGT GTCCACACGATC CCAACACAC GCAGCCAACT CCAGAACCCAGCACT GCTCCAAGCACCT CC

F L LPMGPSUPPAESGSTGGDTFALPVSGLIVGVYTALGTLILTITIGVVN
TTCCTGCTCCCAAT GGGCCCCAGCC CCCCAGCTGAAGGGAGCACTGGCGACT TCGCTCTT CCAGT TGGACT GATT GI GGGT GTGACAGCCTT GGGT CT ACT AAT AATAGGAGT GGT GAAC
TTCCTGCTCCCAAT GGGCCCCAGCC CCCCAGCTGAAGGGAGCACTGGCGACT TCGCTCTT CCAGT TGGACT GATT GT GGGT GTGACAGCCTT GGGT CT ACT AAT AATAGGAGT GGTGAAC

C VI MT gV KK KU?PILCLOQQREAIZKV?PHILU?PADIEKARGEGTOQG?PEOQQQHILL
TGTGICATCATGACCC AGGTGAAAAAGAAGCCCTT GIGCCTGCAGAGAGAAGCC AAGGT GCCTCACTT GCCT GCC GATAAGGCC CGGGGT ACACAGGGUC COGAGCAGCAGCACCTGCT G
TGTGTCATCATGACCCAGGTGAAAAAGAAGCCCTT GTGCCTGCAGAGAGAAGCC AAGGT GCCTCACTT GCCT GCCGATAAGGCC CGGGGT ACACAGGGCC COGAGCAGCAGCACCTGCT G

I T A PSS S S S SLESSASALDRRAPTRNQPQAPGVYEASGATGE
ATCACAGCGCCGAGCTCCAGCAGC AGCTC CCTGGAGAGCT CGGCC AGT GCGT TGGACAGAAGGGCGC CCACT CGGAACC AGCCACAGGCACCAGGC GT GGAGGCCAGTGGGGC CGGGGAG
ATCACAGCGCCGAGCTCCAGCAGCAGCTC CCTGGAGAGCT CGGCC AGT GCGT TGGACAGAAGGGCGC CCACT CGGAACC AGCCACAGGCACCAGGC G GEAGGCCAGTGGGGC CGGGGAG

A R A STGS S DS S P GG HGT vVNVTCI VNV CS S S DHS S Cc 8 8§
‘GCCCGGGCCAGCACCGGGAGCT CAGAT TCTT CCCCTGGT GGCCATGGGAC CCAGGT CAAT GTCACCT GCAT CGTGAACGT CTGT AGCAGCTCT GACCACAGCTCACAGT GCTCCT CCCAA
GCCCGGGCCAGCACCGGGAGCT CAGAT TCTT CCCCTGGT GGCCATGGGACCCAGGT CAATGTCACCT GCAT CGTGAACGT CTGT AGCAGCTCT GACCACAGCTCACAGT GCTCCT CCCAA

A S S TMGDTDS S PSESPKDEQ@V?PFS KEETCAFHRSQLETT?P?PETL
GCCAGCTCCACAAT GGGAGACACAGAT TCCAGCCCCTCGGAGT CCCCGAAGGAC GAGCAGGTCCCCTT CTCCAAGGAGGAATGT GCCTTTCGGT CACAGCT GGAGACGCCAGAGACCCT G
GCCAGCTCCACAAT GGGAGACACAGAT TCCAGCC CCTCGGAGT CCCCGAAGGACGAGC AGGTCCCCTT CTCCAAGGAGGAATGT GCCTTT CGGT CACAGCT GGAGACGCCAGAGACCCT G

CTGGGGAGCACCGAAGAGAAGCCCCT GCCCCTTGGAGT GCCT GATGCT GGGATGAAGCCCA CGAGAT GGTGAGCAAGGGC GAGGAGCT GI TCACCGGGGTGGTGCCCATCCTGGI C

L 68 TEZEZ KU PILUPILGV?PDAGME K?PS|L EJMHV K G EETLFT GV Vv PT L V
CTGGGGAGCACCGAAGAGAAGCCCCT GCCCCTTGGAGT GCCT GATGCT GGGATGAAGCCCAS CGAGAT GGTGAGCAAGGGC GAGGAGCT GI TCACCGGGGTGGTGCCCATCCTGGI C

E L DGDV NGHI KT FS VS G EGETGDATYGGKILTULE KTFI CTTGE KTLP VP
GAGCT GGACGGCGACGT AAAC GGCCACAAGT TCAGCGT GI' CCGGCGAGGGCGAGGGCGAT GCCACCT ACGGCAAGCT GAC CCTGAAGT T CAT CT GCACCACCGGCAAGCT GCCCGTGCCC
GAGCTGGACGGCGACGT AAAC GGCCACAAGT TCAGUGT GI'CCGGCGAGGGCGAGGGCGAT GCCACCT ACGGCAAGCT GACCCTGAAGI TCAT CT GCACCACCGGCAAGCT GCCCGIGCCC

wPpPTLVTTILTWGV QCTFS RY P DHMEKOGQHDTFTFIE KSAMTPEGYVQQER
TGGCCCACCCTCGT GAC CACCCT GACCTGGGGCGT GCAGT GCTTCAGCCGCT ACCCCGACCACAT GAAGC AGCACGACTT CTTC AAGT CCGCCATGCCCGAAGGCT ACGT CCAGGAGCGC
TGGCCCACCCTCGT GACCACCCT GACCTGGGGCGT GCAGT GCTT CAGCCGCT ACCCCGACCACAT GAAGCAGCACGACTT CTTC AAGT CCGCCATGCOCGAAGGCT ACGT CCAGGAGCGC

T 1 F F KDDGNY KT RAEV VI KTFESGDTILVNI RIETLI KTGIDFIEKTETDSI GNI
ACCATCTTCT TCAAGGACGAC GGCAACT ACAAGACCCGCGCC GAGGT GAAGT TCGAGGGCGACACCCT GGT GAACCGCAT CGAGCT GAAGGGCATC GACTT CAAGGAGGACGGCAACAT C
ACCATCTTCT TCAAGGACGAC GGCAACT ACAAGACCCGCGCC GAGGT GAAGT TCGAGGGCGACACCCT GGT GAACCGCAT CGAGCT GAAGGGCATCGACTT CAAGGAGGACGGCAACAT C

L G HKLEYNYTI S HNVYI1TTADIE KO QKNG GI KANTFI KIRHNTIEDSGS S V
CTGGGGCACAAGCT GGAGE ACAACT ACAT CAGCCACAACGTCTAT ATCACCGCCGACAAGCAGAAGAACGGCATCAAGGC CAACTT CAAGAT COGCCACAACATCGAGGACGGCAGCGI G
CTGGGGCACAAGCT GGAGT ACAACT ACAT CAGCCACAACGTCT AT AT CACCGCC GACAAGCAGAAGAACGGCATCAAGGC CAACTT CAAGAT COGCCACAACATCGAGGACGGCAGCGT G

L A Q X P D L L Y L § T S A LS KDPNXNZEIKHRTD
CAGCTCGCCGACCACT ACCAGCAGAACACCCCC AT CGGCGACGGCC COGT GCTGCT GCCCGACAACCACT ACCTGAGCAC CCAGT COGCCCT GAGC AAAGACCCCAACGAGAAGCGC GAT
CAGCTCGCCGACCACT ACCAGCAGAACACCCCC AT COGCGACGGCC COGT GCTGCT GCCOGACAACCACT ACCTGAGCAC CCAGT COGCCCT GAGC AAAGACCCCAACGAGAAGCGC GAT

HMVLLETFUVYTAAGITILGMDETLYK®*
CACATGGTCCTGCTGGAGT TCGI GACCGC CGCCGGGAT CACT CTCGGCAT GGACGAGCTGTACAAGT AA | 2109
CACATGGTCCTGCTGGAGT TCGI GACCGC CGCCGGGAT CACT CTCGGCAT GGACGAGCTGTACAAGT AA | 2109
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Appendix Figure 4 TNFR2-eYFP sequencing result
Human TNFR2 (black box) subcloned with the eYFP (yellow box) to form a fusion fluorescence
receptor TNFR2-eYFP. The sequencing result showed no mutation.
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MAPV AV WA ALAVGLETLWAAAHALUPAOQVAFTPYAPEUZPGSTC
ATGGOGCCCGTCGCCGT CT GGGCCGCGCT GGCCGT COGACTGGAGCT CTGGGCT GOGGCGCACGCCTT GCCCGCCCAGGT GGCATTT ACACCCT ACGCCCCGGAGCCCGGGAGCACAT GC
ATGGOGCCCGTCGCCGT CT GGGCCGCGCT GGCCGT COGACTGGAGCT CTGGGCT GOGGCGCACGCCTT GCCCGCCCAGGT GGCATT T ACACCCT ACGCCCCGGAGCCCGGGAGCACAT GC

