
Citation: He, X. Critical State and the

Loosest Jammed State of Granular

Materials. Appl. Sci. 2023, 13, 1361.

https://doi.org/10.3390/app13031361

Academic Editor: Jie Zhou

Received: 26 December 2022

Revised: 16 January 2023

Accepted: 18 January 2023

Published: 19 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Communication

Critical State and the Loosest Jammed State of Granular Materials
Xuzhen He

School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
xuzhen.he@uts.edu.au

Abstract: Solid-state (i.e., jammed) granular soils can be prepared into different densities characterised
by the mean pressure p and the solid fraction φ (i.e., different p-φ combinations). The limits for
jammed states (i.e., the range of possible p-φ) are studied theoretically in the literature or through
isotropic compression simulations with the discrete element method (DEM). Shearing also causes
unjamming and the critical state is an important reference state for shear deformation. How the
jamming limits from isotropic compression tests are related to the critical state is examined in
this paper by DEM simulations. Two methods are used to generate isotropic samples. One is the
isotropic compression method, which is mainly used for studying jamming in the literature. Possible
jammed states from this method lie between two compression lines. The varying-friction methods
can generate samples with a larger range of p-φ. Isochoric shear tests are conducted on isotropic
specimens prepared with both methods. Some specimens reach liquefaction (p′ ≈ 0) and the others
reach the critical state. The obtained critical state p-φ line is found to be the same as the loosest
jammed state line from the isotropic compression method. Additionally, the critical state stress state
is also well described by a Coulomb-type equation in the octahedral profile.

Keywords: discrete element modelling; jamming; critical state

1. Introduction

It is well recognised in soil mechanics [1–6] that granular soils can be prepared into
different densities characterised by the mean pressure p and solid fraction φ (solid fraction
is equivalent to the void ratio or specific volume, and solid fraction is used in this study).
Two densities are distinguished—dense or loose, depending on the distance between the
state (p and φ) and a critical p-φ relationship. Dense and loose soil elements have different
responses when sheared [7–11]. These phenomena are also reproduced in discrete element
simulations [12–17]. Some researchers noticed that there is a possible range of φ for a fixed
pressure p [18], and it is impossible to prepare samples outside this range. Researchers use
empirical equations to define such a range of possible p-φ combinations.

Parallelly in the field of condensed-matter physics, researchers are also interested in
granular materials and they use the name jammed granular matters for solid-state granu-
lar assembly [19–24]. Physicists tried to explain this range of possible p-φ combinations
theoretically. In 1989, Sir Sam Edwards made the proposition to treat jammed granular
materials using a volume ensemble of equiprobable jammed states in analogy to thermal
equilibrium statistical mechanics. Song et al. [25] followed this pathway and proposed a
phase diagram to explain the jamming limit of granular assemblies of uniform spherical
grains. Their theoretical phase diagram is also validated by simulations with the discrete
element method (DEM), in which the possible range of jammed p-φ combinations is studied
by isotropic compression simulations. In other studies, researchers found that shearing is
also important and can cause unjamming [24]. The critical state is the ultimate flowing state
under continuous shearing and is an important reference state for shear deformation. How
the range of jammed p-φ combinations found in isotropic compression and extension is re-
lated to the important reference state (the critical state) for shear deformation is not studied
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in the literature. Rather than give a theoretical examination, this short communication aims
to answer this question by conducting DEM simulations.

The paper is organised as follows: in Section 2, the discrete element model (DEM) and
the used parameters are briefly explained, and then the method used to study the jamming
limit and to prepare specimens is explained in Section 3, i.e., the isotropic compression tests
for a periodic cuboidal domain. In Section 4, another method (varying-friction method) for
generating specimens is explained and it is found that this method can generate specimens
with a larger range of p-φ combinations. A large number of specimens are prepared with
different p-φ combinations and conducted continuous isochoric shear tests to find the
critical p-φ line, and find that this line is also the loosest jammed state line.

2. Discrete Element Modelling

Discrete element simulations are used to study the jamming, shearing, and critical
state of granular materials. The commercial software PFC3D is used, and the studied
granular assembly is made of spherical grains with a uniform diameter D of 0.17 mm. The
motion of grains is calculated with Newton’s law for rigid bodies.

