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Abstract 

Background 

The healthy donor effect (HDE) is a methodological problem that arises in donor health 

research when comparing donor versus non-donor or regular donor versus casual donor. This 

may distort the true causal relationship between blood donation and long-term health outcomes.  

Aims and Objectives 

The aim of this thesis was to identify and apply the method/s to provide an unbiased estimate 

of the impact of blood donation on blood donors' long-term health outcomes (all-cause 

mortality and some cancers). 

Methods 

I conducted a systematic review to identify and summarised the methods that were used to 

account for the HDE in published studies. I then applied a causal inference method called 

‘target trial emulation’ and another less biased method called ‘exposure window’ method to 

adjust for the HDE using the Sax Institute’s 45 and Up Study data, linked with blood donor 

data and other health data sets. For all-cause mortality, I used both the target trial and 5-year 

exposure window methods, along with adjustments from g-methods (inverse probability 

weighting, targeted minimum loss-based estimator, and sequentially doubly robust estimator). 

I also investigated the association of regular blood donation with gastrointestinal, colorectal, 

and haematological cancer using the 5-year exposure window method. 

Results 

The results from the systematic review suggested that most of the existing methods used to 

mitigate the HDE were inadequate to effectively address this bias. A lack of use of appropriate 

causal inference techniques was also observed. In my analyses, the target trial emulation 

technique did not show any statistically significant association between the initiation of blood 

donation and the mortality risk. The use of the 5-year exposure window method also did not 

reveal any significant relationship between higher-frequency blood donation and all-cause 

mortality when compared to lower-frequency donors. For gastrointestinal and haematological 
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cancers, I also found no statistically significant difference in the risk of cancers for the higher-

frequency blood donors compared to the lower-frequency donors. 

Conclusion 

Through a systematic review, I found that the methods used in blood donor research to mitigate 

the impact of HDE are inadequate. Using some of the less biased methods, I found no 

significant association between regular, higher-frequency blood donation and long-term health 

outcomes such as mortality and some cancers after adjusting the HDE. The findings from this 

study can provide crucial insights for the Australian Red Cross Lifeblood’s strategic planning 

and directing future research. 
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Chapter 1 Introduction 
 

1.1 Background 

1.1.1 Blood donation and long-term health outcomes 

Blood donation is a life-saving act for patients in need. In 2017, the global demand for blood 

and blood products was more than 304 million units [1]. The majority of this demand is met 

by donations from voluntary donors. While blood and plasma donation are generally safe for 

donors, few may develop immediate adverse events such as fainting, and a small proportion 

may also develop iron-deficiency or anaemia after regular whole blood donations [2].  

Blood collection agencies (BCAs) employ a number of strategies to guarantee the donors' 

continuous health and safety as well as the transfusion-safety of donated blood [3]. The primary 

approach involves choosing the healthiest portion of the population who can tolerate the 

physiological alterations caused by donation, ensuring the donated blood is safe for those 

receiving it [4]. Also, BCAs conduct research to understand the impact of donation on health 

and continually refine their donor selection criteria to ensure the ongoing health of donors [3].  

In Australia, one-third of the population will require blood and blood products at some point 

in their lives, and more than 29,000 donations per week are required to meet demand [5]. 

Additionally, roughly 3% of Australians donate blood annually, with many donors making 

multiple donations [5]. With the aging of Australia's population, including blood donors, it is 

anticipated that health issues related to aging will increase [6, 7]. For instance, older patients 

who suffer from acute myocardial infarction and have a low haematocrit level upon admission 

often require blood transfusions. These transfusions have been associated with a lower short-

term mortality rate in such patients [8]. This will consequently lead to a greater need for blood 

and blood products in the country. If the current pool of donors does not grow, it could result 

in depending on existing donors to donate more frequently to meet supply needs. However, the 
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long-term health effects of regular blood donation remain unclear. As such, it's appropriate to 

conduct a comprehensive study on the long-term health outcomes of regular blood donors to 

assess if donation leads to beneficial or harmful effects. 

The majority of current donor health research is focused on the immediate and mid-term effects 

of blood donation, such as hematomas, vasovagal reactions, and iron-deficiency [9]. The long-

term impact of blood donation on the health of a donor is a relatively neglected area of research. 

Only a few studies has investigated the consequences of regular whole blood donation and 

plasma/platelet donation, including potential associations to cancer due to reduced body iron 

levels and the potential harmful effects of citrate exposure on bone health [10-12]. However, 

the findings from these studies are inconclusive which is described extensively in the later 

chapters. 

Whole blood donation increases the risk of iron-deficiency or anaemia. After each whole blood 

donation, donors typically lose 200 to 250 mg of iron and subsequently are exposed to a lower 

level of body stores of iron for a considerable period of time [13]. Similarly, while donating 

plasma and platelets by apheresis (apheresis is a medical technology where the blood of a donor 

is passed through an apparatus that separates a particular component of blood for donation, and 

the rest is returned back to the donor's circulation), donors are exposed to a small quantity of 

citrate anticoagulant which causes acute disturbance in calcium and phosphate metabolism in 

the body [10]. In addition, high volume or regular plasma donation also leads to a transient 

reduction in serum proteins, including immunoglobulins [14]. In general, blood donors are 

healthier than the rest of the population and usually practice healthier lifestyles [15]. They tend 

to smoke less, exercise more, have better self rated health and suffer less from chronic diseases 

than general population [16]. However, repeated and chronic exposure to changes in the normal 

physiologic level of minerals and proteins in the body may have acute as well as long-term 

impacts on health. 
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The lowered stored iron in the body due to whole blood donation has been considered as 

something that can impact the health of donors. Frequent blood donors are exposed to low 

stores of body iron for a considerable time compared to if they had not donated blood [13]. A 

lower store of iron in the human body is hypothesised to decrease the risk of cardiovascular 

diseases [17]. Although the precise mechanism of lowering such risk is unknown, one of the 

highly debated potential mechanisms is lower iron stores leading to less oxidative stress (due 

to less amount of reactive oxygen species (ROS)  production). A lower iron level reduces the 

amount of ROS production, which in turn reduces the vascular reactivity and decreases the 

peroxidation of low-density lipoprotein (LDL)-cholesterol. This process may have some 

preventive effect on atherosclerosis, subsequently decreasing the risk of cardiovascular 

diseases [18].  Another proposed mechanism is that low iron store reduces the risk of 

development of type 2 diabetes which is associated with an increased risk of cardiovascular 

diseases [19, 20].  

Only a small number of studies have examined the risk of CVD or biomarkers of CVD in blood 

donors in relation to donation intensity, and the results are inconsistent. A study from the 

Netherlands reported that whole blood donation intensity is not associated with a lower 

prevalence of metabolic syndromes, which are recognised as risk factors for CVD [21]. 

Another two studies did not find any association between high-intensity donation and 

subclinical atherosclerosis and high-intensity donation and myocardial infarction [22, 23].  

However, a few other studies have reported a decreased risk of coronary heart disease in 

frequent whole blood donors. A sub-study under the Nebraska Diet Heart Survey has suggested 

a possible protective effect of blood donation on CVD in non-smoking men [12]. Another study 

among males has suggested that endothelial dysfunction, which increases the risk of CHD and 

occurs secondary to systemic inflammation and oxidative stress, may be reduced by regular 

blood donation [24].    
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Another health outcome that is hypothesised to be associated with iron is cancer. Animal 

models and human studies suggest that high levels of iron in the body can increase the risk of 

cancer development [25, 26]. Thus lowering body iron stores may lead to a lower risk of cancer. 

On the other hand, low levels and less activity of natural killer cells after each blood donation 

is also hypothesised to increase the risk of cancers, particularly non-Hodgkin's lymphoma [27, 

28]. Results from studies examining the effect of a high level of iron in the body on cancer risk 

are not consistent. A systematic review suggested that there is a positive association between 

increasing heme iron uptake (such as through red meat consumption) and cancer risk [11]. A 

large study of Swedish and Danish blood donors did not find any overall association of 

increased or decreased cancer risk in repeat blood donors but reported that frequent plasma 

donors were at higher risk of non-Hodgkin's lymphoma [29]. The study also reported that 

among men, when considering 3-7 years of latency, there was a decreasing trend in the risk of 

liver, lung, colon, oesophagus, and stomach cancer as the amount of iron loss increased due to 

donation [29]. In another study from the US, the authors did not find any association between 

regular blood donation and colorectal cancer risk when adjusted for many lifestyles and dietary 

factors [30]. Similarly, another analysis from the same cohort also did not find any association 

between blood donation frequency and non-Hodgkin's lymphoma risk [28]. The detail of the 

study designs and methodologies used in the above studies are discussed in the literature review 

chapter where I conducted a systematic methods review of these studies.  

Apheresis donation is also believed to be associated with long-term bone health, but previous 

studies showed inconsistent results. Amrein et al. reported lower bone mineral density (BMD) 

at the lumbar spine in apheresis donors than in non-donor controls, but another study by Boot 

et al. did not find any difference in BMD of the lumbar spine in apheresis donors compared to 

whole blood donors [10, 31]. The first and the only study examining the long-term risk of bone 

fractures and high-frequency plasma donation in Swedish donors did not find any association 
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[32]. Regular plasma donation also exposes the donor to chronic low levels of serum protein 

and immunoglobulins [33, 34]. Immunoglobulins play an essential role in preventing infection 

in the early phase of exposure to antigens. A review of available evidence until 2007 concluded 

that prolonged and deficient immunoglobulins levels increase the risk of infection [35]. A 

detailed description of the methods used in the above studies is in Chapter 2. 

1.1.2 Addressing the Healthy Donor Effect (HDE) 

The research examining the impact of blood donation on donors' long-term health outcomes 

has shown inconsistent results. Some studies found a positive association of blood donation 

with reduced risk of certain diseases, while other studies found no association of blood donation 

with those health outcomes [12, 23, 28-32, 36-48]. A few studies even found a negative 

association of blood donation with long-term health outcomes [10, 39, 49-51].  

This may have been caused due to the fact that blood donors are selected on health criteria for 

their eligibility to donate and may differ systematically in relation to the status of health and 

utilisation of healthcare services compared to the general population. This donor selection 

procedure gives rise to a bias in donor health research known as the "Healthy Donor Effect" 

(HDE), which, if not adequately adjusted, indicates a better health condition and lower disease 

morbidity in blood donors when compared to the general population. In the field of health 

research among blood donors, this issue is considered to be a methodological problem, and it 

is a combination of selection bias and confounding [15].  
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HDE arises due to a combination of selection biases known as the Healthy Registration Effect 

(HRE), the Healthy Donor Survivor Effect (HDSE), and the Healthy Donor Career Effect 

(HDCE) [15]. Healthy individuals are more capable of and interested in donating blood. When 

a person wishes to donate blood, they must meet specific health and lifestyle requirements. As 

a result, when compared with the general population, blood donors are healthier, and this gives 

rise to HRE [15, 42, 52]. Further, less healthy donors usually stop donating sooner. Thus, it is 

more likely that active donors who regularly donate are, on average healthier than 

inactive/lapsed donors (donors who have stopped donating for some period of time). This gives 

rise to a bias known as HDSE [15, 42, 52]. HDCE affects analyses that compare health 

outcomes within the active donor population [15, 42, 52]. As blood donors must undergo

repeated medical check-ups throughout their donation careers, donors who regularly donate for 

a longer time period are healthier than those donors who have been making donations for a 

relatively short period of time. Because of these selection effects, it is very challenging in donor 

health studies to make causal inferences about whether the health outcomes measured occurred 

due to the effect of blood donation or were caused by HDE. Therefore, it is crucial to 

acknowledge and appropriately adjust the HDE when assessing the health effects of blood 

donation.

Figure 1.1 Different types of Healthy Donor effects.
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1.1.3 Current blood donation practice in Australia 

In Australia, blood donation is a voluntary act. Individuals have the option to either donate 

whole blood or choose to donate plasma/platelets through the process of apheresis. Typically, 

if they satisfy all other eligibility requirements, individuals can make up to 4 whole blood 

donations and 26 plasma donations annually [53]. Individuals between the ages of 18 and 75 

can initiate whole blood, platelets, or plasma donations, while ongoing donors who have a 

record of donation within the country can continue donating at any age, provided they meet 

other qualifying conditions . Prior to every whole blood donation, a thorough assessment of the 

donor's eligibility is carried out, which includes a series of questions about their overall health, 

medical history, and recent travel. This process is aimed at ensuring the donor's safety during 

the donation and reducing the risk of transmitting diseases via transfusion to recipients. 

Before each donation, donors are tested for haemoglobin levels. If a potential issue with low 

haemoglobin is detected, further tests for serum ferritin are conducted. Donors diagnosed with 

anaemia are deemed ineligible for donation and are advised to consult with their doctor [53]. 

They can return to donate blood after a six-month period, assuming their iron deficiency has 

been resolved. For those donating plasma for the first time, an initial screening is performed to 

check their complete blood count, total protein, albumin, and immunoglobulin G (IgG) levels. 

Regular plasma donors also have their total protein, albumin, and IgG levels measured annually 

[54]. Donors may be temporarily or permanently deferred from donating based on factors such 

as age, health status, or certain diseases, including anaemia. 

Table 1.1 Interval between blood donation types in Australia 

Last donation type Next donation type Minimum interval between 
donations  

Whole blood  Whole blood  84 days (12 weeks)  
Whole blood  Apheresis plasma  28 days (4 weeks)  
Whole blood  Apheresis platelets (single or 

double)  
28 days (4 weeks)  
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Any type of apheresis 
donation  

Any type of donation 14 days (2 weeks)  

 

1.2 Aims and objectives 

The main aim of this thesis is to identify and apply the method/s that adequately adjust the 

HDE and provide an unbiased estimate of the impact of blood donation on blood donors' long-

term health outcomes. The specific objectives of this thesis are: 

1. To summarise the methods that have been used to adjust the HDE and identify any 

additional/new approaches that may adjust the HDE adequately.  

2. To apply the appropriate method/s to The Sax Institute’s 45 and Up Study data which 

is linked with other administrative health data sets to examine the association between 

donation and various long-term health outcomes such as mortality and cancer. 

1.4 Thesis chapters organisation 

This thesis has five main chapters with a publication-style structure. There are four articles in 

this thesis, among which one is already published (Chapter 2), one is submitted to a journal 

(Chapter 4, Section 1), one is under technical review at Sax Institute (Chapter 4, Section 2), 

and last one is ready to be submitted to Sax Institute for technical review (Chapter 4, Section 

3). 

Chapter 1 provides the background of the study, the aims and objectives of the study, a brief 

description of the study design and methods, and the organization of the study. 

Chapter 2 provides a review of existing approaches/methods that were used to adjust the HDE. 

Chapter 3 provides a description of the appropriate method/s and data to be used in the analysis. 
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Chapter 4 provides the application of the HDE adjustment methods to the Sax Institute’s 45 

and up study data to find the association between blood donation and various health outcomes, 

i.e., all-cause mortality and cancers. 

Chapter 5 discusses the key findings from all the previous chapters, future research direction 

and recommendation and conclusion. 
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2.1.1 Abstract 

Background: The impact of blood donation on donors’ long-term health outcomes shows 

inconsistent results. This may have been caused by the ‘healthy donor effect’ (HDE). In this 

study, we aimed to determine the extent to which studies examining the relationship between 

blood donation and long-term health outcomes acknowledge and adjust for the HDE. 

Study Design and Methods: We conducted a systematic literature search examining the 

relationship between blood or plasma donation and long-term health outcomes. Then, we 

extracted data on several important study characteristics and information on how authors 

acknowledged and adjusted for the HDE. 

Results: We identified 8784 articles, out of which 27 were included in this review. Among all, 

19 (74%) studies mentioned potential bias resulting from HDE while the rest of the studies did 

not. Of those 19 studies that did mention the bias due to HDE, 13 studies reported the HDE as 

an important limitation. The most common method used to adjust for the effect of HDE was 

regression methods. Many studies also used comparison within blood donor population and 

few used qualification/exposure window techniques and restriction of the analysis to healthier 

subjects as a means to minimise HDE. 

Conclusions: We provide a summary of how previous studies acknowledged and adjusted the 

HDE. Causal inference methods may be more appropriate and useful when selection bias is 

present in observational studies. Researchers should consider collecting information on 

relevant confounders in the design phase of the study to be able to apply causal methods in 

observational study settings. 

Keywords: Healthy donor effect, HDE, blood donors, health outcomes 
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2.1.2 Background 

Blood donation is a life-saving act for patients in need of blood products. In 2017, the global 

demand for blood and blood products was more than 304 million units [1]. The majority of this 

demand is met by donations from voluntary donors. While donating blood and plasma is 

generally safe for donors, few may develop immediate adverse events such as fainting, and 

some donors may also develop iron-deficiency or anaemia after regular whole blood donations 

[2]. Blood Collection Agencies (BCAs) employ several strategies to ensure the ongoing health 

and safety of donors, and the donated blood is safe for transfusion to patients. To ensure donor 

health, a key strategy is to start with the selection of the healthiest segment of the population 

that can withstand the physiological changes brought upon by the donation. Also, BCAs 

conduct research to understand the impact of donation on health and continually refine their 

donor selection criteria and policies to ensure the ongoing health of donors. 

The majority of donor health research until recently was focused on the immediate effects of 

blood donation. However, recently several researchers have examined the relationship between 

donating blood or plasma and the health outcomes of donors in the longer-term. After Sullivan 

suggested [17] that the high level of stored iron in the body increases risk of cardiovascular 

diseases, many studies have examined whether lowering iron through blood donation can 

reduce cardiovascular disease risk. Some studies reported that blood donation has a protective 

effect on the incidence of cardiovascular diseases as well as cancer, mortality, and 

hospitalisation [12, 55, 56]. However, the observed protective effect of blood donation on 

donor’s health may be potentially due to donors being healthier than the general population as 

they face rigorous donor selection procedures throughout their donation career. 

These selection procedures also give rise to a bias while studying the effect of donation on 

health outcomes which is described as “Healthy Donor Effect” (HDE). The HDE arises when 

blood donors are compared to the general population, as well as when comparing donors of 
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different levels of donation frequency or donation career. This happens, as there are inherent 

health differences between the groups compared. The HDE is regarded as a methodological 

problem in health research in blood donors, and it is a combination of selection bias and 

confounding [15]. 

HDE may arise in a combination of selection biases termed as the Healthy Registration Effect 

(HRE), the Healthy Donor Survivor Effect (HDSE), and the Healthy Donor Career Effect 

(HDCE) [15]. Healthy people are usually more capable and interested to become blood donors. 

Also, when people want to donate blood, they must pass a number of health and lifestyle criteria 

set by the blood collection agencies. As a result, when comparing the health outcomes with 

general population, blood donors are healthier, and this effect is called HRE. Further, less 

healthier donors usually stop donating sooner, as a result it is more likely that active donors are 

on average healthier than inactive/lapsed donors. This bias is known as HDSE. HDCE arises 

in analyses that compare health outcomes within active donor population. Since blood donors 

face repeated medical check-ups throughout their donation career, donors who donate at a high 

frequency and higher number of donations over the lifetime are healthier than low frequency 

donors [15]. Because of these selection biases, it is very challenging in donor health studies to 

make causal inference whether the health outcome studied occurred due to blood donation or 

due to HDE. Therefore, acknowledging and adequately adjusting the HDE is extremely 

important when comparing health effects of blood donation. 

In this methods review, we assessed the methods used to acknowledge and adjust the HDE in 

studies examining the relationship between blood/plasma donation and long-term health 

outcomes. This review summarizes the extent of this issue and currently used approaches to 

mitigate the impact of HDE on the relationship between donation and health outcomes. 
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2.1.3 Materials and Methods 

Data sources and searches 

We searched 4 electronic databases PubMed, Scopus, EMBASE, CINAHL to identify relevant 

peer-reviewed articles, and ProQuest for the inclusion of dissertation and theses available up 

to November 2020. We did not specify the starting publication date in the search. We used a 

combination of keywords and index terms for all available studies published in the English 

language. We also searched the reference list of included papers and conducted a forward 

citation search. The search strategy was based on the PubMed database and was replicated in 

other databases after necessary modifications. A detailed search strategy is provided in 

supplementary materials (Appendix A). 

Study Selection 

We exported all the articles found from search results to EndNote 9 for data management. We 

screened titles and abstracts in Covidence after importing from the EndNote. Detailed 

inclusion-exclusion criteria are given in table 1. At first, duplicate titles were removed, and 

then the title and abstract screening were done by two independent reviewers, MMR and AH. 

The reviewers resolved any disagreement by discussing first and if necessary, these were 

resolved by SK. Screening of full-text articles was carried out by MMR and SK independently, 

and AH resolved disagreements following discussion. 

 

 

 

 

 



15 
 

Table 2.1 Inclusion and Exclusion criteria for the study selection. 

Inclusion Criteria Exclusion Criteria 

• Studies examining the association 

between blood donation and long-term 

health outcomes.  

• Adults study population. 

• Randomised controlled trial, Cohort, 

Case control and Cross-sectional 

studies. 

• Health outcomes such as 

cardiovascular/heart diseases, cancer, 

diabetes, bone density or fracture, all-

cause mortality, morbidity and 

infections. 

 

 

• Health outcomes other than 

cardiovascular diseases, cancer, bone 

density or fracture, all-cause mortality, 

morbidity and infections. 

• Studies where blood donation is not 

studied as an intervention/exposure. 

• Studies conducted on blood/blood 

product recipients. 

• Short term blood donation-related 

reactions and adverse events after 

blood donation such as localised 

swelling, vasovagal reactions, iron 

deficiency, anaemia. 

• Studies including donors donating 

blood for therapeutic reasons. (e.g. 

haemochromatosis, polycythaemia 

rubra vera). 

• Studies where study population are 

autologous donors. 

 

Data Extraction 

We extracted data on several study characteristics such as publication year, country, study 

hypothesis, study population, intervention, study design, data collection method for both 

exposure and outcome, sample size, follow-up duration, donation type, main statistical method 

used, primary outcome, and results relating to the primary outcome. We also extracted 

information on acknowledgement of the HDE as a potential limitation in their analysis, and 

whether they attempted to adjust for it.  
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Evidence synthesis/Analysis 

To assess the acknowledgement and adjustment of the HDE, we calculated the percentage of 

studies acknowledging that the HDE may be a potential bias in their analysis and those 

attempting to adjust this effect. We considered studies to have acknowledged the HDE if they 

named the term HDE or the inclusion of healthy subject on the results of the study anywhere 

in their article. We also defined ‘HDE acknowledged as a limitation’ if the studies 

acknowledged that the result of their studies could be impacted by the HDE. We further 

explored the methods used in the studies described to mitigate the HDE and provided a 

qualitative summary of these methods. We also highlighted the likely residual HDE which 

could still impact the study results after the author’s described their adjustment methods. We 

did not perform a risk of bias assessment of the included studies as our focus was to provide a 

descriptive assessment of the methods used to adjust the HDE and not on the outcome of the 

studies. 

2.1.4 Results 

Search Results 

Figure 2.1 shows the flow diagram of the study selection process. We identified 8784 studies 

by searching 5 electronic databases. After removing duplicates, 4976 papers were left for 

screening. The title/abstract screening further excluded 4896 papers and left 80 papers for full-

text screening. Of the 80 articles, 57 were excluded with various reasons, and 23 were found 

eligible for the review. We also included 4 more articles through a forward citation search, 

resulting 27 articles to be included in the review.  

Study characteristics 

Table 2.2 shows important study characteristics such as publication year, country of 

publication, intervention, study design, follow-up duration, donation type, and main statistical 
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method used in the studies. All the studies were published between 1983 and 2020. Of the 27 

studies, 30% were from the USA, and 26% were conducted in either Sweden or Denmark.  

 

 

 

 

 

 

 

 

 

 

 

 

In terms of comparator group, 14, studies (52%) made comparisons within donor population, 

whereas 10 (37%) studies made a comparison between the donor and non-donor population.  

The study design of 19(70%) studies was cohort study, whereas 4 (15%) reported cross-

sectional, and 3 (11%) reported case-control study design. We found only one randomised 

controlled trial in the study design. Twelve studies (44 %) did not mention the types of blood 

donors in their studies (such as whole blood donor only or mixed donors), while 8 (29%) studies 
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reported that they studied only whole blood donors, 6 (22%) studies reported that they studied 

apheresis donors, and only 1 study (4%) reported that it studied mixed donors.  

In terms of analytic methods, 8 (29%) articles used only Cox proportional hazard regression as 

a main statistical model in their analyses, and 7 (26%) studies used only logistic regression in 

their analyses. The rest of the studies used Analysis of Variance (ANOVA), Poisson  

Table 2.2. Characteristics of the included studies. 

First 
Author 

Year 
Publish
ed 

Country/Reg
ion 

Intervention 
(exposure & 
control ) 

Study 
Design 

Sample 
Size 

Duration of 
follow-up 

Donation 
type 

Main 
statistical 
method 

Casale[55] 1983 Italy Blood donors 
vs Non donors 

Cross 
Sectional 

731 N/A Not 
mentioned 

Chi 
square 
test and 
correlatio
n 

Merk[56] 1990 Sweden Comparison 
between 
observed and 
expected no. 
of cases 
among blood 
donors 

Cohort 37795 1970 to 
1986 

Not 
mentioned 

Observed 
over 
expected 
ratio 

Lasek[43] 1994 Poland Comparison 
between 
observed and 
expected no. 
of cases 
among blood 
donors 

Cohort 3126 1969 to 
1991 

Whole blood Observed 
over 
expected 
ratio 

Meyers[12] 1997 USA Comparison 
among blood 
donors and 
non-donors 

Cohort 3855 From Oct 
1992 to Nov 
1993 to the 
last 10 years. 

Not 
mentioned 

ANOVA, 
Logistic 
regression 

Tuomainen[
36] 

1997 Finland Blood donors 
vs Non donors 

Cohort 2682 1984 to 
1992 

Not 
mentioned 

Cox 
regression 

Salonen[37] 1998 Finland Blood donors 
vs Non donors 

Cohort 2682 1984 to 
1995 

Not 
mentioned 

Cox 
regression 

Ascherio[23
] 

2001 USA Comparison 
across 0/1-4/5-
9/10-19/20-
29/>= 30 
donations 

Cohort 38244 
(male 
only)  

Jan 1992 to 
Jan 1996 

Not reported Multiple 
logistic 
regression 

Meyers[38] 2002 USA Frequent 
(more than 1 
donation in 3 
year period) 
vs. casual 
donors (1 
donation in 3 
year period). 

Retrospecti
ve cohort 
study 

3016 1990 to 
2000 

Whole blood ANOVA, 
Logistic 
regression
, Cox 
regression 

Jiang[57] 2004 USA Comparison 
across 0, 1-5, 
6-9, 10-19, 20-

Cohort 38394 the date of 
returning  
the 1992 
questionnair

Not reported Cox 
regression 
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First 
Author 

Year 
Publish
ed 

Country/Reg
ion 

Intervention 
(exposure & 
control ) 

Study 
Design 

Sample 
Size 

Duration of 
follow-up 

Donation 
type 

Main 
statistical 
method 

29 and >= 30  
donations. 

e (in the 
analysis of 
the 
association 
between 
blood 
donations 
and diabetes 
incidence) to 
the date of 
the first 
diagnosis of 
type 2 
diabetes, 
death, or 1 
June 1998, 

Edgren[29] 2008 Sweden and 
Denmark 

Comparisons 
across 1-8, 9-
16, 17-25, > 25 
numbers of 
donations in 3-
12 years 
before 
diagnosis and 
comparisons 
across 0-4, 5-
8, 9-12, > 12 
numbers of 
donations in 3-
7 and 8-12 
years before 
diagnosis 

Nested 
case 
control 
study 

1110212 
(cases 
10866, 
control 
107140) 

January 1, 
1968, to 
December 
31, 2002 

Whole blood 
and Plasma 

Condition
al logistic 
regression 

Amrein[10] 2010 Austria Apheresis 
donors vs. 
matched non-
donors 

Cross-
sectional 

204(102 
donors 
and 102 
controls) 

N/A Apheresis ANOVA 

Zhang[30] 2012 USA Comparison 
across ), 1-5, 
6-9, 10-19, 20-
29 and >= 30 
donations 

Cohort 35121 1992 to the 
event (death, 
cancer) or 
censored on 
Jan 1, 2008 

No reported Cox 
regression 

Germain[44] 2013 Canada Comparison 
among eligible 
vs. 
disqualified 
donors 

Retrospecti
ve cohort 
study 
(quasi-
random 
experiment
) 

12357 
disqualifi
ed donors 
vs. 50889 
eligible 
donors 

June 1990 to 
March 2007 

Whole blood Cox 
regression 

Vahidnia[39
] 

2013 USA Comparison 
across donors 
with cancer 
and non-
donors with 
cancer 

Cohort 56058 
and 
36672 

from first 
repository 
donation to 
cancer 
diagnosis, 
death, or 
the end of 
study 
follow-up 
(December 
31, 2009) 

Not 
mentioned 

Poisson 
regression 
and Cox 
regression 

Germain[40, 
44, 58] 

2013 Canada Comparison 
between 
allowed donor 

Retrospecti
ve Cohort 

Deferred: 
6076, 

1 year Not 
mentioned 

Logistic 
regression 
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First 
Author 

Year 
Publish
ed 

Country/Reg
ion 

Intervention 
(exposure & 
control ) 

Study 
Design 

Sample 
Size 

Duration of 
follow-up 

Donation 
type 

Main 
statistical 
method 

with an 
atypical pulse 
and deferred 
donor with 
atypical pulse  

Active: 
10671 

Gallerani[40
] 

2014 Italy Comparison 
across non-
donors and 
several blood 
donor 
categories. 

Retrospecti
ve cohort 
study 

55000 
(11862 
donors, 
43138 
non-
donors) 

January 
2005 to 
December 
2010 

Not 
mentioned 

Logistic 
regression 

Boot[31] 2015 Netherlands Apheresis 
donation 
(treatment) vs 
whole blood 
donation 
(control) 

Cross 
Sectional 
(pilot 
study) 

40 15 years Apheresis ANOVA 

Ullum[41] 2015 Sweden and 
Denmark 

Comparison 
across 
donation rates 
(0.01-0.50, 
0.51-1.50, 
1.51-2.50, 
2.51-3.50, 
3.51-4.50) 

Cohort 1182495 1982 to 
2012 

Whole blood Poisson 
Regressio
n 

Ishii[28] 2016 USA >20 donations 
vs 0 donations 

Cohort 36576 Jan 1992 to 
Jan 2010 

Not reported Cox 
regression 

Edgren[45] 2016 Sweden and 
Denmark 

Comparisons 
across 1-8, 9-
20, 21-32,  33 
numbers of 
donations, in 
different time 
windows 

Nested 
case 
control 
study 

1,435,96
8 

from date of 
first whole 
blood 
donation in 
1980 or 
later, until 
the date of 
the first 
diagnosis of 
PVa, death, 
other cancer 
(including 
other 
MPNsb), 
emigration, 
or end of 
follow-up 
(December 
31, 2012). 

Whole blood Condition
al logistic 
regression 

Grau[32] 2017 Sweden  Comparison 
across 1-8, 9-
24, 25-49, 50-
99 and  100 
apheresis 
donors,   

Retrospecti
ve cohort 

140289 From 1990 
to fracture 
event, 
censored at 
December 
31, 2012 

Apheresis Poisson 
Regressio
n 

Haron[47] 2018 Malaysia Comparison 
across less 
than 20 vs. 
more than 50 
plateletpheresi
s 

Cross-
sectional 
study 

50 N/A Apheresis 
(plateletphere
sis) 

Wilcoxon 
signed-
rank test, 
Mann-
Whitney 
test, Chi-
Square 
test. 
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First 
Author 

Year 
Publish
ed 

Country/Reg
ion 

Intervention 
(exposure & 
control ) 

Study 
Design 

Sample 
Size 

Duration of 
follow-up 

Donation 
type 

Main 
statistical 
method 

Hendig[49] 2018 Germany Comparison 
across whole 
blood, low-
frequency 
plasma, high-
frequency 
plasma, and 
frequently 
donate plasma 
for 5+ years 

Cohort 243 N/A ALL Multivari
ate 
variant 
analysis 

Peffer[42] 2019 Netherlands Comparison 
across  
low/medium/h
igh frequency 
donors based 
on tertiles; 
sex-specific 
analyses given  

Cohort 159934 Time to 
CVD event; 
censored 
Dec 31 2010 

Whole blood Cox 
regression 

Bialkowski[
48] 

2019 USA Apheresis 
blood 
donations 
(treatment) vs 
zero or whole 
blood 
donations 
(control) 

Randomise
d 
controlled 
trial 

58 1 year Apheresis Multiple 
logistic 
regression 

Zhao[46] 2020 Sweden Comparison 
across 1-5, 6-
10, 11-25, 26-
50 and >50 
donations. 

Cohort and 
nested 
case-
control 

1021433 from the 
date of their 
first whole 
blood 
donation 
until the date 
of the first 
diagnosis of 
any 
haematologi
cal 
malignancy, 
death, 
emigration, 
or December 
31, 2017, 

Whole blood Condition
al 
logistic 
regression 

Zhao[50] 2020 Sweden Comparison 
with apheresis 
donation with 
LRSc and 
without LRSc 

Cohort 74408 1996 to 
2017 (date 
of the first 
apheresis to 
first 
infection 
event, 
censored at 
December 
31, 2017) 

Platelet and 
plasmapheresi
s 

Cox 
regression 

 
a Polycythemia vera 
b Myeloproliferative neoplasms 
c Leukoreduction system 
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regression, standardised incidence ratios, and a combination of ANOVA or logistic regression 

or Cox regression in their analysis.  

Strategies to address the ‘Healthy Donor Effect’ 

Figure 2.2 shows information on the proportion of studies acknowledging the HDE and the 

methods used to mitigate the impact of the HDE.  We found that 19 studies (70%) 

acknowledged about HDE bias while the rest of the studies did not mention anything about the 

HDE. Of these 19 studies that did acknowledge HDE, 13 studies (68%) reported the HDE 

as a limitation of their studies.

 

Figure 2.2 Bar charts representing the acknowledgement of the HDE, its adjustment methods, 

and likely residual HDE information. (HDE= Healthy donor effect). 
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Of the 27 studies, 3 (11%) did not use any method that could mitigate the HDE while the rest 

of the studies used one or more methods that could potentially mitigate the HDE. However, 22 

(81%) studies used some form of regression analysis or ANOVA to adjust the confounding 

factors with or without using some other methods which could mitigate the HDE issue. We 

found 5 (18%) out of the 27 studies restricted the analysis to a healthier group of people along 

with other methods as a means to adjust the HDE. Another method to adjust for HDE that was 

used by 14 (52%) out of 27 studies was to compare the difference in outcomes within the donor 

population. We also found 3 (11%) studies which used qualification period/exposure window 

method which could potentially mitigate the HDE. 

Peffer et al. first proposed the 10-year qualification period method (i.e. all donors must have 

donated for at least 10 years to be qualified for the study) as a means to adjust for HDE [21, 

42]. In this method, the authors adjusted HDE by introducing 10-years qualification period 

where donors must remain an active donor for at least 10 years. During this period of 10 years, 

the number of donations was calculated, and comparison was done across the group formed 

based on donation tertiles. The actual follow-up period started after the qualification period. 

