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Abstract: In order to solve the low accuracy in rolling bearing fault diagnosis caused by irrelevant
and redundant features, a feature selection method based on a clustering hybrid binary cuckoo
search is proposed. First, the measured motor signal is processed by Hilbert–Huang transform
technology to extract fault features. Second, a clustering hybrid initialization technique is given
for feature selection, combining the Louvain algorithm and the feature number. Third, a mutation
strategy based on Levy flight is proposed, which effectively utilizes high-quality information to
guide subsequent searches. In addition, a dynamic abandonment probability is proposed based on
population sorting, which can effectively retain high-quality solutions and accelerate the convergence
of the algorithm. Experimental results from nine UCI datasets show the effectiveness of the proposed
improvement strategy. The open-source bearing dataset is used to compare the fault diagnosis
accuracy of different algorithms. The experimental results show that the diagnostic error rate of this
method is only 1.13%, which significantly improves classification accuracy and effectively realizes
feature dimension reduction in fault datasets. Compared to similar methods, the proposed method
has better comprehensive performance.

Keywords: feature selection; cuckoo search algorithm; clustering; fault diagnosis

1. Introduction

With the development of modern industry, motors are ubiquitous in manufacturing ap-
plications [1]. Rolling bearings are the core components and vulnerable parts of machinery.
Their health directly affects the performance, efficiency, stability, and life of the machine.
According to statistics from the American Electric Power Research Institute, 41% of motor
faults are caused by bearing damage, which is the primary cause of motor faults [2]. In
order to maintain the safe operation of equipment, early identification of rolling bearing
defects is essential [3].

Traditional bearing fault diagnosis is mainly based on model analysis and signal
processing [4]. However, these two methods often rely on the accumulation of experience.
Due to the limitations of these two methods, they cannot meet the reliability requirements of
modern production equipment. With the development of artificial intelligence technology,
fault diagnosis methods based on machine learning show good performance in terms of
motor health detection. Machine learning-based bearing fault diagnosis can be divided
into three steps. The first step is to extract features, the second step is feature selection, and
the third step is classifier recognition [5].

Extraction of the running data of the bearings is an important step in the realization
of rolling bearing condition monitoring. Feature extraction is the process of extracting
attributes from motor signals [6]. So far, researchers have studied various information
analysis techniques, such as the fast Fourier transform (FFT), envelope analysis (EA),
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wavelet transform (WT), and Hilbert–Huang transform (HHT) [7]. The HHT is one of
the most widely used signal analysis tools in nonlinear and nonstationary signal analysis.
Therefore, this paper uses HHT technology to extract fault features. Not all the time–
frequency domain features extracted by HHT technology are conducive to fault diagnosis.
Irrelevant and redundant features not only reduce the efficiency of model operation, but
also lead to a decline in model recognition performance [8]. Therefore, in order to avoid the
interference of redundant and irrelevant features, it is necessary to use effective methods
that select the optimal feature subset from multi-dimensional features.

Feature selection is an essential data preprocessing method, which can effectively
reduce data dimensionality and improve classification performance by removing redundant
or irrelevant features [9]. Currently, two widely used strategies in feature selection methods
are the filter and wrapper methods [10]. The filter method obtains the intrinsic correlation of
features through univariate statistics. This method is independent of the learning algorithm,
so filter calculation is cheaper than calculation using the wrapper method [11]. The wrapper
method uses the classifier as part of the evaluation function, so it usually works better than
filters. Recently, swarm intelligence algorithms such as the genetic algorithm (GA) [12],
particle swarm optimization (PSO) [13], grey wolf optimization (GWO) [14], and crow
search algorithm (CSA) [15] have been widely used in the search process of wrapper-
based methods. Furthermore, the cuckoo search algorithm (CS) [16] is inspired by cuckoo
production and breeding behavior. It is a promising metaheuristic algorithm due to having
fewer adjustment parameters and good search ability. The CS algorithm has a more
effective search ability than the GA and PSO [17]. However, the CS algorithm still faces
the problems of slow convergence speed and random initialization when solving feature
selection problem.

Based on the problems mentioned above, a feature selection method based on a
clustering hybrid binary cuckoo search (CHBCS) is proposed. The main contributions of
this study are briefly presented as follows:

• Propose a strategy to extract the time–frequency domain features of motor signals
based on the Hilbert–Huang transform.

• In order to reduce redundant features in a population, a clustering hybrid initialization
method is presented. The method uses the Louvain algorithm to cluster features and
initializes the population according to the clustering information and the number of
features, which can effectively remove redundant features.

• A mutation strategy based on Levy flights is proposed to improve the update formula.
This strategy can effectively utilize the high-quality information of the population by
guiding the subsequent search with several high-quality individuals.

• The proposed dynamic (Pa) probability strategy adaptively adjusts the (Pa) prob-
ability based on population rankings to preserve the high-quality solution of the
current population.

This article is organized as follows. The related work is discussed in Section 2. Section 3
introduces the feature extraction method. Section 4 describes the proposed algorithm in
detail. In Section 5, the effectiveness of the proposed CHBCS algorithm is verified by
experiments. Finally, Section 6 provides the conclusion.

2. Related Work

Machine learning-based bearing fault diagnosis has been widely used in rotating
machinery health condition monitoring. In machine learning, feature selection plays an
important role in improving classifier performance [18].

