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ABSTRACT

Auto-Generated Curriculum For Reinforcement Learning

by

Shuang Ao

This research investigates the efficacy of a curriculum constructed to train rein-

forcement learning for the purpose of improving learning efficiency, generalization,

and robustness in challenging tasks. we focus on an automatically generated cur-

riculum that is designed to train a Reinforcement Learning (RL) agent through a

sequence of easy-to-hard sub-tasks and thus leads to the development of an RL pol-

icy that exhibits superior learning efficiency in tasks of the long horizon and sparse

rewards. Additionally, our research demonstrates an RL policy of greater generaliza-

tion and robustness in diverse environments and agents with different morphologies.

Over the past few decades, reinforcement learning (RL) has demonstrated its

efficacy in addressing control and decision-making challenges across a range of do-

mains, including but not limited to robotics, video games, and autonomous vehicles.

However, targeting long-horizon tasks can be highly inefficient due to the sparsity of

rewards. The issue of sparse rewards leads to insufficient feedback from the agent’s

exploration, thereby diminishing the efficacy of the learning process. One of the

main obstacles in the field of RL pertains to improving its generalization and ro-

bustness to environmental variations. Specifically, a policy that has been trained

in a particular environment may exhibit susceptibility to even minor alterations in

the deployed environment, leading to suboptimal generalization in practical appli-

cations. Thus, we develop an auto-generated curriculum as a potential solution to

address the primary challenges encountered in RL. This approach aims to improve

the learning efficiency of training an RL policy and promote the generalization of the

trained policy to diverse environments. More specifically, the auto-generated cur-



riculum improves the RL policy in the following directions: First, a cross-training

framework is presented that utilizes planning and RL to create a sequence of sub-

task training curricula that gradually increase in difficulty, thereby improving the

learning efficiency of RL. Then, the proposed framework incorporates adversarial

modifications to the training environment, which improves the adaptability of the

trained RL policy to diverse environments.

Subsequently, the present study conducts comprehensive experiments on stan-

dard tasks to corroborate the efficacy of the proposed curriculum from both a quanti-

tative and qualitative standpoint. The benchmark tasks, including maze navigation,

robotic control, and cross-environment validation, have the ability to comprehen-

sively assess the models’ capacity to apply acquired knowledge to novel tasks and

environments. The resulting empirical findings demonstrate that the proposed mod-

els have attained state-of-the-art performance across a diverse set of tasks, while also

exhibiting superior learning efficiency.

Despite the generalization of RL to diverse tasks and environments, the current

community is deficient in research pertaining to the control, design, or evolution of

agent morphology in RL. The practical implementation of RL in engineering and re-

search holds immense importance. The agent’s morphology frequently draws upon

bionics, however, the development of precise structural and dynamic parameters

is a costly and labor-intensive process. Conversely, the matter of optimizing the

robot’s structure to suit various surroundings remains an unresolved issue. This

study delves into the integration of robot morphology optimization into the train-

ing process of RL policy, building upon the aforementioned curriculum generated

automatically. Our proposal outlines a mechanism for co-evolution between environ-

ment and morphology. This involves modifying the training environment during the

evolution of the agent’s morphology, allowing the morphology to adapt to varying

environments. Experimental verification was conducted in various scenarios, and the

findings demonstrated that our approach can facilitate swift morphological evolu-

tion while also guaranteeing the state-of-the-art performance of the RL policy across

diverse environments. Furthermore, a comprehensive ablation study is conducted



to validate the rationality of the morphology-environment co-evolution framework.
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Chapter 1

Introduction

1.1 Background

Although AI can surpass humans on certain tasks, humans still perform much

better in making sequential decisions via learning from interactions with the envi-

ronment. Reinforcement learning (RL)) (Sutton and Barto, 2018) aims to bridge

this gap by learning to optimize the trajectories of agents (e.g., controllers, robots,

game players, self-driving cars, etc) to achieve the maximal return. However, in

complicated long-horizon tasks, RL usually suffers from poor sample efficiency and

costly data collection. Moreover, the data quality is often low due to sparse rewards

when rollouts fail and cannot provide informative feedback. Model-based RL and

off-policy RL improve the sample complexity with the price of extra biases, causing

unstable and brittle optimization. Instead of reaching a single goal, goal-conditioned

RL (Kaelbling, 1993) learns one model for any given goal input to its model(s). How-

ever, it needs to be trained to reach many possible goals, and the resulting model’s

performance still degrades drastically for distant goals.

On the other hand, a policy trained in a specified environment can be sensitive

to small changes in the deployed environment and thus generalizes poorly in prac-

tice. Hence, selecting or generating more informative tasks and environments to

train an agent is essential to more efficient, robust, and versatile RL. A promising

strategy to overcome this problem is to train the agent on multiple tasks in dif-

ferent environments (Wang et al., 2019a; Gur et al., 2021) via multi-task learning

or meta-learning (Salimans et al., 2017; Finn et al., 2017). However, it increases
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the training cost and the space for possible environments/tasks can be too large to

be fully explored by RL. So how selecting the most informative and representative

environments/tasks to train an RL agent to evolve generalizable skills becomes a

critical open challenge.

Unlike RL agents that do not actively seek new environments to improve their

learning capability, natural species have full motivations to do so to survive in the

competitive world, and one underlying mechanism to drive them is evolution. Evo-

lution is a race with the changing environment for every species, and a primary goal

is to accelerate its adaptation to new environments. Besides merely optimizing its

control policy, evolution more notably changes the morphology of species, i.e., the

skeletal structure and the attributes for each part, in order to make them adapt

to the environment. In fact, the improvement on morphology can be more critical

because there could exist a variety of actions or skills an agent cannot do (no matter

how the control policy is optimized) without certain structures, e.g., more than one

leg, a long-enough limb, or a 360-degree rotation joint.

1.1.1 Curriculum for Reinforcement Learning

Curricula have a ubiquitous role in the early stages of human development, for-

mal educational systems, and continuous learning that extends into adulthood. The

acquisition of skills in various domains, such as sports or mathematics, involves a

systematic and planned training procedure. This approach is designed to introduce

new concepts and tasks in a sequential manner, building upon the foundation of

previously acquired knowledge. The significance of curriculum quality in achieving

success has been proven across various domains of human learning. Attempting to

impart knowledge of integral or derivative concepts to a 3-year-old lacking funda-

mental arithmetic skills appears to be an exceedingly challenging endeavor. Edu-

cation plays a pivotal role since it offers a systematic approach to deconstructing
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Task 1: A collaboratively training curriculum to improve the learning 
              efficiency of RL in long-horizon and sparse reward tasks.

Task 2: Extend the curriculum to dynamic environments, improve the 
             generatlization of the RL policy to environmental perturbations.

Task 3: Further explore a novel curriculum to optimize the RL agent’s 
             control policy and morphology with the training environments.

High-level Picture of the Auto-Generated Curriculum for RL

Figure 1.1 : High-level picture of the tasks in this thesis. This thesis addresses

three challenges encountered in the training of RL policy, i.e., low learning efficiency

due to long-horizon and sparse reward, sensitivity to environments, and the agent’s

ability to generalize across diverse environments.

intricate knowledge and a structured curriculum that facilitates the gradual acquisi-

tion of concepts, progressing from simpler to more challenging levels. A curriculum

facilitates the acquisition of knowledge and understanding by people, particularly in

relation to complex subjects, by becoming them more approachable and comprehen-

sible. By employing a curriculum, it is possible to enhance the efficiency of training

machine learning models. In the year 1993, Elman (1993) introduced the concept

of curriculum-based training for neural networks. The initial research conducted by

the individual focused on the acquisition of basic language grammar, highlighting

the importance of a specific approach. This approach involved commencing with a

restricted collection of uncomplicated data and gradually introducing more intricate

training samples. Failure to adhere to this strategy resulted in the model’s inabil-

ity to acquire the desired knowledge. In contrast to training without a structured

curriculum, it is expected that the incorporation of a curriculum will expedite the
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process of convergence and improve the overall performance of the final model.

Our research is motivated by the RL community’s prevalence of the aforemen-

tioned challenges, i.e., sparse reward, highly sensitive to environments and poor

generalization. However, as stated previously, it is extremely difficult to solve these

problems using RL alone. Consequently, we combine curriculum learning to enhance

the efficiency of learning and the final effect of RL in relevant scenarios. In stark

contrast to previous approaches to curriculum learning, the training curriculum in

our framework is entirely generated and adapted to the reinforcement learning train-

ing process. This concept’s primary justification is depicted in Fig. 1.1. The present

study seeks to address the challenges of long-horizon and sparse rewards, which hin-

der the effectiveness of RL, by implementing a collaborative training curriculum.

On the basis of this foundational knowledge, we then expand the scope of the train-

ing to improve the adaptability of RL in various environments. Finally, additional

research is required to determine the relationship between agent morphology and

the training environment. As a proposed remedy, we suggest implementing a co-

evolutionary program that takes morphology and environment into account. The

objective of this curriculum is to improve the morphology of the RL agent in order

to facilitate its adaptability to a spectrum-spanning variety of environments. In

the following three sections, we will delve deeper into these scenarios, challenges in

tasks, and framework design of corresponding methods.

1.1.2 Sparse Reward in Long-horizon Tasks

Reinforcement learning (RL) faces a common challenge known as the sparse

reward problem. In RL, an agent learns to make decisions and take actions in an

environment to maximize a cumulative reward signal. However, in certain scenarios,

the reward signal provided to the agent is sparse, meaning that it is infrequent or

only given upon reaching a specific goal state.
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The sparse reward problem arises in situations where the desired behavior or the

optimal policy requires the agent to navigate through a complex environment with

only occasional feedback. This poses a significant challenge for RL algorithms, as

they struggle to explore and learn in an efficient manner when the reward signal is

sparse.

One of the primary issues with sparse rewards is that they provide limited guid-

ance to the agent during the learning process. Without frequent feedback, the agent

may have difficulty discerning which actions or states are desirable and which are

not. Consequently, the learning process becomes slower and less effective, as the

agent must explore a vast state space without clear indications of progress or suc-

cess.

The sparse reward problem is often encountered in real-world domains where

the rewards are delayed or occur only upon reaching specific goals. For example,

in a robotics task, the reward might be given only when the robot completes a

task successfully or reaches a desired target state. Similarly, in games, rewards may

be sparse, with positive feedback given only upon achieving certain milestones or

winning conditions.

Addressing the sparse reward problem is a crucial area of research in RL. Various

techniques have been developed to tackle this challenge and enable agents to learn

effectively even in the presence of sparse rewards. These techniques include reward

shaping, where additional auxiliary rewards are designed to guide the agent’s be-

havior toward the desired goals, and curiosity-driven exploration, where agents are

incentivized to explore novel or uncertain states to discover new information.

Another approach to addressing sparse rewards is the use of hierarchical RL (Kulka-

rni et al., 2016), which involves decomposing complex tasks into subgoals with more

frequent rewards. This allows the agent to learn incrementally, with each subgoal
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providing a more manageable learning signal. Furthermore, recent advancements in

deep RL, such as the use of intrinsic motivation or unsupervised pre-training (Pathak

et al., 2017), have shown promise in dealing with the sparse reward problem. These

approaches aim to encourage agents to explore and learn based on internal curiosity

or by leveraging pre-existing knowledge in the absence of explicit rewards.

Planning algorithms are usually more robust and effective on long-horizon tasks.

Given a distance metric, they discretize the state space to a grid/graph and seek

for the shortest collision-free path between states using graph search such as Di-

jkstra’s algorithm or A* (Hart et al., 1968). Thereby, it only needs a local policy

to navigate between consecutive states on the path. However, it is challenging to

learn or estimate the distance accurately in complicated tasks such as mazes. More-

over, planning every step on the path is as difficult as the original RL and requires

fine-grained discretization impractical for high-dimensional states. Planning only

a few milestone states leaves the RL agent to solve relatively long-horizon sub-

tasks. Although sampling-based search heuristics can build a graph with a better

exploration-exploitation trade-off, they are not optimized for the RL policy. Ey-

senbach et al. (2019a) adapt planning to a learned RL policy, which can provide

distances estimated from its replay buffer, but the performance largely depends on

the RL policy and its exploration.

To address the aforementioned problem, we first introduce “CO-PILOT”, a col-

laborative learning scheme between planning and goal-conditioned RL. As illustrated

in Figure 1.2, it trains each model under the other’s guidance along a curriculum

of sub-tasks. Unlike most existing planning methods, we train a planning policy

to recursively decomposes a task into two easier sub-tasks, which finally yields a

tree containing coarse-to-fine trajectories of sub-goals to the final goal. The tree

naturally forms a curriculum for more effective training. During the top-down tree

construction, we start by training the planner to find the shortest path on a coarser
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graph with fewer sub-goals, which is an easier training task, and gradually request

it to generate detailed paths with denser sub-goals. We measure the distance by

the cost of an RL agent navigating between consecutive sub-goals, so the planner is

optimized to produce the most efficient path for the RL agent.

1.1.3 The Generalization of RL Policy to Environments

A significant hurdle in the field of reinforcement learning (RL) is the devel-

opment of agents that can effectively generalize their acquired policies to diverse

environments. The concept of generalization pertains to the capacity of a reinforce-

ment learning agent to effectively apply its acquired knowledge and competencies

in novel and unobserved settings. This ability enables the agent to maintain high-

performance levels despite encountering unfamiliar environments.

The ability to generalize reinforcement learning policies across diverse environ-

ments is of paramount importance due to the prevalence of variations, uncertainties,

and changes in real-world scenarios. Merely training a reinforcement learning (RL)

agent to perform optimally in a particular environment may lead to restricted adapt-

ability and a decline in performance when confronted with diverse environments.

In order to attain generalization, reinforcement learning agents must acquire

knowledge representations, strategies, or policies that effectively encapsulate the

fundamental patterns and dynamics of the environment, rather than relying solely

on memorization or specific details of training instances. In order to effectively

perform in various environments, agents are required to identify and utilize the

fundamental structure of the problem at hand.

There exist multiple factors that contribute to the challenge of generalization

in the field of Reinforcement Learning (RL). The challenge of navigating high-

dimensional state spaces presents a significant obstacle for reinforcement learning

agents due to the curse of dimensionality. Efficient generalization from a restricted
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Figure 1.2 : Main Structure of CO-PILOT and EAT-C: In CO-PILOT, the

planner is trained to recursively decompose a task (s, g) to a sub-task tree of coarse-

to-fine min-cost sequences of sub-tasks. While this top-down construction forms an

easy-to-hard curriculum to train the planner, a bottom-up traversal of those sub-

tasks forms an easy-to-hard curriculum for RL. The planned sub-tasks provide dense

rewards enabling more efficient RL, while RL’s cost on each sub-task is used to train

the planner for producing more cost-efficient sub-tasks for RL. In EAT-C, we further

include an environment generator (EG) to adversarially modify the environment of

each sub-task. RL agent is trained on a bottom-up curriculum and its collected data

are used to train the path planner and EG.



9

set of training samples is a crucial requirement. Moreover, the existence of stochas-

ticity or noise within the environment can exacerbate the process of generalization.

It is imperative for agents to acquire the ability to make decisions in a resilient

manner, even in the face of unforeseeable fluctuations.

The objective of reinforcement learning (RL) is to instruct an agent to acquire

an optimal policy that exhibits high performance in a designated environment.

Notwithstanding the effectiveness and proficiency of a well-trained policy in a given

environment, a prevalent issue arises when it encounters minor changes or variations,

leading to a failure in generalization and robust performance. The phenomenon is

referred to is commonly recognized as the sensitivity of a proficiently trained rein-

forcement learning policy to variations in the environment.

The issue of sensitivity arises as a result of the intrinsic intricacy and fluctua-

tion of environments in the real world. Minor alterations, such as adjustments in

the dynamics, transition probabilities, or initial conditions, can exert a substantial

influence on the efficacy of the agent. Thus, a policy that is tailored for a particular

environment may not be able to effectively adjust or extend to accommodate even

minor changes in the environment. The challenge of sensitivity poses a significant

obstacle for reinforcement learning algorithms, as it limits the potential for learned

policies to be applied and scaled in real-world situations. The capacity of reinforce-

ment learning (RL) systems to effectively manage variations, uncertainties, or novel

situations that are commonly encountered in dynamic environments is constrained.

There exist multiple factors that contribute to the issue of sensitivity. RL agents

frequently depend on particular assumptions or models of the environment through-

out the learning phase. Departures from these assumptions may result in behavior

that is suboptimal or erroneous. The challenge posed by the curse of dimensionality

is a significant concern in the field of reinforcement learning. This is due to the

fact that RL agents are required to explore and learn in state spaces that are often
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quite large, which can make it difficult to generalize from limited training samples.

Insufficient exploration during training may limit the agent’s exposure to a variety

of environmental conditions, thereby impeding its capacity to adapt to alterations.

To address this challenge and improve policy’s robustness and generalization to

small changes in the environments. A growing number of studies (Pinto et al., 2017;

Vinitsky et al., 2020; Ferguson and Law, 2018) show that RL policy is vulnerable to

small perturbations. In practice, the perturbations are usually caused by the differ-

ence between the training environment and the deployed environment, e.g., changes

of the position and size of obstacles/objects. Hence, how to improve the generaliza-

tion to such changes is critical. When addressing the sparse reward problem, the

engineered sub-tasks or relabeled goals might be redundant or too easy to provide

effective feedback. Adversarially modifying their environments can produce more di-

verse and informative experiences for RL. Although modifying environment has been

recently studied to assist RL (Co-Reyes et al., 2020; Gur et al., 2021; Wang et al.,

2019b), it can make long-horizon tasks even more challenging and reward-sparse,

hence detrimental to RL’s efficiency.

Then, we extend “CO-PILOT” to be more adaptive to diverse environments.

Thus, we address the above two challenges by automatically generating a curricu-

lum of sub-tasks with adversarial environments adaptive to the learning progress of

RL. The curriculum decomposes a long-horizon task into easier sub-tasks offering

dense rewards and modifies each sub-task to improve RL policy’s tolerance to per-

turbed environments. As illustrated in Fig. 1.2, The new approach, “environment-

adversarial sub-Task curriculum (EAT-C)”, generates a tree-structured curriculum

by (1) a path-planning policy that recursively decomposes a task (e.g., a state-goal

pair (s, g)) as coarse-to-fine sub-task sequences (e.g., consecutive sub-goals between

(s, g)) of multi-granularity; and (2) an environment generator (EG) policy that ad-

versarially modifies each sub-task’s environment. The path-planner is trained to
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produce the most cost-efficient/shortest path in each granularity level, while the

environment policy is trained to reduce the expected return of the RL agent. In

EAT-C, training these two policies does not require external supervision: we in-

stead collect the time costs and rewards of the RL agent on previous sub-tasks to

train them towards generating better curricula adaptive to RL progress.

1.1.4 Morphology Optimization to Diverse Environments

Although current RL can excel on a specified task in a fixed environment through

massing training, it usually struggles to generalize to unseen tasks and/or adapt

to new environments. A promising strategy to overcome this problem is to train

the agent on multiple tasks in different environments (Wang et al., 2019c; Portelas

et al., 2019a; Gur et al., 2021; Jaderberg et al., 2017) via multi-task learning or

meta-learning (Salimans et al., 2017; Finn et al., 2017). On the other hand, transfer

learning techniques enable RL agents to leverage knowledge and policies learned

in one task or environment to improve their performance in new, unseen tasks or

environments. By pre-training on related tasks or domains, the agent can transfer

its learned representations, policies, or value functions to expedite learning and

adaptation in different scenarios. Meta-learning, on the other hand, trains agents to

acquire meta-knowledge or meta-policies that enable rapid learning and adaptation

to new environments. Both transfer learning and meta-learning provide mechanisms

to enhance generalization and adaptability in RL.

Domain generalization (Liang et al., 2020) aims to train RL agents on multiple

source domains with different characteristics, allowing them to learn policies that are

robust to variations in those domains. By exposing agents to diverse environments

during training, they develop the ability to generalize their learned policies across

different but related environments. This approach helps RL agents perform well in

unseen environments by leveraging the commonalities and shared knowledge across
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domains.

