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Abstract: The global automotive industry is facing significant challenges, including dwindling
fossil fuel reserves, rising crude oil prices, and increasingly strict emission regulations. To address
these concerns, this study investigates the impact of the compression ratio (CR) and exhaust gas
recirculation (EGR) on the performance and emissions of a common rail direct injection (CRDI) diesel
engine fuelled with a 20% blend of tamarind seed methyl ester (TSME 20) biodiesel. The study
employed an open-type electronic control unit to implement pilot fuel injection at a rate of 30%, 23◦

before the top dead centre (TDC), and at a higher pressure of 600 bar. Three CRs (16:1, 18:1, 20:1)
and two types of EGR (hot and cold EGR at 10%) were evaluated. Diesel fuel at CR 18 was used as a
baseline for comparison. The experimental procedure involved conducting tests with TSME 20 at CR
16, 18, and 20. Subsequently, TSME 20 at CR 20 + Hot EGR 10% and TSME 20 at CR 20 + Cold EGR 10%
were examined. The results showed that TSME 20 operated at a higher CR (CR 20) exhibited improved
diesel engine performance and significant reductions in harmful exhaust emissions. Additionally,
cold EGR at 10% was more effective in reducing CO, CO2, and NOx emissions from TSME 20 than
hot EGR. The findings of this study provide valuable insights into optimizing diesel engine operation
to achieve a balance between performance enhancement and emission reduction through tamarind
seed biodiesel blends and different EGR techniques. The implementation of these strategies holds
considerable potential in addressing the automotive industry’s challenges, including ecological
considerations and fuel price fluctuations.

Keywords: tamarind seed methyl ester; EGR; performance; combustion; emissions

1. Introduction

Non-renewable energy sources, such as fossil fuels, are rapidly depleting, necessitating
a transition to renewable energy sources for the benefit of humanity [1,2]. The depletion of
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fossil fuel resources, rising environmental pollution, and fluctuating fuel prices have moti-
vated the adoption of biofuels such as biodiesel and bio-alcohol as promising renewable
energy sources [3,4]. These fuels are considered clean, inexpensive, and abundant [5,6].
Biofuels are a crucial renewable energy source that has been extensively studied for use in
diesel engines using a variety of feedstocks. These include palm oil [7], Nigella Sativa [8],
sunflower [9], jatropha curcas [10], etc.

Saravanan Kumar et al. [11] investigated the impact of exhaust gas recirculation (EGR)
on the performance, combustion, and emission characteristics of a diesel engine fuelled
with jatropha and fish oil methyl esters. They found that the 20% blend of jatropha oil
methyl ester (JOME) and fish oil methyl ester (FOME) yielded the best performance and
reduced emissions with a 20% EGR rate. Kader et al. [12] studied biodiesel production
using the pyrolysis process. They evaluated various fuel properties according to ASTM
standards and suggested that pyrolysis oil has great potential to become the next biodiesel
feedstock due to its abundance and better fuel properties.

El-Adawy et al. [13] experimentally investigated the effect of waste fry oil biodiesel
blends (B0, B10, B20, and B50) at three different compression ratios (14, 16, and 18). They
found that the blends performed better at the higher compression ratios. Kathirvel et al. [14]
examined the effect of waste cooking oil blended with 5% ethanol and diesel in five dif-
ferent proportions as fuel in a variable compression ratio diesel engine. They varied the
compression ratios from 18 to 22. Their results showed that a blend of 20% waste cooking
oil, 5% ethanol, and 75% pure diesel exhibited the best performance and emissions charac-
teristics at a compression ratio of 21, compared to other blends and compression ratios.

Prasad et al. [15] investigated the impact of injection timing and EGR on the attributes
of a diesel engine at different load conditions. They conducted tests at various injection
timings (ITs) from 19◦ to 27◦ crank angle before top dead centre (bTDC) in steps of 4 ◦CA.
They found that retarding the injection timing by 4 ◦CA improved the brake thermal
efficiency (BTE) by 4.07% compared to the standard operating conditions. They also ob-
served significant reductions in CO, HC, and smoke emissions of 9.7%, 15.8%, and 6%,
respectively. However, NOx emissions increased. To reduce NOx emissions, they applied
10% and 20% EGR. They reported that neat tamarind seed methyl ester (TSME) with 10%
EGR resulted in a significant reduction in NOx emissions at full load. Rosha et al. [16]
studied the effect of the compression ratio on a compression ignition (CI) engine fuelled
with a 20% palm biodiesel blend. They varied the compression ratio in three levels: 16:1,
17:1, and 18:1. Their results showed that a compression ratio of 18:1 resulted in the highest
BTE and lowest emissions. Nanthagopal et al. [17] investigated the impact of injection
pressures on direct injection (DI) diesel engines fuelled with calophyllum inophyllum methyl
ester (CIME). Their experimental results revealed that fuel consumption decreased and HC
emissions decreased significantly at an injection pressure (IP) of 220 bar. However, NOx
emissions increased with increasing injection pressure. Anbarasu and Karthikeyan [18]
studied the effect of IP on the performance and emission characteristics of a diesel engine
fuelled with canola emulsion oil. Their overall results showed a 28.8% improvement in
BTE at an IP of 240 bar and a reduction in NOx emissions at an IP of 200 bar.