Some researchers have previously studied filter-based feature selection methods.
Cui et al. [19] selected fault features accurately according to approximate entropy and
correlation parameters and applied this method to the fault diagnosis of gear reducers.
Zheng et al. [20] proposed a bearing failure diagnosis method using Laplacian scores
for the selection of features. The method uses multi-scale fuzzy entropy to characterize
the complexity and irregularity of rolling bearing vibration signals and sorts the feature
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vectors according to the importance of features and their correlation with fault information.
Tang et al. [21] proposed a feature selection method based on the maximum information
coefficient to improve bearing fault diagnosis. This method uses the maximum information
coefficient to consider the correlation between features and the correlation between features
and fault categories for feature selection. Tang et al. [22] proposed the GL-mRMR-SVM
feature selection model, which uses maximum correlation and minimum redundancy as
feature selection criteria.

Compared to the above filtering-based feature selection methods, more research has
focused on wrapper-based feature selection methods. Lu et al. [23] proposed a genetic
algorithm feature selection method based on a dynamic search strategy and applied it to
rotating machinery fault diagnosis. This method uses empirical mode decomposition and
variable range coding to establish the feature set. The improved genetic algorithm with the
dynamic search strategy is used to process the initial feature set. Finally, a support vector
machine is used for classification. Rauber et al. [24] studied heterogeneous feature models
and feature selection in bearing fault diagnosis. The signal features were extracted by a
complex envelope spectrum, statistical time–frequency domain parameters, and wavelet
packet analysis. A feature selection method based on the greedy method is used to process
the feature set. Finally, a k-nearest neighbor classifier, feedforward network, and support
vector machine are used for fault diagnosis. Shan et al. [25] proposed a rotating machinery
fault diagnosis method based on improved variational mode decomposition (IVMD) and
the hybrid artificial herd algorithm (HASA). This method uses IVMD to decompose the
signal and extract the signal characteristics. The HASA is used for feature selection to
improve the performance of the classifier. Nayana et al. [26] first extracted a set of six
time-dependent spectral features (TDSF) to diagnose bearing faults. A feature selection
algorithm combining particle swarm optimization and wheeled differential evolution was
used to select effective features, and the final feature subset contained most of the TDSF
features. Lee et al. [27] proposed a bearing fault diagnosis model based on the feature
selection optimization method. By using the Hilbert–Huang transform and envelope
analysis, the motor signal is recovered. A feature selection method based on improved
binary particle swarm optimization is proposed to improve classification accuracy.

The swarm intelligence algorithm has been widely used in feature selection methods,
but there are still some problems. The CS algorithm uses Levy flights to search for the
solution space. Due to the heavy-tailed distribution of Levy flights, the large search step
size of the algorithm is not conducive to convergence. Some researchers have improved the
CS algorithm so that it has better performance when solving feature selection problems.
Rodrigues et al. [28] proposed a feature selection method based on the binary cuckoo search
(BCS) algorithm and verified the robustness of the BCS algorithm. Salesi and Cosma [29]
proposed embedding a pseudo-binary mutation neighborhood search procedure into the
BCS algorithm, but the randomness of this strategy is not conducive to algorithm con-
vergence. In order to solve the stability problem of the CS algorithm, Pandey et al. [30]
used two analysis techniques to perform double data transformation on the original fea-
tures. The processed data eliminates the high-order correlation between features, which
is conducive to subsequent searches. Aziz et al. [31] presented a feature selection method
based on a rough set and an improved CS algorithm to deal with high-dimensional data.
Kelidari et al. [32] proposed a chaotic cuckoo optimization algorithm (CCOALFDO). This
algorithm improves the performance of the algorithm through chaotic mapping, an elite
preservation strategy, and a uniform mutation strategy. Alia and Taweel [33] proposed a
new feature selection method by combining rough set theory with the binary cuckoo search
algorithm. This method improves the binary cuckoo search algorithm by developing a
new initialization and global update mechanism to improve the convergence efficiency of
high-dimensional datasets.

Although the above improved algorithm can remedy some shortcomings of the CS
algorithm, it still faces the problems of slow convergence speed and random initialization.
Therefore, based on the simple binary cuckoo search algorithm, this paper proposes a
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feature selection method based on a clustering hybrid binary cuckoo search to overcome
the above shortcomings.

3. Feature Extraction

In this paper, the Hilbert–Huang transform is used to extract the features of bearing
signals. This technique first decomposes a column of time series data using the empirical
mode decomposition (EMD) algorithm. It then obtains the operating characteristics of the
time series data using the Hilbert transform [34].

The vibration signal obtained from rotating machinery is usually nonstationary, com-
plex, and nonlinear, which does not meet the preconditions of the Hilbert transform [35].
Therefore, it is necessary to use EMD to decompose the nonlinear stationary signal into a
stationary signal. The Hilbert transform is then performed on the intrinsic mode function
(IMF) obtained by decomposition, and the complex signal is obtained for further analysis.
For the given signal x(t), the signal decomposition process in the EMD method is shown in
Figure 1.
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Figure 1. Signal decomposition flow chart of the EMD method.