Ullum et al. also used a 5‐year exposure window preceding the last donation as a means to 

adjust the HDE [41]. The authors adjusted HDE by only considering outcome among donors 

with a last donation at ages 64.5-65.0 years and who survived at least 2 years after their most 

recent donation (these donors were called “retired”).  They calculated average number of 

donations per year in the preceding 5-year window and an indicator for ongoing donation (i.e. 

not “retired” yet) and used Poisson regression model to estimate the HDE adjusted effect of 

donation rate on mortality [41]. Similar to Ullum et al., Zhao et al. used 10-year exposure 

window to mitigate the HDE while examining the effect of platelets donation on lymphopenia 

and risk of infections [50]. They defined the exposure as the cumulative number of apheresis 
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donations in a 10-year “exposure window”. For further adjustment of HDE, the 10-year 

exposure window was delayed by one year where donors might modify their donation habits 

in the months leading up to an outcome event.  

We also made inference about the possibility of residual HDE in the studies included in the 

review. Of the 27 studies, 12 (44%) studies were likely to be affected by the HDRE, whereas 

11 (41%) were likely to be affected by the HDCE. 2 (7%) studies were likely to be impacted 

both by the HDRE and HDCE, while 1 (4%) study may have been impacted by HDSE. 

Moreover, we believe that one study was likely not affected by the residual HDE because they 

used randomised controlled trial as their study design. 

Main outcomes reported and  confounding factors considered 

The study hypothesis, primary outcome, and main results reported in the included studies are 

shown in a table provided in Appendix II. The included articles studied the association of blood 

donation with cancers, cardiovascular diseases, bone mineral density, and all-cause mortality. 

Age and sex were the most common confounding factors followed by body mass index (BMI) 

and smoking status which were adjusted in the analysis. In general, the observed association 

between blood donation and long-term health outcomes across the studies were inconsistent. 

Several studies showed blood donation has a protective effect on CVD, cancer, and death [12, 

36-42, 55, 56], while other studies showed blood donation had no association with CVD, 

cancer, and death [23, 28-30, 40, 43-46]. Some studies also found that apheresis donation was 

associated with reduction in bone mineral density (BMD) and increased risk of fracture [10, 

49], while other studies found no association between blood donation and BMD markers [31, 

32, 47, 48]. One of the study reported that apheresis donors had an increased risk of bacterial 

infection [50].  
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2.1.5 Discussion 

The healthy donor effect is an important methodological problem when studying the long-term 

health impact of blood donation. We found that about 70% of the studies included in this review 

acknowledged the HDE in their studies and most of them acknowledged it as a study limitation. 

We also found while authors used a variety of methods to mitigate against HDE, only a few 

used methods that may mitigate the HDE substantially.  Almost all of these studies were 

observational studies and have a possibility of residual HDE in their results. 

The most common method used by the studies which could mitigate the HDE to some extent 

was adjusting confounding factors by some form of regression or ANOVA. Many studies used 

the methods to adjust the bias while some studies used regression for prediction purposes. 

Atsma et al. defined the HDE as a combination of selection bias and confounding [15]. 

Adjusting confounding factors can reduce the HDE significantly if all the variables responsible 

for the HDE are considered and are available in the data. However, it is almost impossible to 

determine and measure all potential confounding factors. In addition to this, the factors 

responsible for the HDE are also intermediary determinants of exposure to donation and the 

health outcomes which means that they are influenced by exposure, and they also affect the 

probability of subsequent exposure [21]. Thus, adjusting for confounding in regression models 

is usually not enough to address the HDE adequately.  

Another method used by many of the studies was to compare or restrict the study within the 

active donor population. This approach helps to mitigate the HDRE. Limiting the study within 

the donor population can considerably diminish HDE, however it is unlikely to eliminate it 

entirely. The length of the donation career (e.g., short versus long) can still lead to selection 

bias (for example, donors who are in better health and can withstand all the physiological 

changes brought upon by donation are likely to have a longer donation career) [59]. As a result, 
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the existence of residual HDE cannot be ruled out from most of the observational studies even 

though they restrict the analysis to the active donor population. 

Few studies used ‘qualification period’ or ‘exposure window’ techniques within the active 

donor population to adjust the HDE, particularly the HDCE. These methods may be better at 

mitigating the HDCE than other methods as they ensure that only people who have donated for 

a long period of time and only active donor at the end of the qualification (exposure) period 

are included in the analysis. In the qualification period technique described by Peffer [42, 60] 

they separated the exposure period and the follow-up period and as a result exposure status 

cannot influence the survival probability which is a major advantage of this technique. 

However, they admitted that it is impossible to completely rule out the presence of residual 

HDE in observational study settings [42].  

Overall, the methods used in previous studies appear not adequate to fully adjust the HDE when 

they are used alone or in combination. If the methods are used in combination, then there is a 

possibility that the HDE might be further minimized. Interestingly, many of the previous 

studies used these methods together but still they could not rule out the existence of the residual 

HDE. Thus, it is useful to investigate the use of other methods such as causal inference methods 

as a means of reducing the HDE in observational studies examining health outcomes in blood 

donors. In observational study settings, causal inference methods such as, target trial emulation, 

regression discontinuity, G-estimation etc. can be used to measure the true causal relationship 

between exposure and outcome [61-63]. These methods could be more effective to adjust for 

the effect of selection bias. By using these causal inference methods and existing methods 

together, the HDE may be further minimized. 

It is important to note that the extent of bias due to the HDE for the same health outcome may 

differ between studies based on the donor population, which may vary by blood collection 
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agency. Different blood collection agencies may have different health-related eligibility criteria 

and due to this, the selected blood donor population may have some differences in their level 

of health status. These differences may lead to variation in the magnitude of HDE when the 

donor population is compared with non-donor population to study the incidence of certain 

disease outcomes. Most high-income countries such as the USA, Canada, Australia and 

countries in Europe have strict and similar criteria to screen their donor population to protect 

the health of donors and transfusion recipients, and so it is less relevant in such context. Also, 

some donor populations are described to be less healthier [64] and this may also impact the 

level of HDE in studies examining health outcomes. Further, there is an increasing trend of 

using blood samples collected from blood donors to measure the sero-prevalence of SARS-

CoV-2 [65, 66] and such studies should carefully examine how the health and demographic 

differences between the background population and blood donor population may impact the 

result of their studies.   

To the best of our knowledge, this is the first review that assessed the HDE adjustment methods 

thoroughly in studies that examined the long-term health outcomes among blood donors. 

However, few limitations should be considered while interpreting the findings from this 

review. We only searched five databases, and we did not include any articles published in 

languages other than English. We also did not do any risk of bias assessment of the included 

studies as our focus was to provide a descriptive assessment of the methods used to adjust the 

HDE and not on the outcome of the studies. In this review, we only included studies with 

specific outcomes that are more common when comparing donor with non-donor populations 

in their analyses.   Paid and remunerated blood donors could have different health status and 

studies involving one or other of these population may have different impacts on bias from the 

HDE. However, we did not differentiate studies between these donors as for some studies this 

information was not available.  
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2.1.6 Conclusions 

The ‘healthy donor effect’ is an important methodological issue in studies examining the effect 

of blood donation on long-term health outcomes. Most of the studies studying such relationship 

acknowledged the impact of HDE and mentioned it as their study limitation. These studies used 

several forms of adjustment methods to address the HDE, however none of the studies 

attempted to use any robust causal inference methods. In absence of a feasible/ethical 

randomised controlled trial, use of causal methods using observational data may be helpful to 

further mitigate the HDE. However, such studies will need access to a comprehensive set of 

variables related to the health of donors at baseline and during the follow-up to effectively use 

them in causal methods, and collection of this information should be taken into consideration 

in the design phase of studies.   
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Chapter 3 General Methodology 
 

This chapter provides a general overview of the appropriate causal inference methods to be 

used to adjust for the healthy donor effect while assessing the relationship between regular 

blood donation and long-term health outcomes. Detailed descriptions of the methods and data 

analysis are provided in each consecutive chapters. 

3.1 Target Trial Emulation 
 

RCTs are considered the gold standard for determining the effectiveness and safety of 

interventions. However, there are instances where RCTs are impractical or unattainable. In such 

cases, observational studies can serve as an alternative. This approach is known as "target trial 

emulation" using observational data. The challenge with observational studies lies in the 

potential for confounding bias and self-inflicted biases due to study design flaws. Target trial 

emulation addresses these challenges by applying the principles of randomised trials to 

observational studies [61, 62, 67]. If successful, this approach can produce the same results as 

the intended trial would have [61]. 

To design a target trial, a protocol of the hypothetical randomised trial is specified, considering 

the constraints of the available observational data. This involves defining the eligibility criteria, 

treatment strategies, assignment procedures, outcomes, follow-up, causal contrasts of interest, 

and statistical analysis plan [61, 67]. In this thesis, we will specify a hypothetical blood donor 

trial and emulate it by our observational data. The detailed description will be given in the next 

chapter for the separate outcome of interest, mortality and cancers. 
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3.2 Analysis Plan from Trial 
 

3.2.1 Intention-to-treat (ITT) effect 

In a randomised controlled trial, the ITT effect is estimated by comparing the incidence rate of 

the events in the treated compared to the control group. This effect is commonly estimated by 

fitting a Cox proportional hazard regression, referred to as the intention-to-treat hazard ratio. 

One can also approximate this hazard ratio by fitting a pooled logistic regression model, which 

includes a flexible time function (polynomials or splines) as a time since the start of follow-up 

[68]. 

In our study, we will estimate the hazard ratios by fitting the above-described pooled logistic 

regression model by expanding the data set so that each observation represents a particular 

individual's 1-month follow-up observation in a person-trial. For example, if someone is 

eligible for trial one and their follow-up time is 60 months, that individual will contribute to 60 

observations in that trial. 

The model for the intention to treat analysis is: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑌𝑚+𝑡+1 = 1 |𝑌̅𝑚+𝑡 = 0, 𝐴𝑚, 𝐿0, 𝐿𝑚)] = 𝛼0,𝑚+𝑡 + 𝛼1𝐴𝑚 + 𝛼2
𝑇𝐿0 + 𝛼3

𝑇𝐿𝑚,  

where 𝑌𝑚+𝑡+1 is 1 if someone dies at month t+1 of trial m and 0 otherwise, 𝑚 = 0,1, … . ,59, 

𝑡 = 0, 1, … . .59, 𝛼0,𝑚+𝑡 is a time-varying intercept estimated as constant plus linear and 

quadratic terms of both month m and time t, 𝑌̅𝑚+𝑡 is the event history up to time t of trial m, 

𝐴𝑚 is the indicator for donation initiation ( 1: Donor, 0: Non-donor), 𝐿0 is the vector of the 

potential confounding factors at the start of the follow-up when someone becomes eligible and 

𝐿𝑚 is the vector of potential confounding factors at the start of the trial 𝑚. As many individuals 

participated in more than one trial, we used a robust variance estimator to calculate 

conservative 95% confidence intervals. 
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3.2.2 Per-protocol effect 
 

If participants are not fully adherent to the treatment they are given at the baseline, the ITT 

effect can move towards the null. In a randomised trial, the standard method to deal with this 

imperfect adherence is to censor the person-months when the participants deviate from their 

original assigned treatment, which is known as per-protocol analysis. There are mainly two 

approaches to analyse the per-protocol effect:  

- Restricting the analysis to the subjects who continued their baseline treatment for the 

duration of the follow-up period 

- Censoring the individual person-time if/when they deviate from their initial baseline 

treatment 

In our target trial, we will use the second approach to estimate the effect of continuous blood 

donation, where we compare the risk of all-cause mortality in donors if all participants had 

donated continuously to the risk in non-donors if all the participants did not donate during the 

follow-up time. We stop following a donor person-trial if they stop blood donation, and we 

stop following a non-donor person-trial if they start blood donation.  

The outcome model described for the ITT analysis can be applied to this artificially censored 

population to obtain the per-protocol effect. However, the above model can only adjust baseline 

confounders. The adherence of donors and non-donors to their baseline donation status can be 

influenced by post-baseline factors and vice versa. Adjusting for these factors can introduce 

selection bias. To adjust these time-varying confounding factors, we will use an inverse 

probability weighted marginal structural model. In general, the IP weight model's denominator 

is the probability that a subject received his or her observed treatment given their prior 

treatments and confounder histories, and the numerator, which serves as a stabilising factor, is 

the probability that a subject received their observed treatments given their prior treatments 
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and baseline confounders. In our analysis, we will use the following stabilized IP weight model 

for each patient 𝑖 at each time 𝑚 + 𝑡 as: 

𝑠𝑤𝑚+𝑡
𝐴 =  ∏

𝑓𝑁(𝐴𝑗|𝐴̅𝑗−1, 𝐿0, 𝑌̅𝑗−1 = 0)

𝑓𝐷(𝐴𝑗|𝐴̅𝑗−1, 𝐿0,𝐿̅𝑗 , 𝑌̅𝑗−1 = 0)

𝑚+𝑡

𝑗=𝑚

 

Where overbar denotes a variable’s history since the start of the trial 𝑚. We estimated the 

numerator by fitting the following logistic model  

𝑙𝑜𝑔𝑖𝑡[Pr(𝐴𝑗 = 1 |𝐴𝑗−1 = 𝑎, 𝐿0, 𝑌̅𝑗−1 = 0)] = 𝛾0 + 𝛾1
𝑇𝐿0  

and the denominator by 𝑙𝑜𝑔𝑖𝑡[Pr(𝐴𝑗 = 1 |𝐴𝑗−1 = 𝑎, 𝐿0, 𝐿̅𝑗 , 𝑌̅𝑗−1 = 0)] = 𝛿0 + 𝛿1
𝑇𝐿0 + 𝛿2

𝑇𝐿𝑗 

In the denominator model, the baseline value 𝐿0 and the most recent value 𝐿𝑗 of the 

confounding factors were used to summarize the history 𝐿̅𝑗. We will fit two sets of logistic 

regression models for 𝑎 = 1 (who were donors in the previous month) and 𝑎 = 0 (who were 

non-donors in the previous month) to calculate the stabilized IP weights. These stabilized IP 

weights create a ‘pseudo population’ where donation status is independent of confounding 

factors. When someone started donating blood, they were treated as continuous donors for the 

next six months. As a result, we will exclude these observations from our IP weight models 

and their weights for the pooled logistic regression model were set to 1. To prevent the 

influence of outliers with the large weights, we will truncate our weights maximum to 10 for 

the per protocol analysis. Finally, we will fit a weighted marginal structural model by fitting 

the same logistic regression model used for ITT analysis to our artificially censored population 

as: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑌𝑚+𝑡+1 = 1 |𝑌̅𝑚+𝑡−1 = 0, 𝐴𝑚, 𝐿0, 𝐿𝑚, 𝐶𝑚̅+𝑡+1 = 0)]

= 𝛽0,𝑚+𝑡 + 𝛽1𝐴𝑚 + 𝛽2
𝑇𝐿0 + 𝛽3

𝑇𝐿𝑚  
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where, 𝐶𝑚̅+𝑡+1 is the artificial censoring indicator where someone discontinues their initial 

donation status at time 𝑚 + 1 of trial 𝑚.  

3.2.3 Standardised survival curve 

The average Hazard Ratio (HR) might not provide useful information due to the possibility of 

HRs changing over specific periods and the presence of inherent selection bias causing these 

changes [69]. These issues can be resolved by summarising the study findings as appropriately 

adjusted survival curves which can be termed standardised survival curves. To calculate the 

standardised survival curves, we will fit a pooled logistic regression model by including 

product terms between donation indicator and linear and quadratic terms of follow-up time in 

our previously described intention to treat the model as: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑌𝑚+𝑡+1 = 1 |𝑌̅𝑚+𝑡 = 0, 𝐴𝑚, 𝐿0, 𝐿𝑚)]

= 𝛼0,𝑚+𝑡 + 𝛼1𝐴𝑚 + 𝛼2𝐴𝑚𝑡 + 𝛼3𝐴𝑚𝑡2 + 𝛼2
𝑇𝐿0 + 𝛼3

𝑇𝐿𝑚  

We used this model to estimate the predicted survival probability at time 𝑚 + 𝑡 for individual 

𝑖 under each treatment indicator conditional on the baseline confounders: 

𝑠̂𝑖,  𝑚+𝑡
𝑎 =  ∏[1 −

exp (𝛼0,𝑡 + 𝛼1𝑎𝑚 + 𝛼2𝑎𝑚𝑗 + 𝛼3𝑎𝑚𝑗2 + 𝛼4
𝑇𝐿𝑖,0 + 𝛼5

𝑇𝐿𝑖,𝑚 )

1 + exp (𝛼0,𝑡 + 𝛼1𝑎𝑚 + 𝛼2𝑎𝑚𝑗 + 𝛼3𝑎𝑚𝑗2 + 𝛼4
𝑇𝐿𝑖,0 + 𝛼5

𝑇𝐿𝑖,𝑚 )
]

𝑚+𝑡

𝑗=𝑚

 

We then calculated standardised survival probabilities at each time point by using the observed 

distribution of baseline confounding factors in the entire study population: 

𝑠̂  𝑚+𝑡
𝑎

=  
1

𝑛
∑ 𝑠̂𝑖,  𝑚+𝑡

𝑎

𝑛

𝑖=1

 

Where 𝑛 represents the total number of individuals who participated in multiple monthly trials. 
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3.3 Exposure Window Technique 

Peffer et al. suggested a 10-year qualification period inspired by a clinical trial setting [70]. 

They divided this timeframe, separating the phase where exposure is assessed from when 

disease events occur. This duration serves as a fix exposure period, during which donors must 

demonstrate their eligibility. During this timeframe, the exposure, i.e., the number of donations, 

was determined. The actual follow-up for cardiovascular events among donors begins only 

after this qualification period. By distinctly setting the exposure determination period, there's 

an assurance that the survival probability isn't influenced by the exposure status, as they occur 

in separate phases. 

3.3.1 Analysis Plan 
 

3.3.1.1 Inverse Probability Weighting of Marginal Structural Model 

We estimated the risk of the outcome among exposure group, risk difference and risk ratio by 

inverse probability weighted marginal structural model. We fitted a pooled logistic regression 

model by adding a constant plus linear and quadratic terms of time and also linear and quadratic 

product terms of donation status and time. The baseline covariates were adjusted by inverse 

probability weighting and outcome regression. The IPW was truncated at the 99th percentile to 

remove any extreme weights from outliers. Finally, we used non-parametric bootstrapping with 

500 samples to calculate all the 95% CIs. Unweighted and inverse probability weighted 

survival curves were also plotted. 

3.3.1.2 Doubly Robust Methods 
 

Besides using the IP weighted model, I also used alternative g-computation methods, targeted 

minimum loss-based estimator (TMLE) and sequentially doubly robust estimators (SDR) [71, 

72].  These estimators, including IPW, depend on two mathematical models: Treatment and 

outcome models, which are the function of the confounders. IPW is a singly robust method, as 
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its correctness depends on specifying the treatment model correctly. However, TMLE and SDR 

are doubly robust estimators as the estimation from these models remain correct if any of the 

treatment or outcome model is mis specified. In addition to this, an inverse probability 

weighted marginal structural model can suffer from positivity assumption violation. In contrast, 

doubly robust estimators often produce less biased results than the IPW method, even if the 

positivity assumption is extremely violated [73, 74].  Furthermore, doubly robust estimators 

like TMLE and SDR can employ machine learning algorithms to fit the treatment and outcome 

models, which may capture complex associations that are not possible with simple regression-

based approaches [72, 75]. Moreover, I also adjusted time-varying exposure and confounders 

by using TMLE and SDR, as blood donation behaviour was assumed to be time-varying in 

nature. I used R packages “SuperLearner” and “lmtp” to implement the analysis with doubly 

robust estimators. [76].  

3.4 Data Description 
 

This study did not require primary data collection. We used the Sax Institute's 45 and Up Study 

[77] dataset linked with several health administrative data to apply the methods developed to 

examine whether blood donation has any association with donors' long-term health outcomes.  

The Sax Institute's 45 and Up Study is the largest prospective health-related cohort study ever 

conducted in Australia. During 2006-2009, a total of 267,000 NSW residents aged 45 years 

and over were recruited to the study and provided detailed information on their health, lifestyle, 

and demographic characteristics. The participants also consented to link their data with other 

health administration databases and be contacted for additional sub-studies. 
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     Figure 3.1 Data sources linked with the 45 and Up Study Data.

The cohort is followed-up every five years through surveys, and researchers can ask for 

periodic data-linkage. This data is already linked to the Australian Red Cross Blood Service 

Donor Registry, Admitted Patient Data Collection (APDC), The NSW Central Cancer Registry 

(NSWCCR), Emergency Department Data Collection (EDDC), Notifiable Conditions 

Information Management System (NCIMS) Data, Registry of Birth, Deaths and Marriages-

Deaths Registrations (RBDM), Medicare Benefits Schedule (MBS), Pharmaceutical Benefits 

Scheme (PBS). 

Regarding studies of the health impact of blood donation in previous studies, the most common 

limitation was the unavailability of important confounding factors to adjust in their studies. 

The linked 45 and Up study data overcame this problem as it had access to a range of 

sociodemographic, behavioural, and health-related variables which were not accessible in 

previous studies. It is important to note that 45 and Up Study data are self-reported. However, 

data linkage enabled us to validate and cross-reference the 45 and Up Study data with other 

administrative health data sets which mitigated the concerns about data accuracy and reliability 

to a significant extent. 
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3.4.1 Data Linkage Method 
 

The data linkage was conducted by the NSW Centre for Health Record Linkage (CHeReL). 

CHeReL also deidentified the dataset so that no unwarranted identification can be made. The 

data linkage methodology adopted by CHeReL is the procedure outlined in Kelman, Bass and 

Holman [78]. Briefly, the method revolves around a separation principle, where data linkage 

is conducted separate from the data custodians, and all identifiers (including unique 

institutional identifiers or full patient identifiers) are withheld from the researchers analysing 

the linked data. The linkage methodology adopted by CHeReL is depicted in Appendix. The 

linked data is stored in the Secure Unified Research Environment (SURE) located at the Sax 

Institute. SURE is a high-powered computing environment that helps to bring researchers 

together from all over the world to collaborate on large-scale projects. It was established with 

funding from the Australian Government as a part of the Population Health Research Network 

(PHRN).  

A brief description of the datasets that were used in the proposed studies is shown in Table 3.1. 

The detailed variable name, their derivation and roles in the analysis are described in the 

Chapter 4 and tables are given in the Appendix G, Appendix K, and Appendix O. 

Table 3.1 Brief description of the data sets linked with 45 and Up Study data. 

Name Database Description 

Australian Red Cross 

Lifeblood Donor Registry 

List of Australian blood donors and a history of blood donations. It 

keeps a centralised, national digital database of all donors and data 

pertaining to donations. Data-linkage was performed using a 

donation dataset that only contained donors who made donations on 

or after June 1, 2002. 
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Name Database Description 

Admitted Patient Data 

Collection (APDC) 

All admitted patient services are provided by New South Wales 

Public Hospitals, Public Psychiatric Hospitals, Public Multi-Purpose 

Services, Private Hospitals, and Private Day Procedures Centres. 

The NSW Central Cancer 

Registry (NSWCCR) 

The NSWCCR keeps track of all cancer patients in NSW. 

Information is gathered from pathology labs, hospitals, radiotherapy, 

the department of medical oncology, age care facilities, and the 

registry of births, deaths, and marriages-deaths registration. 

Emergency Department 

Data Collection (EDDC) 

The EDDC data records emergency department visits by residents of 

NSW at public hospitals, which account for the majority of the 

population. 

Notifiable Conditions 

Information Management 

System (NCIMS) Data 

According to the NSW Public Health Act 2010, labs must report 

confirmed cases of influenza. NSW Health then aggregates these 

reports into the NCIMS database. The NCIMS data consists of the 

specified condition, estimated onset date, laboratory confirmation 

details, and specimen type. 

Registry of Birth, Deaths 

and Marriages- Deaths 

Registrations (RBDM) 

The RBDM records all deaths records in NSW residents. 

Medicare Benefits 

Schedule (MBS) 

Medicare Australia collects MBS claims data which includes all 

attendances to GPs under the Medicare act 1973. These data are then 

regularly provided to the Australian Government Department of 

Health. 

Pharmaceutical Benefits 

Scheme (PBS) 

The PBS dataset includes details on prescription drugs that are 

eligible for benefits as per the National Health Act 1953 and for 

which a claim has been submitted. 
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Chapter 4 Application of the HDE adjustment methods 
 

Section 1: A target trial emulation to estimate the impact of blood donation on 
mortality in blood donors in Australia. 
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Abstract 
 

Background: The healthy donor effect (HDE) is a bias evident when comparing the effect of 

blood donation on health, often leading to conclusions such as donors with a high frequency of 

donation have better health outcomes than non-donors or donors with a lower frequency of 

donation. To overcome this bias, we proposed a target trial emulation method and investigated 

the relationship between blood donation and mortality in blood donors in Australia. 

Methods: We emulated 60 target trials from July 2006 to June 2011 using the Sax Institute’s 

45 and Up Study data, which was linked with other electronic health databases, including blood 

donation data in NSW, Australia. We conducted observational analogues of intention-to-treat 

(ITT) analyses comparing donors with non-donors, adjusting our analyses for variables that 

impact mortality. Hazard ratios were approximated by the pooled logistic regression model. 

Results: The 60 trials generated 263300 person-trials with 121967 unique participants included 

in the analysis. The unadjusted ITT mortality hazard ratio (95% Confidence Interval (CI)) 

between donors and non-donors was 0.57 (95% CI 0.42, 0.77). The HR was 0.70 (95% CI 0.52, 

0.95) and 1.0 (95% CI 0.73, 1.35) after adjustment for age and sex, and then all the baseline 

covariates, respectively. 

Conclusion: The ITT effect did not show any statistically significant association between 

mortality and blood donation, although blood donors tended to have a lower crude mortality 

rate than non-donors. 
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Background 
 

The majority of studies on the effects of blood donation have considered short or medium-term 

safety outcomes, such as bruises, fainting, and iron deficiency [9]. However, recent advances 

in data linkage and access to large data sets now allow for research on long-term safety 

outcomes and potential health benefits, such as the impact on cardiovascular disease and 

cancer. Examining these long-term effects is essential for blood collection agencies to fulfil 

their ethical responsibility of ensuring blood donation safety and uncovering potential benefits. 

Studies of blood donors have claimed that regular blood donors have a lower incidence of 

death, cancer, and cardiovascular disease compared to the general population [41, 42, 51, 55, 

56]. This suggests that there may be a beneficial health effect associated with blood donation. 

Also, several studies have indicated that there is no association between those health outcomes 

and blood donation [23, 28, 29, 40, 43, 46]. It is therefore important to note that beneficial 

health effects may be because blood donors are typically healthier than the general population. 

Individuals must meet specific health and lifestyle criteria to be eligible for initiating and 

continuing blood donation [41]. 

Blood donors tend to have better self-reported health than the general population, which is a 

strong determinant of blood donation activity [15, 52]. This phenomenon is known as the 

"healthy donor effect," which is a combination of selection bias and confounding [15]. The 

healthy donor effect may act as reverse causation, meaning that it shows a slower disease rate 

in donors than non-donors and in current donors than in previous donors. This can be 

misinterpreted as a beneficial effect of blood donation when in reality, it is due to the healthier 

characteristics of blood donors [41].  

In this study, we used a target trial emulation technique to examine the relationship between 

whole blood donation and mortality risk in Australian blood donors at least 45 years of age. 
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We used data from the Sax Institute's 45 and Up Study with linked records from Lifeblood's 

blood donation data sets and other external health data sets [77, 79]. The availability of multiple 

self-reported and verified health-related variables in our data sets and a target trial emulation 

offered a chance to account for the "healthy donor effect comprehensively 

Methods 
 

Target Trial Emulation 
 

Conducting a randomised controlled trial can be difficult or impossible due to feasibility, 

ethical considerations, cost, and time limitations. In such cases, researchers may attempt to 

simulate a trial by using existing large observational databases. This approach is known as 

"target trial emulation" using observational data. If successful, this approach can produce the 

same results as the intended trial would have [61].  

Hypothetical Blood donor Target Trial 

Eligibility 

The blood donor target trial will enrol participants who are at least 18 years but younger than 

70 years of age, with no prior history of circulatory diseases, any type of cancer, or infectious 

diseases (e.g., human immunodeficiency virus (HIV), hepatitis, human T-lymphotropic virus 

(HTLV)), and chronic diseases (e.g., chronic kidney disease, autoimmune hepatitis). 

Additionally, trial participants cannot have made any whole blood donations within two years 

before enrolment. The duration of the enrolment period will be determined based on the 

required sample size and the pace of recruitment. 

Treatment and Control Groups 

The participants would be randomly assigned to the treatment and control groups if eligible to 

be blood donors. In the treatment group, each participant will start donating blood and continue 

to do so for the duration of the trial. Each participant must donate at least once every six months 
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to be considered a continuous donor. The control group participants cannot donate blood for 

the duration of the trial. Each participant will be followed until they die, are lost to follow-up, 

or the administrative end of the study, whichever occurs first. 

Emulating the trial using observational data 

Data source 

We emulate the above hypothetical randomised trial by using the Sax Institute's 45 and Up 

Study data, which is linked to other electronic health databases such as the Australian Red 

Cross Lifeblood Donor Registry, Admitted Patient Data Collection (APDC), Registry of Birth, 

Deaths, and Marriages- Deaths Registrations (RBDM), Medicare claims, and Pharmaceutical 

Benefits Scheme (PBS). 

The Sax Institute conducted the 45 and Up Study, enrolling 267,357 participants aged 45 or 

older in New South Wales, Australia, from 2005 to 2009. Prospective participants were 

randomly selected from the Services Australia Medicare enrolment database and had a 19.2% 

participation rate [79]. Residents living in rural and remote areas and people 80+ years of age 

were oversampled.  The participants completed an initial questionnaire covering socio-

demographics, health, lifestyle, and behaviour and consented to long-term follow-up by linking 

their data to various administrative databases. 

The Australian Red Cross Lifeblood manages the entire blood collection, processing, and 

distribution process and maintains a centralized National Blood Management System (NBMS) 

for donor records. Before 2007, Lifeblood had varying methods for storing donor data. After 

the 2007 national merger, all donor information was consolidated within the NBMS. However, 

complete data for donations in New South Wales (NSW) was only available from June 1st, 

2002, onwards. Consequently, data linkage utilised the dataset of blood donations made 

between June 1st, 2002, and December 31st, 2018. 
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The Admitted Patient Data Collection (APDC) database in New South Wales (NSW) contains 

extensive records of all inpatient admissions in the state, including admission and discharge 

dates, primary diagnosis, and up to 49 secondary diagnoses that may impact treatment or length 

of stay. This data was used to compute the Charlson Co-morbidity Index (CCI), a tool that 

evaluates the impact of multiple chronic conditions on patient outcomes. This data is complete 

up to June 2018. 

The Medicare claims data compiles information on medical services and procedures subsidized 

by the Australian government under Medicare. It includes extensive details on the types and 

frequency of services offered by medical practitioners, such as consultations, diagnostic tests, 

surgical procedures, and allied health services like physiotherapy and psychology. This data 

was utilised to determine the annual total number of GP visits and the number of specialist 

consultations and pathology test referrals. MBS data is complete up to December 2017. 

The Australian Pharmaceutical Benefits Scheme (PBS) data contains information on 

subsidized medicines under the program, including details about the type, quantity, and cost of 

each medicine. Using PBS data, Rx-Risk co-morbidity index was calculated to measure the 

overall burden of illness and co-existing medical conditions in a patient population. The dataset 

is complete until December 2017. 

The NSW Registry of Births, Deaths, and Marriages (RBDM) database holds records of 

residents' birth, death, and marriage dates. In our study, we used the RBDM death data to 

establish the date of death and all-cause mortality. It is important to note that the RBDM dataset 

was completely updated up to December 2018. 

According to the Public Health Act 2010, it is mandatory for laboratories, hospitals, medical 

professionals, educational institutions, and childcare facilities to inform either NSW Health or 

their local public health department about specific infectious diseases and any adverse events 
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that occur after immunisation. These reports are gathered and organized within the Notifiable 

Conditions Information Management System (NCIMS), overseen by the Communicable 

Diseases Branch of Health Protection NSW. This data was used to exclude the people who had 

any type of Hepatitis or HIV diseases 2 years before being included in the trial. 

The NSW Centre for Health Record Linkage (CHeReL) conducted the process of connecting 

the 45 and Up Study data with NBMS, APDC, and RBDM, utilising a probabilistic matching 

approach. Past quality assurance assessments of CHeReL's linkages using the master linkage 

key have indicated an estimated false positive rate of 0.5%. The Sax Institute supplied Services 

Australia with distinct identifier information for the 45 and Up Study participants, and Services 

Australia provided the corresponding Medicare claim and PBS data based on these unique 

identifiers. The Sax Institute then linked the Medicare claim and PBS data to the 45 and Up 

Study data by the deterministic matching procedure. 

Eligibility 

We identified all individuals in the linked dataset who had enrolled in the 45 and Up Study 

before July 2006 and were less than 70 years old as of July 2006. We then excluded individuals 

who had donated whole blood at least once within the two years before July 2006. Furthermore, 

we excluded individuals with a history of cancer, cardiovascular disease, infectious disease, or 

a chronic disease before July 2006. By implementing the specified criteria, we identified a total 

of 20,507 individuals that met all requirements for the trial of July 2006. 

Treatment and Follow-up 

The individuals enrolled in the July 2006 trial were classified into two groups: the donor 

(treatment) group who donated blood in the month of July 2006 and the non-donor (control) 

group who did not donate during that month. We considered a fixed follow-up period for 

everyone. Everyone was followed until their death or until five years after the start of their 
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follow-up time, whichever occurred first. Of the 20,507 participants from the July 2006 trial, 

30 were donors, and 299 died during the follow-up. No one from the donor group died during 

the follow-up period. 

Emulating a sequence of trials 

Our trial for July 2006 only resulted in a small number of donors, and none of them experienced 

an event. As a result, it was impossible to analyse the data from this trial only. To increase the 

number of donors and events, we applied the eligibility criteria described above to every month 

between July 2006 and June 2011, emulating 60 randomised trials. Each trial had a 1-month 

enrolment period, and we followed every participant until their death or five years after each 

trial's start, whichever occurred first. A total of 153,393 individuals met the eligibility criteria 

for at least one of these 60 trials. Many participants were included in more than one trial as 

they met the eligibility criteria for that trial month. For example, many eligible non-donors 

from the July 2006 trial still met the eligibility criteria for the August 2006 trial and were thus 

enrolled in that trial as well. However, donors from the July 2006 trial did not meet the 

eligibility criteria for the August 2006 trial as they fell into the donor category who donated 

within the last two years for that trial month. After pooling all the trial data, there were 

5,180,763 eligible person-trials with 153,393 unique people. For computational efficiency, we 

randomly chose 5% of the non-donors from each trial, which generated 263,300 person-trials, 

of which 5,837 were donors, and 3425 died (44 among donors). The average duration of follow-

up time was 58.9 months for donors and 58.7 months for non-donors. Figure 4.1 illustrates the 

person-trials enrolled in the study. 

