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Abstract

Location privacy is of utmost importance in vehicular networks, where drivers’ trajectories and
personal information can be exposed, posing threats to drivers’ safety and personal security.
The proliferation of Location-Based Services (LBS) has led to a rapid increase in location
data, thereby amplifying the risk to location privacy. In road networks, vehicles share location
data with other vehicles and LBS through the Internet of Vehicles (IoV), making the need for
effective location obfuscation techniques crucial.

Existing obfuscation mechanisms primarily focus on Two-Dimensional (2D) planar areas and
overlook the unique features of road networks, often resulting in impractical outcomes such as
off-road locations. Fake trajectories created by adversaries and malicious drivers can signifi-
cantly compromise the utility of location data in IoV and degrade the quality of LBS. Therefore,
it is essential to detect illegal trajectories to ensure the utility of location data in IoV. Some
existing methods try to overcome these limitations by using pseudonyms and obfuscation, but
the additive nature of differential privacy has been overlooked.

In this thesis, we propose a comprehensive differential privacy framework for protecting loca-
tion privacy in vehicular networks by considering the correlation between location data and
driving statuses. We first propose a personalized obfuscation mechanism that dynamically and
adaptively protects the location privacy of drivers in road networks. We also define a new
notion of Road Network-Indistinguishability (RN-I) to evaluate obfuscation-based mechanisms
in road networks and propose a Personalized Location Privacy-Preserving (PLPP) mechanism
that achieves RN-I for a single vehicle. Using the proposed RN-I, we then leverage differential
privacy and propose a Cloaking Region Obfuscation (CRO) mechanism that safeguards the
location privacy of multiple vehicles in road networks. To address the limitation that differen-
tial privacy makes the detection of illegal trajectories challenging, we propose a comprehensive
framework for protecting location privacy in IoV by detecting illegal trajectories while preserv-
ing data utility. Finally, we introduce a new notion of Trajectory-Indistinguishability (T-I) by
combining pseudonym swapping and RN-I to measure the indistinguishability of vehicles in
road networks and design a Joint Trajectory Obfuscation and Pseudonym Swapping (JTOPS)
mechanism that achieves T-I.

Experiments upon real-world datasets confirm the location and identity privacy-preserving
capability, data utility, and efficiency of the proposed mechanisms.
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Chapter 1

Introduction

Being an integral part of mobile systems, e.g., the fifth- and sixth-generation (5/6G) systems,
vehicular networks are required to provide credible information for driving assistance [1]. Over
the past decades, multifarious applications have been developed for vehicular networks to offer
various Location-Based Services (LBSs). LBSs can be classified by functions into navigation,
weather, venue finders, social media, and crowd-sensing [2]. By reporting location data to
the LBSs, the drivers can search their destinations, check traffic conditions, and view the
weather [3].

The development of LBS leads to rapidly increasing vehicular applications related to location
data [4]. This poses threats to the location privacy of drivers, as LBS servers can learn the
geographical locations of drivers [5]. Adversaries can collude with untrusted LBS servers to infer
drivers’ personal information from the location data [6]. The adversaries may also compromise
trusted LBS servers or eavesdrop on the communications between the drivers and LBS servers
for the location data [7], [8]. Compared with general mobile LBS users, vehicles can be relatively
easily tracked because they only travel on roads and follow traffic rules [9], [10].

1.1 Location Data and Location Privacy Concerns

With increasingly popular communication sensing techniques, including cameras and vehicle-
to-vehicle communications, a lot of location data will be generated in vehicular networks, in
real-time and on a large scale. Location data shared in vehicular networks have characteristics
such as massive, highly correlated, dynamic, and unequal importance [11]. Location data is
important to help improve the safety and efficiency of vehicular networks, including vehicle
infrastructure and pedestrians.

• Massive Data: There are enormous amounts of location information when the drivers apply
LBSs [12].

• High Correlation: Location data is correlated, which can disclose other information when
exposed.

• Dynamic Topology: Location data frequently changes over time.

• Uneven Significance: Different location information has various significance to various drivers.

Driver’s home and workplace addresses tend to be more important than his shopping locations.
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• Driver Safety: One of the most important purposes of location data transmitted in vehicular
networks is safe driving [13]. The data transmission in vehicular networks should primarily
satisfy the driving requirements [14]. For example, the transmission should ensure a high data
utility of location data after being protected for location-sensitive LBSs, e.g., navigation.

Sharing the location data in the LBSs of vehicular networks raises privacy issues [15]. The
LBSs in vehicular networks ask the drivers to expose their locations for working as planned, but
untrusted LBSs and potential adversaries can lead to the leakage of the location data [16]. The
adversaries can collude with untrusted LBS servers, attack trusted LBS servers, and eavesdrop
on communications channels to gain the shared location data [15]. This poses the location data
at risk of being obtained by adversaries. By analyzing the shared location data, the adversaries
can threaten the drivers’ privacy as follows.

• Exposure of Driver’s Private Information: The adversaries can infer private information
by analyzing the location data transmitted in vehicular networks, such as home addresses,
religions, political parties, jobs, and work addresses [17], [18]. For example, a driver’s religion
can be estimated if the driver drives to religious buildings periodically. The inferred private
information can be utilized to build models of targets for realizing attacks [19]. The adversaries
can attack a specific driver, threaten a group of targets, or even sabotage a whole system [20].

• Physical Attack: The disclosure of the location privacy can lead to dangerous physical attacks,
such as stalking, mugging or burglary [21]. For example, attackers can jam the traffic and induce
the driver’s trajectory1.

• Exposure of Other Vehicles’ Private Information: The drivers’ trajectories can also be utilized
to disclose the privacy of other drivers and predict other drivers’ mobility [22]. For example,
the adversaries can analyze the driver’s encounter history to obtain the trajectories of other
drivers.

The advanced techniques in vehicular networks introduce new threats to the driver’s location
privacy. With the development of vehicular networks, adversaries have a high probability of
launching attacks across multiple vehicular network layers. Location privacy protection would
be increasing difficult with the existing Location Privacy-Preserving Mechanisms (LPPMs)
when facing cross-layer attacks. For example, the Pegasus (spyware) developed in Israel can
be utilized to obtain the driver’s historical encounter messages [23]. By analyzing the his-
torical encounter messages and the eavesdropped messages, the adversaries can minimize the
estimation error to achieve high-precision localization for the target driver. The development
of communication capabilities allows the vehicles to share data frequently with other entities
in future vehicular networks, leading to the current LPPMs, which focus on a single layer,
not being able to protect location privacy when the adversaries launch attacks across multiple
layers. The existing LPPMs should be improved to meet the privacy requirements in complex
composite scenarios.

1.2 Location Privacy Requirement

Researchers have different definitions of location privacy [24]–[26]. In this thesis, location
privacy can be defined as a branch of information privacy that deals with the location data
to assist the drivers in deciding on when, what, and how to share such data [27]. The data

1https://simonweckert.com/googlemapshacks.html
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shared in the vehicular networks should not threaten the driver’s security [28]. The privacy
requirements in vehicular networks can be classified as follows [29], [30].

• Confidentiality: The communication data should be well protected when a vehicle applies
LBSs. The data cannot be exposed to unauthenticated parties [31].

• Anonymity: By analyzing the data from the same identity, the adversary can launch attacks
in a long-period window. Hence, the identical information of the vehicles in the released data
should be protected to avoid disclosure of the actual identity [31].

• Unlinkability: The link between the data and the identity to keep it safe from the adversary
and unauthorized third parties [32].

• Contextual unobservability: The released data from the same vehicle do not branch the privacy
of each other [33].

1.2.1 Characteristic of Vehicular Networks

The characteristics of vehicular networks, such as unlimited transmission power, higher com-
putational capabilities, and predictable mobility, differ from those of other scenarios [34]. The
characteristics of current vehicular networks are classified into topology features, node features,
and transmission features. As shown in Fig. 1.1, the followings are the unique characteristics
of vehicular networks, which are important to the location privacy in the study.

Topology Feature: The topology features of vehicular networks, related to location privacy,
include mobility, dynamic network topology, real-time constraints, frequent network disconnec-
tion, and volatility.

• Mobility: A small delay in V2X communication can lead to severe problems since vehicles
in vehicular networks move at high speeds [35]. It is impossible to employ traditional LPPMs,
e.g., handshake-based authentication technologies, since most of the encountered vehicles only
communicate once and do not have enough time for handshake message authentication [36].
In vehicular networks, the vehicles change their points of network attachment frequently [37].
Thus, the LPPMs in vehicular networks should have mobility management methods to meet
the requirements such as seamless mobility and scalability [38].

• Dynamic Network Topology: The topology of vehicular networks changes quickly so that
the communication duration of LPPMs is limited [39]. The density of entities on the road
networks is frequently changed due to the dynamic network topology of vehicular networks
that communication recourse could be unevenly distributed [40]. For example, cooperation-
based LPPMs (e.g., pseudonym swap) could perform well in the city scenario rather than in
the suburb scenario, as the number of nodes on the road networks in a city is much more than
that in the suburbs.

• Real-time Constraint: The data transmission in vehicular networks is time-limited [41], and
LBSs in vehicular networks (e.g., accident warning information) need time-critical messages [42].
Thus, one of the critical requirements in vehicular networks is that LPPMs should allow mes-
sages to be transmitted within an acceptable period. Nevertheless, verifying a time-critical
message is difficult because the authentication process can increase the time delay [43].

• Frequent Network Disconnection: Vehicles frequently disconnect networks due to the high-
speed movement of the vehicles and the influence of the environment [44]. A great number of
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Figure 1.1: Features of vehicular networks.

vehicles in the same region can also lead to server disconnection [45]. Thus, the LPPMs should
be robust to provide location privacy protection in such a scenario.

• Connection Volatility: The connections among vehicles are random because of the high
mobility level [46]. The connectivity between two vehicles could be lost easily, and connections
may remain within a specific wireless hop in a short period [47]. Vehicular networks lack a long-
lived context due to the random and short connection period. Thus, it is almost impossible to
utilize long-live password-based LPPMs [48].

Node Feature: The features of nodes in vehicular networks related to location privacy are
autonomy, strong computation and storage capability, unlimited energy supply, and limited
transmission power.

• Autonomy: The vehicles in vehicular networks have the authority to send, route, and receive
data with limited control of centralized authority [49]. On-Board Units (OBUs) and RSUs
can process the data independently [50]. Hence, decentralized LPPMs are fully considered in
vehicular networks.
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• Strong Computation and Storage Capability: The nodes in vehicular networks are required to
process an extensive amount of data among vehicles and infrastructures [51]. The computation
and storage capability of nodes in vehicular networks is high, so the computing resource of
LPPMs could be unlimited [52].

• Unlimited Energy Supply: The energy consumption is unlimited in vehicular networks [53].
OBUs are supplied by vehicle battery, which satisfies the task operations [54]. Therefore,
LPPMs in vehicular networks could ignore the energy limitation.

• Limited Transmission Power: The transmission power is limited in vehicular networks due
to the characteristics of the communication protocols and the wireless access of the vehicular
environment [55]. The covered area of each node in vehicular networks is limited by the trans-
mission power. The communication region of decentralized LPPMs in vehicular networks is
limited.

Transmission Features: The transmission features of vehicular networks related to location
privacy are open wireless medium, transmission attenuation, unstable network strength, and
large network size.

• Open Wireless Medium: In vehicular networks, the transmission medium is the air. Security
is an important issue in vehicular networks due to the characteristics of the open wireless
medium [56]. Attacks targeting open wireless mediums can also be launched to threaten location
privacy in vehicular networks.

• Transmission Attenuation: The features of digital transmission in vehicular networks include
diffraction, reflection, dispersion, refraction, and scattering [57]. These features lead to several
limitations for the dedicated short-range communication in vehicular networks [58]. These
features could expose the driver’s location data even though the location data is well protected
by LPPMs [59].

• Unstable Network Capability: The communication and computation capabilities of vehicle
networks are unstable and affected by real-time traffic conditions [60]. For example, the network
strength among vehicles can be very high in a traffic jam, as a large number of vehicles could
stay in the same region and form the vehicular network. Thus, the privacy-protection capability
of cooperation-based LPPMs (e.g., pseudonym swap) could be unstable.

• Large Network Size: Vehicular networks can cover a large area, especially downtown or on
highways. However, the communication region of vehicles in vehicular networks is limited.
Thus, the LPPMs should consider both the large size of vehicular networks and the small size
of the communication regions.

1.2.2 Application Scenario of LPPM

The location data is protected by real-time or batch LPPMs during the collection phase and
protected by offline LPPMs at the publication phase, as shown in Fig. 1.2. The data is protected
by offline LPPMs if it is processed through the server to the publication stage [61], while the
data is protected by real-time LPPMs before being sent to time-sensitive LBSs [62]. The
batch-wise LPPMs protect location data when multiple drivers aggregate and send location
data to the time-insensitive LBSs [63]. The offline LPPMs are employed when LBSs publish
the trajectory data for analysis to protect the whole dataset rather than the real-time location
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data [64].

1.2.3 Key Performance Index of LPPM

Three major metrics are defined by the existing works to evaluate and compare the performances
of different LPPMs as follows [2], [65], [66].

• Privacy: The privacy metric measures the location-privacy protection capability of the
LPPMs under the adversaries’ attacks [15], [21], [67].

• Data Utility: The data utility metric is determined by the LBSs’ and drivers’ requirements.
The privacy metric and the data utility metric are conflicting [65], [68]. For example, the data
utility will achieve the peak when the location information is unprotected, and vice versa.

• Efficiency: The efficiency metric measures the time and storage cost of the LPPMs [69],
which uses computational overhead, storage overhead, scalability, and tolerance of error as
metrics [70], [71].

Figure 1.2: The cases of employing LPPM to protect location privacy.

1.3 Motivation

Obfuscation-based schemes can protect location privacy against untrusted LBS servers and
eavesdroppers [72]–[74]. The idea is based on the local differential privacy technology where
users locally perturb raw data with differential privacy schemes and employ the obfuscated
data rather than the accurate data [75]. In obfuscation-based schemes, drivers generate obfus-
cated locations by adding controllable noise in their actual locations and report the obfuscated
locations in LBS requests [69]. The obfuscated locations are selected according to the distances
between the obfuscated and actual locations under the constraint of indistinguishability [74].
Although the obfuscation-based schemes compromise location accuracy, they can still be used
in location-insensitive LBS, such as location-based recommendations [76].

Obfuscation-based schemes have not been rigorously developed for vehicles in road networks.
In general-purpose obfuscation schemes, e.g., two-dimensional (2D) Laplace location privacy-
preserving schemes, the distance between an actual location and the corresponding obfuscated
location is measured using the Euclidean distance [73], [74], [77]. This, however, underestimates
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the distance between two locations on road networks because the route distance is no shorter
than the Euclidean distance between any two locations [78]. Another issue of general-purpose
obfuscation schemes is that they may generate off-road obfuscated locations, for example, on
a river [79]. Additional steps can be introduced to avoid off-road locations, which, however,
increase the computational complexity [80].

The privacy-preserving levels of locations are expected to be fine-tuned across road networks
to balance data utility and location-privacy protection [81]. Drivers can be sensitive to a
small number of locations in road networks. If all locations are obfuscated at the highest level
as the sensitive locations, the insensitive locations are over-obfuscated, and the data utility
is penalized [82]. If only the sensitive locations are obfuscated, the sensitive locations are
statistically different from the insensitive locations. This compromises location privacy [83].

In existing obfuscation-based mechanisms, malicious drivers breach legal drivers’ profit. For ex-
ample, malicious drivers can occupy more benefits than they deserve by deliberately modifying
their trajectory data in Taxi service [84], [85]. Malicious drivers also use location privacy-
preserving schemes to protect their location data. By analyzing location data which concludes
illegal location data, smart city applications cannot provide an acceptable QoS of LBS. There-
fore, LBS should detect illegal location data to ensure high QoS. If the malicious drivers employ
location privacy-preserving schemes (e.g., obfuscation schemes) as the legal drivers, detecting
illegal data becomes difficult.

The temporal information has not been well considered in road networks by the existing ob-
fuscation mechanisms [86]. If an adversary can track the identities (ID) of the vehicles, it can
reduce the perturbation noise by linking the communications of a specific vehicle ID over a
long-period, such as long-observation attack [87]. As a result, the existing obfuscation-based
mechanisms can hardly protect location privacy on a long-term basis [88].

1.4 Research Contributions and Overview

This thesis aims to bridge the gaps between the existing LPPMs by focusing on real-world road
networks.

Chapter 2 provides a comprehensive review of existing LPPMs relevant to this thesis. We first
illustrate the existing localization techniques which introduce challenges to the existing LPPMs.
We then review the existing LPPMs by comparing their strengths and limitations. Finally, we
discuss the LPPMs to balance location privacy and data utility in vehicular networks.

In Chapter 3, we define a new measure of location indistinguishability for road networks by
applying the concept of differential privacy. The indistinguishability is measured only on road
networks (as opposed to continuous 2D space). Route distances (i.e., distances along roads)
are used to derive the differential privacy upper bound. Off-road locations are precluded from
obfuscation operations. We propose a new dual-obfuscation algorithm that first probabilis-
tically obfuscates an actual location to a connection and then obfuscates the location into a
road interval between the actual location and the obfuscated connection. By carefully design-
ing the probabilities, we prove that the dual-obfuscation design satisfies the new differential
privacy-based definition of road network-indistinguishability. Considering the non-uniform lo-
cation privacy requirements of a driver at different locations, we apply the nearest neighbor
interpolation to specify the privacy budgets for all locations based on the sensitive locations of
the driver. The vehicle locations can be obfuscated consistently without exposing the sensitive
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locations, while improving the utility of the location data of less sensitive locations. We conduct
comprehensive experiments on two real-world trajectory datasets and compare the proposed
PLPP scheme with the existing 2D Laplace location privacy-preserving schemes [73], [77], [89].
Experimental results show that the PLPP scheme outperforms the 2D Laplace schemes in terms
of data utility, privacy-preserving level, and efficiency.

In Chapter 4, we research the mechanisms that improve data utility and privacy protection in
road networks. We employ differential privacy in the proposed personalized obfuscation scheme
to protect drivers’ location privacy adaptively and to provide high Quality of Services (QoS)
of LBS in road networks. We propose a Convolutional Neural Network (CNN) based detection
mechanism to detect illegal trajectories without requiring the drivers’ actual location. The
proposed scheme has high accuracy in detecting illegal trajectories even if the drivers protect
actual location data with various noise sizes. We further protect location privacy by cooperating
with multiple vehicles in road networks. Firstly, we develop differential privacy in road networks
and extend the proposed RN-Indistinguishability that quantifies road network location privacy
with unique road network features. By using the extended RN-Indistinguishability, we design
the CRO mechanism that employs the route distances to quantify the indistinguishability of
locations on roads. We prove that the CRO mechanism satisfies the RN-Indistinguishability.
The CRO mechanism can be extended with general road network features without breaching
differential privacy. Then, we use pseudonym swapping to incorporate multiple vehicles in
the time domain and the spatial domain. We demonstrate that pseudonym swaps can be
considered a differential privacy process for any two identities sharing the same pseudonym-
swapping candidate set. We analytically prove that jointly using pseudonym swapping and
obfuscation in vehicular networks can achieve higher privacy protection than separately using
them.

In Chapter 5, we introduce a new unified privacy-preserving measure, i.e., T-I, treating tra-
jectory obfuscation and pseudonym-based mechanisms as a holistic process. T-I extends the
applicability of ε-differential privacy (DP) by quantifying the distinguishability between ve-
hicles based on their historical information in the time domain and current information in
the spatial domain. Building upon T-I, we propose a novel Joint Trajectory Obfuscation and
Pseudonym Swapping (JTOPS) mechanism joining pseudonym swapping and trajectory obfus-
cation with a crafted criterion. The proposed mechanism is proven to combine two differential
privacy processes, without introducing the additivity composition theorem of ε-DP. The pro-
posed pseudonym swapping does not require vehicles to disclose their private data, as the
required parameters are computed locally and then transmitted to the coordinator. Thus, the
knowledge of the coordinator, which assists in pseudonym swapping, is limited, ensuring the
proposed pseudonym-swapping process can effectively resist collusion attacks.

Chapter 6 concludes the thesis and outlines our future works, while Chapter 7 lists the publi-
cations of the author.
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Chapter 2

Literature Review

In this chapter, the existing tracking techniques in the different scenarios are first summarized
from the aspect of location privacy, as shown in Table 2.1. Then, we illustrate the localization
requirements, list the general adversary models, and provide possible privacy threats in current
vehicular networks. By highlighting the threats introduced by localization techniques, the
adversaries that have been well-considered are presented. Then, we assess the existing LPPMs in
three categories and discuss the limitations of each category, as shown in Table 2.2. The existing
LPPMs are divided into user-side, server-side, and user-server-interface LPPMs according to the
phase that the LPPMs are allocated, by considering the threats of localization techniques [90].
The user-side LPPMs allow the drivers to process data before sending it to the LBSs, while the
server-side LPPMs process the aggregated location data in dataset. The user-server-interface
LPPMs use trusted third parties and secure communication to ensure that the location data is
secure in transmission. We summarize the limitations of LPPMs from the aspect of localization
and communication requirements, and we review the method to balance location privacy and
data utility from the aspects of theory and practice. The theoretical methods are classified into
the blockchain, adaptive parameters, hybrid, encryption, elements simplification, and virtual
nodes, where we provide the existing works to illustrate the method in detail. The real-world
in-vehicle tracking techniques, i.e., COVID-19 tracking applications, are used as examples to
discuss the balance between location privacy and quality of service in practice.

2.1 Localization and Tracking Techniques in Vehicular

Networks

2.1.1 Localization and Tracking Techniques

Over the past decades, tracking techniques have been presented for high-precision LBSs and
anti-theft systems [127]. However, the tracking techniques can be used by the adversaries,
which branches the drivers’ location privacy. Multiple LPPMs are presented to prevent the
adversaries from obtaining the drivers’ privacy.

The existing tracking techniques can be classified as sensing infrastructure-based, optical vision-
based, vehicle driving log-based, cellular radio-based, and upper-layer message-based. The
adversaries with upper-layer message-based tracking techniques are well considered in the ex-
isting LPPMs, while the adversaries with vehicle driving log-based tracking techniques are
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Table 2.1: Existing localization techniques and their challenges.

Category Technique Requirement Description Challenge

Sensing
infrastructure-
based
tracking

Magnetic
sensors
[91]–[95]

Obtain magnetic
induction signal
generated by the
vehicles

Calculate
three-dimensional
location and
two-dimensional
orientation
information of the
vehicles

Malicious sensors
are difficult to be
detected;
The adversaries
can collude with
sensors;
The adversaries
can hijack legal
sensors;
No existing work
can defend the
adversaries with
sensors

Inductive
loop
detectors
[96], [97]

The inductive loop
generated by the
vehicles

Can be deployed at
intersections on
road networks;
Can monitor
information like
speed, volume, and
size

Beacon
message-
based
sensors
[98]–[100]

Beacon messages
like AVI tags,
RFID tags, GPS,
and MAC

Extract private
information from
beacon messages

Optical
vision-based
tracking

ML and
AI
[101]–[103]

Use ML and AI to
analyze the
geometrical
information of the
captured camera
frames

Observe the
physical features of
the vehicles;
Image
identification
background

It is impossible to
hide the physical
features of the
vehicles;
Image
identification has a
high accuracy;
The adversaries
can directly
observe the
vehicles in the real
world;
No existing LPPM
can defend the
adversaries in such
a scenario
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Vehicle
driving
log-based
tracking

Reverse
engineer-
ing
[104]–[106]

GPS and CAN
data

Read CAN data
from OBD and use
reverse engineering
technique to
calculate location
data

Multiple OBD
readers can be
combined for
localization

In-vehicle
communi-
cation
[107]–[115]

In-vehicle
communication
system;
Drivers’ mobiles

Hijack in-vehicle
communication
system to obtain
location data;
Hijack mobile
phones to read
location data

Few existing
LPPMs focus on
hardware layer
location privacy;
An in-vehicle
communication
system is difficult
to be considered in
LPPMs for LBSs;
The mobile devices
are almost
impossible to be
isolated in the
vehicles

Cellular
radio-based
tracking

Antenna
localiza-
tion
[116]–[119]

Base stations
Antenna signal

Use the direction
of the antenna
signal for
localization

Antennas are
equipped in the
vehicles for
communication;
Signals can be
detected in the
physical world;
Based station is
necessary for
communication;
Localization with
multiple based
stations is very
easy;
No existing works
can defend cellular
radio-based
localization

12



Upper-layer
message-
based
tracking

Estimation
actual in-
formation
[120]–[126]

Messages in
vehicular networks

The adversaries
can launch
multiple attacks to
obtain messages
that are
transmitted in
vehicular networks,
with which it can
infer the drivers’
actual locations;

Various attacks
can be utilized.
The adversaries
can launch attacks
that cross multiple
layers

overlooked by the existing studies. Location privacy under sensing infrastructure-based, opti-
cal vision-based, and cellular radio-based tracking can almost not be protected.

Sensing Infrastructure-based Tracking

Sensing infrastructure-based tracking techniques detect vehicle trajectories by using equipment
such as inductive loop, infrared, ultrasonic, microwave, magnetic and piezoelectric sensors [128].
The driving features captured by the sensors can be utilized for tracking.

Figure 2.1: Localization techniques.

• Magnetic Sensor: Vehicles disrupt the Earth’s magnetic field that generates magnetic in-
duction signals [129]. The magnetic sensors can expose the 3D location and 2D orientation
information of the vehicles [91]. The magnetic sensors can capture the generated signals to
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analyze the travel time and vehicles’ identifications [92]. The existing works [92]–[95] modeled
the magnetic field perturbations caused by the vehicles and extracted the magnetic waveforms
of the vehicles. With the models and the waveforms, the techniques can track the vehicles and
infer the driving status of the vehicles.

• Inductive Loop Detector: The inductive loop detectors are widely employed to obtain traffic
data, which can be deployed at intersections on road networks to monitor traffic [130]. The
inductive loop detection can provide vehicle information, such as speed, volume, and size [129].
The existing works [96], [97] used the data obtained from inductive loop detectors to increase
the tracking accuracy.

• Beacon-message-based Sensor: The Beacon-message-based tracking techniques utilize mes-
sages like Automatic Vehicle Identification (AVI) tags and Radio Frequency IDentification
(RFID) tags, Global Positioning Systems (GPS), and Medium Access Control (MAC) [131]–
[134]. The existing works [98]–[100] tracked vehicles with multiple beacon-message-based sen-
sors because a single sensor is susceptible to the vehicles’ driving status and environment.

No existing LPPMs can protect drivers’ location privacy under the sensing of adversaries who
utilize multiple sensors. The existing studies focused on protecting location data captured by
the legal sensors through techniques such as blockchain, obfuscation, and anonymity.

Optical Vision-based Tracking

The optical vision-based tracking estimates vehicles’ locations by analyzing the geometrical
information of the captured camera frames (i.e., image pixels) [101]. The optical vision-based
tracking can provide a high-precision estimation and robustness system in low-textured and
low-visibility environments [135].

The existing works utilized ML and AI techniques to extract appearance features, such as
color and texture, and combined the extracted features with other semantic information for
tracking [129]. Study in [102] developed a deep learning framework based on the cross-frame
keypoint-based detection network and spatial motion information-guided tracking network.
The developed framework considers the vehicles’ driving status and appearances extracted
from satellite videos. Yang et al. [103] improved a collaborative sensing system that integrates
a customized metric-learning vision-based vehicle re-identification method to extract vehicle
features. The system combines vehicle appearance with traffic network connection as features,
which achieves a high accuracy of tracking.

To the best of our knowledge, no existing LPPM can prevent the adversaries from tracking
vehicles based on the appearance features.

Vehicle-Sensor-based Tracking

On-Board Diagnostic (OBD) readers can be utilized to obtain the data of Electronic Control
Units (ECU) in the Controller Area Network (CAN) [136]. The easiest way to locate vehicles
is by reading data from the GPS devices, but vehicle manufacturers have divided CAN into
sub-networks to harden the vehicles against single sensor tracking [104], [105]. Nevertheless,
multiple OBD readers (e.g., inertial, heading, pressure, and speed sensors) can be combined to
realize localization [106], [137].

It has been demonstrated in the literature that in-vehicle communication systems such as CAN,
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entertainment applications, and drivers’ mobile phones can be used to locate vehicles [107]–
[114]. For example, the Tegaron from Daimler Chrysler has navigation infrastructures and can
exchange data with Tegaron’s control centre [107]. In this way, vehicle localization can be
achieved either by the in-vehicle communication systems from the third party or by the mobile
communication linkage [108]. The Tire Pressure Monitor System (TPMS), as part of the in-
vehicle wireless networks, is another potential attack surface to track vehicle locations [109].
The identifiers of the TPMS sensors are unique, and the protocol is vulnerable to reverse
engineering, so the Road-Side Unite (RSU) can launch a passive tracking system to capture
TPMS packets and map a route with the unique sensor identifiers [110], [111].

Mobile phones with GPS play an important role in the side channel attack to infer the driving
trajectory. The adversaries can use the accelerometer data from the mobile [112] or the angle
matching of the route with the mobile magnetometer sensor data [113] to track a car. Guha et
al. [114] leveraged the data from the accelerometer and gyroscope sensors to detect vehicular
movements, stops and turns to match the driving path. Besides the existing vehicle on-board
hardware, vehicular services and applications can also provide the information to track vehicle
trajectory in the side-channel attack. The in-vehicle auxiliary applications are required to
support the autonomous driving functions by providing services in the passengers’ services,
vehicles’ services, intelligent communication options, and intelligent resource allocation [115].
However, these in-vehicle auxiliary applications will generate more data embedding the vehicle
state and location, which increases the privacy breach risk.

To the best of our knowledge, there are no universal solutions defending against location pri-
vacy attacks in the hardware-based physical layer. The existing in-vehicle intrusion detection
systems, such as gateway-, ECU-, and CAN-based [138], focus on detecting malicious data
transmitted in-vehicle and can hardly prevent the above passive side-channel attacks on loca-
tion privacy.

Cellular Radio-based Tracking

Antenna systems are designed to track and steer signals from vehicles [139]. For tracking
systems and localization purposes, it is most desirable to combine a small compact omnidirec-
tional sensor array using beamforming techniques [140]. However, the omnidirectional antenna
is susceptible to signal loss in long-distance communication [139]. In the case of long-distance
communication, the existing studies utilized a directional high gain antenna that focuses signal
energy in a particular direction [116]. Burghal et al. [117] realized a relative vehicular localiza-
tion using the channel state information from multiple-antenna transceivers. The authors used
feed-forward neural networks to reduce the number of trainable parameters. The mmWave
communication can also contribute to vehicle localization, as electrically steerable directivity
of phased arrays offers a direction finding [118]. Several direction findings of base stations can
be merged in a cross-bearing manner to localize the vehicles [119].

To the best of our knowledge, no existing studies have considered the adversaries with cellular
radio-based localization.

Upper-Layer Message-based Tracking

The upper-layer message-based tracking techniques allow the adversaries to obtain vehicles’
location data by eavesdropping on the V2X communications or attacking the entities. In
this subsection, we discuss upper-layer message-based tracking techniques by analyzing the
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Figure 2.2: System model of LBS.

adversaries mentioned in most existing works, as shown in Fig. 2.1. The adversaries are classified
based on the behaviors and the size of the monitor region.

There are three components in an LBS system: drivers, servers, and networks, as shown in
Fig. 2.2. Each part of the LBS system can be threatened by the adversaries. For example,
eavesdropping on the network can disclose the messages transmitted between two nodes.