According to the IMF and the residual component r(t), the original signal x(t) can be
reconstructed, as shown in Equation (1).

x(t) = ∑n
i=1 ci(t) + rn(t). (1)

Each IMF component ci(t) obtained via EMD of the signal is subjected to the Hilbert
transform to generate H[ci(t)]. The equation is as follows:

H[ci(t)] =
1
π

∫ ∞

−∞

ci(t)
t− τ

dτ, (2)
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where H[ci(t)] and ci(t) are conjugate complex pairs. The analysis signal zi(t) is shown in
Equation (3).

zi(t) = ai(t)e−jθi(t), (3)

where ai(t) and θi(t) are time functions, as shown in Equations (4) and (5).

ai(t) =
√

c2
i (t) + H2[ci(t)], (4)

θi(t) = arctan
H[ci(t)]

ci(t)
. (5)

The Hilbert time–frequency spectrum matrix of the motor operation signal is obtained
by the above calculation. The features of the signal of the time–frequency domain are
extracted according to the information of the Hilbert time–frequency spectrum matrix [27].
In the time domain, this paper obtained five characteristic curves by calculating the maxi-
mum (T-max), mean (T-mean), mean square error (T-mse), root mean square (T-rms), and
standard deviation (T-std) of each column of the Hilbert time spectrum matrix. For each
characteristic curve, the maximum value, mean value, mean square error, root mean square
value, and standard deviation can be calculated. Thus, a total of 25 statistical features were
obtained from five characteristic curves, recorded as F1–F25. Using the same program in the
frequency domain, the five characteristic curves of F-max, F-mean, F-mse, F-rms, and F-std
are obtained. A total of 25 statistical features from the frequency domain were extracted
and recorded as F26–F50. Figure 2 shows the process of the Hilbert–Huang transform
establishing a feature set containing 50 statistical features.
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4. Feature Selection of the Clustering Hybrid Binary Cuckoo Search
4.1. Binary Cuckoo Search Algorithm

Feature selection obtains a subset by selecting appropriate features, which is essentially
a binary problem. This paper uses a binary vector to define the solution of the feature
selection problem. The formulas are as follows:

xk = (xk
1, xk

2, · · · , xk
N), xk

i ∈ {0, 1}, (6)

xk
i =

{
1 selects the ith f eature,
0 otherwise.

(7)

The new generation of the bird nest location is based on a global random search and
its update formula is as follows:

xk+1
i = xk

i + α0 ×
φ× µ

|ν|1/λ
× (xk

i − xk
best), (8)

in which xk
best is the best contemporary solution, α0 is a constant, α0 = 0.01, µ and ν are

two random numbers generated from a normal distribution, and φ is a random number
extracted from the normal distribution. It can be seen from Equation (8) that the CS searches
for new solutions around the current optimal solution.

In the BCS, we effectively convert each dimension of a position vector in a con-
tinuous space into a binary code through a V-shaped transfer function, as shown in
Equations (9) and (10).

V(xk
i ) =

∣∣∣∣∣∣ xk
i√

1 + (xk
i )

2

∣∣∣∣∣∣, (9)

xk+1
i =

{
1 V(xk

i ) ≥ 0.5
0 otherwise

. (10)

4.2. Clustering Hybrid Initialization Method

The initial nest position is an important part of the CS algorithm and has a great
influence on the convergence speed and the final solution. The random ‘0’ or ‘1’ operation
in the random initialization method does not guarantee the stability and quality of the initial
population. Therefore, this paper proposes a clustering mixture (CH) initialization method
based on feature similarity. Based on the similarity between features, this method uses the
community division algorithm to complete the clustering. Using clustering information to
select features reduces the randomness of selection. In addition, this method can effectively
filter out redundant features during the initialization process and improve the quality of
the initial population to a certain extent. The clustering hybrid initialization includes two
steps: feature clustering and hybrid initialization.

4.2.1. Feature Clustering

Based on the commonality of information between features, an undirected weighted
feature map is established with each feature as the vertex. The similarity between features
is determined by the symmetric uncertainty (SU) [36], which is used as the weight of the
edge. The larger the SU value of the two features, the greater the similarity between the
features. The calculation formula for SU is shown in Equation (11).

SU(X, Y) =
2× IG(X, Y)
H(X) + H(Y)

, (11)

in which X and Y are two random variables and H(X) is the entropy of X, which is calculated
by Equation (12). IG(X,Y) is the information gain of X under the Y condition, which is
obtained by Equation (13).

H(X) = −∑ p(xi) log2(p(xi)), (12)
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IG(X, Y) = H(X)− H(X|Y), (13)

H(X
∣∣Y) = −∑ p(yi)∑ p(xi|yi) log2(p(xi|yi)), (14)

where p(xi) represents the probability when x equals xi, H(X|Y) describes the information
gain of X under the Y condition, and p(xi|yi) represents conditional probability when x
equals xi and y equals yi.

For the d-dimensional dataset, the similarity matrix α of d× d is obtained by calculating
SU. The similarity matrix is processed by the OTSU algorithm [37] to obtain the reasonable
threshold g. For any element αij in the similarity matrix, if the corresponding element of
the adjacency matrix αij > g, it is set to ‘1’ (otherwise it is set to ‘0’). The transformation
from similarity matrix to adjacency matrix is implemented. In this matrix, ‘1’ means that
two features are connected in the feature adjacency graph, with ‘0’ indicating they are
not connected.