Mohiuddin et al. [19] investigated the impact of the compression ratio (CR) and
exhaust gas recirculation (EGR) on the exhaust emissions and particulate number character-
istics of diesel engines. They observed that operating a diesel engine at CR 16:1 at peak load
resulted in increased thermal efficiency and decreased engine exhaust pollutants. However,
they also found that increasing the CR increased NOx emissions due to the higher cylinder
temperature. Shi et al. [20] examined the combined effect of CR and EGR on the various
characteristics of biodiesel-fuelled diesel engines. They discovered that using 10% EGR
reduces NOx and soot emissions at part load. Rajesh et al. [21] studied the influence of EGR
on a compression ignition (CI) engine running on a 20% blend of jatropha biodiesel. They
found that CO emissions increased by 20% and 30%, CO2 emissions increased by 12.9%
and 35%, and HC emissions increased by 14.2% and 21.4%, respectively, with 10% and
20% EGR at maximum load conditions. However, NOx emissions decreased by 20.8% and
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36.9%, respectively. Table 1 summarizes the effects of hot and cold EGR on the different
characteristics of CI engines.

Table 1. Influence of EGR on the diesel engine attributes.

Parameter Fuel Blend Operating Conditions Inferences References

Cold EGR of 10%,
20%, and 30%

30% blend of waste
plastic biodiesel

Ideal operating
conditions

The application of EGR
drastically reduced the NOx

emissions. However, it enhances
other emissions.

Damodharan et al. [22]

15% cooled EGR 20% Karanja biodiesel CRDI diesel engine runs
at normal conditions

Particulate matter reduces and
slight increase in HC emissions Patil and Thirumalini [23]

15% hot EGR Yellow Oleander
biodiesel

Ideal operating
conditions

NOx emissions were
significantly reduced Deka et al. [24]

20% and 40% hot EGR n-pentanol-2 ethylhexyl
nitrate–diesel blends

Normal operating
conditions of
diesel engine

NOx and soot emissions are
drastically reduced. However,

a slight decrement in BTE
Pan et al. [25]

Kumar et al. [26] tested diesel engines at different compression ratios (CRs) and exhaust
gas recirculation (EGR) rates and found that higher CRs improved brake thermal efficiency
(BTE), while 12% EGR at full load significantly reduced NOx emissions. Esakki et al. [27]
produced biodiesel from leather waste and tested it with EGR rates of 5%, 10%, and 15% at
full load. They found that EGR reduced CO, HC, and smoke emissions. Kumar et al. [28]
observed that adding n-octanol to diesel fuel increased the ignition delay period, which
improved the combustion characteristics.

De Poures et al. [29] studied the effects of a ternary blend of diesel, biodiesel, and
1-hexanol in a direct injection diesel engine. They used response surface methodology to
optimize operating parameters such as fuel injection timing and EGR rate. They also found
that operating the engine with 50% diesel, 30% biodiesel, and 20% 1-hexanol reduced fuel
injection timing, and 10% EGR under optimal conditions improved engine performance.
Jayanth et al. [30] investigated the effects of multiple injection timing and EGR on diesel
engine characteristics. They found that operating a CRDI diesel engine with 10% EGR
and a start of the pilot injection timing of 55◦ bTDC increased BTE by 1.7%, reduced NOx
by 3.7%, and reduced smoke emissions by 28.9%. Sajjad et al. [31] tested different blends
of soapberry biodiesel (10%, 20%, and 30%) and found that the 30% biodiesel blend had
the highest BTE (27.82%), NOx emissions (1348 ppm), and HC emissions (11 ppm) at full
load. Sajjad et al. [32] also tested CRDI engines with soapberry seed oil methyl ester and
found that using 30% biodiesel and 30% EGR at full load improved engine parameters and
reduced emissions. Kulandaivel et al. [33] studied the effects of retarded injection timing
and EGR on diesel engine characteristics. They found that retarding the injection timing
from 23◦ bTDC to 13◦ bTDC reduced BTE by 4.2% at full load. Additionally, using 20% EGR
reduced BTE by 3.2% at full load.

The compression ratio is a key factor affecting diesel engine efficiency, power, and
emissions. Biodiesel’s higher cetane number allows higher compression ratios, which
improves combustion efficiency and compensates for its lower energy content. This leads
to more complete combustion, reducing emissions and boosting thermal efficiency. Exhaust
gas recirculation (EGR) reduces NOx emissions by reintroducing exhaust gases into the
intake manifold. Hot EGR lowers peak combustion temperature, reducing NOx, while cold
EGR lowers particulate emissions. Biodiesel’s oxygen content affects EGR, impacting NOx
and smoke emissions. Optimizing the EGR rate for biodiesel blends is essential for reducing
emissions without sacrificing efficiency. In diesel engines with biodiesel blends, both the
compression ratio and EGR strategy significantly impact combustion efficiency, emissions,
power, and fuel economy. Table 2 presents the effects of various operating parameters on
diesel engine characteristics.
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Table 2. Effect of engine operating parameters on diesel engine attributes.

