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A B S T R A C T   

Integration of photovoltaic (PV) systems, desalination technologies, and Artificial Intelligence 
(AI) combined with Machine Learning (ML) has introduced a new era of remarkable research and 
innovation. This review article thoroughly examines the recent advancements in the field, 
focusing on the interplay between PV systems and water desalination within the framework of AI 
and ML applications, along with it analyses current research to identify significant patterns, 
obstacles, and prospects in this interdisciplinary field. Furthermore, review examines the incor
poration of AI and ML methods in improving the performance of PV systems. This includes raising 
their efficiency, implementing predictive maintenance strategies, and enabling real-time moni
toring. It also explores the transformative influence of intelligent algorithms on desalination 
techniques, specifically addressing concerns pertaining to energy usage, scalability, and 
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environmental sustainability. This article provides a thorough analysis of the current literature, 
identifying areas where research is lacking and suggesting potential future avenues for investi
gation. These advancements have resulted in increased efficiency, decreased expenses, and 
improved sustainability of PV system. By utilizing artificial intelligence technologies, freshwater 
productivity can increase by 10 % and efficiency. This review offers significant and informative 
perspectives for researchers, engineers, and policymakers involved in renewable energy and 
water technology. It sheds light on the latest advancements in photovoltaic systems and desali
nation, which are facilitated by AI and ML. The review aims to guide towards a more sustainable 
and technologically advanced future.  

Nomenclature 

AI Artificial Intelligence 
ML Machine Learning 
PV Photovoltaic 
ANN Artificial Neural Network 
MPPT Maximum power point tracking 
DL Deep Learning 
SS Solar Stills 
GA Genetic Algorithm 
SDM Single Diode Model 
DDM Double Diode Model 
TDM Triple Diode Model 
NRM Newton Raphson Method 
NLS Non-Linear Least Square 
HS Harmony Search Algorithm 
BMO Bird Mating Optimizer 
GOA Grasshopper Optimization Algorithm (GOA) 
SMA Slime Mould Algorithm 
FADE Fuzzy Adaptive Differential Evolution Algorithm 
MSFS Modified-Stochastic-Fractal-Search Algorithm 
PGJAYA Performance-Guided JAYA 
COA Coyote Optimization Algorithm 
SDO Supply-Demand-Based Optimization 
LCC Life Cycle Costing 
T-S Takagi-Sugano Fuzzy Modelling 
FLC Fuzzy Logic Controller 
IPSO Improved Particle Swarm Optimization 
SMC Sliding Mode Controller 
OIACO-BPNN Improved Ant-Colony-Optimization Algorithm-Trained BP Neural Network 
PI Proportional Integral 
SVM Support Vector Machines 
GEP Gene Expression Programming 
BPNN Back Propagation Neural Network 
RBL-ELM Extreme Learning Machine-Radial Basis Function Networks 
PNN Probabilistic Neural Network 
MLR Multilinear Regression 
DO Dissolved Oxygen 
BOD Biochemical Oxygen Demand 
FA-RVFL Firefly algorithm Random vector functional link network 
LSSVM Least Squares Support Vector Machine 
FF Feed Forward 
GMPP global maxima peak power 
POD phase opposite disposition 
WQI Water quality index 
PI Parameter Identification 
ANFIS Adaptive neuro fuzzy inference system 
AIS Artificial Immune System 
PSO Particle Swarm Optimization 
CSO Cuckoo Search Optimizer 
ICSO Improved Cuckoo Search Optimizer 
MCSO Modified Cuckoo Search Optimizer 
SDOA Supply-Demand-Based Optimization Algorithm 
TFWO Turbulent Flow of Water-Based Optimization 
HHO Harris Hawk Optimization 
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1. Introduction 

Recent advancements in technology have not only provided wealth to the world but also considerably improved the amount of 
energy that is used globally. The depletion of finite fossil fuel resources and the imminent danger of climate change have prompted 
numerous nations to explore the feasibility of harnessing renewable energy sources. Solar energy is now the green energy source that is 
expanding at the fastest rate due to the fact that it is convenient, simple to operate, safe, and reliable [1]. However, one of the most 
significant challenges that humankind is now contending with is climate change [2]. It is now very necessary for the government and 
the many companies that provide energy solutions to come up with a renewable energy system that can be maintained throughout time 
in order to meet the challenges that they face. 

Artificial intelligence (AI) and machine learning (ML) have developed important technological solutions in recent years as the 
energy sector continues to search for new ways to meet the ever-increasing need for energy that is reliable, affordable, and envi
ronmentally friendly [3]. By providing them with a comprehensive set of training instructions, it instructs computer systems to learn, 
reason, and make judgments in a manner that is analogous to that of humans [4]. These highly developed technologies have the ability 
to investigate the past, improve the present, and make accurate forecasts about the future. This indicates that AI and ML have the 
ability to come up with solutions to the majority of the difficulties that currently exist. Despite this, there are still a few difficulties that 
need to be solved, and these are challenges that can be overcome with the assistance of AI and ML [5]. Renewable energy has an 
extensive range of positive effects. To manage the grid in a manner that is more effective; the renewable energy sector will need to 
improve its forecasting capabilities as well as its scheduling of electricity supplies. There are effective technologies that can predict the 
weather conditions, but there are likely to be unexpected shifts in the environment that can disrupt the flow of electricity. The dis
tribution network for renewable energy is susceptible to these kinds of weaknesses [6]. It needs to be refined to a sufficient degree so 
that it can accommodate unforeseen changes. Second, although there have been some recent improvements in energy storage tech
nology, the technology is still in its infant stages and requires extensive testing. There is no question that the demand for renewable 
energy will raise within the near upcoming years. Because of this, it is becoming increasingly important to make investments in 
developing technologies like AI, ML and IoT in order to boost productivity and make up for shortages [7]. In accordance with research 
that was just published by DNV GL, artificial intelligence (AI) will progressively mechanize processes in the subsequent centuries in the 
solar and wind sectors, which will enhance efficiencies all across renewable energy sector. 

Research in the domains of photovoltaic (PV) systems and desalination is undergoing constant development, propelled by tech
nological breakthroughs and the imperative for sustainable energy solutions. The contemporary research on PV systems and desali
nation encompasses various emerging trends. These trends frequently involve the integration of converters, Maximum Power Point 
Tracking (MPPT) techniques, reconfiguration strategies, concentrators, collectors, solar still designs, and the integration of AI and ML 
applications. Researchers are currently engaged in the development of innovative solar cell technologies, including perovskite solar 
cells and multi-junction solar cells, with the aim of improving conversion efficiency and mitigating manufacturing expenses [8]. 

GWO Grey Wolf Optimization 
ACS Adaptive Compass Search 
GAMNU Genetic Algorithm Based on Non-Uniform Mutation 
NGO Northern Goshawk Optimization 
EGBO Enhanced Gradient Based Optimizer 
MPA Marine Predators Algorithm 
RMSE Root-Mean-Square Deviation 
P&O Perturb and observe 
MPP Maximum Power Point 
EA Evolutionary Algorithms 
VPSO-LF Velocity of PSO-based Levy Flight 
ACO Ant Colony Optimization 
SRM Switched Reluctance Motor 
RBF Radial Basis Function 
k-NN k-Nearest Neighbours 
WT Wavelet Transform 
LAPART Laterally Primed Adaptive Resonance Theory 
M-SVM Multi-Class Support Vector Machine 
RF Random Forest 
TSS Total Dissolved Solids 
SWR Stepwise Regression (SWR) 
ICA Imperialist Competition Algorithm 
MARS Multivariate Adaptive Regression Analysis 
MT M5Model Tree approaches 
TLABC teaching learning-based and artificial bee colony 
MLDCLI Maximum Power Point Tracking and Load Current Injection 
MCPWM multiple of carrier pulse width modulation  
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Bifacial solar panels possess the capability to harness sunlight from both the front and back surfaces, hence augmenting their overall 
efficiency. The research is centred on the optimization of the design and integration of these entities within diverse contexts [9]. The 
investigation of MPPT algorithms and converters is now underway to enhance the effectiveness of energy extraction from photovoltaic 
(PV) panels. This research primarily focuses on adjusting the operational theme of the system in response to changing weather con
ditions, aiming to optimize energy extraction efficiency [10]. The implementation of smart grid technology facilitates the establish
ment of bidirectional communication channels between utility providers and consumers, hence enhancing the management of energy 
distribution, consumption, and storage [11]. 

While in case of solar desalination the research primarily centres around enhancing the designs of solar stills, integrating modern 
materials, and optimising the geometry to achieve greater efficiency in water desalination procedures [12,13]. Concentrated solar 
desalination systems employ reflective surfaces such as mirrors or lenses to concentrate sunlight, hence elevating the temperature and 
enhancing the effectiveness of the desalination process. Current research endeavours are focused on optimising concentrator designs 
and enhancing energy efficiency [14,15]. The combination of solar desalination and other desalination techniques, such as reverse 
osmosis, to form hybrid systems that leverage the respective advantages of each method, resulting in enhanced efficiency and reduced 
expenses [16,17]. AI and ML algorithms are utilized in the optimization of desalination processes through the analysis of real-time 
data. These algorithms enable the prediction of system behaviour and facilitate the adjustment of operational parameters to ach
ieve maximum efficiency and minimise energy usage [18,19]. The research primarily centres around zero liquid discharge (ZLD) 
systems, which aim to achieve complete purification and recycling of wastewater, hence minimizing its environmental footprint. AI 
and ML techniques are utilized in the practical implementation of real-time monitoring and control systems for ZLD operations [20]. In 
brief, contemporary investigations in the field of photovoltaic systems and desalination exhibit notable progressions in solar cell 
technologies, power electronics and converters with enhanced efficiency, inventive approaches to desalination, incorporation of AI 
and ML for optimization and predictive maintenance, and a concerted emphasis on sustainability and mitigating environmental 
impact. These trends collectively lead to the advancement of more effectual, economically viable, and ecologically sustainable 
technologies for energy generation and water desalination. 

The integration of AI and ML technology has led to substantial improvements in the domains dealing with PV and desalination in 
latest years. The emergence of these contemporary trends has fundamentally transformed the field of research and development in 
sustainable energy and freshwater production. Nevertheless, in the middle of the rapid increase of scientific studies, there is a crucial 
requirement for a thorough analysis that combines the various aspects of these trends. The existing literature fails to offer a thorough 
examination and integration of the various approaches, uses, and results arising from the combination of PV systems, desalination 
processes, and AI/ML technologies. The lack of a comprehensive knowledge base impedes the capacity of researchers, policymakers, 
and industry professionals to fully understand the overall influence and possibilities of these advancements. Moreover, the lack of a 
cohesive framework obstructs the ability to pinpoint deficiencies, difficulties, and prospects in this interdisciplinary field. It is 
imperative to address this discrepancy for multiple reasons. Firstly, comprehending the interdependent connection between solar 
systems, desalination processes, and AI/ML algorithms can result in the creation of more effective, environmentally friendly, and 
economically feasible solutions for producing clean energy and generating freshwater. Furthermore, conducting such an analysis is 
crucial in order to direct future research efforts, allowing researchers to concentrate on the most advantageous areas of investigation. 
Furthermore, policymakers and industry stakeholders necessitate a comprehensive comprehension of these patterns in order to 
develop well-informed policies and investment plans that promote the advancement of eco-friendly energy and water technology. 

Hence, the objective of this study is to do a meticulous and all-encompassing examination of the latest advancements in research on 
photovoltaic systems and desalination in the era of AI and ML. This review strives to provide a exhaustive and detailed analysis of the 
present state of knowledge by synthesizing existing research, evaluating approaches, and dissecting outcomes. By doing this research, 
we will be able to identify areas where our understanding is lacking, technological obstacles, and ethical concerns. This will enable us 
to determine future research paths and strategic actions in the fields of sustainable energy and water management. The current study 
presents the following general framework: Necessity and importance of AI-ML in PV system and solar desalination is represented in 
Section 1; Conventional algorithm weaknesses and AI solutions are elaborated in Section 2; Utilization of Artificial Intelligence in PV- 
Systems discussed in Section 3; Section 4 elaborates about the utilization of Artificial Intelligence in a desalination process operated by 
renewable energy; Section 5 and 6 discusses about challenges in AI-ML implementation and recommendations from the results of 
current review article; Finally, Section 7 and 8 represents conclusions and future directions. 