The Louvain algorithm [38] clusters the features according to the feature adjacency
graph to obtain the feature clustering group Group = {group1, group2, . . . , groupS}, where S
is the total number of clusters. Figure 3 is a visualization of the clustering process of the
Louvain algorithm. The same clustering group contains repetitive information relevant
to the final classification task. A feature selected from a cluster will hold most of the
information of the entire clustering feature.
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4.2.2. Hybrid Initialization

The number of features is a significant factor affecting population quality. When
the characteristics of clustering groups are selected through quantitative regularity, the
small-scale initialization method and the large-scale initialization method are defined.

The small-scale initialization method selects any number of groups less than or equal
to the total number of clusters S. The initial population containing SN features is then
obtained by randomly selecting one feature from each group. This method selects a small
number of features, which can effectively reduce redundant features.

The large-scale initialization method selects any number of SN features that are less
than or equal to the total number of features N. If SN ≤ S, the same operation as that used
in small-scale initialization is performed. If SN > S, a feature is selected from each cluster
and then this selection is continued according to the above operation until the number of
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features satisfies SN. When the optimal feature subset contains relatively more features, the
large-scale initialization method is more likely to obtain the optimal solution.

A hybrid initialization method is proposed by combining the two methods. Most cuck-
oos use the small-scale initialization method to reduce the number of features effectively.
Other cuckoos use large-scale initialization methods to supplement the possibility of an
optimal feature subset with multiple feature numbers. The hybrid initialization method
considers multiple possibilities and can effectively combine the advantages of the two
initializations. This paper sets 2/3 of the population using the small-scale initialization
method. Figure 4 shows the clustering hybrid initialization procedure.
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4.3. Mutation Strategy Based on Levy Flight

The cuckoo searches for the optimal solution based on its position and the current
optimal position of the bird’s nest in the CS algorithm. However, in the contemporary
population, useful information about quality nests can be obtained in addition to the best
modern solutions. By using the location information of multiple quality nests, cuckoos can
identify the global optimal nest faster. Therefore, this paper introduces three randomly se-
lected high-quality individuals (xk

r1, xk
r2, xk

r3) into the update equation. This improvement
enables the algorithm to explore more of the entire search space.

Furthermore, the CS algorithm has strong global exploration ability due to the addition
of Levy flight. However, the heavy-tailed distribution of the Levy flight makes the jump
step of the algorithm larger in the iterative process, which is not conducive to approximating
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the optimal solution. This article presents the spawning range ω, which specifies that each
cuckoo should lay between 2 and 5 eggs in this range. The spawning range of each cuckoo
is calculated by Equation (15).

ω = β× eggs
total_eggs

, (15)

where β is the constant, β = 0.25, eggs is the number of eggs laid per cuckoo, and total_eggs
represents total egg laying amount. The larger the nest yield, the larger the spawning range.

To effectively utilize useful information from the whole population and accelerate
the convergence of the algorithm, a new global search formula is proposed, as shown in
Equation (16).

xk+1
i = xk

r1 + α0 ·
φ · µ
|ν|1/λ

· (xk
i − xk

best) + ω · (xk
r2 − xk

r3), (16)

in which xk
r1, xk

r2, xk
r3 are three individuals randomly selected from the top 20% of the

individuals in the population.
In the new global search formula, the solution will not be strongly attracted by the

current optimal solution, reducing the speed at which the algorithm falls toward the local
optimum. The laying range ω can control the cuckoos so that they walk randomly in differ-
ent amplitude steps. Furthermore, massive offspring nests can improve local development
ability. Finally, only the optimal offspring is retained as the next generation nest.

4.4. Dynamic Pa Probability Strategy

The probability Pa in the standard cuckoo search algorithm is a fixed value. A fixed
probability of discarding the nest indiscriminately may cause the loss of a better solution,
which is not conducive to convergence. A dynamic Pa probability strategy based on
population fitness sorting is proposed, which can preserve the possible optimal solution
with high probability. The population number is set to M and the nests are sorted according
to fitness. After sorting, each nest is assigned to a level, with the optimal solution being
level one and the worst solution being level M. The assignment level and DPa are shown in
Equations (17) and (18).

ranki = i, i = 1, 2, · · · , M, (17)

DPai = Pamin + (Pamax − Pamin)
ranki

M
, (18)

where Pamin is the minimum probability and Pamax is the maximum Pa probability.

xk+1
i =

{
CH i f r < DPa
xk

i otherwise
, (19)

where r is a random decimal that obeys the normal distribution. According to Equation (19),
when DPa is less than r, a new nest is generated using the clustering hybridization initial-
ization method to replace the original nest; otherwise, the contemporary nest is kept. The
lower the DPa value corresponding to each nest, the higher the probability of preservation.
After discarding poor nests, a new nest generated by the CH initialization method can
prevent the algorithm from falling toward the local optimum.

