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Abstract: Among all the natural hazards, earthquake prediction is an arduous task. Although many
studies have been published on earthquake hazard assessment (EHA), very few have been published
on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal
of complexity observed in the SPA modeling process due to the involvement of seismological to
geophysical factors. Recent studies have shown that the insertion of certain integrated factors such
as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great
extent. Because of the black-box nature of AI models, this paper explores the use of an explainable
artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble
extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model
would efficiently interpret and recognize factors’ behavior and their weighted contribution. The
work explains the specific factors responsible for and their importance in SPA. The earthquake
inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging
the magnitudes from 5 Mw and above. Landsat-8 satellite imagery and digital elevation model (DEM)
data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the
hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to
add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes
the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations
(PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA.
The recent Turkey earthquakes (Mw 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the
obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm
depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling.

Keywords: earthquake spatial probability assessment; inception v3-XGBoost; XAI; Arabian peninsula; GIS

1. Introduction

Earthquakes are one of the most critical, and destructive natural hazards that can last
for a few seconds, but the impact stays for years or even decades. According to the National
Earthquake Information Center (NEIC), around 20,000 earthquakes are occurring each
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year worldwide [1]. Since the 1900s, geologists and seismologists expect about 16 major
earthquakes that could affect over a billion people [2]. The Arabian Peninsula is one of
the driest inhabited continents, which has experienced several earthquakes due to the
Zagros–Bitlis fold and fault belt, Red Sea, Gulf of Aden, and Arabian/Persian Gulf [3].
There is a possibility that future events of high magnitude will occur in this region.

The basic definition of earthquake spatial probability is a potential location for a par-
ticular magnitude event to occur within a specific period. Seismic hazard is the probability
of ground shaking due to earthquakes [4]. However, the definition is quite complicated
as it changes with time and space [5]. Two major types of hazard assessment techniques
are often used globally such as probabilistic (PSHA) and deterministic seismic hazard
assessment (DSHA) [6,7]. Particularly, the statistical models are commonly used in PSHA
to estimate the probability, whereas DSHA accentuates the ground shaking, based on
physical models.

Globally, some works demonstrated that in a quantitative earthquake probability
study, the incorporation of fault interaction and stress triggering is necessary. These studies
implemented novel techniques to derive earthquake probability using the stress changes
which is used with fault models [8,9]. Shcherbakov et al. [10] conducted a study to compute
extreme earthquake probabilities above a certain magnitude. The study shows that the
occurrence of unexpected earthquakes could trigger powerful subsequent earthquakes.
The results of their study could be useful in estimating earthquake probabilities in several
stages of a sequence of events. Schäfer and Wenzel [11] conducted a global earthquake
temporal probability assessment using multi-variate ML. Their results showed the potential
of megathrust events in Manus Adriatic Thrust, and Mussau Trenches, where no historical
earthquakes have been recorded. Gitis and Derendyaev [12] implemented an ML method of
the minimum area of alarm and a method of approximation of interval expert for probability
estimation. They successfully forecasted the target magnitudes based on an automatic
web-based platform. Jena et al. [13] implemented a deep learning technique to estimate
earthquake probability and achieved 89.47% accuracy in Palu, Indonesia. In another work,
Jena et al. [14] applied a deep learning-based spatial probability assessment (SPA) in NE
India and obtained 94% accuracy. Jena et al. [15] proposed an integrated model of artificial
neural network analytical hierarchy process (ANN-AHP) for earthquake probability and
risk assessment in Aceh province, Indonesia. The study observed that a high probability
can be found in the southwest portion of the city using the ANN technique having an
overall accuracy of 84%. In more recent work, Pourghasemi et al. [16] conducted a study on
multi-hazard probability assessment in Iran using ensemble ML techniques. They achieved
an overall accuracy of more than 80% for earthquake probability estimation. This implies
that the use of ML techniques is becoming increasingly popular among geoscientists and
hazard modelers due to its incremental learning process and high level of accuracy.

In the Arabian Peninsula, to the extent of our knowledge, no earthquake SPA analyses
for magnitudes above 5 Mw have been conducted. For instance, the two major studies
were executed by Al-Haddad et al. [17,18] to generate seismic design standards for Saudi
Arabia based on a probabilistic approach for PGA estimation. Later, they enlarged the
PGA values for the whole Arabian Peninsula. Without considering the tectonic nature, a
single ground-motion prediction equation (GMPE) was implemented. According to their
results, the southernmost and western parts of the Zagros Belt and Makran Subduction
Zone (MSZ) fall under the high-hazard zone, respectively. The Zagros–Bitlis Belt in the
southeast and northwest has encountered a geodetical shortening of about 10 mm/year
and 5 mm/year, respectively [19,20]. Further, they estimated the PGA values for 475 and
2475 years of the return period. However, the observed PGA was not well correlated with
the damage potential of ground shaking. The third study was performed by Pascucci
et al. (2008) on hazard estimation without considering the active fault map of Iran [21]
in the seismic source model. This work did not produce the iso-acceleration maps for
the entire Arabian Peninsula. Their study estimated hazard values for some cities in
UAE, Saudi Arabia, Qatar, and Bahrain. In another work, Al-Shijbi et al. [22] performed a
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PSHA for the Arabian Peninsula. Their study observed the highest ground acceleration
values along the Zagros, the East Anatolian Fault, and the Gulf of Aqaba–Dead Sea Fault.
The East Anatolian Fault separates the Arabian Plate from the Anatolian Plate resulting
in high-magnitude events [23]. The Red Sea shows evidence of continental rifting and
falls under a high-hazard zone. Numerous other seismic hazard assessments have been
conducted in the Arab Peninsula [24–27]. Generally, most parts of the Arabian Peninsula
are covered by low-to-moderate hazard zone as reported in the aforementioned studies. A
smaller region falls under high hazard levels because of poor building quality. Geophysical
studies conducted in the Gulf of Aden are characterized by an oceanic crust, indicating a
high-hazard zone [28].