1.1. Significant contribution of this work and the purpose of choosing the PV and solar still 

The selection of photovoltaic (PV) systems and solar stills for investigation can serve multiple purposes, encompassing a range of 
scientific, environmental, and practical factors. There are several justifications for selecting these technologies for investigation. 
Photovoltaic (PV) systems and solar stills effectively capture and utilize solar energy [12,21]. The examination of these technologies 
facilitates comprehension of the effective methods for harnessing solar energy across diverse applications, hence diminishing the 
dependence on non-renewable energy sources such as fossil fuels [22]. Fossil fuels provide a substantial contribution to the degra
dation of the environment and the alteration of global climate patterns. Photovoltaic (PV) systems and solar stills offer environ
mentally friendly energy solutions by generating electricity without emitting greenhouse gasses or any other detrimental substances. 
The examination of these technologies facilitates the advancement of ecologically sustainable alternatives and the mitigation of 
climate change effects [23]. Photovoltaic (PV) systems and solar stills play a crucial role in delivering electricity and potable water to 
underserved regions that lack traditional infrastructure. The study of these technologies contributes to the development of efficient 
systems specifically designed for these surroundings, thereby enhancing living circumstances and promoting sustainable development 
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[24]. The field of solar energy is always evolving. Research and investigation in the field of photovoltaic (PV) systems and solar stills 
play a significant role in driving technical progress, resulting in the development of more efficient, economically viable, and easily 
expandable solutions. Enhancing comprehension of the fundamental principles and advancing the development of these technologies 
has the potential to expedite their widespread implementation on a worldwide scale [25]. The examination of the economic feasibility 
of solar technologies becomes increasingly imperative as their efficiency and cost-effectiveness improve. The examination of economic 
factors, such as return on investments, payback periods, and subsidies, enables decision-makers and enterprises to make well-informed 
decisions pertaining to the adoption of solar power and desalination systems [26,27]. In brief, the selection of photovoltaic (PV) 
systems and solar stills for research purposes comprises a wide-ranging objective that includes the preservation of the environment, the 
promotion of sustainable development, the advancement of technology, and the enhancement of the quality of life for global 
communities. 

1.2. Necessity of AI-ML in photovoltaic 

In today’s world, solar power generation accounts for a considerable quantity of all renewable energy use. In addition, it is 
anticipated that the global solar photovoltaic (PV) capacity will expand from 593.9 GW in 2019 to 1582.9 GW in 2030, and this 
increase will be due to capacity expansions made by India, Germany, the United States, and Japan [5]. Nevertheless, the imple
mentation of PV systems still entails high prices and concerns with efficacy which need to be rectified [28]. Continued attempts are 
being undertaken in order to reduce the costs associated with installing photovoltaic (PV) systems while also improving their effi
ciency, making their installation simpler, and improving their ability to couple to power grids. 

In order to solve these issues, AI- ML algorithms have emerged as an alternative to more conventional approaches to the problem of 
providing solutions that increase the performance of photovoltaic (PV) systems. In particular, advancements in deep learning (DL) for 
PV systems over the past 5 years have accelerated study in these areas, with the result being more robust models for analysing 
structured data of all types. This was made possible by the advances in DL that occurred during the last five years. As a result, it is 
absolutely necessary to conduct research into novel approaches that solve the issues plaguing PV systems by making use of the most 
advanced models now available in the field of AI-ML. 

1.3. Necessity of AI-ML in solar desalination (solar still) 

The availability of water that is safe to drink is one of the most valuable resources necessary to maintain human life on earth [29, 
30]. In a world, about 97 % of the water sources are salty, there are approximately 800 million individuals who do not have source of 
clean drinking water [31]. In addition to this, it is predicted that up to year 2050, about half of the water on the planet will have been 
utilized [18,32]. There are a variety of approaches to water desalination that can be applied to tackle this challenge successfully. Solar 
stills (SSs) are the most prevalent method for desalinating water due to the ease with which it can be constructed, and the low cost at 
which it can provide clean water [33]. AI-ML has been implemented in a variety of engineering specializations, comprising as puri
fication and water management applications, and it can serves an essential part in exploiting the efficiency with which unavoidable 
variations in process conditions are optimized [34]. The modelling proficiencies of AI approaches are extremely helpful in water 
filtration and sewage treatment methods. This is due to the fact that the mechanization of these provisions resulted in simple and 
inexpensive actions, as well as a considerable drop in the possibility of manual mistakes. Fig. 1 represents the parameters in desali
nation systems where AI-ML is to be applied. 

Fig. 1. Parameters in Desalination Systems where AI-ML is applied [18] (Adapted with permission from ELSEV. B.V. with LIC. No 
5517441249037). 
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1.4. Importance of AI-ML in PV and solar still 

AI and ML have emerged as pivotal components within the domain of solar PV and solar stills because of their distinct charac
teristics and inherent value. These technologies offer a multitude of factors that contribute to their significance in this specific field 
[35]. PV systems and solar stills are intricate systems that involve multiple variables, including weather conditions, sunshine intensity, 
temperature, and system configurations [36,37]. AI and ML algorithms provide the capability to effectively manage intricate scenarios 
and extract patterns from extensive information, hence facilitating accurate forecasts and optimisations. AI and ML facilitate the 
implementation of data-centric approaches to decision-making. Through the examination of historical data, these technologies have 
the capability to offer valuable insights pertaining to energy production, efficiency, and the behaviour of systems. The provided 
knowledge holds significant value in terms of enhancing the design and functionality of PV systems and solar stills [38]. Machine 
learning algorithms have the capability to forecast future solar energy generation by utilizing historical data and the prevailing 
environmental circumstances. Accurate forecasting is of paramount importance for utilities and grid operators in order to efficiently 
manage the balance between energy supply and demand [39]. Artificial intelligence demonstrates exceptional proficiency in iden
tifying complex patterns within datasets. In the context of solar systems, these patterns may be associated with variations in meteo
rological conditions, fluctuations in energy production, or instances of system malfunctions. Machine learning algorithms have the 
capability to detect and analyse these patterns, hence facilitating comprehension and regulation of the system [40]. Machine learning 
models have the capability to be customised to suit certain solar configurations. These systems have the ability to adjust and conform to 
various climatic circumstances and system configurations, hence offering tailored solutions for a wide range of PV and solar still 
applications [41]. 

2. Conventional algorithm weaknesses and AI solutions 

Over the course of the past few decades, artificial intelligence systems have established their feasibility as viable alternatives to 
traditional methods of information processing [42]. Applications of AI modelling revealed that they are proficient of tackling a 
extensive variability of problems with any level of complexity and difficulty [43,44]. When compared to more traditional methods, this 
is the most notable quality that AI technologies possess. In contrast, for the latter scenario, to minimise the complication of the system 
under study, it is required to assume a few things [45]. For instance, the formulation of predictor variables should be created for each 
potential combination of independent factors in order to improve and more accurately forecast the removal of a specific pollutant 
during the treatment process. Specifically, this should involve changing just one variable at a time while maintaining the status quo for 
the remaining variables [46]. Due to absence of comprehension regarding the complexity of the system, these assumptions can un
expectedly lead to specific differences between theoretical models and experimental data, which can hinder the accurateness of the 
model [47,48]. One more characteristic of AI tools is that they do not necessitate an in-depth understanding of the phenomenon or the 
process that is being investigated. To be more specific, it is not necessary to have numerical or governing equations, nor do you need to 
have explicit assumptions that describe the underlying engineering processes. 

In order to estimate all of the potential answers to issues in engineering or science, GA mimics the reasoning behind natural 
evolutionary processes. In contrast to GA, the majority of traditional methods follow a predetermined set of steps in order to get closer 
and closer to the best possible answer. The majority of the time, these algorithms start with a random guess at a solution. After that, 
they obtain a search direction depending on a specified transition rule. After that, a search in only one direction is conducted so that the 
best possible answer can be found. This kind of traditional optimization approach is ineffective in the desalination of water and the 
treatment of wastewater because the optimal solution is dependent on the starting solution that is chosen. In addition, it provides 
maximum and minimum values at the local level, whereas designers typically look for maximum and minimum values at the global 
level. While GA is capable of producing a Pareto set that identifies the point at which all feasible solutions are optimal and can 

Table 1 
Overview of AI solutions and strategies for overcoming existing system drawbacks.  

Traditional Algorithm Practical use Weakness of Traditional 
Algorithms 

Solutions With Artificial Intelligence AI Methodologies 

Methods that are both 
predictive and 
stochastic 

Monitoring, 
Maintenance 

Outlier-sensitive Substitute outliers with more appropriate values 
by utilizing Quantile Methods. 

ML and DL 

Kernel methods Control/ 
Maintenance 

The results are probabilistic, 
and the training takes a lengthy 
period. 

Predictability employs statistics to examine the 
frequency of probabilities and minimizes 
training time by solving sets locally 

Regression 
Algorithms, 
Neural 
Networks and ML 

Data Minimization 
Technique 

Maintenance Can only be utilized when 
clustering is present. 

Filtering and Normalization replace data 
minimization 

Memory- and model- 
Filtering 
ML 

Randomized 
Probabilistic 
technique 

Maintenance complex computations Symbolic reasoning is used to tackle difficult 
computational problems. 

Logical -Neural 
Networks and 
Decision trees 

Population based methods Design control/ 
maintenance 

Slow convergence, complicated 
implementation 

Pre-training with low learning rates for quick 
convergence 

Machine Learning, 
Heuristic search  
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anticipate them. In addition, a concise overview of artificial intelligence (AI) resolutions and strategies to overwhelm the disadvan
tages of traditional systems in many roles of PV systems is presented in Table 1. 

3. Utilization of artificial intelligence in PV- systems 

PV systems are designed to convert the irradiance of the sun into electrical power. The big price of constructing PV systems is one of 
the primary drawbacks of these types of systems. Every research in this subject has attempted to enhance such systems while lowering 
their costs. The utilization of artificial intelligence algorithms has been demonstrated to play a pivotal function in augmenting the 
efficacy of solar panels. This study presents complete analysis on the application of artificial intelligence in modelling, sizing, 
controller, liability diagnostics, and output approximation of solar systems. It analyses the differences and similarities among AI and 
traditional algorithms for controlling individual type of application. Solar photovoltaic (PV) systems are composed of PV, batteries, 
converters, and inverters. On a worldwide scale, they are divided into the following three categories of system (see Fig. 2). 

In multiple ways of the sizing, modelling, and regulating of PV systems, AI algorithms are applied. The uses of AI in photovoltaic 
research broken into 5 primary categories see (Fig. 3). The next part will elaborate on each. 

3.1. Selection of parameters for the model of solar cells 

Within the realm of PV research, an exact modelling of PV cell is an essential component. In order to model a PV system, one needs 
to first theoretically model the system and before draw out the system’s elements. The solar cell can be modeled using a Single-Diode 
Model (SDM), Double-Diode Model (DDM) or Triple-Diode Model (TDM) [50]. The parameters of each diode models are represented in 
Fig. 4. Since, SDM can be easily implemented with only five parameters; it is utilized extensively for the modelling of solar cells. 
Nevertheless, SDM is mostly imprecise in its description of cell function at low illumination conditions. Whereas, in DDM, which 
consist of an additional diode connected in series through the current. This additional diode has the potential to attain more precision 
than a model with a single diode, but because there are seven parameters, additional computations are required. The inclusion of other 
diodes together with the existing two diodes results in the creation of the TDM. When compared to the DDM, the TDM has an additional 
third parameters [51]. 

For the purpose of parameter identification of solar cells, there are a lot of traditional approaches described in the relevant 
literature. An analytical-numerical method is suggested for determining the 5 parameters of the SDM by Hejri et al. [53]. A first guess 
for the numerical solution can be derived from the analytic portion of problem. A pattern search approach is given by AlHajri et al. 
[54]. This method is applicable to SDM, DDM, and photovoltaic modules. However, orthodox approaches are incompetent of deter
mining the characteristics of PV modules with a level of precision that is acceptable. Numerical methods, like the Newton-Raphson 
method [55], heavily rely on the first conditions that are selected. These methods also have a singularity problem and require a 
laborious calculation of the Jacobin matrix. In a similar manner, the non-linear least square (NLS) method presented in Ref. [56] is 
extremely sensitive to the initial values of the parameters and the bound constraints that are chosen. If the initial parameters aren’t 
chosen correctly, the NLS optimization process could become stuck on a local minimum while it’s trying to find the global minimum. 
Because of this, a large number of researchers began looking at AI methods for parameter detection. 

In Karatepe et al. [57] describe a NN modelling approach for a SDM. On the other hand, in Askarzadeh et al. [58] propose an 
element identification using a Harmony-Search (HS) algorithm. According to the findings presented in the research, the effectiveness 
of the harmony search algorithm is significantly higher than that of simulated annealing and GA. El-Naggar et al. [59], the simulated 
annealing approach is utilized to search and find tool. In Askarzadeh et al. [60], an innovative method for resolving the problem of 
constraint identification based on a BMO is initiated. The findings demonstrate that the method has a performance that is superior to 
that of the PSO. In addition, parameter identification based on ANFIS rather than neural networks is described by Salem et al. [61]. The 
findings demonstrate that NN performs more effectively than ANFIS does. AIS is provided as a potential answer in Ref. [62], where it is 

Fig. 2. Different categories of PV systems [49].  
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contrasted with PSO and discussed. The findings of the study demonstrate that AIS performs more effectively than PSO and GA 
together. Table 2 provides a summary of some of the most modern algorithms that have been utilized in latest years for the purpose of 
PV parameter estimation problems. 

3.2. Sizing of PV-panels 

Accurately sizing a solar photovoltaic ensures electricity quality and stability and maximises cost benefit during the system’s 
lifetime [84]. Deciding the PV capacity, the size of PV module, the dimensions of the inverter, and the size of the battery are all el
ements of the PV sizing process [85]. The challenge of determining the exact count of solar panels, the optimal storing capability of the 
battery, exact positioning and slant positions of PV panels, and the optimal size of the inverter can be resolved by employing methods 
from artificial intelligence. Fig. 5 presents the several approaches that are available for determining the size of a PV array as well as the 
dimensions of battery in PV system [85,86]. 