Based on the behaviors, the adversaries can be classified into active attackers and passive
attackers [120]. The active adversaries focus on disrupting network communication, falsifying
communication data, and inserting fake messages by capturing or cloning the legal drivers [141].
Compared with the active adversaries, the passive adversaries aim to monitor and analyze the
data traffic to discover drivers’ positions by eavesdropping [121]. The passive adversaries do
not disrupt or interfere with communication directly [122]. The majority of existing LPPMs
focus more on the passive adversaries than the active ones.

According to the size of the region that the adversaries can monitor, the passive adversaries can
be classified as Global Passive Adversaries (GPA) and Local Passive Adversaries (LPA) [123],
as shown in Fig. 2.3. GPA can eavesdrop on data transmitted in networks with full knowledge
of the road by monitoring data, obtaining legitimate authorities or hacking into applications,
and can gather information over a long time, like hours, months, or even years [7]. The GPA
model is considered as strongest adversary in many privacy methods [124]–[126]. However,
the GPA is a theoretical scenario because the GPA model needs to place a large amount of
equipment with a prohibitive cost [121]. Compared with the GPA, the LPA eavesdrop on a
relatively small communication range with limited equipment.

Fig. 2.4 shows an overview of the four main steps of location attacks. The adversaries obtain the
location information of the drivers by collecting, eavesdropping, and compromising the vehicle’s
information. By analyzing the obtained information, the adversaries can gain useful knowledge,

16



Figure 2.3: GPA and LPA for vehicle location privacy.

with which the adversaries can use methods, e.g., context linking, probability theory, machine
learning, and (fake) peer user to infer the location information of the driver. And then, the
identities, discretized trajectory points, and continuous trajectories would be exposed to the
adversaries.

Figure 2.4: Overview of the location attacks and adversaries.
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2.1.2 Location Privacy Threat in Vehicular Networks

The existing vehicular networks are under various location privacy attacks. One of the simplest
methods to track a vehicle is illegally setting a Global Navigation Satellite System (GNSS) on
it [142]. The adversaries can obtain the drivers’ real-time locations by this method. However,
this method is infeasible because the adversaries have to set GNSS equipment for each target
vehicle.

Passive and Active Attack

The location privacy attacks can be viewed as a typical Multiple Target Tracking (MTT)
issue, which assumes a set of noisy measurements or observations detected periodically by a
sensor [143]. The adversaries obtain the best estimation of the driver’s state and association
probability through various location privacy attacks. The location privacy attacks can be
classified into passive attacks and active attacks [141], as shown in Fig. 2.5.

The adversaries with passive attacks aim to monitor and analyze the data traffic to discover
the drivers’ positions by eavesdropping that do not disrupt or interfere with communication
directly [121]. The passive attacks in vehicular networks can be classified as follows [141].

• Wireless Eavesdropping Attack: The adversaries can easily eavesdrop on vehicular networks
due to the open wireless medium. Through eavesdropping, the adversaries can obtain data
transmitted in networks for future analysis [144].

• Tracing Back Attack: The adversaries can employ a triangulation algorithm to locate the
drivers’ positions with at least two separate antennas through tracing back attacks [145].

• Traffic Analysis Attack: The core nodes in vehicular networks process more traffic flow than
ordinary nodes [146]. For example, sources and destinations transmit data at a higher rate speed
than ordinary nodes. Thus, the adversaries can discover the targets’ locations by analyzing the
traffic flow.

• Packet Analysis Attack: The adversaries can extract encrypted information from the captured
packet, e.g., location information and identification (ID) information [147]. The adversaries can
infer the sender’s trajectory by analyzing packets’ timestamps if the packets have the same ID
in two different locations.

• Back-rolling Attack: The adversaries can utilize the back-rolling attack if they have larger
storage than legitimate nodes [141]. The adversaries can record the drivers’ historical and new
positions to find out the location information of targets.

The active attackers can interfere with vehicular networks (e.g., compromising and cloning legal
nodes). The active attacks can be classified as follows [141].

• Node Compromised Attack: The active adversaries can capture packets from several legitimate
nodes to estimate drivers’ locations [148]. The adversaries can also infer the network topology
and drivers’ locations by interfering with networks through cloning nodes [149].

• Routing Blocking Attack: The routing-blocking attacks track back the target drivers hop by
hop to obtain the drivers’ data. The adversaries can trigger a fixed routing block and monitor
the data through routing blocking attacks [150].
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Figure 2.5: Major privacy attacks.

Attack based on Physical Characteristic

The physical characteristics can disclose the drivers’ location information. As shown in Fig. 2.61,
the adversaries can track the drivers’ locations by observing vehicles’ shapes, license plates, and
other characteristics. The tracking technologies (e.g., Automatic Number Plate Recognition
(ANPR)) make it possible to track the vehicles with their physical characteristics [151]. The
adversaries can estimate the vehicle’s trajectory when the vehicle is identified at several different
locations. The adversaries’ estimation error decreases with the number of exposed locations
increases. The obtained data can be utilized for later tracking attacks even if a vehicle is
identified at one location [152].

Attack on Inside-vehicle Message

Inside-vehicle communication messages indicate the drivers’ location data since the messages
represent vehicle speed and steering angle [153]. The adversaries can obtain the data in Elec-
tronic Control Units (ECU) by illegal On-Board Diagnostic (OBD) reader on the OBD port
or through vulnerabilities [154]. Inside sensors can transmit data in wireless networks [142].
For example, the tyre pressure monitoring system can broadcast unencrypted data within 40
meters. Remote keyless entry technology sends unique identifiers to unlock vehicles through
short-range broadcasts. The unique identifiers can be used to track the vehicles [155].

Attack on V2X Message

V2X communications in vehicular networks are at the risk of disclosing location privacy, as
shown in Fig. 2.7. Cooperative Awareness Messages (CAM) and Decentralized Environmental
Notification Messages (DENM) are periodically broadcasted by intelligent transport system
stations [156]. CAM and DENM messages consist of the vehicles’ status information, such as

1The vehicle in the figure is owned by the authors.
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Figure 2.6: The identifiable characteristics of the vehicles for tracking.

time, location, and speed. CAM and DENM are necessary for the security services in vehicular
networks, e.g., road condition warning and hazardous location warning [157]. CAM and DENM,
which are unencrypted to decrease time delay, contain the drivers’ digital signatures for message
verification [158]. The digital signatures of CAM and DENM disclose the vehicles’ accurate
location data through high-time resolution [142]. The medium access control (MAC) layer
protocols can disclose drivers’ locations, such as the time-division multiple access (TDMA) [159].
TDMA MAC slot is broadcasted as the vehicles’ identifications, which makes it easy for the
adversaries to track the vehicles’ trajectories by eavesdropping on the wireless channels [160].

The additional devices and peripherals inside the vehicles can also disclose the drivers’ location
privacy, as shown in Fig. 2.7. The adversaries or telecommunication companies can recognize
the drivers’ regions when they use their mobile phones within the region of a signal tower [161].
And then, the adversaries can achieve high-precision localization by using multiple signal towers.
Another unique identification that can be utilized for tracking is International Mobile Subscriber
Identity (IMSI) [162]. IMSI can be captured by multiple IMSI catchers, which lead to vehicle
tracking if the drivers take their mobile phones into their vehicles [163]. Bluetooth sensors in
mobile phones also periodically broadcast advertisement packets containing the devices’ MAC
addresses [164]. The adversaries can calculate the drivers’ trajectories if they can record the
Bluetooth MAC addresses of the drivers [165].

The adversaries can track vehicles without the content of the transmitted data. As shown in
Fig. 2.5 and Fig. 2.6, the signal direction context is sufficient for the adversaries to realize trace-
back attacks within the wireless sensor networks [166]. In vehicular networks, the adversaries
can also infer the position changes and velocity changes with received CAM.

Security Attacks in Vehicular Networks

In the intricate ecosystem of vehicular networks, security attacks manifest through a spectrum
of tactics, ranging from data breaches to unauthorized remote control of vehicles and severely
compromising network integrity and vehicular operation. The attacks can lead to serious pri-
vacy and security issues, including unauthorized access and malicious activities aimed at both
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Figure 2.7: V2X and in-vehicle communication threats.

data and physical control of vehicles. These attacks can override or bypass a driver’s decisions,
leading to potential adverse remote control or manipulation of vehicle functions. In platoon
scenarios, cybersecurity breaches could result in a loss of formation control, unauthorized lane
changes, or platoon disbandment—each with potentially catastrophic outcomes. Real-world
instances, like certain Sydney roads granting green lights to approaching trucks to maintain
traffic fluidity, highlight the potential impact of such attacks on city logistics 2. Beyond gen-
eral data privacy, individual vehicle tracking poses direct threats to driver safety and privacy,
with identity-based and message replay attacks being prime examples of such vulnerabilities in
vehicular communications.

Security measures adopted in vehicular networks strive to safeguard data against unauthorized

2https://www.governmentnews.com.au/new-technology-sees-trucks-talk-to-traffic-lights/
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access, manipulation, or disclosure, fostering trust within the network [167]. The array of
security attacks, detailed in [168], [169] are multifaceted.

• Identity-based Attacks: Adversaries may spoof vehicle identities, employing tactics like Sybil
attacks to create counterfeit vehicles with fabricated identities [170] or use GPS spoofing to
generate deceptive location data [171]. These masquerading attacks conceal the attacker’s true
identity, allowing them to send fraudulent data and disrupt network integrity. Additionally,
Man-in-the-Middle (MITM) attacks enable adversaries to eavesdrop and respond maliciously
in communications, effectively impersonating legitimate vehicles [172].

• Message Modification-based Attacks: Vehicular networks can be compromised by attacks
that alter message integrity, such as black hole or gray hole attacks [173], where adversaries
drop or unpredictably manipulate data routing [174]. Illusion attacks are particularly insidious,
sending erroneous traffic data to legal vehicles and potentially causing accidents by influencing
vehicular behavior [175].

• Message Replay-based Attacks: Adversaries may undermine network topology correctness
through replay attacks, injecting outdated but valid messages to deceive vehicles [176]. Worm-
hole attacks involve adversaries creating a low-latency data transmission tunnel, misrepresented
as a high-quality route, to intercept and control vehicular data [177].

• Network Availability-based Attacks: In this kind of attack, an adversary aims to exhaust the
resources of vehicular networks that legal vehicles cannot access services [178]. Denial-of-Service
(DoS) attacks flood the network with excessive data. In contrast, Distributed Denial-of-Service
(DDoS) attacks and jamming attacks, which are two widely observed variants of DoS, can be
executed from multiple locations or through noise interference, respectively [178]. The former
allows the adversary to launch the attack from different locations, while the latter relies on
noise generated by the adversary.

2.2 LPPM in Vehicular Networks

We assess the existing LPPMs in three categories and discuss the limitations of each category,
as shown in Table 2.2. The LPPMs are classified into user-side, server-side, and user-server-
interface LPPMs. User-side LPPMs process location data during the collection phase, while
server-side LPPMs protect location privacy during the publication phase. The user-server-
interface LPPMs use trusted third parties and secure communications to realize location pri-
vacy protection. We summarize the limitations of LPPMs from the aspect of localization and
communication requirements, and we review the method to balance location privacy and data
utility from the aspects of theory and practice. The theoretical methods are classified into
the blockchain, adaptive parameters, hybrid, encryption, elements simplification, and virtual
nodes, where we provide the existing works to illustrate the method in detail. The real-world
in-vehicle tracking techniques, i.e., COVID-19 tracking applications, are used as examples to
discuss the balance between location privacy and quality of service in practice.

2.2.1 User-Side LPPMs

The user-side LPPMs aim to protect location privacy on the driver side in the collection phase.
The popular user-side LPPMs include pass-and-run, certificate, secure computation, and data
perturbation.
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Pass-and-Run

Pass-and-run aims to transmit the information through other vehicles instead of sending data
directly to LBSs [179]. The pass-and-run is first proposed in [180]. The authors treat vehicular
networks as delay-tolerant networks. A vehicle can decide whether to pass the message to
other vehicles or submit the message to LBSs. Lu et al. [181] propose a lightweight pass-and-
run method where the location data is perturbed according to the mobility of vehicles and the
delay of transmission. The vehicles have two strategies in the method, i.e., a greedy strategy
and a random strategy, which are selected based on the drivers’ requirements. The authors
utilize an asymmetric encryption algorithm to protect the passed message. Nevertheless, the
transmission delay of the method is high.

Table 2.2: An overview of the existing LPPMs.

Category Techniques Description Benefits Limitations

User-side
LPPMs

Pass-and-
Run

Transmit location
data through other
vehicles

Transmission
delay breaks the
linkage of
location
information

High
communication
complexity

Certificates
for Privacy

Authentication

Provide both
location privacy
and
authentication

High
computational
and storage
consumption

Secure
Computation

Operate encrypted
data directly

Operation is
flexible and does
not reveal
private data

High
computational
and
transmission
delay

Data
perturbation

Apply LBSs with
fake location data
rather than the
actual version

Considers the
prior knowledge
of the
adversaries and
does not need a
trusted third
party

Low data utility

Certificates for Privacy

Certificates, also known as privacy-preserving attribute-based credentials, are cryptographic
mechanisms [182] that allow the drivers to obtain certified credentials for their attributes from
trusted issuers, only reveal required information satisfying the requested LBSs’ predicates [183].
The design of certificates relies on the use of malleable signatures [184], as follows.

• Attribute-based Signature: Shahandashti et al. [185] introduce the concept of attribute-based
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Server-side
LPPMs

Statistical
Disclosure
Control

Anonymize or
obfuscates data in
the dataset

Keep the
general
statistical
features of the
dataset

Need a trusted
third party

Homomorphic
Encryption

Operate encrypted
data directly on the
server side

The operation
could be flexible
and does not
need to decrypt
data

High
computational
consumption
and
transmission
delay

Private
Information
Retrieval

Hide the requested
items

The drivers can
apply for LBSs
without
disclosing their
requirements

High
computational
consumption

Searchable
Encryption

Hide plaintext
keywords in
searching.

Can be
combined with
other methods

Low accuracy

User-
server-
interface
LPPMs

Secure
Communic-
ation

Use traditional
protocols or
end-to-end
encrypted services

Techniques have
been developed
in past decades

There are some
limitations of
the traditional
protocols

Trusted
Third Party

Introduce trusted
third parties to
assist
communication

High efficiency
It is an ideal
environment
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signature, which allows the drivers to sign messages with fine-grained control over identifying
information [186]. The attribute-based signature is calculated based on the attribute value,
which can be a binary-bit string [187], [188], or relies on a particular data structure [189]. Maji
et al. [186] and El Kaafarani et al. [190] introduce and formalize the anonymity of the attribute-
based signature that the signature should not reveal the driver’s identity or the used attributes.
The authors point out that the adversaries can track the drivers’ locations by identifying their
actual attributes. Considering the same privacy issues, Kaaniche et al. [191] improve the
anonymous attribute-based signature by using a concrete mathematical construction based on
standard assumptions and the random oracle model. The improved model significantly improves
the location privacy and identity privacy of the attribute-based signature.

• Group Signature: Group signature allows a driver of a group to anonymously sign messages
on behalf of the group [192]. Then, any verified vehicle can confirm that the signature is
generated by a legal group member without requiring to identify the signer. Zheng et al. [193]
improve a linkable group signature that achieves anonymity, auditing, and tracing functions for
the communication sender. The improved framework increases communication efficiency and
security by employing cryptography modules of blind signature, public-key encryption, trapdoor
indicative commitment, and signature of knowledge. Hakeem et al. [194] employ a short-size
signature to broadcast authentication information over multiple zones. The authors decrease
the signature generation time and verification time by utilizing bilinear pair cryptography. Wu
et al. [195] point out that bilinear pair cryptography is complex for OBUs and RSUs. The
authors use an elliptic curve cryptosystem in the authentication process that decreases the
computational complexity of group signatures. Mundhe et al. [196] develop a ring signature
that provides unconditional privacy to the drivers by transmitting the message through the
verified legal vehicles. The authors also utilize the pseudonym to increase the privacy-preserving
capability of the ring signature. Mundhe et al. [197] enable RSUs to participate in the signature
generation process to decrease the authentication delay of the ring-signature-based LPPMs.
Mei et al. [198] adopt the full aggregation certificateless signature technology to reduce the
bandwidth resources overhead in the transmission of the certificate.

• Sanitizable Signature: Ateniese et al. [199] are the first to develop Sanitizable signatures in
2005. In the sanitizable signature, authorized semi-trusted censors can modify part of a signed
message in a limited and controlled fashion without interacting with the original signer. Pamies
et al. [200] combine the log anonymity and sterilizable signature to protect the sensitive data,
e.g., identity and location. The authors hide authenticated identification when transferring the
data streams from the local node to remote storage servers.

• Blind Signature: For the blind signature, the content of a message is disguised before it is
signed, which means the signer and message author are different parties [201]. Sun et al. [202]
improve a fog-computing-based crowdsensing architecture where identity and location privacy
are protected by a partially blind signature authentication. The authors use zero-knowledge
verification to improve the security of the blind signature.

In summary, the limitation of the signature-based methods is that certificate management leads
to high computational and storage consumption.

Secure Computation Mechanism

Secure computation techniques protect a driver’s location privacy by processing the location
data, which was first introduced and formalized in 1982 based on the millionaire problem [203].
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Zhuo et al. [5] improve a multi-key secure outsourced computation scheme that does not need
the interaction between the LBS servers and drivers. The improved scheme avoids duplicating
and useless encrypted LBS messages before verifying identities, which ensures the quality of
LBSs.

Data Perturbation

The obfuscation-based LPPMs allow the drivers to perturb their location before sending the
location information to LBS servers [15]. The data perturbation can be utilized on either the
user side or the server side. In user-side data perturbation, drivers do not need to trust any
external entity by sending obfuscated location data to LBS servers [204]. The data perturba-
tions can ensure personalized location privacy, which offers location privacy protection with
acceptable data utility [15]. The user-side data perturbation is summarized as follows.

• Dummy-based Method: Dummy-based methods do not need a trusted third party or key
sharing step [70]. Niu et al. [205] improve a dummy-location selection algorithm to achieve k-
anonymity for the drivers. The algorithm selects dummy locations according to the entropy of
anonymity. The limitation of the dummy-based methods is the insecurity of submitting spatio-
temporal correlation in sequential LBS requests. Liu et al. [206] point out that time reachability,
direction similarity, and the degree should be a concern when filtering the dummies to solve
this limitation. After the filtering strategy, the candidate dummies can provide high privacy
protection for the driver’s location information. The storage cost of the filtering strategy is
acceptable, but the computation delay could be high.

• Local Differential Privacy (LDP): Differential privacy can bind the knowledge obtained by the
adversaries but could decrease the quality of LBSs [207]. From the LBS providers’ perspective,
applications can provide a high quality of services if high accuracy is received, but most LBSs
can accept location data that is not entirely accurate [208]. The differential privacy can be
defined as follows,

Definition 1 (Differential Privacy (DP)). A mechanism M satisfies ε-DP if and only if, for
any pair of data xi and xj, we have

Pr[M(xi) → y]

Pr[M(xj) → y]
≤ eε, (2.1)

where y is the output of the mechanism.

LDP is a distributed variant of traditional differential privacy that allows the drivers to perturb
their location information before sending it to servers [209]. Erlingsson et al. [210] amplify
the privacy to achieve high privacy-preserving capability from local differential privacy by
combining differential privacy and anonymity. The authors point out that location privacy
security can be achieved without adding any significant noise if the method employs LDP on
the client side and a shuffling strategy on the server side. Nevertheless, the authors ignore the
spatio-temporal correlation in the road network.

• Geo-Indistinguishability (Geo-I): Geo-I is first proposed by Andrés [211]. Geo-I allows the
drivers to enjoy εr-differential privacy in the given obfuscate radius r with a privacy budget ε,
which is as given by
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Definition 2 (Geo-I). A mechanism M satisfies ε-Geo-I if and only if, for any two locations
xi and xj, the following holds

Pr[M(xi) → y]

Pr[M(xj) → y]
≤ eεd(xi,xj), (2.2)

where y is the output of the mechanism and d(xi, xj) is the distance of xi and xj.

Based on the Geo-I, Zhou et al. [212] design a framework to balance the utility and privacy
in edge computing. The framework includes two parts: privacy-preserving location-based ser-
vice usage method and privacy-based service adjustment. The authors add two-dimensional
Gaussian noise to shift actual locations. Although the authors consider the trade-off between
privacy and service quality, the framework can lead to a high calculation consumption. Based
on the background knowledge of trusty serves, Li et al. [213] employ correlation probabilities
and correlation transition probabilities to realize Geo-I. The proposed method can provide dif-
ferent privacy-preserving levels for various requirements. The location shift decides the level
of privacy protection. The shift is invalid when the driver’s location shift is shorter than the
threshold. Although the method can provide a different protection level, the method ignores
the road condition. If the traffic jams and the driver applies LBSs frequently, the obfuscated
location will never change by which the adversaries can obtain the driving state. Li et al. [214]
improve an enhanced Geo-I definition named Perturbation-Hidden to ensure perturbed loca-
tions are valid. The Perturbation-Hidden method transforms the map of road networks into a
grid where the acceptable locations are used as the candidate set. Furthermore, dynamic pro-
gramming is employed to determine the retrieval area to provide accurate LBSs. The authors
employ the dynamic programming method to provide the drivers with the shortest radius of
retrieval radius. The limitation of the Perturbation-Hidden method is that it may lead to high
privacy costs in privacy-limited regions.

• Pseudonym: Pseudonyms are employed as temporary anonymous certificates generated and
distributed by the certificate authority [215]. The pseudonym-based LPPMs aim to ensure the
unlinkability between the driver’s identity and pseudonyms in communication [216]. Wang et
al. [217] treat pseudonyms as a long-term identifier to decrease the computation and storage
consumption. The authors design a trigger of pseudonym exchange requests to assist the cer-
tificate authority in the pseudonym changing. Vehicles change their pseudonyms when meeting
the trigger. The method has a limitation that a long period of existing pseudonyms may pro-
vide a longer track window for the adversaries. Pseudonym-Indistinguishability is first proposed
in [218] to ensure strict unlinkability in the pseudonym swap process. The pseudonym swap pro-
cess satisfies differential privacy. The adversaries cannot link the pseudonyms after swapping,
even if the driving states of the two vehicles are similar. The Pseudonym-Indistinguishability
method can provide a high swap complete probability with fewer pseudonyms. The limita-
tion of the method is that the authors ignore the conflict in the pseudonym swap. There are
two weaknesses of the pseudonym-based LPPMs. One weakness is that the pseudonym-based
LPPMs need to manage the vehicles’ pseudonyms, which leads to high computation and stor-
age consumption [219]. Another weakness is that the pseudonym-based LPPMs cannot ensure
unlinkability in the tracking attack [220].

2.2.2 Server-Side LPPMs

By using server-side LPPMs, service providers are required to perform additional processing on
their clients’ hosted data [221]. Service providers can achieve this by anonymizing databases,
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removing identifying traces or encrypting data contents.

Statistical Disclosure Control (SDC)

SDC mechanisms are mainly used to protect data within statistical databases, which balances
data utility and drivers’ location privacy [222]. Generally, the output of the SDC mechanisms
ensures that the databases do not reveal information related to a specific driver [223]. Database
anonymity and differential privacy are the two most popular techniques in the SDC mechanism,
as follows.

• k-anonymity: k-anonymity LPPMs can provide personalized and accurate query results with-
out key sharing [224]. k-anonymity LPPMs protect driver’s location data in k vehicles to in-
crease the estimation error of the adversaries [225]. The k vehicles are selected according to
the closest historical request probability based on the maximum entropy principle [226]. The
existing k-anonymity methods can be classified into centralized k-anonymity and distributed
k-anonymity [227]. The centralized k-anonymity methods need anonymous cloaking servers,
while the distributed k-anonymity methods ask the participants to unite [228]. Li et al. [229]
propose a distributed architecture utilizing the blockchain. The proposed architecture records
the hashed safety beacon messages to ensure integrity by reducing storage consumption and
processing time. The authors employ k-anonymity to gather and upload safety beacon mes-
sages of a group of vehicles. The proposed architecture does not need a trusted third party.
Luo et al. [17] improve a blockchain-enabled k-anonymity method to ensure trustworthiness.
The proposed method calculates the trust level of vehicles based on the historical trust data
and the trust degree reflecting factors. The authors establish a blockchain structure to record
the historical trust information. The authors treat RSUs as distributed k-anonymity databases
that provide the recorded data.

• Mix-zone: The Mix-zone methods allow a certain number of drivers to change pseudonyms
in specific regions [230]. The drivers orderly get into the regions and get out of the regions
in a different order [231]. Mix-zone methods cannot against timing and transition attacks
that the adversaries can link the driver’s pseudonyms at entry and exit points based on the
timing knowledge [232], [233]. The adversaries can also employ the continuous query correlation
attack to link the old and new pseudonyms [234]. Some pseudonym mappings can be ruled
out because of the weighting time, traffic conditions, and time constraints [67]. Amro [235]
proposes a Mix-zone method that introduces fixed transceivers to decrease the influence of
traffic conditions. The legitimate virtual vehicles join in the pseudonym swap process when
the number of physical vehicles is lacking. The proposed method requires transceivers that act
as physical vehicles. The introduced transceivers use pseudonyms to communicate with RSUs.
However, the introduced transceivers bring some security and privacy issues. For example,
the pseudonym swap process will be insecure if the adversaries obtain the pseudonyms of the
transceivers. A group-based dynamic Mix-zone method is proposed to protect location privacy
in resources limited regions [236]. The proposed method allows vehicles to transmit encrypted
information in the silent region. The method is personalized that considers the expiration time
of the drivers’ pseudonyms.

• Other Anonymity-base LPPM: Meng et al. [237] propose a method to protect the driver’s
location privacy in navigation services. The method extends anonymous authentication that
supports a request-limiting property. The method protects both location and route information
of the users. The method can effectively protect identity privacy, location privacy, route pri-
vacy, unlinkability, and confidentiality. Zhu et al. [238] propose an Anonymous Smart-parking
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And Payment (ASAP) method to realize smart parking navigation. The ASAP method applies
servers anonymously that the drivers transmit their locations into a region with the cloaking
method to hash and encrypt the location data. Locations and routes can be explored under
similar continuous queries, although the actual location is cloaked. Singh et al. [239] propose
a Masqueraded Probabilistic Flooding for Source-Location Privacy (MPFSLP) method to re-
duce communication costs. The method can ensure non-repudiation, message authentication,
integrity, and non-traceability. In the MPFSLP method, the re-sending is defined to replace the
forwarding process. The authors point out that the vehicles do not require a relation between
the location data and the identities of other vehicles. The MPFSLP method allows each node
to send packets by masquerading as probabilistic flooding instead of generating fake packets.
The vehicles can re-send previous messages to complicate the identity.

• General Differential Privacy: Differential privacy can also be used on the server side. Soheila
et al. [240] propose a Differentially Private Data Streaming (DPDS) system to aggregate the
data in vehicular networks. By considering the data correlation, vehicles in the DPDS system
set up several groups in which the group leaders send members’ compressed information. The
compressed information reduces the noise value, but its limitation is that the size of the com-
pressed data is similar to the original data. In [241], the authors propose a protection framework
to protect privacy in edge computing. They also propose a data transmission method based
on the noise quadtree and the Hilbert curve. The proposed method can improve the efficiency
of location data publishing. Nonetheless, they only consider the two-dimensional space, which
may not satisfy the real-world environment.

• Joint Differential Privacy: Joint differential privacy limits the single driver’s manipulation
power and reduces the impact of the single driver’s false report [242]. Based on the joint
differential privacy, a study in [243] proposes a scheduling protocol to protect location privacy
and minimize vehicle miles in the ridesharing services. The proposed method employs private
dual decomposition technology and driver clustering to improve the scheduling performance.
They also design the private ride assignment method and driver grouping method to improve
the privacy-preserving capability.

Homomorphic Encryption

Encryption is widely used to protect the location privacy of vehicles in data dissemination
and computation, but data decryption needs to be more flexible and secure [244]. Homomor-
phic Encryption (HE) schemes can directly analyze ciphertexts by mirroring the corresponding
operations on the plaintexts, which means the decrypted values of computation results on ci-
phertexts of location data in the HE schemes corresponds to the values of operations on the
plaintexts [245]. The most common definition of the HE is given by

Definition 3. Let P and C be a set of plaintexts and ciphertexts, respectively. An encryption
mechanism M satisfies homomorphic if and only if, for any given encryption key k, and any
pair of data xi and xj, the following holds: ∀xi, xj

M(xi �P xj) ← M(xi)�C M(xj), (2.3)

for some operators �P in P and �C in C, where → means that the left-hand side can be directly
computed from the right-hand side.
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The HE schemes can be classified into fully homomorphic encryption and partially homomorphic
encryption [246], as follows.

• Partial Homomorphic Encryption (PHE): PHE schemes are the earliest type of HE scheme
and only support homomorphic addition or homomorphic multiplication [244]. Yucel et al. [247]
use PHE to solve the location privacy issues in the charging station scheduling, where frequent
scheduling could expose the drivers’ location data. The authors first hide the drivers’ location
information and then process the hidden information with PHE. The proposed scheme allows
the drivers to join and leave the charging station dynamically.

• Somewhat Homomorphic Encryption (SHE): SHE schemes support a finite number of ho-
momorphic addition and homomorphic multiplication [244]. The work in [248] provides an
integer-based SHE scheme based on the duration between each data transmission from the
sensor and the data packaging method. By using the proposed scheme, the authors improve
the efficiency of the SHE algorithm by reducing the encryption consumption of the sensor data.
Yu et al. [249] focus on the scenario of an online ride-hailing service that allows a group of
passengers to share a vehicle with a minimum aggregate distance. The authors use the SHE
scheme with ciphertext packing in such a scenario to calculate encrypted aggregate distance.
The ciphertext packing is utilized to ensure that the actual value of the aggregate distance
cannot be leaked.

• Fully Homomorphic Encryption (FHE): FHE schemes support an infinite number of homo-
morphic [244], but it has limitations of low efficiency and high computational consumption [250].
To decrease the communication overhead of the FHE scheme, Perma et al. [251] combine FHE
with pseudonyms. The proposed method uses FHE to encrypt location data transited in vehic-
ular networks, which also avoids the linkage between different pseudonyms of the same vehicle.
By considering that all LBSs have deadline and mobility constraints, Mohammed et al. [252]
propose a cost-efficient vehicular fog cloud computing method where the FHE is utilized for
security. Farouk et al. [3] utilize a network simulator to simulate urban mobility, and a cloud
simulation to simulate the real world and protect LBS queries with FHE based on the advanced
encryption standard. The authors outsource encrypted location data to the cloud server so the
drivers can securely obtain accurate LBS query results.

Nevertheless, there is no efficient homomorphic encryption-based secure computation method
in road networks [244].

Private Information Retrieval

Private Information Retrieval (PIR) enables the drivers to request data items without revealing
which item is retrieved [253]–[255]. However, the computational consumption of the PIR could
be high that it is difficult to allocate in practice [256]. To overcome this limitation, Tan et
al. [256] focus on road networks where the authors apply the transportation information of
road networks as prior knowledge of PIR that significantly decreases the computational cost.

Searchable Encryption (SE)

SE schemes are considered as a server-side privacy-enhancing technique, which enables the
drivers to keep plaintext keywords safe in searching LBSs [257], [258]. SE schemes are also be
combined with other methods or tools to improve precision and efficiency, e.g., group signatures,
Cuckoo filter, Pederson commitment, smart contract, public-key encryption, and proxy re-
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encryption [259], [260]. However, most existing SE schemes would provide wrong results for
geometric range searches [261]. To solve this problem, Chen et al. [262] develop a novel SE
method under a public-key system supporting arbitrary geometric area searches. The authors
avoid the false positive result by introducing inner product encryption. The developed method
can achieve 100% accuracy of searching results.