Type of Engine Fuel Used Engine Operating
Parameter Inferences References

Direct Injection
diesel engine

Diesel-biodiesel-1-
hexanol

Fuel Injection Timing
and EGR

Improved BTE with advanced
fuel injection timing and

significant reduction of NOx
emissions with EGR

De Poures et al. [29]

CRDI diesel engine Waste high-density
polyethylene oil

Multiple injection
timing and EGR

Improved HRR and CP
NOx and smoke emissions

were reduced;
a slight increment in BTE

Jayanth et al. [30]

CRDI diesel engine Soapberry seed oil
methyl ester

EGR variation from
10% to 30%

Drastic reduction of
NOx emissions Sajjad et al. [31]

Single cylinder water
cooled diesel engine 20% Palmyra biodiesel Compression ratio 20

and EGR 10%
Higher BTE, lower CO, HC
smoke and NOx emissions Rao and Prasad [34]

CRDI diesel engine 20% biodiesel blend Number of nozzles
and EGR

Effectively reduced HC and
NOx emissions Kim et al. [35]

CRDI diesel engine Waste cooking biodiesel Pilot fuel injection
and EGR

Higher HC and CO emissions.
However, NOx emissions

were reduced
Jaliliantabar et al. [36]

Stel et al. [37] investigated the performance and flow dynamics of a centrifugal rotor
operating with a gas–liquid mixture. They used the Euler-Euler polydisperse model for
validation and to assess various quantities. The authors analysed the three-dimensional
distribution of the gas phase inside the rotor, the gas–liquid interphase forces, the gas–liquid
relative velocities, and the overall turbulence levels through the rotor.

The existing literature indicates that the compression ratio and exhaust gas recircu-
lation (EGR) have a significant impact on the characteristics of diesel engines. However,
there is a notable gap in the research regarding the effects of the compression ratio when
coupled with both hot and cold EGR in the context of common rail direct injection (CRDI)
diesel engines fuelled by tamarind seed methyl ester (TSME20), a blend of 20% tamarind
seed methyl ester biodiesel. Given its accessibility, eco-friendliness, and cost-effectiveness,
TSME holds substantial promise as a biodiesel fuel. Notably, the utilization of a 30% pilot
fuel injection strategy in a CRDI diesel engine, combined with hot and cold EGR, represents
an innovative approach across various operational conditions. This present study aims to
investigate how different compression ratios (CR16, CR18, and CR20) and EGR methods
(hot EGR at 10% and cold EGR at 10%) influence the combustion dynamics, overall engine
performance, and emissions characteristics of a CRDI diesel engine running on a blend of
20% tamarind seed methyl ester biodiesel. To summarize, the current research addresses
the gaps in the literature and aims to provide insights into the complex interplay between
compression ratio, EGR, and the use of tamarind seed methyl ester biodiesel in a CRDI
diesel engine. The findings have potential implications for improving the efficiency and
environmental impact of diesel engines.

2. Material and Methods

Tamarindus indica, also known as the tamarind tree, is a widespread and abundant
species in India, particularly in the states of Andhra Pradesh and Madhya Pradesh. India
produces an estimated 200,000–250,000 tons of tamarind fruit annually. Tamarind trees
can thrive in a variety of soil conditions with minimal water requirements. Tamarind oil
is extracted from the seeds of the tamarind tree through a mechanical squeezing process.
The kinematic viscosity of the extracted oil is slightly higher than that of diesel fuel, but its
other properties are similar.

Tamarind oil biodiesel has several potential advantages as a sustainable and afford-
able alternative to traditional fossil fuels. Tamarind trees are widely cultivated in many
regions, and the extraction of oil from the seeds is an eco-friendly process. Additionally,
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the cultivation of tamarind trees and the extraction of oil from the seeds can be relatively
cost-effective, contributing to the economic viability of tamarind oil biodiesel.

Overall, the research suggests that tamarind oil biodiesel has the potential to be
a valuable alternative or supplement to conventional diesel fuel, especially in regions where
tamarind trees are abundant. However, further research and development are needed to
address any challenges related to the stability, storage, and long-term engine performance
of tamarind oil biodiesel.