An analytical approach was provided by Zanesco et al. [87] for the exact sizing of photovoltaic (PV) systems. This strategy was put 
to the test in 144 different cities across Brazil. Furthermore, In order to determine the exact size of freestanding photovoltaic systems in 
Malaysia, an innovative analytical method has been presented by Jakhrani et al. [88] Within the scope of this study, expressions have 
been formulated for the optimum size of PV arrays and useful battery storage capacities. Artificial intelligence approaches are now 
being used in research for the optimal sizing of photovoltaic systems since these techniques provide a higher level of accuracy than 
traditional methods. For the purpose of determining the optimal dimensions of a freestanding PV system, Khatib and Elmenreich [89] 
utilized a GANN. The authors of this study made use of an analytical technique in order to determine the sizing proportions for 
photovoltaic range along with the battery for the 5 locations in Malaya that were investigated. For this aim, data collected on an hourly 
basis from the climatological and load demand systems are employed. In the study referred by Mellit [90] genetic algorithm techniques 
and artificial neural network models are combined in a symbiotic fashion in order to accomplish the goal of optimising size coefficients 
for freestanding PV systems. The GA model was utilized to optimize the coefficients to decrease the price of the system. Subsequently, 
an ANN was trained with these inputs to discover the ideal coefficients for use in isolated places. In the same vein, an ANN is used by 
Kolawole [91] for the purpose of forecasting the ideal sizing factors for freestanding PV systems. The RMSE for the PV array size 
coefficient produced by the ANN was 0.046, while the RMSE for the battery storage was 0.085. The tabu search (TS) algorithm was 
used by Yoza et al. [92] to optimize the battery arrangement in house. During the two-part execution of the optimization challenge, the 
appliance scheduling part was optimized for operating expense, and the planning and operation part was streamlined for overall 
system cost. In a freestanding PV located in the Sfax region, Salah et al. [93] utilized FL to maximise both the surface area of the 
photovoltaic panels and the capacity of the batteries. MATLAB–Simulink is used to build fuzzy logic, and Inputs include load energy 
requirements and a monthly mean daily solar radiation. The technique produces PV panel contact area and battery capacity. Particle 
swarm optimization is implemented by Kornelakis and Marinakis [94] for the purpose of optimally sizing grid-connected PV systems. 
The data includes both the technical and economic aspects of system devices that are now available on the market, as well as 
meteorological data for the locations that were being considered. GA-based strategy was utilized by Zhao et al. [95] in order to 
optimize the unit sizing procedure for a freestanding micro-grids system located in China. In order to generate the sizing outcomes, an 
innovation operation approach has been adopted. This technique is centred on the coordination of energy storage. The technique that 
has been described was created in aim to decrease the release of LCC and pollutant emissions while simultaneously maximizing the 
production of energy. The sizing is determined with the help of daily data and straightforward models for the PV array and the 
batteries. When simple models are utilized, it is possible to have outcomes that are either over or under sized. In addition, the ANFIS 
model is created in in order to optimize the size coefficients of freestanding PV systems [96]. Based on the climatological data, the 
newly generated database contains sizing coefficients corresponding to two hundred different locations in Algeria. In addition, the 

Fig. 3. Parameters in PV Systems where AI-ML is applied.  
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ideal sizing criteria for these computed locations were produced, and they were based on the expenses of a solar panel. In comparison 
to the factors of the site’s known size, the findings that the proposed ANFIS model provided were found to be the most accurate of those 
obtained from the many possible network topologies. The number of applications for AI algorithms in sizing is presented in Table 3. It 
is clear that NN and hybrid NN are the artificial intelligence algorithms that see the most widespread application for PV sizing. 

3.3. Controlling of PV-systems 

In recent times, there has been a great deal of focus placed on the control of PV systems. In the published research over the course of 
the previous few years, numerous control objectives and controllers have been described. There is also the application of AI for the 
control of PV. Increasing the effectiveness of PV is accomplished over the application of various intelligent control approaches [102, 
103]. In this section, we will talk about the primary control components that are found in PV systems. There are three areas in which 
intelligent control approaches are utilized: MPPT [104], inverter controller [105], and sun tracking. 

3.3.1. Maximum power point tracking (MPPT) 
MPPT approaches are utilized in order to maximise the amount of power that may be strained from a PV and to expand the 

effectiveness of the installation [106]. The traditional MPPT approaches that are P&O [107], incremental conductance [108], 

Fig. 4. Parameters of each diode models, Redrawn: (a) SDM [52], (b) DDM [52], (c) TDM [52].  
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fractional open circuit voltage [109], and current [110] are some of the most popular choices [111,112]. The ease of use and rapid 
convergence offered by these algorithms have contributed to their widespread adoption [113]. In recent times, systems for MPPT that 
are based on intelligent techniques such as PSO [114], genetic algorithms (GA) [115], fuzzy control [116], simulated annealing al
gorithm [117], neural networks [118], and firefly algorithm [119] have been developed. Fig. 6 demonstrates the variability of tactics 
that have been taken in the works in order to MPPT. The performance of AI algorithms has been shown to be superior to that of 

Table 2 
Modern algorithms utilized in recent years for the purpose of PV parameter estimation problems.  

Reference Algorithm Diode 
models 

Remark 

[63] Cuckoo Search Optimizer (CSO), improved 
CSO (ICSO) and modified CSO (MCSO) 

SDM and 
DDM 

ICSO achieves better accuracy and dependability than CSO and MCSO. 

[50] Supply-Demand-Based Optimization 
Algorithm (SDOA) 

TDM In the process of PV parameter extraction, SDOA is frequently used as a competitive 
optimizer. 

[64] Turbulent Flow of Water-Based Optimization 
(TFWO) 

SDM, DDM 
and TDM 

The suggested TFWO achieves close (IV) curves compared to other optimization 
techniques. 

[65] Harris Hawk Optimization (HHO) TDM The outcome presents that the recommended approach can quickly notice the 
electrical constraints of any marketable PV panel. 

[66] Gorilla Troops Optimization (GTO) SDM and 
DDM 

GTO is proven using a variety of irradiations and temperatures, all of which result 
in an extremely high degree of similarity among the emulated and investigational 
(IV) curves. 

[67] Forensic-Based Investigation Algorithm 
(FBIA), 

SDM, DDM 
and TDM 

The FBIA results are remarkably consistent because the SD of fitness values across 
30 runs is fewer than 1 × 106 for all three models. 

[68] Closed-loop PSO (CLPSO) and elephant herd- 
optimization (EHO) 

DDM and 
TDM 

The EHO is superior to the CLPSO with regards to the quality of the solutions it 
generates and the merging rates it achieves when viewed from the perspective of 
soft computing standards. 

[69] Metaphor-Less Rao-ii and Rao-iii Algorithms SDM, DDM 
and TDM 

As per the findings of the statistical analysis, the suggested algorithms, R-ii and R- 
iii, demonstrate a superior level of performance to those of well-established 
approaches. 

[70] Grasshopper Optimization Algorithm (GOA) TDM The usefulness of the GOA photovoltaic (PV) model is estimated by contrasting the 
results of the simulation with the outcomes of PV models that are based on other 
optimization approaches. The results are within a range that is considered 
acceptable. The suggested GOA can be used to optimize RE systems, and smart 
grids. 

[71] Improved Bonobo Optimizer (IBO) SDM, DDM 
and TDM 

All of the suggested IBO’s results outperformed those of other algorithms when 
compared. 

[72] Grey Wolf Optimization (GWO) SDM GWO outperforms PSO in fitness. The model has the lowest I–V and P–V errors. 
[73] Slime Mould Algorithm (SMA) SDM, DDM 

and TDM 
Given the observations and comments, the suggested SMA may provide superior 
parameter estimates and merging speed, as evidenced in the converging curve for 
every PV model. 

[74] Adaptive Compass Search (ACS) DDM The ACS method can significantly increase the capacity to conduct global 
exploration by generating an adaptable sequence of exploration directions based 
on prior searching results. 

[75] Fuzzy Adaptive Differential Evolution 
Algorithm (FADE) 

SDM According to the findings, the FADE algorithm is an efficient way for evaluating the 
elements of PV module models and has a higher level of robustness when it comes 
to identifying parameters. 

[76] Genetic Algorithm Based on Non-Uniform 
Mutation (GAMNU) 

SDM, DDM The statistical outcomes states that the suggested method overtakes existing 
advanced algorithms in accuracy and reliability. The suggested approach can 
extract solar PV model parameters. 

[77] Modified-Stochastic-Fractal-Search 
Algorithm (MSFS) 

SDM, DDM RMSE values among models and actual data are 10− 2 or 10− 3. Therefore, suggested 
approach is utilized to estimate solar cell and PV module parameters due to its 
efficacy and practicability. 

[78] Northern Goshawk Optimization (NGO) TDM The outcomes of the simulation demonstrate that the NGO is higher to other 
competed optimization algorithms in terms of how quickly and accurately they 
converge on a solution. 

[79] Performance-Guided JAYA (PGJAYA) SDM, DDM The PGJAYA approach for PV module model parameters appears promising. 
Additionally, the PGJAYA method can be considered an effective strategy for 
dealing with several other optimization issues in the energy system. 

[80] Enhanced Gradient Based Optimizer (EGBO) SDM, DDM The findings point to the newly presented EGBO as being superior to the original 
GBO algorithm, and it does rather well when compared against some of the other 
approaches that are described in the relevant academic literature. 

[81] Coyote Optimization Algorithm (COA) SDM, DDM Both models had fitness standard deviations (STDs) less than 1 × 10− 5. This shows 
the algorithm’s consistent outcomes. 

[82] Marine Predators Algorithm (MPA) SDM, DDM 
and TDM 

The MPA achieves outcomes that are comparable to those achieved by other 
optimization methods described in the research literature. The suggested MPA has 
strong statistical support and convergence for a variety of operational situations, 
including those with low and high irradiance. 

[83] Supply-Demand-Based Optimization (SDO) SDM, DDM 
and TDM 

The SD of the fitness values are lower than 1 × 10− 18, 10− 17, and 10− 6, 
respectively, for three models, which indicates that the SDO is superior. These 
values were calculated using a total of 30 runs.  
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conventional methods. PSO for MPPT is presented in Refs. [114,120]. This research presents a controller for numerous photovoltaic 
arrays [121]. makes the suggestion that a neural network could be utilized to resolve the MPPT problem. MPPT is performed using an 
innovative ACO approach, which is found in Ref. [122]. Fuzzy logic’s ease of use and lightning-fast reaction have contributed to the 
field of MPPT’s meteoric rise in popularity. In Ref. [123], the author describes a FLC that can track the maximum power point under a 
variety of temperature and irradiance conditions. While in Ref. [124], an incremental conductance controller and a GA-optimized NN 
controller are linked to one another. An ANFIS-GA maximum power point tracking is recommended in Ref. [125]. The findings indicate 
that there is a relatively small amount of error in the MPP and the Optimal Voltage (Vmpp), as well as a higher competency of the 
recommended method in tracking MPP. Within the scope of study [126], a novel P&O variable step size that is based on a GA has been 
developed with the intention of enhancing the MPPT in PV systems. In study [1], fuzzy logic was used in an innovative way with 
artificial neural networks. This was accomplished by integrating genetic, particle swarm optimization and imperialist competitive 
algorithms in order to develop a solution for MPPT that was both efficient and effective. MATLAB software was used to carry out the 
approaches and evaluate their effectiveness. Kishore et al. [127] used TLABC methodologies to implement the dual TLABC method
ology in MATLAB/SIMULINK. Additional statistics and stability assessment has been done on all approaches to improve accuracy. A 

Fig. 5. Different techniques to determining the size of a PV array.  

Table 3 
Number of applications for AI algorithms in sizing.  

Reference Algorithm Parameters Accuracy (%) 

[96] ANFIS Sizing coefficients 98.5 
[90] GA & NN Sizing coefficients 98 
[89] PSO PV panel number, positioning, and tilt angle – 
[94] Regression NN Sizing-Curves 98.8 
[91] ANFIS-GA battery size and solar cell count 92.5 
[97] bat algorithm PV array, inverter module dimensions 96.4 
[98] Grey Wolf Optimization optimize the size – 
[99] PSO & GA optimum grid connected PV size – 
[100] PSO range of the PV panel – 
[101] Improved Harmony Search (HIS) optimum size of PV/battery   

L.D. Jathar et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e25407

12

novel dual TLABC algorithm is developed to eliminate GMPP deviations in this work. Four setups are used to evaluate the PV system. In 
the work by Kishore et al. [128] utilized GWO-DE, to record the global maximum peak power. Moreover, the system under consid
eration is constructed using the MATLAB/Simulink program [129]. The system is tested in different atmospheric conditions and 
compared to others. The hybrid GWO-DE algorithm surpasses previous methods in convergence time, precision extracted power, and 
efficiency. In the similar vein of the research Aljafari et al. [130] have suggested a novel hybrid MPPT that utilizes an BO algorithm to 
effectively solve the issue of fluctuation and its transformations. The study has offered a performance comparison and analysis of the 
butterfly optimization algorithm, GWO, and PSO based MPPT methodologies. The investigational consequences demonstrate that the 
suggested strategy outperforms standard approaches in terms of adaptation, effectively reducing the convergence of load variation and 
minimizing the occurrence of frequent exploration and exploitation patterns. PV systems are susceptible to several environmental 
disruptions, one of which is partial shade, a disturbance that negatively impacts the photovoltaic system’s properties. Hence, it is 
imperative to establish a comprehensive analytical framework for PV systems in order to examine the optimal MPPT technique. A 
rigorous analytical model of the PV system under partial shading circumstances (PSC) is constructed by Ref. [131], considering the 
impact of both series and shunt resistance, in accordance with its necessity. The findings demonstrate that the suggested model has a 
immense quantity of reliability, rendering it suitable for accurately representing a wide spectrum of solar systems, encompassing both 
independent and grid-integrated configurations. Nevertheless, the efficacy of the suggested mismatch loss reduction technique has the 
potential to augment the power conversion rate [132]. B. Aljafari et al. [133] proposes a PV array configuration in a calcudoku puzzle 
arrangement in order to mitigate the effects of the partial shadow phenomenon. Though the calcudoku puzzle pattern bears resem
blance to the sudoku puzzle pattern, the PV panel locations in the proposed work are determined through the application of math
ematical relations. Additionally, there is no repetition of the same number in the corresponding column and row. The efficacy of the 
proposed system is assessed in a 9 × 9 photovoltaic arrays while considering all eight potential shading patterns. As part of the 
investigation into the methodologies’ efficacy, a comparison was made between them regarding the stability, speed, and complexity of 
their respective implementations. Table 4 provides a concise breakdown of the many algorithms that are available. 