RLREYYDOQETAQMCCSEKCS?PGOQHATZ KVYTFOCTI KT SDTVCDSCETD
CGGCTCAGAGAAT ACT AT GACCAGACAGCT CAGAT GTGCT GCAGC AAATGCT CGCCGGGCCAACATGCAAAAGT CTT CTGT ACCAAGACCTCGGACACCGT GTGT GACT CCTGT GAGGAC
CGGCTCAGAGAAT ACT AT GACCAGACAGCT CAGAT GTGCT GCAGC AAATGCT CGCCGGGCCAACATGCAAAAGT CTT CTGT ACCAAGACCTCGGACACCGT GTGT GACT CCTGT GAGGAC

5 TYTQLWNWWYVYPECLS ST CGSRCS S DQVETOQQ@ATCT®REIGQNIRTITCTC
AGCACATACACCCAGCT CT GGAACT GGGTT CCCGAGT GCT TGAGCT GT'GGCT CCOGCTGT AGCT CTGACCAGGT GGAAACT CAAGCCT GCACT CGGGAAC AGAACCGCATCTGCACCT GC
AGCACATACACCCAGCT CT GGAACT GGGTT CCCGAGT GCT TGAGCT GT GGCT CCCGCTGT AGCT CTGACCAGGT GGAAACT CAAGCCT GCACT COGGAAC AGAACCGC AT CTGCACCT GC

R PGWY CALS K@QEGTCRILTCAPILRIEKTCRPGTFGVARPUGTETSDVYV
AGGCCCGGCT GGT ACTGCGCGCT GAGCAAGCAGGAGGGGT GCCGGCT GTGCGCGCCGCT GCGCAAGT GCCGCCCGGGCTT CGGC GT GGCCAGACCAGGAACT GAAACAT CAGACGTGGI G
AGGCCCGGCT GETACTGCGCGCT GAGCAAGCAGGAGGGGT GCCGGCT GTGOGCGCCGCTGCGCAAGT GCCGCCCGGGCTT CGGC G GGCCAGACCAGGAACT GAAACAT CAGACGT GG G

C KPCAPGTFS NTTSSTDICRPHOQI CNVV AI PGNASMDAWVTC
TGCAAGCCCTGTGCCCCGGGGACGTT CTCCAACACGACTT CAT CCACGGAT ATTT GCAGGCCCCACCAGAT CT GT AACGT GGTGGCC AT CCCT GGGAATGCAAGCATGGAT GCAGT CT GC
TGCAAGCCCTGTGCCCCGGGGACGTT CTCCAACACGACTTCAT CCACGGAT ATTT GCAGGCCCCACCAGAT CT GT AACGT GGTGGCC AT COCT GGGAATGCAAGCATGGAT GCAGT CT GC

T $ TS P TR S MAPGAV HLPOQPVSTIRSQHTOGQPTU®PETZPSTATPSTS
ACGTCCACGT CCCCCACCCGGAGT AT GGCCCCAGGGGCAGT ACACTT ACCOCAGCCAGT GTCCACACGATC CCAACACAC GCAGCCAACT CCAGAACCCAGCACT GCTCCAAGCACCT CC
ACGTCCACGT CCCCCACCCGGAGT AT GGCCCCAGGGGCAGT ACACTT ACCCCAGCCAGT GTCCACACGATCCCAACACACGCAGCCAACT CCAGAACCCAGCACT GCTCCAAGCACCT CC

F L L. P MGP S PP AEGSTGDTFALPV GLI VGVYTALGTLILTI T GV VN
TTCCTGCTCCCAAT GGGCCCCAGCC CCCCAGCTGAAGGGAGCACTGGCGACT TC GCTCTTCCAGT TGGACT GATT GI GGGT GTGACAGCCTT GGGT CT ACT AAT AATAGGAGT GGT GAAC
TTCCTGCTCCCAAT GGGCCCCAGCC CCCCAGCTGAAGGGAGCACTGGUGACT TCGCTCTTCCAGI TGGACT GATT GI GGGT GTGACAGCCTTGGGT CT ACT AAT AATAGGAGT GGTGAAC

cVvI1i MTV KI KI KPILTCLOQREAZKWVPHILUPADIEKARGTQGPEQQQHILL
TGTGTCATCATGACCCAGGT GAAAAAGAAGCCCTT GTGCCTGCAGAGAGAAGCC AAGGT GCCT CACTT GCCT GCCGATAAGGCC CGGGGT ACACAGGGCOC CCGAGCAGCAGCACCTGCT G
TGTGTCATCATGACCCAGGT GAAAAAGAAGCCCTT GTGCCTGCAGAGAGAAGCC AAGGT GCCT CACTT GCCT GCC GATAAGGCC CGGGGT ACACAGGGCC COGAGCAGCAGCACCTGCT G

I T AP S S5 S§ 8§ 8 8§ LESS A S ALDRRAPTRNQPQAPGYEASGATGE
AT CACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGAGAGCT CGGCCAGT GCGT TGGACAGAAGGGCGC CCACT CGGAACCAGCCACAGGCACCAGGC G GGAGGCCAGTGGGGC CGGGGAG
ATCACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGAGAGCT CGGCCAGT GCGT TGGACAGAAGGGCGC CCACT CGGAACCAGCCACAGGCACCAGGC G GGAGGCCAGTGGGGC CGGGGAG

A R ASTGS S DS S PGGHGTOQVNVYVTCI VNWYVCSSSDHSSQCS S Q
GCCCGGGCCAGCACCGGGAGCT CAGAT TCTT CCCCTGGT GGCCATGGGACCCAGGT CAAT GTCACCT GCAT CGTGAACGT CTGT AGCAGCTCT GACCACAGCTCACAGT GCTCCT CCCAA
GCCCGGGCCAGCACCGGGAGCT CAGATTCTT CCCCTGGT GGCCATGGGACCCAGGT CAATGTCACCT GCAT CGTGAACGT CTGT AGCAGCTCT GACCACAGCTCACAGT GCTCCT CCCAA

A S S T MGDT DS S P S ES P KDEQg@V P FS KEETCATFIRSQLET?PET L
‘GCCAGCTCCACAAT GGGAGACACAGAT TCCAGCCCCTCGGAGT CCCCGAAGGACGAGC AGGTCCCCTT CTCCAAGGAGGAATGT GCCTTTCGGT CACAGCT GGAGACGCCAGAGACCCT G
GCCAGCTCCACAAT GGGAGACACAGAT TCCAGCC CCTCGGAGT CCC CGAAGGACGAGCAGGTCCCCTT CTCCAAGGAGGAATGT GCCTTT CGGIC ACAGCT GGAGACGCCAGAGACCCT G

CTGGGGAGCACCGAAGAGAAGCCCCT GCCCCTTGGAGT GCCT GATGCT GGGATGAAGCC CAS CGAGAT GGTGAGCAAGGGC GAGGAGCT GI'TCACCGGGGTGGTGCCCATCCTGGI C

L 68 TEEIKUPILUPILGVYVPDAGMEKT?PS S|L EMY § KGEELTFTIT GGV V PFT LV
CTGGGGAGCACCGAAGAGAAGCCCCT GCCCCTTGGAGT GCCT GATGCT GGGATGAAGCC CAS CGAGAT GGTGAGCAAGGGC GAGGAGCT GI' TCACCGGGGTGGTGCCCATCCTGGT C