Transesterification Process

The transesterification process is the most effective method for reducing the high
viscosity of biodiesel. It is also known as alcoholysis [7,38]. Transesterification is a chemical
reaction that involves the removal of fatty acids and glycerol from extracted vegetable oil
using a catalyst. In the transesterification process, heavy triglyceride molecules in tamarind
seed oil are split into lighter and smaller straight-chain molecules. Transesterification is
a well-known method for reducing the viscosity of biodiesel. It is largely affected by the
free fatty acids present in the oil, the type of catalyst used, the molar ratio of reactants,
and the reaction temperature. Three consecutive chemical reactions occur during the
conversion of crude tamarind oil into tamarind biodiesel and glycerol. First, triglycerides
are converted into diglycerides. Then, diglycerides are converted into monoglycerides.
Finally, monoglycerides are converted into glycerol. The transesterification reaction process
is depicted in Figure 1.
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Figure 1. Transesterification chemical reaction process.

In the transesterification process, crude tamarind seed oil is thoroughly mixed with
methanol, which acts as a solvent. The solution of crude oil and methanol is heated to
a constant temperature of 70 ◦C and stirred using a magnetic stirrer. Sodium hydroxide is
added at regular intervals to improve the chemical reaction. The heated solution is then
cooled in the open atmosphere in a separating funnel. Two layers form in the separating
funnel, with the top layer being biodiesel and the bottom layer being glycerol. To remove
soap and other impurities, the tamarind seed biodiesel is washed with distilled water twice.
The yield of tamarind seed oil through the transesterification process is about 92%. The
different factors affecting the transesterification process are presented in Table 3, and the
fuel properties of the examined samples are shown in Table 4.

Figure 2 shows the production of tamarind seed biodiesel through the transesterifica-
tion process. The various physicochemical properties of tamarind biodiesel were evaluated
and compared to those of diesel.
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Table 3. Influencing parameters of transesterification process.

Parameter Range of Parameters

Reaction temperature 60–300 ◦C
Molar ratio 5:1–40:1

Pressure 1–300 bar
Catalyst content 0.5–5%

Reaction time 1–360 min

Table 4. Various fuel properties of examined samples.

Properties Diesel TSME TSME20 Test Method

Viscosity (cSt) 3.06 7.26 3.91 ASTMD 445
Density(kg/m3) 830 882 840 ASTMD 1298

Calorific value (MJ/kg) 42.5 38.76 41.76 ASTMD 4809
Flash point (◦C) 53 156 71 ASTMD 93
Fire point (◦C) 58 161 75 ASTMD 93
Cetane number 45 52 46 ASTMD 613
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3. Experimental Setup

This experimental investigation was conducted on a four-stroke, single-cylinder CRDI
diesel engine running at a rated speed of 1500 RPM with a fuel injection timing of 23◦ CA
bTDC. The schematic line diagram of the experimental setup is presented in Figure 3. The
engine speed was maintained constant using a governing mechanism, and the load was
varied using a dynamometer. The complete specifications of the tested apparatus are
provided in Table 5. All necessary instruments were calibrated and used to measure various
engine parameters and exhaust emissions.



Sustainability 2023, 15, 15222 7 of 21

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 22 
 

angle encoder, was transferred to the data acquisition system (DAS) for signal condition-
ing. The received output signals were converted into valuable data, enabling analysis of 
combustion characteristics. The software also enables real-time measurement of cylinder 
pressure, heat release rate, fuel quantity, air flow, temperatures, and calorimeter water 
flow, among other variables. 

 
Figure 3. Schematic view of CRDI diesel engine apparatus. 

Table 5. CRDI diesel engine technical specifications. 

Engine Type Kirloskar, CRDI Diesel Engine 
Rated speed/power 1500 rpm/4.4 kW 

Engine bore 87.5 mm 
Stroke length 110 mm 

No. on nozzles 03 
Nozzle size 0.3mm 

Injection timing 23° CA bTDC 
Combustion geometry Hemispherical 

The exhaust emissions from the diesel engine were measured using an AVL five-gas 
analyser. This analyser employs non-dispersive infrared (NDIR) spectroscopy to measure 
the concentrations of hydrocarbons (HC), carbon monoxide (CO), and carbon dioxide 
(CO2). The smoke opacity of the engine exhaust, which is a measure of the visible part of 
the exhaust, was measured using an AVL smoke meter. Combustion parameters such as 
ignition delay period, combustion pressure (CP), and heat release rate (HRR) were meas-
ured using a LabVIEW-based IC Engine Soft 4.0 combustion analysis data acquisition sys-
tem. This system uses an air-cooled piezoelectric pressure transducer (Kistler-6613 CA) to 
measure cylinder pressure data. The ranges, accuracies, and uncertainties of the various 
instruments used in the study are shown in Table 6.  

  

Figure 3. Schematic view of CRDI diesel engine apparatus.

Table 5. CRDI diesel engine technical specifications.