2.2.3 User-server-interface LPPMs

Channel-side techniques encompass mechanisms that act on the security and privacy prop-
erties of the set-up communication channel between the server and end-users [263]. Secure
communication and trust in the third party are popular in the user-server-interface LPPMs.

Secure Communication

Secure communication can be classified as follows.

• Encrypted Communication Protocol: To avoid pervasive communication surveillance, it is
essential to emphasize that encrypted channels need to be implemented and configured cor-
rectly [264]. In the LBSs of vehicular networks, traditional protocols are widely used [265],
e.g., the Transport Layer Security protocol (TLS) [266], [267] and the Secure Shell (SSH) pro-
tocols [268], [269]. TLS and SSH rely on public key cryptography techniques so drivers and
servers can set up an encrypted channel without sharing secrets [270]. Nevertheless, the tra-
ditional protocols still have limitations. For example, SSH requires that the end-users can
perform periodical verification [271], which is resource-consuming [272].

• End-to-end Encrypted Services: End-to-end encrypted services prevent the adversaries from
accessing the location data when transferring among end-users, meaning that only the intended
receiver can decrypt the data [273]. End-to-end encrypted services are seldom used in vehicular
network scenarios currently. However, as future vehicular networks may require the vehicles to
cooperate with others to complete a task, end-to-end encrypted services could be widely used
in the future.

Trusted Third Party (TTP)

The TTP techniques, which are commonly based on anonymity and pseudonym, are proposed
to prevent malicious entities from obtaining the drivers’ sensitive information [274]–[276]. A
set of malicious entities could be more powerful than the legal drivers in that they could have
the capability to trace the drivers and estimate other private information of the drivers [1].
However, the existing studies [277]–[280] prefer to protect location privacy without any trusted
third party, which is a strict scenario.

2.2.4 Trade-off between Location Privacy and Data Utility

Location privacy and data utility are two competing objectives of vehicular networks. The
data utility is one of the major concerns in location privacy preservation to measure how the
privacy-preserving methods influence LBSs. The drivers are increasingly wary of their location
privacy, which may discourage their location information sharing with the LBS platforms. For
LBS platforms, they desire the actual locations of the drivers for commercial purposes. The
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over-protection will diminish the data utility of the LBSs [281]. Therefore, a privacy-preserving
method should maximize data utility with the best privacy-preserving capability.

Many LPPMs focus on the trade-off between location privacy and data utility, as shown in
Table 2.3. There are six major methods to achieve the trade-off between location privacy and
data utility, as follows.

Blockchain

Blockchain can be used to realize distribution management. LPPMs can access the required
information if the information is stored in the blockchain [288]. This technology can decrease
time delays and detect the malicious vehicles. Luo et al. [17] use blockchain to store the
historical trust information of vehicles and employ Dirichlet distribution to allow vehicles to
cooperate with others by utilizing anonymity. The authors reduce the communication delay
with blockchain-based trust management. Li et al. [229] develop two metrics, i.e., connectivity
and average distance, to measure the data utility of k-anonymity. With these two metrics, the
authors evaluate the developed framework, which uses blockchain to solve trust management
during the exchanging of safety beacon messages. The experimental results show that the
blockchain-based k-anonymity framework decreases the data processing time.

Malik et al. [14] avoid the dependency on a trusted third party by developing a blockchain-
based authentication and revocation method which decreases the consumption of computation
and communication. Wang et al. [201] combine the blind signature with blockchain to achieve
a scheme that has high effectiveness and applicability. The authors use blockchain to store the
public key of the vehicle, which can be used for authentication by comparing the calculated
Merkel’s root value. Tang et al. [260] manipulate group signature and multiple tools when de-
signing a blockchain-based privacy-preserving scope-query searchable encryption scheme, which
achieves fairness and accurate parking lot sharing. Chaudhary et al. [282] also use blockchain
to overcome the limitations of k-anonymity, while Liang et al. [286] create cloaking region ac-
cording to the blockchain. Wang et al. [287] evaluate the trustworthiness of vehicles by using
blockchain-based RSUs, and Lu et al. [283] use the proofs of presence and absence in blockchain
to protect location privacy. The authors ensure the high validity of the two methods and avoid
the leakage of identity. Boualouache et al. [284] and Samuel [285] use blockchain to protect
location privacy by preventing semantic, linking, and data mining attacks.

Adaptive Parameter

Some LPPMs achieve the trade-off between location privacy and data utility by tuning the pa-
rameters according to the drivers’ requirements. The adaptive parameters-based LPPMs can
decrease unnecessary resource consumption and data utility loss. Lu et al. [181] define the quan-
titative measurements of location privacy and perfect privacy. By using these measurements,
vehicles can route location data with the assistance of other vehicles to obtain efficient, secure
and accurate LBSs. Shahandashti et al. [185] and Kaaniche et al. [191] permit the vehicles to
only reveal required data based on their attributes and requirements, which can achieve high
efficiency and data utility without breaching the anonymity of the vehicles. Ma et al. [15], Zhou
et al. [212], Li et al. [213], and Li et al. [214] develop the location privacy-preserving mechanisms
which can adaptively set the parameters based on the drivers’ protection and utility require-
ments. Li et al. [218] allow the vehicles to swap their pseudonyms according to their driving
status, which can achieve high privacy protection and data utility. Zhu et al. [238] ensure the
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Table 2.3: Existing LPPMs in the trade-off between location privacy and data utility.

Methods Techniques LPPM category Papers

Blockchain
Distribution
Management

k-anonymity [17], [229], [282]

others
[14], [201], [260],
[283]–[287]

Adaptive
parameters

Tuning
parameters

Pass-and-run [181]

Attribute-based signature [185], [191]

Geo-I [15], [212]–[214]

Pseudonym [218]

Other anonymity [238]

General differential privacy [240], [241]

SHE [248]

FHE [252]

Hybrid
Combining
multiple
methodologies

Group signature [193], [196]

Sanitizable signature [200]

Dummy-based [205]

LDP [210]

Joint differential privacy [243]

SE [262]

Encryption
optimization

Reducing
computa-
tional and
communica-
tion
consumption

Group signature [195]

Blind signature [202]

Secure computation [5]

Mix-zone [236]

PHE [247]

FHE [251]

Parameter
simplification
and
optimization

Simplifying
process

Group signature [194], [198]

Blind signature [202]

Dummy-based [206]

Pseudonym [217]

Other anonymity [239]

FHE [3]

Private information retrieval [256]
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Virtual nodes
Introducing
cooperators

Group signature [197]

Pseudonym [217]

k-anonymity [235]

TTP [277]–[280]

effectiveness of location data utility by using hashmap-based short randomizable signature. By
controlling the noise of differential privacy, Ghane et al. [240] and Miao et al. [241] improve the
retrieval accuracy and decrease the time complexity to balance the location privacy protection
and data utility. Subramaniyaswamy et al. [248] and Mohammed [252] use encrypt location
data in the edge of vehicular networks without losing data. The authors reduce the time delay
and recourse consumption of encryption.

Hybrid Approach

Some LPPMs utilize different methodologies to improve efficiency. The hybrid LPPMs can
obtain great benefits and overcome limitations by mixing various methodologies. Zheng et
al. [193] and Mundhe et al. [197] combine group signatures and pseudonyms to achieve identity
verification. By using the pseudonym, the signature could be short, and the computational
consumption could be reduced. Similarly, work in [200] jointly uses log anonymization and
sanitizable signature to mitigate privacy threats. Niu et al. [205] realize k-anonymity by uti-
lizing dummy locations, which considers the side information of the vehicles, and Erlingsson et
al. [210] use differential privacy to eliminate the signal at the user side. The two methods can
prevent the linking of pseudonyms by the adversaries. With joint differential privacy, Tong et
al. [243] research on the private spatial index, private distributed optimization, and private dual
decomposition techniques to achieve the balance. Chen et al. [262] use SE and computational
private information retrieval to decrease computational consumption, ensuring effectiveness,
which considers the restriction of road networks as the prior knowledge.

Encryption Optimization

The encryption methodologies result in high communication consumption, such as bilinear pair
cryptography. Some LPPMs focus on optimizing encryption methods to achieve high data util-
ity and low time delay. Wu et al. [195] avoid the high computational cost of message signing and
verification by using the elliptic curve cryptosystem rather than bilinear pairs. Sun et al. [202]
introduce encryption-based methods, including zero-knowledge verification, one-way hashing,
and homomorphic encryption into the partially blind signature to obtain superior effectiveness
of network response and privacy preservation. Zhou et al. [5] employ the noncolluding servers,
i.e., the cloud and the cryptographic service provider, to skip the interaction between the vehicle
and the LBS servers. The authors eliminate redundant encrypted LBS data before authentica-
tion, i.e., ciphertext re-encryption, that achieves practicability and protection. Li et al. [236]
suggest the vehicles to transmit encrypted data rather than being silent in the mix zone. The
authors point out that encryption can decrease the storage consumption of pseudonym man-
agement, and increase privacy protection without breaching data utility. Yucel et al. [247]
protect location privacy by utilizing homomorphic encryption into bichromatic mutual nearest
neighbor assignments, which protect location privacy with low recourse consumption and con-
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vergence times. Prema et al. [251] point out that FHE can lead to communication overhead
problems. The authors utilize pseudonyms with homomorphic encryption to control the mes-
sage frequency, which keeps the low overhead of the pseudonym with the high security of the
homomorphic encryption.

Parameter Simplification and Optimization

The time delay can be significantly decreased when the LPPMs can simplify the process. For
example, the non-certificate LPPMs can eliminate the certificate authentication time delay
and certificate storage consumption. Hakeem et al. [194] achieve authentication over multiple
zones of large-scale BSs by using a single message and short signature with bilinear pairing
cryptography and short-size signature. The authors significantly decrease the generation and
verification time of the signature. Mei et al. [198] use a certificateless aggregate signature scheme
with full aggregation technology to reduce resource consumption. The trade-off between privacy
protection and data utility is achieved by considering random oracles under the computational
Diffie-Hellman assumption. Sun et al. [202] optimize a fog-bus-based vehicle crowdsensing
framework that severs the relationship between the identity and location data. The authors
simplify the data process in data reporting, reputation management, and reward issuing so that
the effectiveness can be improved.

Liu et al. [206] focus on the time reachability, direction similarity, and in-degree/out-degree of
the location data. The developed spatiotemporal correlation-aware LPPM simplifies neighbor-
ing location sets to achieve personalized location privacy protection. Wang et al. [217] improve
the data utility of pseudonyms by introducing a trigger-based structure, avoiding the frequent
pseudonym changing. Singh et al. [239] simplify the required characteristics of the vehicles by
using location and speed instead of their identities. The authors allow each vehicle to send data
of others masquerading as its own location data, which significantly decreases the traceability
of the pseudonym-base LPPM without breaching the data utility. Farouk et al. [3] outsource
the location data to a cloud server that prevents the vehicles from sharing their location data
with multiple different entities. By only sharing data with the cloud server, the vehicle can
obtain LBSs with a low delay. Tan et al. [256] use the prior knowledge of road networks to
decrease the consumption of computational private information retrieval in preprocessing and
communication.

Virtual Node

Some LPPMs, e.g., k-anonymity, need a specific number of neighbors to provide a high privacy-
preserving capability. The LPPMs can generate virtual nodes to act as physical vehicles to
overcome this limitation. The virtual nodes occupy limited storage space. Thus, the privacy-
preserving capability can be improved without decreasing the data utility. Mundhe et al. [197]
avoid the trusted third party in authentication by employing a lattice-based ring signature.
The scheme provides a low authentication delay and cost, which improves the effectiveness of
the data utility to the signature-based LPPMs. Wang et al. [217] introduce virtual devices, i.e.,
triggers, to assist pseudonym changing, which improves the privacy protection of pseudonym-
based LPPMs. Zhu et al. [238] distribute fixed mixing zone in road networks to avoid the
adversaries linking the pseudonyms. The presented method provides stable location privacy
preservation, which is not influenced by the number of vehicles in the mixing zone.
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Table 2.3: Trade-off between location privacy and data utility of in-vehicle tracking in practice:
COVID-19 applications.

Architecture Applications
Required

information
Limitations

Centralized

COVIDSafe
(Australia) [289]

Encounter
information

The personal
information of the
driver, e.g., identity,
phone number, and
email.
Encounter
information that is
frequently recorded
exposes the driver’s
trajectories.
Private information
can be inferred from
the reported
geographical
information.
The geographical
information is
disclosed to the
public for epidemic
prevention

E-Tabib
(Azerbaijan) [290]

BeAware Bahrain
(Bahrain) [291]

Corona Tracer BD
(Bangladesh) [292]

Taiwan Social
Distancing (China) [293]

TousAntiCovid
(France) [294]

VirusRadar
(Hungary) [295]

Rakning C-19
(Iceland) [296]

Smittestopp
(Norway) [297]

BlueTrace
(Singapore) [298]

Alipay (China) [299]

Geographical
information

WeChat (China) [300]

LeaveHomeSafe
(China) [301]
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Decentralized

Stopp Corona
(Austria) [302]

Encounter
information

The malicious drivers
can infer the
trajectories of
patients and match
the trajectories with
identifiers by creating
multiple accounts and
recording multiple
routes.
The geographical
information is
disclosed to the
public for epidemic
prevention

Stop COVID-19
(Croatia) [303]

eRouška (Czechia) [304]

Smittestop
(Denmark) [305]

Koronavilkku
(Finland) [306]

Corona-Warn-App
(Germany) [307]

Apturi Covid
(Latvia) [308]

Radar COVID
(Spain) [309]

SwissCovid
(Switzerland) [310]

NHS COVID-19 (United
Kingdom) [311]

DP-3T (European) [312]

PACT (USA) [313]

Private Kit: Safe Path
(USA) [314]

Geographical
informationSouth Korea

system [315]

HaMagen (Israel) [316]
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In summary, existing methods that balance location privacy and data utility cannot perfectly
satisfy the future 5G/6G-enabled vehicular networks. For example, the Geo-I-based LPPMs
inject controlled noise in location data when the data is reported to the LBSs. Nevertheless,
inaccurate location data will introduce extra data optimization processes, which degrade the
consumption of big data analysis in 5G/6G networks [317]. The data utility will be significantly
decreased even if the Geo-I-based methods finely tune the adaptive parameters. This is un-
acceptable to 5G/6G service providers. The virtual nodes-based method needs to provide the
expected balance between location privacy-preserving capability and data utility. The reason is
that the future 5G/6G-enabled vehicular networks will deploy numerous sensors to monitor the
environment so that virtual nodes can be eliminated. Thus, the challenge of balancing location
privacy and data utility will become serious as the requirements of high-precision and novel
technologies are proposed in future 5G/6G vehicular networks.

Example of Localization Application

Different from the theoretical trade-off between location privacy and data utility, the appli-
cations in practice are more interested in data utility. According to Elbir et al. [318], it is
highlighted that vehicular networks offer potential applications in tracking the spread of dis-
eases, identifying instances of social distancing non-compliance, and facilitating health-related
services. This is attributed to the widespread use of public and private transportation by in-
dividuals in their daily lives. With the sensors equipped on vehicles, the encounter history
with social distance can be collected and sent to the authorities [318]. The usage of vehicular
communication can improve the detection of the infection, which can prevent the spread of the
disease. However, in the pandemic scenario, e.g., COVID-19, tracking also brings challenges.
Location data collection and exchange in the fight against COVID-19 is an excellent example of
in-vehicle tracking. Existing applications for epidemic prevention can be classified into central-
ized and decentralized management. In centralized management cases, the medical information
of confirmed cases is monitored by governments or institutions. Governments or institutions
will only disclose the trajectory of the patient when a new patient appears. In decentralized
management cases, the location data is managed by the drivers. Only if the drivers are in-
fected, their trajectories are exposed to authorities. Strict management of such information
can save the world from the virus, but the location privacy of the patient is exposed. Table 2.3
shows the benefits and limitations of related applications. In Table 2.3, the existing COVID-19
applications are classified into centralized and decentralized applications.

The centralized applications (e.g., TraceTogether (Singapore) [319], COVIDSafe (Australia) [289],
and BlueTrace (Singapore) [298]) record the encrypted encounter history rather than the lo-
cation information. Only the authority can decrypt the encounter history. The driver’s iden-
tification can be obtained by the authority if the driver is infected. Other drivers can check
their risk of infection by the encounter history. However, the patients’ identities and trajecto-
ries are exposed to the authority, which increases the risk of location privacy disclosure. The
privacy-preserving capability of the applications can be decreased if other drivers collude to
infer targets.

DP-3T (European) [312] and PACT (USA) [313] are two examples of decentralized applica-
tions. The two applications create a periodical key to generate several ephemeral identifiers.
The ephemeral identifiers are broadcasted as a beacon message within a region. The two ap-
plications store the received beacon messages with extra information. The applications match
the ephemeral identifiers based on the information from the authority. Nevertheless, the mali-
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cious drivers can infer the trajectories of patients and match the trajectories with identifiers by
creating multiple accounts and recording multiple routes. Private Kit: Safe Path (USA) [314]
and South Korea system [315] are the other types of COVID-19 applications. They periodi-
cally record the drivers’ trajectories with time-stamped log and pseudonyms based on the GPS
(the South Korean system record detailed personal information). The drivers can report their
trajectories to the authority if they are infected. The authority can select information to be
exposed to the public. The trajectories are disclosed to the public for epidemic prevention.
Nevertheless, the applications cannot offer the expected location privacy-preserving capability,
as everyone can view the trajectories.

The existing COVID-19 contract tracing applications balance location privacy protection ca-
pability and data utility by using anonymity [320]. The applications, e.g., TraceTogether (Sin-
gapore) [319] and COVIDSafe (Australia) [289], periodically broadcast random time-varying
tokens as the driver’s temporary IDs [321]. The applications record the encounter information
of the drivers, which are employed to report infection risk [322]. However, the authorized en-
tities can still link the temporary IDs and the driver’s personal information (e.g., trajectory,
phone number), even if the applications do not collect personal information on purpose [321].

2.3 Conclusion

In this chapter, we highlighted the threats of the existing localization techniques to location
privacy protection. We then reviewed the existing LPPMs and discussed their advantages and
limitations. The methods to balance the data utility and location privacy protection were
researched in theoretical and practical scenarios.

The existing works in the field of location privacy preservation in vehicular networks have over-
looked several crucial aspects. Firstly, many traditional methods primarily focus on generic
2D planar spaces and neglect the unique intricacies of road networks. These oversights result
in impractical outcomes, often obfuscating locations that are off-road and thus irrelevant to
vehicular navigation and data sharing. Furthermore, these approaches tend to fall short in
providing effective privacy protection for drivers in real-world scenarios, where location privacy
requirements can vary significantly depending on the context. Existing methods often lack the
adaptability required to meet these varying privacy needs. Another critical gap in the existing
research is the limited consideration of differential privacy, specifically in the context of road net-
works. The additive nature of differential privacy has been overlooked, making it challenging
to detect illegal trajectories accurately. Detecting and mitigating malicious or unauthorized
vehicle trajectories is essential in ensuring the reliability and security of vehicular networks.
Furthermore, prior research has not sufficiently explored cooperative privacy protection mech-
anisms that leverage the collective power of multiple vehicles. Cooperative approaches have
the potential to enhance privacy while maintaining data utility effectively. These collaborative
methods can provide a higher level of protection against privacy breaches and collusion attacks.
The integration of pseudonym swapping with obfuscation techniques remains underutilized in
the existing literature, despite its potential to improve privacy preservation. In summary, this
thesis aims to address these research gaps by proposing a comprehensive differential privacy
framework tailored to road networks, personalized location privacy-preserving mechanisms, and
cooperative privacy protection strategies, ultimately advancing the state-of-the-art in location
privacy for vehicular networks.
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Chapter 3

Personalized Location Privacy with
Road Network-Indistinguishability

3.1 Introduction

Obfuscation-based schemes can protect location privacy against untrusted LBS servers and
eavesdroppers [72]–[74]. The idea is based on the local differential privacy technology where
users locally perturb raw data with differential privacy schemes and employ the obfuscated
data rather than the accurate data [75]. In obfuscation-based schemes, drivers generate obfus-
cated locations by adding controllable noise in their actual locations and report the obfuscated
locations in LBS requests [69]. The obfuscated locations are selected according to the distances
between the obfuscated and actual locations under the constraint of indistinguishability [74].
Although the obfuscation-based schemes compromise location accuracy, they can still be used
in location-insensitive LBS, such as location-based recommendations [76].

Obfuscation-based schemes have not been rigorously developed for vehicles in road networks.
In general-purpose obfuscation schemes, e.g., two-dimensional (2D) Laplace location privacy-
preserving schemes, the distance between an actual location and the corresponding obfuscated
location is measured using the Euclidean distance [73], [74], [77]. This, however, underestimates
the distance between two locations on road networks because the route distance is no shorter
than the Euclidean distance between any two locations [78]. Another issue of general-purpose
obfuscation schemes is that they may generate off-road obfuscated locations, for example, on
a river [79]. Additional steps can be introduced to avoid off-road locations, which, however,
increase the computational complexity [80].

The privacy-preserving levels of locations are expected to be fine-tuned across road networks
to balance data utility and location-privacy protection [81]. Drivers can be sensitive to a
small number of locations in road networks. If all locations are obfuscated at the highest level
as the sensitive locations, the insensitive locations are over-obfuscated, and the data utility
is penalized [82]. If only the sensitive locations are obfuscated, the sensitive locations are
statistically different from the insensitive locations. This compromises location privacy [83].

In this chapter, we propose a Personalized Location Privacy-Preserving (PLPP) scheme which
provides customized location-privacy protection for vehicles in road networks. We start by
defining Road Network-Indistinguishability (RN-I), where the distinguishability of locations
is measured by the route distance. A connection-interval obfuscation algorithm is proposed

40



to select on-road obfuscated locations according to privacy budgets and the route distances
between obfuscated and actual locations. A personalization algorithm is designed to customize
the privacy budgets of connections based on the sensitive locations specified by drivers.

Table 3.1: Summary of notations and abbreviations

Notation Description

RN-I Road Network-Indistinguishability
PLPP Personalized Location Privacy-Preserving
Geo-I Geo-Indistinguishability
G The graph transformed from a road network
V The set of connections on G
E The edge set on G
p/p′ The actual/obfuscated location
v/v′ The actual/obfuscated connection
dG(p, p′) The shortest route distance between p and p′

ε Privacy budget
ui The i-th interval
α The number of the intervals in a road
D Connection degree
Gi The i-th segment of G
vmi The i-th m-hop connection from sensitive locations
Wvmi

/WGi
The weight of vmi /Gi

SL The set of sensitive locations
sli The i-th sensitive location
AEs Adversary estimation Errors
r The radius of the obfuscation region
δ Weight threshold

The key contributions of our work are listed as follows.

1) We define a new measure of location indistinguishability for road networks by applying
the concept of differential privacy. The indistinguishability is measured only on road
networks (as opposed to continuous 2D space). Route distances (i.e., distances along
roads) are used to derive the differential privacy upper bound. Off-road locations are
precluded from obfuscation operations.

2) We propose a new dual-obfuscation algorithm that firstly probabilistically obfuscates
an actual location to a connection and then obfuscates the location into a road inter-
val between the actual location and the obfuscated connection. By carefully designing
the probabilities, we prove that the dual-obfuscation design satisfies the new differential
privacy-based definition of road network-indistinguishability.

3) Considering non-uniform location privacy requirements of a driver at different locations,
we apply the nearest neighbor interpolation to specify the privacy budgets for all locations
based on the sensitive locations of the driver. The locations of the vehicle can be obfus-
cated consistently without exposing the sensitive locations, while improving the utility of
the location data of less sensitive locations.

We conduct comprehensive experiments on two real-world trajectory datasets and compare the
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proposed PLPP scheme with the existing 2D Laplace location privacy-preserving schemes [73],
[77], [89]. Experimental results show that the PLPP scheme outperforms the 2D Laplace
schemes in terms of data utility, privacy-preserving level, and efficiency.

The rest of this chapter is organized as follows. In Chapter 3.2, related works are reviewed,
followed by the system model in Chapter 3.3. The proposed privacy-preserving scheme is
presented in Chapter 3.4 and experimentally evaluated in Chapter 3.5, followed by conclusions
in Chapter 3.6. Notations and abbreviations used in this chapter are listed in Table 3.1.

3.2 Related Work

Studies about cryptography, signature, trust mechanisms, LBS design, and game-theoretical
models have been carried out to protect location data [323]. The scheme developed in [324]
protects both past and current LBS queries from each user with modified linkable spontaneous
anonymous signature and the oblivious transfer technique. The scheme presented in [325] is an
asynchronous localization protocol that constructs the relationship between propagation delay
and location to eliminate the side-effect of asynchronous clock and mobility. Location-based
recommendation is a popular LBS application and requires three types of information, i.e., user,
activity, and location [326]. The location-aware recommendation scheme developed in [327]
uses locality-sensitive hashing to hide the location information of both users and services. The
scheme can provide accurate recommendation results while preserving users’ location privacy.

Various schemes have been proposed to protect location privacy for vehicles, such as mix-
zone [328], k-anonymity [329], and obfuscation [330]. In mix-zone schemes, drivers stop send-
ing LBS queries in mixing areas and change their pseudonyms when leaving the areas [328].
Nevertheless, the adversary can link pseudonyms by analyzing the timing information and tran-
sition probabilities of the drivers. In k-anonymity schemes, drivers send a group of locations,
including actual locations and phony locations, to LBS servers [329]. The k-anonymity schemes
have a high communication cost because the drivers need to communicate with the k nearest
neighbors. Obfuscation-based schemes use perturbed locations rather than actual locations
in location-insensitive LBS, such as location-based recommendations [331]. Drivers can select
desired results from LBS returns based on their actual locations [332].

Table 3.2: Related Obfuscation-based Schemes

Ref. Scenario Methodology Personalized

[74], [77] 2D Geo-I -
[73] 2D and RN Geo-I -
[69] RN Geo-I -
[89] 2D Geo-I Yes

PLPP RN RN-I Yes

The obfuscation-based schemes are derived from differential privacy (DP) [333], which aims to
protect an individual’s private information while publishing aggregated data about a dataset
or a single message [240], [334]. Popular obfuscation-based works are listed in Table 3.2, where
we compare the scenarios and the methodologies of the schemes.

Based on differential privacy, Andrés et al. develop a scheme called Geo-Indistinguishability
(Geo-I) [74]. The authors employ the Laplace scheme [335] to realize Geo-I on a two-dimension
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(2D) plane. The Geo-I properly reports obfuscated locations surrounding the actual location
based on the obfuscation probability distribution when a driver requests LBS. The results
show that the Geo-I can achieve effective location privacy protection under infrequent location
updates [336]. The scheme developed in [77] reduces the computational consumption of the
Geo-I on the 2D plane by introducing additional servers. A driver in the region covered by
the additional servers only calculates obfuscated locations once and repeatedly reports the
obfuscated location, so that the average computational consumption is almost zero. The scheme
in [69] reduces the computational consumption of the Geo-I by dividing roads into intervals
with a certain length. The locations in the same interval can be obfuscated in the same way,
hence reducing the computational consumption.

Some obfuscation-based schemes focus on location privacy in road networks. The Graph-
Exponential scheme (GEM), which satisfies the Geo-I, evaluates the privacy protection level and
data utility of the traditional Geo-I in road networks [73]. The GEM sets the connections (such
as turns, forks, and intersections) in a road network as the obfuscation candidates. The scheme
obfuscates drivers’ actual locations to connections directly based on the Geo-I. The scheme
in [69] discretizes a road network with the same length intervals. The authors employ the route
distance between two intervals to measure the indistinguishability of the Geo-I. Nevertheless,
it is challenging to set the same length intervals in the road network. If the intervals are short
to accommodate short roads, the computational consumption increases [334]. If the intervals
contain several short roads, the correlation between the connections and privacy may be ignored.

Various schemes protect drivers’ sensitive locations at different levels to realize personalization.
The personalized scheme in [337] measures the privacy requirements with personal attributes,
e.g., access duration, frequency, and regularity. The scheme formulates an incomplete informa-
tion game to balance quality-of-service and privacy protection. The movement regularity-based
privacy requirement is studied in [338] for personalized pseudonym swapping. The scheme
in [339] measures privacy requirements using intimacy which specifies community edge density
in social networks. Differential privacy and generative adversarial networks are employed to
add noise to raw data. The scheme [281] specifies the personal privacy requirements of a loca-
tion to be negatively correlated with the number of hops to sensitive locations. The algorithm
in [340] orchestrates semantic privacy and location privacy based on drivers’ requirements,
which are measured according to the relationship between drivers. A game-theoretic model is
then constructed in coupling with social-distance-based differential privacy to protect location
privacy. The scheme in [89] designs the privacy requirement to be negatively correlated with
the Euclidean distance between the current location and the last inferred location. The privacy
requirement is used to calculate the privacy budget for obfuscation. This design reduces the
exposure probability but requires the real-time calculation of the privacy requirement.

To the best of our knowledge, none of the existing personalized obfuscation schemes has consid-
ered the features of road networks, such as route distance and road network topology. Moreover,
most of the existing personalized schemes require heavy computation based on historical be-
haviors. The proposed methodology aims to safeguard the location privacy of drivers within
road networks. The PLPP scheme comprises two key components: a Connection-Interval Ob-
fuscation algorithm and a Personalization algorithm. The Connection-Interval Obfuscation
algorithm discretizes road edges into intervals and obfuscates intervals, rather than individual
locations, to reduce computational overhead. This dual-obfuscation process, consisting of con-
nection and interval perturbations, ensures location privacy while enhancing data utility. The
Personalization algorithm empowers drivers to specify sensitive locations, allowing for varying
levels of location privacy protection based on personalized privacy requirements. By calculating
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connection weights in a hop-by-hop manner, the algorithm customizes privacy budgets across
the road network, ensuring sensitive locations receive the highest protection, while optimizing
data utility for less sensitive areas. The PLPP scheme adheres to the proposed (ε,r)-Road
Network-Indistinguishability, effectively safeguarding location privacy near sensitive locations
and providing robust privacy protection in road network-based location-based services.

3.3 System Model

In this section, we illustrate the road network and adversary model, and the important concept
of this chapter.

3.3.1 Road Network Model

A road network can be viewed as a weighted directed graph G = (V , E), where V is the set of
connections (such as turns, forks, and intersections) and E is the edge set. Nodes in graph G
are located at the same geographic positions as in the real world. The weight of an edge is the
length of the corresponding road.

A vehicle can only move along an edge e, following the traffic rules at any given time. Drivers
can access the LBS by sending their location information to the LBS servers. We consider
the case that the LBS servers are not trusted and may disclose the location records of drivers
to adversaries. A driver can conceal its actual location, i.e., p0, by reporting an obfuscated
location, i.e., p′0, using location obfuscation schemes.

3.3.2 Shift Distance

In this chapter, the definition of the data utility follows that in differential privacy, i.e., the
difference between the obfuscated and actual location data, and measures the usability of the
obfuscated location [10], [14], [36]. The data utility is higher, i.e., a better LBS response is
provided, if the obfuscated location data used in the corresponding LBS request is closer to the
actual location. In this sense, shift distance can be used to quantify the data utility of location
obfuscation schemes. The smaller a shift distance is, the more accurate the LBS is and the
higher the data utility is. Most existing location obfuscation schemes, such as [77] and [89],
are designed for 2D planes (or maps) and employ the Euclidean distance between an actual
location and its obfuscated location as the shift distance. In this chapter, we consider location
obfuscation schemes in road networks and define the shift distance as

Definition 4 (Shift Distance). Given an actual location p0 and its corresponding obfuscated
location p′0, the shift distance is the shortest route distance between the actual location p0 and
the obfuscated location p′0.