ELDGDVNGHIEKTFSVS GEGEGGDATYGKILTTILIE KT FTICTTUGIE KT LPVP
‘GAGCTGGACGGCGACGT AAACGGCCACAAGT TCAGCGT GI CCGGCGAGGGCGAGGGCGAT GCCACCT ACGGCAAGCT GACCCTGAAGT TCAT CT'GCACCACCGGCAAGCT GCCCGTGCCC
GAGCTGGACGGCGACGT AAAC GGCCACAAGT TCAGCGT GT CCGGCGAGGGCGAGGGCGAT GCCACCT ACGGCAAGCT GACCCTGAAGTTCAT CT GC ACCACCGGCAAGCT GCCCGTGCCC

wepTLVTTTFGGYGLOQCTFARYPDHMEKUGQHDTFTFIE KSAMTPEGYVQER
TGGCCCACCCTCGT GACCACCTT CGGCT ACGGCCT GCAGT GCTTCGCCCGCT ACCCCGACCACAT GAAGC AGCACGACTT CTTC AAGT CCGCCATGCCCGAAGGCT ACGT CCAGGAGCGC
TGGCCCACCCTCGT GACCACCTT CGGCT ACGGCCT GCAGT GCTTCGCCCGCT ACCOCGACCAC AT GAAGC AGCAC GACTT CTTC AAGT CCGCCATGCCCGAAGGCT ACGT CCAGGAGCGC

T 1 F F KDDGNYEKTWRAEVYIKTFEGDTLV NI RIETILIKTEGTI DFIEKEDSGNI
ACCATCTTCT TCAAGGACGAC GGC AACT ACAAGACCCGCGCC GAGGT GAAGT TCGAGGGCGACACCCT GGT GAACCGCAT CGAGCT GAAGGGCATC GACTT CAAGGAGGACGGCAACATC
ACCATCTTCT TCAAGGACGAC GGC AACT ACAAGACCCGCGCCGAGGT GAAGT TCGAGGGCGACACCCT GGT GAACCGCAT CGAGCT GAAGGGCATC GACTT CAAGGAGGACGGCAACATC

L G HKLEYNTYNSHNYVYTIMADIE KOQIE KNG GI KV NTFIEKTI R NI EDG S V
CTGGGGCACAAGCT GGAGT ACAACT ACAACAGCCACAACGTCT AT AT CAT GGCC GACAAGCAGAAGAACGGCATCAAGGT GAACTT CAAGAT CCGC CACMCATCGAG}ACG}CAGCGT G
CTGGGGCACAAGCT GGAGT ACAACT ACAACAGCC ACAACGTCT AT ATCAT GGCCGACAAGCAGAAGAACGGCATC AAGGT GAACTT CAAGAT COGCCACAACATCGAGGACGGCAGCGI G

Q L A Q NT P11 GDG?P VL LPDNUHYILS Y S A LS KDPNZEIZ KTR RTD
CAGCTCGCCGACCACT, ALLAGCA.(;MLA{. CCCOCAT CGGCGACGGCCOCGT GCTGCT GCCCGACAACCACT ACCTGAGCT ACCAGT COGCOCT GAGC AMAGACCCC AACGAGAAGCGCGAT
CAGCTCGCCGACCACT ACCAGCAGAACACCCCCAT CGGCGAC GGCCCCGT GCTGCT GCCCGACAACCACT ACCTGAGCT ACCAGT CCGCCCT GAGC AAAGACCCCAACGAGAAGCGCGAT

HMVILILETFUVTAAGITILGMDELY K *
CACATGGT CCTGCT GGAGI TCGI GACCGC CGCCGGGAT CACT CTCGGCAT GGACGAGCTGTACAAGT AA | 2109
CACATGGT CCTGCT GGAGI TCGT GACCGC CGCCGGGAT CACT CTCGGCAT GGACGAGCTGTACAAGT AA | 2109
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Appendix Figure 5 TNFR1-mRFP sequencing result
Human TNFR2 (black box) subcloned with the mRFP (red box) to form a fusion fluorescence
receptor TNFR2-mRFP. No mutation in the TNFR2 sequence. One silent mutation was found in
the mRFP ORF: GCC—GCT, alanine—alanine (red) at the 525%™ nucleotide.
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M APV AV WA ALAVGLETLWAAAHATL P A VA FTUPY A PEZPGSTC
AT GGOGCCCGTCGCCGT CT GGGCCGCGCT GGCCGT CGGACTGGAGCT CTGGGCT GCGGCGCACGCCTT GCCCGCCCAGGT GGCATTT ACACCCT ACGCCCCGGAGCCCGGGAGCACAT GC
ATGGCGCCCGTCGCCGT CT GGGCCGCGCT GGCCGT CGGACTGGAGCT CTGGGCT GCGGCGCACGCCTT GCCCGCCCAGGT GGCATTT ACACCCT ACGCCCCGGAGCCCGGGAGCACAT GC

RLREYYDOQETAQMCCSEKCS?PGOQQHAZ KVYFOCT KT S DTV CDSCED
CGGCTCAGAGAAT ACT AT GACCAGACAGCT CAGAT GTGCT GCAGC AAATGCT CGCCGGGCCAACATGCAAAAGT CTT CTGT ACCAAGACCTCGGACACCGT GTGT GACT CCTGT GAGGAC
COGCTCAGAGAAT ACT AT GACCAGACAGCT CAGAT GTGCT GCAGC AAATGCT CGCOGGGCCAACATGCAAAAGT CTT CTGT ACCAAGACCTCGGACACCGT GTGT GACT CCTGT GAGGAC

s TY T L WNWVVPETC CILSTCGSRCS S DQVETOQQ@ATCT®REQNHR RTITCTC
AGCACATACACCCAGCT CT GGAACT GGGTT CCCGAGTGCT TGAGCT GT'GGCT CCCGCTGT AGCT CTGACCAGGTGGAAACT CAAGCCT GCACT CGGGAACAGAACCGC AT CTGCACCT GC
AGCACATACACCCAGCT CT GGAACT GGGTT CCCGAGT GCT TGAGCT GT GGCT CCCGCTGT AGCT CTGACCAGGT GGAAACT CAAGCCT GCACT OGGGAAC AGAACCGC AT CTGCACCT GC

R P GWY CALSE KqQEGO CRTILTCAPTILREKTCRPGTFGVARTPGTETS DV YV
AGGCCCGGCT GET ACTGCGCGCT GAGCAAGCAGGAGGGGT GCCGGCT GTGOGCGCCGCT GCGCAAGT GCCGCCCGGGCTT CGGC GT GGCCAGACC AGGAACT GAAACAT CAGACGTGGI G
AGGCCCGGCT GGT ACTGCGCGCT GAGCAAGCAGGAGGGGT GCCGGCT GTGOGCGCCGCT GCGCAAGT GCCGCCCGGGLTT CGGC GT GGCCAGACCAGGAACT GAAACAT CAGACGTGGI G

C K P CAPGTFS NTTS S TDI CRPHOQI CNVV AI PGNASMDAWVC
TGCAAGCCCT GTGCCCCGGGGACGTT CTCCAACACGACTTC AT CCACGGAT ATTT GCAGGCCCCACCAGAT CT GT AACGT GGTGGCC AT CCCT GGGAATGCAAGCATGGAT GCAGT CT GC
TGCAAGCCCTGTGCCCCGGGGACGT T CTCCAACACGACTTCAT CCACGGAT ATTT GCAGGCCCCACCAGAT CT GT AACGT GGTGGCC AT CCCT GGGAATGCAAGC ATGGAT GCAGT CT GC

T $ T S P T R S M AP G AV HLP QP VS T RS QHTQPTPE/PSTAUP S T S
ACGTCCACGT CCCCCACCCGGAGT AT GGC CCCAGGGGCAGT ACACTTACCCCAGCCAGT GTCCACAC GATC CCAACACAC GCAGCCAACT CCAGAACCCAGCACT GCTCCAAGCACCT CC
ACGTCOCACGT CCCCCACCCGGAGT AT GGCCCCAGGGGCAGT ACACTT ACCCOCAGCCAGT GTCCACAC GATCCCAACACAC GCAGCCAACT CCAGAACCCAGCACT GCTCCAAGCACCT CC