Confounding factors 

Unlike randomised control trials, trial emulation from observational data requires adjustment 

for confounding as the treatment and control arm are not randomly assigned. We selected 

several baseline variables from the 45 and Up Study data as potential confounding factors: age, 
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sex(male, female), geographical location (major city, regional/remote), education (no formal 

education, school to diploma, university), gross annual household income (<20, 20-39, 40-69, 

70+ thousand), BMI (0-18.4, 18.5-24.9, 25-29.9, 30+ kg/m2), self-reported health (excellent, 

very good, good, fair/poor), smoking status (never, former, regular), daily alcohol intake (none, 

≤1/day, >1/day), weekly physical activity (<1/week, 1/week), and daily fruits or raw 

vegetable consumption (0-2, 3-4, 5+). We also adjusted for time-varying variables such as the 

number of general practice (GP) visits in the last three months (0,1, 2-4, 5+), the number of 

specialist consultations and pathology test referrals for the last three months (0, 1, 2-4, 5+), 

Charlson's comorbidity index for the previous one year (0, ≥1), and the previous year's Rx-

Risk index (-6 to -1, 0 to 2, 3+); these are described below.  The number of GP visits and 

referral numbers were calculated from the Medicare claim data. Charlson and Rx-Risk 

comorbidity index was calculated from Admitted Patient Data Collection (APDC) and 

Pharmaceutical Benefits Scheme (PBS) data.  
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The Charlson Comorbidity Index (CCI) predicts one-year mortality rates for patients with 

chronic conditions [80]. This tool assigns weights to 19 medical conditions based on their 

association with mortality, with larger weights given to more severe or life-threatening 

conditions, ranging from 1 to 6. A patient's CCI score is calculated by adding up the weights 

of all their comorbidities. We used the updated CCI index calculated from hospital discharge 

Figure 4.1 Flowchart of the selection of person-trials in the target trial 

emulation process 
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data using the ICD-10 coding algorithm [81]. The Rx-Risk Comorbidity Index uses PBS data 

to identify comorbidities and assign weights to 45 medical conditions based on their association 

with increased healthcare use [82]. These weights range from 1 to 3, with higher weights given 

to more severe or complex conditions. A patient's Rx-Risk score is determined by adding up 

the weights of all their comorbidities. In this analysis, we used the Australian version of the 

Rx-Risk index, which is calculated using medicines mapped to the Anatomical Therapeutic 

Chemical (ATC) classification system [83]. The detailed method of calculation of these two 

co-morbidity indexes can be found elsewhere [80-84]. Comorbidity scores are frequently 

utilised in observational research to minimise confounding risks. The primary benefit of these 

summary scores is that they simplify the process of combining individual covariates related to 

each comorbidity into one comprehensive score. 

The distribution of confounding factors for donors and non-donors included in the trial is 

shown in Table 4.1. 

Table 4.1 Characteristics of the study participants at the start of the trial's follow-up 

Characteristics Non-donor 
257463 person-trials 

Donor 
5837 person-trials 

   
Male % 41.7 39.0 
   
Age in years, mean (standard deviation) 58.0 (6.3) 56.1 (5.8) 
   
Body mass index kg/m2, mean (sd) 27.0 (5.0) 27.0 (4.6) 
   
Smoking Status %   
  Never 57.4 61.5 
  Former 32.7 32.9 
  Regular 9.4 5.2 
  Unknown 0.5 0.3 
   
Self-rated health %   
  Excellent 18.1 25.5 
  Very good 38.8 44.5 
  Good 30.3 24.1 
  Fair/Poor 10.0 4.0 
  Unknown 2.8 2.0 
   
Alcohol consumption/day, mean (sd) 1.0 (1.4) 1.1 (1.3) 
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Characteristics Non-donor 
257463 person-trials 

Donor 
5837 person-trials 

Education level %   
  No formal education 8.9 5.1 
  School to Diploma 62.5 63.2 
  University 27.6 30.9 
  Unknown 1.1 0.8 
   
Annual household income %   
  <20k 12.7 6.9 
  20k-39k 15.8 13.7 
  40k-69k 21.0 23.6 
  70k+ 31.5 40.6 
  Unknown 19.0 15.2 
   
Physical activity/week, mean (sd) 1.9 (4.9) 2.1 (2.8) 
   
Daily fruits/vegetables consumed %   
  0-2 6.6 5.2 
  3-4 24.6 24.7 
  5+ 53.9 57.6 
  Unknown 14.9 12.5 
   
Location %   
  Major city 51.6 46.6 
  Regional/Remote 46.4 51.0 
  Unknown 2.0 2.5 
   
No. of GP visits in the past 3 months, 
mean (sd) 

1.3 (1.7) 1.1 (1.4) 

   
No. of referrals in the past 3 months, 
mean (sd) 

0.9 (1.3) 0.6 (1.0) 

   
Charlson co-morbidity index %   
  0 98.7 99.6 
  >= 1 1.3 0.4 
   
Rx-Risk index %   
  None 43.7 55.5 
  -6 to -1 27.8 23.0 
  0 to 2 22.6 18.3 
  3+ 5.9 3.3 

 

Analysis  
 

Intention-to-treat (ITT) effect 

In a randomised controlled trial, the ITT effect is estimated by comparing the incidence rate of 

the events in the treated compared to the control group. This effect is commonly estimated by 

fitting a Cox proportional hazard regression, referred to as the intention-to-treat hazard ratio. 

One can also approximate this hazard ratio by fitting a pooled logistic regression model, which 
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includes a flexible time function (polynomials or splines) as a time since the start of follow-up 

[68]. 

In our study, we estimated the hazard ratios by fitting the above-described pooled logistic 

regression model by expanding the data set so that each observation represents a particular 

individual's 1-month follow-up observation in a person-trial. For example, if someone is 

eligible for trial one and their follow-up time is 60 months, that individual will contribute to 60 

observations in that trial. 

The model for the intention to treat analysis is: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑌𝑚+𝑡+1 = 1 |𝑌̅𝑚+𝑡 = 0, 𝐴𝑚, 𝐿0, 𝐿𝑚)] = 𝛼0,𝑚+𝑡 + 𝛼1𝐴𝑚 + 𝛼2
𝑇𝐿0 + 𝛼3

𝑇𝐿𝑚,  

where 𝑌𝑚+𝑡+1 is 1 if someone dies at month t+1 of trial m and 0 otherwise, 𝑚 = 0,1, … . ,59, 

𝑡 = 0, 1, … . .59, 𝛼0,𝑚+𝑡 is a time-varying intercept estimated as constant plus linear and 

quadratic terms of both month m and time t, 𝑌̅𝑚+𝑡 is the event history up to time t of trial m, 

𝐴𝑚 is the indicator for donation initiation ( 1: Donor, 0: Non-donor), 𝐿0 is the vector of the 

potential confounding factors at the start of the follow-up when someone becomes eligible and 

𝐿𝑚 is the vector of potential confounding factors at the start of the trial 𝑚. 

Standardised survival curve 

In the above intention-to-treat model, we fitted a pooled logistic regression model by including 

product terms between donation indicator and linear and quadratic terms of follow-up time: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑌𝑚+𝑡+1 = 1 |𝑌̅𝑚+𝑡 = 0, 𝐴𝑚, 𝐿0, 𝐿𝑚)]

= 𝛼0,𝑚+𝑡 + 𝛼1𝐴𝑚 + 𝛼2𝐴𝑚𝑡 + 𝛼3𝐴𝑚𝑡2 + 𝛼2
𝑇𝐿0 + 𝛼3

𝑇𝐿𝑚  

We used this model to estimate the predicted survival probability at time 𝑚 + 𝑡 for individual 

𝑖 under each treatment indicator conditional on the baseline confounders: 
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𝑠̂𝑖,  𝑚+𝑡
𝑎 =  ∏[1 −

exp (𝛼0,𝑡 + 𝛼1𝑎𝑚 + 𝛼2𝑎𝑚𝑗 + 𝛼3𝑎𝑚𝑗2 + 𝛼4
𝑇𝐿𝑖,0 + 𝛼5

𝑇𝐿𝑖,𝑚 )

1 + exp (𝛼0,𝑡 + 𝛼1𝑎𝑚 + 𝛼2𝑎𝑚𝑗 + 𝛼3𝑎𝑚𝑗2 + 𝛼4
𝑇𝐿𝑖,0 + 𝛼5

𝑇𝐿𝑖,𝑚 )
]

𝑚+𝑡

𝑗=𝑚

 

We then calculated standardised survival probabilities at each time point by using the observed 

distribution of baseline confounding factors in the entire study population: 

𝑠̂  𝑚+𝑡
𝑎

=  
1

𝑛
∑ 𝑠̂𝑖,  𝑚+𝑡

𝑎

𝑛

𝑖=1

 

Where 𝑛 represents the total number of individuals who participated in multiple monthly trials. 

Sensitivity analyses 

For the purpose of the sensitivity analyses, we examined several scenarios. We created a target 

trial where we emulated 60 trials. Each individual was followed until they died or until an 

administrative end of the follow-up (June 2016), whichever occurred first. We also created 

another target trial where we emulated 120 trials by applying the same eligibility criteria 

described earlier and followed each individual until their death or five years after the start of 

their follow-up time, or until July 2016, whichever occurred first. We also did a negative 

control analysis using injury-related hospitalization as a negative control outcome. For this, we 

emulated 60 and 120 trials. We followed the individual until the injury-related hospitalization 

occurred, or until their death or five years after the start of their follow-up time, or until July 

2016, whichever occurred first. 

Ethics approval 

The 45 and Up Study received approval from the Human Research Ethics Committee (HREC) 

at the University of New South Wales. Additionally, the study was approved by the NSW 

Population Health Research Ethics Committee (HREC) under the reference number 

2016/02/633 and the Lifeblood HREC with the reference number 2015#13. 
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Results 

ITT effect and Standardised survival curves 

Table 4.2 shows the adjusted and unadjusted hazard ratio of all-cause mortality and 95% 

confidence intervals for our trial emulation. The total number of person trials was 263,300, 

with 121,967 unique individuals. We found a total of 3,425 deaths, where 1,560 were unique 

deaths. The unadjusted ITT hazard ratios were 0.57 (95% CI 0.42, 0.77) and 0.70 (95% CI 

0.52, 0.95) after adjusting for age and sex. When adjusted for all the baseline confounding 

factors, the hazard ratio was 1.00 (95% CI 0.73, 1.35).  

Table 4.2 Intention to treat (ITT) hazard ratio for 60 trials with 95% confidence intervals. 

 Donor vs. non-donor 

Unique Persons 121967 
Cases 3425 
Unique cases 1560 
Person trials 263300 
Unadjusteda 0.57 (0.42, 0.77) 
Age-sex adjusteda 0.70 (0.52, 0.95) 
Adjusted for all baseline covariatesab 1.00 (0.73, 1.35) 

aConfidence intervals are calculated using a robust variance estimator as many individuals 
participated in more than one trial. 
bBaseline variables in Table 4.1 were included as covariates. 

 

 

Figure 4.2 shows the standardised survival curve for the 60-trial emulation. When the hazard 

ratio is allowed to vary over time, it also depicted very insignificant differences between the 

donor and non-donor survival rates (Figure 4.2). 



54 
 

 

 

Sensitivity analyses 

The fully adjusted hazard ratio for 60 trials where each of the individuals was followed until 

they died or until an administrative end of the follow-up (June 2016) was 0.87 (95% CI, 0.68-

1.10), whereas for 120 trials where everyone was followed until their death or until five years 

after the start of their follow-up time, or until July 2016 whichever occurred first was 0.83 

(95% CI, 0.62-1.11). The fully adjusted hazard ratio for 60 trials for the negative control was 

0.94 (95% CI, 0.81-1.10), and it was 0.98 (95% CI, 0.86-1.12) for 120 trials. Detailed results 

of the sensitivity analysis are given in the appendices. 

Discussion 
 

We examined whether blood donation is associated with reduced mortality risk by applying 

target trial emulation technique to minimise the HDE. Our adjusted mortality hazard ratio and 

standardised survival curves did not show a significant association between blood donation and 

reduced mortality. We consistently implemented the qualification criteria for participation in 

Figure 4.2 Standardised survival curves for donor and 

non-donor group for 60 trials. 
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60 consecutive trials to reduce the influence of the HDE. This was achieved by evaluating 

individuals for eligibility for blood donation at the start of each month for each trial and only 

including those who met the criteria. Additionally, we adjusted the analyses for a diverse array 

of potential confounding factors, including self-reported health indicators, to mitigate further 

against the potential effects of the HDE. Furthermore, we conducted sensitivity analyses, 

including emulation of 120 trials and variations in the conditions of our primary 60 trials. In 

both analyses, we did not find a significant association between blood donation and mortality. 

Additionally, our negative control analysis found no significant association between blood 

donation and hospitalization due to injuries, further supporting the fact that our analysis may 

have adequately adjusted the HDE. 

Many previous studies have reported lower mortality among blood donors compared to the 

general population and among high-frequency donors compared to low-frequency donors [85]. 

Most of these studies could not rule out the existence of residual healthy donor effect and did 

not use any causal inference methods which could adjust the selection biases [85]. Casale et al. 

found longer life expectancy in blood donors than non-donors; however, the findings may have 

been impacted by the HDE as they did not use any causal inference methods or adjust any 

confounding factors [55]. Edgren et al. also found lower mortality among donors, but they did 

not conclude the results were due to the impact of blood donation [51]. Other studies also found 

lower mortality rates among high-frequency blood donors compared to low-frequency blood 

donors but suggested they could not rule out the existence of residual HDE [38, 41, 52]. 

Our study has several strengths. We used linked data with a range of important potential 

confounding factors, which helped us to emulate the target trial and also used for the statistical 

adjustments [15]. The target trial method enabled us to create less biased comparison groups 

to compare the outcome between donors and non-donors as it can mimic an RCT, and a 

successful trial emulation can produce the same results as the intended trial would have [61]. 
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In the target trial method, we generated a sequence of trials and assessed the eligibility criteria 

at each trial month, which can reduce the HDE to some extent. Further statistical adjustment 

of overall baseline confounding factors and trial-specific baseline confounders further reduced 

the HDE. It is important to note that the 45 and Up Study data is self-reported. However, data 

linkage enabled us to validate and cross-reference the 45 and Up Study data with other 

administrative health data sets which mitigated the concerns about data accuracy and reliability 

to a significant extent. 

There are also some limitations in our study. In an RCT, participants may not fully be adherent 

to the treatment they were given at the baseline. The common method to deal with this 

imperfect adherence is to censor the person-months when the participants deviate from their 

originally assigned treatment which is known as Per-Protocol analysis. In this study, using a 

marginal structural model to adjust for the time-varying selection bias could further reduce the 

healthy donor effect in the per-protocol analysis. However, we only had six events in the donor 

group after artificially censoring the non-adherent participants. In addition, 55.8% of donors 

switched to the non-donor group within one year of the follow-up. Due to this low number of 

events and the large number of non-adherences within the donor group, we did not conduct a 

per-protocol analysis as it could yield misleading findings. Another limitation of our research 

is that our study population comprised older Australian donors, which may not be generalizable 

to the younger donor population. Furthermore, we evaluated individuals for eligibility to donate 

at the beginning of each trial using some available data, but in actual blood donor assessment, 

a large number of factors are assessed and considered to determine whether someone is eligible 

to donate or not. 

In summary, the emulation of the target trial from linked data sets and further adjustment of 

several potential confounders helped us to reduce the HDE while examining the effect of blood 

donation on all-cause mortality. Our analyses did not observe a statistically significant 
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association between whole blood donation and all-cause mortality in the ITT analysis. Further 

studies are needed to understand the effect of strict regular blood donation versus no donation 

on mortality. This can give more insight into whether regular blood donation has any impact 

on mortality. 
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Abstract 
 

Background 

Previous studies examining the health of blood donors have consistently suggested a decreased 

mortality risk among blood donors. However, this observed lower mortality risk among blood 

donors may, to some extent, be attributed to an inadequate adjustment for the "healthy donor 

effect" (HDE). 

Methods 

We utilised the Sax Institutes’ 45 and Up Study data, along with databases containing blood 

donation history and other health-related information, to investigate the association between 

regular, frequent whole blood (WB) donation and the risk of mortality. To address the potential 

impact of the healthy donor effect (HDE), we implemented a "5-year exposure window" 

criterion and compared the mortality outcome between individuals classified as regular, high-

frequency WB donors (with at least two WB donations in each exposure year) and others (low-

frequency donors). We employed statistical methods such as the inverse probability weighted 

(IPW) marginal structural model and doubly robust Targeted Minimum Loss-Based Estimator 

(TMLE), which incorporated machine learning algorithms and time-varying analyses.  

Results 

A total of 4750 (64.7%) low-frequency and 2588 (35.3%) high-frequency donors were 

identified from the 5-year exposure window, and 69 (1.5%) from the low-frequency and 45 

(1.7%) from the high-frequency group died during the 7-year follow-up period. We did not 

find any significant association between high-frequency blood donors and mortality when 

compared to low-frequency donors (IPW RR = 0.98 95% CI 0.68, 1.28). TMLE model also 

showed similar results to IPW (RR = 0.97 95% CI 0.80, 1.16). Time-varying TMLE did not 

find any significant association between high-frequency donation and all-cause mortality either 

(RR = 0.98 95% CI 0.74, 1.29). 

Conclusions 

This study did not observe any significant association between high-frequency WB donation 

and all-cause mortality when compared to low-frequency blood donation. 
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Background 

Blood donation saves millions of lives worldwide each year. According to the World Health 

Organization (WHO), approximately 118.4 million blood donations are collected globally 

every year, with 47% of donations collected in high-income countries [86]. In Australia, 1 in 3 

people need blood and blood products in their lifetime, with more than 29,000 donations 

required every week to meet demand [5]. 

There is a growing interest in understanding the potential effects of blood donation on donors. 

Most studies on the effects of blood donation have focused on short-term or medium-term 

safety outcomes, such as bruising, fainting, and iron deficiency [9]. Recent advances in data 

linkage and access to large data sets have also made it possible to study long-term safety 

outcomes and potential health effects, such as the impact of blood donation on cardiovascular 

disease, cancer or mortality. It is important for blood collection agencies to examine these long-

term effects to fulfil their ethical responsibility of ensuring blood donation safety and 

uncovering potential benefits. 

Several studies have found that frequent blood donors have a lower risk of death, cancer, and 

cardiovascular disease when compared to the general population [41, 42, 51, 55, 56]. These 

findings suggest that donating blood may have a positive effect on health. However, other 

studies have contradicted this claim, suggesting that there is no clear relationship between 

blood donation and these health outcomes [23, 28, 29, 40, 43, 46]. It is crucial to consider that 

these positive health effects may be due to the fact that blood donors tend to be healthier than 

the general population, as individuals must meet specific health and lifestyle requirements to 

be eligible for blood donation [41]. 

Blood donors often report better overall health than the general population, which is a 

significant factor influencing blood donation rates [15, 52]. The healthier lifestyle and the better 
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self-reported health of blood donors is known as the "healthy donor effect," which arises from 

a combination of selection bias and confounding effects [15]. This effect can create a biased 

association indicating a lower disease rate among donors compared to non-donors and among 

current donors compared to previous donors, leading to a misinterpretation of the beneficial 

effects of blood donation. In reality, the observed positive health effects may be attributed to 

the generally healthier characteristics of blood donors rather than to the act of blood donation 

itself [41]. 

In this study, we aim to examine the relationship between regular high-frequency blood 

donation and mortality risk in Australian blood donors aged 45 years and older. To adjust for 

the “healthy donor effect”, we used an “exposure window” technique similar to Peffer et al. 

[42] and further statistical adjustment was done by employing models that use machine learning 

algorithms to adjust for the time-varying nature of the blood donation exposure and 

confounders. We used data from the Sax Institute's 45 and Up Study with linked records from 

Lifeblood's blood donation data sets and other external administrative health data sets [77, 79].  

Methods 
 

Data 

We used data from the Sax Institute's 45 and Up Study, which is linked to several other 

electronic health databases. These include the Australian Red Cross Lifeblood Donor Registry, 

the Admitted Patient Data Collection (APDC), the NSW Central Cancer Registry (NSWCCR), 

the Registry of Births, Deaths, and Marriages- Deaths Registrations (RBDM), the Medicare 

claims data, and the Pharmaceutical Benefits Scheme (PBS). 

The Sax Institute's 45 and Up Study is a large-scale longitudinal study that recruited 267,357 

participants aged 45 years and above who were living in New South Wales, Australia, between 

2005 and 2009 [77]. The participants were randomly selected from the Services Australia 

Medicare enrolment database and invited to participate, and the participation rate was 19.2% 
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[79]. All the participants completed a comprehensive baseline questionnaire that collected 

information on various aspects of their lives, including socio-demographics, health, lifestyle, 

and behaviours. Additionally, the participants provided their consent for their data to be linked 

to various administrative databases [77]. 

Australian Red Cross Lifeblood is solely responsible for managing the collection, processing, 

and distribution of blood and its components in Australia.  They have established a centralized 

national digital record of donors and their related information using the National Blood 

Management System (NBMS). Every attempted donation date is recorded in the NBMS. 

Before 2007, Lifeblood functioned as state-based centres, leading to different methods of 

storing donor records across the states. However, after the 2007 national merger, donor data 

was merged and updated in the central NBMS. Nonetheless, complete data for donations made 

in New South Wales (NSW) was only uploaded to the NBMS for donations made on or after 

June 1st, 2002. Therefore, only the dataset of blood donations made by donors on or after June 

1st, 2002, until December 31, 2018, was used for data linkage. 

The Admitted Patient Data Collection (APDC) database in New South Wales (NSW) maintains 

a comprehensive record of every inpatient admission in the state. This includes details such as 

the admission and discharge dates, the primary diagnosis for admission, and up to 49 secondary 

diagnoses that may affect the treatment or length of stay of the patient. We used this data to 

calculate the Charlson Co-morbidity index (CCI), which is used to assess the burden of multiple 

chronic conditions on patient outcomes. This data is available up to June 2018. 

The Medicare claims data is a collection of information on the medical services and procedures 

that are subsidised by the Australian government under the Medicare system. It contains 

detailed information on the types and frequency of medical services provided by medical 

practitioners, such as consultations, diagnostic tests, and surgical procedures, as well as allied 
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health services, such as physiotherapy and psychology. We used this data to calculate the yearly 

total number of GP visits and a number of diagnostic test referrals up to December 2017. 

The Australian Pharmaceutical Benefits Scheme (PBS) data contains information on medicines 

that are subsidized by the Australian Government, including details on the type, quantity, and 

cost of each medicine. We used PBS data to calculate the one-year co-morbidity index, which 

is a measure of the overall burden of illness and co-existing medical conditions in a patient 

population until December 2017. 

The NSW Registry of Births, Deaths, and Marriages (RBDM) database maintains records of 

the dates of births, deaths, and marriages of residents in NSW. For our study, we used the 

RBDM deaths data to determine the date of death and all-cause mortality. The RBDM dataset 

was fully updated until December 2018. 

The NSW Centre for Health Record Linkage (CHeReL) employed a probabilistic matching 

technique to connect the data from the 45 and Up Study with NBMS, APDC, and RBDM. 

CHeReL has previously conducted quality assurance evaluations using the master linkage key, 

which indicated a false positive rate of approximately 0.5%. The Sax Institute provided 

Services Australia with distinct identifier information for the participants in the 45 and Up 

Study. Services Australia then supplied the corresponding Medicare claims and PBS data based 

on these unique identifiers. Finally, the Sax Institute used a deterministic matching procedure 

to link the Medicare claims and PBS data to the 45 and Up Study data. 

Exposure Window  
 

Our study used a similar methodology as Peffer et al. by employing a five-year "exposure 

window/qualification period" to select the participants for our analyses [42]. The exposure 

window refers to the duration in which the donor is required to donate blood actively while 

meeting other criteria for eligibility. In our research, this exposure window spans three years 
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before the recruitment into the 45 and Up study and two years after. To qualify for inclusion in 

our study, donors must have made at least one whole blood (WB) donation during the first and 

fifth years of the exposure window and remained alive during the whole 5-year period. 

Therefore, our study population consists of individuals who had an active donation career of 

five years during the exposure window period.  

Exposure and outcome variable 

To assess the frequency and regularity of blood donations made by participants during each 

year of the exposure period, we divided the exposure variable into two categories: (i) 

individuals who donated a minimum of two whole blood units during each year of the exposure 

window and (ii) those who donated fewer than two whole blood units at least one year of the 

exposure window. We made this categorization based on the knowledge that most whole blood 

donors need up to six months to restore their pre-donation levels of stored iron. Therefore, 

donating blood twice within a year would result in consistently lower levels of stored iron than 

before donating. The primary outcome variable of this study is mortality from any cause. To 

determine the outcome of death, we linked the RBDM database with the 45 and Up Study and 

other electronic datasets. 

Follow-up period 

We commenced the follow-up period from the last day of the fifth year of the exposure window 

and ended it at the conclusion of either seven years from the commencement of follow-up or 

the death year, whichever occurred first. We also conducted several sensitivity analyses where 

we used a three-year exposure window with a fixed seven-year follow-up and a fixed five-year 

follow-up for the seven-year exposure window. 
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Confounder Variables 

We selected several demographic and health-related variables from the 45 and Up study data 

as potential confounding factors, such as age, sex, geographical location, education, gross 

annual household income, BMI, self-reported health, smoking status, daily alcohol intake, 

weekly physical activity, daily fruits or raw vegetable consumption. We also adjusted for time-

varying variables such as the number of general practitioner (GP) visits in the one last year, the 

number of specialist consultations and pathology test referrals in the last one year, the 

Charlson’s co-morbidity index for the previous year, and the previous year’s Rx-Risk index. 

The detailed categorization of the variables can be found in Appendix K. 

The Charlson Comorbidity Index (CCI) is a tool used to predict one-year mortality rates for 

patients with chronic illnesses [80]. It assigns weights to 19 different medical conditions based 

on their severity and association with mortality, with higher weights given to more severe 

conditions. Patients' CCI scores are calculated by adding up the weights of all their 

comorbidities. We utilised an updated version of the CCI, which was calculated using hospital 

discharge data and the ICD-10 coding algorithm [81]. The Rx-Risk Comorbidity Index is 

another tool that identifies comorbidities using pharmacy claims data and assigns weights to 

45 medical conditions based on their association with increased healthcare utilization [82]. 

These weights range from 1 to 3, with higher weights given to more severe or complex 

conditions. Patients' Rx-Risk scores are determined by adding up the weights of all their 

comorbidities. In our analysis, we used the Australian version of the Rx-Risk index, which is 

calculated using medicines mapped to the Anatomical Therapeutic Chemical (ATC) 

classification system [83]. The detailed method of calculation of these two co-morbidity 

indexes can be found elsewhere [80-84]. Both these comorbidity scores are frequently used in 

observational studies to minimize confounding. The main benefit of these scores is that they 

simplify the combination of individual covariates for each comorbidity into a single score. 
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Ethics approval 

The 45 and Up Study received approval from the Human Research Ethics Committee (HREC) 

at the University of New South Wales. Additionally, the study was approved by the NSW 

Population Health Research Ethics Committee (HREC) under the reference number 

2016/02/633 and the Lifeblood HREC with the reference number 2015#13. 

Statistical Methods 

We estimated the 7-year mortality risk, risk difference and risk ratio using an inverse 

probability weighting (IPW) of a marginal structural model. We fitted a pooled logistic 

regression model by adding a constant plus linear and quadratic terms of time and also linear 

and quadratic product terms of donation status and time. The baseline covariates were adjusted 

by inverse probability weighting. The weights were truncated at the 99th percentile to remove 

any extreme weights. Finally, we used non-parametric bootstrapping with 500 samples to 

calculate all the 95% Confidence Intervals. Unweighted and inverse probability weighted 

survival curves were also plotted.  

 

Figure 4.3 Directed acyclic graph of the relationship between blood donation (Dt), confounders 

(Ct) and mortality (Yt) for the 7-year follow-up period. 
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Blood donation behaviour is assumed to be time-varying in nature. It means that current blood 

donation behaviour impacts subsequent donation. In this process, the factors that determine a 

donor’s donation behaviour also lie in the causal pathway between donation status and 

mortality. Figure 4.3 illustrates the assumed directed acyclic graph of the relationship between 

blood donation (Dt), confounders (Ct) and mortality (Yt) for the 7-year follow-up period. If 

traditional regression methods adjust Ct, it will produce a biased estimate as adjusting the post-

baseline confounders; for example, C1 will open a path from D0 to Y1 even if D0 has no direct 

effect on Y1. There is also treatment-confounder feedback exists in this relationship, which 

makes traditional regression methods unsuitable analysis techniques [62]. G methods such as 

inverse probability weighting, parametric g-formula, and doubly robust methods such as 

Targeted minimum loss-based estimator are suitable alternatives to adjust for time-varying 

confounding factors in such scenarios [62]. 

In this study, besides adjusting baseline confounders, we also adjusted for time-varying 

confounders and donation status by using the targeted minimum loss-based estimator (TMLE) 

[72]. TMLE depends on two kinds of mathematical models: Treatment and outcome models, 

which are the function of the confounders. IPW is a singly robust method, as its correctness 

depends on specifying the treatment model correctly. However, TMLE is a doubly robust 

estimator as it remains correct if any of the treatment or outcome models are misspecified. In 

addition to this, the inverse probability weighted marginal structural models can produce biased 

estimates if the positivity assumption is violated. In contrast, doubly robust estimators often 

produce less biased results than the IPW method, even if the positivity assumption is extremely 

violated [73, 74]. Furthermore, doubly robust estimators like TMLE can employ machine 

learning algorithms to fit the treatment and outcome models, which may capture complex 

associations that are not possible with simple regression-based approaches [72, 75].  
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In addition to the IPW model, we also utilised TMLE to estimate both single time point and 

time-varying 7-year mortality risks, risk differences and risk ratios. The treatment and outcome 

regressions were estimated through an ensemble of machine learning models, which leveraged 

super learner algorithms with 5-fold cross-validation. The candidate libraries used include 

generalized linear models and multivariate adaptive regression splines [87]. Additionally, a 5-

fold cross-fitting component was incorporated into the process. We used the R package 

“SuperLearner” and “lmtp” to implement this analysis [76].  

A few variables had missing values, with a maximum percentage of approximately 16%. 

Despite assuming that the data were missing at random, we opted for multiple imputations to 

estimate the missing values due to the limited number of cases. Removing participants with 

missing values would have further reduced the available cases. The imputation process 

employed a fully conditional specification approach, utilising classification and regression 

trees, and was implemented using the R package 'mice' [88]. 

We considered several sensitivity analyses by considering – i) a complete case analysis by 

removing all the missing values with a follow-up period was seven years, ii) 3 years exposure 

window which ended at the recruitment date of the 45 and Up Study data for each participant 

with follow-up was seven years, iii) 7-years exposure window which spans three years before 

the recruitment into the 45 and Up study and four years after with a follow-up for five years. 

We used R version 4.2.2 to conduct all the statistical analyses. 

Results 

Table 4.3 shows the distribution of characteristics of 7338 donors who were selected by 

exposure window methods. Of these, 4750 (64.7%) were low-frequency donors, whereas 2588 

(35.3%) were high-frequency donors. Among 7338 donors, 69 (1.5%) experienced death from 
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low-frequency donor groups while 45 (1.7%) experienced death from high-frequency donor 

groups during the 7-year follow-up period for each whole blood donor. 

Table 4.3 Characteristics of the study participants among high-frequency and low-frequency 

donors at the start of the follow-up 

Characteristics Low-frequency  
 

High-frequency 

Total participant number (%) 4750 (64.7) 2588 (35.3) 
   
Sex, n (%)   
  Male 2189 (46.0) 1473 (56.7) 
  Female 2575 (54.1) 1123 (43.3) 
   
Age in years, mean (standard deviation) 58.8 (6.6) 60.3 (6.9) 
   
Body mass index kg/m2, n (%)   
  Underweight 16 (0.3) 6 (0.2) 
  Normal 1566 (32.9) 747 (28.8) 
  Overweight 1924 (40.4) 1122 (43.2) 
  Obese 971 (20.4) 577 (22.2) 
  Unknown 287 (6.0) 144 (5.6) 
   
Smoking Status, n (%)   
  Never 2966 (62.3) 1669 (64.3) 
  Former 1589 (33.4) 830 (32.0) 
  Regular 193 (4.1) 87 (3.4) 
  Unknown 16 (0.3) 10 (0.4) 
   
Self-rated health, n (%)   
  Excellent 1331 (27.9) 733 (28.2) 
  Very good 2189 (46.0) 1229 (47.3) 
  Good 1004 (21.1) 546 (21.0) 
  Fair/Poor 152 (3.2) 54 (2.1) 
  Unknown 88 (1.9) 34 (1.3) 
   
Alcohol consumption/day, n (%)   
  None 1034 (21.7) 567 (21.8) 
  <=1/day 1855 (38.9) 1005 (38.7) 
  >1/day 1838 (38.6) 1008 (38.8) 
  Unknown 37 (0.8) 16 (0.6) 
   
Education level, n (%)   
  No formal education 265 (5.6) 167 (6.4) 
  School to Diploma 3010 (63.2) 1804 (69.5) 
  University 1454 (30.5) 611 (23.5) 
  Unknown 35 (0.7) 14 (0.5) 
   
Annual household income, n (%)   
  <20k 367 (7.7) 245 (9.4) 
  20k-39k 637 (13.4) 463 (17.8) 
  40k-69k 1191 (25.0) 713 (27.5) 
  70k+ 1813 (38.1) 778 (30.0) 
  Unknown 756 (15.9) 397 (15.3) 
   
Physical activity/week, n (%)   
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Characteristics Low-frequency  
 

High-frequency 

  <1/week 1714 (36.0) 874 (33.7) 
  >=1/week 2499 (52.5) 1404 (54.1) 
  Unknown 551 (11.6) 318 (12.3) 
   
Daily fruits/vegetables consumed, n (%)   
  0-2 275 (5.8) 149 (5.7) 
  3-4 1131 (23.7) 631 (24.3) 
  5+ 2784 (58.4) 1507 (58.1) 
  Unknown 574 (12.1) 309 (11.9) 
   
Location, n (%)   
  Major city 2307 (48.4) 982 (37.8) 
  Regional/Remote 2347 (49.3) 1560 (60.1) 
  Unknown 110 (2.3) 54 (2.1) 
   
No. of GP visits in the past 1 year, mean (sd) 4.72 (4.16) 4.17 (3.42) 
   
No. of referrals in the past 1 year, mean (sd) 2.9 (3.08) 2.51 (2.38) 
   
Charlson co-morbidity index, n (%)   
  0 4707 (98.8) 2569 (99.0) 
  >= 1 57 (1.2) 27 (1.0) 
   
Rx-Risk index, n (%)   
  None 2461 (51.7) 1327 (51.1) 
  -6 to -1 1245 (26.1) 722 (27.8) 
  0 to 2 913 (19.2) 483 (18.6) 
  3+ 145 (3.0) 64 (2.5) 
   
Outcome, n (%) 69 (1.5%) 45 (1.7%) 

 

Figure 4.4 shows the unweighted and inverse probability weighted survival curves for 7-year 

mortality of less than two and at least two donor groups. Unweighted survival curves showed 

a small amount of elevated risk of mortality in at least two donor groups compared to less than 

two donor groups after 5th year of follow-up. However, the survival curves almost overlapped 

in the IP-weighted model for the 7-year follow-up period.  
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Figure 4.4 Unweighted and Inverse probability weighted survival curves for seven years 

follow-up period. 

Table 4.4 presents the estimated 7-year mortality risks, risk differences and risk ratios 

calculated by inverse probability weighting, targeted minimum loss-based estimator (TMLE) 

and time-varying TMLE. The inverse probability weighted risk of mortality was 1.8% (95% 

CI 1.5%, 2.1%) for the low-frequency donor group and 1.8% (95% CI 1.4%, 2.1%) for the 

high-frequency donor group, which resulted in the risk difference of 0% (95% CI -0.5%, 0.5%) 

and risk ratio of 0.98 (95% CI 0.68, 1.28). TMLE estimated the risk of mortality as 1.8% (95% 

CI 1.5%, 2.0%) for the low-frequency donor group and 1.7% (95% CI 1.5%, 1.9%) for the 

high-frequency donor group resulted in the risk difference of -0.1% (95% CI -0.4%, 0.3%) and 

risk ratio of 0.97 (95% CI 0.80, 1.16). The time-varying TMLE produced almost similar results 

to IPW and single time point TMLE; estimated mortality risk was 1.9% (95% CI 1.5%, 2.3%) 

in low-frequency donor group and 1.9% (95% CI 1.5%, 2.2%) in high-frequency donor group 

which produced the risk difference of 0% (95% CI -0.6%, 0.5%) and risk ratio of 0.98 (95% 

CI 0.74, 1.29).   
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Table 4.4 Estimated 7-year mortality risk, risk difference and risk ratios for high and low-

frequency donors. 