The data utility decreases with the increasing distance between an actual location and its
obfuscated version, i.e., the shift distance. The shift distance has been extensively used in
existing literature (e.g., [69] and [77]) as the only metric for evaluating the data utility.
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Figure 3.1: An example of the connection-interval obfuscation of the PLPP scheme.

3.3.3 Adversary Model

Adversaries in this chapter are passive internal attackers or external attackers. The adversaries
aim to infer the actual locations of drivers from the obfuscated locations in LBS requests.
The adversaries are assumed to have full knowledge of drivers’ obfuscation scheme and drivers’
prior trajectories [69]. With an obfuscated location p′0 of a driver, the adversaries can derive
the probability that the driver is actually at p0 using the Bayes’ Theorem, as given by

Pr[p0|p′0] =
Pr[p′0|p0] Pr[p0]∫

p inG Pr[p
′
0|p] Pr[p]dp

, (3.1)

where p is a location in graph G, and Pr[p] is the probability that the driver is at location p.
Pr[p′0|p] is the probability that the driver is actually at p and generates obfuscated location p′0
based on the obfuscation scheme.

For any location p1 in G, the adversaries can estimate how likely p1 is the actual location, as
given by

Pr[p1|p′0] =
Pr[p′0|p1] Pr[p1]∫

p inG Pr[p
′
0|p] Pr[p]dp

. (3.2)

Then, the adversary selects the location p̂0, which is the most likely to be the actual location
p0, as the driver’s actual location, i.e.,

p̂0 = arg max
p1 inG

Pr[p1|p′0]. (3.3)

Adversary estimation Error (AE) defines the shortest route distance between p0 and p̂0, and
evaluates the privacy protection effect of obfuscation-based schemes. As shown in Fig. 3.1, the
route distance between p0 and p′0 is the shift distance, and the route distance between p0 and
p̂0 is the AE.

3.3.4 Road Network-Indistinguishability

The Geo-I scheme, originally proposed for 2D Euclidean space, can be developed to protect
location privacy in weighted and directed road networks. The Geo-I scheme perturbs actual
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locations using the concept of differential privacy, where a set of actual locations are geo-
indistinguishable to the adversaries. We define the Road Network-Indistinguishability (RN-I)
to measure on-road privacy-preserving schemes.

Definition 5 (Road Network-Indistinguishability). A scheme satisfies (ε, r)-Road Network-
Indistinguishability if and only if, for an obfuscated location p′, any location pair pi and pj in
the road network (dmin(pi, pj) ≤ r) have

Pr[pi|p′]
Pr[pj|p′] ≤ eεdG(pi,pj)

Pr[pi]

Pr[pj]
, (3.4)

where dG(pi, pj) and dmin(pi, pj) are the shortest route distance and the Euclidean distance
between pi and pj, respectively. r is the radius of the obfuscation region R

2, the center of which
is pi. ε is the privacy budget as used in differential privacy [77]. A low value of ε corresponds
to a high privacy-preserving capability.

By substituting (3.2) into (3.4), the latter can be transformed as

Pr[p′|pi] ≤ eεdG(pi,pj) Pr[p′|pj], (3.5)

which indicates that pi and pj are RN-Indistinguishable, for any pair of pi and pj.

The route distance measures the shortest distances between two mutually accessible locations.
The use of route distance does not introduce extra complexity to the proposed scheme. One
reason is that the route distance can be pre-calculated and stored in vehicles. Another reason is
that the route distances can help preclude off-road locations, hence reducing the computational
complexity required for obfuscation.

3.4 Personalized Location Privacy-Preserving Scheme

Applying the RN-I, we propose the Personalized Location Privacy-Preserving (PLPP) scheme
to protect the location privacy of drivers in road networks. The PLPP scheme consists of a
location obfuscation algorithm and a personalization algorithm. The obfuscation algorithm
perturbs actual locations using the privacy budget calculated by the personalization algorithm.

3.4.1 Connection-Interval Obfuscation

There are two major types of road division schemes: (a) roads are divided into the same number
of intervals, as shown in Fig. 3.2(a); and (b) the intervals in the road network have the same
length, as shown in Fig. 3.2(b).

The schemes (a) and (b) can be used to discretize and segment road networks. We choose
method (a), because it can readily and meaningfully obfuscate a vehicle’s location to some-
where on a different yet connected road. This obfuscated location preserves location privacy,
while remaining relevant for typical location-based services. The resolution (or granularity)
of the segmentation is on a road basis. It is adequate, and consistent with the requirements
of the location privacy and the location accuracy for typical location-based services. While
method (b) can also work under the proposed PLPP scheme, the method would excessively
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(a) (b)

Figure 3.2: Roads are divided into intervals by (a) the same number of intervals; (b) the
identical length of intervals.

segment a typical urban road network. The granularity of the method could be excessively
fine, as compared to our goal of obfuscating a vehicle’s location to a different yet connected
road. Furthermore, it could be tedious and computationally expensive to divide an urban road
network into segments with equal length. This is due to the fact that the lengths of different
roads can vary dramatically in a road network. The largest common factor of the road distances
can be very short, resulting in an excessively large number of segments. It is worth pointing
out that the method described in (b) can offer practical values on highways with long distances
between entrances/exits. By adopting the method, the proposed PLPP scheme can be applied
to highways and obfuscate vehicles into different segments of a long highway.

The PLPP scheme discretizes every edge into intervals and obfuscates intervals rather than
single locations to reduce computational consumption. We evenly divide each edge into α
intervals (α is a certain number). The interval index can start from either side of the edge
because interval ui is obfuscated in the same way as uα−i.

Vehicles perturb actual locations by locally running the connection-interval obfuscation algo-
rithm in the PLPP scheme, including a connection perturbation and an interval perturbation.
The connection perturbation determines the privacy-preserving level of the PLPP scheme, while
the interval perturbation obfuscates connections to intervals to improve data utility and enlarge
AE. The pseudocode of the connection-interval obfuscation algorithm is shown in Algorithm 1.
An example is illustrated in Fig. 3.1.

In Algorithm 1, steps 4 to 11 are the connection perturbation. An actual location p0 in the
interval ui is first mapped to the nearest adjacent connection of ui, denoted by v0. Then, v0
is perturbed to another connection v′0 within the obfuscation region R

2 (centered at v0 with
radius r) based on the connection perturbation probability, i.e., Pr[v′0|v0], as given by

Pr[v′0|v0] =
1∑

v inR2

e−
ε
2
dG(v0,v)

e−
ε
2
dG(v0,v′0), (3.6)

where v is a connection in the obfuscation region R
2.

The interval perturbation is given by steps 12 to 22 in Algorithm 1. Firstly, the PLPP scheme
selects the connection v1 that is adjacent to v′0 and along the shortest route between p0 and v′0.
Then, the scheme selects an interval uj on road (v′0, v1) according to the interval perturbation
probabilities, i.e., Pr[uj|ui], as given by

Pr[uj|ui] =
1

α∑
k=1

e−
|i−k|
2α

ε

e−
|i−j|
2α

ε, (3.7)
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Algorithm 1 Connection-Interval Obfuscation Algorithm.

Input:
The road network, G;
The segment privacy budget, ε;
An actual location, p0;
The number of intervals, α;
The obfuscation radius of each connection, r.

Output:
The obfuscated location, p′0.

� Setup
1: ui ← (G, p0) � p0 is in ui

2: v0 ← (G, ui) � v0 is ui’s nearest adjacent connection
3: R2 ← (G, v0, r) � identify the obfuscation region R

2

� Connection perturbation
4: for vi in R

2 do
5: Calculate e−

ε
2
dG(v0,vi)

6: end for
7: Calculate

∑
v inR2 e−

ε
2
dG(v0,v)

8: for vi in R
2 do

9: Calculate Pr[vi|v0] � use (3.6)
10: end for
11: v′0 ← (R2, Pr[vi|v0]) � Select v′0 based on Pr[vi|v0]

� Interval perturbation
12: v1 ← (G, p0, v′0) � v1 is adjacent to v′0 and on (p0, v

′
0)

13: for uk in road (v1,v
′
0,) do

14: Calculate e−
|i−k|
2α

ε

15: end for
16: Calculate

∑α
k=1 e

− |i−k|
2α

ε

17: for uj in road (v1,v
′
0,) do

18: Calculate Pr[uj|ui] � use (3.7)
19: end for
20: u′

i ← ((v1, v
′
0), Pr[uj|ui]) � Select u′

i based on Pr[uj|ui]
21: p′0 ← (G, u′

i) � Randomly select a location in u′
i

22: return The obfuscated location p′0.

which indicates that intervals ui and uj are (ε, α)-Indistinguishable. Finally, the PLPP scheme
randomly selects a location p′0 in the interval uj as the obfuscated location. In the interval
perturbation, only the indexes to the intervals are used so that intervals on different roads with
the same index are perturbed following the same interval perturbation probability distribution.

The interval perturbation reduces the shift distance by dG(v′0, p
′
0) and increases data utility

compared to connection-only obfuscation schemes, e.g., the connection perturbation and the
scheme in [73]. The shift distance, i.e., dG(p0, p′0), of the PLPP scheme is evaluated by

dG(p0, p′0) = dG(p0, v′0)− dG(v′0, p
′
0). (3.8)

The interval perturbation increases the AE and improves the location privacy-preserving ef-
fect on top of connection-only obfuscation schemes because adversaries can hardly infer the
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perturbed connections with on-road obfuscated locations.

Theorem 1. The PLPP scheme satisfies the (ε,r)-RN-Indistinguishability that any two loca-
tions in an obfuscation region are (ε,r)-RN-Indistinguishable.

Proof. The connection perturbation in the PLPP scheme is formulated as (3.6). Let f(v0) =∑
v inR2 e−

ε
2
dG(v0,v). With the actual location p0, given another actual location p1 and its nearest

adjacent connection v1 in R
2, we have

Pr[v′|v0]
Pr[v′|v1] =

f(v1)

f(v0)
e

ε
2
(dG(v1,v′)−dG(v0,v′)), (3.9)

where v0 is the nearest adjacent connection of the actual location p0 and v′ is the obfuscated
connection.

We next prove the triangle inequality of the road network.

If v1 is on the shortest route between v0 and v2, we have

dG(v0, v2)− dG(v1, v2) = dG(v0, v1). (3.10)

If v1 is not on the shortest route between v0 and v2, by assuming that dG(v0, v2)− dG(v1, v2) >
dG(v0, v1), we have

dG(v0, v2) > dG(v0, v1) + dG(v1, v2),

which means that the route between v0 and v2 is longer than the route between v0 and v2
through v1. Then, the shortest rout between v0 and v2 should pass v1. Thus, the assumption
is false. If v1 is not on the shortest route between v0 and v2, the following inequality holds

dG(v0, v2)− dG(v1, v2) ≤ dG(v0, v1). (3.11)

Combining (3.10) and (3.11), the triangle inequality in road networks is proven.

In other words, for any three connections (v0, v1, v2) in a road network, dG(v0, v2)−dG(v1, v2) ≤
dG(v0, v1) holds.

Due to the triangle inequality in road networks dG(v0, v1) is no shorter than dG(v1, v′)−dG(v0, v′).
Then, we have

Pr[v′|v0]
Pr[v′|v1] ≤

f(v1)

f(v0)
e

ε
2
dG(v0,v1). (3.12)

By employing the triangle inequality, we have e−
ε
2
dG(v1,v) ≤ e−

ε
2
(dG(v0,v)−dG(v0,v1)). Therefore,∑

v inR2

(
e−

ε
2
dG(v1,v) − e−

ε
2
(dG(v0,v)−dG(v0,v1))

) ≤ 0, (3.13)

which can be rewritten as∑
v inR2

e−
ε
2
dG(v1,v) − e

ε
2
dG(v0,v1)

∑
v inR2

e−
ε
2
dG(v0,v) ≤ 0. (3.14)
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Based on the definition of f(v0), we have

f(v1)− e
ε
2
dG(v0,v1)f(v0) ≤ 0. (3.15)

Thus, the following inequality holds,

f(v1)

f(v0)
≤ e

ε
2
dG(v0,v1). (3.16)

Combining (3.12) and (3.16), we have

Pr[v′|v0]
Pr[v′|v1] ≤ e

ε
2
dG(v0,v1)e

ε
2
dG(v0,v1) = eεdG(v0,v1), (3.17)

which satisfies (3.5). As a result, the proposed connection perturbation achieves the RN-I.

The interval perturbation is independent of the connection perturbation. This is because the
interval perturbation obfuscates interval indexes rather than the outputs of the connection
perturbation. Next, we prove the interval perturbation achieves (ε, α)-indistinguishability.

Let ui denote an actual interval (the i-th of α intervals), and uj is another interval with the
same or different sequence number of ui. uk is the perturbed interval. ui, uj, and uk can locate

on the same road or on different roads. Let g(ui) =
∑α

k=1 e
− ε

2
|i−k|

α . Then,

Pr[uk|ui]

Pr[uk|uj]
=

g(uj)

g(ui)
e

ε
2(

|j−k|
α

− |i−k|
α ). (3.18)

As |a| − |b| ≤ |a− b| (a and b are two real numbers), we have |j − k| − |i− k| ≤ |i− j|. Thus,
Pr[uk|ui]

Pr[uk|uj]
≤ g(uj)

g(ui)
e

ε
2

|i−j|
α . (3.19)

As |i− k| − |i− j| ≤ |j − k| holds, we have e−
ε
2

|j−k|
α ≤ e−

ε
2
(
|i−k|

α
− |i−j|

α
). Therefore,

α∑
k=1

(
e−

ε
2

|j−k|
α − e−

ε
2
(
|i−k|

α
− |i−j|

α
)
)
≤ 0, (3.20)

which can be rewritten as

α∑
k=1

e−
ε
2

|j−k|
α − e

ε
2

|i−j|
α

α∑
k=1

e−
ε
2

|i−k|
α ≤ 0. (3.21)

Based on the definition of g(ui), we have

g(uj)− e
ε
2

|i−j|
α g(ui) ≤ 0. (3.22)

Thus, the following inequality holds,

g(uj)

g(ui)
≤ e

ε
2

|i−j|
α . (3.23)

Combining (3.19) and (3.23), we have

Pr[uk|ui]

Pr[uk|uj]
≤ e

ε
2

|i−j|
α e

ε
2

|i−j|
α = eε

|i−j|
α . (3.24)
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As a result, ui and uj are (ε, α)-Indistinguishable. With the obfuscated interval uk, the adver-
saries cannot distinguish the intervals or infer the obfuscated connection.

Utilizing the PLPP scheme, the actual location is mapped to its nearest adjacent connection
in the region R

2. Hence, when the connection perturbation satisfies the RN-I, locations in the
region R

2 are (ε, r)-Road Network-Indistinguishable.

When an adversary obtains an obfuscated location in an LBS request, the adversary first
estimates the perturbed connection. Then, the adversary infers the mapped connection with
the obfuscated connection. Finally, the adversary tries to estimate the location with the inferred
mapped connection and the obfuscated interval. The PLPP scheme can protect location privacy
under this adversarial model since the scheme satisfies the RN-I, as given by Theorem 1.

3.4.2 Personalization Algorithm

Personalized location privacy protection can be achieved by protecting a driver’s location data
at different levels based on the driver’s personal privacy requirements. For a driver, a relatively
small number of locations are critical and sensitive, and need to be stringently protected.
The other less sensitive locations also need to be protected in order to reduce the statistical
difference between sensitive locations and less sensitive locations. On the other hand, if all
locations are perturbed to the same extent as the sensitive locations, the utility of perturbed
location data is compromised excessively. Thus, the privacy-preserving levels across locations
should be carefully designed to protect sensitive locations while improving the location data
utility of less sensitive locations.

The proposed PLPP scheme allows the drivers to specify sensitive locations and protects sensi-
tive locations with the lowest privacy budget (i.e., at the highest level). Higher privacy budgets
can be configured at less sensitive locations, so that the location data at these locations can pro-
vide better utility. To achieve this, we propose a personalization algorithm to tune the privacy
budget ε of connections. The algorithm controls the perturbation level of the dual-obfuscation
process. To be specific, a driver first inputs its sensitive locations to the proposed personaliza-
tion algorithm for configuring the privacy budgets across the road network. The most sensitive
locations have the highest weights and the lowest privacy budgets for the best possible privacy
protection. The personalization algorithm calculates the weights of all connections hop-by-hop,
starting from the sensitive locations. The algorithm exploits the idea of the nearest neighbor
interpolation and captures unique road network features, e.g., route distance and road network
topology. Finally, the proposed algorithm divides the road network into segments and calculates
the privacy budget for each segment based on the weights of connections in the segment. By
using this personalized privacy budget configuration, the proposed dual-obfuscation described
in Section 3.4.1 can protect location privacy near sensitive locations as expected by the drivers
and prevent exposing the sensitive locations.

The road network is treated as a weighted directed graph G. The road network is divided into
g segments, i.e., G = {G1, G2, · · · , Gg}. The number and the size of segments can be adjusted
based on drivers’ privacy requirements. The proposed personalization algorithm first calculates
the weights of all connections according to the most sensitive locations specified by a driver.
The weight of a segment takes the maximum connection weight in the segment, and the privacy
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budget of the segment is the ratio of the initial privacy budget to the weight of the segment.
The PLPP scheme uses the privacy budget of a segment as the private budgets of the locations
in the segment when obfuscating the locations.

The weights of the connections are calculated hop-by-hop, starting from the sensitive locations.
Let Vm = {vm1 , vm2 , · · · } denote the set of m-hop connections, where drivers can reach the i-th
m-hop connection vmi via at least (m − 1) connections starting from a sensitive location. An
example of V1 and V2 is given in Figs. 3.3(a) and 3.3(b). The weight of vmi is denoted by Wvmi

.

As shown in Algorithm 2, the calculation of connection weights consists of the following steps.

• Initialization (Steps 1-4): The weights of sensitive locations and connections adjacent
to the sensitive locations are set to 1. The weights of other connections are set to 0. The
weight of 1 implies that the privacy budgets of sensitive locations are set to be initial
privacy budget ε0.

• Weight Calculation (Steps 5-16): The connection weights are calculated hop-by-hop,
e.g., calculating the weights of the connections in V3 after finishing the calculation on V2.
The weight calculation starts from V2 and ends when weights of all connections have been
calculated or all the connection weights in Vm are less than δ.

We employ the nearest neighbor interpolation1 to calculate privacy budgets in the road
network. To be specific, we design a new function, as given in (3.25), to quantify the
weights that a connection can copy from its one-hop neighbors. The weight of connection
vmi , m ≥ 2 depends on multiple (m − 1)-hop connections that are adjacent to vmi . We
first calculate all possible weights from the adjacent (m − 1)-hop connections of vmi and
then take the maximum one as Wvmi

. The possible weight of vmi calculated from vm−1
a ,

which is an (m− 1)-hop connection and adjacent to vmi , i.e., W
a
vmi
, is given by

W a
vmi

=

Dmax−Dvm
i
+2

dG(vm−1
a ,vmi )

×Wvm−1
a∑

vmj ∈Am
a ,j �=i

1
dG(vm−1

a ,vmj )
+

Dmax−Dvm
i
+2

dG(vm−1
a ,vmi )

, (3.25)

where Dvmi
is the degree of connection vmi (the sum of in-degree and out-degree); Dmax is

the maximum degree of connections in the segment; Am
a is a set ofm-hop connections that

are adjacent to connection vm−1
a . As road networks can be treated as strong-connected

directed graphs, the degrees of the connections are at least two. Wvmi
can take the

maximum one across different W a
vmi
, i.e., Wvmi

= max(W a
vmi
).

• Finalization (Steps 17-21): The weights of connections which are less than δ are set
to δ. The weight of a segment, i.e., WGi

, takes the maximum weight of connections in the
segment, and the privacy budget of the segment is calculated based on its weight, i.e.,
εGi

= ε0
WGi

.

There are two key parameters in (3.25), i.e., the degree of the connection Dvmi
and the shortest

route distance to the last hop connections, dG(vm−1
a , vmi ). Firstly, low-degree connections imply

travel directions clearer than high-degree connections because low-degree connections offer fewer
choices than high-degree connections. Thus, low-degree connections should be protected better

1The general nearest neighbor interpolation in image processing infers the pixel of a point by copying the
pixels of its nearest neighbors.
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Algorithm 2 Personalization Algorithm.

Input:
The road network, G;
The weight threshold, δ;
The set of sensitive locations, SL = {sl1, sl2, · · · , sln};
The initial privacy budget, ε0.

Output:
Privacy budget for each segment.

� Initialization
1: Vm,m = 1, 2, · · · ,M . � Initialize connection sets
2: WSL ← 1 � Set the weights of sensitive locations
3: Wv ← 1, for all v ∈ V1

4: Wv ← 0, for all v ∈ Vi, i > 1
� Weight calculation

5: m = 2
6: while m ≤ M do
7: for v ∈ Vm do
8: Calculate Wv � With (3.25)
9: end for

10: if ∀v ∈ Vm has Wv < δ then
11: break
12: else
13: m++
14: end if
15: end while
16: Wv ← δ, if Wv < δ

� Finalization
17: for Segment Gi in road networks do
18: WGi

← max
v in Gi

{Wv}.
19: Calculate εGi

= ε0
WGi

� The segment privacy budget

20: end for
21: return The privacy budget for each segment εGi

than high-degree connections. Secondly, connections near sensitive locations are expected to
be protected better than connections that are far away from sensitive locations.

The proposed personalization algorithm customizes privacy budgets for the connection-interval
obfuscation according to drivers’ sensitive locations and the features of road networks. In
contrast, existing works (e.g., [73]) use a uniform private budget across a road network. The
personalization algorithm in the PLPP scheme runs once when drivers configure sensitive lo-
cations and thus does not slow down the connection-interval obfuscation.

Given a road network and sensitive locations, the connection-interval obfuscation can use the
private budget ε, the obfuscation radius r, and the number of intervals per road α, to perturb
locations. The private budget ε is calculated using the proposed personalization algorithm with
the initial obfuscation privacy budget ε0 and the connection weight threshold δ. A driver can
use a small ε0 and/or a large r for large AEs and long shift distances. The driver can also
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(a) The one-hop connection set V1. (b) The two-hop connection set V2.

Figure 3.3: An example of V1 and V2, where sl1 is a sensitive location.

configure a large α for fine interval perturbation.

3.5 Experimental Results

In this chapter, we evaluate the PLPP scheme with two real-world trajectory datasets, i.e.,
GeoLife GPS Trajectories (182 drivers with 17,621 trajectories in Beijing, China) [341] and
T-Drive trajectory (10,357 divers in Beijing, China) [342].

3.5.1 Location Privacy Protection

We first compare the AEs of the PLPP scheme and a connection-only scheme, i.e., [73]. We
select the vehicle trajectories from the two datasets within the same region2. We build a simu-
lation road network with clear connections in the region and then vertically project trajectories
onto the nearest roads if they are not on the simulation road network. The road network is
evenly divided into ten segments. The privacy budgets of the segments are calculated using
Algorithm 2 with ten random sensitive locations on trajectories and the initial privacy budget ε.

The experimental results reveal that the PLPP scheme protects location privacy better than
the connection-only scheme [73], as shown in Fig. 3.4. The boxplots indicate that the AEs of
the PLPP scheme evenly distribute across longer ranges than the AEs of the connection-only
scheme. The interquartile ranges in Fig. 3.4(a) are almost twice as large as those in Fig. 3.4(b)
because adversaries cannot infer the obfuscated connections after the interval perturbation in
the PLPP scheme. The medians of the AEs of the PLPP scheme are longer than those of the
scheme in [73] across all ε. The median is about double under the PLPP scheme (1 km) than it
is under the connection-only scheme (0.5 km) when ε = 10. The medians in the two subfigures
decrease with the increase of ε, indicating that the drivers can set small ε for high location
privacy protection.

The indistinguishability of the PLPP scheme, i.e., Pr[v′|v0]
Pr[v′|v1] ≤ eεdG(v0,v1) in (3.17), is validated in

Fig. 3.5. In this experiment, the obfuscation radius is 400 m. We select two actual locations v0
and v1 when dG(v0, v1) = 1 km and run the PLPP scheme for the obfuscated locations v′. As
shown in Fig. 3.5, the left-hand side of (3.17) is bounded, validating the indistinguishability of
the PLPP scheme. An adversary can hardly distinguish actual locations that have the similar

2The longitude and latitude of the region are in ranges of [116.3564, 116.3740], and [39.907, 39.9241], respec-
tively.
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(a) AE of the PLPP scheme (b) AE of the scheme in [73]

Figure 3.4: The comparison of the AE of the proposed PLPP scheme and the scheme in [73].

Figure 3.5: The indistinguishability of the PLPP scheme. The obfuscation radius is 400 m.

route distance from the obfuscated location, i.e., Pr[v′|v0]
Pr[v′|v1] = 1, with dG(v0, v′)−dG(v1, v′) = 0. We

also see that the left-hand side of (3.17) is approximately linear under a small ε, e.g., ε = 0.2.
The reason is that when x is much smaller than one, ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
≈ 1 + x.

The influence of the obfuscation radius on the shift distance and AE is shown in Fig. 3.6. The
obfuscation radius ranges from 300 m to 700 m. The other parameters are the same as those in
Fig. 3.5. All the connections are in the same segment. The initial privacy budgets are 0.001 and
1 to simulate a strict privacy-preserving case and a mild privacy-preserving case, respectively.
The shift distance and AE grow with the obfuscation radius approximately linearly. As a result,
drivers need to trade data utility for location privacy, but the AEs are much larger (almost
double) than the shift distances. The growth is approximately linear because the route distance
between actual locations and obfuscated location candidates linearly increases with the rising
obfuscation radius in even road networks. The shift distance and AE increase slower under
ε = 1 than those under ε = 0.001. This is because the obfuscated locations under big ε are
closer to the actual locations than the obfuscated locations under smaller ε.

We proceed to compare the PLPP scheme with a popular 2D location obfuscation scheme, i.e.,
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Figure 3.6: The influence of the obfuscation radius.

(a) Comparison of AE

(b) Comparison of shift distance

Figure 3.7: A comparison of the PLPP scheme and 2D Laplace scheme [9].

the planar Laplace scheme [77], [89]. The planar Laplace scheme treats a road network as a 2D
plane and employs the Euclidean distance metrics. Fig. 3.7 compares the average AE and shift
distance of the PLPP scheme and the planar Laplace scheme with GeoLife GPS Trajectories.
For comparison purposes, all the segments use the same privacy budget ε in the PLPP scheme.
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As shown in Fig. 3.7, the PLPP scheme can achieve a longer average AE and shorter average
shift distance than the scheme in [77], especially in the case of high privacy budgets. The gap
between the two schemes grows with the increasing privacy budget. The PLPP scheme can
achieve a shorter average shift distance when ε is higher. The average shift distance measured
by the route distance can be longer than the obfuscation radius because the route distance is
no shorter than the Euclidean distance. The PLPP scheme has a similar average shift distance
to the 2D Laplace scheme under ε = 0.001. The reason is that locations are obfuscated with
similar probabilities in the two schemes when the privacy budget is 0.001. When the privacy
budget is 10, the average shift distance and the average AE with a 300 m radius are similar to
those with a 600 m radius. This is because the obfuscated locations are close to actual locations
in the case of low privacy requirements (high ε). The difference between shift distances under
the two radiuses also decreases with the increasing privacy budget, as shown in Fig. 3.7(b).
This is because both schemes are likely to select close locations as the obfuscation results under
high privacy budgets. The shift distance of the PLPP scheme is shorter than the 2D planar
Laplace scheme in road networks.

3.5.2 Personalization Algorithm

We evaluate the privacy budget of a connection depending on its degree and route distance to
a sensitive location in the personalization (Algorithm 2) of the PLPP scheme. We consider a 1-
hop connection v11 and a 2-hop connection v21. The connection v11 has other adjacent connections
v2i (i ≥ 2). Dmax = 8, and initial privacy budget ε0 = 0.1. The route distance dG(v11, v

2
1) is from

50 m to 1, 000 m. It is shown in Fig. 3.8 that the privacy budget of connection v21 increases, as
dG(v11, v

2
1) and Dv21

increase. The ε of a connection in the PLPP scheme is lower, as compared
to the scheme that does not consider the degree of connections (i.e., setting (2 +Dmax −Dvmi

)
in (3.25) to 1).

Figure 3.8: The impact of the degree of a single connection and route distance to a sensitive
location in the personalization algorithm.

We then evaluate the privacy budget of multiple connections on a continuous road affected
by the number of connections, the route distance to the first connection v11, and the degree of
connections. We consider a 1000 m road starting from a 1-hop connection on which five or
eleven connections are evenly spaced, and evaluate the privacy budget of each connection. The
m-th connection on the road is the first m-hop connection vm1 (1 ≤ m ≤ 5 or 1 ≤ m ≤ 10).
Other parameters are as follows, Dmax = 10,

∑
i≥2

1

dG(v
j
1,v

j+1
i )

= 1
100

(1 ≤ j ≤ m − 1), and
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ε0 = 0.1. It is shown in Fig. 3.9 that, with the same route distance, the privacy budget of
a connection increases when the number of connections on the road grows. The degree of a
connection influences the privacy budget allocation. If a connection has a high degree, its
privacy budget increases faster than its low-degree counterparts. Some schemes set a global
privacy budget [343] or only consider the distance between two connections [344]. Compared to
our personalization algorithm, the privacy budgets of the schemes developed in [344] and [343]
increase faster, as shown in Fig. 3.9. Compared with the schemes (e.g., [343], [344]) which
do not capture the connection degree, the proposed personalization algorithm ensures that a
connection can inherit more privacy protection from the sensitive location.

Figure 3.9: The privacy budget of connections on a road impacted by the number of connections,
the route distance to the first connection v11, and the degree of each connection.

A comparison study is carried out between the proposed personalization algorithm and the per-
sonalization algorithm developed in [89]. The scheme in [89] sets the privacy budgets according
to the distance between the current location and the last inferred location. We randomly select
20 trajectories in the simulated road network, where each trajectory consists of 10 to 20 actual
locations. The privacy budgets calculated with the two personalization algorithms are com-
bined with the proposed connection-interval perturbation scheme. The obfuscation radiuses
of 400 m and 600 m are used. As shown in Fig. 3.10, the proposed personalization algorithm
achieves shorter shift distances (i.e., better data utility) than the existing algorithm developed
in [89], especially for small ε0. For example, the obfuscation with the proposed personalization
algorithm provides the shift distance of 700 m when ε0 = 0.1 and r = 400 m. In contrast,
the obfuscation with the algorithm developed in [89] achieves a shift distance of over 1,100 m.
The shift distance of the PLPP scheme decreases faster than that of the existing algorithm,
indicating that the proposed personalization algorithm can improve data utility. The shift
distances of the two algorithms are similar, when the privacy budget is high, e.g., ε0 = 10.
This is because the two schemes tend to select connections close to the actual locations to be
obfuscated connections, when data utility is preferred over privacy.
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Figure 3.10: A comparison of the personalization algorithms in the PLPP scheme and in [89].

3.5.3 Influence of the Road Network

Table 3.3: Comparison of running time (ms).

Road density
(connect-
ions/km2)

The PLPP
scheme

The interval
perturbation in the

PLPP scheme

The
personalization
algorithm in [89]

The scheme
in [73]

100 0.1954 0.0060 0.2275 0.2772
150 0.3091 0.0059 0.3670 0.5426
200 0.4029 0.0059 0.4947 0.7201
250 0.4907 0.0060 0.6083 0.8059

We generate virtual road networks with different node densities to show the impact of road
networks on the PLPP scheme. The node (connection) densities are set to 80/km2, 40/km2,
and 20/km2. The trajectories are from the T-Drive dataset. We select 100 trajectories randomly
and map the trajectories in the generated road networks.