Engine Type Kirloskar, CRDI Diesel Engine

Rated speed/power 1500 rpm/4.4 kW
Engine bore 87.5 mm

Stroke length 110 mm
No. on nozzles 03

Nozzle size 0.3 mm
Injection timing 23◦ CA bTDC

Combustion geometry Hemispherical

In this study, data from the diesel engine were collected using Enginesoft4.0 combus-
tion analysis software. This software facilitates data acquisition through four analogue and
two digital inputs, which capture conditioned and multiplexed current clamp signals. The
pressure transducer output, processed via a charge amplifier, TDC sensor, and crank angle
encoder, was transferred to the data acquisition system (DAS) for signal conditioning. The
received output signals were converted into valuable data, enabling analysis of combus-
tion characteristics. The software also enables real-time measurement of cylinder pressure,
heat release rate, fuel quantity, air flow, temperatures, and calorimeter water flow, among
other variables.

The exhaust emissions from the diesel engine were measured using an AVL five-gas
analyser. This analyser employs non-dispersive infrared (NDIR) spectroscopy to measure
the concentrations of hydrocarbons (HC), carbon monoxide (CO), and carbon dioxide
(CO2). The smoke opacity of the engine exhaust, which is a measure of the visible part
of the exhaust, was measured using an AVL smoke meter. Combustion parameters such
as ignition delay period, combustion pressure (CP), and heat release rate (HRR) were
measured using a LabVIEW-based IC Engine Soft 4.0 combustion analysis data acquisition
system. This system uses an air-cooled piezoelectric pressure transducer (Kistler-6613 CA)
to measure cylinder pressure data. The ranges, accuracies, and uncertainties of the various
instruments used in the study are shown in Table 6.
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Table 6. Instruments with accuracy and uncertainties.

Instrument Parameter Uncertainty Accuracy

AVL gas analyser

HC ±0.2% ±2 ppm
CO ±0.2% ±0.03%
CO2 ±0.15% ±0.5%
NOX ±1% ±10 ppm
O2 ±0.5% ±0.1%

AVL smoke meter SO ±1% ±1%
Temperature indicator T ±0.2% ±1 ◦C

Pressure transducer P ±0.15% ±0.1 bar
Angle encoder CA ±0.2% ±1%

Error Analysis

Error is the difference between the actual value of a quantity and its measured value. It
can arise from a variety of factors, such as improper maintenance of equipment, inaccurate
readings, and environmental conditions. Accurate results can only be obtained when errors
are eliminated. Uncertainty is a measure of the reliability of a measurement. Error and
uncertainty analysis is essential for assessing the accuracy of diesel engine characteristics.

The following mathematical Equation (1) is commonly used to calculate the combined
uncertainty of multiple independent uncertainties:

Uy

y
=

[
∑n

i=1

(
1
y

∂y
∂xi

Uxi

)2
]0.5

(1)

where y represents a known parameter, and it is dependent on another parameter (xi)
Uy indicates the variation in y.
n is the number of parameters.
The square root method for determining the overall uncertainty of the test setup is

shown in the equation below:

=
√
(BSFC)2 + (BTE)2 + (HRR)2 + (CP)2 + (CO)2 + (HC)2 + (NOx)2 + (SO)2

=
√(

0.5
)2

+ (0.25)2 + (1)2 + (1)2 + (0.2)2 + (0.2)2 + (1)2 + (1)2

= ±2.09

(2)

4. Results and Discussion

This study investigates the effects of the compression ratio, hot exhaust gas recircu-
lation (EGR), and cold EGR on various characteristics of a common rail direct injection
(CRDI) diesel engine fuelled with a 30% pilot fuel injection of the TSME20 biodiesel blend
at a fuel injection pressure of 600 bar and a rated speed of 1500 RPM. Three compression
ratios (CR16, CR18, and CR20) and two types of EGR (hot and cold EGR at 10%) were
investigated with TSME20. First, the engine was operated with diesel fuel at CR18 as the
baseline fuel. Then, tests were conducted with TSME20 at CR16, CR18, and CR20. Finally,
TSME20 at CR20 + hot EGR 10% and TSME20 at CR20 + cold EGR 10% were investigated.

4.1. Brake Specific Fuel Consumption (BSFC)

Brake specific fuel consumption (BSFC) is the amount of fuel consumed by an engine
to produce one unit of brake power. The variation in BSFC with engine load for the tested
fuel samples is shown in Figure 4. In general, BSFC decreases with engine load for all
examined fuels. For example, at 25% engine load, the BSFC of diesel fuel is 0.45 kg/kWh,
which decreases by nearly 50% to 0.24 kg/kWh at 100% engine load. The same trend is
observed for other fuels, as shown in Figure 4.

Elevating the compression ratio is associated with a decrease in BSFC due to the
resulting enhancement in engine efficiency. The higher compression ratio leads to a more
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effective combustion process within the engine’s combustion chamber. When air is com-
pressed to a greater extent before fuel is introduced, the air–fuel mixture ignites more
efficiently during the combustion stroke. This heightened efficiency results in a more com-
plete and thorough combustion of the fuel, extracting more energy from the same amount
of fuel. Consequently, less fuel is required to generate the same power output, leading to
a reduction in fuel consumption as quantified by the BSFC.