MPPT approaches utilize controllers to maximise power output from PV setups. There are numerous MPPT approaches for running 
PV modules at maximum power. The effectiveness of this approach relies on its capability to track speedily varying meteorological 
situations. Techniques for tracking in PSCs are classed based on their nature. Discussion covers all classified methodologies, catego
rized as Classical MPPT, Intelligence MPPT, and Optimization MPPT [158]. 

Under homogeneous irradiation conditions, photovoltaic systems are highly efficient as they generate only one GMPP. However, it 
should be noted that these algorithms exhibit rapid oscillations around the MPP, which subsequently leads to power loss. Moreover, it 
is important to note that the aforementioned traditional methodologies fail to consider the impact of PSC, resulting in an inability to 
accurately monitor the MPP. Comparison of classical algorithm-based MPPT approaches represented in Table 5. 

Intelligence-based strategies, as discussed in previous studies [158,159], encompass many methodologies such as FLC, ANN, SMC, 
MPPT algorithms based on the Fibonacci series, and MPPT algorithms based on the Gauss-Newton approach. These strategies are 
designed to address dynamic weather situations with a high level of precision. The tracking efficiency and speeds exhibited by the 
system are remarkably great. These methods are also characterized by significant control circuit complexity and extensive data 
processing required for system training prior to implementation. The FLC methodology is a notable method that does not necessitate 
extensive understanding of the system for the execution of MPPT. The use of SMC, an advanced technology, is facilitated by its ability 
to track speeds at higher rates. 

PSO, GWO, CS-based cuckoo search, ACO, and ABC are optimization-based methods [160]. These methods also seek true MPP in 
dynamic environments. PSO is a quicker tracking algorithm with less oscillation. These strategies are easy to apply using low-cost 

Fig. 6. Different algorithms used In MPPT (Redrawn from [134]).  
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Table 4 
Concise breakdown of different algorithms for MPPT.  

Method Reference Remark Validation method 

Artificial Neural 
Network (ANN) 

[135] In order to find the MPP quickly and accurately, a new MPPT 
technique established on artificial neural networks has been 
proposed. 

Experimental parameters such as Voltage, Current, 
Radiation Intensity are taken to train ANN Model. The 
model is best suited in field-programmable gate array. 

[136] When utilizing an ANN-based MPPT controller, the output 
voltage is more stable and has fewer oscillations than when 
using other controllers. The controller is more reliable 
overall and operates at a higher speed. 

The performance is compared with perturb and Observe 
method and validation is done. 

[137] In order to train neural networks, an algorithm called error 
back propagation is utilized. The NN has the benefits of 
quickly tracking the MPP. 

ANN obtained results are validated by using standalone PV 
Panel connected to boost dc-dc converter. 

[138] In this paper, design and analysis of a MPPT controller for a 
solar structure implemented in an ANN. The results reveal 
that ANN-based MPPT provides good performance under 
consistent and rapidly changing environmental 
circumstances. 

PV cell is modeled with Cuk converter and output is 
analysed with ANN results. 

[139] This research presents a Rprop–NN–based technique for PV- 
MPPT. 

The existing studies cases are used for comparison of 
results obtained from Rprop-NN model. 

[140] A low-complexity MPPT technique that is established on the 
neural network (NN) model of the solar module is presented 
in this research. 

The calculated power output is compared with results 
obtained from proposed algorithm. 

Fuzzy Logic 
Controller (FLC) 

[141] In this research, a P&O-based fuzzy logic MPPT controller 
that is tailored for rapidly changing insolation circumstances 
is presented. The power generated by MPPT controllers that 
make use of FLC is superior to that generated by conventional 
methods. 

The power generated by MPPT controllers that make use 
of FLC is superior to that generated by conventional 
methods. 

[142] In this article, the author presents the design and analysis of 
an isolated PV system that makes use of a push-pull converter 
and an MPPT algorithm that is built on fuzzy logic. The 
results of the simulation demonstrate that the proposed 
methodology is capable of tracking the MPPT in an effective 
manner. 

The hardware PV Cell of 250W prototype is used to 
validate results getting from MPPT algorithm 

[143] This article suggests employing a fuzzy logic controller (FLC) 
to run a recommended PV control system at the MPP of the 
array for each moment. 

The results are compared with exiting literature. 

[144] For a PV system that is linked to the grid, a unique MPPT 
method that is built on fuzzy logic (FL) has been presented. 
The proposed method works well with grid-connected PV 
systems, achieving 99.6 % efficiency. 

The experimental results at different irradiation levels are 
used for validation purpose. 

[145] This work provides a modified MPPT algorithm for multi- 
peak PV arrays that operate in partial shadowed situations. 
The fuzzy logic control is the basis for this proposal. By 
comparing the suggested method to particle swarm 
optimization and hardware experiments, its robustness, 
accuracy, and stability are confirmed. 

The experimental results using one-diode PV model is 
used. 

Particle Swarm 
Optimization 
(PSO) 

[146] The approach reduces steady-state oscillation (to almost 
zero) once the MPP is discovered. The proposed approach 
can track MPP in harsh environmental conditions. Due to the 
simplicity of the algorithm and the ease with which it may be 
computed, its implementation on a microcontroller with a 
lower cost can be accomplished. 

The experimental result regarding voltage, current, duty 
cycle is obtained under similar conditions as that of 
simulations. 

[147] This research uses an enhanced PSO algorithm to track PV 
MPP. To increase tracking speed, PSO particles are given an 
initial value defined by the I–U and P–U curves. 

The improved PSO results are compared with 
conventional PSO in order to check feasibility of newly 
proposed algorithm 

[148] In this research, a novel benchmark test is presented in order 
to assess the effectiveness of various EA-inspired MPPT 
algorithms in comparison to a variety of shaded curves. 

The experimental PV curve is compared with curved 
obtained from PSO algorithm for validation. 

[149] In this paper, an IPSO-based MPPT approach for tracking 
MPP was presented. The findings showed that the suggested 
method has a high convergence speed, and the structure of 
the enhanced MPPT algorithms is very simple. 

The effectiveness of novel techniques is compared with 
previous published results related with incremental 
conductance. 

[150] The aim of this work is to provide a velocity of PSO-based 
Levy flight (VPSO-LF) for global MPPT of PV systems 
operating with PSCs. Under a variety of PV array 
configurations, it has been discovered that the results 
obtained through the use of VPSO-LF are superior to those 
obtained via the use of standard PSO and hill-climbing 
algorithm. 

The results are validated with experimental results 
obtained from PV Simulator integrated with boost 
converter. 

(continued on next page) 

L.D. Jathar et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e25407

14

microcontrollers. Like a wolf hunting prey, GWO can find the best working location faster. This GWO is the finest system-independent 
evolutionary method. Bio-inspired CS-based MPPT employs brood parasitism and levy flying approach to find the optimal MPPT. 
Emerging methods like ACO and ABC use evolutionary-based algorithms. They use fewer temperature and voltage sensors than 
traditional methods. 

3.3.2. Inverter control 
In photovoltaic (PV) systems, there is a stage that comes after the DC/DC converter and is called the DC/AC inverter. It is up to the 

inverter to generate the three-phase alternating current power that the load requires. The regulation of the inverter’s AC output power 
and frequency while maintaining a minimal level of harmonic distortion is the goal of inverter control. The implementation of an 
inverter control algorithm allows for control of the switches that are contained within the inverter. AI can increase the accuracy and 
reaction time of the inverter controller to transitory defects compared to conventional controllers, which use PI and PR algorithms 
[105]. An implementation of a FLC for a single step h-bridge multiple level inverter is found in Ref. [166]. S-function deals with PSO 
optimized FLC for regulating PV systems is provided in Ref. [167]. An ANN-controlled inverter is constructed and replicated in 
Ref. [168]. In order to adjust the PI controller settings in the inverter system, the PSO technique was applied in the interests of reducing 
the amount of error produced by the voltage regulator and current controller schemes [169]. An off-grid PV inverter is used in a 
research project [170] to generate three-phase power to feed the local load. This inverter is regulated by an optimized FLC that makes 
use of PSO to regulate the output of the PV system. The suggested controller has been tested out on a variety of loads, including 
nonlinear loads, inductive and resistive loads, and pure resistive loads. The results of these tests have been compiled and analysed. In 

Table 4 (continued ) 

Method Reference Remark Validation method 

[151] PSO is employed to identify the optimal sliding mode 
controller (SMC) gains for P&O algorithm. 

The conventional fixed step P&O and Solarex MSX-60 
module results are compared with proposed PSO 
algorithm. 

Ant colony 
optimization 
(ACO) 

[152] An ACO technique is developed in this work. This technique 
effectively follows the global peak and enhances the 
performance of PV arrays as a result. 

The conventional fixed step P&O results are compared 
with proposed ACO algorithm. 

[153] For maximal power point tracking in this investigation, a 
brand-new bio-inspired technique known as ACO NPU was 
utilized. 

The results are compared with existing literature related 
with PSO & ACO and conventional P&O results. 

[154] The objective of this research is to provide a technique for 
controlling the speed of a SRM that is powered by a PV 
system. In order to find the ideal PI parameters, an approach 
known as ACO is being utilized. 

The optimization problem is built for speed controller 
motor and result are validated with analytical results 
obtained from optimization problem. 

[155] This study adapts ant colony optimization to MPPT in 
photovoltaic (PV) systems. The idea is represented 
appropriately, and MPPT curves in a few different PV systems 
are simulated. 

PV Cell with four series-four parallel is used in experiment 
to validate results related with maximum power tracked, 
convergence time. 

Genetic algorithm 
(GA) 

[115] This research uses GAs-based MPPT to increase PV system 
convergence, speed, and accuracy. The suggested technique 
tracks the global MPP effectively, which is important for 
partial shading. 

The results are validated with test model built in facility of 
LIAS laboratory, Poitiers, France. 

[156] This research provides a MPPT method that is based on a GA 
for a PV array that is coupled with a BSU The MPPT strategies 
based on GA have been compared to the conventional PO 
algorithm, and they have been found to be competitive with 
it. 

Conventionally P&O is used for comparison of results 
obtained. 

[157] GA optimized ANN- MPPT technique is suggested. The 
primary goal of this design is to do away with the dc–dc 
converter, and the losses that come along with it. The 
efficacy of the suggested strategy has been demonstrated 
through the use of both simulation and experimental 
findings. 

The 60W PV system is used to construct experimental 
setup and results are used for comparison with algorithm 
obtained results.  

Table 5 
Comparison of various MPPT Control algorithm.  

Reference Technique Tracking speed Accuracy of tracking Sensing parameter Complexity Efficiency % 

[161] Constant voltage Slow Slow Voltage Simple 73 
[162] Adaptive reference voltage (ARV) Medium Medium Current & voltage Simple 98 
[163] fractional open-circuit voltage (FOCV) Slow Low Voltage Simple 93 
[163] perturb and observe (P & O) Slow Medium Current & voltage Complex 98 
[164] Ripple correlation control (RCC) Fast High Current & voltage Complex 96 
[160] ANN Medium High Irradiance & temperature Simple 98 
[165] FLC Fast High Current & voltage Medium 97  
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the work that has been proposed in Ref. [171], a neural network is utilized in order to modify the inverter gain settings. The inverter is 
built with a conventional PI controller, and its gains are trained with grid variables such as voltage and current. The output of the PI 
controller is also calibrated with regard to the grid. The neural network makes predictions about the gain elements of the PI controller 
depend on the variations in the grid side parameters, and the PQ of the grid side has been improved. In the [172], RBF neural network 
is utilized to regulate 3-phase grid linked inverter. In a research [173], ANFIS- MPPT controller for solar systems that utilize fewer 
sensors is presented. The error signal was provided by the ANFIS controller, and a fuzzy controller had to be tuned in order to create the 
correct duty cycle for the 2-switch fly back converter. The findings demonstrate that the MPPT controller that was developed for a 
two-switch fly back inverter is capable of monitoring the supreme power output regardless of the surrounding atmospheric conditions. 