An adversary has smaller AE in the high node density regions because locations estimated by
the adversary are closer to the actual locations. With 80/km2 node density, the average AE
of the PLPP scheme is the shortest among the three given node densities. In Fig. 3.11(a), we
see that the AE in the network with the node density of 40/km2, when ε = 0.001 is slightly
higher than the AE in the network with the node density of 20/km2. The reason is that the
obfuscated region covers a limited number of obfuscation candidates when the node density is
low. The limited connections may not provide the expected privacy-preserving capability.

The PLPP scheme can provide better data utility in high-density road networks than it does
in low-density road networks, as shown in Fig. 3.11(b). The route distances between obfusca-
tion candidates and actual locations in high-density networks are shorter than in low-density
networks. Thus, the expected average shift distances in the high-density regions are shorter
than those in the low-density regions. According to Figs. 3.11(a) and 3.11(b), the curves with
different node densities show similar trends, as ε increases.

The impact of the interval number α on the interval selection probability is evaluated in Fig. 11.
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(a) AE (b) Shift distance

Figure 3.11: The impact of the node density on AE and shift distance.

The number of intervals per road, i.e., α, can be configured using machine learning techniques,
e.g., [345] and [346], and evolutionary computing algorithms, e.g., [347]. In this chapter, we
configure α based on Taguchi’s method [345], which reduces experimental tests by separating
orthogonal parameters. In the PLPP scheme, only α and ε are used in the interval perturbation
and orthogonal to other parameters, e.g., r. In Fig. 11, α ∈ {15, 20} and ε = 1. The length
of the road is 90 m, where the driver is 13 m away from the connection and its actual interval
index is 3 for both α = 15 and 20. The obfuscation probability is horizontally symmetric since
the interval ui is obfuscated in the same way as uα−i; see (7).

Figure 3.12: The impact of the interval number α on interval selection, where α is set to 15
and 20. The privacy budget ε is set to 1.

3.5.4 Running Time

The PLPP is designed to minimize the latency due to obfuscation by enabling privacy budgets,
the connection perturbation distribution, and the interval perturbation distribution to be pre-
calculated. Before any LBS requests, the PLPP scheme can calculate privacy budgets for all
connections and then build constant connection perturbation and interval perturbation tables.
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Each entry of the tables gives the perturbation probability of a pair of connections (3.6) or in-
tervals (3.7). The sizes of the connection perturbation and interval perturbation tables is O(n2)
and O(α2), respectively, where n is the number of connections in the road network. During the
LBS requests, the connection-interval obfuscation can look up the tables to probabilistically
select the obfuscated connections and locations.

We compare the running time of the proposed PLPP scheme with the personalization algorithm
in [89] and the non-personalized obfuscation algorithm in [73], as shown in Table III. The
personalization algorithm developed in [89] sets privacy budgets based on the distance between
the current and the last inferred locations. The obfuscation algorithm presented in [73] employs
a 2D single-obfuscation and maps the obfuscated locations to the nearest connections in the
road network. To show the running time of each module, we combine our dual-obfuscation with
the personalization algorithm in [89] and our personalization algorithm with the 2D single-
obfuscation [73]. The other parameters are as follows: 500 actual locations are randomly
selected, the obfuscation radius r is 500 m, and the initial privacy budget ε0 is 1.

As shown in Table III, the proposed PLPP scheme is faster than the dual-obfuscation with the
personalization algorithm in [89] in all cases with up to 19% improvement (i.e., 0.4907 ms versus
0.6083 ms). The proposed personalization algorithm only runs once to calculate the privacy
budgets for all connections when drivers configure their sensitive locations before obfuscation.
In contrast, the personalization algorithm in [89] needs to be executed for each obfuscation.
The PLPP scheme is also faster than the 2D single-obfuscation [73]. This is because the 2D
single-obfuscation [73] needs to map the obfuscated locations onto the road network, which
is time-consuming. Table III also shows that the running time of the interval perturbation
is only about 0.006 ms. Compared to that of the whole PLPP scheme, the overhead of the
interval perturbation is negligible. Moreover, the running time of the interval perturbation does
not grow with the connection density. The reason is that the small constant α (i.e., 5 in the
experiment) and the same interval perturbation distribution are applied to all roads.

3.6 Conclusion

In this chapter, we propose the RN-I to evaluate obfuscation-based location privacy-preserving
schemes in road networks. We propose the PLPP scheme to protect the location privacy
of vehicles. The PLPP scheme employs a dual location obfuscation consisting of a connection
perturbation and an interval perturbation. A location is first mapped to a remote connection in
the connection perturbation and then pseudo-randomized around the connection in the interval
perturbation. A personalization algorithm is developed to customize the privacy budgets of
connections based on the sensitive locations specified by drivers. The proposed PLPP scheme
is proven to achieve RN-I and validated with comprehensive experiments using two real-world
trajectory datasets.

In the proposed scheme, a single vehicle is considered regarding its location privacy. The route
distance between any two mutually reachable locations is utilized to evaluate the indistinguisha-
bility of the locations for the vehicle. In our future work, we will generalize the proposed scheme
to capture other important road network features, such as velocity, acceleration, heading, and
surrounding traffic condition. We will also consider potential collaboration among multiple
nearby vehicles to preserve their location privacy cooperatively.
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Chapter 4

Enhanced Privacy Protection

In this chapter, we first propose a Convolutional Neural Network (CNN) based detection mech-
anism to detect illegal trajectories without requiring the drivers’ actual location. The proposed
scheme has high accuracy in detecting illegal trajectories even if the drivers protect actual lo-
cation data with various noise sizes. By using the RN-Indistinguishability, we then design the
Cloaking Region Obfuscation (CRO) mechanism that employs the route distances to quantify
the indistinguishability of locations on roads. We prove that the CRO mechanism satisfies
the RN-Indistinguishability. The CRO mechanism can be extended with general road network
features without breaching differential privacy.

The rest of this chapter is organized as follows.

• Chapter 4.1 and Chapter 4.2 study the background of vehicular trajectory protection and
detection and the existing works of vehicle trajectory obfuscation and detection, respec-
tively. Chapter 4.3 describes the proposed trajectory detection mechanisms. Chapter 4.4
evaluates the proposed trajectory detection mechanisms with real-world road network
datasets. Chapter 4.5 concludes the proposed vehicular trajectory protection and detec-
tion mechanism.

• Chapter 4.6 provides the background of location and identity privacy protection in vehic-
ular networks. Chapter 4.7 studies the existing works of location and identity protection.
Chapter 4.8 illustrates the system and adversary model. Chapter 4.9 shows the proposed
CRO mechanism, which is evaluated in Chapter 4.10. Chapter 4.11 gives a conclusion of
the proposed CRO mechanism.

4.1 Introduction of Vehicle Trajectory Obfuscation and

Detection

Location-based services (LBS) have been extensively and deeply developed as an important
part of smart cities to provide various services, e.g., traffic analysing and urban planning [348],
[349]. Smart cities inevitably require spatio-temporal location data of vehicles, which is highly
correlated with a driver’s private information (e.g., home address, company address, and re-
ligion) [350]. LBS providers rely on location data from drivers to offer various services [351].
However, adversaries can infer drivers’ personal information by analyzing location data [352].
It is of necessity to protect location data in Internet-of-vehicles (IoV) for drivers’ privacy while
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ensuring high quality of service (QoS).

Obfuscation schemes [211] and adaptive location privacy-preserving schemes [89] have been
developed to protect location privacy. Obfuscation schemes add noise to obfuscate drivers’
actual location data, which reduces the data utility of the location data. The obfuscated
location data are indistinguishable from each other, which leads to the fact that LBS providers
would collect illegal location data. The location privacy-preserving schemes aim to balance the
QoS of LBS and privacy-preserving capability by analyzing the drivers’ requirements.

Malicious drivers breach legal drivers’ profit. For example, malicious drivers can occupy more
benefits than they deserve by deliberately modifying their trajectory data in Taxi service [84],
[85]. Malicious drivers also use location privacy-preserving schemes to protect their location
data. By analyzing location data which concludes illegal location data, smart city applications
cannot provide an acceptable QoS of LBS. Therefore, LBS should detect the illegal location
data to ensure high QoS. If the malicious drivers employ location privacy-preserving schemes
(e.g., obfuscation schemes) as the legal drivers, detecting illegal data becomes difficult.

We study the illegal location data detection and propose a personalized obfuscation scheme
and an illegal trajectory detection mechanism. Our work has two-fold contributions as follows:

• We employ the differential privacy in the proposed personalized obfuscation scheme to
protect drivers’ location privacy adaptively and to provide high QoS of LBS in road
networks.

• We propose a CNN-based detection mechanism to detect illegal trajectories without re-
quiring the drivers’ actual location. The proposed scheme has high accuracy in detecting
illegal trajectories even if the drivers protect actual location data with various noise sizes.

We conduct experiments with the real-world road network dataset extracted from Open Street
Map (OSM)1 to evaluate the proposed scheme.

The illegal trajectories are generated with fake speeds and paths with the real-world road
network dataset. We also evaluate the proposed scheme in the case that the drivers adaptively
protect their location data, i.e., using different privacy levels. The experimental results show
that the proposed detection scheme achieves at least 94% Area Under the Curve (AUC) score
when detects the illegal obfuscated trajectory.

4.2 Related Works of Vehicle Trajectory Obfuscation

and Detection

The existing smart city provides location-based services by mining trajectory data that are
transmitted in vehicular networks [353]. Wang et al. have studied the privacy challenges in
smart city and analyzed the privacy leakage in LBS [323]. The authors pointed out that the
smart city can provide high quality of services if trajectory privacy is well protected.

The previous studies of location obfuscation mechanisms perturb a driver’s actual location
and report an obfuscated version to LBS. Derived from the differential privacy [354], scheme
in [211] first developed the concept of geo-indistinguishability. The scheme follows the idea
of geo-indistinguishability and uses Laplace distribution to add controlled noise for protecting

1Open Street Map is an open source database of the world’s geographic map. https://www.openstreetmap.
org/
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location data locally. Yu et al. [355] improved the two-phase dynamic differential location pri-
vacy scheme by integrating the inference error expectation and geo-indistinguishability [356].
The improved framework effectively protects location privacy in a 2D map. The authors de-
veloped an adaptive location privacy-preserving mechanism in [89] to balance location privacy
and utility. The mechanism calculates the amount of noise before adding noise to actual lo-
cation data. The calculation is based on the correlation level between the driver’s current
location and the previous obfuscated locations. With the concept of differential privacy, Xiao
et al. [357] improved a location-cloaking system to protect drivers’ location data in a 2D map.
The obfuscation locations generated by the existing 2D obfuscation mechanisms might locate
at unreachable locations, e.g., in the river, which breaches the location privacy-preserving ca-
pability of the obfuscation mechanisms.

The existing illegal trajectory detection mechanisms are classified into the machine-learning-
based detection and the rule-based detection. The illegal trajectory data is detected by utilizing
GPS data in the rule-based detection mechanisms. Machine-learning-based detection mecha-
nisms classify trajectory data as legal and illegal by using techniques like deep neural networks.
In [358], Chen et al. improved an efficient real-time trajectory detection method with low
processing overhead. The method uses the window size to estimate the partial trajectory that
result in the anomalousness trajectory. The trajectory detection system with two-phase out-
liers upon trajectory data streams was improved in [359]. The two phases are the trajectory
simplification and the outlier detection.

In [360], authors developed a trajectory detection method based on a recurrent neural network
(RNN). The authors extracted drivers’ behaviors within a sliding window and uses the deep
representations that are fixed-length for the feature sequence. The authors grouped the rep-
resentations into clusters before detection. CNN is first introduced in [361], which is further
utilized in the fields such as the natural language processing and speech recognition. A CNN-
based trajectory prediction method was improved in [362]. The method simplifies the network
structure and utilizes the trajectory structure (spatio-temporal consistency). The experimental
results show that the CNN-based trajectory prediction method can detect illegal trajectories
with a high score of the AUC.

Our work obfuscates drivers’ trajectories in the road networks to avoid the generation of the
off-road obfuscated locations. Then, an illegal trajectory detection scheme based on CNN is
proposed in this chapter. The proposed scheme does not expose the drivers’ actual trajectories
and achieves high detection accuracy. The proposed scheme can detect illegal trajectories even
if the drivers use various privacy parameters to obfuscate the locations. To the best of our
knowledge, we are the first work that detects illegal locations in real road networks, which is
almost the actual usage scenario of a smart city.

4.3 Proposed Scheme of Vehicle Trajectory Obfuscation

and Detection

In this chapter, we start by proposing an adaptive obfuscation scheme to customized protect
location privacy in road networks. Then, we propose an illegal trajectory detection system
with CNN to identify the legal and illegal trajectory from the obfuscated trajectory. In our
model, Xm is the m-th trajectory consists of the location points sequence (xm1, xm2, . . . , xmn).
xmi = (lati, loni) is a tuple which stands for the coordinate (i.e., latitude lati and longitude
loni) of a location.
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4.3.1 System Model

The existing obfuscation studies [89], [363], [364] pay attention to protect the drivers’ location
data in a 2D map, which generate off-road locations (e.g., railroads and rivers). Adversaries
can exclude the off-road obfuscated locations from real trajectory data when they identify the
obfuscated locations that are off-road. The Euclidean distance between the obtained off-road
location and the nearby road can be utilized by the adversaries to estimate the actual location.
In this chapter, we controlled the obfuscated candidates to avoid the off-road data and guarantee
that all obfuscated locations are on-road.

4.3.2 Dynamic Obfuscation Scheme

Definition 6. Geo-indistinguishability [211]: Let P be a probabilistic function. Let X and
Z be a set of the actual location candidates and obfuscated locations candidates, respectively.
The K represents the mechanism that uses the probability P (Z) to map an element in X to an
element in Z. K is ε-geo-distinguishable, if and only if for all x, x′ has:

dP (K(x), K (x′)) ≤ εd (x, x′) (4.1)

The Xm = {xm1, . . . , xmn} is the raw path that indicates the actual trajectories, while Zm =
{zm1, . . . , zmn} indicates the obfuscated trajectories. We utilize 2D Laplace noise Dε(x)(z) =
ε2

2π
e−εd(x,z) as obfuscation distribution in this chapter. The reason is that the 2D Laplace noise

ensures that zmi is distributed around xmi. The probability of zmi with 2D Laplace noise
decreases with the increasing of d(xmi, zmi) (d(·, ·) is the Euclidean distance in this chapter).
Theε-geo-distinguishable privacy condition is also satisfied with the 2D Laplace noise.

4.3.3 Adaptive location privacy-preserving scheme

A new adaptive location privacy-preserving scheme is proposed in this chapter. The proposed
scheme sets ε correlated to the generated obfuscated locations. By utilizing the proposed
adaptive location privacy-preserving scheme, we boost the randomness of the noise generation,
which increases the difficulty of inferring the actual location of a driver.

We configure ε into the high, medium, and low privacy levels. We set the average distance of
the obfuscated location to r when there is a low level ε. A medium and a high level ε have
an average distance of 1.5r and 2.25r, respectively. The proposed scheme obfuscates every
single location point in each continuous trajectory. As the starting location and destination
are more sensitive to a driver, we set the highest privacy level for the two locations. For other
locations xi in the trajectory, the obfuscation parameters are related to the Euclidean distance
d(xi, zi−1). We set two different thresholds D1 and D2 to divide d(xi, zi−1) into three types,
where D1 
= D2. When the value of d(xi, zi−1) is bigger than the values of D1 and D2, the
correlation between xi and zi−1 is weak. In this case, a low-level noise is added in the actual
location data. When the value of d(xi, zi−1) is less than the values of D1 and D2, xi and zi−1 is
close in road networks (i.e., high correlation). Therefore, we add noise with a high privacy level
when obfuscating actual locations in this scenario. Otherwise, we set ε as a medium privacy
level in the proposed obfuscation scheme.

The proposed scheme reduces the correlation between xi and zi−1. Hence, the adversary cannot
infer ε by analyzing the prior knowledge and the obtained obfuscated locations within a specific
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time window. The adversary cannot predict the driver’s future locations because the value of
ε is changing, which increases the difficulty of attacks.

The selection of ε in the proposed scheme aims to balance location privacy and data utility.
A large amount of noise is required to achieve a high privacy level but leads to a low QoS
of LBS. The different ε can provide customized geographic location accuracy which suit for
various LBS requirements. For example, location-sensitive LBS (e.g., navigation) needs a high
accuracy location data so that the scheme ought to utilize a high ε to provide a high data
utility. For location-insensitive LBS, e.g., weather forecasts, the scheme can employ a low ε for
a high privacy level.

The amount of the added noise is controlled in the proposed scheme to balance data utility and
location privacy. we use z within a region based on x to set the upper-bound of the QoS loss
and that of the capability of location privacy, i.e., dmax(x, z). If the distance d(x, z) between
the actual location x and the obfuscated location z exceeds dmax(x, z), the proposed scheme
will obfuscate the driver’s actual location again.

The proposed scheme generates obfuscated locations zm1, . . . , zn and maps the obfuscated lo-
cations to the nearest road. Therefore, the proposed scheme obfuscates actual trajectories to
reachable on-road locations.

4.3.4 Illegal trajectories detection based on CNN

A two-dimensional convolutional neural network (2D-CNN) model is applied in the proposed
scheme to detect illegal trajectories. The proposed model is shown in Fig. 4.1.

One-dimensional CNN (1D-CNN) consists of the convolutional layer, the subsampling layer,
and the optional fully-connected layers. In convolutional neural networks, the convolutional
layer is the major part that analyzes the input data to extract classification features. The
Separate feature extractor contains multiple convolution kernels. The convolutional layer of
the CNN model can extract the Spatial-temporal correlation of the trajectory. After extracting
features in convolutional layer. pooling step starts. The weight parameter redundancy is solved
by the local connection and weight sharing. However, the over-fitting problems arise due to the
CNN model degrades in the generalization performance. With the extracted features from the
convolution layer and pooling, CNN model can reduce the data dimension while retaining the
value of the principal feature map.

......
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Conv
BN

ReLU

Conv
BN

ReLU
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repeat four 
times FC
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repeat two 
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output
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Figure 4.1: Our CNN model architecture.
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Our work improves the architecture of 1D-CNN with 2D-CNN model, which is widely utilized
in classification of images (e.g., ResNet [365], VGG [366], and GoogleNet [367]). The proposed
model is described as follows.

• In advance of the maximum pooling layer, two convolutional layers are employed in our
model. Thus, the proposed model can extract features effectively.

• We add a normalization (BN) layer after the two convolutional layers to retain the spatial-
temporal correlation of locations. The fully connected (FC) layers are combined with the
dropout layers and BN in the proposed model to avoid the FC layers leading to over-fitting
issue.

4.4 Evaluation of Vehicle Trajectory Obfuscation and

Detection

4.4.1 Original Dataset

We employ real-world road network information of Porto, which is extracted from Open-
StreetMap (OSM) to evaluate the proposed scheme. OSM is popular in LBS applications,
such as the route planning and the geocoding of address [368]. The extracted road network is
shown in Fig. 4.2. The Portugal taxi trajectory dataset2, whose recorded location data has 15
seconds time interval to build the trajectory, is used in our experiment.

4.4.2 Illegal trajectories

As far as we know, no public dataset are labeled with illegal and legal trajectories. Three
methods are popular to generate illegal trajectories according to legal trajectories.

1. Insertion trajectory from other sources of trajectory dataset as the illegal trajectories [369].

2. Division the trajectories data into legal and illegal dataset [370].

3. Combination the above two methods [363].

In this chapter, we generate illegal trajectories by utilizing legal trajectories. The generated
illegal trajectories are employed in our classification experiments. Hence, legal and illegal
trajectories in the training and detection come from the same dataset to reduce deviation.

4.4.3 Simulation results

We evaluate the detection capability of the proposed scheme with the generated trajectory data
and the public trajectory dataset of the Portugal taxi. In the experiment, we configure ε to
control the level of Laplace noise.

Experimental setting

We use the public real-world trajectory dataset and the synthetic data as follows.

2Portugal taxi trajectory dataset[Online]. Available: https://www.kaggle.com/c/pkdd-15-predict-taxi-
service-trajectory-i
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Figure 4.2: Generation of the road network. Upper: real road map in OSM; Bottom: the
generated road network.
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Real-world trajectory: We employ the public trajectory dataset of Portugal taxi which has
approximate 1.7 million trajectory data.

Synthetic data: We extract half of the trajectory data from the Portugal taxi dataset to
generate the illegal data. In this chapter, the illegal trajectories considered have two forms,
speed anomaly and path anomaly. The two forms represent malicious actions, i.e., speeding
and detour, respectively. The illegal trajectories are generated as follows:

• Speed anomaly: The maximum speeds of vehicles are limited in road networks. Mali-
cious drivers drive faster than the limitations to obtain more profit within a period. The
utilized trajectory dataset contains timestamp, we delete xi in the selected continuous
trajectory X with a certain probability and reassign the timestamp. The the trajectory
X has a higher speed than the speed limitation.

• Path anomaly: Malicious drivers can also select a longer route than the recommended
route, i.e., path anomaly. We utilize multiple legal trajectories (e.g., three trajectories
Xa, Xb, Xc) to generate path anomaly illegal trajectories. The starting location and des-
tination of Xa are denoted as xa1 and xan, respectively, at shown in Fig. 4.3. We employ
the trajectories Xb and Xc to intersect3 the trajectory Xa at location xai, xaj. We also
combine the trajectories Xb and Xc at location xbl. Then, we obtain an illegal trajectory
which is a path anomaly. The starting location and destination of the generated trajec-
tory are xa1 and xan, respectively, but the route distance between xa1 and xan is longer
than it should be. In this chapter, the length of the generated trajectories are set to be
at least 1.6 times as long as that of the legal trajectories.

1ax

anx

ajx

akx

blx aX
bX
cX

Figure 4.3: Example of an anomaly generated path.

3The intersection stands for the points of the two trajectories whose distance are within a certain range.
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The above types of illegal trajectories include the most categories of malicious activities in the
road networks. We use more than 600,000 legal and illegal trajectories to evaluate our proposed
detection scheme.

Implementation

The configurations of the proposed mechanism that implemented in our experiments are as
follows.

We use ε0 = 0 to stand for the non-protected situation. We configure the obfuscation radius as
the average Euclidean distance between xi and zi when using noise level εi. When ε0 = 0, the
average obfuscation radius is 0 m. We set ε1 and ε2 with obfuscation radii 100 m and 1000 m,
respectively.

Experimental results

We use Python to conduct the experiments. We take the average value of the experiment
results after running the experiment for five times.

Table 4.1: Experimental Accuracy

ε Average value of the noise radius Accuracy
ε0 0 m 93.1%
ε1 100 m 86.1%
ε2 1,000 m 72.5%

A large amount of noise decreases the accuracy rate of the CNN model, as shown in Table. 4.1.
We compare the receiver operating characteristics curve (ROC) with various setting of ε, as
shown in Fig. 4.4. When applying ε1 and ε2, the proposed scheme achieves a high-value accuracy
rate of 0.94 on the AUC score. Compared with that of ε1, the AUC score of ε2 has been reduced
by 0.14 to 0.80.

4.4.4 Contrast

We use the same trajectory dataset as the existing related work [363]. When detecting illegal
trajectories, the proposed scheme achieves higher accuracy rate than the scheme developed
in [363]. The proposed scheme considers a more complex environment, i.e., road networks,
than the 2D plane environment considered in [363] The proposed scheme utilizes a different
obfuscation process and recognition dataset, so we do not compare the accuracy of the two
schemes. Compared with the schemes in [363], the proposed scheme has advantages as follows.

• The scheme in [363] employs fixed parameters in obfuscation process, while the proposed
scheme dynamically calculate the parameters. The dynamically calculated parameters
provide higher privacy protection capability and high data utility than the scheme in [363].

• The scheme in [363] manually inject trajectories to generate illegal trajectories. The illegal
trajectories trajectories generated in this chapter are closer to the real world than that of
the scheme in [363]. The generated illegal trajectories in this chapter are indistinguishable
from the real trajectories which increases the difficulty to detect illegal trajectories. Under
the strict assumption, the proposed scheme still achieve a higher accuracy rater than the
existing work [363].
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(a) ε takes 0 m, i.e., ε equals to ε0

(b) ε takes 100 m, i.e., ε equals to ε1
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(c) ε takes 1,000 m, i.e., ε equals to ε2

Figure 4.4: ROC under three different parameters [371].

• We employ the real-world dataset and road networks to evaluate the proposed scheme.
Thus, the proposed scheme in this chapter has practical meaning.

4.5 Conclusions Vehicle Trajectory Obfuscation and De-

tection

In this chapter, we first propose a new scheme to adaptively protect location data in real-world
road networks, which is an important scenario of smart cities. Then, we proposed an illegal
trajectory detection scheme to detect illegal locations in the case that all drivers are protected
in road networks. The privacy parameters of the proposed scheme was calculated by considering
the correlation of the actual location and the obfuscated location. Thus, the adversary cannot
infer utilized privacy parameters and the actual locations. We generated illegal trajectory data
with speed anomaly and path anomaly to simulate the real-wold malicious driving. The 1D-
CNN model with 2D-CNN architecture is proposed in detecting illegal trajectories. According
to our experiment results, the proposed detection scheme achieve better performance (e.g., the
AUC score is above 0.94) than the existing works in road networks.

In the future work, we will balance the data utility and location privacy to maximize the data
availability while satisfying the requirements of drivers’ privacy. Moreover, we will assess the
privacy levels of driver’s privacy and develop a new system to protect location data privacy
with the capability to handle most drivers’ requirements.
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4.6 Introduction Cloaking Region Obfuscation for Road

Network-Indistinguishability and Location Privacy

Location-based services (LBS) provide vehicular applications access with the location data [222].
LBS servers are able to obtain drivers’ geographical locations, which puts drivers’ location
privacy at risk [372]. Adversaries can infer drivers’ information from the location data after
gaining unlawful access to the LBS servers [373]. Adversaries can also attack and eavesdrop on
the communications between the LBS servers and drivers to obtain drivers’ location data [8],
[374]. Unlike the general mobile LBS users, vehicles are easier to be tracked due to the fact
that the vehicles’ trajectories are considerably predictable in road networks [375].

Obfuscation-based mechanisms have been developed to protect the LBS users’ location privacy
against eavesdroppers and malicious LBS servers [72]–[74]. Users can perturb their real locations
locally by exploiting differential privacy mechanisms that add controllable noises to the location
data [376]. The magnitudes of the additive noises under an indistinguishability constraint are
determined based on the distance between an actual location and its obfuscated version [74].
Drivers can use the obfuscated location in their requests to an LBS server [69]. Although
the obfuscation mechanisms can penalize location accuracy, they can still be used in location-
insensitive LBS, such as location-based recommendations [76].

Vehicles in road networks have not been well considered in existing obfuscation-based mech-
anisms. General-purpose obfuscation-based mechanisms (e.g., two-dimensional (2D) Laplace
location privacy-preserving mechanisms) use the Euclidean distance to measure the distance
between an actual location and the corresponding obfuscated location [73], [74], [77]. However,
the mechanisms underestimate the distance in road networks due to the fact that the Euclidean
distance is less than, or equal to, the route distance between two locations [78]. Another lim-
itation of the existing obfuscation-based mechanisms is that the mechanisms may generate
off-road locations, e.g., locations in a river [79]. Extra effort (at a cost of high computational
complexity) is needed to avoid those off-road locations [80]. In existing location obfuscation
mechanisms [73], [74], [77], vehicles independently obfuscate their locations, which increases
the risk of location data leakage [330].

In this chapter, we define a new notion of Road Network-Indistinguishability (RN-Indistinguish-
ability), where the indistinguishability between locations is measured with road network fea-
tures (e.g., road network density, speed limits, and route distance). The difference between
the proposed RN-Indistinguishability and the existing Geo-I is shown in Fig. 4.5. Based on
the RN-Indistinguishability, we propose a new Cloaking Region Obfuscation (CRO) mechanism
that protects location privacy in road networks by considering road network features (e.g., route
distance). Vehicles are obfuscated to other regions, according to the indistinguishability be-
tween the obfuscated region and the actual cloaking region. The CRO allows multiple vehicles
to cooperate. Vehicles in the same cloaking region are uniformly obfuscated such that they are
indistinguishable from each other and can cooperate to improve privacy protection.

The contributions of this chapter are summarized as follows,

1) We develop differential privacy in road networks and propose the RN-Indistinguishability
that quantifies road network location privacy with unique road network features.

2) By using the RN-Indistinguishability, we design the CRO mechanism that employs the
route distances to quantify the indistinguishability of locations on roads. We prove that
the CRO mechanism satisfies the RN-Indistinguishability. The CRO mechanism can be
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Figure 4.5: The difference of the existing Geo-I mechanism and the proposed Cloaking Region
Obfuscation (CRO) mechanism.

extended with general road network features without breaching differential privacy.

We evaluate the CRO mechanism with real-world road networks in comparison with the state-
of-the-art 2D Laplace location privacy-preserving mechanisms [77], [89]. Experiment results
confirm the superiority of the CRO mechanism in terms of privacy-preserving level and data
utility.

4.7 Related Work of Cloaking Region Obfuscation for

Road Network-Indistinguishability and Location Pri-

vacy

Location privacy-preserving mechanisms can be classified into user-side mechanisms, server-side
mechanisms, and channel-side mechanisms [90]. Studies mainly use obfuscation, anonymity, and
cryptography to realize these three mechanisms [65]. Obfuscation mechanisms aim to reduce
the precision of location data by adding noise in the actual location data [377]. Obfuscation
mechanisms suit the LBSs that perform fine with coarse location data [372]. Anonymity mech-
anisms allow vehicles to use pseudonyms to hide vehicles’ real identities [372]. However, the
spatial-temporal correlation of the vehicles’ trajectories can be estimated by adversaries [378].
Cryptographic algorithms can be used to encrypt the actual location data. Alternatively, cer-
tified credentials can be allocated to drivers from trusted authorities [379]. The cryptographic
mechanisms have a limitation in time-sensitive LBSs due to the potentially high computational
complexity and untrusted entities [380].

Differential privacy (DP) technology is widely used in obfuscation mechanisms [333]. It protects
individuals’ private information indistinguishable when publishing aggregated data [240], [334].

Most of the existing obfuscation mechanisms protect location privacy on two-dimensional (2D)
maps. Andrés et al. developed Geo-Indistinguishability (Geo-I) based on differential pri-
vacy [74]. The authors employed Laplace mechanism [335] to realize Geo-Indistinguishability
on a 2D plane. The Geo-I reports obfuscated locations surrounding the actual location based
on the obfuscated probability distribution when a driver requests LBS. Hua et al. introduced
additional servers to assist Geo-I obfuscation process [77]. The authors divided the map into
several areas by introducing extra servers. A driver employs the actual location of the servers
to calculate the obfuscated locations. Rather than dividing maps, the mechanism in [69] splits
roads into same-length road sections. The authors employed the route distance between two
road sections to measure the indistinguishability of the Geo-Indistinguishability. Drivers who
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Table 4.2: Summary of notations and abbreviations

Notation Description

SD Shift Distance
AEE Adversary Estimation Error
CRO Cloaking Region Obfuscation
G The graph transformed from a road network
l The location of a cloaking region
dG(l, l′) The shortest route distance between l and l′

DG(l, l′) The indistinguishability between l and l′

ε Privacy budget
R

2 Obfuscation area
r The radius of obfuscation areas

locate in the same road section are obfuscated in the same rule. The Graph-Exponential Mecha-
nism (GEM) evaluates the privacy-preserving capability of the Geo-Indistinguishability in road
networks [73]. The GEM sets the connections (such as turns, intersections, furcates, and joins)
in a road network as the obfuscation candidates. The mechanism maps drivers’ actual locations
to connections and obfuscates connections based on the Geo-Indistinguishability.

