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A B S T R A C T   

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as 
COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing 
susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired 
antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment 
strategies. 18-β-glycyrrhetinic acid (18-β-gly) is a phytoceutical derived from licorice with promising anti- 
inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. 
This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-β-gly in poly 
lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers 
and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) 
resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1β), mimicking what 
happens in smokers and COPD patients. Treatment with 18-β-gly-PLGA nanoparticles partially restored the 
expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, 
I-TAC, and MIP-1α/1β levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the 
antiviral response. This study provides a novel approach to address the impaired antiviral immune response in 
vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. 
Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate 
the therapeutic efficacy of 18-β-gly-PLGA nanoparticles in respiratory disorders associated with compromised 
antiviral immunity.   

1. Introduction 

According to the World Health Organization (WHO), tobacco use is 
the leading cause of preventable mortality worldwide, claiming more 
than eight million lives per year [1,2]. Cigarette smoke contains several 

hundreds of toxic and carcinogenic chemicals [3], and exposure to to
bacco smoke is known to cause a wide range of diseases including 
different types of cancer, strokes, heart conditions, diabetes, 
chronic-obstructive pulmonary disease (COPD), and other lung diseases 
[4]. Being smoking and inhalation the primary routes of tobacco 
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consumption, the lungs and the respiratory system are the sites that are 
majorly impacted, and COPD and lung cancer are the most common 
diseases caused by tobacco smoking [5]. In particular, cigarette smoke 
exposure has been shown to be the underlying cause of 70–90 % of lung 
cancer cases [6,7], and at least 50 % of smokers develop COPD in their 
lifetime [8]. 

Cigarette smoke causes inflammation and oxidative stress in the 
airways, and it damages the respiratory tract by impairing the function 
of epithelial cilia, increasing mucus secretion, and inducing an influx of 
immune cells such as macrophages and dendritic cells [9,10]. Consid
ering the pivotal function of the airway ciliated epithelium and secreted 
mucus as a first line of defense against viral infections [11,12], cigarette 
smoke is known to severely impair the lung’s ability to respond to these 
types of infections [9,10,13]. An impaired antiviral immunity is also 
observed in COPD patients [14], particularly among those with frequent 
disease exacerbations [15], as well as in “healthy” smokers who are not 
affected by COPD [10]. Furthermore, viral infections such as influenza A 
virus (IAV) or rhinovirus are among the principal triggers of COPD ex
acerbations [16], causing a sudden decline in lung function and 
contributing to disease progression in a positive feedback loop [17]. 

The respiratory tract’s antiviral immune response is a complex and 
highly coordinated phenomenon involving both the innate and adaptive 
arms of the immune system [18]. The airway epithelium represents the 
first point of contact for viruses [18]. Together with dendritic cells, 
airway epithelial cells continuously sample the airway lumen with the 
aim of detecting the presence of viruses through pattern recognition 
receptors (PRRs) such as the Toll-like receptors (TLRs) TLR3 7, and 9, 
which recognize viral double-stranded RNA (dsRNA), single-stranded 
RNA (ssRNA), and unmethylated CpG DNA sequences [19]. The acti
vation of these PRRs triggers the early antiviral response, which is 
dominated by innate immune cells and mediated by the secretion of 
pleiotropic antiviral cytokines such as type I interferons (IFN-α and 
IFN-β), which in turn generate a cascade of immune cell recruitment, 
activation, and cytokine secretion [20]. This in turn leads to the acti
vation of natural killer (NK) cells, which produce a type II interferon 
(IFN-γ) [21] and, ultimately, to the presentation of viral antigens to 
CD4+ and CD8+ T cells, marking the beginning of the adaptive immune 
response [18]. Numerous cytokines and chemokines, released by both 
epithelial and immune cells, orchestrate the airway’s antiviral immune 
response. These include molecules such as IFN-γ-induced protein 10 kDa 
(IP-10) [22], IFN-inducible T cell alpha chemoattractant (I-TAC) [23], 
and Macrophage inflammatory protein (MIP)-1α/1β [24]. The produc
tion of both IP-10 and I-TAC is induced by IFN-γ [22,23]. IP-10 con
tributes to the maturation of DCs and to the recruitment of virus-specific 
CD8+ T cells [25], and I-TAC plays a general role as a chemoattractant 
for activated T cells [23]. Similarly, MIP-1α/1β are involved in the 
recruiting of antigen-specific T and B cells, NK cells, monocytes, and 
neutrophils [24]. Numerous studies have shown that cigarette smoke 
exposure dampens the virus-induced production of these chemokines, 
providing an explanation of the mechanisms behind the impaired anti
viral response observed in smokers and in COPD patients [10,15,26–29]. 