F LLPMGUPSPPAEGSTGDTFALPVSGLIVGVYTALGTLILTITI GV VN
TTCCTGCTCCCAAT GGGCCCCAGCCCCCCAGCTGAAGGGAGC ACTGGCGACT TCGCTCTT CCAGT TGGACT GATT GT GGGT GTGACAGCCTT GGGT CT ACT AAT AATAGGAGT GGTGAAC
TTCCTGCTCCCAAT GGGCCCCAGCC CCCCAGCTGAAGGGAGC ACTGGCGACT TCGCTCTT CCAGT TGGACT GATT GT GGGT GTGACAGCCTT GGGT CT ACT AAT AATAGGAGT GGTGAAC

C VI MT @V KKK KU?PLCLOQ@REAIZKVYPHLUPADIEKARGTQG?PEQOQHILL
TGTGTCATCATGACCCAGGTGAAAAAGAAGCCCTT GIGCCTGCAGAGAGAAGCCAAGGT GCCTCACTT GCCT GCC GATAAGGCC CGGGGT ACACAGGGCC COGAGCAGCAGCACCTGCT G
TGTGTCATCATGACCCAGGTGAAAAAGAAGCCCTT GTGCCTGCAGAGAGAAGCCAAGGT GCCTCACTT GCCT GCCGATAAGGCC COGGOT ACACAGGGCC CCGAGCAGCAGCACCTGCT G

I T AP S 8 § 8§ 8 8§ LES S A S ALDZRRAPTI RNOQPQAPGYEASGAGE
ATCACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGAGAGCT CGGCC AGT GCGT TGGACAGAAGGGCGC CCACT CGGAACC AGCCACAGGCACC AGGC G GEAGGCCAGTGGGGC CGGGGAG
ATCACAGCGCCGAGCTC CAGCAGCAGCTC CCTGGAGAGCT CGGCC AGT GCGT TGGACAGAAGGGCGC CCACT CGGAACC AGCCACAGGCACC AGGC G GGAGGCCAGTGGGGC CGGGGAG

A R A S TGS S DS S PGGHGTQQVNVTCI1I VNVYCS S S DHSS QC S s
‘GCCCGGGCCAGCACCGGGAGCT CAGATTCTT CCCCTGGT GGCCATGGGAC CCAGGT CAAT GTCACCT GCAT CGTGAACGT CTGT AGCAGCTCT GACCACAGCTCACAGT GCTCCT CCCAA
GCCCGGGCCAGCACCGGGAGCT CAGAT TCTT CCCCTGGT GGCCATGGGACCCAGGT CAAT GTCACCT GCAT CGTGAACGT CTGT AGCAGCTCT GACCACAGCTCACAGT GCTCCT CCCAA

A S S TMGDTDS S PSESPKDEQVPFS KEETCATFURSQLETU?PETL
GCCAGCTCCACAAT GGGAGACACAGAT TCCAGCC CCTCGGAGT CCCCGAAGGACGAGC AGGTCCCCTT CTCCAAGGAGGAATGT GCCTTTCGGT CACAGCT GGAGACGCCAGAGACCCT G
‘GCCAGCTCCACAAT GGGAGACACAGAT TCCAGCC CCTCGGAGT CCCCGAAGGACGAGC AGGTCCCCTT CTCCAAGGAGGAATGT GCCTTTCGGT CACAGCT GGAGACGCCAGAGACCCT G

CTGGGGAGCACCGAAGAGAAGCCCCT GCCCCTTGGAGT GCCT GATGCT GGGATGAAGCCCA CGAGRT GGCCT CCTCCGAGGACGT CAT CAAGGAGT T CATGCGCTTCAAGGT GCGC

L GS TEEI KUPILUPILGV?PDAGMEK®PS S|L E[I A5 5 EDGVI KTETFMPRETFZEKTVEK
CTGGGGAGCACCGAAGAGAAGCCCCT GCCCCTTGGAGT GECT GATGCT GGGATGAAGCC CAS CGAGRT GGCCT CCTC CGAGGACGT CAT CAAGGAGT T CATGCGCTTCAAGGTGCGC

MEGS VNGHETFETI EGET GEUGRTPYEGTQQTAIEKTILIEKVTIEKGSGT?PILPF A
AT GGAGGGCT CCGT GAACGGC CACGAGT T CGAGAT CGAGGGC GAGGGCGAGGGC CGCCCCTACGAGGGCAC CCAGACCGC CAAGCT GAAGGT GACC AAGGGUGGCCCCCTGCCCT TCGCC
ATGGAGGGCT CCGT GAACGGC CACGAGT T CGAGAT CGAGGGC GAGGGCGAGGGC CGCCCCTACGAGGGCAC CCAGACCGC CAAGCT GAAGGT GACCAAGGGCGGCCCCCTGCCCT TCGCC

wDI L S P QF QY GS KAYV KHPADTIPDYULIEKTILSTFUPESGTFI KWERVM
TGGGACATCCTGTCCCCT CAGTT CCAGT ACGGCT CCAAGGCCT ACGT GAAGCAC COCGC CGACAT CCCCGACT ACTT GAAGCTGT CCTT CCCCGAGGGCT T CAAGT GGGAGCGCGTGAT G
TGGGACATCCTGT CCCCT CAGI T CCAGT ACGGCT CCAAGGCCT ACGT GAAGCACCCCGCCGACAT CCCCGACT ACTT GAAGCTGT CCTT COCCGAGGGCTT CAAGT GGGAGCGCGT GAT G

N FEDGGVVTVT D § § L DG EF 1 ¥ XKV KLRGTNTFUPSDOG?P VM
AACTTCGAGGACGGCGGCGTGGT GACCGT GACCCAGGACT CCT CCCT GCAGGACGGCGAGTTCAT CT ACAAGGT GAAGCT GCGC GGCACCAACT TCCCCT CCGACGGCCCCGT AATGCAG
AACTTCGAGGACGGCGGCGTGGT GACCGT GACCC AGGACT CCTCCCT GCAGGACGGCGAGTTCAT CT ACAAGGT GAAGCT GCGC GGCACCAACT TCCCCT CCGACGGCCCCGT AATGCAG

K KTMOGWEASTEMRMY?PEDOGATLIEKTGGETIKMRILIEKILIEKDU GO GHYDAEV
AAGAAGACCATGGGCTGGGAGGCCT CCACCGAGC GGAT GT ACCCCGAGGACGGC GCCCT GAAGGGCGAGAT CAAGAT GAGGCTGAAGCT GAAGGACGGCGGCCACT. ACGACmGGTC
AAGAAGACCATGGGCTGGGAGGCCT CCAC CGAGC GGAT G ACCCCGAGGACGGC GCCCT GAAGGGCGAGAT CAAGAT GAGGCTGAAGCT GAAGGACGGOGGCCACT ACGAC GGIC

T ¥ M A K KP V QLPGAY KTDTEKTILDI TS HNEDYTTI VEQYER A
AAGACCACCT ACAT GGCCAAGAAGC CCGT GCAGCT GCCCOGCGCCT ACAAGACCGACAT CAAGCT GGACAT CACCT CCCACAAC GAGGACT ACACC ATCGT GGAACAGT ACGAGCGCGCC
AAGACCACCT ACAT GGCCAAGAAGCCCGT GCAGCT GCCCGGCGOCT ACAAGACCGACAT CAAGCT GGACAT CACCT CCCACAACGAGGACT ACACCAT CGT GGAACAGT ACGAGCGCGCC

E G RHS T G A *
‘GAGGGCCGCCACTCCACCGGCGCCTAA | 2067
‘GAGGGCCGCCACTCCACCGGCGCCTAA | 2067
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Appendix Figure 6 CD27-eCFP sequencing result
Human CD27 (black box) subcloned with the eCFP (cyan box) to form a fusion fluorescence
receptor CD27-eCFP. The sequencing result showed no mutation.
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MA RPHPWWLCVILGTILVGILS ATUPAPI KT ST CPETRHBYWAQGIE KTILTCC
ATGGCACGGCCACATCCCTGGT GGCT GI'GCGTT CT GGGGACC CTGGT GGGGCTCT CAGCT ACT CCAGCCCCCAAGAGCT GCCCAGAGAGGC ACTACT GGGCT CAGGGAAAGCT GTGCTGC
ATGGCACGGCCACATCCCTGGT GGCT GTGCGTT CT GGGGACC CTGGT GGGGCTCT CAGCT ACT CCAGCCCCCAAGAGCT GCCCAGAGAGGC ACTACT GGGCT CAGGGAAAGCT GTGCTGC