The cloaking region, in which drivers’ private data are uniformly processed, is introduced
to spatially or temporally diminish the accuracy of the drivers’ actual location data in LBS
queries [222]. The existing cloaking-region mechanisms focus on anonymity and obfuscation
in a 2D map rather than in road networks. Luo et al. improved a distributed k-anonymity
(spatially) mechanism by using blockchain [17]. The authors improved the construction process
of anonymous cloaking region based on the historical information recorded on public available
blocks. Yang et al. designed a reputation calculation algorithm based on blockchain [381].
The authors used trusted nodes to create cloaking regions, in which the location data can be
protected. To curb the malicious behaviors, the authors improved a punishment factor in their
algorithm. Rather than blockchain, Li et al. protected location privacy with social intimate
fogs [382]. The authors transferred a large amount of LBS requests to social intimate fogs,
which improves efficiency but also increases communication delay (temporally). The authors
improved a fog-based LBS agent which can re-encrypt multiple location data before transmitting
to LBS. Cloaking region establishment is a reputation-computation question in the anonymity
area (e.g., [17] and [381]), which is not the key point of this chapter.

To the best of our knowledge, none of the Geo-I and existing cloaking-region mechanisms
obfuscate actual locations by considering the road network features, such as route distance and
road network topology.
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4.8 System Model of Cloaking Region Obfuscation for

Road Network-Indistinguishability and Location Pri-

vacy

4.8.1 Road Network Model

Drivers’ request various LBS when driving in road networks following traffic rules. Considering
the untrustworthiness of the LBS servers, the drivers do not want to share their precise location
data with the servers. The drivers can protect their location privacy by employing obfuscation
mechanisms and reporting obfuscated locations to the servers.

Road network

A road network is modeled as a directed and weighted graph G. The road network nodes are the
connections (e.g., turns, intersections, furcates, and joints) mapped to the same geo-locations in
the real world. The weight of each edge indicates the length of the corresponding road section
between two connections.

Figure 4.6: Adversary model.

Cloaking regions (CRs)

We evenly divide road networks into CRs of the same area size. A CR is empty if there is no
connection or road inside it. The empty CR is removed in our model.

Actual location l

In each CR, we select the closest on-road point to the center of the CR to represent the CR.
The location of the n-th CR, denoted by CRn, is represented by the location of the selected
point in CRn, denoted by, ln. The locations of vehicles in CRn use ln as their actual locations.

Obfuscation area R
2

The obfuscation area R
2 of l is a circular region with radius r and centered on l, in which the

locations of the vehicles can be obfuscated based on the obfuscation probability. A CRn is
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inside R
2 if its center location ln is in R

2. All CRs in R
2 are obfuscation candidates of the CR

with the location l.

Route distance

The route distance between a pair of CRs (CRi and CRj) is measured using the route distance
between li and lj, i.e., dG(li, li).

LBS request

The LBS requests are sent from vehicles to the LBS servers. In our model, an unprotected LBS
query q from a vehicle in a CR is as follows,

q = (l, I),

where l is the location of the CR within which the vehicle is. I is other contents of the query.

We assume that the LBS servers are not trusted and may disclose the drivers’ data to adver-
saries. We use differential privacy to protect drivers’ location privacy. When a driver’s location
needs to be protected, the driver can access to the LBS server by sending a private query q′

with an obfuscated location, as given by

q′ = (l′, I), (4.2)

where l′ is the location of the obfuscated cloaking region selected based on l.

We define shift distance (SD) to measure the data utility in the queries affected by the obfusca-
tion mechanism. Given a set of queries from CR with l, the average SD of the cloaking region
(SD(l)) is given by [383, eq. 3]

SD(l) =
1

K

K∑
k=1

dG(l, l′k), (4.3)

where K is the number of queries from the drivers in the CR. l′k is the location of the obfuscated
CR in the k-th query. The SD measures the data utility of obfuscated locations. A smaller SD
indicates a higher data utility and a potentially better LBS. The data utility decreases when
the drivers employ the obfuscation mechanisms to protect their location information.

4.8.2 Adversary Model

Both the external and internal passive attackers are considered in this chapter, as shown in
Fig. 4.6. External adversaries can eavesdrop on the LBS messages exchanged between the LBS
servers and the vehicles to obtain the vehicles’ locations. Internal adversaries can collude with
the LBS servers to obtain the vehicles’ queries. We assume that the adversaries are fully aware
of the drivers’ prior trajectories and the obfuscation mechanism [69].

We follow the adversary model in [207]. The actual location of a driver is unknown and any other
parties (e.g., adversaries and servers) cannot directly observe the driver’s actual location. The
drivers’ identities can be protected by the existing anonymity mechanisms, so that adversaries
cannot track drivers’ trajectories by analyzing identity information. Other information, such
as, obfuscation mechanisms and parameters, is known to all parties.
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Figure 4.7: An example of the proposed CRO algorithm.

Obfuscation Probability: Given the location l of the CR within which vehicle in, location
obfuscation mechanisms select an obfuscated CR with location l′ based on the obfuscation
probability Pr[l′|l].
The adversaries can infer the probability that the obfuscated location l′ is generated by the
location l in G is given by [207, eq. 1]

Pr[li|l′] = Pr[l′|li] Pr[li]∑
lj∈R2 Pr[l′|lj] Pr[lj] , (4.4)

where Pr[li] and Pr[lj] are the prior probability that the driver locates at the CRi (with location
li) and CRj (with location lj) according to the prior trajectories, respectively. The prior
probability is based on the driver’s historical trajectory. Pr[l′|lj] is the probability of the region
CR′ being selected as the obfuscated version of the actual region CR for a vehicle.

The adversaries select the CR, ĈR (with location l̂), as the actual cloaking region of the driver,
if l̂ has

Pr[l̂|l′] = max
lj∈G

Pr[lj|l′]. (4.5)

The shortest route distance between the two cloaking regions CR (with location l) and ĈR (with
location l̂) measures the Adversary Estimation Error (AEE), which evaluates the protection
effect of an obfuscation mechanism on location privacy. As illustrated in Fig. 4.7, the AEE is
dG(l, l̂) and the SD is dG(l, l′). Given a set of queries from CR with l, ˆCRk with l̂k is the k-th
derived CR, the average AEE of the CR (AEE(l)) is given by

AEE(l) =
1

K

K∑
k=1

dG(l, l̂k). (4.6)

4.9 Proposed Cloaking Region Obfuscation Mechanism

In this section, we define RN-Indistinguishability with general road network features (e.g., route
distances, speed limits, and road network densities) based on the definition of Geo-I [74]. The
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RN-Indistinguishability employs road network features to measure the indistinguishability of
locations in road networks. By using the route distance as the metric of RN-Indistinguishability,
we propose the Cloaking Region Obfuscation (CRO) mechanism to protect drivers’ location
privacy in road networks. The proposed CRO mechanism ensures that adversaries cannot
infer the drivers’ actual locations based on the obfuscated location data. We prove that the
CRO mechanism satisfies the RN-Indistinguishability and can be generalized with multiple road
network features.

4.9.1 Road Network-Indistinguishability

The Geo-I mechanism can protect the location privacy in 2D Euclidean spaces [74]. The
Geo-I mechanism makes the actual locations Geo-indistinguishable to any adversaries by us-
ing the differential privacy to perturb the drivers’ actual locations. In contrast, the RN-
Indistinguishability assesses on-road privacy-preserving mechanisms, and is defined as follows.

Definition 7 (RN-Indistinguishability). A mechanism satisfies (ε,R2)-RN-Indistinguishability
if and only if, with an obfuscated location l′, l′ in R

2), any location pair (li, lj) in R
2 have

Pr[li|l′]
Pr[lj|l′] ≤ eεDG(li,lj)Pr[li]

Pr[lj]
, (4.7)

where DG(li, lj) is the indistinguishability between li and lj in road networks. ε is the privacy
budget. Pr[li|l′] and Pr[lj|l′] are the probabilities that l′ is obfuscated based on li and lj, respec-
tively.

In this chapter, RN-Indistinguishability is employed to obfuscate cloaking regions. With the
cloaking region CRi and CRj, DG(li, lj) can be calculated by [384]⎧⎨

⎩DG(li, lj) =α1
dG(li, lj)
maxR2 dG

+ α2
vG(li, lj)
maxR2 vG

+ α3
denG(li, lj)
maxR2 denG

+ · · · ; (4.8)

α1 + α2 + α3 + · · · = 1, (4.9)

where the route distances dG(li, lj), the speed limit difference vG(li, lj), the road network density
difference denG(li, lj), and other road network features can be considered. α1, α2, and α3 are
weighting factors. maxR2 dG, maxR2 vG, and
maxR2 denG are the maximum values of route distance, speed limit differences, and road network
density differences in R

2, respectively.

By substituting (4.4) into (4.7), we can have

Pr[l′|li] Pr[li]∑
lk∈R2 Pr[l′|lk] Pr[lk]
Pr[l′|lj ] Pr[lj ]∑

lk∈R2 Pr[l′|lk] Pr[lk]
≤ eεDG(li,lj)Pr[li]

Pr[lj]
;

Pr[l′|li] Pr[li]
Pr[l′|lj] Pr[lj] ≤ eεDG(li,lj)Pr[li]

Pr[lj]
;

Pr[l′|li]
Pr[l′|lj] ≤ eεDG(li,lj);

Pr[l′|li] ≤ eεDG(li,lj) Pr[l′|lj],

(4.10)

where the two cloaking regions CRi (with location li) and CRj (with location lj) are RN-
indistinguishable to any adversaries. Pr[l′|li] and Pr[l′|lj] are the probabilities of the region
CR′ being selected as the obfuscation version of the actual region CRi and CRj, respectively
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4.9.2 Cloaking Region Obfuscation

In this subsection, we propose a CRO mechanism based on the RN-Indistinguishability. We set
α1 = 1 and the other weighting factors to be 0, which indicates that we only consider dG(li, lj)
as the metric of RN-Indistinguishability.

In the CRO mechanism, we obfuscate the location of the cloaking region, where the driver
actually locates, and use its location in the LBS query. All the drivers in the same cloaking
region are obfuscated following the same rule, and therefore are indistinguishable from each
other. The cloaking regions in road networks can also prevent the adversaries from identifying
and locating vehicles.

The proposed CRO mechanism consists of the following steps:

• Initialization: The road network is evenly divided into cloaking regions. Vehicles in the
cloaking region CR (with location l) specify the obfuscation area R2, centering l with
radius r. Cloaking region CRi (with location li) is in R

2 if li is inside R
2.

• Obfuscation: Given a vehicle in CR, the location of the vehicle is represented by l. The
vehicle probabilistically selects an obfuscated cloaking region CR′ (with location l′) in
R

2. The probability Pr[l′|l] is as given by

Pr[l′|l] = e
− ε

2

dG(l,l′)
max

R2
dG∑

li∈R2

e
− ε

2

dG(l,li)

max
R2

dG

, (4.11)

where li is the location of the i-th cloaking region in R
2. maxR2 dG is the longest route

distance between two cloaking regions in R
2. All vehicles in the same cloaking region

have the same obfuscation probability.

• Finalization: The vehicle reports a query with l′ and other information to the LBS
server.

In the proposed CRO algorithm, the locations of vehicles in the same cloaking are uniformly
obfuscated. Thus, the location privacy-preserving capability increases with the number of
vehicles.

4.9.3 Privacy Analysis

In this subsection, we prove that the CRO algorithm with the route distance metric satisfies
the RN-Indistinguishability and can protect location privacy under the adversary model in
Section 4.8.2.

Theorem 2. With route distance metric, the CRO mechanism satisfies the (ε, R2)-RN-Indisti-
nguishability that the locations of any two cloaking regions in an obfuscation area R

2 are (ε,
R

2)-RN-indistinguishable.

Proof. The cloaking region obfuscation in the CRO mechanism is formulated as (4.11). Let⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
f(l0) =

∑
l∈R2

e
− ε

2

dG(l0,l)

max
R2

dG ; (4.12)

f(l1) =
∑
l∈R2

e
− ε

2

dG(l1,l)

max
R2

dG . (4.13)
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Given any location pair (l0, l1) in R
2, we have

Pr[l′|l0]
Pr[l′|l1] =

f(l1)

f(l0)
e

ε
2

(
dG(l1,l

′)
max

R2
dG − dG(l0,l

′)
max

R2
dG

)
, (4.14)

where l′ is the location of the obfuscated cloaking region CR′.

Then, we prove that route distance satisfies the triangle inequality in road networks, i.e., for
any three cloaking regions with locations la, lb, and lc in a road network, dG(la, lc)− dG(lb, lc) ≤
dG(la, lb) holds as follows.

If lb is on the shortest route between la and lc, we have

dG(la, lc)− dG(lb, lc) = dG(la, lb). (4.15)

If lb is not on the shortest route between la and lc, by assuming that dG(la, lc) − dG(lb, lc) >
dG(la, lb), we have

dG(la, lc) > dG(la, lb) + dG(lb, lc),

which indicates that the route between la and lc is longer than the route between la and lc
via lb. Then, the shortest route between la and lc should pass lb. This contradicts with the
assumption of dG(la, lc)− dG(lb, lc) > dG(la, lb). If lb is not on the shortest route between l0 and
lc, the following inequality holds

dG(la, lc)− dG(lb, lc) ≤ dG(la, lb). (4.16)

Combining (4.15) and (4.16), the triangle inequality in road networks is proved.

With the triangle inequality in road networks, we have

dG(l0, l1) = dG(l1, l0) ≥ dG(l1, l′)− dG(l0, l′);

dG(l0, l1)
maxR2 dG

=
dG(l1, l0)
maxR2 dG

≥ dG(l1, l′)
maxR2 dG

− dG(l0, l′)
maxR2 dG

.
(4.17)

Then,
Pr[l′|l0]
Pr[l′|l1] ≤

f(l1)

f(l0)
e

ε
2

dG(l0,l1)

max
R2

dG . (4.18)

By employing the triangle inequality, we further have

e
− ε

2

dG(l1,l
′)

max
R2

dG ≤ e
− ε

2

(
dG(l0,l

′)−dG(l0,l1)

max
R2

dG

)
. (4.19)

Therefore, for all l in R
2, the following holds

∑
l∈R2

(
e
− ε

2

dG(l1,l)

max
R2

dG − e
− ε

2

(
dG(l0,l)−dG(l0,l1)

max
R2

dG

))
≤ 0, (4.20)

which can be rewritten as∑
l∈R2

e
− ε

2

dG(l1,l)

max
R2

dG − e
ε
2

dG(l0,l1)

max
R2

dG
∑
l∈R2

e
− ε

2

dG(l0,l)

max
R2

dG ≤ 0. (4.21)
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Based on the definition of f(l0), we have

f(l1)− e
ε
2

dG(l0,l1)

max
R2

dG f(l0) ≤ 0, (4.22)

which leads to
f(l1)

f(l0)
≤ e

ε
2

dG(l0,l1)

max
R2

dG . (4.23)

Combining (4.18) and (4.23), we have

Pr[l′|l0]
Pr[l′|l1] ≤ e

ε
2

dG(l0,l1)

max
R2

dG e
ε
2

dG(l0,l1)

max
R2

dG = e
ε
dG(l0,l1)

max
R2

dG , (4.24)

which satisfies (4.10). In other words, CR0 and CR1 in R
2 are (ε,R2)-RN-indistinguishable.

4.9.4 Generalization with Road Network Features

We have used the route distance as the only metric of the RN-Indistinguishability in the
proposed CRO mechanism. In this subsection, we prove the CRO mechanism satisfies RN-
Indistinguishability, when it is generalized with other road networks features (i.e., route dis-
tances, speed limits, and road network densities).

Theorem 3. The CRO mechanism satisfies the (ε,R2)-RN-Indistinguishability when the em-
ployed road network features satisfy the triangle inequality.

Proof. With multiple road network features, the CRO mechanism satisfies (ε,R2)-RN-Indisting-
uishability if

Pr[l′|l0]
Pr[l′|l1] ≤ eεDG(l0.l1). (4.25)

As shown in (4.14), the left-hand side of (4.25) can be rewritten as

Pr[l′|l0]
Pr[l′|l1] =

∑
lj∈R2

e
ε
2
DG(lj ,l′)

∑
li∈R2

e
ε
2
DG(li,l′)

e
ε
2
(DG(l0,l′)−DG(l1,l′)), (4.26)

where we consider multiple road network features (e.g., route distances dG(l, l′), speed limits
vG(l, l′), and road network density denG(l, l′)) in DG(l, l′), as shown in (4.8). Let

DG(l, l′) =
K∑
k=1

αkg
k
G(l, l

′), (4.27)

where K is the number of considered road network features, gkG(l, l
′) is the k-th road network

feature difference between l and l′, and αk is the k-th weighting factor. As the features hold
the triangle inequality, we have

DG(l0, l
′)−DG(l1, l

′) =
K∑
k=1

αk

(
gkG(l0, l

′)− gkG(l1, l
′)
) ≤ K∑

k=1

αkg
k
G(l0, l1) = DG(l0, l1). (4.28)
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By following the analysis of (4.18) – (4.23) in the proof of Theorem 2, the following holds⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
ε
2
DG(l0,l′)−DG(l1,l′) ≤ e

ε
2
DG(l0,l1); (4.29)∑

lj∈R2

e
ε
2
DG(lj ,l′)

∑
li∈R2

e
ε
2
DG(li,l′)

≤ e
ε
2
DG(l0,l1). (4.30)

Finally, by substituting (4.29) and (4.30) into (4.26), we have

Pr[l′|l0]
Pr[l′|l1] ≤ eεDG(l0,l1), (4.31)

which satisfies (4.25). In other words, CR0 and CR1 are RN-indistinguishable

Corollary 1. The proposed CRO mechanism using route distance dG(l, l′), speed limit difference
vG(l, l′), and road density difference denG(l, l′) for DG(l, l′) satisfies (ε,R2)-RN-Indistinguishab-
ility.

Proof. The triangle inequality of route distance dG(l, l′) in road network has been proved by
following the analysis of (4.18) – (4.23) in the proof of Theorem 2.

The speed limit difference vG(l, l′) and road network density difference between two cloaking
regions CR (with location l) and CR′ (with location l′) is as follows{

vG(l, l′) = |v(l)− v(l′)|; (4.32)

denG(l, l′) = |den(l)− den(l′)|, (4.33)

where v(l) and den(l) are the speed limit and road network density in cloaking region CR,
respectively.

For any positive number a, b, and c, the following holds

|a− b| − |b− c| ≤ |a− c|. (4.34)

Using the definition of vG(l, l′) in (4.32), the above equation can be rewritten as

|v(l0)− v(l2)| − |v(l1)− v(l2)| ≤ |v(l0)− v(l1)|;
vG(l0, l2)− vG(l1, l2) ≤ vG(l0, l1);

vG(l0, l2)
maxR2 vG

− vG(l1, l2)
maxR2 vG

≤ vG(l0, l1)
maxR2 vG

,

(4.35)

where maxR2 vG is the maximum speed limit difference in R
2.

Similarly, denG(l, l′) has

denG(l0, l2)
maxR2 denG

− denG(l1, l2)
maxR2 denG

≤ denG(l0, l1)
maxR2 denG

. (4.36)

We set values of α1, α2, and α3 larger than 0, and set other factors equal to 0. Thus,
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DG(l0, l2)−DG(l1, l2) = α1

(
dG(l0, l2)
maxR2 dG

− dG(l1, l2)
maxR2 dG

)
+ α2

(
vG(l0, l2)
maxR2 vG

− vG(l1, l2)
maxR2 vG

)

+ α3

(
denG(l0, l2)
maxR2 denG

− denG(l1, l2)
maxR2 denG

)

≤ α1
dG(l0, l1)
maxR2 dG

+ α2
vG(l0, l1)
maxR2 vG

+ α3
denG(l0, l1)
maxR2 denG

≤ DG(l0, l1).

(4.37)

DG(l, l′) with route distance dG(l, l′), speed limit difference vG(l, l′), and road density difference
denG(l, l′) satisfies the triangle inequality in road network.

According to the Theorem 3, the proposed CROmechanism using dG(l, l′), vG(l, l′), and denG(l, l′)
satisfies (ε,R2)-RN-Indistinguishability.

4.10 Experimental Results of Cloaking Region Obfus-

cation for Road Network-Indistinguishability and

Location Privacy

In this section, we evaluate the CROmechanism with real-world road networks4 and the T-Drive
trajectory (10,357 divers in Beijing, China) [342]. We extract two real-world road networks with
different densities from the Open Street Map5, as shown in Fig. 4.7. We set α1 = 1 in (4.9),
which indicates that we use route distance dG(li, lj) as the only metric of RN-Indistinguishability.

4.10.1 Location Privacy Protection in High-density Road Network

We first compare the average AEE of the CROmechanism with the 2D Laplace mechanisms [77],
[89] in a high-density road network, as shown in Fig. 4.8(a). The 2D Laplace mechanism treats
a road network as a 2D plane and employs the Euclidean distance metrics. Different privacy-
preserving requirements are characterized by privacy budgets of the cloaking regions, which
are set to 0.1, 0.5, 1, 5, and 10 in the simulation. The obfuscation radii are set to 500 m and
600 m. To fairly illustrate the advantage of considering features of road networks, we compare
our mechanism and the other two Laplace mechanisms based on the Euclidean distance and
route distance. The size of considered cloaking regions is 50 m × 50 m in the high-density road
network. A CR is empty if there is no connection or road in it. The empty CR is removed.
Then, we obfuscate the cloaking regions with the proposed CRO mechanism and 2D Laplace
mechanisms developed in [77], [89].

Experimental results show that the CRO mechanism protects location privacy better than the
2D Laplace mechanisms (i.e., [77], [89]) in road networks, as shown in Fig. 4.8. The obfuscation
radii are 500 m and 600 m, respectively. The average AEE of the proposed CRO mechanism is

4There are 69239 connections and 80943 roads within the high-density road network (116.246898°≤ longitude
≤ 116.5089155°and 39.78669°≤ latitude ≤ 40.0447621°) with 83 connections and 96 roads per km2.
There are 29989 connections and 33950 roads within the low-density road network (116.432589°≤ longitude ≤
116.7437658°and 39.7189659°≤ latitude ≤ 40.025068°) with 8 connections and 9 roads per km2.

5Open Street Map is an open source database of the world’s geographic map. https://www.openstreetmap.
org/
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(a) The road network with high density.
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(b) The road network with low density.

Figure 4.7: The experimental road networks.
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less than that on the 2D Laplace mechanism. The average AEE of the mechanisms decreases
as ε increases. With the proposed mechanism, a driver selects an obfuscated cloaking region,
which is close to the actual location, with a higher probability of using the route distance as a
metric than that of using Euclidean distance, due to (4.11). The obfuscation mechanism also
has a high probability selecting a close cloaking region as obfuscated cloaking region in the
high ε environment. Thus, the decreasing trend of the proposed CRO mechanism is faster than
its counterparts. The average AEE of the CRO mechanism under the various ε values can be
greater than the 2D Laplace mechanisms. The average AEE with Euclidean distance is much
shorter than that with route distance. There are two reasons: Firstly, the adjacent cloaking
regions in 2D maps may not be adjacent in road networks. Secondly, the empty cloaking regions
in obfuscation areas are removed, so each obfuscation area covers an uneven number of cloaking
regions.

The comparison of the average SD between the proposed CRO mechanism and the 2D Laplace
mechanism is shown in Fig. 4.9. The radii of the obfuscation areas are 500 m and 600 m,
respectively. The average SD is measured by the shortest route distance between the actual and
obfuscated cloaking regions. The CRO mechanism outperforms the 2D mechanism regarding
the average SD. This is due to the fact that the CRO mechanism has a high probability of
selecting a close cloaking region as the obfuscated cloaking region. The average SD of the CRO
mechanism fluctuates in Fig. 4.9. The reason is that the CRO mechanism are measured by the
route distance in the obfuscate cloaking regions. In the same obfuscation area, two cloaking
regions with a short Euclidean distance may have a considerably long route distance.

4.10.2 Location Privacy Protection in Low-density Road Network

We compare the CRO mechanism with the 2D Laplace mechanism [77], [89] in the low-density
road network in Fig. 4.8(b). The size of the cloaking region is set to 50 m × 50 m. We use
the 2D Laplace mechanism [77], [89] to obfuscate the cloaking regions. The privacy budgets of
the cloaking regions are set to 0.1, 0.5, 1, 5, and 10 for simulating different privacy-preserving
requirements. The obfuscation radii are set to 500 m and 600 m.

We compare the average SD of the CRO mechanism and the 2D Laplace mechanism in low-
density road networks, as shown in Fig. 4.10. The CRO mechanism can achieve a shorter
average SD than the 2D Laplace mechanisms in [77], [89]. The gap of the average SD with the
Euclidean distance between the two curves decreases as the privacy budget increases, while that
with the route distance increases with the privacy budget. The reason is that the obfuscation
mechanisms have a high probability to select adjacent cloaking regions as obfuscated results.
Thus, the CROmechanism and 2D mechanisms have a similar Euclidean-distance-based average
SD under a high privacy budget. The 2D mechanisms use the Euclidean distance as the metric
to obfuscate cloaking regions, while the proposed CRO mechanism employs the route distance.
Thus, the gap of the route-distance-based average SD between the CRO mechanism and 2D
mechanisms increases with the privacy budget.

The CRO mechanism achieves a longer average AEE than the 2D mechanism in low density
road networks, as shown in Fig. 4.11. The CRO mechanism and 2D mechanisms have a similar
average AEE when the privacy budget is high. The average AEEs of the CRO and 2D mech-
anisms are shorter than the average SDs of those because we consider the worst-case scenario
in the experiments, as shown in (4.6).

By comparing the results in Figs. 4.8 and 4.9 with the ones in Figs. 4.10 and 4.11, the proposed
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(c) Average AEE with Euclidean distance.

(d) Average AEE with route distance.

Figure 4.8: Average AEE comparisons of the proposed CRO mechanism and the 2D Laplace
mechanisms in [77], [89] in the high-density road network.
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(a) Average SD with Euclidean distance.

(b) Average SD with route distance

Figure 4.9: Average SD comparisons of the proposed CRO mechanism and the 2D Laplace
mechanisms in [77], [89] in the high-density road network.
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(a) Average SD with Euclidean distance

(b) Average SD with route distance

Figure 4.10: Average SD comparisons of the proposed CRO mechanism and the 2D Laplace
mechanisms in [77], [89] in the low-density road network.
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(a) Average AEE with Euclidean distance

(b) Average AEE with route distance

Figure 4.11: Average AEE comparisons of the proposed CRO mechanism and the 2D Laplace
mechanisms in [77], [89] in the low-density road network.
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CRO mechanism outperforms the 2D Laplace mechanism in the high-density and low-density
road networks. The proposed CRO mechanism can better protect location privacy in high-
density road networks than it does in low-density road networks. The reason is that the road
network density in the high-density road networks is ten times as much as those of the low-
density road networks, in our experiments. The CRO mechanism can accurately analyze the
indistinguishability between cloaking regions with a complex topology and traffic conditions in
road networks.

4.10.3 Generalization and Implementation

The indistinguishability of the CRO with the extended metrics, i.e., (4.8), is validated in
Fig. 4.12. In this experiment, we evaluate the metrics DG(l1, l2) in (4.8). We set two cloak-
ing regions l1 and l2 with 0 km ≤ dG(l1, l2) ≤ 1 km, 0 km/h ≤ vG(l1, l2) ≤ 30 km/h, and 0
connections ≤ denG(l1, l2) ≤ 10 connections. For other parameters, we set maxR2 dG = 1 km,
maxR2 vG = 30 km/h, maxR2 denG = 10 connections, and α1 + α2 + α3 = 1. And thus, we
have 0 ≤ DG(l1, l2) ≤ 1. As shown in Fig. 4.12, the left-hand side of (4.26) is bounded that
validates the indistinguishability of the CRO mechanism. An adversary can hardly distin-
guish the cloaking regions that have a similar DG(l1, l2) from the obfuscated locations, i.e.,
Pr[l′|l1]
Pr[l′|l2] = 1 when DG(l0, l′) − DG(l1, l′) = 0. We also see that the left-hand side of (4.26) is
approximately linear with a small ε, e.g., ε = 0.5. The reason is that when 0 < x << 1,
ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
≈ 1 + x.

Figure 4.12: The indistinguishability of the proposed CRO mechanism with extended met-
rics (4.26).

The CRO mechanism is a local privacy-preserving mechanism that can independently run at ev-
ery single vehicle. The CRO mechanism does not need any central server to coordinate, thereby
reducing the risk of location leakage from servers or during communications. With the CRO
mechanism, the locations of the vehicles in the same cloaking region are uniformly processed.
The location privacy-preserving capability of the proposed CRO mechanism increases with the
number of vehicles in the same cloaking region. In the case of no or few neighbors, the CRO
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mechanism can still guarantee the drivers’ location privacy by generating obfuscated locations
because the drivers can locally run the CRO mechanism to protect their location data. The
setting of the cloaking region can be optimized using the mechanisms developed in [17] and
[381]. Vehicles in the same cloaking region can cooperate by swapping pseudonyms (e.g., [384])
or generating pseudonyms (e.g., [215]) to achieve high privacy protection.

4.11 Conclusion of Cloaking Region Obfuscation for Road

Network-Indistinguishability and Location Privacy

In this chapter, we proposed the RN-Indistinguishability to evaluate obfuscation-based location
privacy-preserving mechanisms in road networks. We proposed the new CRO mechanism to
protect the location privacy of vehicles in road networks by uniformly obfuscating the locations
of vehicles in the same cloaking region. The proposed CRO mechanism was proved to achieve
the RN-Indistinguishability and validated with comprehensive experiments. We also proved
that the CRO can be generalized with road network features without breaching the differential
privacy. In the future, we will combine other location privacy-preserving mechanisms with the
CRO mechanism to simultaneously perturb the vehicles’ identities and locations in the road
network environment.
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Chapter 5

Cooperative Trajectory Privacy
Protection

5.1 Introduction

Vehicular applications provide various services with locations that are uploaded from vehi-
cles [222]. The application servers can obtain and store the geolocation and driving statuses
of vehicles, raising the concern of the vehicle’s location privacy [372]. Adversaries can attack
the application servers and eavesdrop on communications between the servers and vehicles for
shared geolocation data, with which the adversaries can infer the drivers’ private information,
such as whereabouts, religion, job, and home address [8], [373], [374]. The adversary can also
estimate the vehicles’ locations with reported driving statuses, such as driving speed and di-
rection [385]. Compared with other mobile users, the vehicles are easier to be tracked because
their trajectories are predictable in road networks [15], [375].

Obfuscation-based mechanisms have been developed to protect the location privacy of vehicles
against eavesdroppers and malicious servers [72]–[74]. The vehicles can locally perturb their
actual driving statuses by exploiting Differential Privacy (DP) mechanisms that add control-
lable noises to the data [386] or probabilistically selecting obfuscated candidates [384]. Then,
the vehicles upload the obfuscated data to the servers for services [69], such as location-based
recommendations [76], entertainment, crowdsensing [387], and data analysis [388]. The state-
of-the-art obfuscation-based mechanisms, such as [88] and [73], have considered spatial per-
turbation on two-dimensional (2D) plane maps and road networks. However, the temporal
information has not been well considered in road networks by the existing obfuscation mech-
anisms [86]. If an adversary can track the identities (ID) of the vehicles, it can reduce the
perturbation noise by linking the data of a specific vehicle ID over a long period, such as a
long-observation attack [87]. Hence, the existing obfuscation-based mechanisms can hardly
protect location privacy on a long-term basis [88].