The hindrance to applying ML models in earthquake probability management studies
is to achieve high prediction accuracy [29,30]. Moreover, the investigations face challenges
such as a lack of transparency and explainability of the results, due to the black-box
nature of the applied ML models [31]. The SHAP explainability approach describes the
internal function of the Inception v3-XGBoost model to estimate the factors’ interaction,
relative importance, stable factors, local contribution, the distance among explanations, and
predict the individual factors information on a single prediction, respectively. The physical
models are widely used in the literature for seismological studies; however, several studies
have found that AI-based models outperform them [13,14]. Moreover, the traditional
probabilistic models assume an attenuation relation for all the events and locations with an
unrealistic hypothesis for PGA estimation having uncertainties [32]. In the literature, we
did not come across any work on the application of AI techniques in SPA in the Arabian
Peninsula. The emergence of new explainable algorithms, such as SHAP, is useful to
understand model and factors interaction that changed the perception of using AI-based
models [33]. Because SHAP works more robustly for all ML models than other XAI models
such as Local Interpretable Model-Agnostic Explanations (LIME) and generalized additive
model (GAM) [34].

The aim and novelty of the work lie in the application of an XAI framework to estimate
earthquake spatial probability and identify the contributing factors, hidden interaction,
and their relative importance. The current study attempted to leverage the use of the
XAI technique to explain the black-box nature of the ML models. Hence, the present
study focuses on estimating and understanding the SPA outputs using SHAP plots. No
updated probability maps in the Gulf of Aqaba–Dead Sea Fault can be seen after Al-Haddad
et al. [20] published a temporal probability map. However, no study has been conducted
for a comprehensive SPA in the Gulf of Aden, Red Sea, which makes this study different
from others. In summary, the objectives of the work are to: (i) use a hybrid Inception
v3-ensemble XGBoost model to estimate earthquake spatial probability index; (ii) analyze
the lone predictions using SHAP outputs to understand the predictors’ interaction for
earthquake SPA; and (iii) examine the spatial variation of outputs on change in factors and
geographic conditions. This study addresses the following research questions: (1) how
XAI works to apprehend and comprehend the model decisions, and complex intrinsic
non-linear relations, respectively; and (2) ascertain the models’ suitability for earthquake
probability mapping.

2. Study Area

The Arabian Peninsula is bordered by active tectonic margins [35]. The selected buffer
area (2000 km radius) is centroid by Saudi Arabia and unexplored/partially explored that
considers the major thrust faults and tectonic contacts. Divergent boundaries can be found
along the Red Sea and the Gulf of Aden. Major transform plate boundaries are situated
along the East Anatolian Fault, Owen Fracture Zone, and the Gulf of Aqaba–Dead Sea Fault
Zone [24]. The active convergent plate boundaries are located in the Makran Subduction
Zone (MSZ), where the Arabian Plate subducts beneath the Eurasian plate producing a
collision zone of the Zagros–Bitlis Fold Thrust Belt [36,37].
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Seismic activity is mostly confined to plate boundaries in the Arabian Peninsula. Some
studies mentioned that the Arabian Plate is a stable craton [26,38], however small magni-
tude events were observed from Palmyra, Sinjar area, and Oman mountains. Additionally,
small-to-moderate earthquakes are observed within the Peninsula [35]. The MSZ is domi-
nated by shallow-depth earthquakes (30 km). The northward MSZ develops broad north
dipping thrust faults and deformation zone. Hessami et al. [23] revealed that the MSZ dips
at an angle of 6◦ northwards, where the deeper dip angle was observed at 19◦. An ongoing
drift makes the Arabian Peninsula spread at a rate of approximately 16 mm/year [39]. The
Gulf of Aden is a seafloor spreading environment, where the Arabian Plate is moving away
from the African Plate. Therefore, all the tectonic movements are responsible for many
earthquakes along the active plate boundaries around the Arabian Peninsula (Figure 1a,b).
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3. Materials and Methods
3.1. Data

In this study, the major inputs were derived from reliable seismological, geological,
geostructural, and ground motion data. This study implemented a procedure originally
developed by Wason et al. [40] to convert all forms of magnitudes into moment magnitudes
(Mw). First, earthquake catalogs were collected from several databases, including the
National Earthquake Information Center (NEIC), the National Centre for Seismology
(NCS), and the United States Geological Survey (USGS). The data collection period was
from 2000 until 2022 with a filtered threshold of magnitude 5 Mw and above to avoid
incompleteness. The inventory data were applied for training and validation purposes in
the Inception v3-extreme gradient boosting (Inception v3-XGBoost) model. Second, several
factors were generated in the GIS environment. Third, administrative boundary, digital
elevation model (DEM), thrust faults, tectonic contacts, and geology data were acquired
by using remote sensing images and shape files. Fault information was derived using
Landsat ETM+ and geology was derived using Landsat data. The earthquake SPA map
for the Arabian Peninsula was generated using ArcGIS 10.8 and Python 3.9. To generate
the thematic layers and training purposes, different algorithms, such as inverse distance
weighting (IDW), spline, Euclidian distance, Kernel density, and buffer were used.