MC¢CEPGTT FILV KD CDHRIEKAAQCD?PCI PGV S F S PDHHETRPH
CAGATGTGTGAGCCAGGAACATT CCT CGT GAAGGACT GI GAC CAGC AT AGAAAGGCTGCT CAGI GTGATCCTTGCAT ACCGGGGGTCT CCTTCTCT CCTGACCACCACACCCGGCCC CAC
CAGATGTGTGAGCCAGGAACATT CCT CGT GAAGGACT GI GACCAGC AT AGAAAGGCTGCT CAGI GTGATCCTTGCAT ACCGGGGGTCT CCTTCTCT CCTGACCACCACACCCGGCCCCAC

C ES CRHCNSGLILWVRNCTTITANAETCAUCRNGWOQCRDIEKETCTEC
TGTGAGAGCTGTOGGCACTGT AACT CT GGT CTT CTCGTT CGC AACT GCACCATC ACTGCCAAT GCTGAGTGT GCCT GTC GCAAT GGCT GGC AGTGC AGGGACAAGGAGT GCACCGAGT GT
TGTGAGAGCTGTCGGCACTGT AACT CT GGT CTT CT CGTT CGCAACT GCACCATCACTGCCAAT GCTGAGTGT GCCT GT'C GCAAT GGCT GGCAGT GC AGGGACAAGGAGT GCACCGAGT GT

D P L P NPS LT AURS § A L S P H P P T HL P Y VS EMLEART A GHM
GATCCTCTTCCAAACCCT TCGCT GACCGCT CGGT CGT CT CAGGCCCT GAGCCC ACACCCT CAGCCCACCCACT TACCTT AT GT CAGT GAGAT GCTGGAGGCCAGGACAGCTGGGCACATG
GATCCTCTTCCAAACCCT TCGCT GACCGCT CGGT CGT CT CAGGCCCT GAGCCC ACACCCT CAGCCCACCCACT TACCTT AT GT CAGT GAGAT GCTGGAGGCCAGGACAGCTGGGCACATG

T LADFROQ@LUPARTTULSTHWPUPOQRSILCSSDFTIIRIILVYITFSGMTF
CAGACT CTGGCT GACTTCAGGCAGCT GCCT GCCCGGACT CTCTCT ACCCACT GGCCACCCCAAAGAT CCCT GT GCAGCT CCGATT TT AT TCGCATCCT TGT GAT CT TCT CTGGAATGTTC
CAGACTCTGGCT GACTTCAGGCAGCT GCCT GCCCGGACT CTCTCT ACCCACT GGCCACCCCAAAGAT CCCT GT GCAGCT CCGATT TT AT TCGCATCCT TGT GATCT TCT CTGGAATGTTC

L VFTILAGATLTFILHOGQRIRIEKTYURSNI K GESPVEFPAEUPCRYSTCZPREE
CTTGTTTTCACCCTGGCCGGGGCCCT GI'TCCTCCATCAACGAAGGAAAT AT AGAT CAAACAAAGGAGAAAGT CCTGT GGAGCCT GCAGAGCCT TGT CGTT ACAGCT GCCOCAGGGAGGAG
CTTGTTTTCACCCTGGCCGGGGCCCT GIT CCTC CATC AACGAAGGAAAT AT AGAT CAAACAAAGGAGAAAGT CCTGI GGAGCCT GCAGAGCCT TGT CGTT ACAGCT GCCOCAGGGAGGAG

E GS T 1 P 1 E DY RKPEUPACS PIL EMV § K GEEULVFTGGCWV VP | L VE
‘GAGGGCAGCACCAT CCCCATCCAGGAGGATT ACCGAAAACCGGAGCCT GCCT GCT CCCOQCT CGAGAT GGT GAGC AAGGGCGAGGAGCT GI'T CACCGGGGT GGT GCCCAT CCTGGTCGAG
‘GAGGGCAGCACCAT CCCCATCCAGGAGGATT ACCGAAAACCGGAGCCT GCCT GCT CCCOQCT CGAGAT GGT GAGCAAGGGCGAGGAGCT GTT CACCGGGGT GGT GCCCATCCTGGTCGAG

L DG DV NGHIKTFSV S GEGEUGDATYGEXKLTILEXKFI CTTGKTLZPV P W
CTGGACGGCGACGT AAACGGC CACAAGTT CAGC GI GT CCGGC GAGGGCGAGGGC GATGCCACCT ACGGCAAGCTGACCCT GAAGI TCAT CTGCACCACCGGCAAGCTGCOCGT GCCCT GG
CTGGACGGCGACGT AAACGGC CACAAGIT CAGCGI GT CCGGC GAGGGCGAGGGC GATGOCACCT ACGGCAAGCTGACCCT GAAGI TCAT CTGCACCACCGGCAAGCTGCOCGT GCCCT GG

LV TTILTWGV g CFS RY PDHMEKOQHDTFFKS AMPETGYVQERT
CCCACCCTCGTGACCACCCTGACCT GGGGCGTGCAGT GCTTC AGCCGCT ACCCCGACC ACAT GAAGC AGCACGACTT CTT CAAGT CCGCCAT GCCC GAAGGCT ACGTCCAGGAGCGCACC
CCCACCCTCGTGACCACCCTGACCT GGGGCGTGCAGT GCTTCAGCC GCT ACCCC GACCACAT GAAGCAGCACGACTT CTT CAAGT CCGCCAT GCCC GAAGGCT ACGTC CAGGAGCGCACC

I F F KDDGNY KT RAEVI KTFEUGDTILVNR RIIETLIEKTSGTIDFIEKEDUSGNTIL
ATCTTCTTCAAGGACGACGGC AACT ACAAGACC CGCGCCGAGGTGAAGT TCGAGGGCGACAC CCTGGT GAACCGC AT CGAGCT GAAGGGUAT CGACTT C AAGGAGGAC GGCAACATCCTG
ATCTTCTTCAAGGACGACGGC AACT ACAAGACC CGUGCCGAGGTGAAGT TCGAGGGCGACAC CCTGGT GAACCGC AT CGAGCT GAAGGGCAT CGACTT CAAGGAGGAC GGCAACATCCTG

G HKLEYNYI S HNVYITTADIEKSOGQZEKNGI KANTFI EKTIRHNTIETDGS SV Q
GGGCACAAGCTGGAGT ACAACT ACAT CAGCCAC AACGT CTAT ATCACCGC CGAC AAGC AGAAGAACGGCAT CAAGGCCAACTT CAAGAT CCGCCACAACAT CGAGGAC GGCAGCGTGCAG
‘GGGCACAAGCTGGAGT ACAACT ACAT CAGCCACAACGT CTAT ATCACCGCCGACAAGC AGAAGAACGGCAT CAAGGCCAACTT CAAGAT CCGCCAC AACAT CGAGGACGGCAGCGTGCAG

L ADHYqQg@NTU®PI GDOGPVLILPDNUHYTILSTOQQSAILSI KDFPNEI KT RDH
CTCGOCGACCACTACCAGCAGAACACCCCCATCGGCGACGGC CCCGT GCT GCTGCCCGACAACCACT ACCT GAGCACCCAGTCCGCCCT GAGCAAAGACC CCAACGAGAAGC GCGAT CAC
CTCGCCGACCACT ACCAGCAGAACACCCCCATCGGCGACGGC COCGT GCT GETGCCCGACAACCACT ACCT GAGCACCCAGT CCGCC CT GAGCAAAGACC CCAACGAGAAGC GCGAT CAC