Pseudonym-based mechanisms allow vehicles to utilize pseudonyms, rather than actual identi-
ties, to upload messages [389], hence protecting location privacy at the time domain. A vehicle
can use multiple pseudonyms to share data in different periods [390]. The pseudonym-based
mechanism can be classified into pseudonym generation and pseudonym swap. The pseudonym
generation requires vehicles to keep silent in a specific region and use new pseudonyms simulta-
neously, while the pseudonym swap asks multiple vehicles to exchange their pseudonyms. The
pseudonym-based mechanisms can provide high data utility with actual data, but the limitation
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is that the adversary can link multiple pseudonyms to a vehicle by using the spatial-temporal rel-
evance among trajectories based on its prior knowledge [384], [391]. With the pseudonym swap,
the vehicles exchange their pseudonyms with those which have similar trajectories, reducing
the probability of accurate linkage through differential cryptanalysis compared to pseudonym
generation [13]. Existing studies have shown that the more similar two vehicles’ driving statuses
are, the better privacy protection can be achieved [217], [392], [393].

By using existing hybrid mechanisms, vehicles report obfuscated locations generated based
on their actual locations with pseudonyms [394], [395]. Pseudonym swapping relies on the
spatial and temporal correlation among multiple vehicles, allowing only nearby vehicles to
swap pseudonyms for location privacy and data utility. On the other hand, local obfuscation
only uses the local data of a single vehicle and overlooks the spatial and temporal correla-
tion among vehicles. It has been generally believed that pseudonym and obfuscation are two
separate technologies [396], [397]; i.e., trajectory obfuscation and pseudonym swapping are pro-
cessed separately and in parallel [394], [395]. Existing hybrid mechanisms separately employ
pseudonym swapping and trajectory obfuscation, and typically overlook the prior knowledge in
their pseudonym-swapping processes. The pseudonym-swapping process of the existing hybrid
mechanisms could undergo a low data utility and privacy-preserving capability. For example,
the pseudonym-swapping process without using differential privacy can be attacked by the ad-
versary with prior knowledge [384]. As a matter of fact, we reveal analytically in this chapter
that pseudonym swaps can be considered a differential privacy process for any two identities
sharing the same pseudonym-swapping candidate set.

In this chapter, we propose a novel Joint Trajectory Obfuscation and Pseudonym Swapping
(JTOPS) mechanism to prevent adversaries from learning actual driving statuses and matching
their prior knowledge of vehicles. We start by designing a new distance metric to measure the
difference among spatio-temporal driving statuses, and defining Trajectory-Indistinguishability
(T-I) to evaluate the privacy-preserving ability against adversaries who have the prior knowl-
edge of the drivers’ historical trajectories. DP is leveraged to jointly obfuscate the driving
statuses and swap the drivers’ pseudonyms. The vehicles firstly obfuscate their driving sta-
tuses, according to the distance between their actual statuses and candidates. Then, they swap
their pseudonyms, according to the swapping probabilities calculated based on the distances
among their obfuscated statuses. The JTOPS is proven to achieve T-I under the Global Passive
Adversaries (GPAs) model with the full prior knowledge of the vehicles at the adversary. Addi-
tionally, the proposed JTOPS combines two differential privacy processes, without introducing
the additivity composition theorem of multiple ε-DP processes [398]. The proposed mechanism
can still effectively disguise the vehicles’ driving statuses when their swapped pseudonyms are
exposed.

The contributions of this chapter are summarized as follows,

1) This chapter demonstrates that pseudonym swaps can be considered a differential privacy
process for any two identities sharing the same pseudonym-swapping candidate set. We
analytically prove that jointly using pseudonym swapping and obfuscation in vehicular
networks can achieve higher privacy protection than separately using them.

2) We introduce a new unified privacy-preserving measure, i.e., T-I, treating trajectory ob-
fuscation and pseudonym-based mechanisms as a holistic process. T-I extends the ap-
plicability of ε-differential privacy (DP) by quantifying the distinguishability between
vehicles based on their historical information in the time domain and current information
in the spatial domain.
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3) Building upon T-I, we propose a novel Joint Trajectory Obfuscation and Pseudonym
Swapping (JTOPS) mechanism joining pseudonym swapping and trajectory obfuscation
with a crafted criterion. The proposed mechanism is proven to combine two differential
privacy processes, without introducing the additivity composition theorem of multiple
ε-DP processes.

4) The proposed pseudonym swapping does not require vehicles to disclose their private
data, as the required parameters are computed locally and then transmitted to the coor-
dinator. Thus, the knowledge of the coordinator, which assists in pseudonym swapping,
is limited, ensuring the proposed pseudonym-swapping process can effectively resist col-
lusion attacks.

We experimentally assess the JTOPS on the real-world road network and trajectory datasets,
compared to three state-of-the-art vehicle privacy-preserving mechanisms, i.e., those developed
in [75], [15], and [384]. The superiority of the JTOPS is demonstrated in terms of privacy
preservation and data utility in the cases of GPAs and collusion attacks.

The rest of this chapter is organized as follows. Chapter 5.2 reviews the related works. Chapter
5.3 presents the system model. Chapter 5.4 analyzes the proposed T-I and JTOPS mechanism.
The experimental evaluation of the mechanism is provided in Chapter 5.5, followed by conclu-
sions in Chapter 5.6. Notations used in the chapter are collated in Table 5.1.

5.2 Related Work

Obfuscation and anonymity have been primarily adopted to protect location privacy [65]. Ob-
fuscation mechanisms add DP noises to actual location data or probabilistically select obfus-
cation candidates to reduce the precision of location data [334], while anonymity mechanisms
allow vehicles to use pseudonyms to hide their real identities in different periods [372].

Table 5.1: Summary of Notions

Notion Description

M, M̂ A sequence of actual/obfuscated driving statuses
m, m̂ An actual/obfuscated driving status
M̄ The sequence of obfuscation candidate
m̄ An obfuscation candidate
ε Privacy budget
id The pseudonym of vehicle
αi The i-th weight factor
T The time of pseudonym swap
T - The period of time before time T
T+ The period of time after time T

(M̂a, ida) The uploaded messages of va
S The pseudonym pool
β Any driving status
λ Data Utility
γ Pseudonym Utility

Most existing obfuscation-based mechanisms protect actual information by utilizing DP, making
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private information indistinguishable to adversaries [399]. Andrés et al. [74] developed Geo-
Indistinguishability (Geo-I) based on DP, which employed the Laplace mechanism to realize
Geo-I on a two-dimensional (2D) plane. The Geo-I reports obfuscated locations surrounding the
actual location based on the obfuscation probability distribution, but the Geo-I can generate
off-road obfuscated locations that compromises the data utility. The Graph-Exponential Mech-
anism (GEM) evaluates the privacy-preserving capability of the Geo-I in road networks [73].
The GEM sets the connections (such as turns, intersections, bifurcates, and joins) in a road
network as the obfuscation candidates. The mechanism maps the vehicles’ locations to the con-
nections and obfuscates the connections based on the Geo-I. Inspired by [74] and [73], Ma et
al. [15] improved the Geo-I to Road Network-Indistinguishability (RN-I) by using route distance
between two road network locations, with which the vehicles on road networks are indistinguish-
able to an adversary. These existing obfuscation-based mechanisms only use location data to
measure the distance between two vehicles, yet overlook other road network spatial-temporal
driving statuses. Moreover, the existing obfuscation-based mechanisms allow the vehicles to
use their actual identities, leading to vulnerabilities to long-observation attacks with which an
adversary can achieve a high accurate estimation by observing communications of the target
vehicle in a long period [87].

The pseudonym-based mechanisms allow vehicles to use unique identifications, rather than
actual identities, in communications, and update the identifications periodically. Pseudonym
swap and pseudonym generation are the two most popular mechanisms among pseudonym-
based mechanisms to update pseudonyms. The pseudonym generation mechanisms create new
pseudonyms with which multiple vehicles replace their old pseudonyms, while the pseudonym
swapping mechanisms assist vehicles to exchange their pseudonyms. The pseudonym swap-
ping mechanisms, which can provide higher data utility and less storage overhead than the
pseudonym generation, have gained more attention from researchers [384]. Li et al. [400]
pointed out that pseudonym-based mechanisms can provide a high privacy-preserving capa-
bility when a spatial-temporal context is considered. The work [384] develops a pseudonym
swapping mechanism by using DP, with which the vehicles swap pseudonyms probabilistically
based on the driving status similarity. Therefore, the adversary cannot gain more knowledge by
observing the pseudonym swapping process or referring to historical trajectories. The existing
pseudonym-based mechanisms overlook the adversary with the prior knowledge of the vehicles
and the privacy-preserving capability is low in such a case.

Existing hybrid mechanisms separately use obfuscation and pseudonym. Ullah et al. [75] de-
veloped a multiple-level mechanism by allowing vehicles to upload multiple messages with
different locations and pseudonyms. The mechanism uses the actual locations of other vehicles
as dummy locations. A vehicle randomly reports multiple dummy locations and the corre-
sponding pseudonyms with its actual location and pseudonym to the LBS, indicating that the
uploaded messages of the vehicle include the information of other vehicles. In the mechanism,
the pseudonym and dummy location of a vehicle are selected at the same time. The work [401]
separately uses pseudonym and obfuscation in a cloud-enabled internet where vehicles syn-
chronously generate new pseudonyms and then report the actual or obfuscated locations. The
authors of [401] only discuss the pseudonym generation algorithm which is independent of the
obfuscation.

In vehicular networks, cryptography-based mechanisms are commonly used due to their lightweight
encryption that minimizes delays and mitigates negative impacts such as frequent disconnec-
tions, instability, and handshake failures caused by the unique features of vehicles [402], [403].
To reduce the communication consumption of zero-knowledge proof (ZKP), Li et al. proposed
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an improved interactive ZKP using blockchain network management [404]. The authors pre-
sented a blockchain gateway that enables switching of vehicles between adjacent blockchains
without revealing sensitive data, thereby enhancing privacy protection. Khodaei et al. de-
veloped a mix-zone-based mechanism that encrypts vehicle information within a zone using a
set of virtual vehicles [405]. This mechanism enhances privacy protection with limited addi-
tional computation and communication consumption. However, existing cryptography-based
mechanisms may not be suitable for high-mobility real-time Location-Based Services (LBS) in
vehicular networks, as low latency and delay in vehicle-to-everything (V2X) communication are
crucial requirements [406].

To the best of our knowledge, our proposed mechanism is the first joint mechanism that pro-
tects location privacy with both pseudonyms swapping and trajectory obfuscation in road
networks. In the JTOPS, the pseudonyms of vehicles are swapped following the probabilities
generated based on the obfuscated driving statuses. By jointly using trajectory obfuscation and
pseudonym swapping, the JTOPS provides excellent location privacy protection under GPAs
with the prior knowledge of vehicles or under collusion attacks.

5.3 System Model

5.3.1 Vehicular Network

A vehicular network consists of three types of entities: Trusted Authority (TA), coordinators,
and vehicles, as shown in Fig. 5.1.

Trusted Authority (TA)

We assume that the TA, which has unlimited resources, is managed by state representa-
tives [407]. The TA generates a legal pseudonym for each vehicle and stores its vehicle-
pseudonym mapping for potential future accident forensics and investigation.

Coordinators

The coordinators act as intermediate communication interfaces between the vehicles and the
TA [407]. In our model, the coordinators assist in the pseudonym swapping process within
their network coverage regions, and upload the new pseudonym-vehicle mapping to TA. The
coordinators, which might collude with adversaries, are not trusted.

• Coverage area R: Each coordinator covers a region R in road networks, e.g., the circle
in Fig. 5.1, which does not overlap with other coverage regions. The vehicles in R swap
their pseudonyms and share the same obfuscation candidates to protect their location
privacy.

• Pseudonym pool S: When a coordinator assists the vehicles in swapping pseudonyms,
the coordinator puts the pseudonyms of the vehicles that participate in the pseudonym
swapping into a pseudonym pool S. The number of the vehicles in S is no larger than that
of vehicles in R. Before the pseudonym swapping, the coordinator records the recently
uploaded driving statuses of the vehicles in S to ensure the recorded driving statuses of
each vehicle have the same length.
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Vehicles

The vehicles wish to enjoy location based services, yet distrust the service providers. The
vehicles employ pseudonym swapping and trajectory obfuscation to protect their identities and
trajectory information, respectively. The vehicles share their obfuscated driving statuses (e.g.,
locations, speeds, and directions) with the coordinators.

TA

External 
GPA

Providers

Coordinator

Coordinator region 

collusion

eavesdrop

ea
ve

sd
rop

Internal 
GPA collusion

eavesdrop

Figure 5.1: System and adversary model. The vehicular network consists of three parties: TA,
coordinator, and vehicles.

A vehicle v uploads messages that contain time-series spatio-temporal driving statuses, for
driving security, driving assistant, and entertainment applications [407]. The spatio-temporal
information is protected by the trajectory obfuscation mechanism and uploaded with the
pseudonyms. The information in the uploaded messages M is as follows:

• Spatio-temporal driving statuses: In this chapter, we consider the spatio-temporal
driving statuses of the vehicles, e.g., location, speed, direction, and the driving time
of v in R. The uploaded messages contain multiple driving statuses at different times
and are denoted by M = {m1, · · · ,mi, · · · ,mk}, where mi ∈ M is the i-th driving
statuses at time t and contains status like location loc, speed spe, and direction dir, i.e.,
mi = {loc, spe, dir, · · · }.

• Pseudonym: The unique identification for verification.

The uploaded messages are denoted by (M, id), where M is spatio-temporal driving statuses
of vehicle v and id is the identification that v uses to upload its messages.

Relative distance between two statuses d(Ma,Mb)

The relative distance of driving statuses Ma (from va) and Mb (from vb), denoted by d(Ma,Mb),
is calculated as

d(Ma,Mb) =
∑
i

αi
βi(Ma,Mb)

maxR βi

, (5.1)
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where βi(Ma,Mb) denotes the distance of the i-th considered the spatio-temporal driving sta-
tuses between the two uploaded messages. Here, αi is the i-th weighting factor, which can
be set, e.g., by expert knowledge of the system designer or by machine learning1, as long as∑

∀i αi = 1. maxR βi represents the maximum distance of the i-th driving statuses of the
vehicles in R. The calculation of each considered driving status is as follows.

Corollary 2. D(va, vb) with location distance βl(Ma,Mb), speed distance βs(Ma,Mb), direction
distance βr(Ma,Mb), and driving time distance βt(Ma,Mb) satisfies triangle inequality in a road
network.

Proof. First, we prove that the vector-type driving statuses, such as route distance, satisfy the
triangle inequality in road networks, i.e., for any three vehicles va, vb, and vc in a road network,
βl(Ma,Mc)− βl(Mb,Mc) ≤ βl(Ma,Mb) holds as follows.

If vb is along the shortest route between va and vc, we have

βl(Ma,Mc)− βl(Mb,Mc) = βl(Ma,Mb). (5.2)

If vb is not along the shortest route between va and vc, by assuming βl(Ma,Mc)−βl(Mb,Mc) >
βl(Ma,Mb), we have

βl(Ma,Mc) > βl(Ma,Mb) + βl(Mb,Mc), (5.3)

which indicates that the route between va and vc is longer than the route between va and vc
via vb. Then, the shortest route between va and vc should pass vb. This contradicts with the
assumption of βl(Ma,Mc) − βl(Mb,Mc) > βl(Ma,Mb). If vb is not along the shortest route
between va and vc, the following inequality holds

βl(Ma,Mc)− βl(Mb,Mc) ≤ βl(Ma,Mb). (5.4)

Combining (5.2) and (5.4), the triangle inequality of route distance in road networks is proved,
i.e.,

βl(Ma,Mc)

maxR βl

− βl(Mb,Mc)

maxR βl

≤ βl(Ma,Mb)

maxR βl

, (5.5)

where maxR βl is the maximum route distance in region R.

The numeric type of driving statuses, such as speed distance βs(Ma,Mb), direction distance
βr(Ma,Mb), and the driving time distance βt(Ma,Mb) between any two vehicles va and vb is
considered as follows

βj(Ma,Mb) = |βj(Ma)− βj(Mb)|, (5.6)

where βj(Ma) is the j-th numeric-type driving status of vehicle va.

Based on the absolute value inequality and (5.6), it follows

|βj(Ma)−βj(Mb)|−|βj(Mb)−βj(Mc)|≤|βj(Ma)−βj(Mb)|;
βj(Ma,Mb)− βj(Mb,Mc) ≤ βj(Ma,Mb),

(5.7)

where Mc is a sequence of driving statuses of any vehicle vc.

1In the experiments, all alpha values are set to be equal.
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Thus, we have
βj(Ma,Mc)

maxR βj

− βj(Mb,Mc)

maxR βj

≤ βj(Ma,Mb)

maxR βj

, (5.8)

where maxR βj is the maximum distance of βj in R. Thus,

D(va, vc)−D(vb, vc) ≤
∑
i

αi
βi(Ma,Mb)

maxR βi

= D(va, vb). (5.9)

In other words, D(va, vb) satisfies triangle inequality in road networks.

For any reported driving statuses (M̂T -
x , M̂T+

x ) from any vehicle vc, as the driving statuses hold
the triangle inequality and 0 ≤ D(va, vb) ≤ 1, we have{

D (vb, vc)−D (va, vc) ≤ D(va, vb);

D (va, vc)−D (vb, vc) ≤ D(va, vb).
(5.10)

In this chapter, we consider the relative distance between the spatio-temporal driving statuses,
i.e., the location distance βl(Ma,Mb), the speed distance βs(Ma,Mb), the direction distance
βr(Ma,Mb), and the driving time distance βt(Ma,Mb).

5.3.2 Trajectory Obfuscation and Pseudonym Swapping

We jointly utilize pseudonym swapping and trajectory obfuscation to protect the identity and
location privacy of vehicles, where the vehicles swap their pseudonyms according to the tra-
jectory obfuscation results. When the vehicles drive in R, they locally obfuscate their actual
driving statuses for location privacy. If a vehicle needs to swap its pseudonym, it uploads its
current pseudonym to S. The vehicle then calculates the distance between its actual driving
statuses and those of the other vehicles. Given the distance, the coordinator assists the vehi-
cles in swapping their pseudonyms and returns the swapped pseudonyms to the vehicles. The
vehicles use the new pseudonyms to upload their obfuscated driving statuses until the next
pseudonym swap.

5.3.3 Adversary Model

We adopt the adversary model from previous studies [15], [384], and [207], which includes both
external and internal GPAs as depicted in Fig. 1. These GPAs can infer the driving statuses
of the vehicles by analyzing the obtained messages, and subsequently tracking the vehicles.
External GPAs can operate independently of the vehicular networks and eavesdrop on the
uploaded messages, whereas internal GPAs are part of the vehicular networks and may collude
with the servers to obtain the uploaded messages. The GPAs have the complete knowledge
of the historical driving statuses of the vehicles, the trajectory obfuscation strategy, and the
pseudonym-swapping strategy.

To accurately track a vehicle, an adversary can infer the actual driving statuses of the vehicle
and then estimate the real identity of the vehicle. The obfuscated driving statuses of each
pseudonym can be obtained by the adversary. By linking the new and old pseudonyms, the
adversary can have a set of obfuscated driving statuses of a target, i.e., M̂ . With M̂ , the
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adversaries can infer the probability that M̂ is obfuscated by the actual driving statuses M in
R. The adversary then can match the target vehicle with its prior knowledge and the inferred
probability.

By considering the adversary model and the message processing, we use the following three
metrics to evaluate the proposed mechanism.

Adversary’s Success Rate

The Adversary’s Success Rate (ASR), i.e., the probability of successfully linking the uploaded

messages
(
(M̂T+

x , idT+
x ), (M̂T -

x , idT -
x )

)
to va with pseudonym ida, is given by

Pr[ida|((M̂T+
x , idT+

x ), (M̂T -
x , idT -

x ))]

=
Pr[((M̂T+

x , idT+
x ), (M̂T -

x , idT -
x ))|ida]∑

idc∈S
Pr[((M̂T+

x , idT+
x ), (M̂T -

x , idT -
x ))|idc]

, (5.11)

where (M̂T -
x , idT -

x ) and (M̂T+
x , idT+

x ) are any messages in R before and after swapping the
pseudonyms at time T . idc is the pseudonym of any vehicle vc ∈ S.

Data Utility

We utilize the driving statuses to measure the data utility of the obfuscated driving statuses.
Given a set of the obfuscated driving statuses M̂a = {m̂1, · · · , m̂k} from a vehicle va with the
actual driving statuses Ma = {m1, · · · ,mk}, the Average Data Utility (ADU) of vehicle va is

λ(va) =
1

k

(
1− d(Ma, M̂a)

)
, (5.12)

where 0 ≤ λ(va) ≤ 1. A high λ(va) indicates that the obfuscated statuses are closer to the
actual statuses; in other words, M̂a provides a high data utility and quality of services.

Pseudonym Utility

The Pseudonym Utility (PU) has been overlooked in the existing pseudonym-based mechanisms.
For pseudonym generation, the PU of a pseudonym is zero because the old pseudonym is
abandoned. For pseudonym swap, the PU of a pseudonym could be measured by the distance
of driving statuses after swapping between the two vehicles which use the pseudonym before
and after swapping. A high PU indicates that the data uploaded by the pseudonym is similar,
which means a high privacy-preserving capability and data utility of driving statuses. The PU
can be defined as follows.

Given a pseudonym idx, va is the vehicle which uses idx before the pseudonym swapping and
vb is the vehicle that uses idx after the pseudonym swapping. The PU of idx is given by

γ(idx) = 1− d(M̂T+
a , M̂T+

b ), (5.13)

where M̂T+
a and M̂T+

b are the obfuscated driving statuses of va and vb after swapping the
pseudonyms at time T .

In (5.13), the pseudonym utility is calculated based on the driving statuses after the pseudonym
swapping of the two vehicles by considering the time-sequence trajectory. For example, if a
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vehicle does not change its pseudonym (idx), the pseudonym utility would be 1, as the trajectory
with the pseudonym idx is reported as expected. However, if the pseudonym idx is swapped
from vehicle va to vehicle vb, the pseudonym utility should be calculated based on the similarity
between the new trajectory information of vb (after the pseudonym swapping, i.e., T+) and what
is expected based on the new trajectory information of va (after the pseudonym swapping, i.e.,
T+). The coordinator can flexibly decide the period of the pseudonym swapping using various
methods, e.g., machine learning, to find the optimum value of T .

5.4 Joint Trajectory Obfuscation and Pseudonym Swap-

ping Mechanism

In this chapter, the proposed driving status obfuscation mechanism is based on differential
privacy, which has a privacy threshold due to the additivity composition theorem of reusing
ε-DP. If a vehicle obfuscates its driving statuses multiple times, the privacy threshold can be
exhausted. The coordinator periodically broadcasts pseudonym-swapping requests, and vehi-
cles can decide whether to join the pseudonym swap based on their requirements. If a vehicle’s
privacy threshold is nearly exhausted, it will join the pseudonym-swapping process upon re-
ceiving the broadcast from the coordinator. The coordinator retains all pseudonyms until the
vehicle leaves the region, while the vehicle only needs to keep its current pseudonym until it
joins the next pseudonym-swapping process. Once the pseudonym of a vehicle is swapped,
it keeps its new pseudonym, and the coordinator uploads the new pseudonym-vehicle map-
ping information of the vehicle to the Trusted Authority (TA). This process ensures that the
pseudonym-vehicle mapping information is updated in a timely manner and the privacy of the
vehicles is maintained throughout the pseudonym-swapping process.

5.4.1 Trajectory-Indistinguishability

The T-I considers the general spatio-temporal driving statuses of continuous trajectories in
vehicular networks. The proposed T-I generalizes the metric of ε-DP in vehicular networks
without increasing the upper bound of the distinguishability between two vehicles and is defined
as follows.

Definition 8 (T-I). A mechanism satisfies (ε,R)-T-I if and only if, for any two vehicles va
and vb in R, which swap their pseudonyms with other vehicles in R, the probabilities that the
uploaded message (M̂T+

x , idT+
x ) generated by va and vb have

Pr[(MT -
a ,idT -

a )|(M̂T+
x ,idT+

x )]∑
vc∈R

Pr[(MT -
c ,idT -

c )|(M̂T+
x ,idT+

x )]

Pr[(MT -
b ,idT -

b )|(M̂T+
x ,idT+

x )]∑
vc∈R

Pr[(MT -
c ,idT -

c )|(M̂T+
x ,idT+

x )]

≤eεD(va,vb)
Pr[(MT -

a ,idT -
a )]

Pr[(MT -
b ,idT -

b )]
, (5.14)

where ε is the privacy budget, and pseudonym swapping happens at time T . MT -
a and MT -

b are
the actual driving statuses of va (with pseudonym idT -

a ) and vb (with pseudonym idT -
b ) before T ,

respectively. idx is any pseudonym in R, and M̂T+
x are the driving statuses uploaded with idx.

Pr[(MT -
a , idT -

a )] is the probability that the actual driving statuses generated by va have appeared
in the historical information according to the prior knowledge [408]. The prior knowledge could
be gained by observing the vehicles before they are protected. (MT -

c , idT -
c ) is the actual message
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before a pseudonym swap generated by any vehicle vc ∈ R. D(va, vb) specifies the distance
between va and vb, as given by

D(va, vb) = d(MT+
a ,MT+

b ) + d(MT -
a ,MT -

b ). (5.15)

Here, d(MT -
a ,MT -

b ) and d(MT+
a ,MT+

b ) are the driving status distance of the two vehicles before
and after T , respectively.

Based on Bayes’ theorem, (5.14) can be written as

Pr[(M̂T+
x , idT+

x )|(MT -
a , idT -

a )]

Pr[(M̂T+
x , idT+

x )|(MT -
b , idT -

b )]
≤ eεD(va,vb). (5.16)

In other words, for any sequence of messages (M̂T+
x , idT+

x ) after a pseudonym swap, va and vb
are indistinguishable.

5.4.2 Mechanism Details

In JTOPS, the vehicles locally obfuscate the spatio-temporal driving statuses. Periodically, the
vehicles swap their pseudonyms with the assistance of the coordinator and then use the new
pseudonyms to upload their obfuscated driving statuses. The JTOPS is described as follows.

Registration

When the vehicles first join vehicular networks, they register with the TA, and the TA allocates
an initial pseudonym to each vehicle through secure channels and stores the pseudonym-vehicle
mappings. Once a vehicle enters a new R, it sends its pseudonym to the coordinator for
notification. The coordinator records the pseudonym and keeps it until the vehicle leaves R.

Trajectory obfuscation

When driving in R, the vehicles periodically upload their messages with the pseudonyms and the
obfuscated driving statuses. There are two steps in the trajectory obfuscation, i.e., generate the
obfuscation candidates and obfuscate the driving statuses. The trajectory obfuscation process
is described as follows.

Generate Obfuscation Candidates: The set of obfuscation candidates M̄ = {m̄1, · · · , m̄n}
collects all possible driving statuses of roads in the region R, and can be calculated by the coor-
dinator using the prior knowledge of the road network. The coordinator sends the obfuscation
candidates to the vehicles once the vehicles drive into the region R.

Obfuscate Driving Statuses: Vehicle v with the actual driving statuses M = {m1, · · · ,mi,
· · · } probabilistically selects an obfuscation candidate m̄j ∈ M̄ as its obfuscated driving sta-
tuses m̂i, as given by

Pr[m̂i = m̄j|mi] =
e−

ε
2
d(mi,m̄j)∑

m̄x∈M̄
e−

ε
2
d(mi,m̄x)

, (5.17)

where m̄x is an obfuscation candidate in M̄. The obfuscation of each m ∈ M is independent.
Thus, the probability that a sequence of obfuscated driving statuses M̂ selected based on M is
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given by

Pr[M̂ |M ] =
e−

ε
2
d(M,M̂)∑̂

Mx

e−
ε
2
d(M,M̂x)

, (5.18)

where M̂x is any sequence of possible obfuscated driving statuses that consists of multiple
m̄ ∈ M̄. The lengths of different M̂x are the same.

Pseudonym swapping

There are three steps in the pseudonym swapping; i.e., the coordinator records the driving
statuses, the vehicles calculate the distance between the pseudonyms, and the coordinator
swaps the pseudonyms. The details are described as follows.

Record Driving Status: When the vehicles upload their driving statuses, the coordinator
records the obfuscated driving statuses from each pseudonym before swapping the pseudonyms.
Periodically, the coordinator records the recently uploaded driving statuses from each pseudonym
that are of the same length. Then, the coordinator sends all of the recorded driving statuses
and the swapping requests to the vehicles. The recorded driving statuses are deleted once the
pseudonym swapping process is completed.

Calculate Distances between Pseudonyms: One of the pseudonym swaps takes place at
time T . If vehicle va using the pseudonym idT -

a needs to swap the pseudonyms, the vehicle
calculates the distance between the pseudonym idT -

a and any pseudonym idT -
x , denoted by VT -

x,a,
by comparing the reported driving statuses, as given by

VT -
x,a =

1

2
d(M̂T -

x ,MT -
a )− 1

2
d(M̂T -

a ,MT -
a ), (5.8)

where M̂T -
x and idT -

x are the obfuscated driving statuses and the pseudonym reported by any
vehicle vx before the pseudonym swap, respectively. We employ the scale factor 1

2
in (5.8) to

normalize VT -
x,a, i.e., −0.5 ≤ VT -

x,a ≤ 0.5. The calculation of VT -
x,a uses the actual driving statuses

of va and the obfuscated driving statuses of other vehicles, since va only knows the actual
driving statuses of itself.

Swap Pseudonyms: Vehicles in S randomly select their new pseudonyms from the pseudonym
pool S. For a pseudonym idT -

b ∈ S, the probability Pr[idT+
a = idT -

b |(MT -
a , idT -

a )] that va selects
idT -

b as its new pseudonym idT+
a is calculated by the coordinator, as given by

Pr[idT+
a = idT -

b |(MT -
a , idT -

a )] =
e−

ε
2
VT -
b,a∑

idT -
x ∈S

e−
ε
2
WT -

x,a
, (5.9)

where

WT -
x,a =

1

2
d(M̂T -

x ,MT -
a ) +

1

2
d(M̂T -

a ,MT -
a ). (5.10)

A small VT -
x,a indicates that M̂x is close to Ma. VT -

x,a is negative when M̂x is closer to Ma than

it is to M̂a. Here, va has a high probability of selecting idT -
b as its new pseudonym idT+

a if VT -
x,a

is small. It follows from (5.9) that
VT -
x,a ≤ WT -

x,a, (5.11)
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which leads to ∑
idT -

x ∈S
Pr[idT+

a = idT -
x |(MT -

a , idT -
a )] ≤ 1. (5.12)

Thus, va may not choose any pseudonym when
∑

idT -
x ∈SPr[id

T+
a = idT -

x |(MT -
a , idT -

a )]<1. va does

not change its pseudonym, i.e., idT+
a = idT -

a , if va does not select any idx in S.
If the vehicles select different pseudonyms, the coordinator returns a pseudonym to each of the
vehicles. If multiple vehicles select the same pseudonym idT -

x , the coordinator creates the same
number of ring-signature-based pseudonyms using the existing works [409], [410] based on idT -

x

and returns random new ring-signature pseudonyms to the vehicles. Hence, the vehicles can
share the same pseudonym idT -

x .