Developed thematic layers based on the natural breaks classification technique can be
explained through objective themes, concepts of conditioning factors, prominent patterns,
and insight prediction logic. Data pre-processing was conducted to remove some negative
and illogical values. Subsequently, all the thematic maps were extracted into multiple
values using ArcGIS tools. Each pixel value was produced in association with the target
values to process. Next, post-processing was conducted after the prediction task using a
point-to-raster conversion tool in ArcGIS software to generate a raster map. The major
earthquakes in the Arabian Shield (Mw 6.5), Dead Sea (Mw 7.8), Red Sea (Mw 7.9), Gulf of
Aden (Mw 6.7), Makran subduction zone (Mw 8.4) are recorded and the detail earthquake
information in the Arabian shield is presented in Table 1. The details about data sources,
input factors, methods, and importance are presented in Table 2.

Table 1. Earthquake characteristics, deaths, and injuries in Arabian Peninsula.

Date Area Magnitude Intensity
(MMI) Deaths Injuries Remarks Source

2009-05-19 Madinah 5.7 Mw 7 Landslides USGS
2009-05-17 Umm Lajj 4.6 Mb Destruction USGS
2004-06-09 Tabuk Region 4.6 ML Minor damage USGS

1995-11-22 Egypt, Saudi Arabia, Israel,
Jordan 7.3 Mw VIII 9–12 30–69 Moderate

damage/tsunami
1072-03-16 Yemen, Saudi Arabia VIII 50 Moderate damage NGDC
1068-03-18 Ramla, Jerusalem, Tabuk ≥7.0 IX ~20,000 Destruction

551-07-09 Lebanon, Egypt, Iraq, Saudi
Arabia 7.5 Mw IX 30,000+ Tsunami
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Table 2. Data used in the current study.

Factors/30 m
Resolution Input Predictors Methods Code Name Importance References

Earthquake
inventory Magnitudes > Mw 5 • Earthquake inventory: experienced events used for

training and testing purposes. USGS, NEIC

Seismological

• Slope (Degree)
• Elevation (m)
• Curvature (radians/m)
• Magnitude

variation (Mw)
• Depth variation (m)
• Epicenter density
• Seismic gap (km)
• Earthquake frequency

Machine learning (XGBoost)

Slope
Elevation
Curvature
Mag_var
Dep_var
Epic_den
Seismic_gap
Eq_freq

• Slope: controls the landscape processes and is
associated with the crustal faults.

• Elevation: complicated tectonics and earthquake
probability vary with both high and low elevations.

• Curvature: portrays the positive (ups) and negative
(downs) of the surface.

• Magnitude variation: probability of occurrence of a
specific magnitude event at a particular location can
be understood.

• Depth variation: provides the source depth information
on the fault zone.

• Epicenter density: provides a view of the clusters of
events. This locates in the high probable zone.

• Seismic gap: stress accumulation occurs in the seismic
gap which could lead to future mega-events.

• Frequency: more the earthquake frequency, the less the
magnitude of the event.

Sakellariou et al. [41]
Alizadeh et al. [42]
Gitamandalaksana [43].
Zebardast [44]
Soe et al. [45]
Rashed et al. [46]
Introduced factor

Geological Geology Explainable AI (SHAP) Geology • Geology: amplification factors for soil and lithotypes are
associated with grain size, compactness, and thickness. Dhar et al. [47]

Geo-structural

• Proximity to thrust
faults (km)

• Tectonic contacts
density (km)

Prox_thrust
TC_den

• Proximity to thrust faults: high magnitude earthquakes
mostly occur on active thrust faults.

• Tectonic contact density: most of the largest magnitude
earthquakes happened in the region of tectonic contacts.

Alizadeh et al. [48]

Ground
motion PGA (cm/s2)

Probabilistic seismic hazard
assessment using Joyner and Boore
(1981) attenuation equations.

PGA • PGA: provides ground acceleration information useful
for hazard estimation. Kamranzad et al. [49]
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3.2. Methodology

This study proposed a hybrid Inception V3-XGBoost model (Figure 2). The architec-
ture of the Inception v3-XGBoost model is shown in Figure 3a. The designed model is
characterized by a feature extractor and a classification head [50]. This model replaced the
classification head in the inception V3 model with the XGBoost classifier (Figure 3b). The
input features provided by the Inception V3 model were used for the XGBoost classifier.
This setup of hybrid combination works for other pre-trained CNNs and RNN models too.
In the first stage, the Inception v3 model was fine-tuned for the training dataset. This study
observed that the information originating from Inception v3 leads to a better result by the
XGBoost classifier.
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This implemented Inception v3-XGBoost model is used to predict the targets, such as
earthquake points and non-earthquakes, through Inception v3 and string indexer, vector
assembler, XGBoost estimator, XGBoost transformer [51]. To make a close of the predicted
value with the real value in each round, trees are constructed based on the output of the
previous tree, to enhance the model’s prediction performance. Then, pre-processing of the
data set is necessary to avoid interference with classification results because of null values,
unbalanced data, different data structures, etc. Hereafter, feature selection can be applied
to the data. Training, testing, and evaluation can be performed.