Models Risk, % (95% CI) Risk Difference 
(RD), % (95% CI) 

Risk Ratio (RR) 
(95% CI) 

Low-Frequency High-Frequency 
 

Inverse probability 
weighteda 

1.8 (1.5, 2.1) 1.8 (1.4, 2.1) 0.0 (-0.5, 0.5) 0.98 (0.68, 1.28) 

Targeted minimum 
loss-based 
estimator (TMLE)a 

1.8 (1.5, 2.0) 1.7 (1.5, 1.9) -0.1 (-0.4, 0.3) 0.97 (0.80, 1.16) 

TMLE (time-
varying)ab 

1.9 (1.5, 2.3) 1.9 (1.5, 2.2) 0.0 (-0.6, 0.5) 0.98 (0.74, 1.29) 

            aadjusted for sex, age, BMI, smoking status, self-rated health, alcohol consumption, education, 
annual income, physical activity, daily consumption of fruits and vegetables, location, no. of GP visits 
in the past 1 year, no. of referrals in the past 1 year, Charlson co-morbidity index, Rx-Risk index. 
            btime-varying TMLE included yearly exposure status, yearly Charlson co-morbidity index, yearly 
Rx-Risk index, yearly GP visits and yearly referral information. 

 

Sensitivity Analyses 

In the complete case analysis, we found a bit lower risk of mortality for the high-frequency 

donors compared to the low-frequency donor [RD: -0.3% (95% CI -0.9%, 0.2%), which 

resulted in the risk ratio of 0.83 (95% CI 0.47, 1.19). Single time point TMLE model also 

produced almost identical results to the IPW model [RR: 0.81 (95% CI 0.65, 1.01)], while time-

varying TMLE produced null risk difference and null risk ratio [RR: 1.00 (95% CI 0.60, 1.66)]. 

For the three-year exposure window analysis, both IPW and time-fixed TMLE produced 

similar results to our main analysis. However, time-varying TMLE found a significantly lower 

mortality risk among high-frequency blood donors compared to low-frequency blood donors 

[RR: 0.63 (95% CI 0.46, 0.86)] although the risk difference was still less than 1% [RD: -0.8% 

95% CI (-1.3, -0.2)]. The 7-year exposure window produced a similar pattern to the main 

analysis for all the models, and the results were not statistically significant. 
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Discussion 

This study investigated the association between regular high-frequency whole blood donation 

and mortality risk among Australian blood donors. We used the exposure window technique 

and applied IPW and TMLE models, where later one involved machine learning algorithms 

while accounting for the healthy donor effect. We adjusted baseline confounders in the time-

fixed models and both baseline and time-varying confounders in the time-varying model to 

account for the lagged effect of blood donation on mortality and did not find any significant 

impact of high-frequency blood donation on mortality risk when compared to low-frequency 

blood donation. 

We used 5-years exposure window technique to select the donors for our analysis and 

categorized them into exposure group (high-frequency donor) and control group (low-

frequency donor) based on frequency and regularity of donation, which is similar to the 

qualification period used by Peffer et al. where they measured the relationship between high-

frequency blood donation and CVD outcomes [42]. However, there are some dissimilarities 

between the analysis conducted by Peffer et al. and ours. They employed a three-category 

exposure variable based on the tertiles of WB donations made in the 10-year qualification 

period. In contrast, we used a distinct categorization of the exposure variable based on the 

frequency and consistency of the donation pattern.  

As described in Figure 4.3, the HDE poses a challenge because the factors responsible for the 

HDE can simultaneously confound and be a part of the causal pathway between exposure and 

outcome. There was also treatment-confounder feedback exists between exposure and 

outcome. G-methods are suitable in these situations [62]. However, Peffer et al. did not use 

these methods as one of the essential assumptions of these methods (positivity assumption) 

could be violated because the strict nature of donor exclusion criteria may produce a probability 

of zero donation. In our analysis, we used TMLE estimator as both time-fixed and time-varying 
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models, which are doubly robust and can still have unbiased estimates if the positivity 

assumption is extremely violated.  

As we used doubly robust TMLE to adjust for time-varying confounders, we could have used 

shorter exposure window and then adjusted for all the time-varying confounders. Moreover, 

shorter exposure periods also decrease the size of the healthy donor effect [60]. Nonetheless, 

the impact of blood donation is assumed to be lagged. Donating blood for shorter periods can 

hardly be considered to have causal effects on mortality. Thus, from a biological perspective, 

a longer exposure window is required to determine the causal effect, if there is one. For this 

reason, using a 5-year exposure window is justified in our primary analysis. 

In our sensitivity analysis, the time-varying effect of a 3-year exposure period showed stronger 

protective effects of regular high-frequency WB donation than the main analysis, and also the 

results were statistically significant. This significant effect of the 3-year exposure window 

could be non-causal, as described earlier from the biological perspective of lagged effect of 

donation, and risk differences are also less than 1%. Moreover, results from other sensitivity 

analyses for time-varying models did not find any significant association, which ruled out any 

association between high-frequency blood donation and mortality risk. 

Few other studies have studied the association between whole blood donation and all-cause 

mortality. Casale et al. found longer life expectancy in blood donors than non-donors [55]. 

However, they did not adjust for the potential set of confounders and compared between donor 

and general population, which may have biased the result with the HDE. Edgren et al. also 

found 30% lower mortality among donors, but they did not use any causal method and did not 

conclude that the results were due to the impact of blood donation [51]. Ullum et al. tried to 

calculate the internal HDE by considering mortality among donors who retired due to age 

criteria [41]. The study used a Poisson regression model to analyse the impact of the donation 
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rate and ongoing donation on non-retired donors. They found an HDE-adjusted effect on 

donation rate by including an interaction between these variables. Although they found a 7.5% 

decreased mortality risk at each additional annual donation, they could not confirm that this 

effect was unbiased as the adjustment factor was estimated among elderly donors. These 

previous studies found reduced mortality risk between donor versus non-donor or high-

frequency donor versus casual donors, and most of them could not confirm it as conclusive 

evidence of a beneficial effect of blood donation.  

Our study has several strengths. Firstly, the exposure window reduced the HDE by comparing 

the mortality among active donor populations who had long donation careers and were likely 

to differ less in their health status. Secondly, our data linkage enabled us to adjust a range of 

potential confounders that most of the previous studies lacked. Furthermore, we adjusted co-

morbidity indexes such as Charlson and Rx-Risk in both time-fixed and time-varying analyses. 

These indexes are powerful independent predictors of mortality. Finally, we used a doubly 

robust TMLE estimator for both time-fixed and time-varying models, which can still give 

unbiased estimates if any of the treatment or outcome models are misspecified.  

There are also some limitations in this study. Our study population comprises mainly older 

donors, who probably began donating blood well before the exposure window. As our records 

of donations are only available on or after June 2002, we could not consider the time since the 

first donation or the overall impact of the entire donation history in our analyses. Moreover, 

compared to a few previous studies, our sample size is slightly smaller, and the follow-up time 

is shorter (maximum of 7 years), resulting in fewer events. A longer follow-up time could have 

estimated the effect more precisely.  

In conclusion, this study found no significant impact of high-frequency blood donation on 

mortality risk among Australian donors after accounting for the healthy donor effect using 
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robust estimation models and adjusting for numerous potential confounders. Despite the 

methodological strengths, further investigation with a longer follow-up period may provide a 

more precise estimate of the impact of regular blood donation on mortality risk. 
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Abstract 
 

Background 

Some studies suggest that blood donors are less likely to suffer from gastrointestinal cancers, 

whilst others indicate an increased risk of haematological cancers among blood donors due to 

enhanced cell proliferation. We aimed to clarify whether the reported discrepancies in cancer 

association with blood donation may be due to the potential impact of the ‘healthy donor effect’ 

(HDE). 

Method 

To examine the relationship between regular high-frequency blood donation and 

gastrointestinal and haematological cancer risk, we implemented a 5-year exposure window to 

determine the exposure status (high or low-frequency donors) and also adjust for the HDE. We 

used the Sax Institute’s 45 and Up Study data, combining it with databases containing 

information about blood donation history and other health-related factors, for the purpose of 

the analyses. We calculated 5-year cancer risks, risk differences and risk ratios by utilising 

inverse probability weighting of a marginal structural model, along with other advanced doubly 

robust g-methods which can utilise ensemble machine learning algorithms. 

Results 

In our study, we identified a total of 3888 (57.6%) donors as low-frequency and 2867 (42.4%) 

as high-frequency donors within a 5-year exposure window. The inverse probability weighted 

5-year risk difference between high and low-frequency donors for gastrointestinal cancer was 

0.2% (95% CI -0.1%, 0.5%) with a risk ratio of 1.25 (95% CI 0.83, 1.68). Regarding 

haematological cancer, the risk difference was 0% (95% CI -0.3%, 0.5%) with a risk ratio of 

0.97 (95% CI 0.55, 1.40). Our doubly robust estimators targeted minimum loss-based estimator 

(TMLE) and sequentially doubly robust (SDR) estimator yielded similar results, but none of 

our findings were statistically significant. 

Conclusion 

After accounting for the healthy donor effect (HDE), our study did not identify any statistically 

significant differences in the risk of gastrointestinal or haematological cancer between high 

and low-frequency blood donors. 
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Introduction 
 

Iron, an essential element for human life, serves as the main component of heme proteins and 

ferritin, an iron storage protein [89]. However, iron may also have a potential detrimental role 

as a contributor to carcinogenesis through iron-induced oxidative stress, involving the 

formation of reactive oxygen species (ROS) and free radicals [89, 90]. Evidence from various 

studies demonstrates that higher levels of iron, even within the upper end of the accepted 

reference range, might play a role in different types of cancer, including the liver, colon, 

stomach, and oesophagus [29, 91-94]. Since a blood donor loses approximately 200mg of iron 

after each whole blood donation, studying the relationship between regular blood donation and 

iron-related cancers has gained interest in recent years. 

Epidemiological studies that have been conducted to evaluate the risk of cancers in connection 

to iron intake or indicators of body iron storage have shown inconclusive findings [30, 93, 95-

99]. One of the major limitations of these studies was to use non-specific measures of body 

iron stores which could be mitigated by the use of blood donation history as a marker of iron 

levels [89]. A few studies have evaluated cancer risk among blood donors, but the findings 

were still inconsistent. A US cohort study conducted on male blood donors hypothesised that 

frequent blood donation, which reduces body iron stores, might decrease the risk of colorectal 

cancer, but the findings were insignificant [30]. Two studies found decreased overall cancer 

risk among blood donors compared to the general population, which may mainly reflect the 

healthy donor effect [51, 56]. In another study, Edgren et al. reported decreasing the risk for 

cancers of the liver, lung, colon, stomach, and oesophagus with increased estimated iron loss, 

but only among male blood donors [29]. Finally, Zacharski et al. demonstrated that phlebotomy 

therapy of older men to reduce serum ferritin levels from a median of 120 to 80g/L was 

associated with a 35% reduction in the risk of visceral malignancies over a 5-year period [100]. 
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Moreover, observing a higher incidence of cancers among blood donors compared to the 

general population was also not uncommon. A US study indicated higher cancer risk among 

blood donors, potentially due to demographic differences, education level, and access to 

primary care [39]. Although Merk et al. found lower overall cancer risk among blood donors, 

haematological malignancies were higher among donors compared to non-donors [56]. 

Frequent plasma donors were also at higher risk of non-Hodgkin’s lymphoma [29]. Similar 

results for haematological malignancies were also found in other studies [39, 51]. There is also 

a hypothesis that blood donors may be more likely to develop haematological malignancies 

due to enhanced cell proliferation, which is itself thought to be a risk factor for cancer and is 

sparked by the frequent removal of blood cells [29]. Nonetheless, a recent study in Sweden did 

not find any risk of haematological malignancy among blood donors [46]. 

Considering the contradictory findings in the literature, the ongoing uncertainty surrounding 

the role of iron in cancer risk and also the biological plausibility of haematological malignancy 

among blood donors, the aim of this study was to investigate the possible association between 

regular blood donation and the risk of gastrointestinal, and haematological cancers among 

blood donors in Australia. To mitigate the ‘healthy donor effect’, a methodological pitfall in 

donor health studies, we utilised a 5-year exposure period method, similar to Peffer’s 

‘qualification period’ [42]. To conduct the analysis, we utilised the Sax Institute's 45 and Up 

Study data [77], which was linked with records from Lifeblood's blood donation data sets and 

various other external administrative health data sets.  

Methods 
 

Data sources and linkage 

To explore the relationship between whole blood donation and gastrointestinal, colorectal and 

haematological malignancies, we utilised the Sax Institute's 45 and Up Study data, which is 
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linked to other electronic health databases such as the Australian Red Cross Lifeblood Donor 

Registry, Registry of Birth, Deaths, and Marriages- Deaths Registrations (RBDM), NSW 

Central Cancer Registry (NSWCCR), and Medicare claims. 

The 45 and Up Study, conducted by the Sax Institute, involved the enrolment of 267,357 

individuals aged 45 years or above in New South Wales, Australia, between 2005 and 2009. 

The study recruited prospective participants through random selection from the Services 

Australia Medicare enrolment database, resulting in a participation rate of 19.2% [79]. In order 

to ensure representation, the study oversampled residents residing in rural and remote areas, as 

well as individuals aged 80 years and above. Participants completed an initial questionnaire 

that covered a wide range of topics, including socio-demographic information, health status, 

lifestyle choices, and behaviours. Additionally, they provided consent for their data to be linked 

with various administrative databases, allowing for long-term follow-up analysis. 

Australian Red Cross Lifeblood is responsible for collecting, processing, and distributing blood 

and blood products in Australia. It also keeps track of donor data in a central system called the 

National Blood Management System (NBMS). Prior to 2007, the methods used by Lifeblood 

to store donor data varied. However, after a national merger in 2007 of what was to that time 

separate, state-based sets of donor data, all donor information was consolidated within the 

NBMS. In terms of data availability, complete records for blood donations in New South Wales 

(NSW) were only accessible starting from June 1st, 2002. Therefore, for the purpose of data 

linkage, the dataset used included blood donation information spanning from June 1st, 2002, 

to December 31st, 2018. 

The Medicare claims data consolidates information regarding healthcare services and 

procedures that are subsidized by the Australian government through Medicare. This dataset 

provides comprehensive information on the various types and frequency of services delivered 
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by medical practitioners, including consultations, diagnostic tests, surgical procedures, and 

allied health services such as physiotherapy and psychology. We utilised this data to calculate 

the overall annual count of visits to general practitioners (GPs) and referrals for diagnostic 

tests. It is important to note that the Medicare Benefits Schedule (MBS) data is complete up 

until December 2017. 

The NSW Cancer Registry (NSWCR) is responsible for keeping track of individuals diagnosed 

with cancer in NSW. Since 1972, the NSWCR has maintained comprehensive records that 

include demographic information, incidence data, and death details for individuals who have 

been diagnosed with cancer. In our study, we used this dataset to ascertain the date of cancer 

diagnosis. The data is complete up to December 2015. 

The NSW Registry of Births, Deaths, and Marriages (RBDM) database holds records of 

residents' birth, death, and marriage dates. In our study, we used the RBDM death data to 

establish the date of death and all-cause mortality. It's important to note that the RBDM dataset 

was completely updated up to December 2018. 

The NSW Centre for Health Record Linkage (CHeReL) employed a probabilistic matching 

method to connect the data from the 45 and Up Study with NBMS, APDC, and RBDM. 

Previous quality assurance assessments of CHeReL's linkages using the master linkage key 

indicated an estimated false positive rate of 0.5%. The Sax Institute provided Services Australia 

with specific identifier information for the participants in the 45 and Up Study. In turn, Services 

Australia supplied the corresponding Medicare claim and PBS data based on these unique 

identifiers. The Sax Institute then linked the Medicare claim and PBS data to the 45 and Up 

Study data using a deterministic matching procedure. 
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Study population, exposure window 

We employed a 5-year window to determine the participants and exposure status inspired by 

the method used by Peffer and colleagues [60] depicted in Figure 4.5. The exposure window 

refers to the time in which the donor is needed to actively give blood while satisfying other 

requirements for eligibility. In our research, this exposure window includes three years before 

the enrolment into the 45 and Up trial and two years thereafter. To qualify for participation in 

our research, donors must have made at least one whole blood (WB) donation between the first 

and fifth years of the exposure window and stayed alive and cancer free for the full 5-year 

period. We excluded donors who performed any plasma or platelet donation during the 5-year 

period to keep only WB donors for the analysis. Therefore, our research cohort consisted of 

persons who had an active WB donation career of five years within the exposure window period 

and who did not develop any kind of cancer during that time or in the time leading up to the 

exposure window.

Exposure variable

We have considered several exposure scenarios to measure the frequency and regularity of 

blood donations made by participants during each year of exposure window. We considered: i) 

at least one WB donation during each year of exposure window vs. less than one donation 

Figure 4.5 5-year exposure window and follow-up period for cancer analysis
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during each year of exposure but still meeting the eligibility criteria ii) at least two WB 

donations during each year of exposure window vs. less than two donations during each year 

of exposure window iii) at least three WB donation during each year of exposure window vs. 

less than three donations during each year of exposure window.  

Ascertainment of WB donation 

Utilising linked Lifeblood donation history data, whole blood donation was determined. If a 

person successfully donated a unit of WB, the individual was regarded as a WB donor. 

Ascertainment of Cancer 

The primary outcomes of this study were gastrointestinal, and haematological cancers. All the 

cancer information was ascertained from the linked NSW cancer registry data. By using the 

revision 9 codes of the International Classification of Diseases, an individual was confirmed to 

have experienced either gastrointestinal or colorectal cancer if the cancer diagnosis codes were 

C15 (oesophageal) or C16 (stomach) or C17 (small intestinal) or C22 (liver) or C23-C24 

(gallbladder) or C25 (pancreatic) or C18 (colon) or C19-C21 (rectal). Moreover, an individual 

was confirmed to have experienced haematological malignancy if the diagnosis codes were 

C920 (acute myeloid leukaemia) or C910 (acute lymphoblastic leukaemia) or C81 (Hodgkin 

lymphoma) or C8890 (multiple myeloma) or C82 (non-Hodgkin lymphoma) or C919 (other 

lymphoid leukaemia) or C929 (other myeloid leukaemia) or C94 (other specified leukaemia). 

We only considered the first diagnosed cancer for this analysis if a person had multiple 

malignancies over the follow-up period. 

Follow-up period 

The follow-up period commenced from the last day of the exposure window and ended at the 

conclusion of either five years from the start of the follow-up or the death date or the cancer 

diagnosis date, whichever occurred first. For the purpose of the sensitivity analysis, we also 
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considered an administrative end date for the follow-up so that the study started from the last 

day of the exposure period and ended on December 30, 2015, or the death date or cancer 

diagnosis death, whichever occurred first.  

Potential confounding factors 

A number of demographic/socioeconomic, health status and blood donation-related variables 

were considered as potential confounding factors. The demographic/socioeconomic variables 

were age, sex, geographical location (major city, regional/remote), education (no formal 

education, school to diploma, university) and gross annual household income (<20, 20-39, 40-

69, 70+ thousand). The health status-related variables were BMI (0-18.4, 18.5-24.9, 25-29.9, 

30+ kg/m2), self-reported health (excellent, very good, good, fair/poor), smoking status (never, 

former, regular), daily alcohol intake (none, ≤1/day, >1/day), weekly physical activity 

(<1/week, ≥1/week), and daily fruits or raw vegetable consumption (0-2, 3-4, 5+), intake of 

multivitamins and minerals (no, yes), number of general practice (GP) visits in the last one 

year, and number of specialist consultations and pathology test referrals in the last one year, 

family history of cancers (no, yes), any cancer screening (no, yes). Blood donation-related 

variables were average blood pressure levels during the exposure period, average haemoglobin 

level during the exposure period, and blood group (O, non-O). The detailed derivation of the 

variables is given in the appendix.  

Statistical Methods 

We calculated 5-year cancer risk, risk difference and risk ratio by inverse probability weighting 

(IPW) of a marginal structural model for gastrointestinal and haematological cancers 

separately. We fitted a pooled logistic regression model by adding a constant plus linear and 

quadratic terms of time and also linear and quadratic product terms of donation status and time. 

The baseline covariates were adjusted by calculating the inverse probability weights and then 

using the weights in the outcome regression model. The IPW was truncated at the 99th 
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percentile to remove any extreme weights from outliers. Finally, we used non-parametric 

bootstrapping with 500 samples to calculate all the 95% CIs. Inverse probability weighted 

Kaplan Meier survival curves were also plotted for the two cancer outcomes with three different 

exposure definitions.  

We also utilised two alternative g-methods, namely the targeted minimum loss-based estimator 

(TMLE) and the sequentially doubly robust estimators (SDR), to compute 5-year cancer risk, 

risk difference, and risk ratios [71, 72]. These estimators, including inverse probability 

weighting (IPW), rely on two mathematical models: the treatment model and the outcome 

model, both of which are functions of the confounding variables. The IPW is a singly robust 

estimator, as its accuracy depends on correctly specifying the treatment model. On the other 

hand, TMLE and SDR are doubly robust estimators, meaning that their estimates remain 

unbiased even if one of the treatment or outcome models is misspecified. 

Additionally, the inverse probability weighted marginal structural models can produce a biased 

estimate if affected by violations of the positivity assumption. In contrast, doubly robust 

estimators often produce less biased results than IPW estimators, even if the positivity 

assumption is extremely violated [73, 74]. Moreover, these doubly robust estimators have the 

advantage of being able to utilise machine learning algorithms to fit the treatment and outcome 

models, allowing them to capture complex associations that may not be possible with simple 

regression-based approaches [72, 75]. As blood donation behaviour is assumed to be time-

varying in nature, we also estimated time-varying TMLE and SDR estimators in one of the 

sensitivity analyses. We used the R package “SuperLearner” and “lmtp” to implement this 

analysis [76]. 

A few variables had missing values (maximum of approximately 16%). Although we assumed 

that the data were missing at random, we still did multiple imputations to calculate missing 
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values as we had a lower number of cases and removing participants with missing values could 

further lower the number of cases. The imputation was a fully conditional specification that 

used classification and regression trees and was implemented by the R package ‘mice’ [88]. 

We used R version 4.2.2 to conduct all the statistical analyses. 

Results 

Table 4.5 depicts the characteristics distribution of 6755 whole blood donors, of whom 2667 

(42.4%) donated at least two whole blood units in each year of the exposure period, whereas 

3888 (57.6%) did not donate at least two whole blood units during each year of the exposure 

period. High-frequency donors were mostly male (55.3%) and also slightly older (average age 

60.3 years) than low-frequency donors. Among 6755 donors, 25 (0.6%) experienced 

gastrointestinal cancer from low-frequency blood donor groups during five years of follow-up, 

while 27 (0.9%) gastrointestinal cancer in the high-frequency donor group. For haematological 

cancer, we found 23 (0.6%) cases from the low-frequency donor group and 20 (0.7%) from the 

high-frequency donor group during the 5-year follow-up period. 

Table 4.5 Characteristics of the study participants who were donating or not donating at least 

2 WB donations in each year of the exposure period. 

Characteristics At least 2 whole blood donations in each year of the exposure 
period 

 No Yes 

No. (%) 3888 (57.6) 2867 (42.4) 
Sex, n (%)   
  Male 1717 (44.2) 1585 (55.3) 
  Female 2171 (55.8) 1282 (44.7) 
   
Age at baseline, mean (sd) 57.72 (6.68) 60.3 (6.9) 
Haemoglobin, g/dl, mean (sd) 140.99 (10.36) 143.38 (9.86) 
Systolic blood pressure, mean (sd) 127.39 (12.05) 128.66 (11.17) 
Diastolic blood pressure, mean (sd) 76.95 (6.84) 77.26 (6.25) 
Total no. of WB donation in exp period, 
mean(sd) 

9.78 (3.56) 16.85 (2.65) 

   
Blood group, n (%)   
  Non-O 1976 (50.8) 1401 (48.9) 
  O 1912 (49.2) 1466 (51.1) 
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Characteristics At least 2 whole blood donations in each year of the exposure 
period 

 No Yes 

Body mass index kg/m2, n (%)    
  Underweight 10 (0.3) 8 (0.3) 
  Normal 1306 (33.6) 897 (31.3) 
  Overweight 1527 (39.3) 1231 (42.9) 
  Obese 793 (20.4) 577 (20.1) 
  Missing 252 (6.5) 154 (5.4) 
   
Smoking Status, n (%)   
  Never 2435 (62.6) 1884 (64.3) 
  Former 1282 (33.0) 921 (32.1) 
  Regular 157 (4.0) 90 (3.1) 
  Missing 14 (0.4) 12 (0.4) 
   
Self-rated health, n (%)   
  Excellent 1040 (26.8) 850 (29.7) 
  Very good 1791 (46.1) 1361 (47.5) 
  Good 854 (22.0) 564 (19.7) 
  Fair/Poor 130 (3.3) 57 (2.0) 
  Missing 73 (1.9) 35 (1.2) 
   
Alcohol consumption/day, n (%)   
  None 877 (22.6) 600 (20.9) 
  <=1/day 1521 (39.1) 1100 (38.4) 
  >1/day 1461 (37.6) 1148 (40.0) 
  Missing 29 (0.8) 19 (0.7) 
   
Education level, n (%)   
  No formal education 215 (5.5) 175 (6.1) 
  School to Diploma 2432 (62.6) 1927 (67.2) 
  University 1213 (31.2) 747 (26.1) 
  Missing 28 (0.7) 18 (0.6) 
   
Annual household income, n (%)   
  <20k 313 (8.1) 257 (9.0) 
  20k-39k 521 (13.4) 503 (17.5) 
  40k-69k 954 (25.5) 762 (26.6) 
  70k+ 1484 (38.2) 901 (31.4) 
  Missing 616 (15.8) 444 (15.5) 
   
Location, n (%)   
  Major city 1909 (49.1) 1161 (40.5) 
  Regional/Remote 1888 (48.6) 1646 (57.4) 
  Missing 91 (2.3) 60 (2.1) 
   
Daily fruits/vegetable consumed, n (%)   
  0-2 229 (5.9) 160 (5.6) 
  3-4 928 (23.9) 688 (24.0) 
  5+ 2259 (58.1) 1685 (58.8) 
  Missing 472 (12.1) 334 (11.7) 
   
Taking any vitamin or mineral, n (%)   
  No 2975 (76.5) 2236 (78.0) 
  Yes 912 (23.5) 631 (22.0) 
  Missing 1 (0.0) 0 (0.0) 
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Characteristics At least 2 whole blood donations in each year of the exposure 
period 

 No Yes 

Consumption of red meat, n (%)   
  <5/week 2954 (76.0) 2134 (74.4) 
  >=5/week 865 (22.3) 697 (24.3) 
  Missing 68 (1.8) 36 (1.3) 
   
Consumption of processed meat, n (%)   
  <3/week 2869 (73.8) 2097 (73.1) 
  >=3/week 577 (14.8) 459 (16.0) 
  Missing 442 (11.4) 311 (10.9) 
   
Family history of cancer, n (%)   
  No 2058 (52.9) 1517 (52.9) 
  Yes 1830 (47.1) 1350 (47.1) 
   
Cancer screening, n (%)   
  No 421 (10.8) 301 (10.5) 
  Yes 3428 (88.2) 2545 (88.8) 
  Missing 39 (1.0) 21 (0.7) 
   
No. of GP visits in the past 1 year, mean (sd) 4.68 (4.15) 4.15 (3.41) 
No. of referrals in the past 1 year, mean (sd) 2.84 (2.69) 2.51 (2.35) 
   
Outcomes   
  Gastrointestinal, n (%) 25 (0.6) 27 (0.9) 
  Haematological, n (%) 23 (0.6) 20 (0.7) 

 

Table 4.6 presents the estimated 5-year cancer risk for gastrointestinal and haematological 

cancer, their risks, risk differences and risk ratios calculated by IPW, TMLE and SDR 

estimators. The IPW risk of gastrointestinal cancer was 0.7% (95% CI 0.5%, 0.9%) for low-

frequency donors and 0.9% (95% CI 0.6%, 1.2%) for high-frequency donors resulted in the 

risk difference of 0.2% (95% CI -0.1%, 0.5%) and risk ratio of 1.25 (95% CI 0.83, 1.68). We 

found almost identical results from TMLE; the risk for low-frequency donors was 0.7% (95% 

CI 0.5, 0.9), and the risk for high-frequency donors was 0.9% (95% CI 0.7%, 1,1%), which 

resulted in risk difference of 0.2% (95% CI -0.1%, 0.5%) and risk ratio of 1.25 (95% CI 0.86, 

1.81). The SDR estimator produced almost similar results (Table 3) to IPW and TMLE. 

Moreover, the IPW risk of haematological cancer was 0.6% (95% CI 0.5%, 0.8%) for low-

frequency donors and 0.6% (95% CI 0.4%, 0.8%) for high-frequency donors, which produced 

a risk difference of 0.0% (95% CI -0.3%, 0.2%) and risk ratio of 0.97 (95% CI 0.55, 1.40). The 
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TMLE produced almost similar results; risk of 0.6% (95% CI 0.5%, 0.8%) for low-frequency 

donors, risk of 0.6% (95% CI 0.5%, 0.8%) for high-frequency donors, risk difference of 0.0% 

(95% CI -0.3%, 0.2%), and risk ratio of 0.96 (0.66, 1.40). The SDR estimator produced similar 

results to IPW and TMLE, except the risk ratio was slightly higher than both estimators [RR = 

1.01 (95% CI 0.71, 1.43)]. None of the results for both gastrointestinal and haematological 

cancer were statistically significant, indicating no increased/ decreased risk of 

gastrointestinal/colorectal and haematological cancers among blood donors.  

Figure 4.6 shows the inverse probability weighted Kaplan Meyer survival curves for 

gastrointestinal and haematological cancers for 5-year follow-up, and both curves show very 

insignificant risk differences between low and high-frequency donors.  

Table 4.6 Estimated 5-year cancer risk, risk difference and risk ratios for high and low-

frequency donors*. 

Outcomes Models Risk, % (95% CI) Risk Difference, 
% (95% CI) 

Risk Ratio (95% 
CI) 

Low-frequency High-frequency 

Gastrointestinal IPTW 0.7 (0.5, 0.9) 0.9 (0.6, 1.2) 0.2 (-0.1, 0.5) 1.25 (0.83, 1.68) 

TMLE 0.7 (0.5, 0.9) 0.9 (0.7, 1.1) 0.2 (-0.1, 0.5) 1.25 (0.86, 1.81) 

SDR 0.8 (0.6, 0.9) 1.0 (0.7, 1.2) 0.2 (-0.1, 0.5) 1.27 (0.89, 1.80) 

Haematological IPTW 0.6 (0.5, 0.8) 0.6 (0.4, 0.8) 0.0 (-0.3, 0.2) 0.97 (0.55, 1.40) 

TMLE 0.6 (0.5, 0.8) 0.6 (0.5, 0.8) 0.0 (-0.3, 0.2) 0.96 (0.66, 1.40) 

SDR 0.7 (0.5, 0.9) 0.7 (0.6, 0.9) 0.0 (-0.2, 0.3) 1.01 (0.71, 1.43) 

*Adjusted for sex, age, haemoglobin, systolic blood pressure, diastolic blood pressure, blood group, 
BMI, smoking status, self-rated health, alcohol consumption, education, annual income, physical 
activity, daily consumption of fruits and vegetables, vitamin/mineral intake, red meat consumption, 
processed meat consumption, family history of cancer, cancer screening, location, no. of GP visits in 
the past 1 year, no. of referrals in the past 1 year. 
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Figure 4.6 Weighted survival curves for a 5-year follow-up period for gastrointestinal and 

haematological cancers.

Sensitivity analysis

We found similar results to our main analysis when we ended the follow-up on 31 December 

2015 instead of a fixed 5-year follow-up for each participant. The IPW risk ratio for this 

analysis was 1.27 (95% CI 0.74, 1.80) for gastrointestinal cancer and 0.92 (95% CI 0.53, 1.30) 

for haematological cancer. When we changed the definition of exposure to at least 1 WB 

donation during each year of exposure period as high-frequency donors and other donation 

frequency as low-frequency donors, we found a slightly decreased gastrointestinal cancer risk 

ratio of 1.11 (0.44, 1.78) with almost zero risk differences of 0.1% (95% CI -0.3%, 0.5%). For 

haematological cancer, we found 0.4% (95% CI -0.8%, 0.0%) decreased risk among high-

frequency donors and a risk ratio of 0.57 (95% CI 0.01, 1.12) when we used this exposure 

definition. For the exposure definition of at least 3 WB donations in each year of the exposure 

period vs other frequencies of donation in each year of the exposure period, we found zero risk 

difference [0.0% (95% CI -0.4, 0.4)] and risk ratio close to null value [1.02 (95% CI 0.41, 
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1.64)] when considered the gastrointestinal cancer incidence. Haematological cancer showed 

a slightly elevated risk ratio of 1.44 (95% CI 0.86, 2.01), but still with very small risk 

differences [0.3% (-0.1, 0.7)] between high and low-frequency donors. We found zero risk 

differences [0.0% (95% CI -0.5%, 0.4%)] from time-varying TMLE estimator among high and 

low-frequency donors with a risk ratio of 0.97 (95% CI 0.56, 1.66)] for gastrointestinal cancer. 

The time-varying SDR estimator produced a risk ratio of 0.79 (95% CI 0.40, 1.56) with a 

slightly lower risk for high-frequency donors compared to low-frequency donors. For 

haematological cancer, time-varying TMLE and SDR estimators produced a risk ratio of 0.80 

(95% CI 0.27, 2.36) and 1.07 (95% CI 0.42, 2.76), respectively, where the risk differences were 

almost zero for both of the estimators.  

Discussion 

In this study, we investigated the association between frequent whole blood donation and the 

risk of gastrointestinal and haematological malignancies among Australian blood donors. We 

used the exposure window method to determine the exposure status and fitted inverse 

probability-weighted and doubly robust statistical models while adjusting several potential 

demographics, socio-economic, health status-related, and blood donation-related variables. 

Our research did not discover any evidence of a statistically significant relationship between 

frequent whole blood donations and an increased or decreased risk of developing cancer. There 

was a 0.2% increased risk of gastrointestinal cancer among high-frequency blood donors. 

However, the results were not statistically significant, and time-varying models used in 

sensitivity analysis revealed that there was no difference in risk between high-frequency and 

low-frequency blood donors. 

We used the 5-year exposure window technique to ascertain the exposure (high-frequency 

donor) and control (low-frequency donor), which is comparable to the qualification period used 

by Peffer et al. to examine the association between high-frequency blood donation and CVD 
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outcomes [42]. The healthy donor effect has a substantial impact on the studies that used the 

lifetime number of donations to determine exposure status. In contrast to previous studies, 

Peffer et al. separated the exposure status determination period from the follow-up period, 

which significantly reduced the "healthy donor effect" [42]. Our 5-year exposure window had 

a comparable effect on lowering the HDE. However, there are a few differences between our 

analysis and that of Peffer et al. They used a three-category exposure variable based on the 

tertiles of donations made during the 10-year qualification period. In contrast, we categorised 

the exposure variable that was based on the frequency and consistency of the donation pattern. 