Reward shaping (Laud, 2004) and curriculum design (Hafner et al., 2018; Wulfmeier

et al., 2015) can also help in this problem. By carefully designing the reward struc-

ture and curriculum in RL, agents can be guided to learn policies that generalize

better to unseen tasks or environments. Reward shaping involves adding auxiliary

or shaping rewards that provide additional guidance to the agent during learning.

These shaping rewards can help highlight important aspects of the task and en-

courage the exploration of beneficial behaviors. Curriculum design, as mentioned

earlier, involves progressively increasing the difficulty or diversity of the training

tasks, enabling agents to gradually generalize to more challenging environments.

However, it increases the training cost and the space for possible environments/tasks

can be too large to be fully explored by RL. So how selecting the most informative

and representative environments/tasks to train an RL agent to evolve generalizable

skills becomes a critical open challenge. For RL, we claim that A good morphol-

ogy should improve the agent’s adaptiveness and versatility, i.e., learning

faster and making more progress in different environments. From prehis-

toric persons to modern Homo sapiens, there is a definite association between the

rise of civilization and the Homo sapiens’ optimization of their physical form for

improved tool use. Unfortunately, the morphology in many RL researches is pre-

defined and fixed so it could be sub-optimal for the targeted environments/tasks

and may restrain the potential of RL. Although morphology can be optimized using

RL (Sims, 1994; Wang et al., 2019d; Kurin et al., 2021; Yuan et al., 2022) to improve

the final performance for a specific task or environment, it was not optimized for

the adaptiveness to varying environments. Moreover, instead of re-initializing the

control/RL policy after every morphology modification or environment change, the

millions of years of evolution demonstrate the effectiveness of continual and progres-

sive learning of the control policy over generations of morphology evolution along
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with a sequence of varying environments. How to optimize the morphology and

control policy of an RL agent for the above goal is still an underexplored problem.

(b) Main structure of Transform2Act

(a) Main structure of ES-based methods (c) Co-evolution in MECE
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Figure 1.3 : MECE vs. previous methods. (a) Evolution strategy (ES)-based

method for morphology optimization. It starts with agents with different morphol-

ogy, eliminates those with poor performance, and then applies random mutation to

the survivors. (b) Transform2Act, which trains an RL policy to modify the mor-

phology of an agent in a fixed environment. (c) MECE (ours). We train two policies

to optimize the morphology and change the environment to form a curriculum over

the course of training a control policy.

Given that the agent has the freedom to improve its morphology and control

policy for faster adaptation to different environments/tasks, the remaining question

is: what environment can improve this learning process and incentivize the agent

to keep finding better morphology (rather than staying with the same one)? The

learning environment plays an essential role in RL since it determines the data and

feedback the agent can collect for its training. Thus, we adopt a simple criterion: A

good environment should accelerate the evolution of the agent and help

it find better morphology sooner, which will enhance the agent’s adaptiveness

and versatility over new environments/tasks.
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The interplay between morphology and environment has lasted for billions of

years. In the endless game, species that find the appropriate environments to evolve

their morphology and policy may survive and keep being improved via adaptation to

new environments/tasks. Inspired by this, we propose an morphology-environment

co-evolution (MECE) scheme that automatically generates a curriculum of varying

environments to optimize the agent’s morphology and its RL policy so they can be

generalized to unseen environments and adapted to new morphology, respectively.

Inspired by the former discussion of “good morphology” and “good environment”,

we optimize the morphology policy to improve the agent’s adaptiveness+versatility

and optimize the environment policy to improve the morphology’s evolution. To this

end, we design two rewards for the two policies based on the learning progress of

the control policy, which is estimated by comparing its concurrent performance on

a validation set and its historical trajectories. Therefore, the three policies are com-

plementary and mutually benefit each other: (1) the morphology and environment

policies create a curriculum to improve the generalizability of the control policy; (2)

the environment policy creates a curriculum to optimize the morphology policy; (3)

the control policy provides rewards to train the other two policies. In Fig. 1.3, we

illustrate the co-evolution process of MECE and compare it with evolution-strategy

(ES) based method (Wang et al., 2019d) and Transform2Act (Yuan et al., 2022),

which uses RL to optimize the morphology in a fixed environment. In MECE, we

train the control policy and automatically determine when to apply the other two

policies to modify the morphology or change the environment: they are triggered

by the slow progress on the current morphology and environment, respectively.

1.2 Research Objectives

The primary aim of this thesis is to develop an auto-generated curriculum for

reinforcement learning (RL) with the goal of improving its learning efficiency and
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overall performance in complex tasks. In order to accomplish this goal, we have

identified three composite objectives that specifically address the aforementioned

challenges:

i. To address the challenges associated with reinforcement learning training in a

sparse reward environment, including low learning efficiency and low sampling

efficiency.

ii. To address the issue of a well-trained policy being susceptible to minor envi-

ronmental perturbations.

iii. To address the problem of the deployment of a trained RL policy to various

agents and environments.

1.3 Contributions of This Thesis

This thesis primarily focuses on the training and learning challenges associated

with RL. These challenges include but are not limited to low sample efficiency, in-

adequate exploration in complex environments, and low learning efficiency in tasks

with sparse rewards. Our primary focus lies in investigating methods to enhance the

efficacy of RL in intricate real-world environments and tasks. Additionally, we want

to enhance the generalization capabilities of reinforcement learning across various

tasks and environments. This thesis demonstrates the efficacy of integrating curricu-

lum learning as a means to enhance training efficiency and improve performance in

complicated environments and tasks. In this thesis, we propose a set of curriculum

learning algorithms that possess self-generating capabilities. These algorithms are

designed to optimize task sequences adaptive to the training phase of RL, rather

than pre-defined by humans. In the experimental section, a multitude of extensive

experiments were conducted to substantiate the efficacy of the method we devised.

Simultaneously, we conduct thorough ablation studies to compare and demonstrate
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the rationale behind the design of each component in the algorithm. We present

visualizations of the findings for each algorithm, aiming to enhance readers’ compre-

hension of how the automatically created curriculum can successfully support RL

during the training phase.

1.4 Content and Organisation

This thesis is organized as follows:

• Chapter 2: This chapter will present a survey of reinforcement learning and

related work of three concepts that have been involved in the research.

• Chapter 3: This chapter presents a novel curriculum framework of a collabo-

rative training scheme for an RL agent and a path planner.

• Chapter 4: This chapter extends the former curriculum framework to be able

to adapt to diverse environments.

• Chapter 5: This chapter presents a curriculum framework to train general-

izable RL, whose morphology and policy are optimized for different environ-

ments.

• Chapter 6: This chapter summarizes the thesis contents, elaborates its con-

tribution, and also provides several future research directions of applying cur-

riculum learning for RL.
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Chapter 2

Literature Review

The following literature review provides a brief introduction to three topics that are

closely related to my research.

2.1 Reinforcement Learning and Planning algorithm

Goal-conditioned RL Pong et al. (2018); Kaelbling (1993); Schaul et al. (2015a)

took a goal as an additional input to its model(s) and aims to handle different

goals/tasks using the same policy. However, it requires more exploration and ex-

pensive training on various possible goals, and it still easily fails to reach distant

goals in practice. Goal relabeling and reward shaping (Andrychowicz et al., 2017a;

Nasiriany et al., 2019) have been studied to mitigate these issues by modifying the

task rewards to be dense but they introduce extra data bias and cannot control the

utility of modified goals/rewards to the targeted ones. In order to provide tasks

at the appropriate level of difficulty for the agent to learn, Held et al. (2018) and

Racanière et al. (2019) trained a goal/task generator based on the agent’s per-

formance on existing tasks. But it is usually non-trivial to determine and tune

the appropriate difficulty level for each training stage. Recent methods (Florensa

et al., 2019; Wu et al., 2019) improved it by learning a compact representation of

the goal space. The goal-conditioned value function V (s|g) naturally provides an

ideal distance metric for shortest path planning. Dennis et al. (2020); Wang et al.

(2019a) proposed to train RL policy on a curriculum of environments adaptive to the

RL. In CO-PILOT, we train a sub-goal tree planner to generate a sample-efficient

and adaptive training curriculum that trains goal-conditioned to reach distant goals
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progressively. On the other hand, the goal-conditioned policy’s cost on the planned

paths is used to improve the planning policy.

Planning Sutton and Barto (2018); LaValle (2006) were more effective in ad-

dressing long-horizon tasks in practice (Levine et al., 2011a; Kavraki et al., 1996).

It usually refers to dynamic programming that finds the optimal path between two

nodes on a graph. Planning methods in RL, e.g., value/policy iteration (Lau and

Kuffner, 2005a; Levine et al., 2011a), utilized or learned an environment model to

improve the RL policy. Compared to a reactive policy, an advantage of planning is

that the planned trajectory provides a global view of future steps. However, learning

the environment model usually requires expensive exploration of state space (Elban-

hawi and Simic, 2014; Lavalle, 1998; Hsu et al., 1997; Pertsch et al., 2020), structured

and compact modeling of the environment/graph (Chen et al., 2020a; Rickert et al.,

2008), and an accurate distance metric (Eysenbach et al., 2019a). Sequentially plan-

ning (Schmidhuber and Wahnsiedler, 1993; Zhang et al., 2020) sub-goals from the

starting state to the goal state is inefficient in complex tasks, as it needs to search

in a large space. In RL, planning requires an environment model or learns a value

function to improve the policy (Levine et al., 2011b; Lau and Kuffner, 2005b; Elban-

hawi and Simic, 2014), which can be as challenging as model-free RL. Control-based

methods require accurate models for both the robot and the environment (Howard

and Kelly, 2007; Werling et al., 2012), as well as an accurate distance metric (Ey-

senbach et al., 2019b), which can be a rather daunting task.

Hierarchical planning (HP) Nasiriany et al. (2019); Jurgenson et al. (2020a);

Pertsch et al. (2020) searched for a sequence of sub-goal on a tree to guide the

exploration of an agent but building the hierarchical partition of all possible sub-

goals can be expensive. A conventional hierarchical planning algorithm (Kaelbling

and Lozano-Pérez, 2011) also learns to predict sub-tasks of a tree structure based

on a set of pre-defined motion primitives. Hierarchical RL (HRL) for goal-reaching
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tasks has been recently studied in (Zhang et al., 2021; Nachum et al., 2018). Shu

et al. (2018) trained the RL agent on a human-designed curriculum of tree-structured

sub-goals. They learn a sequence of primeval policies towards finishing complicated

tasks, where the higher-level policies decompose a complex task into easier sub-tasks

or motion primitives that can be addressed by the lower-level policies or controllers.

However, the hierarchy of sub-tasks need to be either determined by prior knowledge

or discovered automatically, which is usually challenging due to the huge space of

possible sub-tasks. In contrast, EAT-C trains one planning policy to decompose a

hard task into sub-tasks of multiple difficulty levels by only using the RL’s time

cost data. It directly generates the sub-tasks and thus requires neither hierarchical

partition of the task space nor a predefined set of sub-tasks.

2.2 Combining Planning with RL

A line of recent works (Amos et al., 2018; Lee et al., 2018a; Srinivas et al., 2018;

Schrittwieser et al., 2019) embeded a planning model as one part of an RL agent’s

model and train it together with the RL policy in an end-to-end manner. Chiang

et al. (2019); Faust et al. (2018); Savinov et al. (2018) found that combining the two

can help agents to reach distant goals in specific tasks. Eysenbach et al. (2019a);

Savinov et al. (2018) proposed planning strategies with graph search based on the

replay buffer of experiences from a given RL policy. Schrittwieser et al. (2019) pro-

posed to use Monte-Carlo tree search when planning in latent space to achieve a

better optimization on value function. These results inspire our work, but our pri-

mary difference is the mutual training between RL and planning, which does not

require either a pre-trained policy or strong heuristics about the distance metric. In

CO-PILOT, both are trained from scratch and can mutually boost and guide each

other’s training via an auto-generated curriculum of easy-to-hard sub-tasks. This

mutual training leads to a principled learning framework adaptive to a vast amount
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of potential applications. Several recent works Wang et al. (2019b); Portelas et al.

(2019b); Gur et al. (2021) showed that the efficiency and generalization of RL can be

improved by generating/selecting different environments for training. Wang et al.

(2019b) studied a method “POET” to pair an adversarial environment generator

with two agents to improve the generalization of the RL policy to novel environ-

ments. Portelas et al. (2019b) proposed a teacher algorithm to sample environments

based on a Gaussian mixture model capturing both the diversity of environments

and the learning progress on them. This leads to a curriculum improving the effi-

ciency of RL.

2.3 Curriculum Learning

Vanilla Curriculum Learning (CL). The concept of Vanilla CL was first

introduced in Bengio et al. (2009a). The authors demonstrated that machine learn-

ing models exhibit enhanced performance when exposed to progressively challenging

training samples. In this paper, Vanilla CL, also referred to as CL, is defined as

a method of sample selection that relies solely on the curriculum as a rule-based

criterion. Commonly, the field of Continual Learning utilizes a predetermined set of

regulations to differentiate between straightforward and challenging instances.

Self-paced learning (SPL) is distinguished from conventional curriculum learn-

ing (CL) by the manner in which examples are assessed. To be more precise, the

primary distinction concerning Vanilla Continual Learning pertains to the sequence

in which the samples are presented to the model. The order in SPL is not prede-

termined, but rather determined based on the model’s performance, and as such,

it is subject to change throughout the training process. The level of complexity is

assessed iteratively throughout the training phase, with modifications made to the

sequence of samples. Kumar et al. (2010) employs the probability of the prediction

to establish the ranking of the samples, whereas Lee and Grauman (2011) utilized
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objectness to determine the order of training.

Self-paced curriculum learning (SPCL) refers to a learning approach that

allows individuals to progress through a curriculum at their own pace. As previously

mentioned in the introduction of this section, it is evident that a significant degree of

overlap between categories is not only plausible but also a common occurrence. The

categories of SPL and CL merit explicit acknowledgment, as numerous works are

utilizing both in tandem. The present study aims to highlight the SPCL approach,

which involves the combined utilization of predetermined standards and metrics

based on learning to determine the sequence of sample training. The aforementioned

paradigm was initially introduced by Jiang et al. (2021) and subsequently utilized in

the domains of matrix factorization and multimedia event detection. Furthermore,

it has been utilized in various other tasks, including but not limited to weakly-

supervised object segmentation in videos, as demonstrated by Zhang et al. (2017).

Progressive CL. The concept of Progressive CL (PCL) pertains to a method

of curriculum design that does not rely on the difficulty level of individual samples.

Rather, it involves a gradual modification of the model capacity or task settings to

facilitate progressive learning. The PCL approach does not adhere to the implemen-

tation of CL in terms of sample order. Rather, it employs the curriculum concept to

a related task or a particular segment of the network. This results in a simpler task

at the outset of the training process, which gradually increases in difficulty towards

the end. Morerio et al. (2017) presented an instance of the Curriculum Dropout

technique, wherein a monotonic function is formulated to reduce the likelihood of

dropout occurrences during the training process. The aforementioned approach is

aimed at enhancing the overall performance of the model. According to the au-

thors, the initial stage of the training process may exhibit a low dropout rate, which

is expected to gradually increase in order to achieve a substantial enhancement in

performance levels. An additional illustration for this classification is the method-
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ology put forth in the work of Karras et al. (2017), which involves incrementally

augmenting the capability of Generative Adversarial Networks (GANs) to attain

superior outcomes.

Teacher-student CL. The pedagogical approach known as teacher-student col-

laborative learning (TSCL) involves dividing the instructional process into two dis-

tinct components. Specifically, this method entails the use of a primary model,

referred to as the ”student,” which is responsible for acquiring knowledge and skills

related to the primary learning objective. Additionally, a secondary model, known

as the ”teacher,” is employed to determine the optimal learning parameters for the

student. The curriculum is executed through a network architecture that employs

a policy on a student model, culminating in the ultimate inference. The proposed

methodology was initially introduced by Kim and Choi (2018) utilizing deep rein-

forcement learning techniques. Subsequently, this approach was redefined in subse-

quent studies (Hacohen and Weinshall, 2019; Jiang et al., 2017; Zhang et al., 2019).

2.4 Curriculum Learning for RL

Task Generation. The problem of generating intermediate tasks specifically

for a curriculum is known as task generation. Narvekar et al. (2016) introduced a

number of techniques for generating intermediate tasks in preparation for a partic-

ular final task. Methods are dependent on a definition of a domain as a collection

of MDPs identified by a task descriptor, which is a vector of parameters specifying

the degrees of freedom in the domain. Based on Object-Oriented MDPs, da Silva

and Costa (2018) proposed an analogous procedure for partially automated task

generation in their curriculum learning framework. There is an assumption that

each task has a class environment that is parameterized by a number of attributes.

A function, which must be provided by the designer, generates simpler versions of

the ultimate task by removing unnecessary steps. instantiating the attributes with
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values that make the tasks easier to solve.

Schmidhuber (2011) proposed the Powerplay framework, which aims to cultivate

a more versatile problem-solving agent through the generation of novel issues in an

unsupervised manner. The system endeavors to identify a novel task as well as an

alteration to the existing problem-solving mechanism, such that the updated solver

is capable of successfully addressing all previously encountered tasks in addition to

the newly introduced one. The search algorithm (Srivastava et al., 2012) operated

on a problem-specific encoding of the domain and the solver, and its effectiveness

has been validated by its application in tasks related to pattern recognition and

control. The generator and solution of the problem are provided with a restricted

computing budget, hence prioritizing the creation of the most basic tasks that were

previously unsolvable.

Task sequencing. The process of arranging tasks in a specific order to achieve

a desired outcome is commonly referred to as task sequencing. The objective of

sequencing is to arrange a given set of tasks or samples in a manner that optimizes

the learning process. A multitude of sequencing techniques are available, each with

distinct underlying presumptions. One of the underlying premises of curriculum

learning posits that it is possible to manipulate the learning environment in order

to generate diverse tasks. The extent of control wielded by a practitioner in im-

plementing curriculum learning is a determining factor in the suitability of various

sequencing techniques.

Schaul et al. (2015b) introduced the concept of Prioritized Experience Replay

(PER), a technique that prioritizes and replays significant transitions with greater

frequency. Transitions that exhibit a high anticipated learning progress are deemed

significant, as determined by their temporal difference (TD) error metric. Replay-

ing samples with larger temporal difference (TD) errors can potentially facilitate
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more substantial updates in the network, as per intuition. As individuals acquire

knowledge of transitions, there is a shift in the distribution of significant transitions,

resulting in an implicit educational program across the various examples.

Kim and Choi (2018) proposed an additional modification to prioritized experi-

ence replay, which involves the incorporation of a second neural network to jointly

learn the weight or priority of a sample with the main network. The auxiliary

network, denoted as ScreenerNet, is trained to forecast weights based on the dis-

crepancy between the sample’s output and the main network’s output. In contrast

to PER, the present approach is characterized by its memoryless nature, enabling

it to make direct predictions regarding the importance of a given training sample,

irrespective of whether or not that specific example was previously encountered.

Hence, the aforementioned methodology has the potential to solicit experience tu-

ples in an active manner, which could yield maximum information or utility, thereby

facilitating the development of an online curriculum. An alternative approach to us-

ing sample importance as a sequencing metric is to reorganize the training process

according to the encountered sample trajectories. In the process of learning, it is

common to encounter easily attainable states initially, while more challenging states

are encountered at a later stage in the learning process.

In practical scenarios characterized by sparse rewards, it is possible that the eas-

ily accessible states may not yield a reward signal. The utilization of the Hindsight

Experience Replay (HER) (Andrychowicz et al., 2017b) is a viable strategy to op-

timize the benefits of these initial encounters. The HER approach is characterized

by its ability to assimilate knowledge from both the intended and unintended out-

comes. This is accomplished by reenacting each episode with a focus on the actual

goal accomplished, rather than the one initially pursued by the agent.