MV L L EF VT AAGI TULGMDELY K *
ATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT CACT CTCGGC AT GGACGAGCT GT ACAAGT AA | 1506
ATGGTCCTGCTGGAGTTCGTGACCGCCGC CGGGAT CACT CTCGGCAT GGACGAGCT GT ACAAGT AA | 1506
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Appendix Figure 7 CD27-eYFP sequencing result
Human CD27 (black box) subcloned with the eYFP (yellow box) to form a fusion fluorescence
receptor CD27-eYFP. The sequencing result showed no mutation.
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MA RPHPWWLCVILGTILVGILS ATUPAPI KT ST CPETRHBYWAQGIE KTILTCC
ATGGCACGGCCACATCCCTGGT GGCT GI'GCGTT CT GGGGACC CTGGT GGGGCTCT CAGCT ACT CCAGCCCCCAAGAGCT GCCCAGAGAGGC ACTACT GGGCT CAGGGAAAGCT GTGCTGC
ATGGCACGGCCACATCCCTGGT GGCT GTGCGTT CT GGGGACC CTGGT GGGGCTCT CAGCT ACT CCAGCCCCCAAGAGCT GCCCAGAGAGGC ACTACT GGGCT CAGGGAAAGCT GTGCTGC

MC¢CEPGTT FILV KD CDHRIEKAAQCD?PCI PGV S F S PDHHETRPH
CAGATGTGTGAGCCAGGAACATT CCT CGT GAAGGACT GI GAC CAGC AT AGAAAGGCTGCT CAGI GTGATCCTTGCAT ACCGGGGGTCT CCTTCTCT CCTGACCACCACACCCGGCCC CAC
CAGATGTGTGAGCCAGGAACATT CCT CGT GAAGGACT GI GACCAGC AT AGAAAGGCTGCT CAGI GTGATCCTTGCAT ACCGGGGGTCT CCTTCTCT CCTGACCACCACACCCGGCCCCAC

C ES CRHCNSGLILWVRNCTTITANAETCAUCRNGWOQCRDIEKETCTEC
TGTGAGAGCTGTOGGCACTGT AACT CT GGT CTT CTCGTT CGC AACT GCACCATC ACTGCCAAT GCTGAGTGT GCCT GTC GCAAT GGCT GGC AGTGC AGGGACAAGGAGT GCACCGAGT GT
TGTGAGAGCTGTCGGCACTGT AACT CT GGT CTT CT CGTT CGCAACT GCACCATCACTGCCAAT GCTGAGTGT GCCT GT'C GCAAT GGCT GGCAGT GC AGGGACAAGGAGT GCACCGAGT GT

D P L P NPS LT AURS § A L S P H P P T HL P Y VS EMLEART A GHM
GATCCTCTTCCAAACCCT TCGCT GACCGCT CGGT CGT CT CAGGCCCT GAGCCC ACACCCT CAGCCCACCCACT TACCTT AT GT CAGT GAGAT GCTGGAGGCCAGGACAGCTGGGCACATG
GATCCTCTTCCAAACCCT TCGCT GACCGCT CGGT CGT CT CAGGCCCT GAGCCC ACACCCT CAGCCCACCCACT TACCTT AT GT CAGT GAGAT GCTGGAGGCCAGGACAGCTGGGCACATG

T LADFROQ@LUPARTTULSTHWPUPOQRSILCSSDFTIIRIILVYITFSGMTF
CAGACT CTGGCT GACTTCAGGCAGCT GCCT GCCCGGACT CTCTCT ACCCACT GGCCACCCCAAAGAT CCCT GT GCAGCT CCGATT TT AT TCGCATCCT TGT GAT CT TCT CTGGAATGTTC
CAGACTCTGGCT GACTTCAGGCAGCT GCCT GCCCGGACT CTCTCT ACCCACT GGCCACCCCAAAGAT CCCT GT GCAGCT CCGATT TT AT TCGCATCCT TGT GATCT TCT CTGGAATGTTC

L VvV FTILAGATLTFILHO OQIRIRIEKYURSNIE KSGESU?PVEPAEUPC CRYSC?PREE
CTTGTTTTCACCCTGGCCGGGGCCCT GI'TCCTCCATCAACGAAGGAAAT AT AGAT CAAACAAAGGAGAAAGT CCTGT GGAGCCT GCAGAGCCT TGT CGTT ACAGCT GCCOCAGGGAGGAG
CTTGTTTTCACCCTGGCCGGGGCCCT GIT CCTC CATC AACGAAGGAAAT AT AGAT CAAACAAAGGAGAAAGT CCTGI GGAGCCT GCAGAGCCT TGT CGTT ACAGCT GCCOCAGGGAGGAG

E GS T 1 P 1 E DY RKPEUPACS PIL EMV S KGEELTFTOGGCV VP L VE
‘GAGGGCAGCACCAT CCCCATCCAGGAGGATT ACCGAAAACCGGAGCCT GCCT GCT CCCOQCT CGAG AT GGT GAGC AAGGGCGAGGAGCT GI'T CACCGGGGT GGT GCCCAT CCTGGTCGAG
‘GAGGGCAGCACCAT CCCCATC CAGGAGGATT ACCGAAAACCGGAGCCT GCCT GCT CCCOQCT CGAGAT GGT GAGCAAGGGCGAGGAGCT GTT CACCGGGGT GGT GCCCAT CCTGGTCGAG

L DGDVNGHIKTFSV S GEGEUGDATYGEXKULTILEXKTFTI CTTGKTLZPV P W
CTGGACGGCGACGT AAACGGC CACAAGTT CAGC GI GT CCGGC GAGGGCGAGGGC GATGCCACCT ACGGCAAGCTGACCCT GAAGI TCAT CTGCACCACCGGCAAGCTGCOCGT GCCCT GG
CTGGACGGCGACGT AAACGGC CAC AAGTT CAGC GI GT CCGGC GAGGGCGAGGGC GATGUCACCT ACGGCAAGCTGACCCT GAAGI TCAT CTGCACCACCGGUAAGCTGCOCGT GCCCT GG

P L vVTTVFGY GLQQCTFARYU®PDHMEKOQHDTFF KS AMPETGYV(QETRT
CCCACCCTCGTGACCACCTTCGGCT ACGGCCTGCAGT GCTTC GOCCGCT ACCCCGACC ACAT GAAGC AGCACGACTT CTT CAAGT CCGCCAT GCCC GAAGGCT ACGTCCAGGAGCGCACC
CCCACCCTCGTGACCACCTTCGGCT ACGGCCTGCAGT GCTTCGCCC GCT ACCCC GACCACAT GAAGCAGCACGACTT CTT CAAGT CCGCCAT GCCC GAAGGCT ACGTC CAGGAGCGCACC

I F F KDDGNY KT RAEVI KTFEUGDTILVNR RIIETLIEKTSGTIDFIEKEDUSGNTIL
ATCTTCTTCAAGGACGACGGC AACT ACAAGACC CGCGCCGAGGTGAAGT TCGAGGGCGACAC CCTGGT GAACCGC AT CGAGCT GAAGGGUAT CGACTT C AAGGAGGAC GGCAACATCCTG
ATCTTCTTCAAGGACGACGGC AACT ACAAGACC CGUGCCGAGGTGAAGT TCGAGGGCGACAC CCTGGT GAACCGC AT CGAGCT GAAGGGCAT CGACTT CAAGGAGGAC GGCAACATCCTG

G HKLEYNYNSHNUVYI MADIEKOQZ KNGI KVNTFI EKTIURHNIETDGSGS SV Q
GGGCACAAGCTGGAGT ACAACT ACAACAGCCAC AACGT CTAT ATCAT GGCCGAC AAGC AGAAGAACGGCAT CAAGGT GAACTT CAAGAT CCGCCACAACAT CGAGGAC GGCAGCGTGCAG
GGGCACAAGCTGGAGT ACAACT ACAACAGCCACAACGT CTAT ATCAT GGCCGACAAGCAGAAGAACGGCAT CAAGGT GAACTT CAAGAT CCGCCAC AACAT CGAGGACGGCAGCGTGCAG

L ADHYQQQNTUPI GDGUPVLL DNHYLS Y QS ALSE KDVPNEI KR RDH
CTCGOCGACCACTACCAGCAGAACACCCCCATCGGCGACGGC CCCGT GCT GCTGCCCGACAACCACT ACCT GAGCT ACCAGTCCGCCCT GAGCAAAGACC CCAACGAGAAGC GCGAT CAC
CTCGCCGACCACT ACCAGCAGAACACCCCCATCGGCGACGGC COCGT GCT GETGCCCGACAACCACT ACCT GAGCT ACCAGT CCGCC CT GAGCAAAGACC CCAACGAGAAGC GCGAT CAC