One recent study in Australia also used a 5-year qualification period to assess the relationship 

between high-frequency, regular blood donation and the risk of cardiovascular diseases [101] 

and found no statistically significant association between blood donation and CVD. This study 

also used the same data linkage we used in our analysis, and their categorisation of the exposure 

variable is also similar to ours. However, their exposure period started from the date of 

recruitment into the 45 and Up Study data, whereas we started our exposure three years before 

the recruitment and ended two years after the recruitment into the 45 and Up Study data, as we 

have cancer data available until December 2015, and starting three years before the recruitment 

into the 45 and Up Study data provided extra follow-up time and cases. 

In our primary analysis, we used a 5-year exposure window to distinguish between high- and 

low-frequency donors. In addition, it has been suggested that a shortened exposure interval can 

further reduce the healthy donor effect, given that donors are chosen prior to each donation 

based on health parameters that could simultaneously predict future cancer events, leaving 

space for a residual HDE. If the duration of exposure had been shortened, donors would have 

been selected and categorised based on HDE-causing health criteria less frequently. However, 

it is believed that blood donation has a lagged effect on health [42]. Donating blood for a 

shortened duration is unlikely to have causal effects on malignancy. Consequently, from a 
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biological standpoint, an extended exposure interval is required to ascertain the possibility of 

a causal effect. This justifies the use of a 5-year exposure window in our primary analysis. 

Blood donation is a good indicator of serum ferritin, so numerous studies have examined the 

incidence of cancer among blood donors. Several of these studies have reported a lower risk of 

cancer occurrence and mortality among blood donors [43, 51, 56]. However, these findings 

may be influenced by the healthy behaviours and overall well-being of the donor population. 

In one particular Swedish study, researchers utilised a nested case-control design to investigate 

the impact of iron depletion through blood donation on Swedish and Danish donors [29]. The 

study found a trend towards a reduced risk of liver, lung, colon, stomach, and oesophageal 

cancers in males with a latency period of 3 to 7 years, comparing the lowest to highest estimated 

iron loss from donation (OR = 0.70, 95% CI: 0.58, 0.84). Nevertheless, the authors 

acknowledged their inability to account for several important confounding factors, such as 

smoking, alcohol consumption, nutrition, physical activity, anthropometric measures, and 

occupational exposures, which might have influenced the observed results. Another cohort 

study conducted in the United States examined the risk of colorectal cancer in regular blood 

donors compared to non-donors among male participants [30]. Although their results could be 

a consequence of the healthy donor effect, our findings of gastrointestinal and colon cancer are 

consistent with their findings. 

It is not uncommon in donor health studies to find increased cancer risk among high-frequency 

blood donors. There is also a hypothesis that blood donors may be more likely to develop 

haematological malignancies due to enhanced cell proliferation, which is itself thought to be a 

risk factor for cancer and is sparked by the frequent removal of blood cells [29]. Mark et al. 

reported increased haematological cancer among blood donors, although their findings are 

believed to be impacted by the HDE [56]. Edgreen et al. found an increased risk of non-

Hodgkin lymphoma among frequent plasma donors, although they did not adjust some 
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important confounding factors [29]. Recently, one Swedish study used a standardised incidence 

ratio and nested case-control study and did not find an increased risk of haematological 

malignancy among frequent blood donors, which is consistent with our findings for 

haematological malignancies [46]. Moreover, they found a slightly higher risk of chronic 

lymphocytic leukemia (CLL) (SIR, 1.07; 95% CI 1.01, 1.15). However, as there was no 

evidence of a dose-response relationship between no. of donations and the risk of these cancers, 

they concluded this risk as non-causal.  

Although none of our findings was statistically significant, our point estimates for 

gastrointestinal/colorectal cancer in the main analysis were higher than the null value [IPW 

RR: 1.25 (95% CI 0.83, 1.68)]. In our sensitivity analysis, we define the high-frequency 

exposure group with at least 1 and 3 donations each year of the exposure period and found no 

dose-response relationship. It ruled out any possibility of increased risk, which could not be 

detected by our sample. In addition to that, time-varying TMLE and SDR estimators also found 

almost zero risk differences among high and low-frequency donors. Moreover, because of 

blood donors’ continuous screening during their donation career and comparatively higher 

health consciousness, it is not uncommon to have more cancer detection among frequent blood 

donors compared to casual donors [39, 46]. 

This is the first study to use the exposure window method to evaluate gastrointestinal and 

haematological cancer outcomes among blood donors. Our study has several strengths. First, 

the use of an exposure window decreased the HDE by comparing cancer outcomes among 

active donor populations with a lengthy donation career and presumably less variance in health 

status. Second, our data linkage allowed us to control for a variety of potential confounding 

variables, something that was lacking in the majority of previous studies. In addition, we 

utilised doubly robust models, such as TMLE and SDR, which incorporated machine learning 

algorithms to determine the risk estimates. Since the findings of our IPTW model and our 
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doubly robust models are nearly identical, our treatment and outcome models are not 

misspecified. 

This study has some limitations as well. The majority of our research population consists of 

elderly donors who likely began donating blood well before the beginning of the exposure 

window. Due to the fact that our donation records are only available on or after June 2002, we 

were unable to analyse the duration since the first donation or the cumulative impact of the 

entire donation history. Moreover, compared to some previous studies, our sample size is 

somewhat small, and our follow-up period is somewhat shorter (a maximum of 5 years), 

resulting in a smaller number of events. This may have indicated that our study lacked the 

statistical power to detect clinically important small effect sizes. Because of the smaller number 

of events, we also did not do a sex-stratified analysis, which would have been more appropriate 

while assessing iron-induced outcomes. 

In conclusion, we did not find any convincing evidence of an increased or decreased risk of 

gastrointestinal and haematological malignancy among older Australian blood donors. Further 

exploration is needed in an Australian cohort with a longer follow-up time to better understand 

the relationship between these cancer outcomes and regular whole blood donation. 
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Chapter 5 General Discussion 
 

5.1 Summary of the main findings 
 

The Healthy Donor Effect (HDE) is a methodological pitfall in donor health research. The aim 

of this thesis was to summarise the methods that have been used to adjust for the Healthy Donor 

Effect (HDE) and identify any additional or new methods to address it. The methods were 

applied to Sax Institute’s 45 and Up Study data, which was linked with other electronic health 

databases, including the blood donor data from Australian Red Cross Lifeblood, to explore the 

association of regular blood donation with long-term health outcomes (mortality and cancer). 

To achieve this, I conducted a systematic review of methods previously used in donor health 

research that examined the association between blood donation and long-term health outcomes. 

I assessed if the studies used methods to address the HDE, and if yes, then assessed the 

suitability of those methods.  I then applied some appropriate methods to minimise the HDE 

using the linked 45 and Up Study data. For this exploration, I chose two long-term health 

outcomes: all-cause mortality and cancer (specifically gastrointestinal/colorectal, 

haematological). To assess the outcome of mortality, I used the 'target trial emulation' technique 

and the 'exposure window' method to evaluate both the initiation of blood donation and the 

effect of donating in the long term. For the cancer outcome, I selected iron-related 

gastrointestinal and colorectal cancers, as well as haematological cancers as primary outcomes 

and applied the 5-year exposure window technique to mitigate the HDE. In this section, I will 

discuss the main findings obtained from the analyses, organised according to the thesis 

objectives. 

Objective 1: To summarise the methods that have been used to adjust the HDE and 

identify any additional/new approaches that may adjust the HDE adequately. 
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To address the first objective, I conducted a systematic methods review that included studies 

assessing the impact of blood donation on donors' long-term health outcomes, such as 

cardiovascular/heart diseases, cancer, diabetes, bone density or fracture, all-cause mortality, 

morbidity, and infections. 

The HDE presents a significant methodological challenge when examining the long-term 

health impact of blood donation. In this review, approximately 70% of the included studies 

recognised the HDE, and 68% of these identified it as a limitation in their study. However, the 

methods used to address the HDE varied, and only a few seemed to effectively mitigate its 

impact. Most studies were observational and likely contained residual HDE in their findings. 

Common mitigation methods included adjusting for confounders using regression or ANOVA. 

While these methods can decrease the HDE if all relevant variables are considered, it is often 

challenging to identify and measure all potential confounding factors. Additionally, some of 

these factors can also act as intermediary determinants of exposure to donation and health 

outcomes, making simple adjustments in regression models insufficient to address the HDE 

adequately. 

Some studies have restricted their analysis to an active donor population, which can help reduce 

HDE, though not eliminate it entirely. For instance, the duration of a donation career within an 

active donor population can still introduce selection bias [59]. Therefore, even studies that limit 

their analysis to active donors cannot completely rule out the presence of residual HDE. A few 

studies have used 'qualification period' or 'exposure window' techniques within the active donor 

population to adjust HDE, specifically the Healthy Donor Career Effect (HDCE) [42, 60]. 

These techniques, which include only long-term, active donors at the end of the qualification 

period, may offer better mitigation of the HDCE than other methods. Although these methods, 

too, cannot fully exclude the possibility of residual HDE, they seem to be superior to other 

adjusting methods used in studies included in the review. 
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Overall, the methods used in previous studies do not seem to have adequately adjusted for 

HDE. If these methods are used in combination, there is a possibility that the HDE might be 

further minimised. Interestingly, some of the previous studies employed these methods 

together, yet they still could not rule out the existence of residual HDE [29, 38, 41, 46]. 

Therefore, investigating the use of other causal methods to further reduce the HDE in 

observational studies examining health outcomes in blood donors was a worthwhile choice. As 

blood donation behaviour is assumed to be time-varying in nature, current blood donation 

behaviour impacts subsequent donations. In this process, the factors that determine a donor’s 

donation behaviour also lie in the causal pathway between the donation status and long-term 

health outcome. In such scenarios, modern causal inference methods such as target trial 

emulation and g-methods could be used to measure the true causal relationship between 

exposure and outcome [62]. These methods might be more effective in adjusting for selection 

bias and, when used in conjunction with other existing methods, could further minimise HDE. 

Thus, for my thesis, I chose to use the target trial emulation in conjunction with other g-methods 

and the 'Exposure Window' technique identified from this review to mitigate the HDE while 

assessing the long-term health outcomes in blood donors. 

Objective 2: To apply the appropriate method/s to the Sax Institute’s 45 and Up Study 

data which is linked with other administrative health data sets to examine the association 

between donation and various long-term health outcomes such as mortality and cancer. 

To address the second objective, I chose a relatively new causal inference framework known 

as Target Trial Emulation along with the 'Exposure Window' technique from the methods 

review, used in conjunction with other G-methods such as Inverse Probability Weighting (IPW) 

of the Marginal Structural Model, Targeted Minimum Loss Based Estimator (TMLE), and 

Sequentially Doubly Robust Estimator (SDR). I focused on long-term health outcomes such as 

all-cause mortality and cancer incidence (gastrointestinal, colorectal, and haematological). I 
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attempted to answer three research questions while adjusting for the HDE. The first question 

was whether initiating whole blood donation could reduce the risk of mortality (Chapter 4: 

Section 1), followed by whether regular high-frequency whole blood donation could reduce the 

mortality risk compared to low-frequency blood donation (Chapter 4: Section 2). The third 

question I sought to answer was whether regular high-frequency whole blood donation could 

increase or decrease the risk of gastrointestinal, colorectal, or haematological cancer compared 

to low-frequency blood donation (Chapter 4: Section 3). 

While examining the relationship between initiating a blood donation and mortality using the 

target trial emulation method, the adjusted hazard ratio [HR: 1.0 (95% CI 0.74, 1.35)] and 

standardised survival curves, as shown in Chapter 4: Section 1 did not indicate any statistically 

significant results. This means that initiating a blood donation has no effect on mortality. I 

found similar results when applying the 5-year 'Exposure Window' technique to assess the 

impact of high-frequency blood donation on mortality in Chapter 4: Section 2. The IPW model 

did not show any significant association of high-frequency blood donation with mortality when 

compared to low-frequency blood donation [RR: 0.98 (95% CI 0.68, 1.28)]. Both time-fixed 

and time-varying TMLE models also produced results similar to the IPW model. Overall, both 

the initiation of blood donation and regular high-frequency blood donation showed no 

significant association with mortality risk. 

There are a few other studies that have explored the association between whole blood donation 

and all-cause mortality. Casale et al. discovered that blood donors generally have a longer 

lifespan than non-donors [55]. However, their results are likely biased by the HDE as they did 

not account for potential confounders and compared donors with the general population. 

Edgren et al. noted a 30% reduction in mortality among donors but did not employ any causal 

inference methods or attribute the results explicitly to blood donation [51]. Further, Ullum et 

al. sought to quantify the internal HDE, focusing on mortality among donors who retired due 
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to age-related criteria [41]. Using a Poisson regression model, they examined the influence of 

donation rate and continued donation on active donors, identifying an HDE-adjusted impact on 

the donation rate. Despite finding a 7.5% decrease in mortality risk with each additional annual 

donation, they couldn't verify if this effect was unbiased, as the adjustment was based on data 

from older donors. They also noted that causality could not be inferred as the calculated 

mortality rate ratios were defined by comparing donors with different donation rates.  Although 

these prior studies showed reduced mortality risk among donors, particularly high-frequency 

donors, compared to non-donors or occasional donors, they largely couldn't definitively 

confirm this as conclusive evidence of a beneficial effect of blood donation. 

While I compared donors and non-donors in the target trial emulation method that I employed, 

this method differs from previous studies comparing donors and non-donors. In my analyses, 

the eligibility criteria to participate in each trial were consistently implemented in 60 

consecutive trials to reduce the influence of the HDE. A wide range of potential baseline 

confounding factors, including self-reported health indicators, were also adjusted. Sensitivity 

analyses, including emulation of 120 consecutive trials, also found no significant association 

between blood donation and mortality. Additionally, a negative control analysis found no 

significant association between blood donation and hospitalisation due to injuries, further 

providing evidence that this analysis has adequately adjusted the impact of HDE. 

It is worth noting that, in the target trial analyses, there was imperfect adherence to treatment 

(donation status). This occurs when participants deviate from their originally assigned 

treatment after the start of the trial. Both in a randomised controlled trial and target trial 

emulation, the common method to deal with this imperfect adherence is to censor the person-

months when the participants deviate from their originally assigned treatment, a process known 

as per-protocol analysis. However, I did not report per protocol mortality hazard ratios in this 

study as 55.8% of donors switched to the non-donor group within one year of the follow-up, 
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which resulted in only six events in the donor group after censoring the non-adherent 

participants. Thus, in this analysis, I only reported the effect of starting/initiating blood 

donation on all-cause mortality, not the effect of continuous blood donation effect. 

The use of a 5-year 'Exposure Window' in Chapter 4: Section 2 enabled me to examine the 

effect of high-frequency regular whole blood donation compared to low-frequency donation. 

Although Ullum et al. used a similar exposure window approach to determine the donation rate 

beforehand [41], it was first used comprehensively by Peffer and colleagues when they studied 

the association between regular blood donation and cardiovascular risk [42, 60]. They used a 

three-category exposure variable based on the tertiles of donations made in 10 years. However, 

in this thesis, I classified donors into high-frequency (exposure group) and low-frequency 

donors (control group), focusing on the frequency and consistency of donation patterns. Unlike 

Peffer's study, I adjusted for time-varying exposure and time-varying confounding factors 

during the follow-up period using the doubly robust TMLE estimator, which can still produce 

unbiased estimates even if the positivity assumption is violated. As I adjusted for time-varying 

exposure and confounding factors, one could argue that using a shorter exposure window and 

adjusting for time-varying confounders would have been more appropriate in this analysis. 

However, the impact of blood donation is assumed to be lagged, and donating blood for shorter 

periods can hardly be considered to have a causal effect on mortality. Thus, from a biological 

perspective, a longer exposure window is required to determine the causal effect of blood 

donation, if there is one. 

In Chapter 4: Section 3, I again used the 5-year ‘Exposure Window’ to investigate whether 

regular high-frequency whole blood donation could increase or decrease the risk of 

gastrointestinal, colorectal, or haematological cancers compared to low-frequency blood 

donation. The IPW risk ratio for gastrointestinal/colorectal cancers was 1.25 (95% CI 0.83, 

1.68), whereas it was 0.97 (95% CI 0.55, 1.40) for haematological cancers. In addition to 



104 
 

TMLE, I used the SDR estimator in this analysis, and they also found an almost similar pattern 

of results, none of which were statistically significant. This means there were no increased or 

decreased risks of gastrointestinal/colorectal or haematological cancers among high-frequency 

blood donors when compared to low-frequency donors. 

Numerous studies have suggested a relationship between blood donation and cancer incidence, 

indicating a lower cancer risk among blood donors, possibly due to their healthier lifestyle 

choices [43, 51, 56]. However, none of these previous studies that examined the impact of 

blood donation on cancer risk used the ‘Exposure Window’ or ‘Qualification Period’ technique. 

A Swedish research study on iron depletion in blood donors showed a trend of reduced risk for 

several types of cancer among male donors who experienced significant iron loss from donation 

[29]. However, it acknowledged the potential influence of confounding factors like smoking, 

alcohol consumption, diet, exercise, body measurements, and work-related exposures. 

Similarly, a US cohort study found a lower colorectal cancer risk in regular male blood donors, 

possibly due to HDE [30]. Contrarily, some research has also suggested that high-frequency 

donors might have an increased risk of haematological malignancies, potentially due to 

enhanced cell proliferation triggered by frequent blood cell removal [29, 56]. Yet, a recent 

Swedish study found no heightened risk of such cancers in frequent donors, dismissing the 

higher risk of chronic lymphocytic leukemia as non-causal due to the lack of a dose-response 

relationship [46]. 

5.2 Strengths and Limitations 

Through a systematic review of methods, followed by their application to the linked Sax 

Institute’s 45 and Up Study data, this thesis found no statistically significant association 

between regular blood donation and long-term health outcomes (mortality and some types of 

cancers). The thesis has several notable strengths. First, I adjusted a comprehensive set of 

potential confounding factors in all the analyses, which most of the previous studies lacked. 
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Secondly, the use of ‘Target Trial Emulation’ and ‘Exposure Window’ methods helped to create 

less biased comparison groups, which many of the previous studies struggled to do. In the 

Target Trial, the continuous application of eligibility criteria and adjusting trial-specific 

baseline confounders largely mitigated the overall HDE. In the ‘Exposure Window’ method, 

the restriction of the comparison groups to the active donor population reduced the Healthy 

Registration Effect (HRE) and Healthy Donor Survivor Effect (HDSE). Additionally, the 

separation of the exposure period and follow-up period mitigated the Healthy Donor Career 

Effect (HDCE). Finally, the utilisation of doubly robust models with machine learning 

algorithms helped to produce more robust results and provided protection against model 

misspecification. 

This thesis has some limitations as well. The majority of the research population in this study 

consists of older Australian donors, which may restrict the generalisability of the findings to 

younger donors and other donor populations. People who donate blood for therapeutic reasons 

such as patient with hereditary hemochromatosis and polycythaemia rubra vera were also 

excluded from the analysis. In the target trial analysis, an important issue was non-adherence 

to assigned treatment, resulting in a significant number of donors switching to the non-donor 

group. This was exacerbated by a low number of events, leading to the decision against 

conducting a per-protocol analysis. Another notable limitation in the ‘Exposure Window’ 

analysis was the unavailability of donation records prior to June 2002, which made it 

impossible to evaluate the impact of the entire donation history or the time since the first 

donation. Moreover, a relatively smaller sample size and shorter follow-up time compared to 

some of the previous studies might have impacted the precision of the effect estimation.  

It is important to note that the variables I used in the analysis from 45 and Up Study data are 

self-reported. However, data linkage enabled us to validate and cross-reference the 45 and Up 
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Study data with other administrative health data sets which mitigated the concerns about data 

accuracy and reliability to a significant extent. 

5.3 Recommendations for Future Study 
 

The healthy donor effect is a significant methodological pitfall that can bias the studies 

investigating the association between blood donation and long-term health outcomes. To 

minimise this bias and generate robust effect estimates, future studies can utilise a few 

strategies. Firstly, a blend of study design and analysis plan should be implemented. Only 

statistical modelling techniques without appropriate study design and data collection will keep 

room for the residual HDE. The use of causal inference methods (Target trial, G-methods) 

should be considered. 

Further, as also recommended by Atsma and colleagues, the analysis restricted only to the 

donor population will reduce the healthy donor effect significantly [15]. However, one can 

incorporate the target trial emulation technique if they want to compare between donor and 

non-donor. This approach, which is a type of observational study designed to mimic the 

characteristics of a randomised controlled trial, can help to produce more reliable and valid 

results. 

As blood donation can be thought of as a time-varying exposure, Inverse Probability Weighting 

of Marginal Structural Models can be used to adjust for time-varying exposure and 

confounding factors. More advanced alternative g methods, such as Targeted Minimum Loss 

Based Estimator (TMLE) and the Sequentially Doubly Robust (SDR) models, can also be 

valuable. These tools are very useful for both time-fixed and time-varying analyses as they can 

employ machine learning algorithms, which can significantly improve the accuracy of the 

findings. Nonetheless, the implementation of these methods can be computationally intensive 

and time-consuming. 
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Lastly, to effectively apply these causal methods, researchers must have access to a 

comprehensive set of variables related to the health of donors both at baseline and during the 

follow-up period. The collection of this data is critical and should be considered during the 

design phase of studies to ensure that they offer the most robust and insightful results possible. 

5.4 Conclusion 
 

This thesis aimed to address the Healthy Donor Effect in examining the relationship between 

regular whole blood donation and long-term health outcomes, specifically mortality and 

gastrointestinal, and haematological cancers. Through a systematic review of methods, 

followed by their application to the linked Sax Institute’s 45 and Up Study data, this thesis 

found no significant association between regular blood donation and these health outcomes. 

These findings can provide crucial insights for the Australian Red Cross Lifeblood’s strategic 

planning, aiding in setting priorities and directing future research. In summary, while blood 

donation does not offer any clear protective benefits against mortality and cancers, it does not 

pose any harm too, thus improving our understanding of its long-term health impacts. 
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Appendices 
 

A.  Search Strategy for PubMed Database. 
 

("Blood Donors"[mh] OR "blood donor*"[tiab] OR "blood donation"[tiab] OR "donating blood"[tiab] 

OR "plasma donor*"[tiab] OR "plasma donation*"[tiab] OR "donating plasma"[tiab] OR "platelet 

donor*"[tiab] OR "platelet donation*"[tiab] OR "donating platelet"[tiab] OR "apheresis donor*"[tiab] 

OR "apheresis donation*"[tiab]) 

AND 

("Coronary Disease"[mh] OR "coronary disease*"[tiab] OR "coronary heart disease*"[tiab] OR 

"Myocardial Infarction"[mh] OR "myocardial infarction*"[tiab] OR "heart attack*"[tiab] OR "Heart 

Diseases"[mh] OR "heart disease*"[tiab] OR "heart failure"[tiab] OR "cardiac disease*"[tiab] OR 

cardiovasc*[tiab] OR cvd[tiab] OR Neoplasms[mh] OR cancer[tiab] OR "Bone Density"[mh] OR 

"Fractures, Bone*"[mh] OR fracture*[tiab] OR "bone mineral density"[tiab] OR "bone density"[tiab] 

OR "Life Expectancy"[mh] OR "life expectancy"[tiab] OR "Mortality"[mh] OR "mortality"[tiab] OR 

"morbidity"[tiab] OR "all-cause mortality"[tiab] OR infection[tiab]) 

NOT 

("Blood Transfusion"[mh] OR "blood transfusion*"[tiab] OR "Blood Transfusion, Autologous"[mh] 

OR "autologous blood transfusion"[tiab] OR "autotransfusion"[tiab] OR "autologous blood"[tiab] OR 

vasovagal[tiab] OR fainting[tiab] OR haematoma[tiab] OR "arterio-venous fistula"[tiab] OR 

"compartment syndrom*"[tiab] OR hypovolemic [tiab] OR bruising[tiab] OR hypocalcemia[tiab] OR 

"Transfusion Reaction"[mh] OR "adverse reaction*"[tiab] OR hemolytic[tiab] OR hypotensive[tiab] 

OR "delayed serologic"[tiab] OR "allergic reaction"[tiab] OR "circulatory overload*"[tiab] OR 

dyspnea[tiab] OR "posttransfusion purpura"[tiab] OR Transplantation[mh] OR transplantation[tiab] 

OR HIV[mh] OR HIV[tiab] OR "human immunodeficiency virus"[tiab] OR "Acquired 

Immunodeficiency Syndrome"[mh] OR aids[tiab] OR htlv[tiab] OR "human t cell leukemia"[tiab] OR 

"human t lymphotropic"[tiab] OR "human t cell lymphotropic"[tiab] OR "Hepatitis B"[mh] OR 

"Hepatitis C"[mh] OR hepatitis[tiab] OR "Syphilis"[mh] OR syphilis[tiab] OR tuberculosis[tiab] OR 

"blood group*"[tiab] OR DNA[mh] OR dna[tiab] OR RNA[mh] OR rna[tiab] OR Genetics[mh] OR 

"genetic*"[tiab] OR Genes[mh] OR "genes"[tiab] OR "stem cell*"[tiab] OR "Blood Safety"[mh] OR 

"blood supply safety"[tiab] OR hemovigilance[tiab] OR "blood product*"[tiab] OR "blood 

recipient*"[tiab] OR Child[mh] OR child[tiab] OR Infant[mh] OR infant*[tiab] OR newborn[tiab]) 
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B.  Study hypothesis, outcomes, and association with blood donation from 
methods review. 
 

Table 0.1 Study hypothesis, outcomes, and association with blood donation. 

First 

author 

and 

year 

Hypothesis/argument 
Primary 

Outcome 

Factors controlled 

(adjusted) 
Observed association 

Casale 

1983 

Longer life expectancy in blood donors 

than non-donors  

Death  N/A Blood donors had a lower 

death rate than non-donor 

Merk 1990 Blood donation might be associated 

with cancer development. 

Cancer Age Blood donors had a lower 

cancer risk 

Lasek 

1994 

Investigated the cancer incidence 

among blood donors in relation to NKa 

cells 

Cancer N/A No association of blood 

donation and cancer 

incidence in relation with 

NKa cells 

Meyers 

1997 

Depletion of iron through blood 

donation may reduce CHDb among 

donors. 

Cardiovascular events Education level, physical 

activity, lipid disorders, 

hypertension, and diabetes 

mellitus 

Non-smoker male blood 

donors had a lower CHDb 

risk 

Tuomainen 

1997 

Investigated the association of 

donating blood with the risk of acute 

myocardial infarction 

Myocardial Infarction Age, diseases and family 

history, smoking, blood 

pressure, apolipoprotein B 

Blood donor had a lower 

myocardial infarction  rate 

 Salonen 

1998 

Voluntary blood donation is associated 

with a reduced risk of acute 

myocardial infarction 

Myocardial Infarction Age, diseases and family 

history, biologic risk factors, 

behavioral risk factors, 

psychological risk factors 

Blood donor had a lower 

myocardial infarction  rate 

Ascherio 

2001 

Regular blood donation reduces the 

risk of myocardial infarction 

Fatal CHDb and 

nonfatal myocardial 

infarction. 

Age, BMIc, smoking, physical 

activity, alcohol, vit E, history 

of myocardial infarction, 

diabetes, hypertension, high 

blood cholesterol 

No association between 

blood donation and 

myocardial infarction 

Meyers 

2002 

Whole blood donation might be 

associated with a reduced risk of 

cardiovascular events. 

Cardiovascular 

diseases:  

Age, BMIc, smoking, diabetes 

drug, Antihypertensive drugs, 

Lipid-modifying drugs, family 

history, prior blood donations 

blood donor had a lower 

myocardial infarction  rate 

Jiang 2004 Examined dietary iron intake and 

history of blood donations in relation 

to the incidence of type 2 

diabetes 

Type 2 diabetes Age, (BMI; in kg/m2), family 

history of diabetes, physical 

activity, 

smoking, alcohol consumption, 

and dietary variables 

No association between 

blood donation and type 2 

diabetes 

 Edgren 

2008 

Repeated blood donation is associated 

with cancer incidence. 

Cancer Age, sex, country of residence. No association between 

blood donation and cancer 

overall. Although the risk of 

non-Hodgkin lymphoma was 
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First 

author 

and 

year 

Hypothesis/argument 
Primary 

Outcome 

Factors controlled 

(adjusted) 
Observed association 

higher among frequent 

plasma donors 

Amrein 

2010 

Investigated the effects of apheresis on 

acid-base balance, bone, and mineral 

metabolism and  compared BMDd at 

the lumbar spine and hip of donors to 

matched control subjects 

BMDd BMIc, physical activity, daily 

calcium intake 

Apheresis donor had a lower 

BMDd rate 

Zhang 

2012 

Frequent blood donation is associated 

with a lower risk of colorectal 

cancer 

Colorectal Cancer Age, smoking, colorectal 

cancer history in the family, 

colonoscopy history, BMIc, 

aspirin use, physical activity,  

No association between 

colorectal cancer and blood 

donation 

Germain 

2013 

 The rate of CHDb would be lower 

among donors who remained eligible, 

that is, potentially exposed to 

bloodletting, compared to disqualified 

(unexposed) donors. 

CHDb related 

hospitalization and 

death 

Age, sex, region, number of 

previous donations, year of 

entry in the study 

No association between 

blood donation and CHDb 

 Vahidnia 

2013 

Investigated cancer incidence among 

blood donors, also investigated HDEe 

All-cause mortality 

and cancer 

Cancer site, adjusted for age at 

diagnosis, sex, race, 

socio-economic status, tumor 

stage, and grade at diagnosis 

The donor had a lower death 

rate (among cancer subjects) 

 Germain 

2012 

Temporarily deferring prospective 

donors who have an atypical pulse rate 

can prevent the triggering of CHDb 

events. 

Death/hospitalization 

due to CHDb 

Age, sex, residence, previous 

donations, 

No association between 

atypical pulse rate and CHDb 

 Gallerani 

2014 

Blood donors exhibit significant 

differences in an increased risk of 

illness, hospitalization, and death when 

compared with non-blood donors. 

Diseases (malignancy, 

leukemias, 

lymphomas, 

myeloma), 

hospitalization, death 

Age, sex, number of 

hospitalizations 

Blood donor had a lower 

death rate, No association 

with malignancy 

Boot 2015 BMDd is lower in postmenopausal 

apheresis donors compared to 

postmenopausal whole blood donors 

of similar age. 

BMDd Age, BMIc, postmenopausal 

years 

Apheresis donors did not 

have lower BMDd 

Ullum 

2015 

Investigated the relation between 

blood donation frequency and 

mortality. 

All-cause mortality Age, sex, country, calendar 

period, Haemoglobin (hb) 

Frequent blood donors had a 

lower mortality rate 

 Ishii 2016 Frequent blood donation increases the 

risk of Non-Hodgkin's lymphoma 

Non-Hodgkin's 

lymphoma (including 

subtypes) 

Age, BMIc, alcohol, smoking, 

height, physical activity, race 

No association between 

blood donation and NHL 

 Edgren 

2016 

Frequent donors have a higher PVf risk 

than less frequent donors. 

PVf Effect modification (sex, 

country, age), haemoglobin 

concentration 

No association between 

blood donation and PVf 
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First 

author 

and 

year 

Hypothesis/argument 
Primary 

Outcome 

Factors controlled 

(adjusted) 
Observed association 

Grau 2017 Frequent apheresis donation is 

associated with fracture risk 

All fractures, 

especially 

osteoporosis-related 

fractures 

Age (in 1-year categories), sex, 

calendar period of observation 

(in 1-year categories), 

No association between 

apheresis blood donation and 

fracture 

Haron 

2018 

Long-term regular plateletpheresis 

donation affects calcium and 

magnesium levels and BMDd 

Calcium magnesium 

and BMDd 

N/A No association between 

apheresis blood donation and 

BMDd 

Hendig 

2018 

Investigated the impact of frequent 

plasma donations on parameters of 

calcium-phosphate and bone 

metabolism 

Bone metabolism 

marker 

N/A Apheresis donor has 

increased risk of bone 

turnover 

Peffer 

2019 

Higher frequency blood donation 

decreases cardiovascular risk 

Cardiovascular disease 

events (including 

cardiovascular death) 

Age, donation career, SBPg, 

DBPh, BMIc, blood type 

Women donors had 

decreased cardiovascular 

disease risk; Man donors had 

no association with 

cardiovascular diseases 

Bialkowski 

2019 

High-frequency apheresis blood 

donation causes a decline in BMDd 

BMDd Age, risk factors, BMIc, 

baseline BMDd, health 

condition, diet 

 Apheresis donation had no 

association with BMDd for 

male donors 

Zhao 2020 Blood donations increase the risk of 

developing haematological 

malignancies, specifically ALLi, 

AMLj, , CLLk, CMLl, Hodgkin 

lymphoma, and myeloma, as well 

other non-Hodgkin lymphomas. 

ALLi, AMLj, CLLk, 

CMLl, Hodgkin 

lymphoma, multiple 

myeloma, and other 

non-Hodgkin 

lymphomas 

Age, sex, age at first donation, 

country of birth 

No association between 

blood donation and 

malignancy 

Zhao 2020 Investigated the risk of infection in 

Plateletpheresis donors using an LRS 

chamber. 

Infection (common 

bacterial 

infections, 

immunosuppression-

related infections) 

Age, sex, the interaction of age 

and sex, region, and calendar 

year 

Apheresis donors had an 

increased risk of infection 

 
a NK, Natural killer b  CHD, Coronary heart disease c BMI, Body mass index d BMD, Bone mineral density e HDE, Healthy donor effect                      
f PV, Polycythemia vera g SBP, Systolic blood pressure h DBP, Diastolic blood pressure i ALL, Acute lymphoblastic leukemia 

 j AML, Acute myeloid leukemia  k CLL, Chronic lymphocytic leukemia  l CML, Chronic myeloid leukemia 
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C. Overview of the separation principle for a general database linkage 
methodology as described by Kelman, Bass and Holman [78] 
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D.  Intention to treat (ITT) mortality hazard ratios for 60 trials with 95% CI. 
 

Table 0.2 Intention to treat (ITT) mortality hazard ratios for 60 trials with 95% CI 

(Administrative end June 2016). 

 Donor vs non-donor 

Unique Persons 121967 
Cases 5605 
Unique cases 2800 
Person trials 263300 
Unadjusteda 0.52 (0.41, 0.65) 
Age-sex adjusteda 0.64 (0.50, 0.81) 
Adjusted for all baseline covariatesb 0.87 (0.68, 1.10) 

aConfidence intervals are calculated using a robust variance estimator as many individuals 
participated in more than one trial. 
bBaseline variables in Table 4.1 were included as covariates. 
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E.  Intention to treat (ITT) mortality hazard ratios for 120 trials with 95% CI. 
 

Table 0.3 Intention to treat (ITT) mortality hazard ratios for 120 trials with 95% CI (5 years 

follow-up or administrative end July 2016). 

 Donor vs non-donor 

Unique Persons 142476 
Cases 5504 
Unique cases 1748 
Person trials 590800 
Unadjusteda 0.49 (0.36, 0.65) 
Age-sex adjusteda 0.59 (0.44, 0.79) 
Adjusted for all baseline covariatesb 0.83 (0.62, 1.11) 

aConfidence intervals are calculated using a robust variance estimator as many individuals 
participated in more than one trial. 
bBaseline variables in Table 4.1 were included as covariates. 
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F.  Intention to treat (ITT) injury-hospitalization hazard ratios for 60 and 120 
trials with 95% CI. 
 