A linear Coulomb-type model is used for the contacts between grains. Given a
spherical grain g and one of its neighbouring grain b, they have position vectors (xg, xb),
velocities (vg, vb), angular velocities (ωg, ωb), and diameters (Dg, Db). If the penetration

depth δc =
Dg+Db

2 −
∣∣xg − xb

∣∣ is positive, they are in contact (the contact point is denoted
as c) and grain g experiences a force fgc = fgc,n + fgc,t from grain b, where fgc,n is the
normal contact force, and fgc,t is the tangential contact force. The contact forces components
are also divided into an elastic part and a viscous part ( fgc,∗ = fgc,∗e + fgc,∗v).

The normal contact force is in the direction of contact normal ngc. Its elastic part is
represented by a spring and its viscous part is represented by a dashpot. The equation for
the normal contact force is:

fgc,n =
(

fgc,ne + fgc,nv
)(
−ngc

)
=
(

knδc + 2βn
√

m∗kn
.
δc

)(
−ngc

)
(1)

where m∗ =
mgmb

mg+mb
is the effective mass, and kn and βn are the elastic stiffness and viscous

damping constants. The tangential contact force is first calculated as

fgc,t = fgc,te + fgc,tv =
[

f 0
gc,te + kt∆vt,c∆t

]
+ 2βt

√
m∗kt∆vt,c (2)

where ∆vt,c is the relative tangential velocity at the contact c, and kt and βt are the tangential
elastic stiffness and viscous damping constants. There is a slider in the tangential contact
force model, which means that the tangential contact force has a Coulomb-type limit, which
is imposed as

∣∣ fgc,t
∣∣ < µ

∣∣ fgc,n
∣∣.

The normal stiffness kn is calculated as kn = π
2 ED∗, where E is the elastic modulus

of grains and D∗ =
DgDb

Dg+Db
is the effective diameter. The ratio between the normal and

tangential stiffness κ = kn
kt

is fixed for all contacts. If not otherwise stated, the DEM
parameters are used as in Table 1.

Table 1. DEM parameters.

ρgrain (kg/m3) E (GPa) κ βn βt µ

2650 0.5 0.5 0.2 0.2 0.5

3. Jamming

Song et al. [25] set up a protocol by conducting isotropic compression tests in DEM to
investigate the jamming of granular materials and proved their theoretical phase diagram.
The following protocol to prepare specimens is used (it will show later that this method
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can only generate dense specimens): All following simulations in this study are performed
in 3D periodic domains.

(1) Grains are randomly inserted within a cuboidal domain (each side is 4 mm long)
with the possibility of overlap until an initial solid fraction φ0 (simply called density in this
study) is achieved. The solid fraction is the volume of grains over the total volume. i.e.,
φ =

Vg
V =

Vg
Vg+Vv

. Depending on the initial density, the number of grains ranges from 13,800
to 15,000.

(2) Set the friction coefficient to zero (i.e., µ = 0) and grains are left to reach equilibrium.
(3) Set the friction coefficient back to 0.5 (i.e., µ = 0.5) until equilibrium is reached

again. The jamming, shearing, and critical state of granular soil with surface friction of
µ = 0.5 are studied.

(4) The periodic domain shrinks isotopically, mimicking the isotropic compression
tests. The deformation rate is fixed at a small value of 1 s−1, making sure that the quasi-static
deformation condition is met.

During simulations, the stress is estimated from grains with Love’s equation as in
the literature [13]

σ = − 1
V ∑

g∈V
∑
c∈g

lgc ⊗ fgc (3)

Here V is the volume of the representative element volume (REV), the contact vector
lgc is the vector pointing from the centre of gravity of grain g to the contact point c. The
summation is performed over all contacts (c ∈ g) of every grain (g ∈ V) in RVE. In the
present study, compressive stress and strain are defined as positive. Moreover, this study
focuses on normalised stress, i.e., σ′ = σ

E .
The is the average number of contacts per grain, i.e., Z = M

N , where N is the total
number of grains, and M is the total number of contacts (two grains in contact have
two contacts belonging to each grain). For granular assembly with uniform spherical
grains, some grains are rattlers (having less than 4 contacts), and they do not contribute
to the contact force chain [26], therefore, a corrected coordination number Z4 = M4

N4 is
used, where N4 is the total number of non-rattler grains, and M4 is the total number of
non-rattler contacts.