Then, the SHAP library was implemented using JavaScript functions to estimate the
contribution of factors towards hazard assessment and factors interaction. Therefore, we
explored how variables affect the model output by using individual and collective summary
plots. Thereafter, a comparative study was conducted among the SHAP findings with or
without important factors, and the influence of the factor “seismic gap” on earthquake
hazard was estimated. This research has been conducted by using a combined approach of
an ensemble boosting algorithm (XGBoost) and an explainable AI named SHAP. The steps
are mentioned in detail in Figure 2.
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3.2.1. Inception V3 Model Architecture

The network of Inception-v3 is a deep learning model [50]. The difficulty occurs
in training the model directly using a low-configured computer if there is no access to a
supercomputer. Therefore, Inception-v3 works well through transfer learning, and the main
graph of the Inception-v3 model can be presented in Figure 3. The TensorFlow library was
used to retrain Inception’s final layer for new categories. The transfer learning approach is
a knowledge gaining method that uses the previous layer’s parameters and removes the
end layer, then retrains the last layer. The last layer output nodes are equal to the number
of dataset categories. If the dataset has 1000 classes, 1000 output nodes can be observed in
the last layer in the original model. Therefore, for the final classification purposes (0,1), this
study applied the XGBoost classifier. The details of the XGBoost classifier were explained
using the mathematical expression as shown in Section 4.2.
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Here, the model loss can be presented as follows:

Loss = ∑N
i loss(i, class[i])

∑N
i weight(class[i])

(1)

Training CNNs often generates results in overfitting. Therefore, this study imple-
mented pre-trained CNNs to avoid this problem. The most popular CNN architectures
are being used as ResNet and DenseNet. However, the best CNNs model that this study
employed is the Inception-v3 model which is initialized by random weights and fine-tuned
on the dataset to extract features. The Inception v3 is a pre-trained CNN model that pro-
vided the best F1 score. This model is the 3rd version of the inception family CNN models
characterized by several improvements. This model provides an improved factorized
convulsion which reduces the number of parameters and maintains network efficiency.
This model uses a regularizer for label smoothing. Additionally, an auxiliary classifier was
also employed to help propagate label information and regularization.

3.2.2. XGBoost Model Architecture

XGBoost is an ensemble machine learning model, a gradient boost algorithm, used to
improve the performance of model prediction that combines a sequence of weak models
into a strong learning model [52]. The ensemble models provide better results compared to
a single model (Figure 3).

In this section, the steps of XGB algorithm implementation were described [53].
Step 1: Initialization
For solving a binary classification problem, where yi is the actual label can be repre-

sented as 1 or 0. Therefore, the most used log loss function can be considered in this case,
can be presented as:

l
(

yi ˆ, y(t)i

)
= −(yilog(Pi) + (1− yi)log(1−Pi)). (2)

where
pi =

1

1 + e−ŷi
(t) . (3)

According to Pi, yi and p values, gi and hi values can be estimated. where

gi = Pi − yi, hi = p(1− pi). (4)

from the (t− 1)th tree of sample xi, the estimated predicted value can be presented as
ŷ(t−1)

i , where the actual value of xi is yi. However, the prediction value will be 0 for the 0th

tree which means ŷ(0)i = 0.
Step 2: The Gain value of features needs to traverse through and be calculated to

determine the splitting mode for the current root node. The Gain value will help to estimate
the feature node with the maximum Gain score.

Step 3: In this step, the establishment of the Current Binary Leaf Node setup can be
conducted. According to the feature with maximum Gain, the sample set is classified into
two parts to obtain two leaf nodes. In addition, the second step should be repeated for two
leaf nodes by considering the negative gain score and stopping conditions, respectively.
This step led to establishing the whole tree [53].

Step 4: Whole Leaf Node prediction values can be calculated in this step. Leaf node ωj
prediction values can be calculated as:

ωj = −
Gj

Hj + λ
(5)
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and the second tree prediction results can be written as

ŷ(2)i = ŷ(1)i + f2(xi) (6)

Then, this will lead to establishing the second tree.
Step 5: Next step is to repeat steps 1 and 2 to set up more trees until enough num-

ber of trees are established. The prediction values of the model ŷ(t)i can be written as

ŷ(t)i = ŷ(t−1)
i + f2(xi), where ŷ(t)i denotes the prediction value of t trees on sample xi. This

process establishes the tth tree.

pi =
1

1 + e−ŷi
(t). (7)

Step 6: The formula that can be used to determine the classification result of the sample
is to achieve the probability by converting the final predicted value ŷ(t)i of the sample. When
pi ≥ 0.5, the probability of the sample is 1, otherwise, it is 0.

3.2.3. Model Implementation

Firstly, the training dataset was used to train Inception v3. The pretrained layer
weights were employed for Inception v3 classification. The fully connected layer was
addressed using a 2-node SoftMax classifier for the binary classification. The randomly
initialized parameters were implemented for the analysis. The SoftMax function is being
used for the probability distribution. Each output element lies between 0 and 1 and the sum
of the output elements reaches 1. The input layers are assigned with maximum probability
to the class. The dataset has a class imbalance that can be observed. Therefore, to solve
this problem, the study implemented a weighted cross-entropy loss function. This function
shows the weight assigned to each class. Larger weights were assigned to minimize the
class imbalance for minor classes. For each minibatch, the average loss across observations
is analyzed. The next stage deals with several augmentation techniques in the training for
data pre-processing. The augmentation process generalizes the model better and improves
performance. The validation loss for the Inception v3 models shows the performance of
the model.

The training of the XGBoost model was conducted using earthquake points with
magnitudes of 5 Mw and above, whereas non-earthquake points were selected randomly
for training purposes. The original data were split into a 4:1 ratio of size and distribution
of points. Specifically, the data were split into training (6000 earthquakes and 6000 non-
earthquake points), validation (2400 non-earthquake points), and testing (1,000,000 points).
The modeling was performed on four Nvidia 6 GB Graphics with 40 GB of GPU VRAM. The
model employed regularization to prevent overfitting using the least absolute shrinkage
and selection operator (LASSO) (L1) and Ridge (L2) regularization. The sparsity awareness
in the XGBoost model gives access to sparse features to handle efficiently the sparse patterns
in data and best estimates the missing value based on training loss [54]. The weighted
quantile sketch algorithm was employed in the XGBoost model to find split points amidst
weighted datasets. The cross-validation algorithm in the model comes at each iteration to
explicitly specify the required iterations in a single run.