Co-learning. Co-learning is a pedagogical strategy that involves multiple agents



25

or versions of the same agent interacting within a shared environment to generate a

curriculum. The agents have the ability to act in a cooperative or adversarial man-

ner, with the ultimate goal of acquiring new behaviors. This process results in the

development of an implicit curriculum, which facilitates the improvement of both

sets of agents over time. The paradigm in question encompasses various method-

ologies, one of which is self-play. This methodology has yielded several noteworthy

outcomes, including TD-Gammon (Tesauro, 1995), as well as more recent examples

such as AlphaGo (Lillicrap et al., 2016) and AlphaStar (Vinyals et al., 2019).

Rather than offering a comprehensive overview of all literature pertaining to the

utilization of self-play or co-learning, we have opted to showcase a limited number

of scholarly articles that focus on the formulation of objectives for multiple agents in

order to facilitate co-learning. Sukhbaatar et al. (2017) introduced a novel approach

known as asymmetric self-play, which enables an agent to acquire knowledge about

its surroundings in an unsupervised fashion, without the need for external rewards.

This approach involves the involvement of two entities, namely an educator and

a learner, operating under the framework of ”the instructor presenting an assign-

ment, and the pupil executing it.” Simultaneous learning of policies by two agents

is achieved through the maximization of interdependent reward functions for tasks

that are based on goals. The responsibility of the educator is to maneuver towards

a state of the environment that the learner will utilize either as an objective, in

case the environment can be reset, or as an initial state if the environment can be

reversed.

Pinto et al. (2017) proposed the Robust Adversarial RL (RARL) approach,

which involves training a pair of agents in a single-agent RL task using adversarial

techniques for policy learning. In contrast to the approach of asymmetric self-

play (Sukhbaatar et al., 2017), which involves the teacher setting the objective for

the student, the RARL method involves training a protagonist and an adversary.
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The protagonist is trained to accomplish the original RL task while also being able

to withstand the disruptive forces introduced by the adversarial agent.

Initial/Terminal state changes. We examine approaches that explicitly cre-

ate different MDPs for intermediate tasks, by changing some aspect of the MDP.

One of the earliest examples of this type of method was learning from easy missions.

Asada et al. (2005) proposed this method to train a robot to shoot a ball into a goal

based on vision inputs.

Florensa et al. have recently introduced more comprehensive techniques for

conducting the aforementioned reverse expansion. The authors put forth the concept

of reverse curriculum generation, which involves the utilization of an algorithm to

produce a distribution of initial states that progressively diverge from the desired

outcome. The methodology presupposes the existence of at least one known goal

state, which serves as a starting point for the process of expansion. Proximate initial

states are produced through the implementation of a stochastic process, whereby a

random walk is taken from pre-existing initial states, with actions being selected in

the presence of noise perturbations. To determine the subsequent set of initial states

for expansion, an estimation of the anticipated return is conducted for each of these

states. The selection process involves identifying those states that yield a return

within a predefined range of minimum and maximum intervals. This particular

interval has been calibrated to facilitate the expansion of states in which progress can

be made while avoiding the pitfall of making progress too effortless. Ivanovic et al.

(2018) employed a comparable methodology that integrates the reverse expansion

phase for curriculum development with physics-based priors to hasten the learning

process of continuous control agents.

Florensa et al. (2019) also explored an approach for expansion in the opposite

direction of “forward”. This approach enables an agent to autonomously identify



27

diverse objectives within the state space, thus facilitating the exploration of said

space. The present study employed a Generative Adversarial Network (GAN) as

proposed by Held et al. (2018). Specifically, the generator network is utilized to

suggest goal regions that are parameterized subsets of the state space, while the

discriminator is responsible for assessing the suitability of the goal region in terms

of its level of difficulty relative to the agent’s current ability.

The specification of goal regions is accomplished through the utilization of an

indicator reward function, while policies are conditioned on both the state and

the goal, akin to a universal value function approximator as described by Schaul

et al. (2015b). The agent undergoes training on tasks that are recommended by the

generator.

2.5 Curriculum of training in different environments

Several recent works (Wang et al., 2019b; Portelas et al., 2019b; Gur et al., 2021)

showed that the efficiency and generalization of RL can be improved by training the

policy in different environments. They (Portelas et al., 2019b; Wang et al., 2019b)

trained the RL agent based on a curriculum of diverse environments by sampling

the parameters of environment features. However, the generated environments can

be infeasible or too challenging for the RL agent and it is non-trivial to control their

hardness. Moreover, estimating the distribution of environments requires evaluating

the RL policy on many sampled environments, which is costly and inaccurate, espe-

cially for complicated environments. Rajeswaran et al. (2017) presented a method

that combines deep RL and human demonstrations to train an agent for complex

manipulation tasks. By leveraging both RL and expert demonstrations, the agent

learns to perform dexterous manipulation in diverse environments, achieving higher

success rates and improved generalization. Florensa et al. introduced a reverse

curriculum learning approach where RL agents start with complex tasks and grad-
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ually move to simpler ones. By focusing on more challenging environments early in

training, the agents acquire robust policies that generalize well to a wide range of

diverse environments.

A sample-efficient RL algorithm (Lee et al., 2018b) that combined episodic learn-

ing and backward updates. The algorithm enables RL agents to learn policies more

efficiently by utilizing experiences from multiple episodes and transferring knowledge

to diverse environments. Liu et al. (2019) introduced a multi-agent RL approach

where agents learn to cooperate or compete to achieve their objectives. By training

agents in competitive environments. Lowrey et al. (2018) focused on transferring

RL policies learned in simulation to physical robotic systems for non-prehensile ma-

nipulation tasks. The authors propose an approach that enables successful transfer

of policies, allowing RL agents to perform diverse manipulation tasks in the real

world.

In EAT-C, we adversarially modify the environment for each sub-task, whose

hardness is controlled by both the path planner and EG, so the modified sub-task

is still feasible for RL to learn. Moreover, a policy network for EG facilitates the

modification of complicated environments and it is efficient to train in our mutual

boosting scheme due to the easy-to-hard curriculum.

2.6 Morphology Design and Control

Continuous Design Optimization. A line of research in the community has

studied optimizing an agent’s continuous design parameters without modifying its

skeletal structure, and they commonly optimize on a specific kind of robots. Baykal

and Alterovitz (2017) studied an annealing-based framework for cylindrical robot

optimization. Ha et al. (2017); Desai et al. (2017) optimized the design of legged

robots by trajectory optimization and implicit function. Applying deep RL into

design optimization becomes more popular recently. Chen et al. (2020b) used com-
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putational graphs to model robot hardware as part of the policy. CMA-ES Luck

et al. (2019) optimized robot design via a learned value function. Ha et al. (2017)

proposes a population-based policy gradient method. Another line of work Yu et al.

(2019); Exarchos et al. (2021); Jiang et al. (2021) searched for the optimal robot

parameters to fit an incoming domain by RL. Different from the prior works, our

approach learns to find the most general skeleton of an agent while maintaining its

continuous design parameters optimization to diverse environments or tasks.

Combinatorial morphology Optimization. The sub-goal generation in (Pertsch

et al., 2020) follows a top-down and coarse-to-fine manner. However, they need to

search for each sub-goal in the tree from many possible candidates, which is ex-

pensive and requires a search tree (hierarchical partition of the whole sub-goal

space) much larger than our sub-goal tree. On the contrary, EAT-C learns a planning

policy to directly generate su-bgoals and we do not need to build the search tree

covering the whole sub-goal space. Another major difference is that they study a

planning-only method while we study a mutual learning strategy between

planning and RL to improve both planning and RL policies.

Zhang et al. (2020) trained a high-level policy to find the shortest path of sub-

goals in a trained adjacency space. However, the distance between any two points in

the adjacency space is expected to reflect the time cost of the agent navigating be-

tween the two points in the environment, which can be very challenging or even

infeasible to achieve in many tasks (If we have such an adjacency space, both

planning and RL can have dense feedback and simple supervised learning should

work). In contrast, EAT-C trains a planner to directly generate a min-cost path of

sub-goals through an easy-to-hard curriculum (fewer sub-goals interpolated at first),

which provides an easier and more efficient solution without requiring learning

an adjacency space. Moreover, the data used to train the planner in EAT-C are

more informative than Zhang et al. (2020) and cover multi-granularity since they
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are collected from RL when completing the bottom-up sub-task curriculum.

In Dayan and Hinton (1993), the high-level managers set a sequence of subgoals

in the environment partitioned by Euclidean distance, which does not consider the

obstacles or the RL agent capability. Hence, there is no mutual training be-

tween high-level (planner) and low-level (controller) managers in Dayan

and Hinton (1993). On the contrary, the planner in EAT-C is jointly trained

with the RL agent to produce a min-cost path of sub-goals for RL, which results in

a more efficient curriculum of sub-tasks to train the RL agent.

Zhang et al. (2020) and Schmidhuber and Wahnsiedler (1993) planned sub-goals

sequentially from the starting state to the goal state, which might be inefficient in

complex tasks (requiring expensive search in a large space) and cannot produce

the easy-to-hard curricula on a sub-goal tree as in EAT-C. In contrast, we

train a planner to recursively produce coarse-to-fine sub-goal trajectories between

the starting and goal states, which naturally provide an easy-to-hard curriculum for

every component.

One closely related line of work is the design of modular robot morphology spaces

and developing algorithms for co-optimizing morphology and control (Sims, 1994;

Liao et al., 2019; Gupta et al., 2022; Trabucco et al., 2022) within a design space

to find task-optimized combinations of controller and robot morphology. When the

control complexity is low, evolutionary strategies have been successfully applied to

find diverse morphologies in expressive soft robot design space (Cheney et al., 2013,

2018). For more expressive design spaces, GNNs have been leveraged to share con-

troller parameters (Wang et al., 2019d) across generations or develop novel heuristic

search methods for efficient exploration of the design space (Zhao et al., 2020).

In contrast to task specific morphology optimization, Hejna et al. (2021) proposed

evolving morphologies without any task or reward specification. Hejna et al. (2021)
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employ an information-theoretic objective to evolve task-agnostic agent designs.
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Chapter 3

Collaborative Training Curriculum of Planning

and Reinforcement Learning

3.1 Preliminaries and Basic settings

3.1.1 Goal-conditioned Reinforcement Learning

Goal-conditioned RL or multi-goal RL learns a policy that can be adapted to

different goals. Given the state space S, the action space A, and the goal space G, a

goal-conditioned policy is a mapping π(a|s, g) : S×G 7→ A that outputs an action a

(or probabilities Pr(a|s, g) over actions a ∈ A) given a state-goal pair (s, g). An RL

agent uses π(a|s, g) to interact with an environment described by a Markov decision

process (MDP) {S,A,G, p, r, γ}, where p(s′|s, a) ≜ Pr(st+1 = s′|st = s, at = a)

is the transition probability for the agent from state s to s′ after taking action a,

r(s, a|g) : S ×A× G 7→ R is a reward function, and γ ∈ [0, 1] is a discount factor.

In each episode, the agent starts from an initial state s0 ∼ p0(s) and aims to

reach a given goal g ∈ G. In every time step t, it takes an action at = π(a|st, g) (de-

terministic) or at ∼ π(a|st, g) (stochastic), receives a reward r(st, at|g), and moves

to a new state st+1 ∼ p(s′|st, at). RL aims to learn a policy π maximizing the ex-

pected return E(s0,g)[Eπ(R0)]. Define the action-value function Q(s, a|g) ≜ E(Rt|st =

s, at = a, g), the optimal policy π∗ achieves the maximal Q(s, a|g) for any feasible

(s, a, g). Define the value function V (s|g) ≜ E(Rt|st = s, g) = Ea∼π[Q(s, a|g)] =∑
a∈A π(a|s, g)Q(s, a|g). Directly maximizing the expected return or V w.r.t. π re-

sults in the vanilla policy gradient method (Sutton and Barto, 2018), which usually

samples inefficient and suffers from the high variance of Rt. Actor-critic meth-
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ods (Sutton et al., 1999) additionally learns a model of V or Q as a “critic” to

the “actor” π, which performs as a baseline to effectively reduce the variance. The

optimization of V or Q aims to minimize the Bellman residual

JQπ = E(st,at,g)

[
Qπ(st, at|g)− r(st, at|g)− γEst+1 [V (st+1|g)]

]2
, (3.1)

Given the critic Q, maximizing the expected return w.r.t. π reduces to minimizing

Jπ = E(st,g)[−V (s|g)] = E(st,g)[Eat [−Qπ(s, a|g)]]. (3.2)

A typical actor-critic algorithm alternates between minimizing JQ and Jπ. To en-

courage exploration, we use soft actor-critic (SAC) (Haarnoja et al., 2018a) that

augments V with an entropy term (with temperature α), i.e.,

V (s|g) = Ea∼π[Q
π(s, a|g)− α log π(a|s, g)]. (3.3)

In order to encourage the above equation, SAC additionally optimizes V by mini-

mizing the mean square error

JV = E(st,g) [V (st|g)− Ea∼π[Q
π(st, at|g)− α log π(at|st, g)]]2 . (3.4)

SAC alternatively optimizes JV , JQ and Jπ (using the augmented V in Eq. (3.3))

defined in Eq. (3.1)-(3.4) by using stochastic gradient decent (SGD) on batches of

sampled (st, at, g). Although we use SAC in our experiments, any off-policy RL

algorithm can replace it in our framework.

3.1.2 Reward Shaping For RL by Path-Planning

In various environments, an RL agent receives a nonzero reward only when

reaching the ϵ-ball B(g, ϵ) around the goal g, i.e., r(s, a|g) = ⊮ [s ∈ B(g, ϵ)] with

⊮ being the indicator, so r(s, a|g) for most steps/trajectories cannot provide in-

formative feedback to policy training. RL is unstable and can easily fail with

such sparse reward, especially in long-horizon tasks when g is far away from s0
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or too difficult to reach for the agent-in-training. To address this problem, re-

ward shaping method (Laud, 2004) augments the environment reward with a dense

reward r′(s, a|g) that can be issued to more non-goal states, e.g., intrinsic moti-

vation/curiosity that encourages effective exploration, or human-engineered task-

specific rewards. The ideal dense reward, which is, however unavailable without

knowing π∗, is V ∗(s|g). Planning methods, e.g., value iteration (Tamar et al., 2016)

or fitted-Q iteration (Antos et al., 2008), can approximate V ∗(s|g) but accurately

estimating V ∗(s|g) is as challenging as the policy learning.

Path-planning and motion-planning methods (Elbanhawi and Simic, 2014) usu-

ally adopt a heuristic distance or cost c(s, g) (e.g., Euclidean distance or time cost)

to replace the unknown V ∗(s|g). They discretize the state space into a grid/graph

and find the shortest path connecting the initial state s0 and the goal g. In goal-

conditioned RL, s0 and g can be any feasible states on the graph, so path-planning

needs to solve the all-pairs shortest path(APSP) problem (Russell and Norvig, 2003),

i.e.,

min
g0=s0,g1:T−1,gT=g

T−1∑
t=0

c(gt, gt+1), ∀s0 ∈ S, g ∈ G, (3.5)

where g1:T−1 denotes a discrete sequence of sub-goals (g1, g2, . . . , gT−1) between

g0 = s0 and gT = g. Planning every step for an agent is usually challenging and

requires an accurate c(·, ·) or environment model. But we only use planning for

reward shaping, which can tolerate a small T , i.e.,

r̄(s, a|g0:T ) =
1

T

T∑
t=1

r(s, a|gt). (3.6)

As T increases, r̄(s, a|g0:T ) becomes denser and the RL agent can receive more ef-

fective feedback for policy training. However, the quality of r̄(s, a|g0:T ) also heavily

depends on the cost for the agent to reach g by following the path g0:T , since issuing

reward to an inefficient/long path misleads the policy training. Therefore, in CO-

PILOT, we use a prediction model to predict c(·, ·) and train the planning policy to



35

generate g0:T incurring the smallest cost as in Eq. (3.5).

Remarks: This leads to a collaborative learning and mutual boosting scheme be-

tween RL and planning: planning produces easy sub-tasks that the RL agent can

complete in a few steps and thus provide dense rewards enabling more efficient RL,

while the time costs of RL agent on those sub-tasks can be used to further improve

the planning policy towards producing more cost-efficient paths and better reward

shaping. In addition, this scheme makes both RL and planning easier to overcome

their bottlenecks: RL learns from dense rewards to complete long-horizon tasks,

while relatively coarse (with small T ) planning suffices to provide dense rewards so

every-step planning relying on accurate modeling of MDP is not necessary. We will

introduce more details next.

3.2 Collaboratively Training Framework for RL agent and

Planner

In our training scheme, planning serves RL like a copilot in an aircraft to en-

courage more efficient training. The main advantage of a tree structure planner is to

provide a global view of future milestones to the RL policy, which mainly focuses on

local steps and might lack long-term sight. However, many planning algorithms are

based on Bellman equation and sequentially predict the sub-goals, which may suffer

from accumulated errors (Ross et al., 2011). In addition, as the aforementioned,

a larger T results in easier sub-tasks for the RL agent but also increases the diffi-

culty of planning, and vice versa. Hence, it is challenging to train both the RL and

planning policy from scratch using either a small or a large T . This motivates us

to seek coarse-to-fine planning that can generate multiple trajectories of sub-goals

with increasing T , so the planning policy can be trained on an easy-to-hard curricu-

lum (Bengio et al., 2009b; Fang et al., 2019), i.e., generating coarse-to-fine shortest

paths from small T to large T . At the same time, the RL agent can also be trained
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on an easy-to-hard curriculum of sub-tasks, i.e., by following the trajectories from

large T to small T .

Therefore, we apply “sub-goal tree (SGT)” (Jurgenson et al., 2020b) to recur-

sively divide a trajectory from small T to large T and produce a sub-task tree. We

define a planning policy πp(g|gi, gj) as a stochastic mapping from two nearby end-

points gi and gj to a predicted sub-goal g in the middle of gi and gj. In our scheme,

we use πp(g|gi, gj) to break down a task with initial state gi and goal gj (denoted

by (gi, gj)) to two sub-tasks (gi, g) and (g, gj). Hence, we can generate a tree of

sub-goals by recursively sampling sub-goals from πp(g|gi, gj) as below, which finally

generates a planning trajectory g0:T with a tree structure, i.e.,

Pr
πp

(g0:T |g0 = s0, gT = g) ≜ Pr
πp

(
g0:T

2

∣∣∣g0, gT
2

)
Pr
πp

(
gT

2
:T

∣∣∣gT
2
, g

)
πp

(
gT

2

∣∣∣ s0, g) , (3.7)

where T = 2K with K being the depth of the tree. As shown in Figure 1.2, for

layer-k, the sub-goal tree g0:T interpolates a sequence of 2k − 1 sub-goals gk
1:(2k−1)

≜(
gk1 , g

k
2 , . . . , g

k
2k−1

)
between s0 and g, where gkj = gTj/2k in g0:T , ∀ j ∈ [2k − 1].

In layer-1, we have the coarsest trajectory (s0, g
1
1 = gT/2, g). In the bottom

layer-K, we have the finest trajectory g0:T . From top layers to bottome ones, their

sub-goal trajectories naturally form a coarse-to-fine sub-tasking curriculum, e.g.,

the planning in layer-1 requires the agent to accomplish two hard and long-horizon

sub-tasks to reach g, while layer-K’s planning requires the agent to accomplish T

much simpler and shorter-horizon sub-tasks.

To train the planning policy πp, we apply it to produce a tree-structured g0:T

via Eq. (3.7) and evaluate the cost c
(
gk
0:2k

)
of the trajectory gk

0:2k
by integrating the

cost of every segment/sub-task c
(
gk
tT/2k

, gk
(t+1)T/2k

)
along the trajectory. We will

elaborate on our option of cost function c(·, ·) later in Eq. (3.11). The objective of

πp aims to minimize the total cost c(g0:T ) of the sub-goal tree, which sums over all
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trajectories’ costs across the K layers,

c(g0:T ) ≜
K∑
k=0

c
(
gk0:2k

)
. (3.8)

According to APSP objective in Eq. (3.5), the optimal planning policy π∗
p minimizes

the expected cost Jπp over all possible planning trajectories defined below:

Jπp ≜ Eg0:T [c(g0:T )] = E(s0,g)Eg1:T−1∼πp [c(g0:T )], (3.9)

where g1:T−1 ∼ πp denotes the recursive sampling of g1:T−1 in Eq. (3.7). Any policy

gradient method can be used to minimize Jπp , with the gradient w.r.t. πp computed

as

∇Jπp = Eg0:T∼πp

[
c(g0:T ) · ∇ log Pr

πp

(g0:T |s0, g)
]
. (3.10)

To form an easy-to-hard curriculum for training πp, during the top-down construc-

tion of the tree, at every layer-k, we train πp to only minimize the cost for layers

from 0 to k (instead of K as in Eq. (3.8)) so the planning policy πp starts from only

producing relatively coarse sequence of a few sub-tasks for the top layers before

trained to produce more detailed sub-task paths. In Line 4 of Algorithm 0, we will

use Jk
πp

to denote c(g0:T ) computed up to layer-k.