The current treatments available for COPD are mainly aimed at 
symptomatically targeting acute exacerbations and are limited by poor 
efficacy and severe side effects [5]. Importantly, there is currently no 
therapy available which specifically targets the impaired lung antiviral 
response observed among COPD patients and smokers. This underlines 
the necessity to develop innovative treatment strategies aimed at 
improving the patients’ antiviral response. In this context, phytoceut
icals represent an endless source of potent therapeutic moieties to draw 
from [5]. 18-β-glycyrrhetinic acid (18-β-gly), derived from licorice 
roots, is one of such molecules embedded with potent antioxidant, 
anti-inflammatory, and anticancer properties which has great potential 
in attenuating inflammation-driven pulmonary disorders [30]. Howev
er, its clinical translation is hampered by poor water solubility, which 
limits its bioavailability [30]. To overcome this problem, the use of 
advanced, nanoparticle-based drug delivery systems is set to 

revolutionize the field by allowing improved delivery of molecules with 
suboptimal physicochemical properties and druggability [5]. Numerous 
classes of nanoparticle-based advanced drug delivery systems are 
currently available and being investigated. These include polymeric 
nanoparticles, liquid nanocrystals, nanoemulsions, liposomes, exo
somes, dendrimers, polymeric mycelles, metallic nanoparticles, and 
many others [5]. Among these, polymeric nanoparticles such as those 
composed of poly lactic-co-glycolic acid (PLGA) are particularly ad
vantageous, as they are considered safe as nano-drug delivery systems 
for pulmonary targeting by the FDA [31]. Furthermore, PLGA-based 
nanoparticles are known to be non-toxic, as their main degradation 
by-products are water and carbon dioxide, which are quickly eliminated 
by the cell [32]. Finally, PLGA is a versatile polymer which is charac
terized by favorable biocompatibility, tunable mechanical characteris
tics, high biodegradability, and the possibility of numerous surface 
modifications and functionalizations [33,34]. 

In the present study, we have encapsulated 18-β-gly in PLGA nano
particles and tested their impact on the secretion of antiviral chemokines 
by human bronchial epithelial cells exposed to cigarette smoke extract 
(CSE) in vitro. We show that CSE treatment reduces the secretion of IP- 
10, I-TAC, and MIP-1α/1β, and that treatment with 18-β-gly-PLGA 
nanoparticles attenuates the effect of CSE by partially restoring the 
expression of these chemokines. The results of this study provide proof 
of feasibility of novel, targeted therapies aimed at boosting the impaired 
pulmonary antiviral response of smokers and COPD patients, providing 
a blueprint for the future development of innovative plant-based ther
apies that protect these particularly susceptible patient cohorts from 
viral infections of the airways. 