Until the trained hybrid model achieves a satisfactory result (overall accuracy above
80%), the training process continues with tunning the model’s parameters and modification
of training samples. Finally, the ArcGIS’s multi-values to points were considered to remove
irrelevant and illogical values to estimate the final prediction result of models. The model
training and prediction were conducted with the optimal parameters. The general predic-
tion parameters used in the Inception v3-XGBoost model are presented in Table 3. Based on
the Inception v3-XGBoost feature selection, the model is significant for determining good
and bad samples for earthquake points and non-earthquake points.



Remote Sens. 2023, 15, 2248 11 of 26

Table 3. Parameters used for the proposed model.

Parameters Values

Include_top True,
Weights “imagenet”,

Input_tensor None,
Input shape None,

Pooling None,
Booster gbtree

Verbosity 1
Validate parameters True

n-thread Maximum
Disable default evaluation metric False

Number of p-buffer Automatic
Number of features Automatic

Adam Optimizer [0.9, 0.999]
Learning rate 1 × 10−4

3.2.4. Model Evaluation

The present work uses 12 factors including seismological, geological, and geo-structural
as predictors (Table 2). The model’s predictive capacity was appraised using four statistical
metrics such as: coefficient of determination (R2) and root mean square error (RMSE),
precision and accuracy [15]. The mathematical expression of these metrics is shown in
Equations (7)–(10).

R2 =

√√√√ ∑m
k−1
(

xi − xi
)

∑m
k=1(xi − xi)

2 (8)

RMSE =

√
∑m

k=1(xi − xi)
2

m
(9)

where the mean value is xi, the observed and forecasted values are xi and xi with m being
the number of samples. The precision and accuracy can be represented as:

PPV =
TP

TP + FP
(10)

ACC =
TP + TN

P + N
(11)

where PPV stands for positive predictive value, ACC is accuracy, N and P denote nega-
tive and positive points, TP is true positive, FP is false positive, and TN stands for true
negative, respectively.

3.2.5. SHAP Interpretation

The SHAP model was first introduced in game theory to estimate the individual
player’s contribution to a team game [33]. This concept was created to administer the
total gain based on the contributions of the players to solve the problem of providing a
fair reward. Recently, the SHAP algorithm development was conducted by Lundberg and
Lee [55], which has opened a new direction for understanding black-box models. This
provides more lucidity towards the AI-based model’s output. The SHAP was used by
assigning a value estimated by accuracy, consistency, and null effect [33].

The classical SHAP value can be mathematically described as:

∅i = ∑S⊆N{i}
|S|!(n− |S| − 1)!

n!
[υ(S ∪ {i})− υ(S)]. (12)
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where feature contribution i can be presented by ∅i, N is the feature set, whereas n is the
number of features in N. The subset of N is S that contains feature i and the base value v(N)
for each feature in N without deliberating the feature values.

For every observation, the output is estimated through the SHAP value summation
for each feature. Therefore, the SHAP model can be explained as:

g(‡′) = ∅0 + ∑M
i=1 ∅0‡′i (13)

where the number of features M are denoted as z′ε{0, 1}M and ∅i can be obtained from
the above equation. The SHAP model provides several ML and deep learning explainers,
which is beyond the scope of the current work. Molnar (2020) described different explainers
and plots in their study. The current study uses a deepExplainer designed for a deep
learning model.

4. Results
4.1. SHAP Explanation and Interpretation

After identifying the twelve factors, including eight seismological, one geological,
two geo-structural, and one ground motion factor, they were extracted from different
datasets. Next, the binary Inception v3-XGBoost model was trained using these factors,
and the SHAP values were estimated for all contributing features to the model. Ultimately,
the SHAP summary plot was plotted that ranks the features based on their impact on
the prediction.

Waterfall plots are conceived to explain individual predictions (Figure 4a) and portray
a single row of the whole data as input (Figure 4b). The bottom of a waterfall plot shows
the expected model output. The positive (red) or negative (blue) contribution in each row
shows the value that moves from the expected model output to the model output in each
prediction. Figure 4 shows the plots for the first explanation of Inception v3-XGBoost based
on the waterfall plot. The log-odds units are presented on the x-axis, so negative values
denote the probabilities of less than 0.5.
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The gray text behind the factors shows the value of each factor for the individual
sample. Interestingly, having proximity to a thrust of 2,611,110 m dramatically increases the
predicted spatial probability of earthquakes. Seeing that the waterfall plots only manifest
a single row worth of data makes it hard to understand the impact of changing values
of the factor proximity to thrust. To demonstrate this, a scatter plot is necessary to show
that low SHAP values are the negative predictor of earthquakes, while high values are the
positive predictor (Figure 5a–d). To explain the result, a deep dive into the data is required
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and careful training of the model is necessary with bootstrap resamples for uncertainty
quantification. The important factors as per the waterfall plot were considered for scatter
plotting of SHAP values. The SHAP values are clustered against their original factor
values. In the case of non-earthquake prediction, proximity to thrust, epicenter density,
curvature, and magnitude variation, the values vary from 0 to −1.8, 0 to −1.5, 0 to −1.6,
and 0 to−4, respectively. Similarly, for earthquake prediction, proximity to thrust, epicenter
density, curvature, and magnitude variation, the values vary from 0 to 1.6, 0 to 2.5, 0 to 1.7,
and 0 to 5, respectively.
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Figure 5. The scatter plot shows SHAP values for important factors based on the waterfall plot;
(a) proximity to thrust, (b) epicenter density, (c) curvature, and (d) magnitude variation.