Table 0.4 Intention to treat (ITT) injury-hospitalization hazard ratios for 60 and 120 trials with 

95% CI. 

 60 trials 
Donor vs non-donor 

120 trials 
Donor vs non-donor 

Unadjusteda 0.88 (0.76, 1.01) 0.92 (0.81, 1.04) 
Age-sex adjusteda 0.89 (0.76, 1.03) 0.93 (0.81, 1.05) 
Adjusted for all baseline covariatesb 0.94 (0.81, 1.10) 0.98 (0.86, 1.12) 

aConfidence intervals are calculated using a robust variance estimator as many individuals 
participated in more than one trial. 
bBaseline variables in Table 4.1 were included as covariates. 
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G.  Categorisation and derivation of variables used in the target trial study. 
 

Table 0.5 Categorisation and derivation of variables used in this study from 45 and Up Study 

data, APDC, MBS and PBS data set. 

Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

Age at baseline (continuous 
variable) 

#What is your date of birth? 
#What is today’s date? 

(today’s date-date of birth)/365.25 
+ 730 

Body mass index at recruitment 
(kg/m2) 

#How tall are you without shoes? 

#About how much do you weigh? 

Body mass index is calculated as- 
weight in kilogram/(height in 
meter)2.  

Unknown category represents 
when information is lacking to 
calculate BMI or the calculated 
BMI is invalid (< 9 or 50) 

  <18.5 
  18.5 – 24.9 
  25-29.9 
  30+ 
  Unknown 
Smoking Status  #Have you ever been a regular 

smoker? 

Yes ▼ No If No – please go to 
question x 

How old were you when you 
started 

smoking regularly? □ years old 

Are you a regular smoker now? 
Yes, No 

If No – how old were you when 
you 

stopped smoking regularly?  
years old 

Never= ‘Have you ever been a 
regular smoker- No’, 

Current= ‘Are you a regular 
smoker now?-Yes’ 

Past= ‘Have you ever been a 
regular smoker- Yes’ but ‘Are you 
a regular smoker now?-No’ 

Unknown when not enough 
information is available to 
categorise in to above three 
categories 

  Never 
  Former 
  Regular 
  Unknown 

Self-rated health at recruitment #In general, how would you rate 
your: overall health? 

-Excellent 
-Very good 
-Good 
-Fair 
-Poor 

fair and poor categories were 
combined as one category 
fair/poor. 
Unknown= No information 
provided 

  Excellent 
  Very good 
  Good 
  Fair/Poor 
  Unknown 

Alcohol consumption/day #About how many alcoholic 
drinks do you have each week? 
one drink = a glass of wine, middy 
of beer or nip of spirits (put “0” if 
you do not drink, or have less than 
one drink each week) 

  number of alcoholic drinks 
each week 

None=0 or <1 drink each week, 
≤1/day= number of alcoholic 
drinks each week is ≤7 
>1/day= number of alcoholic 
drinks each week is >7 
Unknown= No information 
provided 

  None 
  ≤1/day 
  >1/day 

Education level  #What is the highest qualification 
you have completed? (please put a 
cross in the most appropriate box) 
-no school certificate or other 
qualifications 

No formal education =‘no school 
certificate or other qualifications’ 
School to diploma= ‘school or 
intermediate certificate (or 
equivalent)’, ‘higher school or 

  No formal education 
  School to Diploma 
  University 
  Unknown 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

-school or intermediate certificate 
(or equivalent) 
-higher school or leaving 
certificate (or equivalent) 
-trade/apprenticeship (e.g. 
hairdresser, chef) 
-certificate/diploma (e.g. child 
care, technician) 
-university degree or higher 

leaving certificate (or equivalent)’, 
‘trade/apprenticeship (e.g. 
hairdresser, chef)’, 
‘certificate/diploma (e.g. child 
care, technician)’ 
University=’university degree or 
higher’ 
Unknown= no information 
provided 

Annual household income  #What is your usual yearly 
HOUSEHOLD income before tax, 
from all sources? (please include 
benefits, pensions, 
superannuation, etc) 
-less than $5,000 per year  
-$5,000-$9,999 per year  
-$10,000-$19,999 per year  
-$20,000-$29,999 per year  
-$30,000-$39,999 per year  
-$40,000-$49,999 per year  
-$50,000-$69,999 per year  
-$70,000 or more per year            
-I would rather not answer this 
question 

<20k= ‘less than $5,000 per year’,  
‘$5,000-$9,999 per year’ , 
‘$10,000-$19,999 per year’ 
20k-39k= ‘$20,000-$29,999 per 
year’,  ‘$30,000-$39,999 per year’ 
40k-69k= ‘$40,000-$49,999 per 
year’, ‘$50,000-$69,999 per year’ 
70k+= ‘$70,000 or more per year’ 
Unknown = ‘I would rather not 
answer this question’ or when no 
information available   

  <20k 
  20k-39k 
  40k-69k 
  70k+ 
  Unknown 

Physical activity/week #How many TIMES did you do 
each of these activities LAST 
WEEK? 

(put "0" if you did not do this 
activity)  

Vigorous physical activity (that 
made you breathe harder or puff 
and pant, like jogging, cycling, 
aerobics, competitive tennis, but 
not household chores or 
gardening) 

  times in the last week 

  <1/week= No vigorous physical 
activity in the last week 

≥1/week= 1 or more times in the 
last week 

Unknown= No information is 
available 

  <1/week 
  ≥1/week 
  Unknown 

Daily fruits/vegetable consumed  #About how many serves of fruit 
or glasses of fruit juice do you 
usually have each day? A serve is 
1 medium piece or 2 small pieces 
or 1 cup of diced or canned fruit 
pieces (put “0” if you eat less than 
one serve a day) 

  number of serves of fruit each 
day 

  number of glasses of fruit 
juice each day 

 I don’t eat fruit 

# About how many serves of 
vegetables do you usually eat each 
day? A serve is half a cup of 
cooked vegetables or one cup of 

Absolute number of serves of fruit 
and vegetable consumed in a day 
was combined. The combined 
number was used for 
categorisation.  

0-2= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. 
salad)’≤2 

3-4= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. salad)’3 
to 4 

  0-2 
  3-4 
  5+ 
  Unknown 



126 
 

Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

salad (please include potatoes and 
put “0” if less than one a day) 

  number of serves of cooked 
vegetables each day 

  number of serves of raw 
vegetables each day (e.g. salad) 

 I don’t eat vegetables 

5+= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. 
salad)’>=5  

 

Unknown= No information 
available  

Location  # RA_NAME_2011 Geographical location of the 
participant was categorised as — 
major city, inner regional or outer 
regional/remote, according to the 
Accessibility/Remoteness Index of 
Australia [ARIA+] derived from 
postcode at recruitment.   

Major city,  when 
RA_NAME_2011= ‘Major Cities 
of Australia’ 

Regional and remote, when 
RA_NAME_2011= ‘Inner 
Regional Australia’ or ‘Outer 
Regional Australia’ or ‘Remote 
Australia’ or ‘Very Remote 
Australia’ 

Unknown= No information 
available 

  Major city 
  Regional/Remote 
  Unknown 

No. of gp visits in the past 3 
months 

# date of service in Medicare 
claims data 

Counting number of services 
taken in the past 3 months for an 
individual. Three categories were 
created for this No. of Gp visits 
variable. 

  0-1 
  2-4 
  5+ 
No. of referrals in the past 3 
months 

# date of referral in Medicare 
claims data 

Counting number of diagnostic 
tests referrals given in the past 3 
months for an individual. Four 
categories were created for this 
No. of referrals variable. 

  0 
  1 
  2-4 
  5+ 
Charlson co-morbidity index  # Diagnoses for the episode of 

care from APDC data. Principal 
diagnosis has ‘P’ suffix. 
diagnosis_codeP, diagnosis_code1 
-diagnosis_code50 
# The diagnosis code used ICD-10 
algorithm. 

The weighted Charlson Co-
morbidity index were calculated 
by using the following reference: 
Quan, H., et al., Updating and 

validating the Charlson 

comorbidity index and score for 

risk adjustment in hospital 

discharge abstracts using data 

from 6 countries. American 
journal of epidemiology, 2011. 
173(6): p. 676-682. 

  0 
  ≥ 1 

Rx-Risk index  # Anatomical Therapeutic 
Chemical (ATC) classification 
code (atc_code) and date on which 

The weighted Rx-Risk index was 
calculated by using the following 
reference: 

  None 
  -6 to -1 
  0 to 2 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

  3+ the PBS item was supplied 
(date_of_supply) 

Pratt, N.L., et al., The validity of 

the Rx-Risk comorbidity index 

using medicines mapped to the 

anatomical therapeutic chemical 

(ATC) classification system. BMJ 
open, 2018. 8(4): p. e021122. 
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H.  Estimated 7-year mortality risk, risk difference and risk ratios for high and 
low-frequency donors in a complete case analysis. 
 

Table 0.6 Estimated 7-year mortality risk, risk difference and risk ratios for high and low-

frequency donors (Complete case analysis). 

Models Risk, % (95% CI) Risk Difference, 
% (95% CI) 

Risk Ratio (95% 
CI) 

Low Frequency High Frequency 

Inverse 
probability 
weighteda 

1.8 (1.4, 2.2) 1.5 (1.1, 1.9) -0.3 (-0.9, 0.2) 0.83 (0.47, 1.19) 

Targeted 
minimum loss 
based estimator 
(TMLE)a 

1.8 (1.5, 2.1) 1.5 (1.2, 1.7) -0.3 (-0.7, 0.1) 0.81 (0.65, 1.01) 

TMLE (time-
varying)b 

1.6 (1.2, 2.1) 1.6 (1.0, 2.3) 0.0 (-0.8, 0.8) 1.00 (0.60, 1.66) 

            aadjusted for sex, age, BMI, smoking status, self-rated health, alcohol consumption, education, 
annual income, physical activity, daily consumption of fruits and vegetables, location, no. of GP 
visits in the past 1 year, no. of referrals in the past 1 year, Charlson co-morbidity index, Rx-Risk 
index. 
            btime-varying TMLE included yearly exposure status, yearly Charlson co-morbidity index, 
yearly Rx-Risk index, yearly GP visits and yearly referral information. 

             
. 
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I.  Estimated 7-year mortality risk, risk difference and risk ratios for high and 
low-frequency donors with a 3-year exposure period. 
 

Table 0.7 Estimated 7-year mortality risk, risk difference and risk ratios for high and low-

frequency donors with a 3-year exposure period. 

Models Risk, % (95% CI) Risk Difference, 
% (95% CI) 

Risk Ratio (95% 
CI) 

Low Frequency High Frequency 

Inverse 
probability 
weighted 

1.7 (1.4, 2.0) 1.6 (1.4, 1.9) -0.1 (-0.5, 0.3) 0.94 (0.68, 1.21) 

Targeted 
minimum loss 
based estimator 
(TMLE) 

1.7 (1.5, 1.9) 1.6 (1.4, 1.8) -0.1 (-0.4, 0.2) 0.94 (0.79, 1.11) 

TMLE (time-
varying)* 

2.0 (1.6, 2.5) 1.3 (1.0, 1.6) -0.8 (-1.3, -0.2) 0.60 (0.44, 0.83) 

               aAdjusted for sex, age, BMI, smoking status, self-rated health, alcohol consumption, education, 
annual income, physical activity, daily consumption of fruits and vegetables, location, no. of GP visits 
in the past 1 year, no. of referrals in the past 1 year, Charlson co-morbidity index, Rx-Risk index. 
               btime-varying TMLE included yearly exposure status, yearly Charlson co-morbidity index, 
yearly Rx-Risk index, yearly GP visits and yearly referral information. 
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J.  Estimated 5-year mortality risk, risk difference and risk ratios for high and 
low-frequency donors with a 7-year exposure period. 
 

Table 0.8 Estimated 5-year mortality risk, risk difference and risk ratios for high and low-

frequency donors with a 7-year exposure period. 

Model Risk, % (95% CI) Risk Difference, 
% (95% CI) 

Risk Ratio (95% 
CI) 

Low Frequency High Frequency 

Inverse 
probability 
weighted 

1.2 (0.9, 1.5) 1.0 (0.6, 1.4) -0.2 (-0.6, 0.3) 0.86 (0.38, 1.34) 

Targeted 
minimum 
likelihood 
estimator (TMLE) 

1.2 (0.9, 1.4) 0.9 (0.7, 1.2) -0.2 (-0.6, 0.1) 
 
 
 

0.80 (0.57, 1.11) 

TMLE (time-
varying)* 

1.8 (1.1, 2.5) 1.5 (1.0, 1.9) -0.3 (-1.2, 0.5) 0.81 (0.49, 1.33) 

         aadjusted for sex, age, BMI, smoking status, self-rated health, alcohol consumption, education, 
annual income, physical activity, daily consumption of fruits and vegetables, location, no. of GP visits 
in the past 1 year, no. of referrals in the past 1 year, Charlson co-morbidity index, Rx-Risk index. 
         btime-varying TMLE included yearly exposure status, yearly Charlson co-morbidity index, yearly 
Rx-Risk index, yearly GP visits and yearly referral information. 
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K.  Categorisation and derivation of variables used in the all-cause mortality 
exposure window study. 
 

Table 0.9 Categorisation and derivation of variables used in the exposure window all-cause 

mortality from 45 and Up Study data, APDC, Medicare claims and PBS data set. 

Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

Age at baseline (continuous 
variable) 

#What is your date of birth? 
#What is today’s date? 

(today’s date-date of birth)/365.25 
+ 730 

Body mass index at recruitment 
(kg/m2) 

#How tall are you without shoes? 

#About how much do you weigh? 

Body mass index is calculated as- 
weight in kilogram/(height in 
meter)2.  

Unknown category represents 
when information is lacking to 
calculate BMI or the calculated 
BMI is invalid (< 9 or 50) 

  <18.5 
  18.5 – 24.9 
  25-29.9 
  30+ 
  Unknown 
Smoking Status  #Have you ever been a regular 

smoker? 

Yes ▼ No If No – please go to 
question x 

How old were you when you 
started 

smoking regularly? □ years old 

Are you a regular smoker now? 
Yes, No 

If No – how old were you when 
you 

stopped smoking regularly?  
years old 

Never= ‘Have you ever been a 
regular smoker- No’, 

Current= ‘Are you a regular 
smoker now?-Yes’ 

Past= ‘Have you ever been a 
regular smoker- Yes’ but ‘Are you 
a regular smoker now?-No’ 

Unknown when not enough 
information is available to 
categorise in to above three 
categories 

  Never 
  Former 
  Regular 
  Unknown 

Self-rated health at recruitment #In general, how would you rate 
your: overall health? 

-Excellent 
-Very good 
-Good 
-Fair 
-Poor 

fair and poor categories were 
combined as one category 
fair/poor. 
Unknown= No information 
provided 

  Excellent 
  Very good 
  Good 
  Fair/Poor 
  Unknown 

Alcohol consumption/day #About how many alcoholic 
drinks do you have each week? 
one drink = a glass of wine, middy 
of beer or nip of spirits (put “0” if 
you do not drink, or have less than 
one drink each week) 

  number of alcoholic drinks 
each week 

None=0 or <1 drink each week, 
≤1/day= number of alcoholic 
drinks each week is ≤7 
>1/day= number of alcoholic 
drinks each week is >7 
Unknown= No information 
provided 

  None 
  ≤1/day 
  >1/day 
Unknown 

Education level  #What is the highest qualification 
you have completed? (please put a 
cross in the most appropriate box) 

No formal education =‘no school 
certificate or other qualifications’ 
School to diploma= ‘school or 
intermediate certificate (or 

  No formal education 
  School to Diploma 
  University 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

  Unknown -no school certificate or other 
qualifications 
-school or intermediate certificate 
(or equivalent) 
-higher school or leaving 
certificate (or equivalent) 
-trade/apprenticeship (e.g. 
hairdresser, chef) 
-certificate/diploma (e.g. child 
care, technician) 
-university degree or higher 

equivalent)’, ‘higher school or 
leaving certificate (or equivalent)’, 
‘trade/apprenticeship (e.g. 
hairdresser, chef)’, 
‘certificate/diploma (e.g. child 
care, technician)’ 
University=’university degree or 
higher’ 
Unknown= no information 
provided 

Annual household income  #What is your usual yearly 
HOUSEHOLD income before tax, 
from all sources? (please include 
benefits, pensions, 
superannuation, etc) 
-less than $5,000 per year  
-$5,000-$9,999 per year  
-$10,000-$19,999 per year  
-$20,000-$29,999 per year  
-$30,000-$39,999 per year  
-$40,000-$49,999 per year  
-$50,000-$69,999 per year  
-$70,000 or more per year            
-I would rather not answer this 
question 

<20k= ‘less than $5,000 per year’,  
‘$5,000-$9,999 per year’ , 
‘$10,000-$19,999 per year’ 
20k-39k= ‘$20,000-$29,999 per 
year’,  ‘$30,000-$39,999 per year’ 
40k-69k= ‘$40,000-$49,999 per 
year’, ‘$50,000-$69,999 per year’ 
70k+= ‘$70,000 or more per year’ 
Unknown = ‘I would rather not 
answer this question’ or when no 
information available   

  <20k 
  20k-39k 
  40k-69k 
  70k+ 
  Unknown 

Physical activity/week #How many TIMES did you do 
each of these activities LAST 
WEEK? 

(put "0" if you did not do this 
activity)  

Vigorous physical activity (that 
made you breathe harder or puff 
and pant, like jogging, cycling, 
aerobics, competitive tennis, but 
not household chores or 
gardening) 

  times in the last week 

  <1/week= No vigorous physical 
activity in the last week 

≥1/week= 1 or more times in the 
last week 

Unknown= No information is 
available 

  <1/week 
  ≥1/week 
  Unknown 

Daily serves of fruits/vegetables #About how many serves of fruit 
or glasses of fruit juice do you 
usually have each day? A serve is 
1 medium piece or 2 small pieces 
or 1 cup of diced or canned fruit 
pieces (put “0” if you eat less than 
one serve a day) 

  number of serves of fruit each 
day 

  number of glasses of fruit 
juice each day 

 I don’t eat fruit 

# About how many serves of 
vegetables do you usually eat each 
day? A serve is half a cup of 

Absolute number of serves of fruit 
and vegetable consumed in a day 
was combined. The combined 
number was used for 
categorisation.  

0-2= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. 
salad)’≤2 

3-4= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 

  0-2 
  3-4 
  5+ 
  Unknown 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

cooked vegetables or one cup of 
salad (please include potatoes and 
put “0” if less than one a day) 

  number of serves of cooked 
vegetables each day 

  number of serves of raw 
vegetables each day (e.g. salad) 

 I don’t eat vegetables 

vegetables each day (e.g. salad)’3 
to 4 

5+= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. 
salad)’>=5  

 

Unknown= No information 
available  

Location  # RA_NAME_2011 Geographical location of the 
participant was categorised as — 
major city, inner regional or outer 
regional/remote, according to the 
Accessibility/Remoteness Index of 
Australia [ARIA+] derived from 
postcode at recruitment.   

Major city,  when 
RA_NAME_2011= ‘Major Cities 
of Australia’ 

Regional and remote, when 
RA_NAME_2011= ‘Inner 
Regional Australia’ or ‘Outer 
Regional Australia’ or ‘Remote 
Australia’ or ‘Very Remote 
Australia’ 

Unknown= No information 
available 

  Major city 
  Regional/Remote 
  Unknown 

No. of GP visits in the past 1 year 
   
   
  

# date of service in Medicare 
claims data with the following 
MBS item numbers 3-4, 23-24, 
36-37, 44, 47, 193, 195, 197, 199, 
585, 594, 599, 2497-2559, 5000-
5067 and 90020-90051. 

Counting number of services 
taken in the past 1 year for an 
individual.  

No. of referrals in the past 1 year 
   
 
   

# date of referral in Medicare 
claims data 

Counting number of specialist 
consultations and pathology tests 
in the past 1 year for an 
individual.  

Charlson co-morbidity index  # Diagnoses for the episode of 
care from APDC data. Principal 
diagnosis has ‘P’ suffix. 
diagnosis_codeP, diagnosis_code1 
-diagnosis_code50 
# The diagnosis code used ICD-10 
algorithm. 

The weighted Charlson Co-
morbidity index were calculated 
by using the following reference: 
Quan, H., et al., Updating and 

validating the Charlson 

comorbidity index and score for 

risk adjustment in hospital 

discharge abstracts using data 

from 6 countries. American 
journal of epidemiology, 2011. 
173(6): p. 676-682. 

  0 
  ≥ 1 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

Rx-Risk index  # Anatomical Therapeutic 
Chemical (ATC) classification 
code (atc_code) and date on which 
the PBS item was supplied 
(date_of_supply) 

The weighted Rx-Risk index was 
calculated by using the following 
reference: 
Pratt, N.L., et al., The validity of 

the Rx-Risk comorbidity index 

using medicines mapped to the 

anatomical therapeutic chemical 

(ATC) classification system. BMJ 
open, 2018. 8(4): p. e021122. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



135 
 

 
L.  Estimated 5-year cancer risk, risk difference and risk ratios for high and low-
frequency donors for time-varying analysis. 
 

Table 0.10 Estimated 5-year cancer risk, risk difference and risk ratios for high and low-

frequency donors for time-varying analysis*. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Outcomes Models Risk, % (95% CI) Risk Difference, % 
(95% CI) 

Risk Ratio (95% 
CI) 

Low frequency High frequency 

Gastrointestinal/ 
Colorectal 

TMLE 0.8 (0.5, 1.2) 0.8 (0.5, 1.1) 0.0 (-0.5, 0.4) 0.97 (0.56, 1.66) 

SDR 0.8 (0.4, 1.1) 0.6 (0.3, 0.9) -0.2 (-0.6, 0.3) 0.79 (0.40, 1.56) 

Haematological TMLE 0.6 (0.3, 0.9) 0.5 (0.0, 0.9) -0.1 (-0.6, 0.4) 0.80 (0.27, 2.36) 

SDR 0.6 (0.2, 0.9) 0.6 (0.1, 1.0) 0.0 (-0.5, 0.6) 1.07 (0.42, 2.76) 

*Adjusted at baseline for sex, age, haemoglobin, systolic blood pressure, diastolic blood pressure, blood group, 
BMI, smoking status, self-rated health, alcohol consumption, education, annual income, physical activity, 
daily consumption of fruits and vegetables, vitamin/mineral intake, red meat consumption, processed meat 
consumption, family history of cancer, cancer screening, location, no. of GP visits in the past 1 year, no. of 
referrals in the past 1 year as well as time-varying exposure, time-varying GP visits and time-varying referral. 
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M.  Estimated 5-year cancer risk, risk difference and risk ratios for high and low-
frequency donors for the follow-up ending on 31 December 2015. 

Table 0.11 Estimated 5-year cancer risk, risk difference and risk ratios for high and low-

frequency donors for the follow-up ending on 31 December 2015*. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outcomes Models Risk, % (95% CI) Risk Difference, % 
(95% CI) 

Risk Ratio (95% 
CI) 

Low frequency High frequency 

Gastrointestinal/ 
Colorectal 

IPTW 0.7 (0.5, 0.9) 0.9 (0.6, 1.2) 0.2 (-0.2, 0.5) 1.27 (0.74, 1.80) 

Haematological IPTW 0.6 (0.5, 0.8) 0.6 (0.4, 0.8) -0.1 (-0.3, 0.2) 0.92 (0.53, 1.30) 

*Adjusted at baseline for sex, age, haemoglobin, systolic blood pressure, diastolic blood pressure, blood group, 
BMI, smoking status, self-rated health, alcohol consumption, education, annual income, physical activity, 
daily consumption of fruits and vegetables, vitamin/mineral intake, red meat consumption, processed meat 
consumption, family history of cancer, cancer screening, location, no. of GP visits in the past 1 year, no. of 
referrals in the past 1 year. 



137 
 

N.  Estimated 5-year cancer risk, risk difference and risk ratios for high and low-
frequency donors for different exposure settings. 
 

Table 0.12 Estimated 5-year cancer risk, risk difference and risk ratios for high and low-

frequency donors for different exposure settings*. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exposure 
definition 

Outcomes Risk, % (95% CI) Risk Difference, 
% (95% CI) 

Risk Ratio (95% 
CI) 

Low-frequency High-frequency 

At least 1 per 
every exposure 
year vs other 

Gastrointestinal/ 
Colorectal 

0.7 (0.4, 1.1) 0.8 (0.6, 1.0) 0.1 (-0.3, 0.5) 1.11 (0.44, 1.78) 

Haematological 1.0 (0.6, 1.4) 0.5 (0.4, 0.7) -0.4 (-0.8, 0.0) 0.57 (0.01, 1.12) 

At least 3 per 
every exposure 
year vs other 

Gastrointestinal/ 
Colorectal 

0.8 (0.6, 0.9) 0.8 (0.4, 1.2) 0.0 (-0.4, 0.4) 1.02 (0.41, 1.64) 

Haematological 0.6 (0.5, 0.7) 0.9 (0.5, 1.3) 0.3 (-0.1, 0.7) 1.44 (0.86, 2.01) 

*Adjusted at baseline for sex, age, haemoglobin, systolic blood pressure, diastolic blood pressure, blood group, 
BMI, smoking status, self-rated health, alcohol consumption, education, annual income, physical activity, 
daily consumption of fruits and vegetables, vitamin/mineral intake, red meat consumption, processed meat 
consumption, family history of cancer, cancer screening, location, no. of GP visits in the past 1 year, no. of 
referrals in the past 1 year. 
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O.  Categorisation and derivation of variables used in the cancer exposure 
window study. 
 

Table 0.13 Categorisation and derivation of variables used in the gastrointestinal/colorectal and 

haematological cancer study from 45 and Up Study data and Medicare claims data set. 

Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

Age at baseline (continuous 
variable) 

#What is your date of birth? 
#What is today’s date? 

(today’s date-date of birth)/365.25 
+ 730 

Body mass index at recruitment 
(kg/m2) 

#How tall are you without shoes? 

#About how much do you weigh? 

Body mass index is calculated as- 
weight in kilogram/(height in 
meter)2.  

Unknown category represents 
when information is lacking to 
calculate BMI or the calculated 
BMI is invalid (< 9 or 50) 

  <18.5 
  18.5 – 24.9 
  25-29.9 
  30+ 
  Missing 
Smoking Status  #Have you ever been a regular 

smoker? 

Yes ▼ No If No – please go to 
question x 

How old were you when you 
started 

smoking regularly? □ years old 

Are you a regular smoker now? 
Yes, No 

If No – how old were you when 
you 

stopped smoking regularly?  
years old 

Never= ‘Have you ever been a 
regular smoker- No’, 

Current= ‘Are you a regular 
smoker now?-Yes’ 

Past= ‘Have you ever been a 
regular smoker- Yes’ but ‘Are you 
a regular smoker now?-No’ 

Unknown when not enough 
information is available to 
categorise in to above three 
categories 

  Never 
  Former 
  Regular 
  Missing 

Self-rated health at recruitment #In general, how would you rate 
your: overall health? 

-Excellent 
-Very good 
-Good 
-Fair 
-Poor 

fair and poor categories were 
combined as one category 
fair/poor. 
Unknown= No information 
provided 

  Excellent 
  Very good 
  Good 
  Fair/Poor 
  Missing 

Alcohol consumption/day #About how many alcoholic 
drinks do you have each week? 
one drink = a glass of wine, middy 
of beer or nip of spirits (put “0” if 
you do not drink, or have less than 
one drink each week) 

  number of alcoholic drinks 
each week 

None=0 or <1 drink each week, 
≤1/day= number of alcoholic 
drinks each week is ≤7 
>1/day= number of alcoholic 
drinks each week is >7 
Unknown= No information 
provided 

  None 
  ≤1/day 
  >1/day 
Missing 

Education level  #What is the highest qualification 
you have completed? (please put a 
cross in the most appropriate box) 

No formal education =‘no school 
certificate or other qualifications’   No formal education 

  School to Diploma 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

  University -no school certificate or other 
qualifications 
-school or intermediate certificate 
(or equivalent) 
-higher school or leaving 
certificate (or equivalent) 
-trade/apprenticeship (e.g. 
hairdresser, chef) 
-certificate/diploma (e.g. child 
care, technician) 
-university degree or higher 

School to diploma= ‘school or 
intermediate certificate (or 
equivalent)’, ‘higher school or 
leaving certificate (or equivalent)’, 
‘trade/apprenticeship (e.g. 
hairdresser, chef)’, 
‘certificate/diploma (e.g. child 
care, technician)’ 
University=’university degree or 
higher’ 
Unknown= no information 
provided 

  Missing 

Annual household income  #What is your usual yearly 
HOUSEHOLD income before tax, 
from all sources? (please include 
benefits, pensions, 
superannuation, etc) 
-less than $5,000 per year  
-$5,000-$9,999 per year  
-$10,000-$19,999 per year  
-$20,000-$29,999 per year  
-$30,000-$39,999 per year  
-$40,000-$49,999 per year  
-$50,000-$69,999 per year  
-$70,000 or more per year            
-I would rather not answer this 
question 

<20k= ‘less than $5,000 per year’,  
‘$5,000-$9,999 per year’ , 
‘$10,000-$19,999 per year’ 
20k-39k= ‘$20,000-$29,999 per 
year’,  ‘$30,000-$39,999 per year’ 
40k-69k= ‘$40,000-$49,999 per 
year’, ‘$50,000-$69,999 per year’ 
70k+= ‘$70,000 or more per year’ 
Unknown = ‘I would rather not 
answer this question’ or when no 
information available   

  <20k 
  20k-39k 
  40k-69k 
  70k+ 
  Missing 

Physical activity/week #How many TIMES did you do 
each of these activities LAST 
WEEK? 

(put "0" if you did not do this 
activity)  

Vigorous physical activity (that 
made you breathe harder or puff 
and pant, like jogging, cycling, 
aerobics, competitive tennis, but 
not household chores or 
gardening) 

  times in the last week 

  <1/week= No vigorous physical 
activity in the last week 

≥1/week= 1 or more times in the 
last week 

Unknown= No information is 
available 

  <1/week 
  ≥1/week 
  Missing 

Daily serves of fruits/vegetables #About how many serves of fruit 
or glasses of fruit juice do you 
usually have each day? A serve is 
1 medium piece or 2 small pieces 
or 1 cup of diced or canned fruit 
pieces (put “0” if you eat less than 
one serve a day) 

  number of serves of fruit each 
day 

  number of glasses of fruit 
juice each day 

 I don’t eat fruit 

# About how many serves of 
vegetables do you usually eat each 

Absolute number of serves of fruit 
and vegetable consumed in a day 
was combined. The combined 
number was used for 
categorisation.  

0-2= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. 
salad)’≤2 

3-4= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 

  0-2 
  3-4 
  5+ 
  Missing 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

day? A serve is half a cup of 
cooked vegetables or one cup of 
salad (please include potatoes and 
put “0” if less than one a day) 

  number of serves of cooked 
vegetables each day 

  number of serves of raw 
vegetables each day (e.g. salad) 

 I don’t eat vegetables 

vegetables each day (e.g. salad)’3 
to 4 

5+= when ‘number of serves of 
fruit each day’+ ‘number of serves 
of cooked vegetables each day’+  
‘number of serves of raw 
vegetables each day (e.g. 
salad)’>=5  

 

Missing= No information 
available  

Taking any vitamin & mineral? # Have you taken any 
medications, vitamins or 
supplements for most of the last 4 
weeks: 
 multivitamins+minerals 
 

No = Didn’t take multivitamins 
and minerals 

Yes =  Took multivitamins and 
minerals 

Missing = No information 
available 

No 
Yes 
Missing 

Consumption of red meat # About how many times each 
week do you eat beef, lamb or 
pork? 
 
  number of times eaten each 
week. 

 
 

<5/week = No. of time eaten beef, 
lamb or pork <5 per week 

>= 5/week = No. of time eaten 
beef, lamb or pork >= 5 per week 

Missing =  No information 
available 

<5/week 
>= 5/week 
Missing 

Consumption of processed meat # About how many times each 
week do you eat processed meat 
(include bacon, sausages, salami, 
devon, burgers, etc) 
 
 
  number of times eaten each 
week. 

 

<3/week = No. of time eaten 
processed eat were <3 per week 

>= 3/week = No. of time eaten 
processed meat were >= 3 per 
week 

Missing =  No information 
available 

<3/week 
>= 3/week 
Missing 

Family History of cancer #Have your mother, father, 
brother(s) or sister(s) ever had:  

“Breast cancer, bowel cancer, lung 
cancer, melanoma, prostate 
cancer, ovarian cancer” 

(blood relatives only) 

No= No history of any cancer in 
mother or father or brother or 
sister 

Yes= History of any type of 
cancer in mother or father or 
brother or sister 

No 
Yes 

Cancer screening # Have you ever had a blood test 
ordered by your doctor to check 
for prostate disease? (PSA test) 
(for men) 
 Yes   No 

# Have you ever been for a breast 
screening mammogram? 

 Yes   No 

For men, 

No = No PSA test or bowel cancer 
screening 

Yes = Either PSA test or bowel 
cancer screening 

For women, 

No = No mammogram or bowel 
cancer screening 

No 
Yes 
Missing 
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Variable names and categories 
in this study 

45 and Up Study baseline 
questions or other data set’s 
variables name 

Recategorization/Derivation 

# Have you ever been screened for 
colorectal (bowel) cancer? 

 Yes   No 

 

Yes = Either mammogram or 
bowel cancer screening 

Missing = No information 
available 

Location  # RA_NAME_2011 Geographical location of the 
participant was categorised as — 
major city, inner regional or outer 
regional/remote, according to the 
Accessibility/Remoteness Index of 
Australia [ARIA+] derived from 
postcode at recruitment.   

Major city,  when 
RA_NAME_2011= ‘Major Cities 
of Australia’ 

Regional and remote, when 
RA_NAME_2011= ‘Inner 
Regional Australia’ or ‘Outer 
Regional Australia’ or ‘Remote 
Australia’ or ‘Very Remote 
Australia’ 

Unknown= No information 
available 

  Major city 
  Regional/Remote 
  Unknown 

No. of GP visits in the past 1 year 
   
   
  

# date of service in Medicare 
claims data 

Counting number of services taken 
in the past 1 year for an individual.  

No. of referrals in the past 1 year 
   
 
   

# date of referral in Medicare 
claims data 

Counting number of diagnostic 
tests referrals given in the past 1 
year for an individual.  
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P.  SAS and R codes used in the study. 
 