During each isotropic compression test, the normalised pressure p′, corrected the
coordination number Z4, and the density φ are recorded. Figure 1 gives two examples.
A first assembly starts with an initial density of φ0 = 0.5233. Initially, the assembly is
unjammed with p′ = 0 and Z4 = 4. After it is compressed until larger than a jamming density
of φj = 0.5779, it becomes a jammed matter and then the pressure increases continuously
with the increase of density. Figure 1b shows that the corrected coordination number also
increases with density.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 4 of 9 
 

  
(a) mean pressure (b) coordination number  

Figure 1. Isotropic compression test to determine the jamming density. 

To determine the jamming density, the normalised pressure 𝑝′ and the density 𝜙 

are assumed to follow an equation [26] as 

𝑝′ =
𝜙𝐶

𝜙𝑗

𝑝0 log (
𝜙

𝜙𝑗

) [1 − 𝛾𝑝 log (
𝜙

𝜙𝑗

)] (4) 

where 𝑝0, 𝛾𝑝, and the jamming density 𝜙𝑗 are fitting parameters. Figure 1a shows that 

the DEM data are well-fitted by this equation. The assembly starting with 𝜙0 = 0.5233 has 

a jamming density of 𝜙𝑗 = 0.5779. The other assembly starting with 𝜙0 = 0.5762 has a 

larger jamming density of 𝜙𝑗 = 0.5924. The jamming coordination number 𝑍𝑗
4 can also be 

determined as in Figure 1b.  

The jamming density 𝜙𝑗 is highly related to the initial density 𝜙0 in the above pro-

tocol of isotropic compression tests. Therefore, 330 tests are conducted with initial density 

𝜙0 ranging from 0.45 to 0.63 (0.63 is the maximum possible density for assemblies of a 

uniform size mentioned by Song et al. [25], and the corresponding jamming density 𝜙𝑗 is 

found. The data are shown in Figure 2a. The jamming density increases with the increase 

of initial density. It is also suggested that no matter how small the initial density 𝜙0 is, 

there is a minimal possible jamming density 𝜙𝑗𝑚 = 0.575. Therefore, the possible 𝑝′- 𝜙 

combinations can be identified (Figure 2b) for specimens prepared by isotropic compres-

sion tests, which must be between a compression line for a jamming density of 𝜙𝑗 = 𝜙𝑗𝑚 

= 0.575 and a compression line for a jamming density of 𝜙𝑗 = 0.63. The compression line 

for 𝜙𝑗 = 𝜙𝑗𝑚 = 0.575 also represents the loosest jammed state. A total of 250 specimens 

are prepared by first randomly choosing an initial density 𝜙0 between 0.5 and 0.63, and 

compressing them to a target normalised pressure 𝑝′ between 0.0001 and 0.02. The 𝑝′-𝜙 

combinations for these specimens are shown in Figure 2b. 

Figure 1. Isotropic compression test to determine the jamming density.



Appl. Sci. 2023, 13, 1361 4 of 9

To determine the jamming density, the normalised pressure p′ and the density φ are
assumed to follow an equation [26] as

p′ =
φC
φj

p0 log

(
φ

φj

)[
1− γp log

(
φ

φj

)]
(4)

where p0, γp, and the jamming density φj are fitting parameters. Figure 1a shows that
the DEM data are well-fitted by this equation. The assembly starting with φ0 = 0.5233
has a jamming density of φj = 0.5779. The other assembly starting with φ0 = 0.5762 has a
larger jamming density of φj = 0.5924. The jamming coordination number Z4

j can also be
determined as in Figure 1b.