According to the factor’s importance in the earthquake SPA, Figure 6a shows the
variation of SHAP values. As per the results, PGA and magnitude variation contribute the
highest with the SHAP values of 4.3 and 5, respectively. All other factors are contributing
the highest, with SHAP values ranging from 0 to 0.7. Figure 6b represents the bar diagram
showing the mean SHAP values in SPA, where the highest value is achieved by PGA and
magnitude variation, respectively. Lower SHAP values were observed for the factors such
as earthquake frequency, curvature, and sand-filled geology, which contribute to a minimal
level of earthquake SPA.
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and (b) bar plot shows importance based on mean SHAP values.

The hybrid model performed well in classifying earthquakes and non-earthquake
points by detecting earthquake points. However, it failed to detect some of the earthquake
and non-earthquakes points in the test dataset. A possible reason behind the high number
of true-negative results could be due to the skewed dataset towards the non-earthquake
points. The accuracy is below 90% because the model predicts more non-earthquake points.
Individually, the SHAP values for earthquakes and non-earthquakes are plotted in red
and blue color in a scatter plot, respectively (Figure 7a–f). This will overcome the issue of
visualization observed in a simple scatterplot. In the SHAP colored scatter plot, the colors
such as blue, purple, and red color denote the low, average, and high values of factors in
the training dataset, respectively. The SHAP values in the Y-axis show each observation,
while the X-axis shows the factor values. It is therefore necessary to create a summary
plot in order to gain a better understanding of this concept. However, this plot is unable
to describe when some low SHAP values are predicting earthquake points. Therefore, a
summary plot is necessary to understand this concept.

The factors’ importance is shown in the SHAP summary plot (Figure 8). The seismo-
logical factors are portrayed as most impactful in distinguishing the earthquake points and
non-earthquake points. This result is obvious because the PGA, magnitude, epicenter, and
depth variation are the properties that define earthquake probability areas. In contrast,
some factors do not have a significant effect on model predictions. The low contribution of
the factors in the classification might be controlled by zero values in most of the data points.
Therefore, due to the low variance in the factors does not provide sufficient information
to contribute to the classification, which is evident in the SHAP summary plot (Figure 8).
In the SHAP summary plot, the aqua blue, purple, and fuchsia red colors denote the low,
average, and high SHAP values of factors, respectively. The SHAP values in the X-axis
show each observation. Therefore, the interaction between the factors and the target can be
explored using this plot. Moreover, most of the earthquake points occurred in the potential
areas according to the previously published maps of Al-Haddad et al. [19,20]. Therefore,
a correlation might be observed between low-important factors in the study area and its
condition with the earthquake spatial probability. However, this study found these factors
are irrelevant and can be removed from the dataset. Further, due to low contribution in SPA
estimation curvature, earthquake frequency, and geology are likely to be redundant. It was
found that geology is not important as the entire peninsula is characterized by dried sands.
For PGA and magnitude variation, the SHAP values are highest and vary from −4.5 to 4
and −3.5 to 4.5, while for SPA, the values vary from 0 to 4 and 0 to 4.5, respectively. The
study will provide new results if the irrelevant and redundant factors are removed. The
nine remaining seismological and structural factors can lead to good accuracy; however, the
accuracy will go down. The SHAP values for all factors were calculated and presented in
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Figure 8. It can be expected that the new SHAP summary results will portray seismological
factors as the most important factors for SPA estimation.
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If the attributes correlation is perfectly positive or negative, then there is a high chance
that the model performance will be impacted by “Multicollinearity”. In fact, Multicollinear-
ity occurs when one predictor in a multiple regression model can be predicted from others
in a linear manner having a high degree of accuracy. Therefore, this can lead to skewed or
misleading results.
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4.2. Spatial and Temporal Probability Assessment

The earthquake spatial probability (Figure 9a) and non-spatial probability (Figure 9b)
maps are presented. Based on the probabilistic point of view, the index varies between
0 (non-earthquakes) and 1 (earthquakes) derived using SoftMax and classified based on the
natural break’s classification technique. The classified values can be compared for different
locations which can, later, be used for the hazard assessment based on seismic coding
and retrofitting. The probability index was classified into five different classes such as
0.002–0.01 (very low), 0.011–0.093 (low), 0.094–0.91 (medium), 0.92–0.99 (high), and 0.991–1
(very high).

The index values in the non-probability map were classified into five different classes
such as 0–0.01 (very low), 0.012–0.11 (low), 0.12–0.89 (medium), 0.89–0.98 (high), and 0.99–1
(very high). Most of the high to very high spatial probability zones are characterized by
more than 5.5 Mw events. A comparison between the probability maps without (Figure 10a)
and with 3 important factors was conducted. The result shows that the one with 3 important
factors portrays better output than the one without PGA, magnitude variation, and seismic
gap as shown below. Unrealistic and poor results can be seen in Figure 10b, which portrays
a vast region of the Arabian Peninsula that falls under a high probability zone.

For a return period of 475 years., the PGA was estimated (Figure 11a) based on
the PSHA technique for the Arabian Peninsula where, eastern parts of UAE, and Iraq,
northwestern parts of Syria and Jordan, and southwestern parts of Yemen are falling under
a medium range of PGA values (91–150 cm/s2). The current earthquake in Turkey is falling
under a very high PGA value ranging from (216–380 cm/s2) causing the location highly
hazardous. The frequency vs. time shows that frequency has increased significantly from
1995 onwards and reached 600 events in 2023 (Figure 11b).
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4.3. Validation and Threshold Evaluation

Validation of the obtained results of earthquake SPA (Figure 10) and PGA (Figure 11)
using the recent main and aftershock earthquakes in Turkey was conducted. The recent
Turkey events of Mw 7.8, Mw 7.5, and Mw 6.7 may be falling within or very close to a
seismic gap in Turkey. The events are falling under the spatial probability index values of
(0.991–1) based on the Inception v3-XGBoost model with all major factors. Similarly, the
events are falling within a high PGA (216–380 cm/s2) zone confirming the accuracy of the
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obtained result. These events including more than 45 aftershocks caused huge destruction.
Threshold for all the factors and their weighted score were derived (Table 4).
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Table 4. Threshold and importance of factors derived based on Inception v3-XGBoost model.