2. Methods 

18-β-gly-PLGA nanoparticles were synthesized using the emulsion- 
evaporation method and characterized for particle size, polydispersity 
index, and zeta potential as described previously [33,35,36]. 18-β-gly 
(97 % purity) was purchased from Sigma-Aldrich, USA. Briefly, 5 mL of 
10 mg/mL PLGA solution were prepared using 3:2 dichloromethane and 
acetone as solvent. Successively, 10 mg 18-β-gly were added and a pri
mary emulsion was obtained by sonicating at 200 W for 2 min. The 
primary emulsion was slowly mixed with 1 % w/v Poloxamer aqueous 
solution and sonicated at 200 W for 4 minutes to form a final O/W 
emulsion. This was then centrifuged at 14,000 RPM for 30 min, and the 
supernatant was removed. The precipitated nanoparticles were then 
washed three times with deionized water followed by centrifugation at 
10,000 RPM for 20 minutes. Finally, the nanoparticles were resuspended 
in deionized water and freeze-dried. Minimally immortalized BCi-NS1.1 
healthy human bronchial epithelial cells were grown in 
broncho-epithelial basal media (BEBM) (Lonza, USA) supplemented 
with insulin, bovine pituitary extract, retinoic acid, triiodothyronine, 
transferrin, human epidermal growth factor, gentamicin sulfate, and 
amphotericin (Lonza, USA), at 37◦ and in a humidified environment, 
maintaining the CO2 level to 5 %. The cells were seeded in 6-well plates 
as indicated previously [37]. Following overnight adhesion, cells were 
treated with or without 18-β-gly-PLGA nanoparticles at a final 18-β-gly 
concentration of 5 µM for one hour, and then exposed to 5 % CSE for 
24 h. The CSE concentration and length of CSE exposure has been 
optimized in our laboratories. CSE was prepared and administered as 
described in previous reports by our research team [6,37–39]. Briefly, 
one 3R4F reference cigarette was burned and the smoke bubbled in 
10 mL cell culture media to obtain 100 % CSE. This has been further 
diluted with fresh culture media to a final concentration of 5 %. The 
5 µM concentration of 18-β-gly-PLGA nanoparticles was identified as the 
highest concentration to be used without significantly affecting the 
viability of human bronchial epithelial cells in vitro as assessed via MTT 
assay in our previously published study [33]. Successively, three washes 
with phosphate-buffered saline (PBS, Merck, Australia) were performed, 
and the cells were lysed using radioimmunoprecipitation assay (RIPA) 
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buffer (ThermoFisher Scientific, Australia) supplemented with cOm
plete™, Mini, EDTA-free Protease Inhibitor Cocktail (Roche, Australia). 
The insoluble material was eliminated via centrifugation of the samples 
at 14,000 g for 15 min at 4 ◦C, and the protein content was quantified via 
bichinchonic acid assay (ThermoFisher Scientific, Australia). The rela
tive expression of IP-10, I-TAC, and MIP-1α/1β was measured using a 
Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, USA), 
following the manufacturer’s instructions and hybridizing 300 µg pro
tein per sample on the array membranes. The chemiluminescence 
acquisition was performed using a ChemiDoc™ MP system (Bio-Rad, 
Australia) and data analysis was conducted with ImageJ software 
(version 1.53c, Bethesda, MD, USA). Statistical analysis was conducted 
using PRISM v9.3 software (GraphPad, USA). 

3. Results and discussion 

The results of the present study are depicted in Fig. 1. Exposure to 
5 % CSE resulted in a strong, significant reduction in the protein 
expression of IP-10 (65.4 %, Fig. 1a), I-TAC (55.5 %, Fig. 1b), and MIP- 
1α/1β (46.4 %, Fig. 1c). Treatment with 5 µM 18-β-gly-PLGA nano
particles significantly increased the expression of these three proteins 
compared to the CSE-exposed group, albeit not to level comparable to 
the untreated control (Fig. 1). In particular, 18-β-gly-PLGA nano
particles increased the levels of IP-10 by 67.7 % (Fig. 1a), the levels of I- 
TAC by 30.9 % (Fig. 1b), and the levels of MIP-1α/1β by 43.0 % (Fig. 1c). 

The findings of this study show that treatment with 5 µM 18-β-gly- 
PLGA nanoparticles can partially restore the expression of three 
fundamental mediators of pulmonary antiviral response: the chemo
kines IP-10, I-TAC, and MIP-1α/1β, whose expression is downregulated 
by cigarette smoke exposure, potentially providing protection against 
the impaired antiviral response observed in cigarette smokers and COPD 
patients. It is worth mentioning that, despite 18-β-gly-PLGA nano
particles significantly increased the levels of the three indicated proteins 
compared to the CSE-treated group, in all the three cases the protein 
expression did not get back to the levels observed in the untreated 
control, therefore obtaining only a partial restoration of the expression 
of these proteins. Our results are in accordance with previous studies 
which showed, in different experimental systems, that cigarette smoke 
downregulates the expression of these three chemokines as part of its 
negative impact on lung antiviral response. Hudy et al. [28] showed 
that, in both primary and BEAS-2B human bronchial epithelial cells, CSE 