The jamming density φj is highly related to the initial density φ0 in the above protocol
of isotropic compression tests. Therefore, 330 tests are conducted with initial density
φ0 ranging from 0.45 to 0.63 (0.63 is the maximum possible density for assemblies of a
uniform size mentioned by Song et al. [25], and the corresponding jamming density φj
is found. The data are shown in Figure 2a. The jamming density increases with the
increase of initial density. It is also suggested that no matter how small the initial density
φ0 is, there is a minimal possible jamming density φjm = 0.575. Therefore, the possible
p′- φ combinations can be identified (Figure 2b) for specimens prepared by isotropic
compression tests, which must be between a compression line for a jamming density of
φj = φjm = 0.575 and a compression line for a jamming density of φj = 0.63. The compression
line for φj = φjm = 0.575 also represents the loosest jammed state. A total of 250 specimens
are prepared by first randomly choosing an initial density φ0 between 0.5 and 0.63, and
compressing them to a target normalised pressure p′ between 0.0001 and 0.02. The p′-φ
combinations for these specimens are shown in Figure 2b.
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4. Loose Specimens

The isotropic compression can only prepare dense specimens; another method (varying-
friction method) can be used to generate both dense and loose specimens. The protocol is:

(1) Similarly, grains are randomly inserted within a cuboidal domain until a density
φ0l is reached.

(2) Set the friction coefficient to an initial value µ0 and grains are left to reach equilibrium.
(3) Set the friction coefficient back to 0.5 (i.e., the friction coefficient of the studied

gains) until equilibrium is reached again, and the assembly may enter a state with positive
pressure (p′ > 0).
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Some simulations are conducted for φ0l = 0.59, 0.60, 0.61, and 0.63. When the initial
friction µ0 ranges from 0.001 to 1000, the equilibrium normalised pressure p′ after step (3) is
shown in Figure 3a. When the initial friction is small, the equilibrium pressure is zero. After
a critical value, the pressure starts to increase with greater initial friction. Peak pressure is
achieved at µ0 = 0.5. When the initial friction µ0 is larger than 0.5, the equilibrium pressure
p′ is the same. The achieved p′-φ combinations for these specimens are shown in Figure 3b,
from which, this varying-friction method can generate specimens falling within the possible
jammed states. Additionally, loose specimens (greater pressure at the same density) can
also be generated.

Figure 3. Varying-friction method.

From Figure 3a, it is seen that at a fixed φ0l , the maximum possible pressure is obtained
with µ0 = 0.5 and is related to φ0l . So the loosest possible specimens that can be generated
with this varying-friction method are around the black dotted line in Figure 3b (with cross
markers). This dotted line is the unloading curve (isotropic expansion) for the specimen
obtained after step (3) with φ0l = 0.63 and µ0 = 0.5. The red dotted line is the unloading
curve for the specimen with φ0l = 0.63 and µ0 = 0.25. Therefore, to only generate loose
specimens, the following varying-friction unloading method is used in this study:

(1) Grains are randomly inserted within a cuboidal domain until the density of
φ0l = 0.63 is reached.

(2) Set the friction coefficient to an initial value µ0 (0.25 ≤ µ0 ≤ 0.5) and grains are left
to reach equilibrium.

(3) Set the friction coefficient back to 0.5 and the assembly is left to reach equilibrium.
(4) The periodic domain expands isotopically until a target normalised pressure p′

(0.0001 ≤ p′ ≤ 0.02) is achieved.
A total of 100 loose specimens are generated by this method by randomly choosing

µ0 between 0.25 and 0.5, and randomly choosing p′ between 0.0001 and 0.02. The p′-φ
combinations for these specimens are shown in Figure 4 along with the specimens at
jammed states.
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5. Continuous Isochoric Shear

Next, isochoric (volume preserving) shear tests are conducted on 50 of the 250 dense
specimens and 30 of the 100 loose specimens. The tests are strain-rate controlled. The
principal strain rates are

.
ε1 ≥

.
ε2 ≥

.
ε3. Firstly, the intermediate principal strain rate ratio

b =
.
ε2−

.
ε3.

ε1−
.
ε3

is randomly chosen between 0 and 1,
.
ε1 is fixed at 1 s−1, thus

.
ε2 and

.
ε3 can be

calculated from b =
.
ε2−

.
ε3.

ε1−
.
ε3

and the volume-preserving condition (
.
ε1 +

.
ε2 +

.
ε3. = 0). The

simulations are conducted until the largest principal strain is at least 30%.
Figure 5 gives the evolution of stress and strain for a loose specimen (φ = 0.6016 and

p′ = 0.01529) when sheared with b = 0.5. From the plot of stress components (Figure 5a), it
can be seen that the mean stress p′ will decrease first, the specimen reaches the critical state
after about

.
ε1 = 15%, and the stress components keep constant at the critical state even with

continuous shear deformation (Figure 5).