Factors Class Importance (%) Threshold Factors Class Importance (%) Threshold

Slope

0–1.65

7 >10
Epicenter
density

0–2

10 >8
1.65–4.95 2–4
4.95–9.90 4–6
9.90–17.60 6–8
17.60–70.14 8–10

Elevation

−10,921–−4078

9 >458
Seismic
gap

0–196

12 >500 km
−4078–−1694 196–392
−1694–458 392–500
458–1995 501–785
1995–8685 785–981

Curvature

−151,997–−4582

3 <1479 PGA

0–34

14 >100 cm/s2
−4582–−1479 35–90
−1479–1624 91–150
1624–6279 151–215
6279–243,695 216–380

Magnitude
variation

4.5–5.5

13 >5.5 Geology

Quartz-rich sands

5

Quartz-rich
sand and
Oceanic crust
with high
amplification

5.5–5.8 Oceanic crust
5.8–6.0 Dry soil
6.0–6.38 CaCO3

6.38–9.0 Quartz-rich
desert soil

Frequency

0–2

5 >6
Proximity
to thrust
faults

0–50

6.5 <50 km
3–4 51–208
5–6 208–385
6–7 385–637
7–8 637–999

Depth
variation

0–30

8 <30 km
Tectonic
contacts
density

0–1

7.5 >5
30–40 1–3
40–80 3–5
80–120 5–7
120–170 7–10

According to the Inceptionv3-XGBoost model, the highest weights were achieved by
PGA (14%), magnitude variation (13%), seismic gap (12%), and epicenter density (10%).
These are the four highly recommended and globally stable factors for the SPA in the
Arabian Peninsula. The threshold achieved for all these four factors are >100 cm/s2,
>Mw 5.5, >500 km, and >8 events in a cluster, respectively.
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4.4. Model Performance Evaluation

A confusion matrix and classification report were derived to measure the model
performance, as presented in Tables 5 and 6, respectively. A total of 12,000 points were
considered for training and validation purposes, out of which 6000 points were trained as
earthquake points. A total of 6000 random points were considered for non-earthquakes
training purposes. The receiver operating characteristics (ROC) curve was plotted as shown
in Figure 12a which shows the accuracy (87.9%) of the proposed model. The sensitivity
assessment for the employed training data was conducted which shows that with an
increase in the training data points, the accuracy increases. For a minimum of 10,000 data
points the accuracy reaches up to 70% whereas the accuracy gradually increases until
1,000,000 points (Figure 12b).

Table 5. Confusion matrix for Inception v3-XGBoost classification and statistical metrics.

Confusion
Matrix: Predicted Condition RMSE R2

Actual condition
Total population PP (Positive) PN (Negative)

0.35 0.52P (Positive) 2943 527
N (Negative) 308 3126

Table 6. Classification report for Inception v3-XGBoost classification with macro and weighted
average accuracy.

Classification Report: Predicted Condition

Precision Recall F1-Score Support

0 0.9053 0.8481 0.8758 3470
1 0.8557 0.9103 0.8822 3434

Accuracy 0.8791 6904
Macro average 0.8805 0.8792 0.8790 6904

Weighted average 0.8806 0.8791 0.8790 6904
Classification accuracy: 0.879056; false discovery rate: 0.1519; Matthews correlation coefficient: 0.7597; sensitiv-
ity: 0.9053; specificity: 0.8557.

After the pre-processing stage, 1,000,000 points were derived from the study area for
testing purposes. The hybrid model achieved an overall accuracy of 87.91%. The macro
average was achieved by the model with a precision of 0.8805, while the weighted average
with a precision of 0.8806. The earthquake probability classification achieved a precision
of 0.8557, while the earthquake non-probability assessment achieved a precision of 0.9053.
This shows that the trained model classifies the non-earthquake points more efficiently than
earthquake points. The predicted probability against log loss (Figure 12c) and classification
error is shown in Figure 12d.
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5. Discussion

In the current study, the SPA was conducted in Arabian Peninsula using a combined
approach of ML and XAI techniques. Because feature learning is still unclear in the litera-
ture, therefore a hybrid combination of the Inception v3-XGBoost model was developed
for clarity. This hybrid model performs both feature learning and prediction better than
the standalone models [50]. The model deeply analyses the features to improve processes,
automate tasks, and predict outcomes, based on past experiences. Several instance-level
plots for the explanations can be very informative [56]. To interpret the effect of the feature
on the prediction, waterfall, scatter, bar, and summary plots were plotted. This investigates
the factors’ impact on earthquake and non-earthquake classification (Figures 5–9). As
shown in Figure 9, the trained XGBoost model could correctly classify the earthquake and
non-earthquake areas, respectively.

The way of summarizing the importance of factors can make a big difference in
understanding the model. In the plot shown in Figure 8, the topmost factors can be seen,
which portrays the impact and common interaction. The study uses the SHAP model to
summarize the factor’s importance and the largest impact on the model. It can be noted
that the high-rank factors lead to an increase in SHAP values. However, the increase
in the low-rank factors leads to a decrease in SHAP values. It is worth noting that the
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results portray the general factors analysis in the dataset, and the factors might impact the
classification output differently for individual events.