4.5. k-Nearest Neighbors Classifier and Fitness Function

The k-nearest neighbors (KNN) classifier is a machine learning method for multi-
classification [39]. For unknown samples, the distance between the unknown sample and
all existing samples needs to be calculated. The k samples nearest to the unknown sample
are selected and the category of the unknown sample is judged according to the k sample
types. The basic principle of the KNN classifier is shown in Figure 5.
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A key point in the KNN algorithm is to determine the distance function. The exist-
ing distance functions include Euclidean distance, cosine distance, Hamming distance,
and Manhattan distance. The most widely used is the Euclidean distance, as shown in
Equation (20).

d(r, R) =

√
n

∑
i=1

(ri − Ri)
2. (20)

In this paper, the classification error rate Error obtained by calling the KNN classifier is
used to evaluate the feature set. When setting the k parameter to 5, the description formula
is as follows.

Error = 1− correct classificationrate with k Neighbors
Classifier (N _neighbors = 5).

(21)

The fitness value is applied to assess the effectiveness of the cuckoo nest solution. The
classification error rate and the number of features are two essential criteria for evaluating
classification performance. The fitness function is obtained by weighting them, as shown
in Equation (22).

f itness(x) = q× Error(x) + (1− q)
(
|x|
N

)
, (22)

in which q∈[0, 1] corresponds to the weight of the classification error rate, q = 0.9, and |x|
represents the number of features.

4.6. Feature Selection Based on the Clustering Hybrid Binary Cuckoo Search

Combined with the above-improved strategy, a feature selection method based on the
clustering hybrid binary cuckoo search is proposed. This method introduces the clustering
hybrid initialization strategy, a mutation strategy based on Levy flight, and the dynamic Pa
probability strategy into the CS algorithm to improve the classification performance of the
algorithm. A flow diagram of the CHBCS algorithm is shown in Figure 6.
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5. Experiments and Analysis

This section verifies the feasibility of the proposed method through two experiments.
First, the performance of feature selection method was verified using the famous UCI
benchmark dataset. To confirm the efficacy of the improved method, the suggested CHBCS
algorithm is contrasted with other feature selection algorithms based on the cuckoo search.
Second, fault diagnosis tasks were performed on the bearing fault dataset. In bearing fault
diagnosis, the CHBCS algorithm is compared to the classical optimization algorithm.

5.1. Performance Analysis of the CHBCS Algorithm
5.1.1. UCI Dataset

This experiment tested the performance of the suggested method using nine well-
known benchmark datasets from the UCI database [40]. These datasets are widely used
for performance comparisons of feature selection. The number of features, samples, and
classifications in the datasets are shown in Table 1.
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Table 1. Dataset information.

Dataset The Number of Features The Number of Samples The Number of Classes

BreastEW 30 569 2
Exactly 13 1000 2

HeartEW 13 270 2
Hillvalley 100 606 15

Libras 90 360 3
Musk1 166 476 2

Sonarall 60 208 2
Spectf 44 267 2
WDBC 30 569 2

The range difference between the original data will affect the classification results
of the classifier. The feature sample χij is normalized by the maximum and minimum
normalization method to obtain χij

′.

χij
′ =

χij − χimin

χimax − χimin
, (23)

where χimax and χimin represent the maximum values and minimum values of the i-th
feature in the sample.

5.1.2. Experiment Setting

This section of the experiment is divided into two steps to study the impact of the
proposed improvement strategy on the performance of the algorithm. First, the clustering
hybrid initialization method is compared to other initialization methods. In the second
stage, the CHBCS algorithm is compared to other BCS algorithms to verify the effectiveness
of the improved strategy in improving classification performance and convergence speed.

A 10-fold cross-validation [41] was used to generate a training set and a test set from
the normalized dataset. The feature subset was evaluated using a KNN classifier (in this
article k = 5). The maximum number of iterations for all experiments in this paper was
100, the population size was 50, and the probability Pa was set to 0.25. All algorithms were
implemented in Python, and all experiments were conducted on a PC with an Intel (R)
Core (TM) i5-8500T CPU @ 2.10 GHz and 8.0 GB of RAM.

5.1.3. Effect of Initialization Strategy on Feature Selection

To validate the validity of the clustering hybrid initialization strategy proposed in
this paper, random (Rand) initialization and initialization based on clustering (BC) [42]
are compared to the clustering hybrid (CH) initialization method proposed in this paper.
These three methods use the standard BCS algorithm for a subsequent search.

Table 2 shows the average classification error rate of BCS algorithms with different
initialization strategies. Results show that CH initialization achieves the lowest error
rate for the nine datasets. Its classification performance is improved compared to other
initialization methods.

Figure 7 intuitively reflects the quantitative relationship between the number of fea-
tures of the three initialization strategies in the nine datasets. Table 2 and Figure 7 show
that the CH initialization method not only reduces the number of features by a significant
amount, but also achieves a lower classification error rate. In all datasets, the BCS (CH)
algorithm obtains fewer features than the other two algorithms. The CH initialization
method can effectively reduce redundant features by using clustering information and a
hybrid initialization strategy. The advantages are evident in datasets with a high number
of features, such as Hillvalley, Libras, and Musk1.
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Table 2. Classification error rate of three initialization strategies.