Cost function of sub-tasks: As discussed in the end of Section 3.1.2, the

cost function c(gt, gt+1) should reflect the difficulty of sub-task (gt, gt+1) for the

RL agent. Euclidean distance ∥gt − gt+1∥2 is commonly used by previous path-

planning methods but is not adaptive to the evolution of the agent’s policy and

environment, e.g., the difficulty of sub-task (gt, gt+1) with/without nearby obstacles

can vary drastically. Instead, we use the time-cost τg,g′ spent by the agent on

completing the task (g, g′) to measure its difficulty, which is adaptive to both the

agent and environment and thus more accurate than Euclidean distance. By training

the planner to produce minimum-cost sequences of sub-tasks, the planned paths are

optimized for the training of RL policy.
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Algorithm 1 Top-Down Construction of Sub-Task Tree

1: Input: (s0, g), planning policy πp and its training set Dτ

2: Output: tree structured sub-goals g0:T , πp

3: for k = 1, 2, . . . , K do

4: Apply any RL method to minimize Jk
πp
, i.e., Jπp in Eq. (3.9) computed only

up to layer-k;

5: for t = 0, 1, . . . , 2k−1 − 1 do

6: Generate the sub-goal gkt ∼ πp(g
k
t |gk−1

t−1 , g
k−1
t );

7: Add gkt , g
k−1
t into the trajectory gk0:T on layer-k;

8: end for

9: end for

Since the time cost data is collected during the training of RL agent on the

assigned sub-tasks, they are not available at the very beginning of the first episode.

Therefore, we “warm start” the first top-down construction and training of the

planner by Euclidean distance and consider the following cost function for the first

two episodes, i.e.,

c(gt, gt+1) = α∥gt − gt+1∥2 + (1− α)τ(gt, gt+1). (3.11)

In experiments, we start from α = 1 and gradually reduce it towards 0 during the

first two episodes. After that, the cost function is the time cost τ(gt, gt+1) collected

in the previous episode and no longer depends on the Euclidean distance.

3.3 CO-PILOT Algorithm

CO-PILOT is a mutual training scheme between the RL policy π and the plan-

ning policy πp, each generating dense cost/reward on tree-structured sub-tasks to

train the other. By top-down construction of sub-task tree from k = 0 to k =

K, it firstly trains the planning policy πp on a curriculum of generating coarse-to-fine
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trajectories. On each layer-k, it generates 2k sub-tasks through rollouts of πp. Given

Dτ and the cost c(·, ·) in Eq. (3.11), CO-PILOT updates πp by minimizing Jπp in

Eq. (3.9). At the very beginning of CO-PILOT, Dτ = ∅ and the cost solely depends

on the Euclidean distance. However, as we are collecting more experiences into Dτ ,

πp will be trained towards producing the easiest sub-task trajectory for the RL agent

to finish and thus increases its chance of receiving non-zero rewards. The complete

procedures of top-down construction are given in Algorithm 0. Being updated using

the most recentDτ , πp keeps tracking the RL agent’s learning progress to produce the

most cost-efficient paths for the agent. Moreover, the top-down construction natu-

rally forms an easy-to-hard curriculum for the planning policy πp. In Line 2 of Algo-

rithm 0 , we train πp to produce sub-goal trajectories up to layer-k. Hence, the train-

ing of πp is more smooth and less challenging than learning the optimal V ∗ or Q∗.

After the top-down construction of the sub-task tree, CO-PILOT trains the RL

policy π on a curriculum of easy-to-hard sub-tasks by bottom-up traversal of

the tree from k = K to k = 0. The sub-goal trajectory in each layer aims to guild

the agent to complete the original task from s0 to g. At layer-k, CO-PILOT applies

π sequentially to the 2k sub-tasks (as the conditioned goal). It then updates π by

SAC, which alternates among the minimization of JQ, Jπ and JV in Eq. (3.1)-(3.4)

to update π, V and Q.

Note we can replace SAC with other RL algorithms in the general framework

of CO-PILOT. The rollouts of π on the sub-tasks not only collect experiences to

train itself but also collect tuples of (g, g′, τg,g′) added to Dτ , which will be used

to train πp. It is possible that π fail on some sub-task within τmax steps. In this

case, we treat the actual ending state as g′ in the tuple for Dτ and initialize the the

next sub-task from this state. The bottom-up traversal is detailed in Algorithm 2,

where Line 14-18 apply π to reach sub-goal gtT/2k . The bottom-up traversal forms

an easy-to-hard curriculum to train π, in which the sub-tasks from the bottom layers
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Algorithm 2 Bottom-Up Traversal of Sub-Task Tree

1: Input: RL policy π, sub-goal tree of g0:T , τmax, ϵ

2: Output: π, Dτ

3: Initialize: Dτ ← ∅

4: for k = K, . . . , 1, 0 do

5: Set RL agent’s initial state to be s0 ← g0;

6: for t = 1, 2, 3, . . . , 2k do

7: Set the condition of V , Q, π in SAC to be gkt ;

8: τ ← 0, B ← ∅;

9: while τ ≤ τmax or sτ /∈ B(gkt , ϵ) do

10: RL agent takes action aτ ∼ π(aτ |sτ , gkt );

11: RL agent moves to sτ+1 ∼ p(sτ+1|sτ , aτ ) and receives reward

r(sτ , aτ |gkt );

12: B ← B ∪ (sτ , aτ , r(sτ , aτ |gkt ), sτ+1);

13: end while

14: Dτ ← Dτ ∪ (s0, sτ , τ), s0 ← sτ ;

15: for every gradient step do

16: Apply gradient steps in SAC: update Q, V, π to minimize JQ, Jπ and

JV in Eq. (3.1)-(3.4) using samples drawn from B;

17: end for

18: end for

19: end for
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Algorithm 3 CO-PILOT

1: Input: G, p0, T , τmax, ϵ, b

2: Output: RL agent’s policy π, planning policy πp

3: Initialize: π, πp, Dτ by Euclidean distance

4: while not converge do

5: Sample a task (s0, g) with s0 ∼ p0(s) and g ∈ G;

6: for episode = 1, 2, . . . , b do

7: Algorithm 0: top-down construction of a sub-task tree g0:T , train plan-

ning policy πp based on Dτ ;

8: Algorithm 2: bottom-up traversal of the sub-task tree g0:T , train RL

policy π, collect Dτ ;

9: end for

10: end while

are easier so the agent by larger chance can receive non-zero rewards. Given a task

(s0, g), the curriculum guides the agent first to learn how to finish it by following a

detailed planning path of many sub-goals. It then gradually increases the hardness

by halving the number of sub-goals until recovering the original task. Therefore,

it critically alleviates the sparse reward problem that usually fails or considerably

slows down RL on long-horizon tasks.

A prominent advantage and difference of CO-PILOT compared to other methods

that combine RL and planning is to repeat the top-down construction and bottom-

up traversal for multiple (b in Algorithm 3) episodes on each task (s0, g). Thereby,

the RL agent and the planning policy are fully optimized for each other’s training,

forming an adaptive curriculum without human engineering. The complete proce-

dures of CO-PILOT are listed in Algorithm 3.
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3.4 Empirical Evaluation

We evaluate CO-PILOT on three types of tasks: a maze and two continuous

control tasks for robotic navigation. CO-PILOT outperforms several strong base-

lines of RL and planning, as well as methods combining RL and planning, on both

sample efficiency and final success rate.

3.4.1 Environment Setup

Maze environment: We build a maze environment of size 1 × 1 containing

square obstacles(obstacle states) and free-to-reach states as shown in Figure 3.4.

For each benchmark(the design of benchmark refer to the caption of Figure 3.1),

We randomly sample 300 pairs of (s0, g) for training and 100 pairs for test from

a uniform distribution on the coordinate range and remove the ones in obstacles.

It takes an RL agent ≥ 200 steps on average moving from s0 to g, which is a

long-horizon task. The task succeeds if the agent reaches B(g, ϵ = 0.025) without

collision. We design three benchmark environments in Maze (as shown in Figure 3.2).

Three environments differ in the choice of robots:

• Workspace planning (2d): The robot is abstracted with a point mass mov-

ing in the plane. Without higher dimensions, this problem reduces to planning

in the workspace.

• Rigid body navigation (3d): A rigid body robot, abstracted as a thin

rectangle, is used here. This robot can rotate and move freely without any

constraints in the free space.

• 3-link snake (5d): The robot is a 5 DoF snake with two joints.To prevent

links from folding, we restrict the angles to the range of [−π/4, π/4].

Mujoco Ant-v1: We evaluate CO-PILOT and baselines in the Mujoco environ-



43

ment with an Ant-v1 agent (Quadruped Tassa et al. (2018)) with an 8-dim action

space. As shown in Figure 3.1 (c), we train the agent to navigate in the maze with-

out self-rotation and collisions to the wall. We randomly sample 50 (s0, g) pairs for

training and 10 pairs for test.

BipedalWalker: The BipedalWalker environment (Brockman et al., 2016) of-

fers a new perspective of tasks rather than maze type. The learning agent, embodied

in a bipedal walker, receives positive rewards for moving forward and penalties for

torque usage and angular head movements. Agents are allowed 2000 steps to reach

the other side of the map. The environment producing tracks paved with stumps

varying by their height parameter µh and an independent sampled spacing parameter

∆s ∈ N (µh, 0.1). We design three agents with different length of legs (as shown in

figure 3.3) for each benchmark. Performance is evaluated periodically by sampling 10

tracks in each track distribution of a fixed evaluation set of 50 distributions sampled

uniformly in the parameter space. We measure the percentage of mastered tracks.

Baselines: In the maze environment, we compare CO-PILOT with (1) three

planning methods: RRT* (Karaman and Frazzoli, 2011) (Rapidly-exploring Ran-

dom Trees), NEXT (Chen et al., 2020a) (Neural Exploration-Exploitation Trees) and

SGTPG (Jurgenson et al., 2020b) (Sub-Goal Tree Policy Gradient); three model-free

RL algorithms: valued-based method SAC (Haarnoja et al., 2018b), policy-based

method PPO (Schulman et al., 2017) (in CO-PILOT, we use the former to train

the RL policy and the latter to train the planning policy) and HER (Andrychowicz

et al., 2017b), which improves goal-conditioned RL’s efficiency by re-labelling the

visited states as pseudo goals; and (3) a RL-planning hybrid method: SoRB (Ey-

senbach et al., 2019a), which trains planning strategies based on the experiences

of a given RL policy. For fair comparisons, we use SAC as the RL algorithm in

both CO-PILOT and SoRB. In the Mujoco environment, we compare CO-PILOT

with SAC, SoRB, and hierarchical RL (Hejna et al., 2020). In BipedalWalker, we
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compare CO-PILOT with SAC and SoRB.

env steps(1e6)
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e.
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(a) (b) (c) (d)

Figure 3.1 : (a) Success rate on test tasks of Maze environment. We train three

types of agents with different DoF (degrees of freedom): point mass (2D), rigid body

(3D), and 3-link snake (5D). (b) Success rate of CO-PILOT with sub-goal tree of

different depth K on the same test set in (a). (c) Ant-v1 agent and the associated

environment in Mujoco. (d) Average return of Ant-v1 in (c).

3.4.2 Training Details and Hyperparameters

In CO-PILOT, we initialize the dataset Dτ with 50,000 tuples of (g, g′, τg,g′)

with τg,g′ being the Euclidean distance. We use SAC to train the RL policy and

PPO (Schulman et al., 2017) to train the planning policy in Line 8 of Algorithm 0,

since the former encourages exploration and the latter is simple and efficient. We set

a reward of 1 (1000, 200) to each task (s0, g) in Maze (Mujoco,BipedalWalker). Ac-

cording to Eq. (3.6), the reward of each sub-task in layer-k is 1/2k (1000/2k, 200/2k).

For planning cost, if the segment between (gt, gt+1) trespasses any obstacle, we add

a penalty of 10 to τ(gt, gt+1) in Eq. (3.11). We linearly reduce α in Eq. (3.11) from

0.9 to 0.1 throughout every episode. For planning policy training, we apply PPO

with a trust region of ε = 0.2 and use Adam optimizer (Kingma and Ba, 2015) with

a learning rate of 0.005. For RL training with SAC, we use its default hyperparame-

ters. In both environment, we set T = 25 (ablation study of different T in Figure 3.1

(c)) and b = 5 (further increasing it does not improve the performance). We set
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τmax = 25, τmax = 200 and τmax = 2000 for Maze, Mujoco and BipedalWalker respec-

tively. For efficiency, in Line 5 of Algorithm 3, we instead sample a mini-batch of

30 (Maze) or 50 (Mujoco) pairs of (s0, g). The (s0, g) is fixed in BipedalWalker, we

randomly sample 20 tracks in each track distribution from the same 50 distributions

mentioned in section 3.4.1.

(a) (b) (c)

Figure 3.2 : Three different agents in Maze environment. (a) 2d workspace, (b)

Rigid body, (c) 3-link snake. The deep brown agent shows when the agent is around

the initial state. The light brown agent shows the actual RL agent navigation

trajectory. Yellow point and blue point represent for the initial state s0 and goal

state g respectively.

3.4.3 Hyperparameters in CO-PILOT

The settings of the hyperparameters are known as the key for the success of an

RL algorithm. Thus, we list the hyerparameters of CO-PILOT in Maze environment

and continuous control environment in table 3.1 and table 3.2 respectively.

3.4.4 Main Results

In Figure 3.1 (a), we compare the performance of CO-PILOT with all the base-

lines on the test tasks of the Maze environment. CO-PILOT achieves the highest

success rate across all benchmarks and significantly outperforms SAC and SGTPG.

Figure 3.4 (a)-(c) report how the success rate of all methods change during training
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Table 3.1 : Hyperparameter of SAC in Maze environments

Parameter Value

optimizer Adam

Timesteps 1.8×106

learning rate 3 · 10−4

discount (γ) 0.99

replay buffer size 106

number of hidden layers (all networks) 2

number of hidden units per layer 256

number of samples per minibatch 200

nonlinearity ReLU

target smoothing coefficient (τ) 0.005

target update interval 1

gradient steps 1

as the number of interaction steps with the environment increases. We limit the

total environment steps of all methods ≤ 1.8× 106 except for NEXT (since NEXT

requires the pre-training of RRT*). In Figure 3.4 (a), CO-PILOT and SGTPG

perform similarly in the early training period because the cost data collected by

the RL agent do not contain sufficient information to train a powerful path-planner

and the inaccurate Euclidean distance dominates the cost c(·, ·) in Eq. (3.11). The

performance of SoRB and SAC are similar because SoRB needs to pre-train the RL

policy at first when no planning is required. SoRB surpasses SAC during the later

stages. NEXT also needs to pre-train RRT* before applying self-improving training,

so we do not see the change of cost and collision checks for NEXT during the earlier

stages. The comparison between CO-PILOT with SAC demonstrates the significant
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Table 3.2 : Hyperparameter of SAC in continuous control environments

Parameter Value

optimizer Adam

Timesteps 3×106

learning rate 5 · 10−4

discount (γ) 0.99

replay buffer size 106

number of hidden layers (all networks) 2

number of hidden units per layer 256

number of samples per minibatch 256

nonlinearity ReLU

target smoothing coefficient (τ) 0.005

target update interval 1

gradient steps 1

improvement brought by the learned planner to RL.

The average return on Mujoco tasks is shown in Figure 3.1 (d). Furthermore, the

percentage of mastered environments on BipedalWalker is shown in Figure 3.3. For

simplicity, we denote Hejna et al. (2020) as HRL. SoRB and HRL start later because

the RL policy is under pre-training. The experimental results show that CO-PILOT

achieves much better sample efficiency than all the baselines, including SoRB. The

final performance is comparable with SoRB but significantly outperforms SAC and

HRL(Mujoco).

CO-PILOT with sub-task tree of different depth K: In Figure 3.1 (b),

we evaluate 5 different depths for the sub-task tree in CO-PILOT, with all the rest
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(a) Short agents (b) Default agents (c) Quadrupedal agents

Figure 3.3 : Main results and comparison in BipedalWalker. The mean per-

formance (32 seeded runs) is reported together with the standard deviation (shaded

areas).

hyperparameters fixed. It shows a trade-off between RL and planning, i.e., a deeper

sub-task tree can provide denser rewards and more detailed guidance from sub-tasks,

hence improving the efficiency of RL, but it also makes training the planning policy

more challenging. In this experiment, the best trade-off is achieved when depth

K = 5.

3.4.5 Case Study: A Close Look of Mutual Training in CO-PILOT

To understand the mutual training of CO-PILOT in the experiments, in Fig-

ure 3.4 (d), we visualize how a sub-task tree evolves over episodes in Algorithm 3,

where the sub-goal paths at layer-2, 3, 4 generated in Episode-1, 3, 5 for the same

task (s0, g) are reported. Each maze map contains a path from a layer in an episode

and the histogram above it reports the time cost of RL for completing each sub-task

on the path. We are particularly interested in two questions: how does planning

guide RL by sub-tasking? How does RL agent’s cost affect the planned paths?
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Train πp using RL agent’s time cost data. In Episode-1, the sub-goal paths

of all the three layers are too close to some obstacles or even trespass some others and

thus cannot provide reliable guidance for the RL agent. The Euclidean distances

between consecutive sub-tasks on a path are almost equal but the corresponding

time costs shown in the histograms vary a lot, which is not preferred since some

sub-tasks are too hard, but some are too easy for training the RL agent. Hence,

the planning policy is not fully optimized to produce cost-efficient paths for the RL

agent.

In Episode-3, the generated sub-goals paths become more adaptive to the envi-

ronment. In all layers, we can see that the planner tends to generate longer seg-

ments for places with fewer nearby obstacles and collision risks while adding more

fine-grained sub-tasks to get around the corners. This phenomenon implies that the

planning policy is learning to produce better and more adaptive guidance with dense

rewards. However, due to the limited number of sub-goals per layer, the paths in

layer-2, 3 can still be improved if interpolating more sub-goals. Nevertheless, on the

deepest layer-3, the planned path is already collision-free and thus can provide an

accurate reward shaping for the RL agent.

In Episode-5, the planning paths are almost optimal, especially for the one in

layer-4, which keeps distant from the obstacles of both sides in the maze. Moreover,

RL agent’s time costs shown in the histograms are not only much lower than those

of the previous two episodes but also have similar values across different sub-tasks.

Hence, the planning policy is well optimized to generate cost-efficient paths for RL.

Planner guides RL by sub-tasking. In Episode-1, the time cost for the RL

agent to finish the whole task is much higher than that in the later episodes due to

the poor RL policy at the beginning. In contrast, the time cost drastically decreases

in Episode-3 when compared to Episode-1, which indicates that the RL policy is
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significantly improved under the guidance of planning. In Episode-5, the time cost

for completing each sub-task of layer-3, 4 further decreases when compared to the

former episodes and the costs becoming more uniform across sub-tasks, implying

that the RL policy learns to complete the planned sub-tasks more efficiently.

Therefore, both planning and RL are improved via the mutual training scheme in

CO-PILOT and fully optimized to facilitate the training of the other. In particular,

the planner learns to produce cost-efficient paths of different amounts of sub-tasks

to guide RL with dense rewards. It does not depends on any pre-defined metric but

is adaptive to the RL policy. Moreover, it does not need to produce a step-by-step

plan: the RL agent can learn efficiency under the guidance of a few interpolated sub-

tasks by the planner. Hence, the mutual training between the two policies overcome

the bottlenecks of training each policy separately. In addition, the easy-to-hard

curricula for both planning and RL considerably improves their training efficiency.