A novel control method for multilayer DC link inverters (MLDCLI) effectively addresses the issue of reduced solar radiation due to 
partial shade of individual photovoltaic (PV) modules. The algorithm proposed by Ramachandran et al. [174] utilizes a hybrid MPPT 
and pulse width modulation technique to regulate an MLDCLI system in the face of fluctuating solar energy. The MLDCLI is assessed 
using phase opposite disposition (POD) multiple of carrier pulse width modulation (MCPWM). This approach optimizes the power 
extraction from individual shaded PV sources without impacting the performance of other PV sources. Microcontroller-based pro
totypes, which have been evaluated using MATLAB/SIMULINK system generators, demonstrate significant enhancements in voltage 
quality for standard output levels. The filter is used to receive the output of the inverter in grid-connected applications. 

3.3.3. Sun tracking control 
A sun tracking controller is required for the PV system. This controller guides the PV panel in the direction of the sun. It has been 

demonstrated through a significant amount of study that tracking the sun improves the efficiency of photovoltaic systems. Single-axis 
sun tracking and double-axis sun tracking are the two varieties of controllers that are available for sun monitoring. There is a pre
sentation of a genetic algorithm optimized dual-axis sun tracking system in Ref. [175]. In Ref. [176] the authors suggest an intelligent 
sun tracking system that may be used with dual-axis sun tracking. Two different control algorithms are reported in Ref. [177] in order 
to follow the sun. The Firefly algorithm (FA) is built into the Arduino Mega microcontroller by Ref. [178], and its purpose is to control 
the tracking of the sun’s location by the solar panel. This is done in order to ensure that the solar panel is able to engross as much solar 
energy as conceivable, thereby producing the maximum amount of electrical energy. It is possible to draw the conclusion that the 
Firefly algorithm offers a workable solution to the optimization issues that arise with solar trackers. The primary purpose of the study 
carried out by Ref. [179] is to determine which optimization strategy will provide the most beneficial outcomes for the position control 
of the Sun Tracking System. The PID controller of this system is tuned using a variety of techniques, including GA, PSO, and TLBO, to 
control the position of the system. These procedures were ultimately carried out to select the effective technique for PID tuning, which 
is used to regulate the position of the sun tracking system. The TLBO-tuned PID controller performs the best and most reliably, ac
cording to the findings [180]. suggested an intelligent sun tracking system that combines a dual-axis sun tracking system with a 
MATLAB-created MPPT to switch between dual-axis, one-axis, and stationary solar panels. Using the swarm intelligence approaches of 
PSO, FFA, and CSA, the study work carried out by Ref. [181] considered the design of an ideal PID controller for a dual axis sun tracker 
system. This was done to attain the best possible outcomes. In order to tune the PID controller for both axes, researchers have used the 
three-swarm intelligence-based met heuristic approaches. It has been determined, on the basis of the data and observations, that CSA is 
more successful than PSO. 

3.4. Radiation and PV-output power forecasting 

In recent years, grid-connected photovoltaic (PV) installations have increased. Because of this, it has become an increasingly 
important issue to have correct forecasts for the quantity of power that is supplied to grid. The amount of power that PV systems 
generate is depends on the irradiation of the sun and the cloud cover that is present at the time [182]. 

3.4.1. Forecasting the amount of solar radiation 
Irradiance from the sun is the primary source of fuel for photovoltaic (PV) systems; hence, studies that forecast solar irradiance are 

extremely helpful to the operation of power grids and systems that contain PV. Forecasting solar irradiance by employing ANN, SVM, 
k-NN, and DL are described in Ref. [183]. In the most recent decades, advancements in technology have led to the rise of AI, which has 
quickly become quite popular in virtually all engineering sectors [184]. According to the findings of the earlier studies, it has been 
demonstrated that the algorithms used by AI are more accurate than those used by empirical models [185,186]. For instance, Quej 
et al. [187] forecasted day-to-day solar radiation data for six stations in Mexico by utilizing three different ML approaches. These 
algorithms are: Data on alien solar radiation, rainfall, and lowest temperature, were utilized by the authors throughout the training 
process for the algorithms. In this study the best results were obtained using SVM, which had RMSE values of 2.578, MAE values of 
1.97, and R2 values of 0.689. In a different research study, Marzo et al. [188] attempted to forecast the daily worldwide solar radiation 
that was measured at 13 distinct locations. In that particular piece of research, the authors exclusively employed ANN as a form of 
machine learning algorithm. The ANN algorithm that was utilized to train for the study was trained with the alien solar radiation. The 
best outcomes, according to the calculations, were rRMSE equal to 13 %, rMBE less than 4 %, and r equal to 0.800 (R2 equal to 0.64). 
Mehdizadeh et al. [189] looked at the daily sun radiation and employed three distinct models namely, Gene Expression Programming 
(GEP), ANN, and ANFIS. The ANN model produced the top outcomes. For the purpose of solar radiation forecasting, Messai et al. [190] 
employs a novel multiple parameters neural network. In order to provide accurate predictions of solar irradiation, fuzzy logic and 
neural networks are utilized. Chen et al. [191], the output of the suggested method follows the real values even though the envi
ronment conditions are constantly changing. For the purpose of hourly irradiance forecasting, support vector machine modelling is 
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suggested to be used in Ref. [192]. Discussions in Refs. [193,194] offer a comprehensive summary of the many DL models that can be 
used for estimating solar irradiance. The wavelet decomposition-based networks are utilized in the process of constructing the 
approach for solar irradiance forecasting that is described by Wang et al. [195]. In Ref. [196], the ANN model is established by 
tailoring it to a specific period of the year in order to provide correct method of predicting. This is done in order to make the model 
more predictive. The created method is supplemented by the Pearson correlation method in order to supply the ANN model with the 
best appropriate set of inputs. This enhances the model’s computing power, allowing it to produce more accurate predictions even in 
the face of significant anomalies and dynamically shifting conditions. Ciabattoni et al. [197], a RBF is utilized to make predictions 
regarding the irradiation of the sun. For the purpose of estimating solar irradiance, the suggested algorithm is contrasted with ANN as 
well as other tried and true approaches [198]. presents a complete evaluation on the application of ANN in the process of estimating 
solar irradiation. The usage of ML classifiers, such as the multilayer perceptron NN [199], the Naive Bayes technique [200], and the 
k-nearest neighbor NN [201], evolutionary algorithms [199], frequently used for solar radiation predicting in addition to the DL and 
NN approaches. 

3.4.2. Forecasting PV-output power 
Solar photovoltaic (PV) power generation is extremely susceptible to variations in the surrounding climate [202]. Then, techniques 

of prediction are essential to reduce the imbalance among the expected power and the actual power generation, which is necessary to 
support the operation of the power system [203]. There are two distinct types of forecasting models, which are known as indirect 
models and direct models. In models for indirect weather forecasting, a weather prediction serves as an input for photovoltaic (PV) 
simulation software, which then generates an energy forecast. In the meantime, direct models make their predictions based on his
torical information of the weather and the amount of power produced by PV [202]. In Ref. [204], a method for estimating the output 
power that makes use of both AI and WT techniques is proposed. The WT is used in the suggested method to have a significant effect on 
PV power time-series data, and AI techniques are utilized to catch PV variation in a more effective manner. In the process of forecasting 
solar output power, fuzzy logic controllers are also utilized by Yazdanbaksh et al. [205]. In this work, a new method of forecasting that 
is based on complex fuzzy logic is contrasted with two existing ML approaches for making predictions. When compared to other 
methods, the one that was suggested provided more precise projections of power output on a simulated solar cell 1 min in advance 
[205]. Furthermore, a dynamic neural network is utilized to make a prediction regarding the photovoltaic yield in Ref. [206]. This 
research work addresses two practical methods for estimating the amount of electricity that will be generated by PV plants that are 
connected to the grid. The first model is constructed on the basis of a cyclical ARIMA time-series examination and it is enhanced even 
further by the incorporation of short-term solar radiation predictions resulting from NWP models. Vrettos et al. [207], researchers 
introduced a parallel architecture hybrid SARIMA-ANN model for PV power forecasting. This model combines the best features of the 
SARIMA model and the ANN model. Based on the findings, the hybrid approach is 10 % more effective than using the different models 
individually for making forecasts. The performance of several ML models that anticipate the quantity of power created by PV is 
analysed by Visser et al. [208]. The models for forecasting are constructed by making use of historical data of PV power as well as 
predictions of the weather. In Ref. [209], a novel idea for solar generation forecasting is proposed. The proposal is based on exploring 
meteorological aspects from PV model. The procedure is carried out in three stages, which are the modelling of PV systems, the 
application of ML techniques to the process of mapping meteorological variables using solar power, and the correction of the forecast. 
Huang et al. [210] presents a PV output forecast that is based on weather prediction. In order to categories historical generation data, 

Fig. 7. Various types of faults associated with PV systems [222] (Redrawn and adapted with permission from ELSEV. B.V. with LIC. No 
5517580437414). 
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the K-means clustering algorithm is utilized, and the correlation analysis approach is utilized to minimise the dimension of the inputs. 
The problem of solving the prediction model can be handled by taking into account the long-short memory NN in conjunction with the 
attention mechanism. A back-propagating NN for power forecasting of PV systems is provided in reference number [211]. By inte
grating a forecast adjustment stage, one is able to obtain a more accurate prediction of the generation of PV. As a result, an additional 
term has been added in order to achieve better outcomes. This function can be found in Refs. [212,213]. Based on the research 
presented here, one may draw the conclusion that artificial intelligence-based models are the most often used predictive approaches 
for photovoltaic (PV) generation. ANN, SVM, ML, and regressive methods are some examples of techniques that fall under the umbrella 
of artificial intelligence. Additional classifications include statistical, physical, and hybrid models. 

3.5. Fault diagnosis in PV 

The vast majority of photovoltaic systems are designed to function in the harsh climate of the outdoors. Working in such a situation 
increases the probability that the PV system will have malfunctions. These flaws could be caused by the ageing of the material, 
shadowing, a short circuit, or an open circuit. PV plants should be properly protected from the many types of failures to provide steady 
production, availability, dependability, and security [214]. There are several different standards that try to protect photovoltaic plants 
and reduce the risk of faults. On the other hand, certain flaws go undetected and can result in major complications, such as an increased 
danger of fire. A photovoltaic (PV) system may have a variety of problems, each of which may be classified according to one of several 
different criteria represented in Fig. 7. These kinds of flaws are separated into three categories by us: physical, environmental, and 
electrical [215]. Nevertheless, faults can also be categorized such as their location and their structure [216]. Damage, cracks, and 
deterioration are examples of some of the more common types of physical defects that can occur in PV modules. These faults can 
originate from either the inside or the outside of the module. The ageing effect, which is also a physical process, is another factor that 
contributes to the failure of PV systems. Among the environmental flaws are the accumulation of mud and dust, the droppings of birds, 
and the temporary shadowing. Open circuit, line-line, and ground faults are the three types of electrical faults that can occur in 
photovoltaic (PV) modules, arrays, or the entire system. Open circuit failures are created when wires in a single or several branches of a 
photovoltaic circuit get disconnected from one another. A comprehensive evaluation of photovoltaic defect detection and monitoring 
systems is contained in Ref. [217]. This study reviews monitoring approaches for major system breakdowns. In another work [218], 
the authors discuss PV system tracking, evaluation, and power prediction advances. The greater part of tracking and fault detection 
strategies make use of inverter level monitoring due to the ease with which data can be collected and processed. On the other hand, the 
majority of these methods are unable to locate faults within a PV string because they do not provide adequate visualization. There have 
been many different faults diagnostic techniques proposed, and some of these techniques are based on simulations for performance 
analysis [219] statistical analysis [220], and the use of current and voltage measurements, all of which are dependent on accurate 
modelling and processing in order to detect the fault. Various environmental factors, such as hotspots, partial shade, and minor flaws, 
might limit the effectiveness of a solar PV system. This results in the PV system experiencing irreversible failure and power reductions. 
In a study by Alwar et al. [221] enhances the power output of a solar system that is partially shaded by implementing a fault classifier 

Fig. 8. (a) I–V-based machine learning and [5] (B) Thermography-based deep learning frameworks for defect identification and classification [5] 
(Adapted with permission from ELSEV. B.V. with LIC. No 5517450814386). 
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that utilizes thermal image analysis together with a reconfiguration method. This practice is particularly valuable for photovoltaic (PV) 
systems used in health monitoring, as it effectively reduces the impact of partial shading and small malfunctions. The required task was 
effectively carried out using a 4 × 5 photovoltaic (PV) arrays. 

The application of ML and more recently DL, are both examples of methods that rely on AI and are used for fault recognition. DL is 
primarily utilized for fault diagnosis depends on infrared and electroluminescent pictures, whereas ML is primarily utilized for pro
cedures that rely on I–V curves, currents, voltages, and other constraints. These methods require a large database to train and evaluate 
categorization and recognising models. The basic operation of these various methods is illustrated in Fig. 8. AI-based methods 
recognize, categorise, and characterise problems. These procedures can also fix defects with similar signs or indications [5]. 