Dataset BCS (Rand) BCS (BC) BCS (CH)

BreastEW 0.0291 0.0289 0.0281
Exactly 0.0011 0.0035 0.0006

HeartEW 0.1437 0.1470 0.1425
Hillvalley 0.3932 0.3901 0.3865

Libras 0.2296 0.2272 0.2264
Musk1 0.7890 0.0904 0.0730

Sonarall 0.1187 0.1173 0.1170
Spectf 0.1602 0.1651 0.1589
WDBC 0.0300 0.0291 0.0271
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The clustering hybrid initialization method considers the similarity between features,
which can effectively avoid the influence of redundant features and reduce the number of
features. Thus, while maintaining the classification error rate, clustering hybrid initializa-
tion can effectively minimize the number of features.

5.1.4. Comparison with Other Cuckoo Search Algorithms

This section verifies the impact of the mutation strategy based on Levy flight and
the dynamic Pa probability strategy on algorithm performance. The CHBCS algorithm
is compared to the binary cuckoo search algorithm (BCS) [28] and the enhanced binary
cuckoo search (EBCS) [29] under unified use of the CH initialization strategy.

Experimental results for the three algorithms after being run independently 20 times in
the nine datasets are shown in Table 3. The results show that the CHBCS algorithm achieves
the lowest average classification error rate for all datasets and obtains the lowest average
number of features for eight datasets. In the Musk1 dataset, the average error rate of the
CHBCS algorithm is 29.51% and 38.17% lower than that of the BCS algorithm and the EBCS
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algorithm, respectively, and the average number of features is the lowest. In the Exactly
dataset, the CHBCS algorithm achieves 100% accuracy and the lowest average number of
features in 20 experiments, with classification performance and stability also being better
than other algorithms. The two proposed improvement strategies can effectively improve
the classification performance of the CS algorithm.

Table 3. Classification results of three algorithms.

Dataset Algorithm Error ± Std NO. ± Std

BreastEW
BCS 0.0276 ± 4.68 × 10−3 5.50 ± 1.11

EBCS 0.0277 ± 4.53 × 10−3 5.35 ± 1.10
CHBCS 0.0252 ± 4.33 × 10−3 4.85 ± 1.52

Exactly
BCS 0.0111 ± 2.50 × 10−3 6.65 ± 0.72

EBCS 0.0006 ± 1.62 × 10−3 6.15 ± 0.35
CHBCS 0.0000 ± 0.00 6.00 ± 0.00

HeartEW
BCS 0.1451 ± 6.58 × 10−3 3.80 ± 0.87

EBCS 0.1436 ± 7.00 × 10−3 3.12 ± 0.30
CHBCS 0.1399 ± 2.51 × 10−3 3.10 ± 0.30

Hillvalley
BCS 0.3956 ± 6.53 × 10−3 8.75 ± 4.81

EBCS 0.3889 ± 6.87 × 10−3 6.55 ± 3.15
CHBCS 0.3679 ± 8.15 × 10−3 6.10 ± 2.87

Libras
BCS 0.1947 ± 0.85 × 10−3 20.15 ± 6.77

EBCS 0.1968 ± 1.07 × 10−2 16.80 ± 7.17
CHBCS 0.1797 ± 0.99 × 10−3 18.80 ± 4.31

Musk1
BCS 0.0820 ± 5.59 × 10−3 9.52 ± 2.52

EBCS 0.0891 ± 1.10 × 10−2 10.05 ± 2.43
CHBCS 0.0578 ± 1.26 × 10−2 8.20 ± 3.16

Sonarall
BCS 0.0916 ± 1.14 × 10−2 17.95 ± 5.01

EBCS 0.1007 ± 9.80 × 10−3 16.40 ± 2.98
CHBCS 0.0822 ± 1.19 × 10−2 15.15 ± 5.43

Spectf
BCS 0.1584 ± 1.23 × 10−2 7.50 ± 3.00

EBCS 0.1631 ± 7.71 × 10−3 6.55 ± 1.73
CHBCS 0.1456 ± 1.02 × 10−2 5.15 ± 2.35

WDBC
BCS 0.0287 ± 4.45 × 10−3 5.70 ± 1.14

EBCS 0.0286 ± 4.78 × 10−3 5.15 ± 1.28
CHBCS 0.0262 ± 4.87 × 10−3 4.80 ± 1.45

Furthermore, Figure 8 displays the convergence curves of the three algorithms for
each of the nine datasets. In the iterative process, the CHBCS algorithm can search for a
better solution than the other two algorithms. On datasets such as Hillvalley, Libras, and
Musk1, the convergence curve drops rapidly and performance is significantly improved. In
the Exactly dataset, the convergence curve of the CHBCS algorithm converges faster than
the curves for the BCS algorithm and the EBCS algorithm, and the curve is smoother. In the
HeartEW dataset, the fitness value of the BCS algorithm stops decreasing after 30 iterations,
and its classification performance is far from that of the CHBCS algorithm.