This is evident in Figure 4, which shows that BSFC decreases with increasing compres-
sion ratios. For example, at 50% engine load, the BSFC of TSME20 at compression ratios of
16, 18, and 20 are 0.37, 0.34, and 0.31 kg/kWh, respectively.

In terms of EGR, cold EGR was found to have a relatively higher BSFC than hot EGR
for TSME20. This is likely due to the lower temperature of cold EGR, which deteriorates the
combustion process in the cylinder and increases specific fuel consumption. As reported
by Damodaran et al. [22], EGR application resulted in a slight decrease in BSFC.
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4.2. Brake Thermal Efficiency (BTE)

BTE is a crucial parameter of diesel engines, representing the ratio of engine power
output to heat input [39]. Figure 5 depicts the variation in BTE for the examined fuels
under different loads. All fuels exhibit a similar trend of increasing BTE with engine load.
TSME20 CR20 recorded the highest BTE of 36.46% due to its elevated cylinder temperature
at CR20, which enhanced the combustion process and improved BTE.

BTE is strongly dependent on the premixed combustion phase, and injecting 30% pilot
fuel can improve fuel evaporation and fuel/air mixing, leading to better ignition at full
engine load. However, the general trend of BTE increasing with the compression ratio is
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not always true, as shown in Figure 5. Additionally, cold EGR 10% resulted in lower BTE
than hot EGR 10% for TSME20.

Figure 5 shows that EGR has a negative effect on BTE. In each engine load, the use
of EGR (both cold and hot) resulted in lower BTE compared to other blends. This could
be due to the accumulation of unburned fuel and combustion by-products on the EGR
valve, leading to exhaust leaking into the intake manifold. As a result, BTE decreases, and
fuel consumption increases. This is supported by the previous figure (Figure 4), which
shows that the blends operated in EGR have the highest BSFC. In addition to higher BSFC,
exhaust leaking can also cause drivability problems.
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4.3. In-Cylinder Pressure

In-cylinder pressure is a crucial combustion characteristic that significantly impacts
engine performance and emissions [38]. The pressure development within the combustion
chamber depends on the amount of fuel burned during the premixed combustion phase and
the fuel–air mixing. Figure 6 shows the in-cylinder pressure variation of the investigated
blends as a function of the crank angle. All curves exhibit a similar trend, with diesel fuel
CR18 having the highest peak in-cylinder pressure of 74.8 bar at 5 CAD and TSME20 CR18
having the lowest value of 66.67 bar at the same crank angle.

The lower peak in-cylinder pressure of TSME blends is due to their lower calorific
value than diesel fuel. Consequently, TSME blends release less combustion energy with
a slower burning rate. Additionally, the slight reduction in cylinder pressure observed for
TSME20 under different conditions compared to diesel is attributed to its higher viscosity,
which affects fuel atomization and leads to inefficient energy use.
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4.4. Heat Release Rate (HRR)

The heat release rate (HRR) is a measure of the rate at which heat is generated during
combustion in an engine [40,41]. It is often used to analyse other combustion characteristics,
such as ignition delay (ID) and combustion duration (CD) [42,43]. The HRR diagram is
a quantitative representation of the fuel-burning process inside the cylinder and correlates
with cycle efficiency and peak in-cylinder pressure. Overall, the HRR profiles of all test
blends exhibit a similar trend, albeit with some fluctuations and differences in peak HRR.
HRR is strongly influenced by the fuel’s net energy content, as shown in Equation (3).(

dQn
dθ

)
=

(
γ

γ − 1
P

dV
dθ

)
+

(
1

γ − 1
V

dP
dθ

)
+ Qlw (3)

Figure 7 shows the variation in HRR as a function of the crank angle for the test
blends. The highest peak HRR of 71.44 J/deg is observed for TSME20 CR16 at 14.32 CAD
among the TSME20 biodiesel blends operated at different compression ratios. However,
the diesel fuels operated at a compression ratio of 18 have a maximum HRR of 74.56 J/deg
at −10 CAD at full load. This indicates that diesel fuel has a higher HRR than TSME20
biodiesel at the same compression ratio and operating conditions. It is also worth noting
that the peak HRR for TSME20 CR16 occurs at a later crank angle than for diesel fuels. This
is because TSME20 biodiesel has a longer ignition delay and combustion duration than
diesel fuel. This is because TSME20 biodiesel has a longer ignition delay and combustion
duration than diesel fuel [44,45].
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4.5. Mass Fraction of Fuel Burnt (MFB)

Mass fraction burned (MFB) is a dimensionless quantity that describes the fraction
of fuel burned in a combustion engine cylinder as a function of the crank angle. It is
calculated using the measured cylinder pressure and volume and provides insights into the
combustion process, such as the ignition delay, combustion duration, and burn rate [46,47].
The variation in the amount of fuel burnt with the crank angle for the examined TSME20
biodiesel at different compression ratios and EGR is shown in Figure 8. It represents the
rate of combustion of fuel in the engine cylinder with the crank angle period.