In recent times, a variety of machine learning methods have been used to the FDD of PV systems. The decision tree based fault 
detection that is proposed can be found in Ref. [223]. The discovery and diagnosis of defects like these are extremely important roles 
that artificial intelligence performs. The method of training the model can be described as being simple and easy to put into action. The 
trained model demonstrates strong detection performance (up to 99.98 %) and classification accuracy (up to 99.8 %), both of which 
may have intriguing applications in the real world. A learning strategy using expert systems for diagnosing a PV system was developed 
by the authors [224]. In order to diagnose the shading effect, the technique that was devised is applied. The methodology was tested 
through simulation as well as experimentation. The procedure is straightforward, and it achieves the desired results; however, its 
viability can only be established in the context of the shading effect. In Ref. [225], a very simple coding procedure BPNN was pre
sented. In general, the approach delivers decent correctness; however, the method was not evaluated with actual data. A household PV 
system is given an intelligent failure detection approach in Ref. [226], which is constructed using a modified artificial neural network 
(3.15 kWp). In order to calculate the power output, the Solar Pro simulation software was utilized. The simulation reveals that the 
suggested method is capable of precisely and rapidly identifying malfunctioning PV modules, also known as shaded PV modules. A 
proposal for on-line monitoring and defect diagnosis using BPNN that have been improved using a genetic algorithm can be found in 
Ref. [227] A comparison is made in Ref. [228] between the BPNN, the WNN, and the improved WNN. The comparison demonstrates 
that the upgraded WNN performs more effectively than its competitors. In the study referenced in Ref. [229] a two-layer NN is in
tegrated with traditional numerical methods in order to determine which of 6 types of errors is present. 

Ganesan et al. [230] introduced a novel method for detecting faults, which involves utilizing the fewest possible sensors to identify 
faults in 8 × 4 photovoltaic arrays arranged in bridge and honeycomb patterns. The suggested method utilizes voltage measurements 
between adjacent strings to detect open-circuit and line-to-line defects in a solar PV array. The magnitude measured by the sensor 
determines whether the problem is an open-circuit fault or a line-to-line fault. The current methods have been unsuccessful in 
identifying open-circuit and line faults in specific circumstances. However, the suggested approach is able to detect open-circuit and 
line faults in all situations, regardless of whether the configuration is bridge or honeycomb. The average power improvement before 
and after fault clearance in the conventional bridge configuration approach is 64.88 %, while in the suggested method, it is 65 % for 
open circuit. The average power in bridge configuration for the suggested approach increased from 65.88 % to 75.04 % in the case of a 
short circuit. The mean power amplification prior to and subsequent to fault clearance in the current approach in honeycomb 
configuration has an efficiency of 52.91 %. In the proposed technique, the open circuit efficiency is 64.66 %. Chine et al. [231], an 
implementation of a NN for fault diagnostics using field programmable gate arrays (FPGA) is presented. Wu et al. [232] classified short 
circuits, shadows, and ageing in a photovoltaic (PV) system using a RBF-ELM network. The findings demonstrated that the typical 
categorization rate is 93.55 %. In this particular study, only the findings of simulations were presented. For the purpose of fault 
classification in PV arrays, an approach that makes use of theoretical I–V curves and fuzzy classifiers was developed [233] The fault 
detection method that was created is dependent on the various voltage and power fluctuations that occur inside the system. Annually, 
every individual solar panel has a reduction in efficiency ranging from 0.5 % to 1 %. The deterioration of solar panels occurs as a result 
of both environmental and electrical deficiencies. An expedient and precise identification of environmental defects mitigates the harm 

Table 6 
Most common FDD algorithms for PV plants.  

Reference Type of Algorithm Function Type of Fault PV-System 
used 

Accuracy 

[227] BPNN-GA Detection local material ageing, shadowing, open/short circuit PV Array – 
[235] Fuzzy logic Detection Arc fault PV Array 96 % 
[236] LAPART algorithm Detection Power Reduction PV Module 86 % 
[237] fuzzy inference 

system 
Detection & identification DC side short-circuits PV Array 94 % 

[238] neuro-fuzzy classifier Detection & Classification series losses, faulty by-pass diode, blocking diode PV Array 90–98 % 
[231] ANN Identification By-pass diode short circuit, Connection fault PV System – 
[232] RBF-ELM Classification short circuit, ageing PV Array 88.5 % 
[239] M-SVM Identification & 

classification 
Degradation, line-to-line fault PV Module 98 % 

[240] PNN Detection & Classification short circuit, disconnected string PV Array 100 % 
[241] fuzzy 

C-mean (FCM) 
Detection & Classification short, open, partial occlusion, and other defects PV Array 96 % 

[242] decision tree Detection & Classification string, short-circuit, or line-line fault PV Array 99 % 
[243] Improved GA Identification & localization short-circuit, PV String 95 % 
[244] random forest (RF) Detection & Classification line faults, deterioration, open circuit, fractional 

shading 
PV Array 99.13 %  
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inflicted by those defects on the panel. Deep learning, specifically convolutional neural networks, have achieved remarkable outcomes 
in several applications in recent years. The primary objective of the study performed by Selvaraj et al. [234] is to optimize the per
formance of pre-trained convolutional neural network models, with a specific emphasis on AlexNet, GoogleNet, and SqueezeNet. 
SqueezeNet is employed to train thermal pictures of solar panels and classify environmental defects, based on performance criteria. 
The acquired results demonstrate that SqueezeNet achieves a notable testing accuracy of 99.74 % and an F1 score of 0.9818. These 
outcomes indicate the model’s effectiveness in detecting environmental problems in solar panels and assisting users in safeguarding 
the panels. The most common FDD algorithms for PV plants are shown in Table 6. The examined papers are compared in terms of their 
fault detection, identification, and localization capabilities as well as other metrics such as cost, faults explored, PV plant capacity, and 
algorithm type. 

Table 7 provides a summary and comparison of previous studies that have concentrated on the utilization of data-driven analytical 
models for the identification and categorization of photovoltaic (PV) module deteriorations and flaws. Additionally, the machine 
learning and deep learning models utilized in this study are described. The efficacy of ML and DL techniques in analysing PV module 
degradations is evident from the data shown in Table 7. Furthermore, according to the data presented in Tables 7 and it can be 
observed that the different kinds of neural networks (NN) have been widely embraced as they offer a high level of efficacy and ac
curacy, particularly in the domain of picture classification. The impact of data preparation on model performances is evident. 

3.6. Suggestions to improve the PV system performance and its application  

• One potential strategy to enhance solar energy utilization is to allocate resources towards the acquisition of high-efficiency solar 
panels, which have the capacity to catch a greater amount of sunlight and subsequently convert it into electrical energy. 

Table 7 
Comparison of recently proposed models.  

Reference Process of generating data Pre-processing 
Technique 

Defect analysed Use of ML technique Brief summary 

[245] In Lahore, Pakistan, 
infrared thermal images 
were obtained utilizing the 
PV string’s modules. 

The utilization of a data 
fusion methodology for 
the feature extraction of 
RGB texturing. 

Hotspots SVM model achieved a training 
and testing correctness of 
96.80 and 92.00 % resp. 

SVM model is employed for 
the purpose of classifying 
thermal images of PV 
panels into 3 categories: 
strong, non-defective 
hotspots, and defective 
hotspots. 

[246] The I–V curve data 
obtained from photovoltaic 
(PV) modules is specifically 
centred on the analysis of 
hotspots. 

Minimum-maximum 
averaging 

Hotspots Quantitative analysis of DT, 
SVM, KNN, and DC. 
DC showed the best detection 
result, whereas DT showed the 
worst. 

Four ML models are used to 
diagnose early-stage 
hotspots in PV modules. 

[240] The design and modelling 
of photovoltaic systems 
using PSIM and MATLAB. 
The Agilent 34,970 
datalogger is utilized for 
the purpose of capturing 
data from a 9.54 kWp 
Algerian grid-connected 
photovoltaic (PV) system. 

The Canonical Artificial 
Bee Colony technique is 
utilized for the extraction 
of the constraints of the 
one diode model. 

PV fault PNN is a type of ANN that 
utilizes feed-forward and 
backpropagation algorithms 
for training and learning. The 
proposed PNN demonstrates a 
detection efficiency of 82.34 % 
and a diagnosis efficiency of 
98.19 %. 

The proposed PNN model 
has been designed for the 
purpose of fault 
identification and diagnosis 
inside the DC side of PV. 

[247] I–V curve data for 960 W 
PV array obtained from 
RELab JiJel university in 
Algeria using Prova 210 IV 
tracer. 

The technique of 
dimensionality reduction 
via PCA and 
standardization. 

The phenomenon of 
partial shade, line- 
to-line 
deterioration, and 
dust deposition. 

The following machine 
learning algorithms were 
utilized in the study: NB, KNN, 
SVM, LR, DT, RF, and NN. 

This investigation focuses 
on the application of 
multiple individual and 
combined ML for the 
purpose of detecting and 
classifying various types of 
PV problems. 

[248] The design of a PV with 
MATLAB and Simulink is 
being considered. The 
present study aims to 
analyse the real-time 
irradiance and temperature 
data obtained from a grid- 
linked PV system located in 
Agartala. 

The technique of array 
capture loss was 
employed in the training 
of the machine learning 
algorithm. 

Common flaws 
include Line 
Ground, Line, OC, 
arc, shading, and 
deterioration. 

This article covers Cat Boost, 
LGBM, and XGBoost. The 
LGBM performed best, 
followed by CatBoost. 

The PV system was 
modeled using Simulink 
and real-time data to assess 
and identify frequent 
issues. 

[249] The images obtained from 
photovoltaic (PV) modules 
that are put outside. 

The technique of 
Gaussian blurring is 
commonly employed in 
the field of image 
processing. 

PID and LeTID PCA and KNN were employed 
in the analysis. The obtained 
accuracy rate with KNN was 
89 %. 

Modelling PCA-KNN for 
PID and LeTID prediction. 
Field-installed modules 
were utilized to capture EL 
pictures.  
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• The integration of MPPT technology is recommended to enhance the efficiency of the PV system, particularly in situations where 
weather conditions fluctuate. 

• It is imperative to consistently engage in the cleaning and maintenance of solar panels in order to guarantee their optimal per
formance by preventing the accumulation of dust and debris, which have the potential to diminish their efficiency.  

• One potential strategy to address the intermittent nature of solar energy generation is the incorporation of energy storage systems, 
such as batteries, to store surplus energy produced during periods of peak sunlight. This stored energy can then be utilized during 
periods of reduced sunlight, such as cloudy days or during nighttime hours.  

• This inquiry delves into the realm of innovative battery technologies, specifically focusing on lithium-ion batteries, which offer 
superior energy density and extended cycle life.  

• The implementation of smart grid technology is crucial for the efficient management of power distribution, the optimization of 
supply and demand equilibrium, and the mitigation of transmission losses.  

• The implementation of microgrid systems can effectively bolster energy resilience and cater to the power needs of certain localized 
regions, particularly in geographically isolated areas. 

• The integration of novel materials, such as perovskite solar cells, into research endeavours holds promise for substantial en
hancements in efficiency and reductions in production expenses.  

• This study aims to investigate novel photovoltaic (PV) system configurations, such as solar trees or solar canopies, in order to 
optimize energy production within constrained areas. 

4. Utilization of artificial intelligence in a desalination process operated by renewable energy 

A solar still is a device that harnesses solar energy to facilitate the desalination or purification of water [12,32]. This is achieved by 
utilizing the sun’s heat to induce evaporation of water, followed by the subsequent condensation of the resulting vapour into liquid 
water. The design of a solar still exhibits variability, and the integration of Artificial Intelligence (AI) and Machine Learning (ML) 
applications into its design is a burgeoning field with the potential to augment both efficiency and performance. This section provides a 
comprehensive analysis of solar still designs, examining both traditional approaches and those integrated with artificial intelligence 
and machine learning technologies. A conventional solar still has a shallow basin or receptacle designed to contain contaminated 
water, a transparent cover (often constructed from glass or plastic) to facilitate the penetration of sunlight, and a condensation surface 
where water vapour accumulates and undergoes the transition into liquid water. The operational principle of solar stills is based on the 
process of sun desalination. The water in the basin undergoes evaporation as a result of being heated by sunlight. The process involves 
the ascent of vapour, subsequent contact with the cover, and subsequent transformation into liquid water, which subsequently de
scends into a designated receptacle. The majority of solar stills are classified as passive systems, signifying their independence from 
external energy sources. The desalination process is exclusively dependent on solar energy. 

The utilization of Machine Learning methods can be implemented to enhance the efficiency of solar still operation [250]. The 
algorithms possess the capability to analyse past data, weather trends, and external variables in order to make predictions regarding 
optimal operational timings. Additionally, these algorithms are able to alter factors such as cover inclination in order to achieve 
maximum efficiency. AI has the potential to automate multiple functions of the solar still, including the dynamic adjustment of the 
cover’s position to effectively follow the sun’s movement, optimising the water flow for enhanced efficiency, and effectively managing 
energy storage in cases where the system has such capabilities [251]. The incorporation of sensors capable of measuring factors such as 
humidity, temperature, and water quality enable the acquisition of real-time data for artificial intelligence (AI) systems. The infor
mation obtained can be utilized by Machine Learning models to implement real-time modifications to the operation of the solar still, 
hence enhancing its performance. Artificial intelligence has the potential to facilitate the solar still’s ability to adjust and respond to 
dynamic environmental conditions. For example, the system has the capability to modify the inclination of the cover or adapt the 
operational parameters in response to meteorological predictions or unanticipated alterations in the surroundings. The optimization of 
energy storage in hybrid systems, which integrate solar stills with energy storage solutions, can be achieved through the utilization of 
machine learning algorithms. These algorithms facilitate the optimal utilization of energy during periods of low sunshine. 