exposure inhibited the Human Rhinovirus-16-induced production of 
IP-10. In another study, Duffney et al. [26] utilized an air-liquid inter
face culture of human primary small airway epithelia cells to demon
strate that whole cigarette smoke exposure dampened the production of 
IP-10 in response to IAV or poly I:C stimulation by impairing the correct 
activation of TLR3. More recently, Danov et al. [10] showed that ciga
rette smoke exposure completely suppressed the Influenza 
H1N1-induced secretion of several antiviral and proinflammatory cy
tokines, including IP-10 and I-TAC. Cigarette smoke has also been found 
to exert a similar effect on macrophages. Cigarette smoke condensate 
has been shown to decrease the expression of 8 cytokines, including 
IP-10 and MIP-1α, in mouse Ana-1 macrophages [27], and CSE reduced 
the expression of IP-10 and MIP-1α/1β in human THP-1 macrophages 
[29]. Interestingly, 18-β-gly has been extensively studied for its prom
ising antiviral activities against several viruses including severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), herpes virus, and 
hepatitis virus [40], but to date no study has ever reported the potential 
of 18-β-gly as a modulator of the body’s own antiviral response. In this 
context, to the best of our knowledge, we are the first to report that 
18-β-gly has an impact on the production of IP-10, I-TAC, and MIP-1α/1β 
in bronchial epithelial cells. The findings of this study are summarized in 
the Graphical Abstract of the manuscript. 

The results showcased in the present study underline the promising 
potential of 18-β-gly-PLGA nanoparticles as a therapeutic agent aimed at 
boosting the pulmonary antiviral response, with particular applicability 
in patients whose antiviral response is impaired such as cigarette 
smokers and COPD patients. Despite the promising results shown, this 
study is not exempt from limitations. Firstly, the study shows the 
modulation of only three proteins involved in the antiviral response. The 
antiviral response is a complex and multi-step process and, to fully 
characterize the impact of 18-β-gly-PLGA nanoparticles as a means to 
restore the CSE-impaired antiviral response, the expression of a larger 
panel of proteins should be investigated. Furthermore, a more thorough 
investigation would also include the analysis of the impact of 18-β-gly- 
PLGA nanoparticles on the expression of the same antiviral factors at the 
mRNA level. Finally, functional assays should be performed to defini
tively assess to what extent the 18-β-gly-PLGA nanoparticles restore the 
impaired antiviral immunity caused by cigarette smoke. These studies 
should include both in vitro and in vivo investigations on suitable virus 
infection models. The multifaceted therapeutic activity of 18-β-gly, 
which encompasses antioxidant, anti-inflammatory, anticancer, 

Fig. 1. 18-β-gly-PLGA nanoparticles partially restore the expression of IP-10, I-TAC, and MIP-1α/1β downregulated by CSE. BCi-NS1.1 human bronchial 
epithelial cells were treated with or without 5 µM 18-β-gly-PLGA nanoparticles for one hour, followed by 24 hours exposure to 5 % CSE. Cells were then lysed in RIPA 
buffer, and the extracted proteins analyzed via Proteome Profiler Human XL Cytokine Array Kit. The chemiluminescence, expressed as pixel density, was quantified 
with ImageJ software. One-Way ANOVA, n = 4, *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: p < 0.0001. #: P = 0.0511 with One-Way ANOVA and P = 0.0286 
with Mann-Whitney U-test. 
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antimicrobial, and antiviral activities [30,40,41], warrants a thorough 
investigation of the therapeutic potential of this 18-β-gly-PLGA 
nanoparticle-based system, with the aim of developing it as a treatment 
for respiratory conditions characterized by the overlapping of several 
etiological and pathophysiological features such as COPD. 

4. Conclusion 

The findings discussed in the present study highlight the enormous 
therapeutic potential of 18-β-gly-PLGA nanoparticles as a treatment 
aimed at restoring the impaired antiviral immune response of smokers 
and COPD patients. Considering the limited amount of data presented, a 
more thorough characterization of the therapeutic activity of this 
formulation is required before proceeding to the pre-clinical and clinical 
testing of the efficacy of this product. This would include further in vitro 
studies aimed at fully characterizing the effects of 18-β-gly-PLGA 
nanoparticles on the expression of genes and proteins related to 
inflammation and oxidative stress, particularly within epithelial cells 
and macrophages. Furthermore, testing this product on cigarette smoke- 
exposed air-lung interface cell culture systems would provide more 
physiologically relevant information. Ideally, another line of studies 
would involve in vivo testing of the 18-β-gly-PLGA formulation on ani
mal models of COPD such as the cigarette smoke-exposed mice [42]. In 
conclusion, the result of this study provide a promising blueprint for the 
development of plant-based engineered nanosystems for the treatment 
of respiratory disorders. 
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