The MFB pattern is alike for the diesel and TSME20 at all operating conditions.
Equation (4) below is used to determine the MFB.

Mass fraction of fuel burnt (MFB) =

MFB(θ) =

θ∫
θsoc

{
δQgen

dθ

}
dθ

m f ,total × ηcomb × LHV
(4)

The rapid ignition of fuel occurs at 10–25◦ CA after TDC. Also, the rate of fuel burnt is
increased for the TSME20 biodiesel blend with the increase in compression ratio. Also, 10%
of hot exhaust gas recirculation resulted in a faster rate of combustion when compared to
the 10% cold exhaust gas recirculation for the TSME20 biodiesel blend at full load.
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4.6. CO Emission

CO emissions are produced due to the incomplete combustion of fuel and low com-
bustion chamber temperatures [48,49]. Poor combustion phasing caused by a lower com-
pression ratio can also lead to higher CO emissions due to lower in-cylinder temperatures.
The Cetane index and fuel viscosity are important factors that affect CO formation during
the chemical reaction process [13,16]. In the absence of sufficient oxygen, CO is not fully
converted to CO2.

Figure 9 shows the variation in CO emissions with engine load for diesel fuel and
TSME20 biodiesel. Interestingly, CO emissions decrease before increasing significantly
close to full engine load. Except for full load, higher CO concentrations are observed at
lower compression ratios. This is because the compression heat is not sufficient at low
compression ratios, causing ignition delays and higher CO emissions. On the other hand,
higher compression ratios result in elevated temperatures, which reduce ignition delay
and facilitate more ignition processes. As a result, CO emissions are suppressed at higher
compression ratios.

Furthermore, at 100% engine load, TSME20 CR20 coupled with hot EGR 10% produces
the highest CO emissions, while TSME20 CR16 without EGR produces the lowest. As
mentioned previously, insufficient oxygen can lead to higher CO emissions. Since EGR
works by replacing fresh air with combustion products such as carbon dioxide, using EGR
was found to increase CO emissions.
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4.7. CO2 Emission

CO2 emissions were considered as indicators of completeness of the fuel’s combustion
inside the cylinder. When all the fuel is completely burned, CO2 and water vapours are
the only end products. The deviations in CO2 emissions with various engine loads for
the tested fuels are delineated in Figure 10. Overall, the levels of CO2 emission increase
with a similar trend as the engine load increases. The highest CO2 emission is given by
TSME20 CR20 at 7.2%, followed by TSME20 CR20 + Hot EGR 10%, TSME20 CR18, TSME20
CR20 + Cold EGR 10%, TSME20 CR 16, and Diesel CR18 at 6.9%, 6.5%, 6.1%, 5.6%, and
5.1%, respectively. It is interesting to note that CO2 emission is consistently higher for
higher compression ratios at the same load. This is due to higher heat compression at higher
CRs, thus facilitating more complete combustion and converting more CO into CO2.

As far as the EGR is concerned, Figure 10 indicates that the use of TSME20 CR20
equipped with cold EGR 10% shows relatively lower CO2 as opposed to that of hot EGR.
The EGR works by replacing the fresh air with the products of combustion, such as carbon
dioxide. This results in dilution, a thermal and chemical effect that dominates the ignition
timing and controls the combustion reaction rate. Cold EGR could significantly reduce
more CO2 than hot EGR because of the relatively cooler exhaust gas temperature that is
re-circulated, thus having a denser concentration to decrease the oxygen content.
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4.8. HC Emission

In diesel engines, incomplete combustion and flame quenching are the primary con-
tributors to the formation of HC emissions [50]. The relationship between HC emissions
and engine load for the utilized fuels is depicted in Figure 11. Despite an initial reduction,
HC emissions rise with increasing engine load, notably beyond 50% load. Under full engine
load conditions, TSME20 CR20 exhibited the lowest HC emission at 31 ppm, while diesel
fuel showed the highest at 69 ppm. Additionally, across all engine loads, it was noted that
TSME20 CR20 with EGR at 10% exhibited comparatively lower HC emissions than when
using hot EGR.

Regarding the impact of the compression ratio, the HC emission levels for TSME20
were observed to decrease with higher compression ratios. The lower in-cylinder gas
temperature associated with lower compression ratios makes it challenging for the mixture
to combust completely, resulting in a lean air/biodiesel mixture burning less effectively
at these compression ratios. Furthermore, certain fuels may become trapped in various
areas within the combustion chamber, such as the clearance between the liner and piston,
thereby contributing to increased HC emissions [51].
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4.9. NOx Emission

NOx emission is one of the key exhaust pollutants emitted by CI engines [48,52]. NOx
is typically produced at high combustion temperatures [53]. Figure 12 shows the variation
in NOx emissions with engine load. NOx emissions increase linearly with engine load. This
is because the fuel–air ratio (FAR) increases as the load increases, leading to higher cylinder
temperatures and more generation of NOx in the engine cylinder [54]. The inherent oxygen
present in TSME20 biodiesel also contributes to its higher NOx emissions. Additionally, the
boiling point of tamarind biodiesel is relatively higher than that of base fuel. This means
that TSME20 maintains its liquid state for a longer duration, allowing more droplets to
penetrate the combustion chamber and hence resulting in higher NOx emissions. EGR can
significantly reduce NOx emissions from biodiesel-fuelled diesel engines [25,27].