The CHBCS algorithm can effectively search for the optimal solution, mainly because
the mutation strategy based on Levy flight improves the exploration ability of the BCS algo-
rithm and DPa can effectively retain high-quality solutions and accelerate the algorithm’s
convergence. Therefore, the above results prove that the CHBCS algorithm can effectively
enhance the search ability of cuckoos and improve the convergence performance of the
BCS algorithm.
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5.2. Bearing Fault Diagnosis Experiment
5.2.1. Data Sources

The experimental data for rolling bearings used in this paper come from the Bearing
Data Center of Case Western Reserve University (CWRU) [5]. The CWRU benchmark is a
common dataset that is widely used in bearing fault research. The experimental bearing
adopts artificial single point electric spark damage. The damage diameter is divided into
three groups (0.007 inches, 0.014 inches, and 0.021 inches). Fault location can be divided
into rolling ball (B), inner ring (IR), and outer ring (OR) groups. There are ten bearing states,
including the normal state and different fault states. The vibration signal data are obtained
from the acceleration sensor of the drive end under the no-load condition of the motor,
with a sampling frequency of 12 kHz. The measurement data in the dataset are provided as
a single file, with each file containing about 120,000 data points that correspond to each
bearing state. The length of each signal sample was set to 2000 sample points. A total of
50 test samples were obtained for each health state. This information for the CWRU dataset
is shown in Table 4.
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Table 4. CWRU bearing data.

NO. Failure Mode Fault Location Fault Size (Inches) Number of Samples

1 B07 B 0.007 50
2 B14 B 0.014 50
3 B21 B 0.021 50
4 IR07 IR 0.007 50
5 IR14 IR 0.014 50
6 IR21 IR 0.021 50
7 OR07 OR(6:00) 0.007 50
8 OR14 OR(6:00) 0.014 50
9 OR21 OR(6:00) 0.021 50
0 normal - - 50

Figure 9 shows the time domain waveforms of the motor vibration signals under
10 bearing conditions. It can be seen from the diagram that it is difficult to distinguish fault
types using only vibration signals. Therefore, the signal was analyzed using the feature
extraction method in Section 3, and a50-dimensional fault feature set was extracted.
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5.2.2. Experimental Design

To prove the effectiveness of the CHBCS feature selection method in rolling bearing
fault diagnosis, the CHBCS was compared to the BCS [28], EBCS [29], BPSO [43], GA [44],
HHO [45], WOA [46], SSA [47], GWO [48], and a method using all features (ALL) using
the CWRU dataset. The parameter settings of the nine algorithms are shown in Table 5.



Electronics 2023, 12, 459 17 of 22

Table 5. Parameter settings.

Algorithm Parameter Setting

BCS N = 50; Tmax = 100; Pa = 0.25
EBCS N = 50; Tmax = 100; Pa = 0.25
BPSO N = 50; Tmax = 100; c1 = 0.9; c2 = 0.5
GA N = 50; Tmax = 100; Cp = 0.8; Mp = 0.01

HHO N = 50; Tmax = 100; β = 0.25
WOA N = 50; Tmax = 100; α decreases linearly from 2 to 0
SSA N = 50; Tmax = 100; c1 and c2 are randomly distributed

GWO N = 50; Tmax = 100; α decreases linearly from 2 to 0
CHBCS N = 50; Tmax = 100

The overall fault diagnosis model is shown in Figure 10. During feature selection
training, the KNN classifier (in this article k = 5) and a 10-fold cross-validation were used
to assess the classification performance of the feature subset.
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5.2.3. Experimental Results and Analysis

The t-distributed stochastic neighbor embedding (t-SNE) manifold learning algo-
rithm [49] transforms the feature set before and after feature selection into a two-dimensional
distribution, which can more intuitively show the quality of the feature subset. The re-
sulting distribution map is shown in Figure 11. When feature selection is not performed,
fault types two, three, four, six, and nine are tightly distributed and overlap. After feature
selection based on the CHBCS algorithm, irrelevant interference features are eliminated
and all fault states are effectively separated. Therefore, the method proposed in this paper
can effectively remove the redundant features that affect classification and improve the
performance of the classifier.



Electronics 2023, 12, 459 18 of 22Electronics 2023, 12, x FOR PEER REVIEW 19 of 23 
 

 

 

Figure 11. Two-dimensional distribution map of t-SNE. 

Table 6 shows the diagnostic performance obtained using the nine algorithms and all 

feature (ALL) methods.  

Table 6. Classification results of the CHBCS algorithm and other algorithms. 

Algorithm Error No. Fitness 

ALL 0.0600 50.00 0.1540 

BCS 0.0197 13.05 0.0438 

EBCS 0.0249 9.05 0.0399 

BPSO 0.0243 12.45 0.0468 

GA 0.0229 6.30 0.0333 

HHO 0.02320 5.40 0.0396 

WOA 0.0256 5.50 0.0341 

SSA 0.0283 18.25 0.0620 

GWO 0.0257 4.95 0.0330 

CHBCS 0.0113 4.75 0.0197 

From the perspective of diagnostic performance, the nine algorithms shown in Table 

6 achieve better diagnostic accuracy than when using all features. The average diagnostic 

error rate of the CHBCS algorithm was only 1.13%, which is 81.17% lower than the ALL 

method and the lowest diagnostic error rate among the nine algorithms. In the CWRU 

dataset, 50 features were extracted. The nine algorithms reduced dimensionality to vary-

ing degrees. The average number of selected features with the CHBCS algorithm was 4.75, 

and the feature selection rate was only 9.5%. The Compared to the ALL, BCS, EBCS, BPSO, 

GA, HHO, WOA, SSA, and GWO algorithms, the fitness value of the CHBCS algorithm 

was 87.20%, 55.02%, 50.62%, 61.87%, 40.84%, 50.25%, 42.23%, 68.23%, and 40.30% lower, 

respectively. The experimental results show that the CHBCS algorithm can significantly 

improve diagnostic performance. 