3.5 Discussion

In this chapter, we introduce CO-PILOT, a mutual learning framework between

RL and “learning to plan” policies, which provides a principal solution address-

ing the problems of both RL and planning when applied to long-horizon tasks. In

CO-PILOT, each policy produces dense feedback on a curriculum of sub-tasks to

train the other more efficiently and is optimized to assist the other’s training. The

planner learns to decompose a long-horizon task into a few sub-tasks at first and

then gradually increases the interpolated sub-tasks, forming an easy-to-hard cur-

riculum to train the planning policy. On the other hand, this top-down curriculum

recursively builds coarse-to-fine sequences of sub-tasks. By training the RL agent

to complete easier sub-tasks on finer sequences of bottom layers at first and then

gradually moving to harder ones in top layers, the RL agent can be efficiently trained

following an easy-to-hard curriculum. In experiments, CO-PILOT significantly im-
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proves the sample efficiency and success rate on different types of tasks especially

on long-horizon tasks with sparse rewards.
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k=3

k=4

k=2

(a)

(b)

(c) (d)
Episode=1 Episode=3 Episode=5

Figure 3.4 : Case study results. (a) Success rate. (b) Average path length

(normalized by RRT*) in terms of Euclidean distance. (c) Average collision checks

(normalized by RRT*) as every method increases its interaction steps with the

environment. CO-PILOT achieves the best sample efficiency among all methods.

(d) Visualization of the sub-goal paths on layer-k = 2, 3, 4 of the sub-task tree

in Episode-1, 3, 5 for a task with initial state s0 (red dot) and goal g (blue dot)

in Maze. Each histogram reports the RL agent’s cost τgt,gt+1 for sub-tasks along

the path. As episode increases, planning paths across all layers are improved, and

on each path the costs of all sub-tasks reduce towards a similar value, though the

Euclidean distances are still different, since the planner learned to produce more

sub-tasks near complicated obstacles.
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Chapter 4

Adversarially Generated Environments for RL

4.1 Basic Settings

We recall the collaboratively training scheme introduced in sec. 3.1 of Chapter. 3.

Given a long horizon task (s0, g) with initial state s0 and final goal g, we recursively

apply a path planning policy πp(g|gi, gj) to interpolate sub-goals between s0 and

g. In particular, given two sub-goals gi and gj, sampling from πp(g|gi, gj) yields a

sub-goal interpolated between gi and gj. Hence, we can generate a sub-goal tree

g0:T for (s0, g) by Eq. 3.10. The goal of path planning is to generate cost-efficient

sub-tasks for the RL agent, so we train πp by minimizing the time cost c(gk
0:2k

) of

the sub-goal trajectory gk
0:2k

on each layer-k following Eq. 3.7

4.1.1 Adversarial-Environment Generator (EG) applied to each Sub-

task

Assume a k-level sub-task tree at time t, given the next sub-task (gkt , g
k
t+1) in

layer-k, EG policy πe adversarially modifies the environment Ek
t−1 of previous sub-

task (gkt−1, g
k
t ) to be more challenging to the RL agent, i.e., sampling subtask-t’s

environment Ek
t ∼ πe(E|skt , g) where skt ≜ (Ek

t−1, g
k
t , g

k
t+1) denotes the state of EG at

subtask-t. As an adversary to the RL agent, the reward function for EG is defined

as re(s
k
t , E

k
t |g) ≜ −1 {r(st, at|g) = 1} where (st, at) refer to the state-action of the

RL agent at the end of subtask-t. Thereby, EG receives the minimum reward −1

when the RL agent successfully finishes subtask-t and otherwise the reward is 0. We

can also define an MDP for EG, which mainly differs from the RL agent in that each
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step corresponds to a sub-task so EG is only allowed to modify the environment at

the beginning of each sub-task.

Similar to goal-conditioned RL defined in Sec. 3.1.1, the learning objective of EG

is to maximize its expected return over different tasks (s0, g), i.e., maxπe E(s0,g)[Eπe(R
e
0)]

where the return is defined as Re
t =

∑K
k=1

∑2k

i=t γ
i−t
e re(s

k
t , E

k
t |g) with discount factor

γe ∈ [0, 1]. By defining the corresponding value function Ve and action-value func-

tion Qe as in Sec. 3.1.1, we can apply any RL algorithm to train EG, e.g., we use

A2C (Mnih et al., 2016) for the experiments.

4.2 Environment Adversarial sub-Task Tree Curriculum (EAT-

C)

4.2.1 Auto Curriculum Generation and Mutual-Boosting

In EAT-C, we need to jointly train three policies, i.e., the path-planner πp and

EG policy πe that generate tree-structured curricula of sub-tasks, and the RL policy

π to accomplish the targeted tasks. At the first glance, training three policies can

be more difficult than training one RL policy and requires to collect more data via

interactions. Moreover, it is challenging to directly train a path-planner generating

dense sub-goals and EG can also suffer from sparse rewards on long-horizon tasks.

However, EAT-C allows the three policies help each other’s training via a mutual

boosting mechanism, where each policy is progressively trained on a curriculum of

easy-to-hard sub-tasks using dense feedback from other policies on the sub-tasks.

By iterating this mutual-boosting on sub-task curricula, EAT-C significantly im-

proves the training efficiency of each policy and results in an RL agent with better

generalization to unseen tasks and perturbed environments.

In each episode, we train the path-planner during its “top-down” construction

of a sub-task tree: it starts from learning to interpolate a few sub-goals between
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the given task (s0, g) and gradually moves to more challenging cases of generating

dense sub-goals in bottom layers of the tree. Since it aims to generate the most

cost-efficient path of sub-goals for the RL agent, we use the time cost of the RL

agent on those sub-tasks in the previous episode as training data, which provide

dense rewards to accelerate the training of the path-planner.

Given a constructed sub-task tree, we then train the RL policy and EG policy

by a “bottom-up” traversal of the sub-task tree, which naturally forms an easy-to-

hard curriculum for each policy. Specifically, both policies firstly learn from dense

rewards by finishing easier sub-tasks in bottom layers, where the RL agent only

needs to reach a nearby sub-goal and the EG is allowed to frequently modify the

environments between (s0, g). Due to the adversarial training between them, they

are not only learning from the environments but also from each other. As moving to

the top layers, the RL agent receives less guidance from fewer sub-tasks, while the

EG can only change the environment once in each long-horizon sub-task. Thereby,

they need to improve their policies learned on easier tasks for more challenging

tasks. As a result, the RL agent learns to adapt to different tasks and perturbed

environments, while the EG learns to In EAT-C, for each long-horizon task, we

iterate the above mutual-boosting training on new sub-task curricula re-generated

by the updated path-planner and EG for multiple episodes. This is an imitation of

human learning that repeatedly practicing the same complicated task in different

ways (e.g., different sub-tasking and perturbed environments). The path-planning

and adversarial modification of environments are complementary in constructing a

curriculum for more efficient RL: the former decomposes a hard task into easier

sub-tasks while the latter modifies them to be sufficiently challenging and diverse

so the RL agent can learn different skills with better generalization to unseen tasks

or perturbed environments.
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4.2.2 EAT-C Algorithm

Top-Down Planning of Sub-task Curriculum We provide the detailed pro-

cedure of the top-down construction of the sub-task curriculum and the update of

path-planner πp in Algorithm 0. For each layer-k from k = 0 to k = K, EAT-C

firstly updates the planning policy πp in line 4 by an RL algorithm using the time

cost data collected on sub-tasks up to layer-k from the previous episode’s bottom-up

training (i.e., Algorithm 5), and then recursively generates the sub-tasks on layer-k

for the current episode (line 5-8). Hence, the path-planner firstly learns to plan

coarse trajectories of fewer sub-goals in top layers and gradually increases the sub-

goals to form finer paths that can provide more guidance to RL in bottom layers.

Since we always use the latest time cost data from Dp for training, the planning

policy πp keeps being optimized to generate cost-efficient sub-task trajectories for

the latest RL policy π.

Algorithm 4 Top-Down Planning of Sub-task Curriculum

1: Input: (s0, g), T , planning policy πp and its training set Dp.

2: Output: tree structured sub-goals g0:T , πp

3: for k = 1, 2, . . . , K do

4: Apply an RL algorithm to minimize Jπp in Eq. (3.7) computed on time cost

data up to layer-k in Dp;

5: for t = 1, . . . , 2k−1 do

6: Generate the sub-goal gkt ∼ πp(g
k
t |gk−1

t−1 , g
k−1
t );

7: Add gkt , g
k−1
t into the trajectory gk0:T on layer-k;

8: end for

9: end for
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Bottom-Up Curriculum for RL and EG Given a sub-task tree generated by

Algorithm 0, EAT-C trains RL policy π and EG policy πe by following a bottom-

up traversal of the tree. As shown in Algorithm 5, it starts from learning easier

sub-tasks on the bottom layer-K and gradually moves to top layer-0 (line 4-12),

which recovers the original long-horizon task. In each layer, we reset the initial

state of the RL agent (line 5) and apply πe and π to a sequence of 2k sub-tasks

gk
0:2k−1

towards the final goal g (line 6-10), and then we update the two policies

using the experiences collected on these sub-tasks (line 11). On each sub-task, EG

adversarially perturbs the environment (line 7) and the RL agent is then applied to

accomplish this modified sub-task (line 8). If the RL agent fails and ends at a state

s, EAT-C recursively invoke the planning policy πp to add more sub-goals between

s and the sub-task’s goal to provide more detailed guidance to the RL agent until

it reaches the goal. This is described in line 9 and line 13-21.

EAT-C algorithm The complete procedure of EAT-C is introduced in Algo-

rithm 6. Given a long-horizon task (s0, g) (line 5), EAT-C iterates between the

top-down and bottom-up procedures in Algorithm 0-2 for n episodes (line 6-9) be-

fore moving to a new long-horizon task. Therefore, the planning policy πp and EG

policy πe are optimized to produce better curricula of sub-tasks to train the RL

agent to complete task (s0, g) while the RL agent learns skills for solving different

sub-tasks and generalizing to non-trivial changes of the environment.

4.3 Empirical Evaluation

4.3.1 Experiment Setup

In this section, we evaluate EAT-C and compare it with a broad range of RL

methods on three benchmarks, i.e., navigation and manipulation of a 6-point 2D

robot to push an object to a goal state, a 7DoF robotic arm control problem, and
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Algorithm 5 Bottom-Up traversal in EAT-C

1: Input: RL and EG policy π, πe, sub-goal tree g0:T , τmax, ϵ

2: Output: π, πe, Dp

3: Initialize: πp’s training set Dp ← ∅, RL’s replay buffer D ← ∅, EG’s replay

buffer De ← ∅

4: for k = K, . . . , 1, 0 do

5: Reset RL agent’s initial state to g0;

6: for t = 1, 2, 3, . . . , 2k do

7: EG modifies the environment Ek
t−1 to Ek

t ;

8: Apply RL agent to complete sub-task (gkt−1, g
k
t ), and store

(sτ , aτ , r(sτ , aτ |gkt ), sτ+1) to D(τ ⩽ τmax);

9: REACH(s, gkt );

10: end for

11: Update π and πe using samples in D;

12: end for

13: Procedure REACH(s, g):

14: if d(s, g) ≤ ϵ then

15: De ← De ∪ (sτ , bt, re(sτ , E
k
t |g), gkt );

16: Dp ← Dp ∪ (s0, sτ , τ), s0 ← sτ ;

17: else

18: Re-apply πp to interpolate temporary sub-goals for (gkt−1, g
k
t );

19: Repeat Line.8 with new generated sub-goal sequence;

20: REACH(s, g);

21: end if
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Algorithm 6 EAT-C

1: Input: p0, T , τmax, ϵ, n

2: Output: π, πp, πe

3: Initialize: π, πp, Dp

4: while not converge do

5: Sample a task (s0, g) with s0 ∼ p0 and g ∈ G;

6: for episode = 1, 2, . . . , n do

7: Algorithm 0: top-down construction of a sub-task tree g0:T , train plan-

ning policy πp based on Dp;

8: Algorithm 2: bottom-up traversal of the sub-task tree g0:T , train RL

policy π and EG policy πe, collect Dp;

9: end for

10: end while

three compositional tasks in a discrete space. In these experiments, we mainly focus

on their efficiency on long-horizon tasks and generalization to environments with

small changes. Moreover, we present an ablation study to evaluate the contribution

of each part in EAT-C. In addition, we provide case studies to analyze the planned

sub-task tree and the modified environment for each sub-task, which explains why

EAT-C can improve RL in several aspects.

2D pusher (Yamada et al., 2020). As shown in Fig. 4.5, this is a robot navi-

gation and manipulation task in a continues space: a 2D robot with a 4-joint arm

needs to firstly navigate to an object and then push it to a goal location within an

environment of multiple obstacles. We randomly sample diverse environments and

tasks for training and test from a uniform distribution. In 2D pusher, the agent

only receives reward when it navigates near the object or pushes the object to the

goal state.
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Discrete space tasks (Maxime Chevalier-Boisvert and Pal, 2018). We train and

test RL policies on three types of compositional tasks depicted in fig 4.3, i.e., hunting,

scavenging, and salad-making, as illustrated in Fig. 4.3.(a)-(c). The agent needs to

take two or three key steps to finish each task and only get reward when finishing

each key step. In EAT-C, the path-planner is applied to every two consecutive key

steps. EG perturbs the environment by moving objects including tree and stones.

7DoF robotic arm, To demonstrate that EAT-C can adapt to more complex

tasks, we conduct an experiment of controlling a 7DoF (degrees of freedom) robotic

arm (i.e., the one used in Jurgenson et al. (2020a)) to evaluate how EAT-C performs

in a complicated control task. We use MuJoCo as the simulator. In this experiment,

the robotic arm learns to avoid obstacles and reach a goal state (as shown in Fig. 4.1).

Baselines: We compare EAT-C with a broad class of RL methods having related

ideas to EAT-C: (1) ALP-GMM (Portelas et al., 2019b) that generates a curricu-

lum of diverse tasks with large progress for goal-conditioned RL; (2) POET (Wang

et al., 2019b) with two auxiliary agents for generating a curriculum of adversarial yet

solvable environments to accelerate RL; (3) Ecological RL (Co-Reyes et al., 2020)

that dynamically modifies the environment to improve non-episodic (and thus long-

horizon) RL without reset of the initial state; (4) A hierarchical RL method (Zhang

et al., 2021); (5) (Zhang et al.) trains the RL agent by modelling a goal proposal

curriculum that samples goals at the frontier of the set of goals that an agent is able

to reach. All these baselines and EAT-C need to invoke an RL algorithm as their

subroutine. For fair comparisons, we use Soft Actor Critic (SAC) (Haarnoja et al.,

2018b) in all evaluated methods for its stable and promising performance. All meth-

ods are not allowed to modify the environments during test since test environments

are assumed to be the realistic ones in which we deploy the RL agents.
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Figure 4.1 : 7DoF Robotic Arm in a training environment with randomly sampled

obstacles (those cyan cubes).

4.3.2 Detailed Evironment settings in EAT-C

2D pusher. The positions of the robot, object and goal are defined as prob, pobj,

and g, respectively, and T is the maximum number of episodes (i.e., the horizon). We

train EAT-C on 50 environments with the positions and sizes of obstacles randomly

sampled from uniform distributions. In each environment, we randomly sample 80

training tasks with different (s0, pobj, g), where s0 is the initial state, pobj is the state

of the object, and g is the goal state. Most evaluated policies in our experiments

need ≥ 250 steps to finish each task so they are long-horizon tasks. The rewards

are sparse since the agent only receives a reward when near the object or when

pushing the object and reaching the goal. In EAT-C, the path-planner generates

sub-tasks between (s0, pobj) and (pobj, g). For every sub-task, EG can perturb the

sizes and locations of at most three obstacles within pre-defined ranges. For the
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test, we randomly sample 30 new environments each having one randomly sampled

task. We simulate the environment of 2D pusher in Mujoco physics engine (Todorov

et al., 2012). An 2D-pusher agent with four joints can take actions of six dimensions,

two for navigation and the rest four for arm control. The map size is 1 × 1 so

both the x and y coordinates lie in (−0.5, 0.5). The x and y coordinates of goals

and objects are randomly sampled from uniform distributions of U(−0.35,−0.2)

and U(−0.15, 0.1), respectively. The initial state of the agent is randomly sampled

from uniform distribution of U(−0.05, 0.3). For obstacles, their initial coordinates

and sizes are randomly drawn from an uniform distribution, as explained in the

first row of Table. 4.1. We train 2D pusher using sparse reward: when the robot

reaches a vicinity of the object or the sub-goal state (||prob − pobj||2 ⩽ 0.05) the

agent will receive a reward= 150/2k, where k is the layer of the sub-task tree where

the sub-goal is located. Once the agent pushes the object to the goal state with

||pgoal−pobj||2 ⩽ 0.05, the agent will receive a one-time reward= 150; otherwise there

is no reward. By taking an action, EG can change the size and the location of 0 ∼ 3

obstacles near the agent. Assume that there are n obstacles in the environment,

and we represent each obstacle-i by its location (xi, yi) (2D coordinates) and size

(wi, hi) (width and height) as θi = (xi, yi, wi, hi). The action bt of EG is defined as

bt ≜ ∆θi = (∆xi,∆yi,∆wi,∆hi), ∀i ∈ [n]. (4.1)

In order to provide feasible and smoothly changing environments to RL along the

sub-task trajectory in each layer, and to prevent the environment generator from be-

ing too powerful and overly adversarial, it is important to restrict EG from changing

the environment too much at one time for each sub-task. Hence, in the experiments,

we constrain every dimension in an action of EG not to exceed some threshold, e.g.,

for xi, we apply

∆xi ← min{max{∆xi, βx · xmin}, βx · xmax}, (4.2)
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where βx ∈ [0, 1] and (xmin, xmax) is the valid range of x-coordinate. The above

environment parameterization can be easily extended to other environments so EAT-

C is a general and principal scheme that can be adapted to different environments.

Discrete space tasks. The environment for the three tasks is an N ×N grid.

There are 250 environments used for training and 100 environments for test, each

associated with one task. It is partially observed by the RL agent: the agent at each

state obtains a local egocentric view of a 5 × 5 grid around it, where the object in

each cell of the grid is represented by a C-dimensional one-hot vector (there are C

possible types of objects). The agent can pick up and carry one object at a time. It

can also combine two objects to construct a new one by putting a carried object onto

an existing object, e.g., it can combine wood with metal to make an axe. The RL

agent can take action such as moving in the cardinal directions, picking up an object,

and dropping an object. In discrete space tasks, the environment generator (EG)

can modify the environment by taking an action to move an object/obstacle. In

order to provide feasible and smoothly changing environments to RL along the sub-

task trajectory, and to prevent EG from being too powerful and overly adversarial,

each action of EG can only move every object/obstacle to an adjacent cell around

it.

7DoF Robotic Arm. In 7DoF robotic arm, both the training and test tasks

have 5 obstacles with different and randomly sampled location and size parameters.

The start-goal pair of each task are also randomly sampled. Both EAT-C and

curriculum RL methods (compared baseline methods) are able to modify exactly

the same parameters defining the location and size of each obstacle. We report the

success rate of reaching the goal state without collision and the collision rate as the

two metrics to evaluate EAT-C and all the baselines. After training, we evaluate

them on 100 new random tasks different from the training tasks.
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Environment Encoding of Baselines. The baselines in our experiments in-

clude two curriculum RL methods, i.e., ALP-GMM and POET, which both can

control some environment-dependent parameters for mutation and generation of

the training environments. For their fair comparisons to EAT-C, we set their

environment-dependent parameters exactly the same as the ones controlled by EG

in EAT-C. For 2D-pusher, as detailed in Table 4.1, the baselines control the same

four environment-dependent parameters as EAT-C. Each parameter is initialized

by sampling from a uniform distribution and each mutation step can modify it

by a small value if it is within the valid range. For the discrete space tasks, ALP-

GMM/POET can generate environments by sampling/mutating the location of each

obstacle/object, which is the same parameter controlled by EAT-C. The valid range

for location for each obstacle/object is (0, 1) and the mutation step size is 0.1.