MYV L L EFVTAAGITILGMDELY K *
ATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT CACT CTCGGC AT GGACGAGCT GTACAAGTAA | 1506
ATGGTCCTGCTGGAGTTCGTGACCGCCGC CGGGAT CACT CTCGGCAT GGACGAGCTGT ACAAGTAA | 1506
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Appendix Figure 8 CD27-mRFP sequencing result
Human CD27 (black box) subcloned with the mRFP (red box) to form a fusion fluorescence
receptor CD27-mRFP. No mutation in the CD27 sequence. One silent mutation was found in the
mRFP ORF: GCC—GCT, alanine—alanine (red) at the 525" nucleotide.
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MARPHPWWLCVLGTILVGILS ATUPAPI KSCPERHBY WA G K L ¢ ¢C
ATGGCACGGCCACATCCCTGGT GGCT GI'GCGTT CT GGGGACC CTGGT GGGGCTCT CAGCT ACT CCAGCCCCCAAGAGCT GCCCAGAGAGGCACTACT GGGCT CAGGGAAAGCT GTGCTGC
ATGGCACGGCCACATCCCTGGT GGCT GT'GCGTT CT GGGGACC CTGGT GGGGCTCT CAGCT ACT CCAGCCCCCAAGAGCT GCCCAGAGAGGCACTACT GGGCT CAGGGAAAGCT GTGCTGC

M¢cCEZPGTT FLVEKDC CDOQHRIEKAAQCD®PCI PGV S FS P DHHTRP H
CAGAT GTGT GAGCCAGGAACATT CCT CGT GAAGGACT GT GAC CAGCAT AGAAAGGCTGCT CAGT GTGATCCTT GCAT ACCGGGGGTCT CCTT CTCT CCTGACCACCACACCCGGCCCCAC
CAGATGTGT GAGCCAGGAACATT CCT CGT GAAGGACT GT GAC CAGCAT AGAAAGGCTGCT CAGT GTGATCCTT GCAT ACCGGGGGTCT CCTTCTCT CCTGACCACCACACCCGGCCCCAC

C ES CRHCNSGILILWVRNOCTTITANAET CACRNGWQECRDI KETCTEC
TGTGAGAGCT GTOGGCACTGT AACT CT GGT CTT CT CGTT CGC AACT GCACCATC ACTGCCAAT GCTGAGT GT GCCT GT'C GCAAT GGCT GGC AGT GC AGGGACAAGGAGT GCACCGAGT GT
TGTGAGAGCTGTOGGCACTGT AACT CT GGT CTT CTCGTT CGC AACT GCACCATC ACTGCCAAT GCTGAGTGT GCCT GTC GCAAT GGCT GGC AGTGC AGGGACAAGGAGT GCACCGAGT GT

D P L PNUPSLTARSSOQALSU?PHZPOQPTHLZPYVS EMLEARTAGHM
GATCCTCTTCCAAACCCT TCGCT GACCGCT CGGT CGT CT CAGGCCCT GAGCCC ACACCCT CAGCCCACCCACT TACCTT AT GT CAGT GAGAT GCTGGAGGCCAGGACAGCTGGGCACATG
GATCCTCTTCCAAACCCT TCGCT GACCGCT CGGT CGT CT CAGGCCCT GAGCCC ACACCCT CAGCCCACCCACT TACCTT AT GT CAGT GAGAT GCTGGAGGCCAGGACAGCTGGGCACATG

T L A D F R L P ARTULSTHWPP R S L ¢ s 8 D F I RI L VI F S8 G MF
CAGACT CTGGCTGACTT CAGGCAGCT GCCT GCCCGGACT CTCTCT ACCCACT GGCCACCCCAAAGAT CCCTGT GCAGCT CCGATT TT AT TCGCATCCT TGT GAT CT TCT CTGGAATGTTC
CAGACTCTGGCT GACTT CAGGCAGCT GCCT GCCCGGACT CTCTCT ACCCACT GGCCACCCCAAAGAT CCCTGT GCAGCT CCGATTTT AT TCGCATCCT TGT GAT CTTCT CTGGAATGTTC

L vV F TLAGATLTFILHOQ@RIRIEKTYRSNIEKTUGESU?PVEZPAETPCRYS C?PREE
CTTGTTTTCACCCTGGCCGGGGCCCT GI'TCCTCCATCAACGAAGGAAAT AT AGAT CAAACAAAGGAGAAAGT CCTGT GGAGCCT GCAGAGCCT TGT CGTT ACAGCT GCCCCAGGGAGGAG
CTTGTTTTCACCCTGGCCGGGGCCCT GT'T CCTCCATCAACGAAGGAAAT AT AGAT CAAACAAAGGAGAAAGT CCTGI GGAGCCT GCAGAGCCT TGT CGTT ACAGCT GCCOCAGGGAGGAG

EGS TT1 P1 Q EDYRIKZPEUPACSPILEIMAS S EDVTI KETFMRTFIEKTYVIERM
‘GAGGGCAGCACCAT CCCCATCCAGGAGGATT ACCGAAAACCGGAGCCT GCCT GCT CCCOQCT CGAGNT GGCCT CCT CCGAGGACGT CAT CAAGGAGTT CAT GCGCT TCAAGGT GCGCATG
‘GAGGGCAGCACCAT CCCCATCCAGGAGGATT ACCGAAAACCGGAGCCT GCCT GCT CCCOQCT CGAGRT GGCCT CCT CCGAGGACGTCAT CAAGGAGTT CAT GCGCT TCAAGGT GCGCATG

EGS VNGHETFETIEG GEGEG GR?PTYEGTOQQTAIE KTILIEKWVTE KT GSGTPILTPTFAW
‘GAGGGCTCCGTGAACGGCCACGAGT T CGAGATC GAGGGCGAGGGCGAGGGCCGC CCCT ACGAGGGC ACCCAGACCGCCAAGCT GAAGGT GAC CAAGGGCGGCCCCCTGCCCTTCGCCT GG
‘GAGGGCTCCGTGAACGGCCACGAGTT CGAGATC GAGGGCGAGGGCGAGGGCCGC CCCT ACGAGGGC ACCCAGACCGCCAAGCT GAAGGT GACCAAGGGCGGCCCCCTGCOCTTCGCCT GG

D1 L s P F Y G §8 KA Y VKHPADI P DYL KL F P EGF K WE RV MN
GACATCCTGT CCCCTCAGTTCCAGT ACGGCT CCAAGGCCTAC GTGAAGC ACCCCGCCGACAT CCCCGACT ACT TGAAGCT GTCCT TCCCCGAGGGCTT CAAGTGGGAGCGCGT GATGAAC
GACATCCTGT CCCCTCAGTTC CAGT ACGGCT CCAAGGCCTAC GTGAAGC ACCCCGCCGACAT CCCCGACT ACT TGAAGCT GTCCT TCCCCGAGGGCTT CAAGTGGGAGCGCGT GATGAAC

F ED G G V VT V T D S s L D G E F 1 ¥ KV KLIRGTNTFZPS DOGZPV M
TTCGAGGACGGC GGCGT GGTGACCGT GAC CCAGGACT CCTCC CTGC AGGACGGC GAGTT CAT CT ACAAGGT GAAGCT GC GCGGCACCAACTT CCCCT CCGACGGCCCCGT AAT GCAGAAG
TTCGAGGACGGCGGCGTGETGACCGT GACCCAGGACT CCTCC CTGCAGGACGGC GAGTT CAT CT ACAAGGT GAAGCT GCGCGGCACCAACTT CCCCT CCGACGGCUCCGT AATGCAGAAG

KT MG WEASTEIRMY?PEWDGOGATLIZ KUGETI KMRILIEKILIEKDGGHYDAEV K
AAGACCAT GGGCT GGGAGGCCT CCACCGAGCGGAT GT ACCCCGAGGACGGUGCCCT GAAGGGCGAGAT CAAGATGAGGCT GAAGCTGAAGGACGGC GGCC ACT ACGACH AGGTCAAG
AAGACCATGOGCTGGGAGGCCT CCACCGAGCGGAT GT ACCCC GAGGACGGCGCCCT GAAGGGCGAGAT CAAGATGAGGCT GAAGCTGAAGGACGGC GGCCACT ACGAC! AGGTCAAG

T TY MA KK KPVQgLPOGAY KTDTI KLUDTITS HNEUDYTTIVEQYETRATE
ACCACCT ACATGGCCAAGAAGCCCGT GCAGCTGCCCGGCGCCT ACAAGACCGAC AT CAAGCT GGACAT CACCT CCCACAACGAGGACT ACACCATC GT GGAACAGT ACGAGC GCGCCGAG
ACCACCT ACATGGCCAAGAAGCCCGT GCAGCTGCCCGGCGCCT ACAAGAC CGACAT CAAGCT GGAC AT CACCT CCCACAACGAGGACT ACACCATC GT GGAACAGT ACGAGC GCGCCGAG
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Appendix Figure 9 Live-cell imaging of NF-kB reporter and TNFR2 or CD27 co-
transfected HEK-293T cells
No significant expression of miRFP703 was detected for HEK-293T cells co-transfected with the

TNFR2 or CD27 expressing plasmids and the NF-kB reporter plasmids with 0%, 2X, 4%, or 8X
response elements.