Appl. Sci. 2023, 12, x FOR PEER REVIEW 7 of 9 
 

Figure 5 gives the evolution of stress and strain for a loose specimen (𝜙 = 0.6016 and 

𝑝′ = 0.01529) when sheared with 𝑏 = 0.5. From the plot of stress components (Figure 5a), 

it can be seen that the mean stress 𝑝′ will decrease first, the specimen reaches the critical 

state after about 𝜀1̇ = 15%, and the stress components keep constant at the critical state 

even with continuous shear deformation (Figure 5). 

  
(a) stress (b) strain 

Figure 5. An isochoric shear test. 

The critical state density and pressure for these 80 specimens are shown in Figure 6. 

Some specimens reach liquefaction (𝑝′ ≈ 0) before reaching the critical state. The density 

and pressure of other specimens lie on a line called the critical state line in soil mechanics. 

From Figure 6, this critical state line collapses with the loosest possible jammed state line 

from isotropic compression tests. Therefore, it is concluded that shearing will cause the 

rearrangement of grains, contacts and fabric, after sufficient deformation, which will fi-

nally lead to a critical 𝑝-𝜙 relationship, which is also the loosest jammed state from iso-

tropic compression tests. More theoretical studies are required to explore what affects the 

relationship between density and pressure. 

 

Figure 6. Critical state density and pressure. 

Figure 5. An isochoric shear test.

The critical state density and pressure for these 80 specimens are shown in Figure 6.
Some specimens reach liquefaction (p′ ≈ 0) before reaching the critical state. The density
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and pressure of other specimens lie on a line called the critical state line in soil mechanics.
From Figure 6, this critical state line collapses with the loosest possible jammed state
line from isotropic compression tests. Therefore, it is concluded that shearing will cause
the rearrangement of grains, contacts and fabric, after sufficient deformation, which will
finally lead to a critical p-φ relationship, which is also the loosest jammed state from
isotropic compression tests. More theoretical studies are required to explore what affects
the relationship between density and pressure.
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The stress state of specimens at the critical state is plotted on the octahedral profile in
Figure 7. It is shown that the critical state stress state is well described by a Coulomb-type
equation and the corresponding bulk internal friction angle is about 21◦ for the studied
granular material (diameter = 0.17 mm and surface friction µ = 0.5).
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6. Conclusions

It is well recognised in soil mechanics that granular soils can be prepared into different
densities, and soil elements of different densities show distinctive behaviour. It is also
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noticed that there is a possible range for soil densities, which is often modelled empirically
and included in constitutive models. Recently, physicists tried to explain this range of
jammed p-φ combinations theoretically, and the results are validated with discrete element
simulations of isotropic compression tests.

Shearing also causes unjamming, and the critical state is an important reference state
for shear deformation. In this study, how the jammed state limit is related to the critical
state is examined by discrete element simulations, and the focus is on granular assemblies
of spherical grains (uniform diameter = 0.17 mm). A linear Coulomb-type contact model is
used for grains, and grain surface friction is µ = 0.5.

Jamming is studied by conducting isotropic compression of periodic domains. It is
found that the jamming density is highly related to the initial density φ0 when inserting
grains, but no matter how small the initial density φ0 is, there is a minimal possible jamming
density φjm = 0.575. The maximal possible jamming density is 0.63. The possible jammed
states lie between two compression lines with these jamming densities (i.e., 0.575 and 0.63).

Next, varying-friction methods are used to prepare specimens. This method can
not only generate specimens falling within the possible jammed states from isotropic
compression tests, but also loose specimens (greater pressure at the same density). An-
other method—the varying-friction unloading method, is thus developed to generate only
loose specimens.

Isochoric shear tests are next conducted on both dense and loose specimens. The tests
are strain-rate controlled and the intermediate principal strain rate ratio b =

.
ε2−

.
ε3.

ε1−
.
ε3

ranges

from 0 to 1. Some specimens reach liquefaction (p′ ≈ 0) before reaching the critical state.
The density and pressure of other specimens lie on the critical state p-φ line, which is found
the same as the loosest possible jammed state line. Additionally, the critical state stress
state is also well described by a Coulomb-type equation in the octahedral profile.
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