/*SAS codes for calculating Charlson and Rx-Risk co-morbidity index*/ 
 
libname apdc 'G:\edvlink_2019_original_extracted_data\NSW APDC' access=readonly; 
libname rbdm 'G:\edvlink_2019_original_extracted_data\NSW RBDM Deaths' access=readonly; 
libname mylib 'G:/morshad_sas'; 
 
options nofmterr; 
* this adds on the Charlson CCI for individual episodes of care; 
* and the elixhauser index; 
 
 
data _NULL_; 
 if 0 then set apdc.pr2015422_apdc_sensitive_health nobs=n; 
 call symputx('nrows',n); 
run; 
 
%put nobs=&nrows; 
 
data charlson; 
 set apdc.pr2015422_apdc_sensitive_health  
/* (obs= 11000)*/ 
; 
 if _N_ = 1 then put "Record is:"; 
 if mod(_N_,10000) = 0 then do; 
  x = round(_N_/&nrows*100,0.1); 
  put x '%'; 
  
 end; 
 
 array dx(*) diagnosis_codeP diagnosis_code1-diagnosis_code50; 
 array cc_grp(17) cc_grp_1-cc_grp_17; 
 array elix(31) elix_grp_1-elix_grp_31; 
 do i = 1 to 17; 
  cc_grp(i)=0; 
 end; 
 do i = 1 to 31; 
  elix(i) = 0; 
 end; 
 
 do i = 1 to dim(dx); 
  if dx(i) in: ('I21','I22','I25.2') then cc_grp_1=1; 
  LABEL cc_grp_1 = 'Acute myocardial infarction'; 
 
  if dx(i) in: 
('I43','I50','I09.9','I11.0','I13.0','I13.2','I25.5','I42.0','I42.5','I42.6','I42.7','I42.8','I42.9','P29.0') then cc_grp_2=1; 
  LABEL cc_grp_2 = 'Congestive heart failure'; 
 
  if dx(i) in: 
('I71','I72','I73.1','I73.8','I73.9','I77.1','I79.0','I79.2','K55.1','K55.8','K55.9','Z95.8','Z95.9') then cc_grp_3=1; 
  LABEL cc_grp_3 = 'Peripheral vascular disease'; 
 
   
  if dx(i) in: ('G45','G46','I6','H34.0') then cc_grp_4=1; 
  LABEL cc_grp_4 = 'Cerebrovascular disease'; 
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  if dx(i) in: ('F00','F01','F02','F03','G30','F05.1','G31.1') then cc_grp_5=1; 
  LABEL cc_grp_5 = 'Dementia'; 
 
    if ('J40' <=: dx(i) <=: 'J47') or ('J60' <=: dx(i) <=: 'J67') or dx(i) in: 
('I27.8','I27.9','J68.4','J70.1','J70.3')  then cc_grp_6=1; 
  LABEL cc_grp_6 = 'Chronic Pulmonary Disease'; 
 
  if ('M05' <=: dx(i) <=: 'M06')  or ('M32' <=: dx(i) <=: 'M34') or dx(i) in: 
('M31.5','M35.1','M35.3','M36.0') then cc_grp_7=1; 
  LABEL cc_grp_7 = 'Connective Tissue Disease'; 
 
  if ('K25' <=: dx(i) <=: 'K28')   then cc_grp_8=1; 
  LABEL cc_grp_8 = 'Peptic Ulcer Disease'; 
   
  if dx(i)=:"B18" or ('K73' <=: dx(i) <=: 'K74') or ('K70.0' <=: dx(i) <=: 'K70.3') or dx(i)=:'K70.3'  
   or dx(i)=: 'K70.9' or dx(i)=: 'K71.7' or ('K71.3' <=: dx(i) <=: 'K71.5') or dx(i)=:'K76.0'  
   or  ('K76.2' <=: dx(i) <=: 'K76.4') or  ('K76.8' <=: dx(i) <=: 'K76.9') or dx(i) =: 'Z94.4' then 
cc_grp_9=1; 
  LABEL cc_grp_9 = 'Mild Liver  Disease'; 
 
  if dx(i) in: ('E10.0','E10.1','E10.6','E10.8','E10.9','E11.0', 'E11.1', 
       'E11.6','E11.8','E11.9','E12.0','E12.1','E12.6','E12.8', 
       'E12.9','E13.0','E13.1','E13.6','E12.8','E13.9','E14.0', 
       'E14.1','E14.6','E14.8','E14.9') then cc_grp_10 = 1; 
  LABEL cc_grp_10 = 'Diabetes without complications'; 
 
   
 
  if dx(i) in: ('E10.2','E10.3','E10.4','E10.5','E10.6','E11.2', 'E11.3', 
       'E11.4','E11.5','E11.7','E12.2','E12.3','E12.4','E12.5', 
       'E12.7','E13.2','E13.3','E13.4','E13.5','E13.7','E14.2', 
       'E14.3','E14.4','E14.5','E14.7') then cc_grp_11 = 1; 
  LABEL cc_grp_11 = 'Diabetes with complications'; 
   
  if ('G81' <=: dx(i) <= 'G82') or dx(i) in: ('G04.1','G11.4','G80.1', 
   'G80.2','G83.0','G83.1','G83.2','G83.3','G83.4','G83.9')  
   then cc_grp_12 = 1; 
   LABEL CC_GRP_12 = 'Paraplegia and Hemiplegia'; 
   
 
  if ('N18' <=: dx(i) <=: 'N19') or ('N05.2' <=: dx(i) <=: 'N05.7') or 
   dx(i) in: ('N25.0','I21.0','I31.','N03.2','N03.3','N03.4', 
       'N03.5','N03.6','N03.7','Z49.0','Z49.1','Z49.2', 
      'Z94.0','Z99.2') then  cc_grp_13=1; 
  LABEL cc_grp_13 = 'Renal Disease'; 
 
  if ('C00' <=: dx(i) <=: 'C26') or ('C30' <=: dx(i) <=: 'C34') or ('C37' <=: dx(i) <=: 'C41') or dx(i)=: 
'C43' 
   or  ('C45' <=: dx(i) <=: 'C58') or  ('C60' <=: dx(i) <=: 'C76') or ('C81' <=: dx(i) <=: 
'C85 ') or dx(i)=: 'C88'  
   or ('C90' <=: dx(i) <=: 'C97') then cc_grp_14=1; 
  LABEL cc_grp_14 = 'Cancer'; 
 
  if dx(i) in: ('K70.4','K71.1','K72.1','K72.9','K76.5','K76.6', 
      'K76.7','I85.0','I85.9','I86.4','I98.2') 
      then cc_grp_15=1; 
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  LABEL cc_grp_15 = 'Moderate or Severe Liver  Disease'; 
 
  if ('C77' <=: dx(i) <=: 'C80')   then cc_grp_16=1; 
  LABEL cc_grp_16 = 'Metastatic carcinoma'; 
 
  if ('B20' <=: dx(i) <=: 'B22') or dx(i)=:'B24'   then cc_grp_17=1; 
  LABEL cc_grp_17 = 'HIV/AIDS'; 
 
 *elixhauser; 
 
  if dx(i) in: 
('I09.9','I11.0','I13.0','I13.2','I25.5','I42.0','I42.5','I42.6','I42.7','I42.8','I42.9','I43','I50','P29.0') then elix_grp_1=1; 
  LABEL elix_grp_1 = 'Congestive heart failure'; 
 
  if dx(i) in: ('I44.1','I44.2','I44.3','I45.6','I45.9','I47', 
       'I48','I49','R00.0','R00.1','R00.8','T82.1', 
       'Z45.0','Z95.0') then elix_grp_2 = 1; 
  LABEL elix_grp_2 = 'Cardiac aryhtmia'; 
  if dx(i) in: ('A52.0','I05','I06','I07','I08','I09.1', 
       'I09.8','I34','I37','I38','I39','Q23.0', 
       'Q23.1','Q23.2','Q23.3','Z95.2','Z95.3','Z95.4') then elix_grp_3 = 1; 
  LABEL elix_grp_3 = 'Valvular disease'; 
  
  if dx(i) in: ('I26','I27','I28.0','I28.8','I28.9') then elix_grp_4 = 1; 
  LABEL elix_grp_4 = 'Pulmonary circulation disorders'; 
 
  if dx(i) in: ('I70','I71','I73.1','I73.8','I73.9','I77.1', 
       'I79.0','I79.2','K55.1','K55.8','K55.9','Z95.8','Z95.9')  
   then elix_grp_5 = 1; 
  LABEL elix_grp_5 = 'peripheral vascular disorders'; 
 
  if dx(i) in: ('I10') then elix_grp_6 = 1; 
   LABEL elix_grp_6 = 'Hypertension uncomplicated'; 
 
  if ('I11' <=:  dx(i)<=: ('I13')) or  dx(i) in: ('I15') then elix_grp_7 = 1; 
  LABEL elix_grp_7 = 'Hypertension complicated'; 
 
 
  if ('G81' <=: dx(i) <= 'G82') or dx(i) in: ('G04.1','G11.4','G80.1', 
   'G80.2','G83.0','G83.1','G83.2','G83.3','G83.4','G83.9')  
   then elix_grp_8 = 1; 
   LABEL elix_GRP_8 = 'Paralysis'; 
   
 
  if ('G10' <=: dx(i) <= 'G13') or  ('G20' <=: dx(i) <= 'G22') or dx(i) in: 
('G25.4','G25.5','G31.2','G31.8','G31.9','G32') 
    or ('G35' <=: dx(i) <= 'G37') or dx(i) in: 
('G40','G41','G93.1','G93.4','R47.0','R56') then elix_grp_9=1; 
  LABEL elix_grp_9 = "Other neurological disorders"; 
  
 
 
   if ('J40' <=: dx(i) <=: 'J47') or ('J60' <=: dx(i) <=: 'J67') or dx(i) in: 
('I27.8','I27.9','J68.4','J70.1','J70.3')  then ELIX_grp_10=1; 
  LABEL ELIX_grp_10 = 'Chronic Pulmonary Disease'; 
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  if dx(i) in: ('E10.0','E10.1','E10.9','E11.0', 'E11.1', 
       'E11.9','E12.0','E12.1', 
       'E12.9','E13.0','E13.1','E13.9','E14.0', 
       'E14.1','E14.9') then elix_grp_11 = 1; 
  LABEL elix_grp_11 = 'Diabetes without complications'; 
 
   
 
  if dx(i) in: ('E10.2','E10.3','E10.4','E10.5','E10.6','E10.7','E10.8', 
   'E11.2', 'E11.3', 'E11.4','E11.5','E11.6','E11.7','E11.7','E11.8', 
    'E12.2','E12.3','E12.4','E12.5','E12.6', 'E12.7','E12.8', 
    'E13.2','E13.3','E13.4','E13.5','E13.6','E13.7','E13.8', 
    'E14.2','E14.3','E14.4','E14.5','E14.6','E14.7','E14.8') then elix_grp_12 = 1; 
  LABEL elix_grp_12 = 'Diabetes with complications'; 
 
  if ('E00' <=: dx(i) <=: 'E04') or dx(i) in: ('E89.0') then elix_grp_13 = 1; 
  LABEL elix_grp_13 = 'Hyperthyroidism'; 
 
  if dx(i) in: ('I12.0','I13.1','N18','N19','N25.0','Z49.0','Z49.1', 
      'Z49.2','Z94.0','Z99.2') THEN elix_grp_14 =1; 
  LABEL elix_grp_14 = 'Renal failure'; 
 
 
  if dx(i) in: ('B18','I85','I86.4','I98.2','K70','K71.1','K71.3','K71.4', 
      'K71.5','K71.7') OR ('K72' <=: DX(i) <=: 'K74') 
     OR ('K76.2' <=: DX(i) <=: 'K76.9') or dx(i) IN: ('Z94.4') 
      THEN elix_grp_15 =1; 
  LABEL elix_grp_15 = 'Liver disease'; 
   
 
   
  if dx(i) in ('K25.7','K25.9','K26.7','K26.9','K27.7','K27.9', 
       'K28.7','K28.9')   then elix_grp_16=1; 
  LABEL elix_grp_16 = 'Peptic Ulcer Disease w/o bleeding'; 
 
  if ('B20' <=: dx(i) <=: 'B22') or dx(i)=:'B24'   then elix_grp_17=1; 
  LABEL elix_grp_17 = 'HIV/AIDS'; 
 
 
  if ('C81' <=:  dx(i)<=: ('C85')) or  dx(i) in: ('C88','C96','C90.0','C90.2') then elix_grp_18 = 1; 
  LABEL elix_grp_18 = 'Lymphoma'; 
 
  if ('C77' <=: dx(i) <=: 'C80')   then elix_grp_19=1; 
  LABEL elix_grp_19 = 'Metastatic carcinoma'; 
 
   if ('C00' <=: dx(i) <=: 'C26') or ('C30' <=: dx(i) <=: 'C34') or ('C37' <=: dx(i) <=: 'C41') or 
dx(i)=: 'C43' 
   or  ('C45' <=: dx(i) <=: 'C58') or  ('C60' <=: dx(i) <=: 'C76')  
   or ('C90' <=: dx(i) <=: 'C95') or dx(i) in: ('C97') then elix_grp_20=1; 
  LABEL elix_grp_20 = 'Solid tumour without metastasis'; 
   
  if dx(i) in: ('L94.0','L94.1','L94.3') or ('M05' <=: dx(i) <=: 'M06')  or dx(i) in: ('M08')  
   or dx(i) in: ('M12.0','M12.3','M30','M31.0','M31.1','M31.2','M31.3') 
   or ('M32' <=: dx(i) <=: 'M35') or dx(i) in: ('M45','M46.1','M46.8','M46.9') then 
elix_grp_21=1; 
  LABEL elix_grp_21 = 'Rheumatoid arthritis/collagen'; 
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  if ('D65' <=: dx(i) <=: 'D68') or  dx(i) in: ('D69.1','D69.3','D69.4','D69.5','D69.6') then 
elix_grp_22 = 1; 
  LABEL elix_grp_22 = 'Coagulopathy'; 
 
 
  if dx(i) in: ('E66') then elix_grp_23 = 1; 
  LABEL elix_grp_23 = 'Obesity'; 
 
  if ('E40' <=: dx(i) <=: 'E46') or  dx(i) in: ('R63.4','R64') then elix_grp_24 = 1; 
  LABEL elix_grp_24 = 'Weight loss'; 
 
 
  if dx(i) in : ('E22.2','E86','E87') then elix_grp_25 = 1; 
  LABEL elix_grp_25 = 'Fluid/electrolyte disorders'; 
 
  if dx(i) in: ('D50.0') then elix_grp_26 = 1; 
  LABEL elix_grp_26 = 'Blood loss anaemia'; 
   
  if dx(i) in: ('D50.8','D50.9') or  ('D51' <=:  dx(i)<=: ('D53'))then elix_grp_27 = 1; 
  LABEL elix_grp_27 = 'Deficiency anaemia'; 
 
 
  if dx(i) in: ('F10','E52','G62.1','I42.6','K29.2','K70.0','K70.3','K70.1','T51','Z50.2','Z71.4','Z72.1') 
then elix_grp_28 = 1; 
  LABEL elix_grp_28 = 'Alochol abuse'; 
 
  if ('F11' <=: dx(i) <=: 'F16') or ('F18' <=: dx(i) <=: 'F19') or dx(i) in: ('Z71.5','Z72.2') then 
elix_grp_29 = 1; 
  LABEL elix_grp_29 = 'Drug abuse'; 
 
  if dx(i) in: ('F20') or ('F22' <=: dx(i) <=: 'F29') or dx(i) in: ('F30.2','F31.2','F31.5') then 
elix_grp_30 = 1; 
  LABEL elix_grp_30 = 'Psychoses'; 
 
  if dx(i) in: ('F20.4') or ('F31.3' <=: dx(i) <=: 'F31.5') or dx(i) in: ('F32','F33','F34.1','F41.2','F43.2') 
then elix_grp_31 = 1; 
  LABEL elix_grp_31 = 'Depression'; 
 end; 
 
 cci= sum(of cc_grp_1-cc_grp_17); 
 wgt_cci = sum(of cc_grp_1-cc_grp_10)+cc_grp_11*2+cc_grp_12*2 
    +cc_grp_13*2+cc_grp_14*2+cc_grp_15*2+cc_grp_16*6+cc_grp_17*6; 
 elix_sum = sum(of elix_grp_1-elix_grp_31); 
 year_admitted = year(episode_start_date); 
 drop i x; 
 
run; 
 
proc freq data = charlson; 
 tables cc_grp_1-cc_grp_17  elix_grp_1- elix_grp_31 cc_grp_14*cc_grp_16 cci wgt_cci year_admitted 
elix_sum elix_sum*cci; 
run; 
 
proc print data = charlson; 
where elix_grp_1 ne cc_grp_2; 
run; 
 



147 
 

proc sort; 
 by ppn episode_start_date; 
run; 
 
data charlson_lon; 
set mylib.charlson; 
keep ppn episode_end_date cc_grp_1-cc_grp_17 elix_grp_1-elix_grp_31; 
run; 
 
 
%macro loopy_dates(start,end); 
 
dm 'clear log'; 
dm 'output; clear;'; 
 
 %let start =%sysfunc(inputn(&start,anydtdte9.)); 
 %put &start; 
 %let end =%sysfunc(inputn(&end,anydtdte9.)); 
 %let dif =%sysfunc(intck(month,&start,&end)); 
 %put &end; 
  
  %do f = 0 %to &dif; 
   
   %let datea = %sysfunc(intnx(month,&start,&f,b),date9.); 
   %put &datea; 
   %let date = %sysfunc(inputn(&datea,anydtdte9.)); 
    
   %let date1a = %sysfunc(intnx(month,&start,&f+1,b),date9.); 
   %put &date1a; 
   %let date1 = %sysfunc(inputn(&date1a,anydtdte9.)); 
 
   %let date12a = %sysfunc(intnx(month,&start,&f-12,b),date9.); 
   %let date12 = %sysfunc(inputn(&date12a,anydtdte9.)); 
 
   %put &date12; 
   
    
    
data charlson_longitudinal_ppn_1 ; 
 set charlson_lon ; 
 where episode_end_date >= &date12 and episode_end_date < &date; 
 by ppn; 
 format day date9.; 
 day = &date; 
 
 iteration_month = &f; 
 retain ccgrp1-ccgrp17 elixgrp1-elixgrp31; 
 array tot(17) ccgrp1-ccgrp17; 
 array hosp(17) cc_grp_1-cc_grp_17; 
  
  if first.ppn then do; 
   cc_total = 0; 
   do i = 1 to 17; 
    tot(i)=0; 
   end; 
  end; 
 



148 
 

  do i = 1 to 17; 
   if hosp(i)=1 then tot(i)=1; 
  end; 
  if last.ppn then do; 
   cc_total=sum(of ccgrp1-ccgrp17); 
   wgt_cci_total = sum(of ccgrp1-ccgrp10)+ccgrp11*2+ccgrp12*2 
    +ccgrp13*2+ccgrp14*2+ccgrp15*2+ccgrp16*6+ccgrp17*6; 
  end; 
 
 array total(31) elixgrp1-elixgrp31; 
 array hospit(31) elix_grp_1-elix_grp_31; 
  if first.ppn then do; 
   elix_total = 0; 
   do i = 1 to 31; 
    total(i)=0; 
   end; 
  end; 
  do i = 1 to 31; 
   if hospit(i)=1 then total(i)=1; 
  end; 
  if last.ppn then do; 
   elix_total=sum(of elixgrp1-elixgrp31); 
  end; 
 
 
/* proc print data =charlson_longitudinal(obs =100);run; */ 
  
 LABEL  ccgrp1 = 'Acute myocardial infarction' 
   ccgrp2 = 'Congestive heart failure' 
    ccgrp3 = 'Peripheral vascular disease' 
   ccgrp4 = 'Cerebrovascular disease'  
   ccgrp5 = 'Dementia' 
   ccgrp6 = 'Chronic Pulmonary Disease' 
   ccgrp7 = 'Connective Tissue Disease' 
   ccgrp8 = 'Peptic Ulcer Disease' 
    ccgrp9 = 'Mild Liver  Disease' 
    ccgrp10 = 'Diabetes without complications' 
   ccgrp11 = 'Diabetes with complications' 
    CCGRP12 = 'Paraplegia and Hemiplegia' 
    ccgrp13 = 'Renal Disease' 
   ccgrp14 = 'Cancer' 
    ccgrp15 = 'Moderate or Severe Liver  Disease' 
   ccgrp16 = 'Metastatic carcinoma' 
    ccgrp17 = 'HIV/AIDS'; 
 
   * now only output last record; 
    
  keep ppn day iteration_month elix_total cc_total wgt_cci_total; 
   
  if last.ppn; 
/*   output charlson_longitudinal_ppn_1; */ 
    
run;    
  %if &f =0 %then %do; 
  data charlson_monthly_index; 
   set charlson_longitudinal_ppn_1; 
  run; 
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  %end;  
  %else %do; 
    proc append data = charlson_longitudinal_ppn_1 base = charlson_monthly_index; 
   run; 
  %end; 
%end; 
%mend; 
 
options mprint; 
%loopy_dates(01jan2006,31mar2016); 
   
proc sort data = charlson_monthly_index; 
by ppn day; 
run; 
    
 
proc copy  in = work out = mylib; 
select charlson_monthly_index; 
run; 
 
 

Rxrixk Index 
 
 
/**************************************************************/ 
/*  SETUP ANALYSIS WORKSPACE AND DATA DIRECTORIES    */ 
/**************************************************************/ 
 
 
/*Point to the Raw Data file library on the VM */ 
libname fmts "G:\edvlink_2019_original_extracted_data\45ANDUP_SEEF" access=readonly; 
libname pbs "G:\edvlink_2019_original_extracted_data\PBS" access=readonly; 
/*Point to the Formats used on the master file*/ 
options fmtsearch=(fmts) nofmterr; 
proc format cntlin=fmts.mbs_pbs_formats library=work; run; 
 
 
proc format; 
 value atc 0="Unknown" 
     1 = "Alcohol dependency" 
     2 = "Allergies" 
     3 = "Anticoagulants" 
     4 = "Antiplatelets" 
     5 = "Anxiety" 
     6=  "Arryhthmia" 
     7 = "Benign prostatic hyperplasia" 
     8 = "Bipolar disorder" 
     9 = "Chronic airways disease" 
     10 = "Congestive heart failure" 
     11 = "Dementia" 
     12 = "Depression" 
     13 = "Diabetes" 
     14 = "Epilepsy" 
     15 = "Glaucoma" 
     16 = "Gastrooesophageal reflux disease" 
     17 = "Gout" 
     18 = "Hepatitis B" 
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     19 = "Hepatitis C" 
     20 = "HIV" 
     21 = "Hyperkalemia" 
     22 = "Hyperlipidaemia" 
     23 = "Hypertension" 
     24 = "Hyperthyroidism" 
     25 = "Hypothyroidism" 
     26 = "Irritable bowel syndrome" 
      27 = "Ischaemic heart disease - angina" 
   28 = "Ischaemic heart disease - hypertension" 
   29 = "Incontinence" 
   30 = "Inflammation/pain" 
   31 = "Liver failure" 
   32 = "Malignancies" 
   33 = "Malnutrition" 
   34 = "Migraine" 
   35 = "Osteoporosis/Pagets" 
   36 = "Pain" 
   37 = "pancreatic insufficiency" 
   38 = "Parkinsons disease" 
   39 = "Psoriasis" 
   40 = "Psychotic illness" 
   41 = "Pulmonary hypertension" 
   42 = "Renal disease" 
   43 = "Smoking cessation" 
   44 = "Steroid responsive disease" 
   45 = "Transplant" 
   46 ="Tuberculosis" 
; 
  
run; 
 
data _NULL_; 
 if 0 then set pbs.pbs_2004to2017 nobs=n; 
 call symputx('nrows',n); 
run; 
 
%put &nrows; 
data _NULL_; 
 y = &nrows; 
 call symputx('n',y); 
 
  
run; 
 
data Rx-Risk; 
 set pbs.pbs_2004to2017 (obs= &n); 
 format atc_cat atc.; 
 if mod(_N_,10000) = 0 then do; 
  x = round(_N_/&n*100,0.1); 
  put x '%'; 
 end; 
 drop x; 
  
 /* 
  
 */ 
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/* if rand('uniform') < 0.05 then atc_code = 'C03CA01';*/ 
/* else atc_code = 'C09AA01';*/ 
  
 
 atc_cat = 0; 
 if 'N07BB01' <=: atc_code <=: 'N07BB99' then do; 
  atc_cat = 1; 
  weight = 6; 
 end; 
 if ('R01AC01' <=: atc_code <=: 'R01AD60') or ('R01AD02' <=: atc_code <=: 'R06AX27') or atc_code=: 
'R06AB04' then do; 
  atc_cat = 2; 
  weight = -1; 
 end; 
 if ('B01AA03' <=: atc_code <=: 'B01AB06') or atc_code in: ('B01AE07','B01AF01','B01AF02','B01AX05') 
then do; 
  atc_cat = 3; 
  weight =1;  
 end; 
 if ('B01AC04' <=: atc_code <=: 'B01AC30') then do; 
  atc_cat = 4; 
  weight =1;  
 end; 
 if ('N05BA01' <=: atc_code <=: 'N05BA12') or atc_code =: 'N05BE01' then do; 
  atc_cat = 5; 
  weight =1;  
 end; 
 if atc_code =: 'C01AA05' or ('C01BA01' <=: atc_code <=: 'C01BD01') or atc_code =: 'C07AA07' then do; 
  atc_cat = 6; 
  weight =1;  
 end; 
 if atc_code =: 'G04CA01' <=: atc_code =: 'G04CA99' or atc_code in: ('G04CB01','G04CB02') then do; 
  atc_cat = 7; 
  weight = 0;  
  * need to add in a check that the person is male; 
 end; 
 if atc_code =: ('N05AN01')  then do; 
  atc_cat = 8; 
  weight = -1;  
 end; 
 if ('R03AC02') <=: atc_code <=: ('R03AC03') or atc_code =: 'R03DX05' then do; 
  atc_cat = 9; 
  weight = 2 ;  
 end; 
 
 
 if 'C03DA02' <=: atc_code <=: 'C03DA99'  
   or (atc_code=: 'C07AB02' and pbs_item_code  in : ('8732N', '8733P', '8734Q', 
'8735R')) 
   or atc_code in: ('C07AB07', 'C07AG02', 'C07AB12', 'C03DA04') 
   
   then do; 
    atc_cat = 10; 
    weight  = 2; 
   end;  
 
 if ('N06DA02' <=: atc_code <=: 'N06DA04') or atc_code =: 'N06DX01' then do; 
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  atc_cat= 11; 
  weight  =2; 
 end; 
  if ('N06AA01' <=: atc_code <=:'N06AG02') or ('N06AX03' <=: atc_code <=:'N06AX011')  
  or ('N06AX13' <=: atc_code <=: 'N06AX18') or  ('N06AX21' <=: atc_code <=:'N06AX26') then 
do; 
  atc_cat = 12; 
  weight  =2; 
 end; 
 if ('A10AA01' <=: atc_code <=:'A10BX99') then do; 
  atc_cat = 13; 
  weight  =2; 
 end; 
 if ('N03AA01' <=: atc_code <=:'N03AX99') then do; 
  atc_cat = 14; 
  weight  =0; 
 end; 
 if ('S01EA01' <=: atc_code <=:'S01EB03') or ('S01EC03' <=: atc_code <=:'S01EX99') then do; 
  atc_cat = 15; 
  weight  =0; 
 end; 
 if ('A02BA01' <=: atc_code <=:'A02BX05') then do; 
  atc_cat = 16; 
  weight  =0; 
 end; 
 if ('M04AA01' <=: atc_code <=:'M04AC01') then do; 
  atc_cat = 17; 
  weight  =1; 
 end; 
 if atc_code in: ('J05AF08', 'J05AF10', 'J05AF11') then do; 
  atc_cat = 18; 
  weight = 0; 
 end; 
 if atc_code in: ('J05AB54', 'L03AB10', 'L03AB11', 'L03AB60', 'L03AB61', 'J05AE14') 
    or 'J05AE11' <=: atc_code <=: 'J05AE12'  
    or atc_code in: ('J05AX14', 'J05AX15', 'J05AX65','J05AB04') 
 then do; 
  atc_cat = 19; 
  weight = 0; 
 end; 
 
 if 'J05AE01'  <=: atc_code <=: 'J05AE10' or 'J05AF12' <=: atc_code <=: 'J05AG05'  
     or 'J05AR01' <=: atc_code <=: 'J05AR99'  or 'J05AX07' <=: atc_code 
<=: 'J05AX09'   
   or atc_code =: 'J05AX12' or  'J05AF01' <=: atc_code <=: 'J05AF07' or atc_code =: 
'J05AF09'  
 then do; 
  atc_cat = 20; 
  weight  =0; 
 end; 
  
 
 if (atc_code =:'V03AE01') then do; 
  atc_cat = 21; 
  weight  =4; 
 end; 
 if (atc_code =:'A10BH03') or ('C10AA01' <=: atc_code <=: 'C10BX99' )then do; 
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  atc_cat = 22; 
  weight  =-1; 
 end; 
 if ('C03AA01' <=: atc_code <=: 'C03BA11') or atc_code in: ('C03DB01','C03DB99','C03EA01') or  
  ('C09BA02' <=: atc_code <=: 'C09BA09') or 
  ('C09DA02' <=: atc_code <=: 'C09DA08') or 
  ('C02AB01' <=: atc_code <=: 'C02AC05') or 
  ('C02DB02' <=: atc_code <=: 'C02DB99') /*need to check*/ 
 then do; 
  atc_cat = 23; 
  weight  =-1; 
 end; 
 if (atc_code =:'H03BA02') or atc_code =: 'H03BB01' then do; 
  atc_cat = 24; 
  weight  =2; 
 end; 
 if  ('H03AA01' <=: atc_code <=: 'H03AA02' )then do; 
  atc_cat = 25; 
  weight  =0; 
 end; 
 if  ('A07EC01' <=: atc_code <=: 'A07EC04' ) or ('A07EA01' <=: atc_code <=: 'A07EA02' ) or 
  atc_code in: ('A07EA06','L03AA33') 
 then do; 
  atc_cat = 26; 
  weight  =0; 
 end; 
  if  ('C01DA02' <=: atc_code <=: 'C01DA14' ) or atc_code in:('C01DX16', 'C08EX02') 
 then do; 
  atc_cat = 27; 
  weight  =2; 
 end; 
  
 
  
 if 'C07AA01' <=: atc_code <=: 'C07AA06'  
   or (atc_code=: 'C07AB02' and pbs_item_code not in : ('8732N', '8733P', '8734Q', 
'8735R')) 
   or atc_code =: 'C07AG01' 
   or 'C08CA01' <=: atc_code <=: 'C08DB01'  
   or 'C09DB01' <=: atc_code <=: 'C09DB04' 
   or atc_code =: 'C09DX01' 
   or 'C09BB02' <=: atc_code <=: 'C09BB10' 
   or atc_code in: ('C07AB03', 'C09DX03', 'C10BX03') 
   then do; 
    atc_cat = 28; 
    weight  = -1; 
   end; 
  
 
 if  ('G04BD01' <=: atc_code <=: 'G04BD99' )   
 then do; 
  atc_cat = 29; 
  weight  =0; 
 end; 
 if  ('M01AB01' <=: atc_code <=: 'M01AH06' )   
 then do; 
  atc_cat = 30; 
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  weight  =-1; 
 end; 
 if  ('A06AD11' <=: atc_code <=: 'A07AA11' )   
 then do; 
  atc_cat = 31; 
  weight  =3; 
 end; 
 if  ('L01AA01' <=: atc_code <=: 'L01XX41' )   
 then do; 
  atc_cat = 32; 
  weight  =2; 
 end; 
 if  ('B05BA01' <=: atc_code <=: 'B05BA10' )   
 then do; 
  atc_cat = 33; 
  weight  =2; 
 end; 
 if  ('B05BA01' <=: atc_code <=: 'B05BA10' )   
 then do; 
  atc_cat = 33; 
  weight  =0; 
 end; 
 if  ('N02CA01' <=: atc_code <=: 'N02CX01' )   
 then do; 
  atc_cat = 34; 
  weight  =-1; 
 end; 
 if  ('M05BA01' <=: atc_code <=: 'M05BB05' ) or atc_code in: 
('M05BX03','M05BX04','G03XC01','H05AA02')  
 then do; 
  atc_cat = 35; 
  weight  =-1; 
 end; 
 if ('N02AA01' <=: atc_code <=: 'N02AX02') or atc_code in: ('N02AX06','N02AX52','N02BE51')  
 then do; 
  atc_cat = 36; 
  weight  =3; 
 end; 
 if atc_code in: ('A09AA02') then do; 
  atc_cat = 37; 
  weight = 0; 
 end; 
 if ('N04AA01' <=: atc_code <=: 'N04BX02')  
 then do; 
  atc_cat = 38; 
  weight  =3; 
 end; 
 if ('D05AA01' <=: atc_code <=: 'D05AA99') or atc_code in: ('D05BB01','D05BB02','D05AX02','D05AX52')  
  or  ('D05AC01' <=: atc_code <=: 'D05AC99') 
 then do; 
  atc_cat = 39; 
  weight  =0; 
 end; 
 if ('N05AA01' <=: atc_code <=: 'N05AB02') or ('N05AB06' <=: atc_code <=: 'N05AL07') or ('N05AX07' <=: 
atc_code <=: 'N05AX13') 
 then do; 
  atc_cat = 40; 
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  weight  = 6; 
 end; 
 *check if this meant to be either or; 
 if ('C02KX01' <=: atc_code <=: 'C02KX05') and pbs_item_code in: ('9547L','9605M')  then do; 
  atc_cat = 41; 
  weight  = 6; 
 end; 
 if ('B03XA01' <=: atc_code <=: 'B03XA03') or ('A11CC01' <=: atc_code <=: 'A11CC04')  
  or atc_code in  ('V03AE02','V03AE03','V03AE05') 
 then do; 
  atc_cat = 42; 
  weight  = 6; 
 end; 
 if ('N07BA01' <=: atc_code <=: 'N07BA03') or atc_code in: ('N06AX12') then do; 
 atc_cat = 43; 
 weight = 6; 
end; 
 
if ('H02AB01' <=: atc_code <=: 'H02AB10')  then do; 
 atc_code = 44; 
 weight = 2; 
end; 
if atc_code in: ('L04AA06', 'L04AA10', 'L04AA18', 'L04AD01', 'L04AD02') then do; 
 atc_cat = 45; 
 weight = 2; 
end; 
if  'J04AC01' <=: atc_code  <=: 'J04AC51'  
 or 'J04AM01' <=: atc_code  <=:'J04AM99' then do; 
 atc_cat = 46; 
 weight = 0; 
end; 
 
  
 if 'C03CA01' <=: atc_code <=: 'C03CC01' then diur = 1; else diur = 0; 
 if 'C09AA01' <=: atc_code <=: 'C09AX99' then ace = 1; else ace = 0; 
 if 'C09CA01' <=: atc_code <=: 'C09CX99' then arb = 1; else arb= 0; 
 yr_supp = year(date_of_supply); 
 yr_pres = year(date_of_prescribing); 
run; 
 
proc sort data = mylib.Rx-Risk out = risk_sorted; 
 by ppn date_of_supply /* diur ace arb */; 
run; 
 
 
%macro loopy_dates(start,end); 
 
dm 'clear log'; 
dm 'output; clear;'; 
 
 %let start =%sysfunc(inputn(&start,anydtdte9.)); 
 %put &start; 
 %let end =%sysfunc(inputn(&end,anydtdte9.)); 
 %let dif =%sysfunc(intck(month,&start,&end)); 
 %put &end; 
  
  %do f = 0 %to &dif; 



156 
 

   
   %let datea = %sysfunc(intnx(month,&start,&f,b),date9.); 
   %put &datea; 
   %let date = %sysfunc(inputn(&datea,anydtdte9.)); 
    
   %let date1a = %sysfunc(intnx(month,&start,&f+1,b),date9.); 
   %put &date1a; 
   %let date1 = %sysfunc(inputn(&date1a,anydtdte9.)); 
 
   %let date12a = %sysfunc(intnx(month,&start,&f-12,b),date9.); 
   %let date12 = %sysfunc(inputn(&date12a,anydtdte9.)); 
 
   %put &date12a; 
    