In general, the desalination process involves a variety of elements, including the allocation of a site, the optimization of a size, the 
selection of an operating parameter, and a variety of other difficult nonlinear problems with multiple degrees of freedom, particularly 
when confronted with RE systems [18]. These decisions are heavily reliant on the practical experience and pertinent standards used by 
researchers and industry professionals. However, in light of the progress made in science and technology, solving complex nonlinear 
issues solely only on an individual’s expertise and mathematical equations is unattainable. However, AI excels in this area. Because of 
the long-term reliability and problem-solving capabilities of AI models, these models have demonstrated outstanding performance and 
superiority in dealing with such nonlinear data [34]. 

4.1. Different algorithms used in desalination systems 

According to the published research, various kinds of AI-ML models, including ANN [252], Multilinear Regression (MLR) [253], 
Genetic Algorithm (GA) [254], Radial Basis Function (RBF) [255], Particle Swarm Optimization (PSO) [256], and Support Vector 
Machines (SVM) [257], adaptive neuro-fuzzy inference systems (ANFIS) were used to make accurate predictions and monitor water 
quality metrics. ANN and ANFIS algorithms are used to estimate the solar energy plant’s performance and efficiency [258] however, 
RBF network is typically employed in modelling global solar energy [259]. The vast majority of research have monitored and evaluated 
the quality of surface water using neural networks (NNs). These models are able to select the most relevant information pertaining to 
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energy systems by making use of the actual experimental data [260]. These predictive models may also help assess the productivity of 
new and existing solar desalination plants. Prior to conducting tests on a larger scale, these models analyse the output of solar-powered 
still thoroughly. As a result, both time and money are saved significantly. Such predictions make it possible to estimate whether or not 
the productivity of the system would be sufficient to satisfy the future needs. The WQI is the commonly used parameter for determining 
the performance of a water treatment plant. This parameter takes into account the individual water quality variable magnitudes of 
dissolved oxygen (DO), temperature, turbidity, total dissolved solids (TSS), and pH [261]. Multi-parameters are a feature of solar water 
desalination systems. Thus, it is essential to predict and improve operational characteristics in both the design and operational stages, 
including energy intake and output. 

Fig. 9. Hybrid System (GA + NN) for predicting the rate of evaporation [269] (Redrawn and adapted with permission from ELSEV. B.V. with 
LIC. No.5517581259947). 
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4.2. Overview of the utilization of AI in seawater desalination 

This section analyses and summarizes the use of AI in renewable energy-based desalination of marine water. Santos et al. [262] 
used ANN to predict the amount of water that would be produced by two solar stills during the wintertime and summer in Nevada, 
United States of America. The primary purpose of this investigation was to evaluate the effectiveness of ANN models in predicting the 
amount of water that could be produced by a solar still using possible variants of the parameters that were provided in the introduction. 
Based on the input variables that were considered, it was discovered that 31–78 % of ANN predicted results were well within 10 % of 
the actual output. 

Using an artificial neural network technique, a mathematical model was constructed to anticipate the performance of solar stills 
under hyper arid circumstances by Mashaly et al. [263]. Solar irradiation, Julian day, the relative humidity and temperature of the 
surrounding environment, the speed of the wind, the UV index, and the temperature of the feed-water were all included as input factors 
while production rate, recovery ration and thermal efficiency as output in the model. The authors came to the conclusion that this 
model had a high level of accuracy when it came to predicting the performance of solar stills. Mashaly and Alazba [264] employed 
ANN to forecast the efficacy of solar still production. It is an essential action to do in order to mitigate the economic threats that are 
connected to the desalination project. It is anticipated that the output of the solar still is a function of the following variables: the 
temperature, the relative humidity, the wind velocity, the radiation from the sun, the flow rates, of the water. In order to make accurate 
predictions of output from solar still, the authors used BP-ANN models. The authors discovered that the ANN was much more realistic 
than the SWR algorithm by comparing the results of their predictions with the actual findings. In AI, ANN models predict desalination 
performance accurately. Mashaly and Alazba [265] were employed three different learning methods for ANN that are utilized to 
forecast the efficacy of a solar still while it is working in a hyper-arid environment. The results demonstrated the developed model’s use 
for making distillate output predictions with high precision. The LM algorithm performed the best across all phases of development. 
Furthermore, Yaci and Entchev [266] employed ANFIS to forecast the yield of sun powered still and discovered that the ANFIS 
methodology was great for solar stationary design. Mashaly and Alazba [267] decided to come up with several distinct sorts of input 
membership functions so that they could create ANFIS for the prediction of productivity of solar still. It is trained with 70 % of the data 
that was available, tested with 20 % of the data, and validated with the remaining 10 % of the data. It has been determined that the 
ANFIS model is an excellent tool for the design of solar distillation systems. ANN was the model that Abujazar et al. [268] used to 
anticipate the output of the stepped solar still. Authors contrasted their findings with those obtained through the use of linear and 
regression models. It was discovered that the model that was established provides a productivity forecast for the system that is more 
accurate than the linear and regression models. This made it quite evident that cascade forward ANN was able to model the solar still. 
In order to address the issue of roughly approximating the behaviour of evaporation rate for salty water, Salman et al. [269] suggested 
a novel hybrid system that combines the effectiveness of Artificial Neural Networks (NNs) and Genetic Algorithms (GA). This system is 
a hybrid because it combines the power of both of these types of systems. A stand-alone feed-forward neural network (NN) predicted 

Fig. 10. The structure of newly created method [270] (adapted with permission from ELSEV. B.V. with LIC. No.5517480058831).  
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saline water evaporation. The input layer of the neural network consists of four neurons, each corresponding to one of the four at
tributes utilized in the dataset. In this research, researchers performed trial-and-error experiments to determine the optimal config
uration for the hidden layer of our neural network. While the specific results of these tests are not included in this paper, we found that 
a single hidden layer consisting of eight neurons provided the most favourable balance between accuracy and speed. The augmentation 
of neurons and hidden layers resulted in improved accuracy; however, it also led to an increase in the time required to attain such 
accuracy. The network learning rate is set at 0.2, which is a commonly recommended value for neural networks based on both 
empirical experimentation and existing literature. The network connection weights are randomly initialized within the range of − 0.5 
to 0.5. During the training process, the neural network is exposed to sample records in a random manner. Fig. 9 represents hybrid 
system (GA + NN) to predict evaporation rate of saline water. In this experiment, the rate of evaporation was determined for a variety 
of saline concentrations, water temperatures, air temperatures, and air velocities using three different experimental approaches. The 
result shows that generated models (GA + NN) exhibit very high degrees of accuracy. 

In order to provide accurate projections on the performance of the pyramid solar still, Sharshir et al. [270] study deals with 
comparison between various forecasting models, such as RVFL, SVM, and traditional ANN, along with the proposed FA-RVFL model, to 
forecast the characteristics of Pyramid Solar Still. The primary objective of this hyperlink is to assist the RVFL in mitigating the issue of 
over fitting. In the subsequent stage, the Random Vector Functional Link (RVFL) calculates the output, which represents the predicted 
value, by employing the subsequent equation: The equation can be expressed as Y = bw. The structure of the newly created method is 
depicted here in Fig. 10. Six different statistical error metrics, namely R square, RMSE, MRE, MAE, OI, and CRM, are utilized in the 
process of evaluating the four models that are suggested in this work. The research found that the FA-RVFL method can forecast solar 
still thermal performance affordably. 

Chauhan et al. [271] used the feed forward BPNN to mimic the normal and redesigned solar still with a sand bed. In order to train 
their model, they utilized the Levenberg Marquardt method. This algorithm is a well-known hybrid algorithm that can be utilized for 
the purpose of converging to an optimal solution. Finally, but the authors came to the conclusion that the suggested model will be most 
helpful for the calculation of future distillate supply from desalination units since it avoids the obligation of extensive heat and mass 
transfer studies. 

In the research by Nazari et al. [272], the appropriate models were developed to simultaneously forecast various parameters of 
solar still using ANN and ICA. Both the ANN and the ICA-enhanced ANN are trained using the empirical data that was collected. The 
network that has 5- hidden neurons performs the superlative out of all of the networks. According to the findings, the use of the ICA 
leads to a significant development in the performance of the ANN when it comes to the prediction of all three outputs represented in 
Fig. 11. 

Estimating the effectiveness of a solar still was accomplished by Maddah et al. [273] through the use of ML approach. Solar still 
walls were insulated with polystyrene. Experimental results are fed into supervised ML regressions to train models. The identical 
step-wise linear-regression approach was used to train polystyrene models and other insulating material datasets. Supervised ML 
models were developed using the procedures outlined in the flowchart shown in Fig. 12, which describes how these steps were carried 
out. In conclusion, these authors found that the constructed model had a high level of prediction accuracy while simultaneously having 
a low level of statistical error. 

Fig. 11. A diagrammatic representation of the ICA methodology [272] (Redrawn and adapted with permission from ELSEV. B.V. with LIC. No 
5517480702012 ). 
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Essa et al. [274] conducted a study in which they compared the performance of three distinct desalination units—an active solar 
still, a condenser, and a passive solar still—using three different prediction models—the HHO-ANN, a standard ANN, and a support 
vector machine (SVM). The proposed HHO-ANN approach is shown in Fig. 13. In the conclusion, it was determined that out of the three 
models, the Harris Hawks Optimizer – artificial neural network had the most accurate prediction of the solar still yield when compared 
with the actual trial data. This is as a result of the ability of HHO to pick the parameters values of the ANN that produce the best results. 
Hence it is recommended to employ HHO-ANN to estimate the yield of the desalination system in order to avoid engaging in additional 
expensive and time-consuming experiments. 

In order to make an accurate prediction of the tubular still, Wang et al. [275] incorporated a Bayesian optimization approach with 
the machine learning techniques. The ANN and RF algorithms were utilized as ML strategies in this particular piece of work. Using ML 
approaches, the results indicated that it is possible to make predictions for hourly production that are closer to genuine experimental 
data. In addition, the use of BOA rather than RF can lead to a significant improvement in ANN’s overall performance. This suggests that 
RF is not as susceptible to hyper parameters as ANN. In other words, the RF model is more reliable than the ANN model. Despite the fact 
that ANN has successfully forecasted on a variety of large datasets, the prediction performance of TSS on the present dataset was 
improved by RF. It is advised that RF be used as a reliable method for forecasting the productivity of TSS due to its high level of 
accuracy and high level of durability. 

The researchers Moustafa et al. [276] constructed a model using artificial intelligence that was fine-tuned in order to anticipate the 
still’s efficacy. A standard artificial neural network model has been fine-tuned humpback-whale-optimizer (HWO). Comparisons are 
made between the accuracy of predictions made by the produced model, and those made by a ANN and an optimized model created 
with PSO. The data is broken down into two categories: the training group, which accounts for 80 % of the total, and the test group, 
which accounts for 20 %. Fig. 14 compare expected and measured water yield and efficacy. The single ANN model has the weakest 
agreement with experimental results (in blue). This chart shows the role of metaheuristic optimizers, since ANN-HWO and ANN-PSO 
forecast better experimental results than ANN. 

In the research carried out by Sharshir et al. [19], a assessment of four different algorithms is made in order to generate a prediction 
model of the performance of tubular still. Based on experimental data, the SVR, DTR, NN, and DNN are the methodologies that were 
created and compared. To begin, all of the data from the dataset was run through a random forest regressor to determine the relative 
weight of each input feature in terms of its percentage importance. Fig. 15 shows the Diagrammatic representation of the process of 
training. The results show that the prediction performance for the SVR was the worst. 

Elsheikh et al. [277] used a long short-term memory NN to predict the amount of freshwater that would be generated by a stepped 
still. When contrasted with the conventional feed-forward ANN, the capability of this neural network to remember patterns for an 
extended period of time stands out as the most significant advantage offered by it. This function is made possible by the highly 
developed structure that is associated to feedback linkages. This network has the capability to handle sequence predicting, which is an 
important feature. Fig. 16 shows the typical structure of LSTM model. Several distinct statistical measures were utilized to evaluate and 
compare the accuracy of the suggested model’s predictions. The R2, RMSE, MAE, EC, and OI values for the stepped solar still are 

Fig. 12. Flowchart of various actions taken during the process of developing supervised machine learning (ML) models [273] (Adapted with 
permission from ELSEV. B.V. with LIC. No 5517991034624). 
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0.9976, 0.0021, 0.0018, 0.9973, and 0.9897. 
In order to demonstrate the dependability of solar distillation, a parametric analysis was carried out using a model that was based 

on artificial neural networks which is developed by Labbadlia et al. [278] this study was performed on two different types of stills. The 
usage of ANN approach has an impact on the analysis of thermal parameters of traditional solar stills and capillary film solar stills. This 
research was carried out with the purpose of developing models of artificial neural networks that may be utilized to anticipate the daily 
output of a solar distiller. The results inferred that a capillary film solar still when utilizing ANN for the prediction of daily production 
with a correlation coefficient of approximately 0.99. 