It is also noteworthy that NOx emissions increase significantly at higher compression
ratios, while lower compression ratios produce lower NOx emissions. This is because
lower in-cylinder temperatures result in reduced flame temperatures during combustion,
suppressing NOx formation. The use of EGR, especially cold EGR, has also been shown
to be effective in reducing NOx emissions. At full engine load, the highest level of NOx
emission is liberated by TSME20 CR20 at 821 ppm, followed by TSME20 CR18, TSME20
CR16, Diesel CR18, TSME20 CR20 + Hot EGR 10%, and TSME20 CR20 + Cold EGR 10%
at 762, 724, 695, 486, and 403 ppm, respectively. The use of biofuels for the diesel engine
released more NOx emissions, as reported by Shi et al. [20].
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4.10. SO Emission

Sulphur in diesel fuel has been a major problem during combustion and resulted in
increased levels of the acid rain. It is important to remember that sulphur can be oxidized
into SO2 in the course of the combustion process. This can eventually form sulphurous
(H2SO3) and sulphuric acids (H2SO4), which can lead to corrosive effects [37]. Yet, sul-
phur emissions can only be produced if there is sulphur in the blends. The variation in
smoke opacity with engine load is delineated in Figure 13. Like NOx, increasing trends
of SO emissions were also observed, except that their value decreases with the increasing
compression ratio.

It is interesting to note that, since tamarind biodiesel has relatively lower sulphur
content as opposed to diesel fuel, the SO emissions of TSME20 were reported practically
lower than diesel fuel, as can be seen in Figure 13. However, the use of EGR is found
to increase SO emission, especially with cold EGR. At 100% engine load, the highest SO
emission is given by TSME20 CR20 + Cold EGR 10% at 69.6 ppm, followed by TSME20
CR20 + Hot EGR 10%, Diesel CR18, TSME20 CR16, TSME20 CR18, TSME20 CR20 at 66.4,
65.4, 61.6, 58.8, 57.3 ppm, respectively.
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5. Conclusions

The present research delves into the impact of the compression ratio and exhaust
gas recirculation (EGR) on various characteristics of a common rail direct injection (CRDI)
diesel engine. This engine is powered by a blend consisting of 30% pilot fuel injection and
20% tamarind biodiesel. The key findings of this study can be summarized as follows:

â Tamarind biodiesel exhibits great potential as a viable source of biodiesel. Abundantly
available at minimal cost, it holds the promise of being readily scalable for large-
scale production.

â Among the different compression ratios tested for the TSME20 blend, the CR20 configu-
ration demonstrates the highest brake thermal efficiency (BTE) at 36.46%. Comparative
analysis reveals a marginal decrease in BTE due to the implementation of EGR.

â At higher compression ratios, the CRDI engine operating with TSME20 shows a signif-
icant decrease in fuel consumption, HC, and CO emissions. However, CO2 and NOx
emissions were found to increase due to higher in-cylinder temperature at a higher
compression ratio.

â The introduction of cold EGR at a 10% rate proves effective in mitigating in-cylinder
combustion temperatures to a sufficient degree. In comparison to the utilization of hot
EGR, employing cold EGR at 10% in conjunction with the TSME20 blend demonstrates
the capacity to significantly lower emissions of CO, CO2, and NOx. However, these
approaches have to compromise on elevated emissions of HC and SO.

â At the peak load condition, the combustion traits exhibited by the TSME20 blend,
specifically, the heat release rate (HRR) and combustion pressure (CP), closely resem-
ble the conventional diesel fuel when the engine is operated at a compression ratio
of 18.
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Nomenclature
BTE Brake Thermal Efficiency
BSFC Brake Specific Fuel Consumption
BP Brake Power
IT Injection Timing
EGR Exhaust Gas Recirculation
CR Compression Ratio
CP Cylinder Pressure
HRR Heat Release Rate
CO Carbon monoxide
HC Hydrocarbon
SO Smoke Opacity
NOx Nitrogen Oxides
bTDC Before Top Dead Centre
TSME 20 20% Tamarind Seed Methyl Ester + 80% diesel
TSME 20 CR 16 TSME 20 with compression ratio 16
TSME 20 CR 18 TSME 20 with compression ratio 18
TSME 20 CR 20 TSME 20 with compression ratio 20

TSME 20 CR 20 + Hot EGR 10%
TSME 20 with compression ratio 20
with 10% Hot exhaust gas recirculation

TSME 20 CR 20 + Cold EGR 10%
TSME 20 with compression ratio 20
with 10% Cold exhaust gas recirculation
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