Parameter Obstacle Obstacle Obstacle Obstacle

Type x-coordinate xi y-coordinate yi width wi height hi

Initial Range (−0.3, 0.3) (−0.3, 0.3) (0, 0.1) (0, 0.1)

Mutation Step (0.02, 0.02) (0.02, 0.02) (0.05, 0.05) (0.05, 0.05)

Minimal Value (−0.5,−0.5) (−0.5,−0.5) (0, 0) (0, 0)

Maximal Value (0.5, 0.5) (0.5, 0.5) (0.3, 0.3) (0.3, 0.3)

Table 4.1 : Environment-dependent parameters in baselines on 2D-pusher. Each

baseline generates an environment of obstacles by uniformly sampling the four pa-

rameters defining each obstacle from the corresponding ranges. It starts from the

initial ranges below and can take a mutation step one time to change the lower and

upper bounds of each parameter’s range, if the two bounds do not exceed their min-

imal and maximal values listed below. The two numbers in each tuple (·, ·) below

corresponds to the lower and upper bound of the range.
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4.3.3 Model Architecture and Hyperparameters in EAT-C

We use the same neural network architecture (i.e., an MLP) for the RL agent

and the same RL algorithm (SAC) in all the experiments of all the methods.

Besides the reward of completing a task/sub-task, it is common in MuJoCo

and many other simulators to also issue a small instantaneous reward after taking

any action in order to encourage exploration. Moreover, different methods usually

need to re-scale this exploration reward because they may need different levels of

exploration. In our experiments, we tune the re-scaling factor for every method to

get its best performance. Specifically, we chose 0.3 for EAT-C/ALP-GMM/ POET

and 8.0 for hierarchical RL/value disagreement/Ecological RL. An explanation of

applying a smaller factor for the former three methods is that they already have

some strong exploration strategies and a larger factor might downweigh the task

reward and thus results in performance degeneration.

Moreover, we use the same coefficient α of the entropy term in SAC’s objective

for all methods (they all use SAC as the RL algorithm). The coefficient α controls

the degree of exploration and is automatically tuned. A complete list of hyperpa-

rameters for SAC in 2D-pusher tasks is given in Table 4.2. They are exactly the

same hyperparameters defined in in SAC paper (Haarnoja et al., 2018b) and in Table

1 of their Appendix D except that we choose different values for them in 2D-pusher.

In the discrete space tasks, the environment is a 10 × 10 grid and the 5 × 5

partial observation (as mentioned in A.2) of the RL agent can be represented as a

5×5×C one-hot tensor. We flatten this tensor to a vector and process it by an MLP

with three hidden-layers whose output dimensions are (64, 64, 32), respectively. We

apply another MLP with three layers of output dimensions (16, 16, 16) to process the

inventory observation. The two MLPs’ outputs are then concatenated and processed

by an MLP with two hidden layers of output dimensions (16 , action dimension)
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that outputs a probability distribution over all possible actions. We use ReLU as

our nonlinear activation functions in all MLP models except their last layer, which

uses a softmax function to compute the probability of taking each action. In EAT-

C, the RL agent and EG share the same observations as well as the first two MLP

models but they use different MLP models to output the actions. A complete list

of hyperparameters of SAC in the discrete space tasks is given in Table. 4.3.

Table 4.2 : SAC hyperparameters in EAT-C (2D-pusher)

Parameter Value

Optimizer Adam

Learning rate 3.0× 10−4

Discount factor (γ) 0.99

Replay buffer size 1.0× 106

Number of hidden layers for all networks 2

Number of hidden units for all networks 400

Minibatch size 256

Nonlinearity ReLU

Target smoothing coefficient (τ) 5.0× 10−3

Target update interval 1

Network update per environment step 1

Entropy target − dim(A)

4.3.4 Main Results

We report the performance of EAT-C and all baselines evaluated on the test

tasks in Fig. 4.2(a) for 2D pusher, in Fig. 4.3(d)-(f) for the discrete space tasks and

in Table. 4.4. In all experiments, EAT-C outperforms all other baselines by a large
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Table 4.3 : SAC hyperparameters in EAT-C (discrete space tasks)

Parameter Value

Optimizer Adam

Learning rate 5.0× 10−4

Discount factor (γ) 0.99

Replay buffer size 1.0× 106

Number of hidden layers for all networks 3

Number of hidden units for all networks 256

Minibatch size 256

Nonlinearity ReLU

Target smoothing coefficient (τ) 5.0× 10−3

Target update interval 1

Network update per environment step 1

Entropy target − dim(A)
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margin on both the learning efficiency and the final generalization performance to

test tasks in new environments. In most experiments, baselines adopting a curricu-

lum of environments, i.e., ALP-GMM, POET, and Ecological RL, performs worse

than EAT-C but better than the other baselines without changing environments

for training. This indicates that building a curriculum of training environments is

essential to improving RL’s generalization and robustness to small changes in the

deployed environments. The final performance on 7DoF robotic arm control prob-

lem shown in Table. 4.4 indicates that EAT-C improves the RL policy in complex

tasks.

(a) Main result (b) Abla�on Study

Figure 4.2 : (a) report the success rate (mean±std averaged over 6 random seeds) of

EAT-C and baselines on test tasks in 2D Pusher environments. (b) Ablation study

of EAT-C on 2D Pusher tasks.

Among the three compositional tasks in Fig. 4.3, hunting and scavenging contain

a moving object, i.e., the deer and the predator, which require the RL agent to

adapt to the changes of their locations. On these two tasks, EAT-C exhibits more

advantages over other baselines than on the salad-making task, which does not

contain any moving object. Therefore, EAT-C enables RL to learn to adapt to

changes in the environment efficiently.
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Hun�ng
Step 1: Pick up axe
Step 2: Hunt deer with axe
Step 3: Eat food

Scavenging
Step 1: Evade chasing 
              predators
Step 2: collect food

Salad-Making
Step 1: Collect carrot
Step 2: Collect le�uce 
Step 3: Make salad

(a) Hun�ng (b) Scavenging (c) Salad-Making

(d) Main result (Hun�ng) (e) Main result (Scavenging) (f) Main result (Salad-Making)

Figure 4.3 : (a)-(c) illustrate the 2-3 key steps for completing each task. In Scav-

enging, the agent will have 2 points when it collects food each time. (d)-(f) report

different methods’ performance (mean±std over 10 random seeds) on multiple test

tasks.

Methods Average Collision Rate Success Rate

EAT-C 0.22 ± 0.05 0.873 ± 0.027

ALP-GMM 0.34 ± 0.07 0.524 ± 0.092

POET 0.42 ± 0.07 0.544 ± 0.084

SGT-PG 0.25 ± 0.02 0.772 ± 0.014

Table 4.4 : Main results for the experiments on 7DoF robotic arm. In more complex

control tasks, EAT-C achieves the best success rate in completing test tasks, and

has the lowest possibility of collision.
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Analysis on main results. Refer to the results reported in Fig 4.2, Fig 4.3,

and Table 4.4, by comparing the methods with environment changed, we notice

that controlling the difficulty of the modified environments is critical to earlier-

stage learning efficiency. In particular, both EAT-C and POET trains another agent

(e.g., the path-planner in EAT-C and the antagonist agent in POET) to control the

hardness of the training tasks matching the capability of the RL agent, so their

earlier-stage improvement than others. In contrast, the environments selected in

ALP-GMM might be too challenging and the ones modified by POET might be

too easy, leading to poorer efficiency in earlier stages. Although these methods are

designed to train RL policies that can adapt to different environments or tasks, only

EAT-C trains a path-planner to decompose a long-horizon task into a curriculum of

easy-to-hard sub-task sequences for training. The guidance of path-planner and its

curriculum plays a critical role in outperforming these baselines.

4.3.5 Ablation study

Albation study - components in EAT-C. EAT-C jointly trains a path-

planner and an environment generator (EG) to produce a curriculum of sub-tasks

to improve RL. Hence, we conduct two thorough ablation studies of how the per-

formance changes if removing each component from EAT-C under different train-

ing/test conditions. In particular, we compare the original EAT-C with three vari-

ants, i.e., EAT-C with path-planner removed, EAT-C with EG removed, and SAC

(with both removed), on the 2D Pusher tasks. Since the last two variants are not

trained on perturbed environments, for fair comparisons, we use the same envi-

ronment for both training and test and only create new test tasks by sampling

(s0, sobj, g) in Fig. 4.2(b).

To evaluate the generalization and robustness, which are the advantages due to

the adversarial environment generator, we conduct an ablation study that evaluates
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different methods on multiple new random environments during the test phase and

report the test performance in Table. 4.5.

Test Setting Multiple New Random Environments Training Environment

EAT-C 80.24 ± 12.25 92.04±6.49

EAT-C (no EG) 42.23±10.34 85.47±9.12

EAT-C (no Planner) 27.58 ± 14.67 46.02±10.3

SAC 20.83 ± 7.24 39.62 ± 12.25

Hierarchical RL 22.04 ± 10.44 68.27 ± 6.99

Table 4.5 : Success rate on test tasks in random environments and training envi-

ronment. Different from the ablation study in Fig. 4.2(b), we evaluate EAT-C and

baseline methods on multiple new random environments during the test phase. The

results demonstrate that EG in EAT-C can improve the generalization and robust-

ness of RL policy.

When the path-planner is removed from EAT-C, we no longer have any easy-to-

hard curriculum of sub-tasks to train the RL agent or EG and they can only learn

inefficiently from the original long-horizon tasks. The adversarial environments gen-

erated by EG make tasks for RL even harder and unsolvable. Hence, we can observe

that, in Fig.4.2(b), it only completed 50% of the test tasks within 1.6×106 envi-

ronment steps, compared to 90% of the original EAT-C. This phenomenon becomes

more obvious when evaluating on random environments (27.58 vs. 80.24 in Ta-

ble. 4.5). This indicates that the plan-planner and its generated sub-task tree are

critical in creating an effective curriculum for RL.

When EG is removed from EAT-C, we still have the curriculum of sub-tasks to

train the RL agent, but some sub-tasks might be too trivial or redundant to provide

informative feedback for improving the RL agent. This results in poorer efficiency in
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earlier-stages compared to the original EAT-C with an EG: in Fig. 4.2(b), it reaches

80% success rate after 0.84×106 interaction steps instead of 0.73×106 steps required

by the original EAT-C. Although ETA-C without EG can eventually achieve a com-

parable success rate at the end of training, the learned RL policy cannot generalize

to diverse environments (42.23 vs. 80.24, in Table. 4.5). During later stages, the

success rate fluctuates unstably over time, while EAT-C with an EG performs more

robustly due to the adversarial environments used for training. Moreover, EAT-C

significantly improves SAC by a large margin via running SAC on an automatically

generated curriculum of sub-tasks, which implies the importance of curriculum on

improving RL’s efficiency.

Analysis on ablation study: To evaluate the generalization and robustness,

which are the advantages of EAT-C due to the adversarial environment generator

(EG), we evaluate different methods on multiple new random environments

during the test phase. This is different from the ablation study in Fig. 4.2(b),

which evaluates all methods on the fixed training environment. The new results

show a large gap (80.24 vs. 42.23) between EAT-C and EAT-C (remove EG). This

demonstrates that EG is important to improving the generalization and robustness

of the RL policy. In the training environment (non-random) used in our original

ablation study of Fig. 4.2(b), Hierarchical RL (HRL) does improve the performance

of the default RL algorithm (SAC) on long-horizon tasks, i.e., 39.62 (SAC) vs. 68.27

(HRL). However, in random and unseen environments, HRL generalizes much poorer

than EAT-C.

Ablation Study: Whether EG will make reward more sparse? In EAT-

C, EG can improve the learning efficiency of the RL agent by adversarially mod-

ifying the environment. This may raise two essential questions: (1) whether EG

could make the environment more reward sparse? (2) whether planner could always

generate infeasible sub-goals? To answer these questions, in Fig. 4.4, we report the
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Test Setting Multiple New Random Environments Training Environment

EAT-C 80.24 ± 12.25 92.04±6.49

EAT-C (remove EG) 42.23±10.34 85.47±9.12

EAT-C (remove Planner) 27.58 ± 14.67 46.02±10.3

SAC 20.83 ± 7.24 39.62 ± 12.25

Hierarchical RL 22.04 ± 10.44 68.27 ± 6.99

Table 4.6 : Ablation Study Results (larger version of Table. 4.5)

average time-cost that the agent needs to complete each sub-task in layer-3 of the

sub-task tree.

• In earlier stages when πp and the RL agent are not well trained, πp may gener-

ate hard sub-tasks. However, after a little training on the sub-task curriculum,

πp is trained to generate a minimum-cost path for the RL agent and the ca-

pability of the RL agent to finish the sub-tasks is also improved.

• We apply EG to simple sub-tasks that are optimized to be simple in EAT-C

(via optimizing the planner) for the RL agent. The goal of EG is to avoid

learning similar and easy sub-tasks repeatedly, which cannot provide informa-

tive feedback to RL even if the reward is dense. On the other hand, we set

several restrictions to avoid over-adversarial environments.

Ablation Study: What if EG generate unfeasible environments? Con-

sidering that modifying/generating environments will result in unfeasible ones, we

conduct connectivity check on the modified/generated environments for EAT-C

(Line.7, Algorithm. 2) and baseline methods. The connectivity test is common

in navigation as well as many complicated and realistic environments/tasks (Francis

et al., 2020; Yingjun and Xin-wen, 2019). For example, in maze tasks like 2D-pusher,

modifying the obstacles easily results in unsolvable environments. Whether to apply
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Figure 4.4 : Average time-cost of the RL agent to complete a sub-task from layer-3

of the sub-task tree. As the training proceed, time-cost that the agent needs to

complete each sub-task decreases significantly, indicating that πp does not propose

infeasible goals, and EG does not make the reward more sparse.

the test is a property of an environment/task instead of a limitation of our method

only: to avoid wasting computation on unsolvable ones, most methods adopt the

connectivity test by default when applied to such an environment/task. For some

simpler environments/tasks, e.g., BipedalWalker mainly used in the original ALP-

GMM and POET paper, connectivity test is not required by any method. However,

as we show in the table 4.7, ALP-GMM and POET generate more unsolvable envi-

ronments than EAT-C when applied to 2D-pusher.

Removing the connectivity test will not heavily change the final training results

because the agent gets no effective reward from unsolvable environments. However,

removing the test does affect the efficiency because the agent has to waste time

on unsolvable environments. As the new experiments we will show later, EAT-C

generates fewer unsolvable environments than other baselines, so removing the test

will not change the advantage of EAT-C on training efficiency.

Due to the nature of the environments in this paper, we applied the connectiv-

ity test to every method evaluated, so the comparison is fair to all methods. To
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Env. Steps 2.0 million 8.0 million 10.0 million

EAT-C 6.046 % 2.015 % 1.131 %

POET 10.889 % 2.510 % 1.586 %

ALP-GMM 13.740 % 3.490 % 1.697 %

Table 4.7 : Results of EAT-C and curriculum RL methods generating unfeasible

environments during training. Due to the low fail possibility of generating unfeasible

environments, removing connectivity check will not heavily change the final training

results.

evaluate how these methods’ efficiency is affected by the removal of the connectiv-

ity test, in the table below, we report the percentage of unsolvable environments

generated/sampled by different methods at different stages of the training. It shows

that (1) the unsolvable environments generated by all the three methods drastically

decrease to < 2% after 10 millions steps so they only affect the efficiency of early

training stages; (2) EAT-C generates much less unsolvable environments than other

baselines so it is still more efficient when the connectivity test is removed.

Ablation Study: What if combine hierarchical RL with other curricu-

lum RL method? One main difference between EAT-C and other curriculum

RL that can also modify the environments is: EG in EAT-C locally modify

environments rather than change the entire environment once. Training

an environment generator (EG) to locally modify environments for a curriculum of

sub-task is easier and results in more efficient learning because:

• EG does not need to create a curriculum or fully explore the whole environment

space, which is highly expensive and challenging in other environment design

methods;
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• Generating does NOT add complexity compared to other environment design

methods. On the opposite, it REDUCES the complexity because easier sub-

tasks can provide denser and more informative feedback than the original

long-horizon task.

We conduct an empirical experiment to illustrate the advantages of the designing

of EG in EAT-C and report in Table. 4.8. In this ablation experiments, we replace

EG in EAT-C with POET so both the path-planner and the RL agent are trained

within the environments generated/mutated by POET. This is “EAT-C (EG →

POET)” in table 4.8. Note that “EAT-C (EG → POET) maintains a hierarchical

structure of sub-tasks generated by the path-planner. Thus, it can also be regarded

as an example of combining hierarchical RL (HRL) with curriculum RL (POET).

Env. steps 2.5 million steps 5.0 million steps 7.5 million steps 10.0 million steps

EAT-C (original) 22.07± 10.55 39.76± 13.46 61.24± 16.13 69.45± 17.42

EAT-C (EG → POET) 16.44± 8.21 37.18± 14.25 49.94± 12.21 57.64± 10.93

POET 20.32± 11.35 39.22± 10.79 43.10± 14.54 50.23± 12.83

Table 4.8 : In this experiment, we compare the performance of training RL policy in

diverse environments mutated by POET (EAT-C (EG →POET)) with the original

EAT-C and POET. Note that EAT-C (EG → POET) has a hierarchical sub-task

structure generated by the path-planner. From the result, we prove that locally

modifying the environment (EAT-C) allows the RL agent learns more efficiently

than change the entire environment once.

The results show that applying some curriculum generated by existing methods

such as POET to HRL (i.e., EAT-C (EG → POET)) can finally outperform POET

but it is less efficient than POET in early stages (before 5.0 million steps), because of

the expensive and inefficient exploration of the environment space discussed above.



77

On the other hand, our original EAT-C significantly outperforms both POET and

EAT-C (EG→ POET) on learning efficiency and final performance. Hence, our sub-

task curriculum with adversarial environments is more efficient than some existing

curricula applied to HRL.

Ablation Study: Curriculum RL controls everything rather than en-

vironment only. An insight of curriculum learning method is that the generated

curriculum should be able to control everything during training (i.e., training tasks,

initial state, and training environments), which is possible to lead to a better perfor-

mance than control training environments only. Therefore, we conducted an ablation

experiments of curriculum RL (e.g., ALP-GMM) that can control everything (ini-

tial and goal states, obstacles, object) in 2D-pusher. Specifically, ALP-GMM can

control the location and size of the obstacles, the initial/goal state, and the location

of the object by sampling from the learned GMM. We report the performance of

the new “ALP-GMM (control all)” on test tasks over the course of training in

the table 4.9. We also include our previous results of EAT-C and ALP-GMM for

comparison. Note these two cannot control the original tasks, i.e., the initial state

s0 and the final goal state g.

This ablation experiments show that (1) EAT-C with partial control still sig-

nificantly outperforms ALP-GMM (control all), i.e., 81.45 vs. 61.05; and (2) ALP-

GMM (control all) can surpass ALP-GMM with partial control in the middle stage

of training ( 54.52 vs. 48.15 at 10.0 million env. steps) but its final performance

is worse (61.05 vs. 66.21). This can be explained by our analysis in the response

to your first comment: curriculum having total control over the assigned tasks can

introduce bias and distribution drift over the course of online RL. Therefore, ran-

domly drawing the assigned tasks but building a curriculum within each task, which

is how EAT-C works in our evaluation setting, is more robust.
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Environment Steps 5.0 million steps 10.0 million steps 15.0 million steps 20.0 million steps

ALP-GMM 18.33± 14.25 48.15± 11.34 62.35± 8.47 66.21± 9.35

ALP-GMM (control all) 34.28± 12.14 54.52± 14.33 58.67± 10.54 61.05± 12.45

EAT-C 39.76± 13.46 69.45± 17.42 78.15± 13.66 81.45± 11.35

Table 4.9 : Ablation Study Results in 2D pusher. In this ablation experiment, ALP-

GMM (control all) can control the location and size of the obstacles, the initial/goal

state, and the object’s location by sampling from the learned GMM. Results show

that even though the generated curriculum can control more, the performance is not

better.