Convergence performance analysis of the algorithm was also performed. The fitness 

convergence curves obtained by the nine algorithms after being run 20 times inde-

pendently are shown in Figure 12. The average fitness of the SSA is 0.0620, which is the 

worst among the nine algorithms. It converges to the global optimum before the 10th it-

eration, indicating that the SSA algorithm easily falls toward the local optimum. The qual-

ity of the feature subset searched by the CHBCS algorithm is significantly better than the 

other eight algorithms. By comparing the iterative curves of the CHBCS, BCS, and EBCS, 

it can be seen that the CHBCS algorithm can effectively improve the convergence speed 

of the CS algorithm. In addition, the initial value of the convergence curve of the CHBCS 

Figure 11. Two-dimensional distribution map of t-SNE.

Table 6 shows the diagnostic performance obtained using the nine algorithms and all
feature (ALL) methods.

Table 6. Classification results of the CHBCS algorithm and other algorithms.

Algorithm Error No. Fitness

ALL 0.0600 50.00 0.1540
BCS 0.0197 13.05 0.0438

EBCS 0.0249 9.05 0.0399
BPSO 0.0243 12.45 0.0468
GA 0.0229 6.30 0.0333

HHO 0.02320 5.40 0.0396
WOA 0.0256 5.50 0.0341
SSA 0.0283 18.25 0.0620

GWO 0.0257 4.95 0.0330
CHBCS 0.0113 4.75 0.0197

From the perspective of diagnostic performance, the nine algorithms shown in Table 6
achieve better diagnostic accuracy than when using all features. The average diagnostic
error rate of the CHBCS algorithm was only 1.13%, which is 81.17% lower than the ALL
method and the lowest diagnostic error rate among the nine algorithms. In the CWRU
dataset, 50 features were extracted. The nine algorithms reduced dimensionality to varying
degrees. The average number of selected features with the CHBCS algorithm was 4.75, and
the feature selection rate was only 9.5%. The Compared to the ALL, BCS, EBCS, BPSO,
GA, HHO, WOA, SSA, and GWO algorithms, the fitness value of the CHBCS algorithm
was 87.20%, 55.02%, 50.62%, 61.87%, 40.84%, 50.25%, 42.23%, 68.23%, and 40.30% lower,
respectively. The experimental results show that the CHBCS algorithm can significantly
improve diagnostic performance.

Convergence performance analysis of the algorithm was also performed. The fitness
convergence curves obtained by the nine algorithms after being run 20 times independently
are shown in Figure 12. The average fitness of the SSA is 0.0620, which is the worst
among the nine algorithms. It converges to the global optimum before the 10th iteration,
indicating that the SSA algorithm easily falls toward the local optimum. The quality of
the feature subset searched by the CHBCS algorithm is significantly better than the other
eight algorithms. By comparing the iterative curves of the CHBCS, BCS, and EBCS, it can
be seen that the CHBCS algorithm can effectively improve the convergence speed of the CS
algorithm. In addition, the initial value of the convergence curve of the CHBCS algorithm
is less than 0.07, and the quality of the initial population is improved. The results prove the
effectiveness of the clustering hybrid initialization method.
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Figure 12. Fitness convergence curves for nine kinds of algorithm.

The optimal fitness values obtained by the nine algorithms after being run 20 times
independently are shown in Figure 13. The fitness value of the CHBCS algorithm is the
lowest among the nine broken lines, mainly falling between 0.03 and 0.01. Compared to
the other eight algorithms, the fluctuations in the line chart of the CHBCS algorithm are the
smallest. The above analysis shows that the CHBCS algorithm has better stability than the
BCS, EBCS, BPSO, GA, HHO, WOA, SSA, and GWO algorithms.
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Figure 13. The optimal fitness value of nine algorithms after being run 20 times.

In rolling bearing fault diagnosis, the CHBCS method can effectively identify var-
ious bearing fault types. In terms of diagnostic accuracy, feature number, convergence
speed, and stability, it has outperformed other traditional optimization algorithms. There-
fore, the CHBCS feature selection method can effectively solve the problem of bearing
fault diagnosis.

6. Conclusions

This paper proposes a feature selection method based on the clustering hybrid binary
cuckoo search to address the problem of low accuracy in rolling bearing fault diagnosis
that is caused by irrelevant and redundant features. Hilbert–Huang transform technol-
ogy effectively realizes the strategy of extracting features from the signal time–frequency
domain. The clustering hybrid initialization method proposed by the CHBCS algorithm
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uses the similarity between features to cluster, effectively reducing redundant features and
controlling the number of features through a hybrid initialization method. In addition, the
proposed mutation strategy based on Levy flight and the dynamic Pa probability strategy
can effectively promote the algorithm’s convergence. Finally, an experiment was carried
out on the CWRU rolling bearing data. The results show that the diagnostic error rate of the
CHBCS algorithm was only 1.13% and that a low-dimensional feature subset that is more
sensitive to the fault state could be obtained, which thus provides an effective solution for
rolling bearing fault diagnosis. The method will be further improved in future studies and
field measured data will be used for experiments to eliminate simulation errors.
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