The author Maddah [279] constructed accurate supervised predictive machine learning models for the performance predictions in 
a double-slope still based on the experimental data found in the relevant body of literature. The previous findings (inputs/outputs) 
from various designed passive and/or active solar stills that were used to treat brackish water or wastewater with 45 % TDS were 
utilized to generate training datasets. These stills were used to treat brackish water or wastewater. The fact that the regression models 
(FGSVM, EBoT, and SEGPR) achieved the lowest RMSE demonstrates their reliability to accurately estimate the amounts of distillate in 
double-slope designs. The potential of the model to accurately forecast the concert of other desalination systems was demonstrated by 

Fig. 13. Suggested HHO–ANN approach [274] (Adapted with permission from ELSEV. B.V. with LIC. No 5517480993818).  

Fig. 14. The measured and predicted using the three models for: A) Water yield of CTSS [276]; B) water yield of MTSS [276]; C) energy efficiency of 
CTSS [276]; D) energy efficiency of MTSS [276]. 
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the extremely high accuracy of the SEGPR trained model with (R2 = 1) and the extremely low RMSE (<8) 
The model that was proposed by al-sulttani et al. [280] is employed for the determination of the best values for the unidentified 

constant (C) and the exponent (n) for the Nusselt number expression that was used to formulate the equation for the estimation of the 
hourly yield of a solar still. This was accomplished by finding a solution to an optimization problem by using PSO model. During this 
process, the optimal yields were found by estimating the optimal values for the unknown C and n parameters, which led to the suc
cessful completion of the optimization problem. This approach, which is employed for the first time ever in this study to create a yield 
prediction model and it, avoids the typical trial-and-error approach to estimating unknown coefficients. Based on the findings, the PSO 
algorithm appears to be a useful tool for solving solar distillation-related problems; specifically, it yields an optimum solution for 
estimating HYSS from a number of input variables. 

Zayed et al. [281] developed two algorithms with diverse kernels to forecast the water output of two sun distillers of varied 
configurations. The RVM and LS-SVM are two different techniques to machine learning. The output of two different solar stills can be 
predicted with the use of the RVM and LSSVM models that have been proposed. The RVM is a ML model that incorporates probabilistic 
principles, where the weights are utilized as hyper priors. This study employs the RVM for the purpose of forecast applications. The 
idea of structure in the context of Reliability, Availability, and Maintainability (RAM) prediction using the Reliability, Availability, and 
Maintainability RVM model encompasses a series of four distinct processes. The input feature vector for the RVM consists of three 
features and is represented as follows: The variable X is a vector consisting of three elements, denoted as x1, x2, and x3. The RVM 
model is structured as a three-layer network, with the first layer comprising the features. 

Fig. 17 is illustration that demonstrates the RVM structural idea. During the course of the simulation, a number of distinct kernel 
functions, including Laplace, Gaussian (G), linear, spline, and radial basis function (RBF), were incorporated into both models in an 
effort to determine which kernel function is the most effective in terms of maximizing the accuracy of the model. The results of the 
simulations demonstrate that the Gaussian function and the radial basis function are the most suitable Kernel functions to use for the 
RVM and LSSVM algorithms, respectively. 

Fig. 15. Diagrammatic representation of the process of training [19].  

Fig. 16. Typical structure of LSTM model [277] (Adapted with permission from ELSEV. B.V. with LIC. No 5517490433132).  
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In a study that was carried out by Nazari et al. [282], four reliable ML approaches were used to assess the efficacy of solar stills. In 
the context of this research, the impacts of various input parameters were explored. Through a process of training and testing, different 
parameters were predicted using a variety of ML methods. Further, mathematical equations had to be extracted from experimental 
results and used as a basis. In this manner, statistical measurements were utilized in order to assess accurate equations during both the 
preparation and testing stages. In addition, the outcomes of ML models were associated with the research that has been done in the past 
in terms of correctness and accuracy. The outcomes of ML models indicated that the EPR technique yielded comparatively better 
performance in the prediction of energy. 

As one of the most common approaches to machine learning, artificial neural networks (ANN) are developed in a variety of forms, 
and then those forms are compared with one another to determine which one performs the best at predicting the distillate and the 

Fig. 17. Flowchart of RVM model [281] (Adapted with permission from ELSEV. B.V. with LIC. No 5517530853157).  

Fig. 18. Spider plots comprised of a number of different statistical measures A) conventional [286] B) modified solar still [286] (Adapted with 
permission from ELSEV. B.V. with LIC. No. 5517531385260). 
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temperature of the water. These are two of the most important performance criteria of the system designed by Sohani et al. [283]. 
Analysis is conducted on the FF, BP, and RBF varieties of ANN. The findings indicate that the FF and RBF types of ANN structures are 
the most effective for estimating the distillate and the temperature of water. 

In the research carried out by Kandeal et al. [284], a total of four distinct ML approaches-namely; ANN, RF, SVR, and L-SVR were 
utilized in order to make an accurate prediction regarding the concert of the still when combined with the Nano fluid. The coefficient 
for the RF model, the ANN model, linear SVR, and the SVR model, respectively, were 0.997, 0.986, 0.956, and 0.99. Among the four ML 
models, the RF provides better prediction, with the maximum coefficient of determination and the least absolute percentage error. 

Bahiraei et al. [285] has created an effective model for estimating the efficacy of a still. In this model PSO is used in conjunction 
with an ANFIS to further improve the performance of an ANN. The best predictions found the ANN model having three hidden neurons 
and the ANFIS model with nine clusters. By comparing these models with one another, the performances of PSO-based ensemble 
models demonstrate that the PSO-ANFIS is superior to the PSO-ANN. When applied to the training set, the PSO-ANFIS model achieves 
an R2 value of 0.9884. 

Elsheikh et al. [286] carried out a research in which authors forecasted the yield of stills by utilizing different ML approaches. These 
techniques included SVM, ANN, and ANFI system. The research specially deals with two stills which include a conventional solar still 
and an enhanced model that featured a bilayered structure. The spider graphs of several numerical metrics used for evaluation of ML 
approaches for the two solar stills are illustrated in Fig. 18. This figure demonstrates that, according to a variety of statistical criteria, 
SVM performs better than former algorithms for analysing both traditional and adapted stills. 

Elsheikh et al. [287] devised a model using AI to predict the volume of water that could be created from modified distiller. The 
model is made up of LSTM that has been optimized using MFO. The concert of the model was analysed and contrasted with that of a 
LSTM model. The cellular state is regarded as the central component of the entity. Information is moved via a conveyor belt across the 
memory cell. Cell state is regulated by input, forgetting, and output gates. The sigmoid function has a limited output between 0 and 1. 
Zero units mean no information transmission. The unit can pass all information if its value is one. The forget gate decides which 
non-essential cell information to omit. The processes for carrying out the LSTM-MFO model that has been developed are laid out in 
Fig. 19. After undergoing pre-processing, the data used for training are separated into two distinct groups: the test set and the training 
set. 

A modified ANN model created on the tree–seed algorithm is presented by Sharshir et al. [288] in order to estimate the water 
volume of conventional and wick stills. The usefulness of this method is contingent upon enhancing the functionality of the ANN by 
locating the optimum weights for the neurons through the utilization of the TSA. The initial phase involves the reception of the input 
data, which is subsequently divided into training and test sets by a random allocation process. Subsequently, a collection of solutions X 
is generated that correspond to the weights of the NN. In the second stage, the testing set is employed to evaluate the trained NN using 
the optimal solution X superlative. Next, the productivity is evaluated, and the output is assessed. The evaluation of this process is 
conducted by contrasting it with a conventional ANN. The procedure of defining the constraints of TSA is typically conducted through 
a trial-error approach. It is observed that a population size of 25 is commonly selected. Fig. 20 illustrates the organizing framework of 
the technique that is being suggested. The suggested approach (ANN-TSA) will be perceived in 2 steps. Initial stage will seek to 
recognize the weights that will result in the lowest RMSE value when comparing the output to its projected values. In the meantime, 
the purpose of the second step is to measure the level of quality of ANN. The study’s findings indicate that ANN-TSA has the potential to 
be an extremely efficient for forecasting productivity. 

4.3. Suggestions to improve the solar desalination performance and its application  

• To improve the total efficiency of freshwater production, try more sophisticated condensation methods like multi-stage solar stills.  
• To optimize energy intake, it is recommended to incorporate both passive and active solar tracking devices, which will ensure that 

the still remains oriented with the sun at all times.  
• Utilize advanced materials such as hydrogels or super-hydrophobic coatings on the solar still’s surface to optimize heat absorption 

and augment the condensation mechanism.  
• Examine materials with nanostructures to improve condensation rates and sunlight absorption.  
• One potential approach to enhance evaporation rates in a still is to introduce reflectors or concentrators, which can effectively 

redirect a greater amount of sunlight onto the surface of the still. 

5. Discussion on unresolved issues from current review article 

The rapidly changing environment of innovation is illuminated by the new energy scenarios that are emerging around the world. 
This covers the development of new social innovations, commercial strategies, and policy as well as new energy technology. AI will 
drive every aspect of business, policies, and energy innovations including repairs, unit sizing, automated contracting, logistics opti
mization, and others. The development of ML models and DL models, and novel search strategies into a general knowledge of the globe, 
are the primary accomplishments in AI over the previous seventy centuries. The application of AI, which is a very vital tool, has the 
potential to drastically alter the energy market if it is done efficiently. These tools are only as effective as their training and information 
sources. Many procedures, especially energy industry safety-critical ones, may have a black box component. 

The application of AI presents a great chance to overhaul both the modern energy sector and modern energy systems, but it also 
presents a number of challenges represented in Fig. 21. Yet, there is still some obstacle that prevents the widespread use of AI from 
progressing further. Some examples of hurdles are those pertaining to the effective tuning of network hypermeters, problems with data 

L.D. Jathar et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e25407

29

quality, a dearth of skilled experts and data science abilities, problems with the technological infrastructure, compliance issues, 
concerns about legal security, and so on. There are a lot of issues to overcome in terms of technology, the lack of openness of AI 
approaches and the challenges the AI system has interpreting unstructured data. 

6. Recommendations from the results of current review article 

The past results give us reason to recommend that the power and energy society increase their efforts to engage AI approaches in 
fault identification and categorization. These efforts should be increased because the prior results gave us reason to do so. Moreover, 
the deployment of AI in energy systems might prevent any breakdowns, which would result in a significant increase in the amount of 
electricity generated. In addition, utilizing AI-based approaches can make the process of maintenance much simpler. The authors 
suggest giving data-gathering operations, which can speed up the implementation of AI approaches in the power and energy sectors, 
more attention in order to improve their effectiveness. The efforts of the government ought to also be focused on the same aim. It is 
strongly suggested that additional investments be made in the research and development of various monitoring strategies. These 
methods could be helpful in acquiring the data with high levels of accuracy and in a very short amount of time. It’s important to create 
a machine learning approach that includes measurement and precaution and meets international standards like IEC, NEC, and UL to 
get reliable results that account for outside influences and measuring device signal variability. The Internet of Things (IoT) is highly 
suggested for use in the development of FDD-based smart monitoring systems and in the remote sensing of PV plants. In addition, it is 
strongly recommended to use a strategic strategy in order to quickly isolate the plants and provide them with immediate protection 
[290,291]. 

7. Conclusions 

Incorporation of AI and ML in the dynamic field of solar technology is a significant achievement, marking the beginning of a new 
era characterized by innovation and enhanced productivity. This review paper thoroughly examines the diverse uses and significant 
influence of AI and ML in the photovoltaic systems and solar desalination, providing insight into the revolutionary capabilities of these 
technologies. 

Fig. 19. The operational steps of the LSTM-MFO model [287].  
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• Recent study indicates that AI and ML algorithms have surpassed conventional limitations, enhancing different aspects of PV 
systems. AI-driven technologies have transformed the utilization of solar energy by enabling predictive maintenance, defect 
detection, real-time monitoring, and performance optimization.  

• These advancements have resulted in increased efficiency, decreased expenses, and improved sustainability. Moreover, the ML 
algorithm possesses the ability to adapt photovoltaic systems effectively to react with fluctuating environmental conditions, hence 
optimising energy production even under uncertain circumstances.  

• Furthermore, the integration of AI and ML with solar technology has not only increased operational efficiency, but also expedited 
the rate of innovation. Researchers and industry experts can now investigate new materials, designs, and production processes 
using intelligent algorithms that evaluate large datasets and make predictions.  

• This study summarizes the major factors in developing and operating renewable energy-powered desalination methods. These 
include choosing a location, energy estimation, desalination method selection, and system efficiency enhancement. These four 
issues can be solved individually with AI.  

• The two most frequently employed intelligent algorithms in the context of renewable driven desalination are Artificial Neural 
Networks (ANN) and Genetic Algorithms (GA). ANNs have proven to be valuable tools in the prediction of desalination processes. 
Additionally, GAs is commonly employed in the optimization process, given their advantageous characteristics.  

• By utilizing artificial intelligence technologies, freshwater productivity can increase by 10 % and efficiency can be improved. 

Fig. 20. Organizing framework of suggested technique [288] (Adapted with permission from ELSEV. B.V. with LIC. No 5517591114478).  
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8. Future directions 

The readers are provided with future scope in order to help them form a compelling view on the emerging developments that will 
occur in this field, including themes that should be developed further.  

• The implementation of applications that make use of AI and ML approaches has to be made simpler, more effective, and more cost- 
effective, and there are a number of different areas in which additional study is required.  

• There is little experimental integration of ML, DL, and IoT technologies online, and they should run in actual time to prove their 
efficacy.  

• Big data and advanced deep learning algorithms make fault prediction possible, making this a promising field for the future. 
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