4.3.6 An Emprical Study: How does EAT-C work?

To better understand how the path planner and EG help RL in EAT-C, in

Fig. 4.5, we visualize the sub-task tree (with layer k ∈ {0, 1, 2}) generated by the

path-planner and the EG’s modifications to the environment in each sub-task at

Episode 3 and Episode 6 (episode was defined in Alg. 6) for a 2D Pusher task

(s0, sobj, g). In the histograms, we also report the expected return of EG and the

time cost of the RL agent on each sub-task from the bottom layer k = 2 for the two

episodes.

The curriculum of sub-tasks generated by the path-planner. Each plot

on the tree describes a sub-task, where the arrow highlights the sub-task and the

yellow trajectory denotes the sequence of all sub-tasks of the layer. Comparing the

sub-tasks in different layers, bottom layers (e.g., k = 2) provides more guidance and

dense rewards to the RL agent while the sub-tasks in upper layers (e.g., k = 1) are

much harder. Comparing the same-layer sub-tasks generated in different episodes,

the sub-tasks in Episode 3 do not take all obstacles into account, e.g., some sub-task

sequences trespass obstacles and some sub-tasks are too close to obstacles, because
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- The object needed to move
- Goal state
- Obstacles
- The obstacle before modified by EG
- The inital state of the agent
- Sub-goals in EAT-C 
- The current sub-task the agent 
   needs to complete
-The RL agent

(a) Episode = 3 (b) Episode = 6

 Time-cost for each sub-task (k=2)Expected return of the Environment Generator (k=2)  Time-cost for each sub-task (k=2)Expected return of the Environment Generator (k=2)

k = 0

k = 1

k = 2

sub-task: 
g0 to g1

sub-task: 
g1 to g

sub-task: g0 to g1 sub-task: g1 to g2 sub-task: g2 to g3 sub-task: g3 to g

original task: 
s0 to g

sub-task: 
g0 to g1

sub-task: 
g1 to g

sub-task: g0 to g1 sub-task: g1 to g2 sub-task: g2 to g3 sub-task: g3 to g

original task: 
s0 to g

Figure 4.5 : Visualization of EAT-C. A 2D robot with a 4-joint arm starts from

the initial state (pink), navigates to the object (green) location, and then pushes

the object to the goal state (black). The histograms in (a) and (b) represents the

expected return of EG taking action bt, and the costs of sub-tasks predicted by the

path planner in layer k = 2, respectively.

the planning policy is not fully optimized yet to produce a cost-efficient path for the

RL agent. Hence, the time costs for the RL agent to accomplish these sub-tasks can

be much higher than later episodes. Moreover, the time costs of some sub-tasks can

be much higher than others and thus cannot provide dense rewards to assist RL. On

the contrary, in Episode 6, the path-planner has learned to generate cost-efficient

sub-tasks with similar hardness so the trajectories and sub-goals are distant from the

obstacles and can provide dense rewards facilitating RL. Comparing the histograms

of time costs for the two episodes, the RL agent is significantly improved by learning

to complete the sub-tasks in the easy-to-hard (bottom-up) curriculum.

Adversarial modifications to obstacles in the environments: In each sub-

task plot of Fig. 4.5, EG adversarially modifies some obstacles by changing their

previous sizes and positions (depicted by the blue boxes) to make the sub-tasks
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sufficiently challenging and diverse. Similar to the path-planner, EG is improved

over time: for example, in the sub-task “g0 to g1” on layer-2, the RL agent needs

to pass a corridor formed by three obstacles, while EG makes the corridor longer

and narrower and thus more challenging for the agent to pass in Episode 6, its

modification in Episode 3 is not ideal and even moves one obstacle away from the

agent. The improvement of EG is also reflected by its increasing expected return

shown in the two histograms. By modifying the environments to be more difficult in

sub-tasks, EG encourages the RL agent to learn diverse skills in different sub-tasks.

Hence, the sub-tasks are easy for the agent to collect dense rewards but they are

non-trivial and informative because of EG’s modifications.

4.4 Discussion

We propose a mutual learning and auto-curriculum framework “EAT-C” to im-

prove the efficiency of RL on long-horizon tasks as well as its generalization and

robustness to new environments. EAT-C trains a planner to decompose a hard task

into coarse-to-fine sequences of sub-tasks providing an easy-to-hard curriculum to

train an RL agent, while an adversarial environment generator modifies these sub-

tasks to be diverse and more informative to learn. The three policies are trained

with data collected by each other. On three types of tasks, EAT-C outperforms a

diverse set of baselines, e.g., curriculum-based RL, hierarchical RL, and planning-

based methods.
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Chapter 5

Morphology-Environment Co-Evolution

Framework

5.1 Preliminaries and Basic Settings

In this chapter, we investigate the problem of improving the RL agent’s mor-

phology to be adaptive to diverse environments and we propose a novel framework

“Morphology-Environment Co-Evolution (MECE)”. In MECE, we have three RL

policies, a control policy π that learns to control the agents of evolved morphology,

a morphology policy πm that learns to modify the agent’s morphology for better

robustness in diverse environments, and an environment policy πe that learns to

change the environment to boost the morphology evolution. During the training

phase, πm and πe are alternately applied to evolve the agent’s morphology and the

training environment, respectively. Taking into account that π might require various

environment steps for training in distinct morphologies or environments, we propose

a dynamic time-scaling for πm and πe that is adaptive to π’s learning process.

Agent control. The problem of controlling an agent can be modeled as a

Markov decision process (MDP), denoted by the tuple {S,A, p, r, γ}, where S and A

represent the set of state space and action space respectively, p means the transition

model between states, and r is the reward function. An agent of morphologymi ∈M

in state st ∈ S at time t takes action at ∈ A and the environment returns the

agent’s new state st+1 according to the unknown transition function p(st+1|st, at,mi),

along with associated reward rt = r(st, at). The goal is to learn the control policy

π∗ : S → A mapping states to actions that maximizes the expected return E[Rt],
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which takes into account reward at future time-steps J(π) = E[Rt] = E
[∑H

t=0 γ
trt

]
with a discount factor γ ∈ [0, 1], where H is the variable time horizon.

We use a graph neural network (GNN) for the control policy because (1) it can

be generalized to different morphologies and learn fundamental control skills; (2) it

captures the skeleton structure and encodes physical constraints. Specifically, we

represent the agent’s skeleton by a graph G = (V,A,E) where each node u ∈ V

represents a joint and each edge e ∈ E represents a bone connecting two joints.

Each joint u is associated with a representation vector zu storing attributes in A,

e.g., bone length, motor strength, size. The GNN takes zu as inputs and propagate

messages across nodes on the graph to produce a hidden state for each node.

Morphology evolution. We model the morphology evolution as an MDP

problem, denoted by the tuple {Sm,B, pm, rm, ρ}. Sm represents the set of state

space, and a state smαt ∈ Sm at time-step αt is defined as smαt = Gαt, where Gαt

is the skeleton structure of agent. The action bαt sampled from the set of ac-

tion space B can modify the topology of the agent, that has three choices in

{AddJoint,DelJoint,NoChange}. The transition dynamics pm(s
m
αt+1|smαt, bαt) re-

flects the changes in state and action. We define the reward function for πm as the

average improvement of training π with the current evolved morphology in different

environments. The reward rm at time-step αt is denoted as

rmαt =
1

|E|
∑
θE∈E

(
R(H, θE, Gαt)−R(H, θE, Gαt−1)

)
− λ∥bmαt∥22, (5.1)

note that the first term in Eq. 5.1 indicates the average performance of the current

morphology in diverse environments, and the second term is a cost for each action

taken by πm that modifies the morphology of the agent. E is the set of environments

used for evaluation.

Environment evolution. We model environment evolution as an MDP prob-

lem, denoted by the tuple {Se, C, pe, re, ρ}. The state seβt = (Gβt, θ
E
βt) in the set of
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state space Se includes the agent’s topology Gβt = (Vβt, Eβt) and the parameter of

environment θE ∈ ΘE. The transition dynamics pe(s
e
βt+1|seβt, cβt) reflects the changes

in the state by taking an action at time-step βt. The action cβt will directly change

the environment parameters. We define the reward for πe as the learning progress of

multiple morphologies in the current environment. Thus, training πe will encourage

πm to optimize the morphology of better generalization sooner. The reward re at

time-step βt is denoted as

rEβt = Pβt − Pβt−1, (5.2)

where, Pβt = R(H, θEβt, Gβt)−R(H, θEβt−1, Gβt).

in Eq. 5.2, Pk is the learning progress of the RL agent in an environment defined

on R(H, θEβt, Gβt), which denotes the expected return of the RL agent Gβt of H

time-steps evaluated in environment θEk .

Short evaluation window. Since rm and re are respectively based on the train-

ing process of π on different morphologies or environments, it is cost but necessary

to rollout π periodically to collect data. However, Hejna et al. (2021) demonstrates

that evaluating with short horizon is enough to provide informative feedback to

reflect the training process of the current policy. In light of this, we run a short

evaluation window for π after every period of environment steps taken by the agent.

In each evaluation window, we rollout multiple morphologies of the best performance

by π in several most recent environments, and then we can calculate rm and re based

on the evaluation results.

5.2 Algorithm of MECE

In MECE, we need jointly train three policies: control policy π learns to com-

plete tasks, morphology policy πm learns to evolve the agent’s morphology to be

more adaptive to diverse environments, and environment policy πe learns to modify
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the training environments more challenging. At first glance, training multiple RL

policies may appear more difficult than training a single RL policy, as it needs the

collection of additional data via interaction. However, MECE enables three policies

to help in each other’s training through the co-evolving mechanism, where each pol-

icy is trained on a curriculum of easy-to-hard tasks utilizing dense feedback from the

training experience of other policies. By iterating this co-evolution process, MECE

considerably improves the training efficiency of each policy, resulting in an RL agent

of morphology that is more generalizable across environments.

Algorithm 7 MECE

1: Initialize: control policy π, morphology policy πm, environment policy πe,

dataset D ← ∅, initial agent morphology m0, initial environment parameter

θE0 ;

2: while Not reaching max iterations do

3: for t = 0, 1, · · · , τmax do

4: Sample control action at ∼ π;

5: st+1 ← T (st+1|st, at);

6: rt ← environment reward;

7: mt+1 ← mt, θ
E
t+1 ← θEt ;

8: Store (st, rt, at, st+1,mt, θ
E
t ) into D;

9: end for

10: Update π with PPO using samples in D;

11: (mt+1, θ
E
t+1) = CO-EVO(mt, π, θ

E
t );

12: end while

In each episode, the control policy π starts from training on an initial agent in

a randomly sampled environment (refer to Line.3-9 in Alg. 7). This initial agent’s

skeleton structure is relatively simple and is easy to learn according to its naive
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morphology. Even though the naive agent is not generalized due to its constrained

morphology, it can initially provide dense feedback for training πm and πe. On the

other hand, beginning from an agent with a random morphology is theoretically

feasible but inefficient when initializing a complicated morphology that is difficult

to learn to control and yields uninformative feedback for training the other policies.

We assume that the control policy is now mature on the current morphology

after training. Then MECE proceeds to a series of co-evolution phases, where a

phase is associated with achieving robustness across the evolved morphologies and

environments (refer to Line.11 in Alg. 7). In each phase, as shown in Line.3-4 of

Alg. 8, we first evaluate the control policy to collect rewards for training πm and πe.

Note that this step is not cost, as the RL agent executes environment steps with a

short horizon. After that, we alternately apply πm and πe to co-evolve the agent’s

morphology and the training environments based on two criteria of rm and re (refer

to Line.5 and 9 in Alg. 8).

Dynamic update window based on the reward criteria. As mentioned in

Section 5.1, rm and re indicate the learning progress of the current morphology in

the training environment respectively. In particular, a nominal value of rm corre-

sponds to the adaptability of the current morphology to different environments and

indicates that training with the current morphology cannot significantly increase

π’s performance. In this instance, we should apply πm to optimize the morphology

to increase its generalization to environments. Similarly, a minor re indicates that

modifying the agent’s morphology will have a negligible effect on its performance in

the current environment, and the environment should be modified to be more chal-

lenging to boost the morphology evolution. As a result, we employ two independent

criteria for rm and re to formulate a dynamic update window, which allows MECE

to adapt to the learning progress of morphology and environment and apply πm or

πe to produce corresponding evolution and alterations.
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Algorithm 8 CO-EVO

1: Input: Current morphology mαt, control policy π, training environment θEβt,

dataset D.

2: Procedure CO-EVO(mαt, π, θ
E
βt):

3: Evaluate π with morphology mαt in θEβt;

4: Calculate reward rm and re following Eq. 5.1 and Eq. 5.2;

5: if rm ≤ δm then

6: Apply πm to modify mαt to mαt+1;

7: Update πm with PPO using samples in D;

8: else

9: if re ≤ δe then

10: Apply πe to modify θEβt to θEβt+1;

11: Update πe with PPO using samples in D;

12: end if

13: end if

14: Return (mαt+1, θ
E
βt+1)
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We now have an agent of newly evolved morphology or a modified training envi-

ronment, and then forward to the next iteration of training the control policy π on

them. Using rm and re, MECE has achieved the alternating evolution of morphology

and environment. MECE not only improves the robustness of the morphology to

various environment, but also improves the learning efficiency of the policies through

the use of dense feedback.

5.3 Experiments

We design our experiments to answer the following questions: (1) Given dynamic

environments, does our method outperform previous methods in terms of conver-

gence speed and final performance? (2) Does our method create agents of better

generalization to diverse environments?

5.3.1 Environments Setup

Diverse environments varying features that require the agent to evolve out dif-

ferent morphologies, e.g., a bipedal agent has too short legs to go across a high

obstacle, or a agent of four legs navigate on rough road more smoothly than one

of one/two legs. In our experiments, we conduct three environments that requires

various morphologies to complete the tasks. We use a tuple θE of environment

parameters to denote the possible physical features of environments.

In experiments, we have three types of environments: (1) 2d locomotion: In

the 2D locomotion environment, agents are limited to movement in the X-Z plane.

The state sT is given by the final (x, z) positions of the morphology joints. We

evaluate morphologies on three tasks: running forwards, running backwards, and

jumping. Environment policy πe takes actions to change the roughness of terrains,

that is controlled by θE. (2) 3d locomotion: where a 3D agent’s goal is to move

as fast as possible along x-axis and is rewarded by its forward speed along x-axis.
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Environments have a fixed number of obstacles and terrains of different roughness

which are controlled by θE. πe can not only change the roughness of terrains in

the environments, also learns to modify the average distance between obstacles.

(3) Gap crosser: Gap Crosser, where a 2D agent living in an xz−plane needs to

cross periodic gaps and is rewarded by its forward speed. The width of the gap is

controlled by πe. In order to avoid unlearnable environments, the upper and lower

limits of the gap width are limited.

Baselines. We compare our method with the following baselines that also opti-

mize both the skeletal structure and joint attributes of an agent. (1)Neural Graph

Evolution (NGE) (Wang et al., 2019d), which is an ES-based method that uses

GNNs to enable weight sharing between an agent and its offspring. (2) Trans-

form2Act (Yuan et al., 2022), that optimizes an RL policy to control the evolution

of agents. Note that both baselines do not have diverse environments in the original

code. For a fair comparison, we apply an environment set randomly sampled from

a uniform distribution in the training phase for them. (3) enhanced POET (Wang

et al., 2020), that pertains the modification of the training environments that are

paired with agents possessing distinct yet unchanging morphologies. Given the ab-

sence of morphology optimization/evolution in enhanced POET, we conducted a

random sampling of six sets of agents, each comprising five agents with distinct

morphologies, resulting in a total of 30 agents. Subsequently, we selected the top-

performing agent from each set for the test.

5.3.2 Implementation of Control Policy and Morphology Policy

we represent the agent’s skeleton by a graph G = (V,A,E), where each node

u ∈ V represents a joint and each edge e ∈ E represents a bone connecting two

joints. Each joint u is associated with a representation vector zu storing attributes

in A, e.g., bone length, motor strength, size. The GNN takes zu as inputs and
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propagate messages across nodes on the graph to produce a hidden state for each

node. Both the control policy π and the morphology policy πm take each node’s

hidden state as their inputs and output their actions.

Implementation of morphology poicy πm MuJoCo agents are specified using

XML strings, during the morphology modify phase, we represent each agent’s skele-

ton structure as an XML string and modify its content based on the morphology

actions. The action of πm {DelJoint, AddJoint} is applied to each node. Once

the action is taken and the skeleton is changed, the graph architecture changes and

thus the nodes’ hidden states changes. More specifically, An agent is initialized with

only one head joint and several (or zero) Lv1 body joints directly connected to the

head joint. In each iteration, the morphology policy will traverse each joint (using

GNN) to decide whether to add an Lv1 body joint connected to the head joint, or

an Lv2 body joint connected to a Lv1 body joint (i.e., adding a new bone). Then,

the morphology policy will further traverse each joint to modify its attributes (bone

length, motor strength, size) on the morphology.

Modelling the morphology evolution as an MDP. In MECE, we aim to train

an agent πm that can design the morphology and modify it when adapting to new

environments. And training πm requires interactions with the MDP to get reward

of each modification. This is more efficient than conventional morphology evolution

methods that randomly search for a better morphology because the policy learns to

explore the space more efficiently through (1) interactions with MDP using different

morphologies; and (2) structural constraint and correlation captured by the GNN.

5.3.3 Implementation of Environment Policy with Environments

In this part, we share further information about the three experiment environ-

ments. A simple skeleton structure is used to initialize the agent. Each joint of
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the agent is connected to its parent joint via a hinge. The environment state of

each joint contains its joint angle and velocity. In addition to the height, phase,

and global velocity, we also include additional information for the root joint, such

as the phase and height. Zero padding is employed to ensure that the length of

each joint state is same. The attribute characteristic of each joint includes the bone

vector, bone size, and motor gear value. Using a loosely-defined attribute range,

each attribute is normalized within the interval [−1, 1].

2d locomotion The agent in this environment lives inside an xz-plane with a

terrain ground. Each joint of the agent is allowed to have a maximum of three child

joints. For the root joint, we add its height and 2D world velocity to the environment

state. The enviornment reward function is defined as:

rt = |pxt+1 − pxt |/δt+ 1, (5.3)

where pxt denotes the x-position of the agent and δt = 0.008 is the time step. An

alive bonus of 1 is also used inside the reward. The episode is terminated when the

root height is below 1.4.

3d locomotion The agent in this environment lives freely in a 3D world with an

uneven ground. There are a fixed number of obstacles randomly scattered on the

surface. Each joint of the agent is allowed to have a maximum of three child joints

except for the root. For the root joint, we add its height and 3D world velocity to

the environment state. The reward function is defined as:

rt = |pxt+1 − pxt |/δt− ω · 1
J

∑
u∈Vt

∥au,t∥2, (5.4)

where ω = 0.0001 is a weighting factor for the control penalty term. u denotes the

each node of the skeleton structure Vt of the agent at time-step t. J is the total

number of agent’s joints, and the time step δt = 0.04.
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Gap crosser The agent in this environment lives inside an xz-plane. The terrain

of this environment includes a periodic gap. The height of the initial terrain is at

0.2. The agent must cross these gaps to move forward. Each joint of the agent is

allowed to have a maximum of three child joints. For the root joint, we add its

height, 2D world velocity, and a phase variable encoding the periodic x-position of

the agent to the environment state. The reward function is defined as:

rt = |pxt+1 − pxt |/δt+ 0.1, (5.5)

where the time step δt = 0.08. An alive bonus of 0.1 is used inside the reward. The

episode is terminated with the root height is below 1.5.

Implementation of environment policy πe Environment policy modify the

training environment by taking actions to change the environment parameters. For

locomotion environments, we sample terrain height maps using random Gaussian

mixtures. There is an environment tuple of two parameters to control the gener-

ation of terrains. The first environment parameter is the maximum height of the

terrain, which is limited to 2.4(2.7) in 2d (3d) locomotion. The second environment

parameter is to control the variance of the sampled environments, which is restricted

in [2.4, 7.2] for 2d, and [2.7, 5.4] for 3d. In 3d locomotion, we have one more environ-

ment parameter in the tuple to control the averaging spacing between the obstacles,

which is restricted in [1.6, 4.4].