Co-transfection: pGL4.23.[miniP]-miRFP703 + pcDNA3.CD27 200 pm

Co-transfection: pGL4.23.NF-kB(x2)-[miniP]-miRFP703 + pcDNA3.CD27

Co-transfection: pGL4.23.NF-kB(x4)-[miniP]-miRFP703 + pcDNA3.CD27

Co-transfection: pGL4.23.NF-kB(x8)-[miniP]-miRFP703 + pcDNA3.CD27

6hr 10hr 14hr 18hr 22hr 26hr 30hr 34hr 38hr 42hr 46hr 50hr 54hr

Co-transfection: pGL4.23.[miniP]-miRFP703 + pcDNA3.TNFR2 200 pm

Co-transfection: pGL4.23.NF-kB(x2)-[miniP]-miRFP703 + pcDNA3.TNFR2

Co-transfection: pGL4.23.NF-xB(x4)-[miniP]-miRFP703 + pcDNA3.TNFR2

Co-transfection: pGL4.23.NF-xB(x8)-[miniP]-miRFP703 + pcDNA3.TNFR2

6hr 10hr 14hr 18hr 22hr 26hr 30hr 34hr 38hr 42hr 46hr 50hr 54hr
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Appendix Figure 10 Live-cell imaging of NF-kB reporter control samples

No significant expression of miRFP703 was detected for untransfected or mock-transfected HEK-
293T cells. No significant expression of miRFP703 was detected for HEK-293T cells transfected
with only the NF-xB reporter plasmids (i.e., not co-transfection with receptor plasmid). Positive
expression of miRFP703 was detected for cells transfected with pmiRFP703 plasmid with the
constitutive CMV promoter.

Positive control: TF with pmiRFP703 200 pm

Medium only

Single transfection: pcDNA3 empty vector

Single transfection: pGL4.23.[miniP]-miRFP703

Single transfection : pGL4.23.NF-kB(%2)-[miniP]-miRFP703

Single transfection : pGL4.23.NF-kB(x4)-[miniP]-miRFP703

Single transfection : pGL4.23.NF-kB(x8)-[miniP]-miRFP703

6hr 10hr 14hr 18hr 22hr 26hr 30hr 34hr 38hr 42hr 46hr 50hr 54hr
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Appendix Figure 11 Manual gated singlet examination

Harvested cells were sorted into singlets and non-singlets and examined by widefield
microscopy.

Before gated 5= After gated

Sorted cells after doublet discrimination

single cells > 99% single cells < 10%

() Large aggregates
O Doublets

O Singlets

Q Large singlets

218



Appendix Figure 12 Singlet identification using different algorithms

The scatter plot profiles of the ungated cells, manually gated singlets, and singlets were
identified with different algorithms. The six scatter plots are the same ones described in the
well-established manual gating approach.
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Appendix Figure 13 Baseline subtraction-error correction for eYFP expressing cells
Scatterplot and histogram overlays of the eYFP expressing sample before (red histograms) and
after (blue histograms) baseline subtraction-error correction. The scatter plots are symmetric
along the diagonal histogram plots.

pPcDNA3.eYFP transfection

FRET2-A
L R O ]

2 4 o 2 4
CFP-A CFP-A

FRET3-A

FRET2-A
R S Y

2 4 K
CFP-A YFPA YFP-A YFP-A

FRET2-A

2 2 4 2 4
CFP-A YFP-A RFP-A

< < = <] %
< P Z & o
m jm £ 047 Irk i
£ E 3 £ &
02
00
2 4
FRET1-A FRET1-A
6 6 6
5 06+ 5
05+
44 44
< 204 3
a4 8 34
w H w
4 203 #
tad W24
02
L 0.1 1
0 0 —T T 0.0 1 0 T T
o 2 4 1] 2 4 6 2 4
FRET1-A FRET2-A FRET2-A
6 6 6 8 08
54 54 54 54
06
e = 204+
g ¢ &
& &
02
0.0+
2 4
FRET3-A

220



Appendix Figure 14 Autofluorescence prediction for eYFP expressing cells

Scatterplot and histogram overlays of the eYFP expressing sample with the total fluorescence
(red histograms) and autofluorescence (blue histograms) detection values. The scatter plots are
symmetric along the diagonal histogram plots.

pcDNA3.eYFP transfection

6 6 6 6
081 5 5 5 5 5
<"
i
\.H:!-
4
£,
14
T o T T
6 4 L] L]
CFP-A
[}
54
A
i}
x
&
T
2 4
YFP-A
6 6 6 6
0.8
54 51 5 54
0.6 4
<
2 34
5 044 w
a ~
LR
0.2
1
T 0.0 T 0 T T
4 2 4 4 4
YFP-A RFP-A RFP-A RFP-A
6 6 6 6 6
08+
54 51 5 5+ 54
< ‘.‘- )vﬁﬁ’ <IA— <.‘-
E £ 3 = £ 24
i n 8041 2 g
i o 2 =24 4
02+ 3
1 14 1 5
T 0.0+ ] '. T 0 T T
4 0 2 4 2 4 6 2 4
FRET1-A FRET1-A FRET1-A
6 6 6 6
54 51 08 54
<47 < =081 <1
23 £ 3 E 23
s ] 2 )
4 © & 04+ @
tad K24 L2
1 1 220 14
0 ' ' ; 0.0 0 T T
o 6 4 2 a L] 0 2 4 6 2 4 [
YFP-A RFP-A FRET1-A FRET2-A FRET2-A
6 6 6 6 8
54 5 5 51 5
05 4
1
2 i
Infd 04
] H
T
02
¢
00
2 0 H 4 2 4 4 6
RFP-A FRET1-A FRET2A FRET3-A

221



Appendix Figure 15 Unsupervised cell subtype clustering for eCFP transfected cells
The GMM unsupervised algorithm identified the eCFP-positive and eCFP-negative populations
within the sample. A total of 48 channels from the full-spectrum flow cytometers were used.
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Appendix Figure 16 Unsupervised cell subtype clustering for eYFP transfected cells
The GMM unsupervised algorithm identified the eYFP-positive and eYFP-negative populations
within the sample. A total of 48 channels from the full-spectrum flow cytometers were used.
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Appendix Figure 17 Unsupervised cell subtype clustering for mRFP transfected cells
The GMM unsupervised algorithm identified the mRFP-positive and mRFP-negative populations
within the sample. A total of 48 channels from the full-spectrum flow cytometers were used.
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Appendix Figure 18 Single-cell level FRET distributions of the Auxin detection

Histograms demonstrate the distributions of calculated FRET efficiencies from three replicate
experiments (A). Each can be used for data quality assessment for the small molecule Auxin
concentration detection profile (B). Meanwhile, the single-cell level data also allowed the quality

assessment of the negative control sample (C).
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Appendix Figure 19 Histogram of FRET efficiencies for different TNFR receptor
combinations

Histograms demonstrate the distributions of calculated FRET efficiencies with CFP—YFP FRET as
green, YFP—RFP FRET as orange, and CFP—RFP FRET as purple. Cells transfected with TNFR1-
CFP + TNFR1-YFP + TNFR1-RFP are as control sample (top row). The z values and p values are
results from z-test for each sample compared with the relative control sample.
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