When estimating earthquake SPA using ML, the SHAP plots can help in understanding
the reasons behind the specific model outputs. Somala et al. [57] conducted a study on the
time period estimation of reinforced concrete (RC) frames. They successfully estimated the
SHAP values of the input parameters and their importance. Matin et al. [58] conducted a
study on earthquake-induced building-damage mapping using explainable AI. This paper
successfully implemented SHAP to interpret the outputs of the proposed ANN model and
analyzed the impact of the feature to understand the model’s reliability. Though, it would
be precipitous to fully believe SHAP that can explain the contribution of the factors, as
currently, no literature is available on earthquake SPA using SHAP. Nevertheless, with an
increase in studies on hazard estimation, researchers could trust SHAP to understand the
importance of the factors on SPA estimation.

This study conducted an assessment by removing the low-impact factors to see the
changes in results. The results after removing the low-impact factors do not provide any
remarkable changes in the outputs. Therefore, the presence or absence of low-impact factors
does not matter to the model. However, the spatial variation of factors after removing
the low contribution factors of specific predictors does not show any changes in ranking.
This could be due to the reduction of the test dataset. Then another assessment was
conducted by removing the high-influence factors, as shown in Figure 10. Looking at
the spatial variation, some differences could be observed in both maps (Figure 10). The
important point is that the SHAP algorithm was not developed for time series analysis,
with the development of deepExplainer still situated in its incipient stage [59]. As per the
current analysis, deepExplainer suits the proposed model. Individual rows of data and
their contribution were compared based on explainers which show a minimum distance of
0.33 and a maximum of 0.48. SHAP values, however, can provide valuable information that
is correlated with the results of actual predictions. Therefore, this could lead to explaining
in detail the black box models for all stages of analysis in the future.

The results of the current study considered the postulation that future events might
fall within the mapped seismic zones. This might not happen as few areas in the peninsula
have shown seismic quiescence for a long period. These are the Makran Subduction Zone
and the Gulf of Aqaba, which may become active in the future. This confirms further
studying the active tectonics in the Peninsula and surrounding areas. The earthquake
inventory indicates strong shaking at Nizwa, Qalhat, Najran, Sohar, Makah, Al-Madinah,
Taief, and Tabuk manifesting significant seismic probability and hazard warnings within
the Arabian Plate. However, most of the recorded earthquakes suggest that the Arabian
Plate is aseismic [20]. The SPA is tied to some specific faults in Iran and Turkey rather than
an average area, indicating accurate and localized spatial probability. Therefore, state-of-
the-art AI-based studies on paleo-seismicity and active faulting in association with field
investigations could confirm or deny the historical reports. This research implemented the
seismic gap as a new factor, which comes as the third most important factor in the SPA
analysis. The spatial seismic probability areas of the current study are similar to the map
produced by Al-Haddad et al. [20].

As this study predicted the SPA based on binary classification techniques, therefore,
the probability values vary between 0 (non-earthquake) and 1 (earthquake). The obtained
SPA is comparable to some extent with the PGA map derived by Al-Haddad et al. [20]
which shows high PGA with a ground motion of 250 cm/s2 in the southwestern part of
Saudi Arabia. A little difference in mapped areas could be observed which are because of
several reasons: (1) the current study implemented an updated catalog and recent GMPEs
for PGA estimation, (2) the current work contemplates Iran and Southeastern Turkey as
seismic sources, (3) adopted hybrid machine learning model (Inception v3-XGBoost), and
(4) inclusion of new input parameters and treated the factors appropriately. Generally, the
SPA in the current study is consistent with the earthquake events showing Central Saudi
Arabia, Egypt, and Sudan come under low probability levels (index values range from
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0.002 to 0.093). Medium-to-high probability index ranges from 0.94 to 0.99 surrounding the
very high probability areas. Very high probability index (falling under the index values
ranging from 0.991 to 1) can be found in the Gulf of Aden, Red Sea, Iran, and Turkey
(Figure 13). The current study, therefore, may convey the hybrid ML-based SPA improves
the previous works in the Arabian Peninsula [3,19,20] as shown in (Figure 9). This work is
limited to SPA estimation without any risk assessment. A large area of study needs a huge
amount of training data for better accuracy. This can be studied using smart predictors
to improve the SPA map. The proposed hybrid Inception V3-XGBoost model achieved
good accuracy as compared to other state-of-the-art ML models. However, the CNN model
achieved a better accuracy in prediction which is 90%. Detailed information about the
achieved accuracy by several ML models is shown in Table 7.
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Table 7. Comparative assessment of Inception v3-XGBoost model with respect to state-of-the-art
models. PRNN (primitives and recurrent neural network), RF (random forest), LPBoost (Linear
programming boosting), ANN (artificial neural network), CNN (convolutional neural network).

Models Accuracy References

PRNN 58%

Asim et al. [60]
RNN 64%
RF 62%
LPBoost 65%
ANN 84% Jena et al. [15]
CNN 90% Huang et al. [61]
Inceptionv3-XGBoost 87.9% Proposed model
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6. Conclusions

Earthquakes spatial probability assessment is the most challenging among all natural
hazards owing to multiple factors and event non-linearity. The transparency and explain-
ability of the AI-based models in the field of earthquake SPA were aimed in this work. The
advantages of the current study deal with operationalizing AI that builds confidence in
black-box models and monitors the models to optimize. Because this is the first ever study
using XAI for SPA, the main findings of the work are as follows:
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In earthquake SPA work, the inclusion of subduction-related parameters, fault surface
area, and fault width is necessary for a better representation of seismic coupling and
probability estimation.
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Future works should include SHAP, Local Interpretable Model-Agnostic Explanations
(LIME), and extreme deep learning models for long lead time–magnitude prediction
in association with integrated earthquake research.
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