5.3.4 Hyperparameters in MECE

In this section, we present the hyperparameters searched and used for MECE

in Tab. 5.1 and the hyperparameters for baseline in Tab. 5.2 and Tab. 5.3. All

models are implements by PyTorch (Paszke et al., 2019). For control policy and

morphology policy, we use the PyTorch Geometric package (Fey and Lenssen, 2019)

and GraphConv (Morris et al., 2019) as the GNN layer. When training the policy
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with PPO, we adopt generalized advantage estimation (GAE) (Schulman et al.,

2016).

For fair comparison, we employ the same GNN architecture for MECE and base-

lines. In addition, we ensure that the number of simulation steps used for optimiza-

tion is the same for both the baseline methods and ours. MECE and Transform2Act

optimizes the policy with a batch size of 50000 for 1000 epochs, totaling 50 million

simulation steps. NGE employs a population of 20 agents, and each agent is trained

with a batch size of 20,000 for 125 generations, totaling 50 million simulation steps.

5.3.5 Main results

In Fig. 5.1(a)-(c), we report the average performance of MECE and all baseline

methods in test environments for three settings. The accumulated rewards are aver-

aged over 12 UNSEEN and randomly sampled environments and 6 different random

seeds. In terms of the learning efficiency and final performance, MECE outperforms

baseline methods in all environments. The results show that while Transform2Act’s

final performance can be improved by periodically changing the training environ-

ments, MECE’s learning efficiency is still notably higher than that of Transform2Act.

The best morphologies found by each approach are listed in Fig. 5.1(d)-(f) for eas-

ier comparison. For 2d locomotion MECE develops a morphology that resembles

a crawling animal that can move fast over terrain. In 3D locomotion, MECE has

developed a spider-like framework. MECE evolves a more streamlined structure in

comparison to Transform2Act so that it can more possibly avoid obstacles. Finally,

the Hopper-like agents developed by Transform2Act and MECE are comparable in

the Gap crosser that can jump across gaps. Overall, MECE-optimized morphologies

have superior structural symmetry and are more consistent with the characteristics

of biological evolution in various environments.
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5.3.6 Ablation Study and Analysis

We product out a series of ablation studies to prove the effectiveness of each part

in MECE. We list the introduction information of each ablation study in Tab. 5.4,

and report the results in Fig. 5.2. Note that in each ablation study, we only change

one part of MECE and maintain the other parts the same as the original MECE,

and all results are the test performance evaluated on the same environment set in

Fig. 5.1 (b).

Ablation Study I. In this ablation study, we focus on the effectiveness of πe for

the training and report the results in Fig. 5.1(a). Note that the initial environment

is relatively simple, while the final environment that evolved by πm is more chal-

lenging. The results show that the evolved morphology and control policy trained

in the diverse environments are more general than trained in the fixed environment,

no matter the environment is simple or not. On the other hand, compare the perfor-

mance of MECE with MECE (periodic envs), we can find that πe helps the training

in terms of the efficiency and the final performance. This is because training in the

environment modified by πe, compared to the randomly generated one, avoids the

learning gap between two extremely different environments, and is smoother for π

and πm to learn. On the other hand, πe learns to generate environment to accelerate

the learning progress of π and πm, which is shown clearly in the learning curves of

10 - 20 million simulation steps in Fig. 5.2(a).

Ablation Study II. The purpose of this ablation study is to demonstrate how

πm can produce morphology that is more adaptable to diverse environments and

increase learning effectiveness. The results are shown in Fig. 5.2(b). When com-

paring the learning curves for MECE (random morph) and MECE (original), the

former has a far higher early learning efficiency than the latter. This is due to

πe remaining constant and the environment not changing significantly, which pre-
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vents the morphology from being adequately adapted to a variety of habitats, even

some comparable environments. Theoretically, the ”fixed morph-final” morphol-

ogy should be able to be more adaptive to environments and, with training, reach

competitive performance. Although it performs better than ”random morph” and

”fixed morph-initial,” ”MECE(original)” is still far behind. The findings indicate

that training an agent with a complex morphology (i.e., MECE(fixed morph-final))

in diverse environments is difficult and ineffective. Therefore, it is imperative to

implement an automated curriculum that encompasses diverse environments and

morphologies in MECE to effectively train an adaptable agent.

Ablation Study III. Through a co-evolutionary process of adaptive criterion

on rm and re, πm and πe learn to evolve the morphology and environment. To de-

termine whether this design is effective, we perform an ablation experiment. The

results are shown in Fig 5.2(c). For “MECE (fixed evaluation window)”, every fixed

number of environment steps, πm and πe take actions to change the agent’s morphol-

ogy and environment. The results indicate that by removing the dynamic window,

MECE’s learning effectiveness has drastically decreased. It is challenging to coordi-

nate the training developments of the three policies, particularly the control policy,

without a dynamic evaluation window. Only a somewhat steady control policy, as

was already mentioned, can give the other two reliable feedback for training. More-

over, the performance of Transform2Act is taken into account for easy comparing.

Even though ”MECE(fixed evaluation window)” is less effective, a competitive final

performance to Transform2Act is still feasible.

Ablation Study IV. We designed this ablation investigation to verify the re-

ward of πm and πe in MECE, and the findings are displayed in Fig. 5.2(d). Note that

just one incentive is altered in each scenario in this experiment; all other rewards

remain unchanged. We explore two scenarios for πm: the first involves removing the

reward (“MECE (reward-i)”), same to the setting of transform2Act), and the sec-
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ond involves substituting the formal of re (“MECE (reward-ii)”), i.e., accelerating

learning progress. We take into account employing learning progress (in the form

of rm, “MECE (reward-iii)”) for πe. The results show that the original design has

obvious advantages in both learning efficiency and final performance. For the issues

addressed by MECE, πm can be thought of as the meta learner of π, whereas πe is

the meta learner of the former. In order to help π perform better on various tasks,

πm learns to modify the agent’s morphology during training, and πe speeds up both

of their learning processes. Therefore, in both theoretical and practical tests, the

original design is the most logical.

5.3.7 Case study: Co-evolution between morphology and environment

To further comprehend the co-evolution of morphology and environment in MECE,

we perform a case study in 2d locomotion and present results in Fig. 5.3. The y-

axis of the point plot indicates the training environment’s roughness. Fig. 5.3(a)-(f)

are schematic descriptions of the current morphology and the training environment

corresponding to it.

Generally, an effective training environment should meet two conditions simul-

taneously. The first is learnable, and the RL agent can collect training data via

exploration. The second factor is the level of difficulty; environments that are ei-

ther too easy or too challenging may reduce the learning efficiency of the RL agent.

Therefore, in 2D locomotion, a reasonable environment is one in which the envi-

ronment’s roughness is quite large (challenging), but not so large as to render the

agent unconquerable (learnable) during exploration. Using the results of the point-

plot, the environment policy can ensure that the ratio of environmental unevenness

during the training process to the height of the current agent is approximately 1,

which satisfies the training environment criteria. At contrast, despite the fact that

the randomly generated environment can ensure the ideal in some phases, it is ex-
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tremely unstable (the standard deviation is visibly high), which would undoubtedly

lower the learning effectiveness.

Specifically, comparing Fig. 5.3(a) and (c), the environment generated by πe in

the early stage of training is unlearnable for the current agent, whereas in the mid-

dle stage of training, the training environment is relatively flat, but challenging,

especially in terms of the number of occurrences of a particular feature. The rough-

ness of the environment on the right fluctuates frequently. Note again compared to

Fig. 5.3(d) that the right side of the randomly produced environment is unlearnable

for the current agent in the middle of training. This phenomena does not occur in

MECE because πe modifies the environment to be morphology-adaptive. Comparing

Figs. 5.3(e) and (f), the environment formed by πe’s slope exhibits noticeable but

relatively subtle alterations. This is due to the fact that the existing morphology

has a high degree of adaptation to varied contexts, and environments with more

extreme alterations have less effect on the morphology’s optimization. To better

train the control policy, an environment of moderate difficulty should be adopted.

5.4 Discussion

In this section, we offer a framework for morphology-environment co-evolution

that evolves the agent’s morphology and the training environment in alternation.

Compared to previous morphology optimization approaches, ours is more sample-

efficient and learns to develop morphologies that are more robust across diverse

environments. Experiments demonstrate that our approach outperforms baseline

methods in terms of convergence speed and overall performance. In the future, we

are interested in using curriculum RL approaches to further improve the learning

efficiency of our approach so that it can adapt to more challenging environments

and tasks.
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Hyperparameter Values Searched & Selected

Policy GNN Layer Type GraphConv

Number of morphologies in SEW 2,3, 4

Number of environments in SEW 2, 3,4, 5

GNN Size (πm) (32, 32, 32), (64, 64, 64), (128, 128, 128), (256,256,256)

GNN Size (π) (32, 32, 32), (64,64,64), (128, 128, 128), (256, 256, 256)

Hidden layers for πe network 2, 3, 4

Hidden units for πe network 200, 300, 400

Policy Learning Rate (π) 5e− 5, 1e− 4, 3e− 4

Policy Learning Rate (πm) 5e− 5, 1e− 4, 3e− 4

Policy Learning Rate (πe) 3e− 4, 5e− 4, 1e− 4

Value GNN Layer Type GraphConv

Value Activation Function Tanh

Value GNN Size (64,64,64), (128, 128, 128), (256, 256, 256)

Value MLP Size (256, 256), (512,256), (256, 256, 256)

Value Learning Rate 1e− 4,3e− 4

PPO clip ϵ Pize 0.2

PPO Batch Size 10000, 20000,50000

PPO Minibatch Size 512,2048

Num. of PPO Iterations Per Batch 1, 5,10

Num. of Training Epochs 1000

Discount factor γ 0.95

GAE λ 0.99, 0.995, 0.997, 0.999

Table 5.1 : Hyperparameters searched and used by MECE. The bold numbers among

multiple values are the final selected ones.
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Hyperparameter Values Searched & Selected

Num. of Skeleton Transforms Ns 3,5, 10

Num. of Attribute Transforms Nz 1, 3, 5

Policy GNN Layer Type GraphConv

JSMLP Activation Function Tanh

GNN Size (Skeleton Transform) (64, 64, 64), (128,128,128), (256, 256, 256)

JSMLP Size (Skeleton Transform) (256,256), (512, 256), (256, 256, 256)

GNN Size (Attribute Transform) (64, 64, 64), (128,128,128), (256, 256, 256)

JSMLP Size (Attribute Transform) (256,256), (512, 256), (256, 256, 256)

GNN Size (Execution) (64,64,64), (128, 128, 128), (256, 256, 256)

JSMLP Size (Execution) (128,128), (256, 256), (512, 256), (256, 256, 256)

Diagonal Values of Σz 1.0, 0.04,0.01

Diagonal Values of Σe 1.0, 0.04, 0.01

Policy Learning Rate 5e− 5

Value GNN Layer Type GraphConv

Value Activation Function Tanh

Value GNN Size (64,64,64), (128, 128, 128), (256, 256, 256)

Value MLP Size (256, 256), (512,256), (256, 256, 256)

Value Learning Rate 1e− 4,3e− 4

PPO clip ϵ Pize 0.2

PPO Batch Size 50000

PPO Minibatch Size 2048

Num. of PPO Iterations Per Batch 1, 5,10

Num. of Training Epochs 1000

Discount factor γ 0.95

GAE λ 0.995

Table 5.2 : Hyperparameters searched and used by Transform2Act in our version.

The bold numbers among multiple values are the final selected ones.
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Hyperparameter Values Searched & Selected

Num. of Generations 125

Agent Population Size 10,20, 50, 100

Elimination Rate 0.15, 0.2, 0.3, 0.4

GNN Layer Type GraphConv

MLP Activation Tanh

Policy GNN Size (32, 32, 32), (64,64,64), (128, 128, 128)

Policy MLP Size (128,128), (256, 256), (512, 256)

Policy Log Standard Deviation 0.0,−1.6

Policy Learning Rate 5e− 5

Value GNN Size (32, 32, 32), (64,64,64), (128, 128, 128)

Value MLP Size (128, 128), (256, 256), (512,256)

Value Learning Rate 3e− 4

PPO clip ϵ 0.2

PPO Batch Size 20000, 50000

PPO Minibatch Size 2048

Num. of PPO Iterations Per Batch 10

Discount factor γ 0.99,0.995

GAE λ 0.95

Table 5.3 : Hyperparameters searched and used by NGE in our version. The bold

numbers among multiple values are the final selected ones.
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(a) 2d-locomotion (b) 3d-locomotion (c) Gap-crosser

(d) Evolved Morphology (2d) (e) Evolved Morphology (3d) (f) Evolved Morphology (Gap)

Figure 5.1 : Baselines comparison and optimized morphology. In Fig.(a)-(c),

we report the evaluation results of MECE and baseline methods in three environ-

ments, and we plot the accumulated rewards (mean± std averaged over 6 random

seeds) against the number of simulation steps for all methods. For fair comparison,

we add periodically changing environments that randomly sampled from a fixed dis-

tribution in the training of baseline methods. MECE has better learning efficiency

and final performance than all baseline methods. In Fig.(d)-(f), we list the opti-

mal morphology that evolved by each method. Intuitively, the structural symmetry

and environmental adaptability of the MECE-optimized morphology is better. Es-

pecially in 3d locomotion, the agent developed by MECE is better at navigating

terrain and avoiding obstacles.
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Ablation Study Definition of Legends

Ablation study-I for πe.

Fig. 5.2(a)

original: Periodic environments generated by πe.

periodic envs-random: Periodic environments of randomly sampled.

fixed envs-initial: Initial and easy environment.

fixed envs-final: Fixed environment generated by πe.

Ablation study-II for πm.

Fig. 5.2(b)

original: Dynamic morphology evolved by πm.

random morph: Randomly mutate the morphology.

fixed morph-initial: Fixed agent of the initial morphology.

fixed morph-final: Fixed agent of the final morphology evolved by πm.

Ablation study-III for

dynamic update window.

Fig. 5.2(c)

Original: Dynamic evaluation window.

fixed update window: Update πe and πm at a fixed frequency.

Ablation study-IV for rm

and re. Fig. 5.2(d)

Original: Follow the reward setting of πm (πe) in Eq. 5.1 (Eq. 5.2).

reward-i: Remove the reward for πm.

reward-ii: change rm to Eq. 5.1.

reward-iii: change re to Eq. 5.2.

Table 5.4 : List of ablation studies. This list includes definitions for each set of

controls as well as the objectives of ablation study I-IV. Since we only validated one

design of MECE in each ablation study, only one design from each control group

was different from MECE (original).
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Fi g ur e 5. 2 : A bl a ti o n s t u d y. We d esi g n f o ur a bl ati o n st u di es t o ill ustr at e t h e

a d v a nt a g es of e a c h p art i n  M E C E.  T h e r es ults of a bl ati o n st u d y I a n d II s h o w t h e

e ff e cti v e n ess of π e a n d π m o n t h e l e ar ni n g e ffi ci e n c y a n d g e n er ali z ati o n.  A bl ati o n

st u d y III pr o v es t h at a p pl yi n g π e a n d π m a d a pti v e t o t h e tr ai ni n g pr o c ess of t h e

c o ntr ol p oli c y c a n i m pr o v e its r o b ust n ess. I n a bl ati o n st u d y I V,  w e tr y di ff er e nt

s etti n g of t h e r e w ar d f u n cti o n of π e a n d π m , a n d t h e r es ults pr o v e t h at t h e ori gi n al

r e w ar d s etti n g is o pti m al.  M or e d et ails of e a c h a bl ati o n st u d y c a n b e f o u n d i n

T a b. 5. 4.
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A v er ag e tr ai ni ng  e n vir o n m e nt s r o ug  h n e s s

( a)
( b)

( c)

(f)

( e)

( d)

Fi g ur e 5. 3 : C a s e s t u d y r e s ul t s. T his fi g ur e  m or e vi vi dl y ill ustr at es a s c h e m ati c

di a gr a m of t h e c o- e v ol uti o n of  m or p h ol o g y a n d e n vir o n m e nt d uri n g tr ai ni n g.  T h e

or di n at e i n t h e ill ustr ati o n s h o ws t h e a v er a g e e n vir o n m e nts’ r o u g h n ess c h a n gi n g

as t h e tr ai ni n g pr o c ess es ( 6 r a n d o m s e e ds).  Alt h o u g h t h e tr ai ni n g e n vir o n m e nts

g e n er at e d b y π e ar e si mil ar t o t h e r a n d o ml y s a m pl e d at t h e b e gi n ni n g, it c a n b e

o bs er v e d fr o m t h e p oi nt pl ot t h at π e c a n g u ar a nt e e  m or e c h all e n gi n g a n d st a bl e

tr ai ni n g e n vir o n m e nts.  Fi g.( a)-(f ) c o m p ar e t h e e ff e cti v e n ess of π e t h at c orr es p o n d

t o c h a n g es i n t h e tr ai ni n g e n vir o n m e nts ( bl u e i n di c at es ori gi n al  M E C E, a n d or a n g e

i n di c at es r a n d o m e n vir o n m e nts).  C o ntr aril y, it is e vi d e nt t h at n o π e is li k el y t o r es ult

i n e x c e pti o n all y di ffi c ult e n vir o n m e nts ( Fi g.( d)),  w hil e t h e e n vir o n m e nt pr o d u c e d b y

π e is c h all e n gi n g b ut l e ar n a bl e ( Fi g.( c)).
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Chapter 6

Conclusions

The present study centers on investigating research that pertains to the acquisition

of knowledge through a hybrid approach of reinforcement learning (RL)and cur-

riculum learning. The Bellman equation-induced challenge of credit assignment in

RL represents a constraint on the efficacy of this approach, which is further com-

pounded by contextual limitations in its practical implementation. Although RL

has exhibited significant potential in industrial and interdisciplinary research in re-

cent years, it is limited by the following challenges. Conversely, the constraint is

significantly intensified due to the sensitivity of RL towards its proximate milieu

and its consequential reliance on it.

This thesis centers on three primary issues: the credit assignment problem, which

arises from long-term and sparsely rewarded tasks; instability, which results from

heightened environmental sensitivity; and generalization defects that prevent the

RL agent from effectively binding with policy and environment. This thesis centers

its attention on the following three concerns. The aforementioned concerns are

effectively tackled and remedied via the implementation of the subsequent three

curricular programs:

• CO-PILOT, a collaboratively training curriculum that integrates planning and

reinforcement learning, and is designed around a sub-task curriculum that

utilizes a tree structure. The objective of the course is to partition a task

with a lengthy time frame into multiple tasks with shorter time frames, while

concurrently utilizing planning. Propose sub-tasks as a means of providing
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supplementary incentives to address the issue of insufficient rewards.

• EAT-C is an adaptation of CO-PILOT that integrates adjustments to the

educational program and external perturbations to facilitate the reinforcement

learning policy training process. This phenomenon results in a reduction of

the sensitivity of RL policy to its surrounding environment and an increase in

its ability to tolerate environmental disturbances within a specified range.

• MECE is centered around the reciprocal development of agent morphology and

the training environment. The process allows for the evolution of morphol-

ogy and control policy of reinforcement learning (RL) agents to suit diverse

environments, thereby facilitating their adaptation to situations that exhibit

substantial variations.

A diverse array of experiments and testing environments have been devised for

each distinct class to authenticate their functionalities and aptitudes. The exper-

imental results indicate that our ability to achieve performance on par with the

state-of-the-art (SOTA) is accompanied by a noteworthy improvement in the learn-

ing efficacy of RL. Furthermore, a comprehensive ablation study was conducted to

verify the rationale behind each individual component of the program. Ultimately,

we provide a comprehensive analysis of each of our courses through the presentation

of a case study, which serves to enhance the comprehension of their role within the

broader framework of reinforcement learning training. In the future, it is possible

to extend the auto-generated curriculum into real-world applications.
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