 
 
 
data Rx-Risk_last_MR  ; 
 set risk_sorted; 
 where date_of_supply >= &date12  and date_of_supply < &date; 
  
 by PPN; 
  
 format day date9.; 
 day = &date; 
 
 iteration_month = &f; 
 * also update the records for the chronic heart failure and hypertension records; 
 retain atcgrp1-atcgrp46 wgt1-wgt46 chf hypertension diur_l ace_l arb_l ; 
 array tot(46) atcgrp1-atcgrp46; 
 array wgt(46) wgt1-wgt46; 
 
 
 if first.ppn then do; 
   diur_l =0; 
   ace_l =0; 
   arb_l =0; 
   chf =0; 
   hypertension = 0; 
 end; 
  
 do i = 1 to 46; 
  tot(i)=0; 
  wgt(i) = 0; 
 end; 
 if diur =1 then diur_l = 1; 
 if ace = 1 then ace_l = 1; 
 if arb  = 1 then arb_l = 1; 
 
/* proc print data = Rx-Risk_last; run; */ 
 if diur_l = 1 and (ace_l = 1 or arb_l=1) then do ; 
  atc_cat = 10; 
  weight = 2; 
 end; 
 
 if ((diur_l =1 or ace_l =1) or (diur_l =1 or arb_l =1)) and not ((diur_l =1 and ace_l =1) or (diur_l=1 and 
arb_l =1)) then do; 
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   atc_cat = 23; 
   weight = -1; 
 
 end; 
 
 
 do i = 1 to 46; 
  if atc_cat = i then do; 
   tot(i)=1; 
   wgt(i) = weight; 
  end; 
 end; 
  
   
 retain w_gt1-w_gt46; 
 array wt(46) w_gt1-w_gt46; 
 
 
 if first.ppn then do; 
 wgtsum = 0; 
 do i = 1 to 46; 
  wt(i) = 0; 
 end; 
end; 
 
 do i = 1 to 46; 
 if tot(i) =1 then wt(i) = wgt(i); 
 end; 
 
 keep ppn day iteration_month wgtsum; 
  if last.ppn then do; 
    wgtsum = sum(of w_gt1-w_gt46); 
 output; 
  end; 
   
   %if &f =0 %then %do; 
  data Rx-Risk_monthly_index; 
   set Rx-Risk_last_mr; 
  run; 
  %end;  
  %else %do; 
    proc append data = Rx-Risk_last_mr base = Rx-Risk_monthly_index; 
   run; 
  %end; 
%end; 
%mend; 
   
options mprint; 
%loopy_dates(01jan2006,31dec2016); 
 
 proc copy  in = work out = mylib; 
 select Rx-Risk_monthly_index; 
 run; 
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/* SAS Program for target trial for all cause mortality */ 

/* Load Datafiles and Code Up Basic DemoTable */ 
libname _45data 'G:\edvlink_2019_original_extracted_data\45ANDUP_SEEF' access=readonly; 
libname ITT 'G:\morshad_sas\conference'; 
libname saved 'G:\morshad_sas\all_cause_mortality\New_data'; 
libname _neg 'G:\morshad_sas\negative control'; 
 
options nodate nocenter fmtsearch=(infect); 
 
data itt_prep; 
set saved.itt_analysis_5years; 
run; 
 
data itt_prep1; 
set itt_prep; 
base_age =  age+ intck('month',datentoday,baseline_trial)/12; 
 
by ppn trial; 
 
 
if first.trial then trial_age = base_age; 
else trial_age+(1/12); 
 
trial_age = round(trial_age,0.01); 
run; 
 
 
data itt_prep2; 
merge itt_prep1(in = a) _45data._45andupdata_broad_geog (in = b keep = ppn RA_CODE_2011); 
by ppn; 
if a; 
run; 
 
data itt_analysis_5; 
set itt_prep2; 
 
location = .; 
if RA_CODE_2011 eq 10 then location = 1; /* 1 = major city, 2 = regional, remote */ 
if  RA_CODE_2011 eq 11 or RA_CODE_2011 eq 12 or  RA_CODE_2011 eq 13 or RA_CODE_2011 eq 14 
then location = 2; 
if location eq . then location = 0; /* Missing */ 
 
/*age_trial_square = age_trial*age_trial;*/ 
 
/*if smok_stat eq 0 then delete;*/ 
run; 
 
data itt_analysis_5; 
set itt_analysis_5; 
by ppn; 
 retain over_age_base; 
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 if first.ppn then over_age_base = trial_age; 
 run; 
 
 data itt_analysis_6; 
 set itt_analysis_5; 
 by ppn trial; 
  retain trial_age_base; 
  if first.trial then trial_age_base = trial_age; 
  run; 
  
  
 proc sql; 
  create table itt_analysis_5years as 
  select ppn, trial,period,followup_month, intervention, cont_donor, event, died_fup, total_don_fup_year, sex, 
cat_age_trial2, bmi_c, smok_stat, ratehealth_cat, alcohol_cat_day, education, income_cat, 
 vigour_act, cat_fruit_veg,  cci_base, Rx-Risk_base, gp_visit_base, referral_base,trial_cci_base, 
trial_Rx-Risk_base, trial_gp_visit_base, trial_referral_base, cci, Rx-Risk, gp_visit, 
 referral,  end_month_itt_negcontrol, followup_month_itt_negcontrol, baseline_trial, age_trial, 
 inj_fup, inj_month, diabetes, treated_for_highbp, treated_for_highch,  
treated_with_aspirin, prior_high_bp, weight_excluded, location, over_age_base, trial_age_base, 
trial_square, period_square 
 
from itt_analysis_6; 
quit; 
 
proc copy in = work out = itt; 
select itt_analysis_5years; 
run; 
 
/*data itt_analysis_5years;*/ 
/*set itt.itt_analysis_5years;*/ 
/*run;*/ 
 
/* ITT analysis baseline adjusted */ 
 
proc genmod data = itt_analysis_5years descending; 
 
 class ppn intervention sex  bmi_c smok_stat ratehealth_cat alcohol_cat_day education income_cat 
 vigour_act cat_fruit_veg cci_base Rx-Risk_base gp_visit_base referral_base trial_cci_base  
trial_Rx-Risk_base trial_gp_visit_base trial_referral_base location ; 
 
 
 model event = intervention sex over_age_base trial_age_base bmi_c smok_stat ratehealth_cat 
alcohol_cat_day education income_cat 
 vigour_act cat_fruit_veg  period period_square trial trial_square cci_base Rx-Risk_base gp_visit_base 
referral_base trial_cci_base  
trial_Rx-Risk_base trial_gp_visit_base trial_referral_base location 
 /dist = binomial link=logit; 
 
 repeated subject = ppn/type = ind; 
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 title " ITT adjusted with baseline covariates"; 
 
 estimate "Donor" intervention -1 1 /exp; /* ref is 1(non donor)*/ 
 
 store out = itt_model; 
 run; 
 
/* ITT analysis age-sex adjusted */ 
 
proc genmod data = itt_analysis_5years descending; 
 
 class ppn intervention sex  ; 
 
 
 model event = intervention sex over_age_base trial_age_base period period_square trial trial_square  
 /dist = binomial link=logit; 
 repeated subject = ppn/type = ind; 
 
 title " ITT adjusted with age-sex covariates"; 
 
 estimate "Donor" intervention -1 1 /exp; /* ref is 1(non donor)*/ 
 
/* store out = itt_model;*/ 
 run; 
 
 
/* ITT analysis unadjusted */ 
 
proc genmod data = itt_analysis_5years descending; 
 
 class ppn intervention  ; 
 
 
 model event = intervention period period_square trial trial_square  
 /dist = binomial link=logit; 
 repeated subject = ppn/type = ind; 
 
 title " ITT adjusted with age-sex covariates"; 
 
 estimate "Donor" intervention -1 1 /exp; /* ref is 1(non donor)*/ 
 
/* store out = itt_model;*/ 
 run; 
 
 
 /* Negative control analysis */ 
 /* Negative control analysis */ 
 /* Negative control analysis */ 
 /* Negative control analysis */ 
 
 
data neg_analysis_60trials; 
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set _neg.neg_analysis_60years; 
run; 
 
/* ITT analysis baseline adjusted */ 
 
proc genmod data = neg_analysis_60trials descending; 
 
 class ppn intervention sex  bmi_c smok_stat ratehealth_cat alcohol_cat_day education income_cat 
 vigour_act cat_fruit_veg cci_base Rx-Risk_base gp_visit_base referral_base trial_cci_base  
trial_Rx-Risk_base trial_gp_visit_base trial_referral_base location ; 
 
 
 model inj_event = intervention sex over_age_base trial_age_base bmi_c smok_stat ratehealth_cat 
alcohol_cat_day education income_cat 
 vigour_act cat_fruit_veg  period period_square trial trial_square cci_base Rx-Risk_base gp_visit_base 
referral_base trial_cci_base  
trial_Rx-Risk_base trial_gp_visit_base trial_referral_base location 
 /dist = binomial link=logit; 
 
 repeated subject = ppn/type = ind; 
 
 title " ITT adjusted with baseline covariates"; 
 
 estimate "Donor" intervention -1 1 /exp; /* ref is 1(non donor)*/ 
 
/* store out = itt_model;*/ 
 run; 
 
/* ITT analysis age-sex adjusted */ 
 
proc genmod data = neg_analysis_60trials descending; 
 
 class ppn intervention sex  ; 
 
 
 model inj_event = intervention sex over_age_base trial_age_base period period_square trial 
trial_square  
 /dist = binomial link=logit; 
 repeated subject = ppn/type = ind; 
 
 title " ITT adjusted with age-sex covariates"; 
 
 estimate "Donor" intervention -1 1 /exp; /* ref is 1(non donor)*/ 
 
/* store out = itt_model;*/ 
 run; 
 
 
/* ITT analysis unadjusted */ 
 
proc genmod data = neg_analysis_60trials descending; 
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 class ppn intervention  ; 
 
 
 model inj_event = intervention period period_square trial trial_square  
 /dist = binomial link=logit; 
 repeated subject = ppn/type = ind; 
 
 title " ITT adjusted with age-sex covariates"; 
 
 estimate "Donor" intervention -1 1 /exp; /* ref is 1(non donor)*/ 
 
/* store out = itt_model;*/ 
 run; 
 

 

####### R codes for Exposure window all-cause mortality Analysis ########### 

library(dplyr) 
require(haven) 
require(foreign) 
library(splitstackshape) 
library(survminer) 
 
# work_data <- read.spss("cox_model_1.sav", to.data.frame =TRUE,stringsAsFactors=FALSE) 
# head(work_data) 
 
work_data <- read_sas("final_analysis_mortality.sas7bdat",catalog_file = "formats.sas7bcat") 
 
# Estimating IP weights 
 
# First calculate denominator model 
 
func_ipweights <- function(data){ 
 
p_denom <-glm(interven_0 ~ 
                 
                as.factor(sex)+ 
                as.factor(bmi_c)+ 
                as.factor(smok_stat)+ 
                as.factor(ratehealth_cat)+ 
                as.factor(alcohol_cat_day)+ 
                as.factor(education)+ 
                as.factor(income_cat)+ 
                as.factor(vigour_act)+ 
                as.factor(cat_fruit_veg)+ 
                as.factor(location)+ 
                as.factor(cci_0)+ 
                as.factor(Rx-Risk_0)+ 
                as.factor(cat_age_base)+  
                as.factor(blood_grp)+ 
                as.factor(tot_don_bef_exp)+ 
                #age_baseline+I(age_baseline^2)+ 
                tot_visit_0 + I(tot_visit_0^2)+ 
                tot_referral_0 + I(tot_referral_0^2)+ 
                mean_hb +I(mean_hb^2)+ 
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                mean_systolic +I(mean_systolic^2)+ 
                mean_diastolic + I(mean_diastolic^2), 
              family = binomial(), data = data 
               
                    ) 
                 
  # Now calculate numerator model 
 
p_num <- glm(interven_0 ~ 
               1, 
             family = binomial(), data = data 
             ) 
 
# Compute predicted probabilities 
 
  data$p_den_exp <- predict(p_denom,data,type="response")  
  data$p_num_exp <- predict(p_num,data,type="response")  
   
   
# Calculating the weights 
   
  data$sw <- ifelse(data$interven_0 ==1,  
                         data$p_num_exp/data$p_den_exp, 
                         (1-data$p_num_exp)/(1-data$p_den_exp)) 
  data <- data %>%  
    mutate(sw = ifelse(sw >= quantile(sw,0.99),quantile(sw,0.99),sw)) %>%  
    select(PPN, sw) 
   
  ipweights <<- data 
} 
   
  func_ipweights(work_data) 
  #  

  # # Expand rows per person per year 
  #  
  # write.foreign(work_data,"H:/work_cox_data.txt", "H:/work_cox_data.sas",package="SAS") 
  #  
  # # again read from sas  
  #  
  #  
  # work_data_expan <- read.spss("work_data_expanded.sav", to.data.frame =TRUE,stringsAsFactors=FALSE) 
   
  # Expand data for the main model 
   
  data_expanded <- work_data %>%  
                  merge(ipweights, by = "PPN") %>% 
                    mutate(survtime = f_time+1) %>%  
                  expandRows("survtime", drop=F)  %>%  
                  mutate(time = sequence(rle(PPN)$lengths)-1) %>%  
                  mutate(event_case = ifelse (time ==f_time & event_7 ==1,1,0)) %>%  
                  mutate(time_sq = time^2) 
   
  # save.image(file = "coxregression") 
  # load(file="coxregression") 
   
  # Model for hazard ratio for marginal structural model 
   
  ipw_model_hazard <- glm(event_case==1  ~ interven_0+ time, 
                          family = binomial(link = "logit"), weight = sw, data = data_expanded) 
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  # Model to predict ip weighted survival curve 
  # Model to predict ip weighted survival curve 
   
   
  ipw_model <- glm(event_case==0  ~ interven_0+time+time_sq 
                   +I(interven_0*time)+I(interven_0*time_sq), 
                   family = binomial, weight = sw, data = data_expanded) 
   
  summary(ipw_model) 
  
  # create data set with all time point under each treatment level 
   
  ipw_exp0 <- data.frame(cbind(seq(0,7),0,(seq(0,7))^2)) 
  ipw_exp1 <- data.frame(cbind(seq(0,7),1,(seq(0,7))^2)) 
   
   
  colnames(ipw_exp0) <- c("time", "interven_0","time_sq") 
   
  colnames(ipw_exp1) <- c("time", "interven_0","time_sq") 
  
  # estimating survival for each person year 
   
  ipw_exp0$p_noevent0 <- predict(ipw_model, ipw_exp0,type = "response") 
  ipw_exp1$p_noevent1 <- predict(ipw_model, ipw_exp1,type = "response") 
 
   
  # compute cumulative survival 
   
  ipw_exp0$surv0 <- cumprod(ipw_exp0$p_noevent0) 
  ipw_exp1$surv1 <- cumprod(ipw_exp1$p_noevent1) 
   
  # Giving 1 probability for first time point 
   
  ipw_exp0$surv0 <- ifelse( ipw_exp0$time==0,1,ipw_exp0$surv0) 
  ipw_exp1$surv1 <- ifelse( ipw_exp1$time==0,1,ipw_exp1$surv1) 
  # merge both data together 
   
  ip_graph <- merge (ipw_exp0, ipw_exp1, by = c("time","time_sq")) 
   
   
  # create the differenc in survival 
   
  ip_graph$survdiff <- ip_graph$surv1- ip_graph$surv0 
   
  ip_graph <- ip_graph %>%  
    arrange(time) 
   
   
  surv0 <- ip_graph$surv0[8] 
  surv1 <- ip_graph$surv1[8] 
   
  Y_0 <- 1-surv0 
  Y_1 <- 1-surv1 
risk_diff <- Y_1 -Y_0   
   
  risk_ratio <- (Y_1/Y_0) 
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  # plot survival curves 
   
  plot_weighted <-ggplot(mortality_surv_curve, aes(x=time))+ 
    geom_line(aes(y=surv0,color = "Lower-frequency" , linetype = "Lower-frequency"),linewidth = 0.8)+ 
    geom_line(aes(y=surv1,color = "Higher-frequency",  linetype = "Higher-frequency"), linewidth =0.8)+ 
     
    # xlab("years")+ 
    scale_x_continuous(limits=c(0,7), breaks = seq(0,7,1))+ 
    scale_y_continuous(limits=c(0.98,1), breaks = seq(0.98,1,0.01))+ 
    # ylab("Survival probability")+ 
    labs (x = "Years", 
          y = "Survival probability", 
          color = "", linetype = "")+ 
     
     
 
    scale_linetype_manual(values = c( "Lower-frequency"="dotted","Higher-frequency" = "solid"), 
                          guide = guide_legend(reverse = TRUE) 
                         )+ 
    scale_color_manual(values = c(  "Lower-frequency"= "red","Higher-frequency" = "#00BFC4"),  
                       guide = guide_legend(reverse = TRUE) 
    )+ 
    theme_survminer(font.x=15, font.y = 15) + 
     theme(legend.position = c(0.2,0.3), legend.text = element_text(size=13)) 
    
   
   
  ## calculate bootstraping confidence intervals 
   
  numboot <-500 
   
  result <-NULL 
   
  set.seed(100) 
   
        # set data frame where sample will be taken.  
          # Outcome and covariates should be here 
   
  dat_boot <- work_data 
   
  for (z in 1:numboot){ 
   
  index <- sample(1:nrow(dat_boot),nrow(dat_boot),replace = T) 
  boot_dat <-dat_boot[index,] 
   
  # Create ip weights 
  func_ipweights(boot_dat) 
   
  # merge in weights anc create person year data 
   
  boot_dat1 <- boot_dat %>% 
    merge(ipweights, by = "PPN") %>% 
    mutate(survtime = f_time + 1) %>% 
    expandRows("survtime", drop = F) %>% 
    mutate(time = sequence(rle(PPN)$lengths) - 1) %>% 
    mutate(event_case = ifelse (time == f_time & 
                                  event_7 == 1, 1, 0)) %>% 
    mutate(time_sq = time ^ 2) 
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  # fit glm 
   
  ipw_model_boot <- glm(event_case==0  ~ interven_0+time+time_sq 
                   +I(interven_0*time)+I(interven_0*time_sq), 
                   family = binomial, weight =sw , data = boot_dat1) 
   
  # create data set with all time point under each treatment level 
   
  ipw_exp0_boot <- data.frame(cbind(seq(0,7),0,(seq(0,7))^2)) 
  ipw_exp1_boot <- data.frame(cbind(seq(0,7),1,(seq(0,7))^2)) 
   
   
  colnames(ipw_exp0_boot) <- c("time", "interven_0","time_sq") 
   
  colnames(ipw_exp1_boot) <- c("time", "interven_0","time_sq") 
   
   
  # estimating survival for each person year 
   
  ipw_exp0_boot$p_noevent0 <- predict(ipw_model_boot, ipw_exp0_boot,type = "response") 
  ipw_exp1_boot$p_noevent1 <- predict(ipw_model_boot, ipw_exp1_boot,type = "response") 
   
  # compute cumulative survival 
   
  ipw_exp0_boot$surv0 <- cumprod(ipw_exp0_boot$p_noevent0) 
  ipw_exp1_boot$surv1 <- cumprod(ipw_exp1_boot$p_noevent1) 
   
   
  # Add both data together 
  ipw_boot <- merge(ipw_exp0_boot,ipw_exp1_boot, by = c("time","time_sq")) 
   
  ipw_boot <- ipw_boot %>%  
    filter(time==7) %>%  
    mutate(risk0 = 1-surv0) %>%  
    mutate(risk1 = 1-surv1) %>%  
    mutate(riskdiff = risk1-risk0) %>%  
    mutate(logriskratio = log(risk1/risk0)) %>%  
    select(risk0, risk1,riskdiff, logriskratio) 
   
  result <- rbind(result, cbind (ipw_boot$risk0, ipw_boot$risk1, ipw_boot$riskdiff, ipw_boot$logriskratio)) 
     
 }    
     
  #### Create estimates and CIS ### 
   
  result_sd <- apply(result,2,sd) 
   
   
   
  lclY_0 <- Y_0 -1.96*result_sd[1] 
  uclY_0 <- Y_0 +1.96*result_sd[1] 
   
  lclY_1 <- Y_1-1.96*result_sd[2] 
  uclY_1 <- Y_1+1.96*result_sd[2] 
   
  lcldiff <- risk_diff-1.96*result_sd[3] 
   
  ucldiff <- risk_diff+1.96*result_sd[3] 
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  lclratio <- exp(log(risk_ratio))-1.96*result_sd[4] 
   
  uclratio <- exp(log(risk_ratio))+1.96*result_sd[4] 
   
  outcome <- "Death" 
   
  final_result_1 <- cbind("Y_1 = 1",  
                        paste0(format(round(Y_1*100,1),nsmall = 1), 
                               "(",format(round(lclY_1*100,1),nsmall = 1), ",", 
                               format(round(uclY_1*100,1),nsmall = 1),")")) 
   
  final_result_2 <- cbind( "Y_0 = 1",  
                          paste0(format(round(Y_0*100,1),nsmall = 1), 
                                 "(",format(round(lclY_0*100,1),nsmall = 1), ",", 
                                 format(round(uclY_0*100,1),nsmall = 1),")")) 
   
   
  final_result_3 <- cbind( "RD",  
                           paste0(format(round(risk_diff*100,1),nsmall = 1), 
                                  "(",format(round(lcldiff*100,1),nsmall = 1), ",", 
                                  format(round(ucldiff*100,1),nsmall = 1),")")) 
   
   
   
  final_result_4 <- cbind( "RR",  
                           paste0(format(round(risk_ratio,2),nsmall = 2), 
                                  "(",format(round(lclratio,2),nsmall = 2), ",", 
                                  format(round(uclratio,2),nsmall = 2),")")) 
   
  final_result <- rbind(final_result_1,final_result_2,final_result_3,final_result_4) 
   
 
   
  # Drawing kaplan meyer survival curve 
   
  install.packages("survminer", repos = "http://cran2.sure.local/") 
  install.packages("survival", repos = "http://cran2.sure.local/") 
  install.packages("splitstackshape", repos = "http://cran2.sure.local/") 
  library(splitstackshape) 
  library(survminer) 
   
  work_data<-work_data %>%  
            mutate(f_time_2 = ifelse(event==1,f_time-1,f_time)) 
   
   
   
  fit <- survfit(Surv(f_time,event)~interven_0,data=work_data) 
   
 
   
 plot_unweighted<- ggsurvplot(fit, 
             data = work_data, 
             ylim = c(0.98,1), 
             xlim = c(0,7), 
             risk.table =FALSE, 
     
             break.time.by = 1, 
             break.y.by = 0.01, 
              palette = c("red","#00BFC4"), 
             surv.geom = geom_line, 
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             linetype = c("dotted","solid"), 
             ggtheme = theme_survminer(font.x=15, font.y = 15), 
             censor=FALSE, 
             legend = c(0.2,0.3), 
             legend.title = "", 
             legend.labs = c("Lower-frequency","Higher-frequency"), 
             xlab = "Years", 
          size = 1, 
             font.legend = list(size = 13) 
        ) 
   

########## R code for gastrointestinal, colorectal and haematological cancer 

analysis######### 

 
library(dplyr) 
require(haven) 
require(foreign) 
library(splitstackshape) 
library(survminer) 
library(foreign) 
library(ipw) 
 
work_data_2 <- read_sas("cancer_analysis_fix_period.sas7bdat",catalog_file = "formats.sas7bcat") 
#work_data_1 <- read_sas("test_male.sas7bdat",catalog_file = "my_format.sas7bcat") 
head(work_data,5) 
 
# work_data_male <- work_data %>%  
#   filter(sex == 1 ) %>%  
#   select(cancer_group!="Prostate (ICD-O-3 C61)") 
#  
# work_data_female <- work_data %>%  
#   filter(sex == 2) 
 
 
 
# Estimating IP weights 
 
# First calculate denominator model 
 
set.seed(1000) 
 
func_ipweights <- function(data){ 
   
  p_denom <-glm(interven_4_yr ~ 
                   
                  as.factor(sex)+ 
                  as.factor(bmi_c)+ 
                  as.factor(cat_age_base)+  
                  # as.factor(bowel_his)+ 
                  # as.factor(other_can_his)+ 
                  # as.factor(bowel_screen)+ 
                  # as.factor(other_can_screen)+ 
                  as.factor(famcanhis)+ 
                  as.factor(can_screen)+ 
                   
                  as.factor(smok_stat)+ 
                  as.factor(ratehealth_cat)+ 
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                  as.factor(alcohol_cat_day)+ 
                  as.factor(education)+ 
                  as.factor(income_cat)+ 
                  as.factor(vigour_act)+ 
                  as.factor(cat_fruit_veg)+ 
                  as.factor(location)+ 
                  as.factor(blood_grp)+ 
                  as.factor(redmeat_c)+ 
                   
                  as.factor(process_meat)+ 
                   
                  as.factor(vit_mineral)+ 
                   
                  # tot_don_3year_prior_exp+ 
                  #  
                  # I(tot_don_3year_prior_exp^2)+ 
                   
                  # as.factor(cci_0)+ 
                  # as.factor(Rx-Risk_0)+ 
                  #  
                  tot_visit_0 + 
                  I(tot_visit_0^2)+ 
                  tot_referral_0 +  
                  I(tot_referral_0^2)+ 
                  mean_hb +I(mean_hb^2)+ 
                  mean_systolic +I(mean_systolic^2)+ 
                  mean_diastolic + I(mean_diastolic^2), 
                 
                family = binomial(), data = data 
                 
  ) 
   
   
  # Now calculate numerator model 
   
  p_num <- glm(interven_4_yr ~ 
                 1, 
               family = binomial(), data = data 
  ) 
   
  # Compute predicted probabilities 
   
  data$p_den_exp <- predict(p_denom,data,type="response")  
  data$p_num_exp <- predict(p_num,data,type="response")  
   
   
  # Calculating the weights 
   
  data$sw <- ifelse(data$interven_4_yr ==1,  
                    data$p_num_exp/data$p_den_exp, 
                    (1-data$p_num_exp)/(1-data$p_den_exp)) 
  data <- data %>%  
    mutate(sw = ifelse(sw >= quantile(sw,0.99),quantile(sw,0.99),sw)) %>%  
    select(PPN, sw) 
   
  ipweights <<- data 
} 
 
func_ipweights(work_data_2) 
#  
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# # Expand rows per person per year 
#  
# write.foreign(work_data,"H:/work_cox_data.txt", "H:/work_cox_data.sas",package="SAS") 
#  
# # again read from sas  
#  
#  
# work_data_expan <- read.spss("work_data_expanded.sav", to.data.frame =TRUE,stringsAsFactors=FALSE) 
 
# Expand data for the main model 
 
 
 
 
data_expanded <- work_data_2 %>%  
  merge(ipweights, by = "PPN") %>% 
  mutate(survtime = followup_month_fixed+1) %>%  
  expandRows("survtime", drop=F)  %>%  
  mutate(time = sequence(rle(PPN)$lengths)-1) %>%  
  mutate(event_case = ifelse (time ==followup_month_fixed & gastro_can ==1,1,0)) %>%  
  mutate(time_sq = time^2) 
 
 
# Model for hazard ratio for marginal structural model 
 
# ipw_model_hazard <- glm(event_case==1  ~ as.factor(interven_2_yr)+ time+ time_sq, 
#                         family = binomial(link = "logit"),weight = sw, data = data_expanded) 
# summary(ipw_model_hazard) 
 
 
# Model to predict ip weighted survival curve 
# Model to predict ip weighted survival curve 
 
# run outcome model for all agecategories 
 
# data_expanded_1 <- data_expanded %>%  
#                 filter(cat_age_base ==4) 
 
ipw_model <- glm(event_case==0  ~ interven_4_yr+time+time_sq 
                 +I(interven_4_yr*time)+I(interven_4_yr*time_sq), 
                 family = binomial(),weight =sw,  data = data_expanded) 
 
summary(ipw_model) 
 
 
 
# create data set with all time point under each treatment level 
 
ipw_exp0 <- data.frame(cbind(seq(0,59),0,(seq(0,59))^2)) 
ipw_exp1 <- data.frame(cbind(seq(0,59),1,(seq(0,59))^2)) 
#  
# ipw_exp0 <- data.frame(cbind(seq(0,83),0,(seq(0,83))^2)) 
# ipw_exp1 <- data.frame(cbind(seq(0,83),1,(seq(0,83))^2)) 
 
colnames(ipw_exp0) <- c("time", "interven_4_yr","time_sq") 
 
colnames(ipw_exp1) <- c("time", "interven_4_yr","time_sq") 
 
 
# estimating survival for each person year 
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ipw_exp0$p_noevent0 <- predict(ipw_model, ipw_exp0,type = "response") 
ipw_exp1$p_noevent1 <- predict(ipw_model, ipw_exp1,type = "response") 
 
 
# compute cumulative survival 
 
ipw_exp0$surv0 <- cumprod(ipw_exp0$p_noevent0) 
ipw_exp1$surv1 <- cumprod(ipw_exp1$p_noevent1) 
 
# Giving 1 probability for first time point 
 
# ipw_exp0$surv0 <- ifelse( ipw_exp0$time==0,1,ipw_exp0$surv0) 
# ipw_exp1$surv1 <- ifelse( ipw_exp1$time==0,1,ipw_exp1$surv1) 
# merge both data together 
 
ip_graph <- merge (ipw_exp0, ipw_exp1, by = c("time","time_sq")) 
 
 
# create the differenc in survival 
 
ip_graph$survdiff <- ip_graph$surv1- ip_graph$surv0 
 
ip_graph <- ip_graph %>%  
  arrange(time) 
 
 
surv0 <- ip_graph$surv0[60] 
surv1 <- ip_graph$surv1[60] 
 
Y_0 <- 1-surv0 
Y_1 <- 1-surv1 
risk_diff <- Y_1 -Y_0   
 
risk_ratio <- (Y_1/Y_0); risk_ratio 
 
 
# plot survival curves 
 
ggplot(ip_graph, aes(x=time))+ 
  geom_line(aes(y=surv0,color = "Less than 2" , linetype = "Less than 2"),size = 0.8)+ 
  geom_line(aes(y=surv1,color = "At least 2",  linetype = "At least 2"), size =0.8)+ 
   
  # xlab("years")+ 
  scale_x_continuous(limits=c(0,60), breaks = seq(0,60,10))+ 
  scale_y_continuous(limits=c(0.98,1), breaks = seq(0.98,1,0.01))+ 
  # ylab("Survival probability")+ 
  labs (x = "Years", 
        y = "Survival probability", 
        color = "", linetype = "")+ 
   
   
   
  scale_linetype_manual(values = c( "Less than 2"="dotted","At least 2" = "solid"), 
                        guide = guide_legend(reverse = TRUE) 
  )+ 
  scale_color_manual(values = c(  "Less than 2"= "red","At least 2" = "#00BFC4"),  
                     guide = guide_legend(reverse = TRUE) 
  )+ 
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  theme_survminer()+ 
  theme(legend.position = c(0.2,0.3)) 
 
 
 
## calculate bootstraping confidence intervals 
 
numboot <-1000 
 
result <-NULL 
 
set.seed(1000) 
 
# set data frame where sample will be taken.  
# Outcome and covariates should be here 
 
dat_boot <- work_data_2 
 
for (z in 1:numboot){ 
   
  index <- sample(1:nrow(dat_boot),nrow(dat_boot),replace = T) 
  boot_dat <-dat_boot[index,] 
   
  # Create ip weights 
  func_ipweights(boot_dat) 
   
  # merge in weights anc create person year data 
   
  boot_dat1 <- boot_dat %>% 
    merge(ipweights, by = "PPN") %>% 
    mutate(survtime = followup_month_fixed + 1) %>% 
    expandRows("survtime", drop = F) %>% 
    mutate(time = sequence(rle(PPN)$lengths)-1) %>%  
    mutate(event_case = ifelse (time ==followup_month_fixed & gastro_can ==1,1,0)) %>%  
    mutate(time_sq = time ^ 2) 
   
   
  # fit glm 
   
  ipw_model_boot <- glm(event_case==0  ~ interven_4_yr+time+time_sq 
                        +I(interven_4_yr*time)+I(interven_4_yr*time_sq), 
                        family = binomial, weight =sw , data = boot_dat1) 
   
  summary(ipw_model_boot) 
  # create data set with all time point under each treatment level 
   
  ipw_exp0_boot <- data.frame(cbind(seq(0,59),0,(seq(0,59))^2)) 
  ipw_exp1_boot <- data.frame(cbind(seq(0,59),1,(seq(0,59))^2)) 
   
   
  colnames(ipw_exp0_boot) <- c("time", "interven_4_yr","time_sq") 
   
  colnames(ipw_exp1_boot) <- c("time", "interven_4_yr","time_sq") 
   
   
  # estimating survival for each person year 
   
  ipw_exp0_boot$p_noevent0 <- predict(ipw_model_boot, ipw_exp0_boot,type = "response") 
  ipw_exp1_boot$p_noevent1 <- predict(ipw_model_boot, ipw_exp1_boot,type = "response") 
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  # compute cumulative survival 
   
  ipw_exp0_boot$surv0 <- cumprod(ipw_exp0_boot$p_noevent0) 
  ipw_exp1_boot$surv1 <- cumprod(ipw_exp1_boot$p_noevent1) 
   
   
  # Add both data together 
  ipw_boot <- merge(ipw_exp0_boot,ipw_exp1_boot, by = c("time","time_sq")) 
   
  ipw_boot <- ipw_boot %>%  
    filter(time==59) %>%  
    mutate(risk0 = 1-surv0) %>%  
    mutate(risk1 = 1-surv1) %>%  
    mutate(riskdiff = risk1-risk0) %>%  
    mutate(riskratio = (risk1/risk0)) %>%  
    select(risk0, risk1,riskdiff, riskratio) 
   
  result <- rbind(result, cbind (ipw_boot$risk0, ipw_boot$risk1, ipw_boot$riskdiff, ipw_boot$riskratio)) 
   
}    
 
#### Create estimates and CIS ### 
 
result_sd <- apply(result,2,sd) 
 
 
 
lclY_0 <- Y_0 -1.96*result_sd[1] 
uclY_0 <- Y_0 +1.96*result_sd[1] 
 
lclY_1 <- Y_1-1.96*result_sd[2] 
uclY_1 <- Y_1+1.96*result_sd[2] 
 
lcldiff <- risk_diff-1.96*result_sd[3] 
 
ucldiff <- risk_diff+1.96*result_sd[3] 
 
lclratio <- risk_ratio-1.96*result_sd[4] 
 
uclratio <- risk_ratio+1.96*result_sd[4] 
 
outcome <- "Gastro Cancer" 
 
final_result_1 <- cbind("Y_1 = 1",  
                        paste0(format(round(Y_1*100,1),nsmall = 1), 
                               "(",format(round(lclY_1*100,1),nsmall = 1), ",", 
                               format(round(uclY_1*100,1),nsmall = 1),")")) 
 
final_result_2 <- cbind( "Y_0 = 1",  
                         paste0(format(round(Y_0*100,1),nsmall = 1), 
                                "(",format(round(lclY_0*100,1),nsmall = 1), ",", 
                                format(round(uclY_0*100,1),nsmall = 1),")")) 
 
 
final_result_3 <- cbind( "RD",  
                         paste0(format(round(risk_diff*100,1),nsmall = 1), 
                                "(",format(round(lcldiff*100,1),nsmall = 1), ",", 
                                format(round(ucldiff*100,1),nsmall = 1),")")) 
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final_result_4 <- cbind( "RR",  
                         paste0(format(round(risk_ratio,2),nsmall = 2), 
                                "(",format(round(lclratio,2),nsmall = 2), ",", 
                                format(round(uclratio,2),nsmall = 2),")")) 
 
final_result <- rbind(final_result_1,final_result_2,final_result_3,final_result_4) 

 