After swapping the pseudonyms at time T , the vehicles use their new pseudonyms to upload
their messages with obfuscated driving statuses until the next pseudonym swap. Thus, the prob-
ability Pr[(M̂T+

a , idT+
a )|(MT+

a ,MT -
a , idT -

a )] that va with its actual driving statuses MT -
a ,MT+

a ,
and pseudonym idT -

a generates message (M̂T+
a , idT+

a ) after swapping pseudonyms can be calcu-
lated as

Pr[(M̂T+
a , idT+

a )|(MT+
a ,MT -

a , idT -
a )]

=Pr[(M̂T+
a , idT+

a )|(MT+
a , idT+

a )] Pr[idT+
a |(MT -

a , idT -
a )]

= Pr[M̂T+
a |MT+

a ]︸ ︷︷ ︸
Obfuscation after swap

∑
M̂T -

y

(
Pr[idT+

a |(M̂T -
y ,idT -

a )]︸ ︷︷ ︸
Swapping pseudonyms

Pr[M̂T -
y |MT -

a ]︸ ︷︷ ︸
Obfuscation before swap

)
,

(5.13)

where MT -
a and MT+

a are the sequences of the actual driving statuses from va before and after
swapping the pseudonyms, respectively. M̂T -

a and M̂T+
a can be any sequences of the obfuscated

driving statuses from va before and after swapping the pseudonyms, respectively. M̂T -
y is a

possible sequence of the obfuscated driving statuses of va before swapping the pseudonyms. In
JTOPS, the trajectory obfuscation is independent of the pseudonym swap, but the pseudonym
swap relies on the obfuscated statuses.

5.4.3 Privacy Analysis

In this chapter, we first prove that the JTOPS with the spatial-temporal driving statuses
satisfies the T-I. Then, we discuss the improvement of the distinguishability upper bounds
obtained by jointly considering trajectory obfuscation and pseudonym swapping.

Theorem 4. For any sequence of obfuscated messages (M̂T+
x , idT+

x ), the JTOPS mechanism
satisfies the (ε, R)-Trajectory-Indistinguishability that any two vehicles va and vb in region R

are (ε,R)-trajectory-indistinguishable.

Proof. Assuming that the pseudonyms are swapped at time T , we can substitute (5.17), (5.8),
and (5.9) into (5.13), and evaluate the distinguishability of va and vb, i.e., the difference of the
probabilities that va with (MT+

a ,MT -
a , idT -

a ) and vb with (MT+
b ,MT -

b , idT -
b ) generate (M̂T+

x , idT+
x ),

as given in (5.11).
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Pr[(M̂T+
x ,idT+

x )|(MT+
a ,MT -

a ,idT -
a )]

Pr[(M̂T+
x ,idT+

x )|(MT+
b ,MT -

b ,idT -
b )]

=

e−
ε
2 d(M̂x,MT+

a )

∑
M̂z

e−
ε
2 d(M̂z,M

T+
a )

∑̂
MT -

y

⎛
⎝ e

− ε
2VT -

x,a∑
idT -

c ∈S
e−

ε
2WT -

c,a
× e

− ε
2 d(M̂T -

y ,MT -
a )

∑
M̂z

e−
ε
2 d(M̂T -

z ,MT -
a )

⎞
⎠

e−
ε
2
d(M̂x,M

T+
b )∑̂

Mz

e−
ε
2
d(M̂z ,M

T+
b )

︸ ︷︷ ︸
Obfuscation after swap

∑̂
MT -

y

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−
ε
2
VT -
x,b∑

idT -
c ∈S

e−
ε
2
WT -

c,b

︸ ︷︷ ︸
Swapping Pseudonyms

× e−
ε
2
d(M̂T -

y ,MT -
b )∑̂

Mz

e−
ε
2
d(M̂T -

z ,MT -
b )

︸ ︷︷ ︸
Obfuscation before swap

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.11)

In (5.11), M̂z, consisting of the obfuscation candidates m̄ ∈ M̄, is a possible sequence of the
driving statuses in region R. M̂T -

x is the sequence of obfuscated driving statuses reported with
idT -

x . (M̂T -
c , idT -

c ) is the sequence of the uploaded messages reported by any other vehicle vc ∈ S.
M̂T -

y is a possible sequence of the driving statuses of va and vb before time T .

To simplify (5.11), we let

f(Mj) =
∑
M̂z

e−
ε
2
d(M̂z ,Mj); (5.12)

h(Mj) =
∑

idT -
c ∈S

e−
ε
2
WT -

c,j ; (5.13)

H(Mj, M̂
T -
y ) =

1

h(Mj)
e−

ε
2
VT -
x,a × 1

f(MT -
j )

e−
ε
2
d(M̂T -

y ,MT -
j ). (5.14)

Thus, (5.11) can be rewritten as

Pr[(M̂T+
x , idT+

x )|(MT+
a ,MT -

a , idT -
a )]

Pr[(M̂T+
x , idT+

x )|(MT+
b ,MT -

b , idT -
b )]

=
f(MT+

b )

f(MT+
a )

e
ε
2(d(M̂

T+
x ,MT+

b )−d(M̂T+
x ,MT+

a ))

∑̂
MT -

y

H(Ma, M̂
T -
y )

∑̂
MT -

y

H(Mb, M̂T -
y )

. (5.15)

For any obfuscated driving statuses (M̂T -
x , M̂T+

x ) from vx, as the driving statuses hold the
triangle inequality, we have

D (vb, vx)−D (va, vx) ≤ D(va, vb). (5.16)

Thus, (5.15) meets the following inequality

Pr[(M̂T+
x , idT+

x )|(MT+
a ,MT -

a , idT -
a )]

Pr[(M̂T+
x , idT+

x )|(MT+
b ,MT -

b , idT -
b )]

≤ f(MT+
b )

f(MT+
a )

× e
ε
2
d(MT+

a ,MT+
b ) ×

∑̂
MT -

y

H(Ma, M̂
T -
y )

∑̂
MT -

y

H(Mb, M̂T -
y )

. (5.17)

By employing the triangle inequality, i.e., d(M̂z,M
T+
b ) ≥ d(M̂z,M

T+
a )−d(MT+

a ,MT+
b ), we have

e−
ε
2
d(M̂z ,M

T+
b ) ≤ e−

ε
2(d(M̂z ,M

T+
a )−d(MT+

a ,MT+
b )). (5.18)
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Based on (5.18), for all M̂z consisting of m̄, the following holds

∑
M̂z

(
e−

ε
2
d(M̂z ,M

T+
b )−e−

ε
2

(
d(M̂z ,M

T+
a )−d(MT+

a ,MT+
b )

))
≤0,

which can be rewritten as∑
M̂z

e−
ε
2
d(M̂z,M

T+
b )−e

ε
2
d(MT+

a ,MT+
b )

∑
M̂e−

ε
2
d(M̂z,M

T+
a )≤0. (5.19)

Based on the definition of f(Mj) in (5.12), we have

f(MT+
b )− e

ε
2
d(MT+

a ,MT+
b )f(MT+

a ) ≤ 0, (5.20)

which leads to
f(MT+

b )

f(MT+
a )

≤ e
ε
2
d(MT+

a ,MT+
b ). (5.21)

By multiplying e
ε
2
d(MT+

a ,MT+
b ) on the both sides of (5.21), it follows that

f(MT+
b )

f(MT+
a )

× e
ε
2
d(MT+

a ,MT+
b ) ≤ eεd(M

T+
a ,MT+

b ). (5.22)

Combining (5.17) and (5.22), we have

Pr[(M̂T+
x , idT+

x )|(MT+
a ,MT -

a , idT -
a )]

Pr[(M̂T+
x , idT+

x )|(MT+
b ,MT -

b , idT -
b )]

≤ eεd(M
T+
a ,MT+

b ) ×

∑̂
MT -

y

H(Ma, M̂
T -
y )

∑̂
MT -

y

H(Mb, M̂T -
y )

. (5.23)

Based on the definition of H(Mj, M̂
T -
y ) in (5.14), we have

H(Ma, M̂
T -
y )

H(Mb, M̂T -
y )

=
h(Mb)

h(Ma)
× f(MT -

b )

f(MT -
a )

× e
ε
2
(VT -

x,b−VT -
x,a) × e

ε
2(d(M̂T -

y ,MT -
b )−d(M̂T -

y ,MT -
a )), (5.24)

By following the analysis from (5.18) to (5.22), we attain

f(MT -
b )

f(MT -
a )

≤ e
ε
2
d(MT -

a ,MT -
b ). (5.25)

Based on the triangle inequality of driving statues, we have

e
ε
2(

1
2
d(M̂T -

c ,MT -
b )− 1

2
d(M̂T -

b ,MT -
b ))

e
ε
2(

1
2
d(M̂T -

c ,MT -
a )− 1

2
d(M̂T -

a ,MT -
a ))

≤ e
ε
2(

1
2
d(MT -

a ,MT -
b )− 1

2
d(M̂T -

b ,MT -
b )+ 1

2
d(M̂T -

a ,MT -
a )). (5.26)

As 0 ≤ d(MT -
b ,MT -

a ) ≤ 1, we have

e−
ε
2

(
1
2
d(M̂T -

c ,MT -
b )+ 1

2
d(M̂T -

b ,MT -
b )

)
≤ e−

ε
2

(
1
2
d(M̂T -

c ,MT -
a )− 1

2
d(MT -

b ,MT -
a )+ 1

2
d(M̂T -

b ,MT -
b )

)
. (5.27)
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By following the analysis in (5.18) - (5.22), we have

∑
idT -

c ∈S e
− ε

2

(
1
2
d(M̂T -

c ,MT -
b )+ 1

2
d(M̂T -

b ,MT -
b )

)
∑

idT -
c ∈S e

− ε
2

(
1
2
d(M̂T -

c ,MT -
a )+ 1

2
d(M̂T -

a ,MT -
a )

) ≤ e
ε
2

(
1
2
d(MT -

b ,MT -
a )+ 1

2
d(M̂T -

a ,MT -
a )− 1

2
d(M̂T -

b ,MT -
b )

)
. (5.28)

Based on the definition of h(Mj) in (5.13), it follows:

h(Mb)

h(Ma)
≤e

ε
2(

1
2
d(MT -

a ,MT -
b )− 1

2
d(M̂T -

b ,MT -
b )+ 1

2
d(M̂T -

a ,MT -
a )). (5.29)

Combining (5.26) and (5.29), we have

h(Mb)

h(Ma)
× e

ε
2
VT -
x,b

e
ε
2
VT -
x,a

≤ e
ε
2(d(MT -

a ,MT -
b )−d(M̂T -

b ,MT -
b )+d(M̂T -

a ,MT -
a )), (5.30)

which leads to
H(MT -

a , M̂T -
y )

H(MT -
b , M̂T -

y )
≤ eεd(M

T -
a ,MT -

b ). (5.31)

As M̂T -
y can be any possible obfuscated driving status, the following holds

∑̂
MT -

y

H(MT -
a , M̂T -

y )

∑̂
MT -

y

H(MT -
b , M̂T -

y )
≤ eεd(M

T -
a ,MT -

b ). (5.32)

By substituting (5.32) into (5.23), we finally have

Pr[(M̂T+
x , idT+

x )|(MT+
a ,MT -

a , idT -
a )]

Pr[(M̂T+
x , idT+

x )|(MT+
b ,MT -

b , idT -
b )]

≤ eεd(M
T -
a ,MT -

b )eεd(M
T+
a ,MT+

b ) = eεD(va,vb), (5.33)

which satisfies (5.16). In other words, for any sequence of uploaded messages (M̂T+
x , idT+

x ),
vehicles va and vb in region R are (ε,R)-trajectory-indistinguishable. Hence, the proposed
JTOPS mechanism can protect privacy under the external GPA.

We find that pseudonym swapping can be considered a differential privacy process.

Corollary 3. Pseudonym swapping can be treated as a differential privacy process.
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Proof. Let id′ be any pseudonym after pseudonym swapping, and {id1, id2, · · · , idn} be the
identity set that can be swapped to id′. For any idi and idj (i, j ∈ [1, n]), the following holds,{

0 < Pr[id′|idi] ≤ 1,

0 < Pr[id′|idj] ≤ 1,

Let max(Pr[id
′|idi]

Pr[id′|idj ]) = x. According to the definition of Pr[id′|idi] and Pr[id′|idj], it is easy to
prove x ≥ 1.

Thus we have
1

x
≤ Pr[id′|idi]

Pr[id′|idj] ≤ x. (5.34)

Let ε = ln x. The above equation can be transformed to

e−ε ≤ Pr[id′|idi]
Pr[id′|idj] ≤ eε, (5.35)

which is an expression of differential privacy.

We next prove the superiority of the JTOPS, compared to the pseudonym-swapping-only or
trajectory obfuscation-only approach.

Corollary 4. Applying pseudonym swapping and trajectory obfuscation jointly can provide
higher location privacy-preserving capability than using either of the pseudonym swapping and
trajectory obfuscation.

Proof. When separately using the pseudonym swapping and trajectory obfuscation, the pseudonyms
are swapped based on the actual driving statuses. For any two vehicles va and vb at time T ,
the mechanism, which separately swaps the pseudonyms and obfuscates the driving statuses,
can be written as

Pr[(M̂T -
a , idT+

a )|(MT -
a , idT -

a )]

Pr[(M̂T -
b , idT+

b )|(MT -
b , idT -

b )]
=

Pr[M̂T -
a |MT -

a ]

Pr[M̂T -
b |MT -

b ]︸ ︷︷ ︸
Obfuscation before swap

× Pr[idT+
a |idT -

a ]

Pr[idT+
b |idT -

b ]︸ ︷︷ ︸
Swapping pseudonym

.
(5.36)

Assuming that the separate use of the pseudonym swapping and trajectory obfuscation is based
on DP, according to the definition of d(MT+

a , vT+
b ) and corollary 1, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Pr[M̂T -

a |MT -
a ]

Pr[M̂T -
b |MT -

b ]
≤ eεd(M

T -
a ,MT -

b );

Pr[idT+
a |idT -

a ]

Pr[idT+
b |idT -

b ]
≤ eε

′
,
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where ε′ is the privacy budget of the pseudonym-swapping process. The above equations lead
to

Pr[(M̂T+
a , idT+

a )|(MT+
a ,MT -

a , idT -
a )]

Pr[(M̂T+
b , idT+

b )|(MT+
b ,MT -

b , idT -
b )]

≤eεd(M
T -
a ,MT -

b )+ε′ . (5.37)

In the same case, according to the definition of H(Mj, M̂
T -
y ) in (5.14) and (5.18) - (5.31), the

JTOPS mechanism can be written as

Pr[(M̂T -
a ,idT+

a )|(MT -
a ,idT -

a )]

Pr[(M̂T -
b ,idT+

b )|(MT -
b ,idT -

b )]
=
H(MT -

a ,M̂T -
y )

H(MT -
b ,M̂T -

y )
≤eεd(M

T -
a ,MT -

b ). (5.38)

By comparing the right-hand sides of (5.37) and (5.38), jointly utilizing the trajectory obfus-
cation and pseudonym swapping has a lower upper bound of indistinguishability, indicating
the JTOPS achieves higher privacy protection than using trajectory obfuscation or pseudonym
swapping only.

The JTOPS swaps the pseudonyms based on the obfuscated driving statuses of the vehicles,
which does not increase the upper bound of the indistinguishability.

5.4.4 Under Collusion Attack

An adversary can potentially collude with the coordinator that is aware of the pseudonym
swapping results. Then, the old and new pseudonyms can be precisely linked. In this chapter,
we analyze how the JTOPS can limit the coordinator’s knowledge so as to protect the location
privacy of the vehicles. Compared with the existing pseudonym-based mechanisms [384], [401],
our mechanism can still protect the location privacy in the presence of an untrusted or collusive
coordinator.

If an adversary can precisely link the new and old pseudonyms, the Estimation Probability
(EP) that the adversary can accurately estimate the actual driving statuses of the vehicle is
defined as follows.

Definition 9 (EP). Given a set of obfuscated driving statuses M̂ = {m̂1, · · · , m̂i, · · · } from
vehicle v with the actual driving statuses M = {m1, · · · ,mi, · · · }, the EP of the vehicle i.e.,
θ(v), is given by

θ(v) =
1

k

∑
k
i=1 Pr[mi|m̂i], (5.39)

where m̂i is the obfuscated driving status of vehicle v based on the i-th actual mi. Pr[mi|m̂i] is
based on Bayes’ theorem [15]. A low EP indicates a high privacy-preserving capability.

As the pseudonym swapping results are known by the adversary, we introduce our previous
work RN-I [15] to show the JTOPS can still provide the location privacy. By extending the
metrics, the RN-I in this chapter is defined as follows.
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Definition 10 (RN-I). A mechanism satisfies (ε,R)-RN-I if and only if, with obfuscated driving
statuses M̂a, any actual driving status pair (Ma1, Ma2) of va yield

Pr[M̂a|Ma1 ]

Pr[M̂a|Ma2 ]
≤ eεd(Ma1 ,Ma2 ). (5.40)

Theorem 5. If an adversary colludes with the coordinator, the JTOPS mechanism can protect
the privacy of vehicles, such that, for the obfuscated driving statuses M̂a, any set of driving
statuses Ma1 and Ma2 of vehicle va satisfies RN-I.

Proof. We assume that pseudonym swapping results are exposed. Thus, the JTOPS would be
written as

Pr[M̂a|Ma1 ]

Pr[M̂a|Ma2 ]
, (5.41)

where M̂a is the reported trajectory of vehicle va.

By substituting (5.17) into (5.41), the latter can be written as

Pr[M̂a|Ma1 ]

Pr[M̂a|Ma2 ]
=

e−
ε
2 d(Ma1 ,M̂a)∑

M̂ax
e−

ε
2 d(Ma1 ,M̂ax )

e−
ε
2 d(Ma2 ,M̂a)∑

M̂ax
e−

ε
2 d(Ma2 ,M̂ax )

, (5.42)

where M̂ax is any sequence of obfuscated driving statuses that can be generated by vehicle va.

By following the analysis from (5.18) to (5.22), we have

d(M̂a,Ma2)− d(M̂a,Ma1) ≤ d(Ma1 ,Ma2). (5.43)

Let g(Mai) =
∑

M̂x
e−

ε
2
d(Mai ,M̂x), we have

Pr[M̂a|Ma1 ]

Pr[M̂a|Ma2 ]
=
g(Ma2)

g(Ma1)
e

ε
2

(
d(Ma2 ,M̂a)−d(Ma1 ,M̂a)

)
≤ g(Ma2)

g(Ma1)
e

ε
2
d(Ma1 ,Ma2 ). (5.44)

By employing the triangle inequality, we have

e−
ε
2
d(Ma2 ,M̂x) ≤ e−

ε
2(d(Ma1 ,M̂x)−d(Ma1 ,Ma2 )). (5.45)

Following the analysis of (5.18)–(5.22), we have

g(Ma2)

g(Ma1)
≤ e

ε
2
d(Ma1 ,Ma2 ). (5.46)

By substituting (5.46) into (5.44), the latter can be rewritten as

Pr[M̂a|Ma1 ]

Pr[M̂a|Ma2 ]
≤ eεd(Ma1 ,Ma2 ), (5.47)

which satisfies the RN-I. In other words, for any sequence M̂a of obfuscated driving statuses
from vehicle va, any two historical driving status sequences Ma1 and Ma2 in the prior knowledge
are (ε,R)-Road Network-indistinguishable. Hence, the proposed JTOPS mechanism can resist
internal GPAs.
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5.5 Experimental Results

In this chapter, we compare the JTOPS with the existing hybrid mechanism [75], which is
also based on pseudonyms and obfuscation in the same scenario as considered in this chapter.
We also compare the trajectory obfuscation process and pseudonym swapping process of the
JTOPS with the two latest mechanisms developed in [15] and [384].

The experiments are conducted with two real-world road networks2 and the T-Drive trajectory
(10,357 drivers in Beijing, China) [342]. The two real-world road networks are extracted from
the Open Street Map3. We utilize the trajectories of vehicles, which have at least ten trajectory
points in the experimental road networks. We set α1 = α2 = α3 = α4 = 0.25. In the
experiments, we average the ASR (5.11), DU (5.12), PU (5.13), and EP (5.39) of multiple
vehicles by running the mechanisms locally on the vehicles for 50 times.

5.5.1 Adversary’s Success Rate and Estimation Probability

The comparison of the ASR (5.11) among the JTOPS, Multilevel Location Privacy Scheme
(MLPS) [75], and Pseudonym Swap With Provable Unlinkability (PAPU) [384] mechanism is
shown in Fig. 5.2(a). The ASRs of PAPU and MLPS are higher than 80%, and do not change
with ε and the number of vehicles in S. The reason is that the two mechanisms require the
vehicles to report actual driving statuses. Adversaries can infer the actual identity of each
vehicle and ignore pseudonym swaps by matching the obtained driving statuses with their
prior knowledge of the vehicles. The ASR of the PAPU mechanism is higher than that of the
MLPS in both large and small regions, as the MLPM randomly selects cooperative vehicles
and the PAPU selects candidates with pseudonym swapping probabilities. Compared with the
two mechanisms, the proposed mechanism achieves a low ASR in both two road networks. The
JTOPS allows the vehicles to upload obfuscated driving statuses so that the adversary cannot
gain any useful information by eavesdropping. Even if the adversary has the prior knowledge
of the vehicles, the driving statuses can still be protected by the proposed JTOPS.

The ASRs of the JTOPS with different numbers of vehicles, ε, and region sizes are shown in
Fig. 5.2(b). The ASR increases with ε. It is evident that the JTOPS can provide better privacy
protection with a smaller ε. In the large region size, the ASR of the JTOPS is approximately
21% and 20.6% when ε is 10 and 5 vehicles. When 25 vehicles swap their pseudonyms, the
ASR decreases to 5% in both ε = 5 and ε = 10. The adversary cannot gain useful knowledge
by analyzing the obtained driving statuses of the vehicles as the uploaded driving statuses are
obfuscated. As a result, the adversary cannot match their prior knowledge, and it can only
randomly guess the actual identity of the vehicle. By randomly guessing the actual identity,
the number of vehicles in S has a stronger impact on the ASR than ε.

The comparison of the EP (5.39) between the JTOPS and Personalized Location Privacy-
Preserving mechanism (PLPP) [15] is shown in Fig. 5.2(c). The PLPP mechanism takes the
route distance as the only metric, while the JTOPS extends the metric to the location distance,
direction, speed, and driving time of the vehicles. As shown in Fig. 5.2(c), the proposed

2There are 3,246 trajectory points of 119 vehicles, 34 connections and 63 roads within the small region size
(116.3595°≤ longitude ≤ 116.3645°and 39.9135°≤ latitude ≤ 39.9085°). There are 20,745 trajectory points of
558 vehicles, 181 connections, and 386 roads within the large region size (116.357°≤ longitude ≤ 116.367°and
39.906°≤ latitude ≤ 39.916°).

3Open Street Map is an open-source database of the world’s geographic map. https://www.openstreetmap.
org/
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(a) The comparison of Adversary’s Success Rate (ASR) among our JTOPS, MLPS [75], and the
PAPU mechanism [384].

(b) The ASR of JTOPS.

(c) The comparison of EP between the JTOPS and PLPP mechanism [15].

Figure 5.2: The comparison of privacy protection and data utility.
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Table 5.2: Performance in Different Privacy Requirements (MLPM does not balance privacy
and utility).

Trade-off
Mechanism

Proposed JTOPS PAPU [384] PLPP [15] MLPM [75]

High
Privacy
(ε =
0.1)

ADU
1 km2 68.8% N/A 69.1% 68.2%

0.25 km2 61.3% N/A 60.6% 75.9%

PU
1 km2 77.2% 72.5% N/A N/A

0.25 km2 80.4% 68.9% N/A N/A

ASR (10
vehicles in
S)

1 km2 10.0% 93.2% N/A 91.6%

0.25 km2 10.2% 80.1% N/A 77.2%

High
Utility
(ε =
100)

ADU
1 km2 77.7% N/A 72.3% 68.2%

0.25 km2 75.8% N/A 72.4% 75.9%

PU
1 km2 79.3% 73.9% N/A N/A

0.25 km2 79.1% 70.4% N/A N/A

ASR (10
vehicles in
S)

1 km2 11.1% 93.2% N/A 91.6%

0.25 km2 11.9% 80.1% N/A 72.2%

mechanism provides a higher privacy-preserving capability than the PLPP mechanism in the
small region. The distance between the two mechanisms is significant under a high ε value. In
the large region, the two mechanisms have similar estimation probabilities of less than 0.01%.

5.5.2 Data Utility and Pseudonym Utility

We proceed to compare the trajectory obfuscation process and the pseudonym swapping process
of the JTOPS with the PLPP and PAPU mechanisms in Figs. 5.3. As shown in Fig. 5.3, the
trajectory obfuscation process of the JTOPS, which considers multiple driving statuses, achieves
a higher data utility than the PLPP mechanism. The improvement of data utility is significant
under a high ε because the mechanism has a high probability of selecting the candidate close to
the actual vehicle. The ADU (5.12) of the JTOPS is higher in data utility in the large regions
than it is in the small regions. This is because the obfuscation candidate set is fine-grained in
the large region, as the densities of the two regions are similar. Thus, the vehicles have more
choices, which are close to their actual driving statuses, in the large region than they have in
the small region. The difference of the DU between the JTOPS and PLPP is smaller in the
small regions than it is in the large regions, because the driving statuses between the vehicles
and candidates are close in a small region.

As shown in Fig. 5.3, the pseudonyms have a high data utility by using the JTOPS, that the
driving statuses reported with the pseudonym before the swapping process are similar to those
of the pseudonym after the swapping process. The reason is that the actual driving statuses
of the vehicles in road networks have high randomness, indicating the distance in the actual
driving statuses among various vehicles could be significant. The proposed mechanism utilizes
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Figure 5.3: The comparison of data and pseudonym utility.

obfuscated driving statuses that are selected from the obfuscated candidates. Thus, the distance
in the obfuscated driving statuses is stable in fixed road networks. As the large region and the
small region have a similar road density, the driving statuses of the candidates in the small
region are closer to each other than those in the large region. For the PAPU mechanism, the
driving status granularity of the vehicles in the small region is coarser than those in the large
region, so the PU of the PAPU mechanism in the small region is less than it is in the large
region.

5.5.3 Performance in Different Privacy Requirements

The comparisons of ADU, PU, and ASR under different privacy requirements among the
JTOPS, PAPU [384], PLPP [15], MLPM [75] are shown in Table 5.2. We follow the pri-
vacy setting of [15], where ε = 0.1 represents that the drivers need a high level of privacy
protection and ε = 10 represents that drivers need a high level of data and pseudonym utility.
A high ADU and PU correspond to a high utility of data and pseudonyms, while a low ASR
means high privacy protection.

In the ASR comparison, we assume there are ten vehicles in the pseudonym swapping process.
Compared with PLPP, the ASRs of PAPU and MLPM are high, and the values are around 80%
in the small region and more than 90% in the large regions. This is because the two mechanisms
do not protect the uploaded messages that the adversary can accurately match the pseudonyms
with the actual identities based on its prior knowledge. The ASRs of PAPU and MLPM do not
change with ε because ε does not influence the contents of the uploaded messages. The JTOPS
achieves a significant location privacy-preserving capability that its ASR values are almost 10%
in each case.

In the utility comparison, the ADUs of the JTOPS and PLPP are significantly higher in the
high-utility requirement case than they are in the high-privacy requirement case. This is because
the two mechanisms have a high probability of selecting candidates who are similar to the actual
driving statuses. The ADU of MLPM is lower than those of the two mechanisms because MLPM
selects cooperators randomly. The ADU of PAPU is not considered in this comparison, as PAPU
does not protect actual driving statuses. The PUs of the JTOPS and PAPU are similar, but
the PU of JTOPS is a bit higher than that of PAPU. One reason is that the JTOPS addresses
the conflict of pseudonym swapping, which is overlooked by PAPU. Another reason is that
the pseudonym swapping probability functions of the two mechanisms are different, where the
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JTOPS allows the vehicles to select a similar candidate with a high probability. Nevertheless,
the JTOPS still satisfies the concept of DP, which is explained as follows.

Let the actual driving status sequence of vehicle v is M = {m1, · · · ,ml}, and the obfusca-
tion candidate set is M̄ = {m̄1, · · · , m̄n}. The obfuscated driving statuses sequence of v is
M̂ = {m̂1, · · · , m̂l}. As each obfuscated driving status m̂ is independently selected, according
to (5.17), we have

Pr[M̂ |M ] =
∏

mi∈M

e−
ε
2
d(mi,m̂i)∑

m̄x∈M̄ e−
ε
2
d(mi,m̄x)

. (5.48)

For any m̂i ∈ M̂ , m̂ is selected from M̄, and each m̄ ∈ M̄ can be selected multiple times, so
that the denominator in (5.48) can be transformed into∏

mi∈M

∑
m̄x∈M̄e−

ε
2
d(mi,m̄x) =

∑
M̂x

e−
ε
2
d(M,M̂x), (5.49)

where M̂x is the possible sequence of driving statuses that consists of multiple m̂x.

Based on the definition of d(M1,M2) in (5.1), we have∏
mi∈M

e−
ε
2
d(mi,m̂i) = e−

ε
2
d(M,M̂). (5.50)

Thus, (5.48) can be rewritten as

Pr[M̂ |M ] =
e−

ε
2
d(M,M̂)∑

M̂x
e−

ε
2
d(M,M̂x)

. (5.51)

5.6 Conclusion

In this chapter, we defined a unified privacy-preserving measure, i.e., T-I, for mechanisms
that use trajectory obfuscation and pseudonym swapping and satisfy ε-DP. Using the T-I, we
proposed a new JTOPS, which is the first attempt to jointly employ trajectory obfuscation
and pseudonym swapping in road networks to protect both the identity and location privacy
of vehicles. The JTOPS was proved to achieve the T-I, and validated with comprehensive
experiments. The JTOPS can provide privacy protection in the case of GPAs with the full
prior knowledge or collusion attacks.
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Chapter 6

Conclusions and Future Work

6.1 Lessons Learnt and Open Challenges for LPPM in

Future Vehicular Networks

This section starts with illustrating the localization techniques in future vehicular networks,
which are compared with their counterparts in current versions. By discussing the new require-
ments of location privacy and data utility introduced by the novel localization, we present the
limitations of the existing LPPMs in future vehicular networks. The potential location pri-
vacy issues under the future cross-layer tracking techniques introduced by new communication
technologies are illustrated, and we offer solutions to these issues by improving the existing
LPPMs.

6.1.1 Advancement of Localization vs. Location Privacy

Localization technologies in future 5G/6G-enabled vehicular networks can be classified as basic
localization, cooperative localization, machine learning-based localization, driver tracking, and
multipath exploiting localization [411], as shown in Table 6.1. The differences in localization
techniques between the future vehicular networks and the current ones are also shown in Ta-
ble 6.1. We compare the BS density, recourse cost, and localization precision of the localization
techniques in Table 6.1. In future vehicular networks, localization, sensing, and communication
will coexist, sharing the same time-frequency-spatial resources [412], [413]. The localization
technologies in future vehicular networks are as follows [412].

Traditional Localization

Traditional localization technologies mainly focus on geometric calculation with augmented
assistance, under the assumption that the positions of the Base Stations (BSs) are knowable
and the positions of User Equipment (UEs) are geometric constrained [414]. For example, the
position of UEs can be calculated if the distances and physical angular orientations between
BSs and UEs are known. Compared with the localization precision of the existing cellular
radio-based tracking, the future basic localization could have high precision due to the high
data rates and scalability. The frequent communication and the high BSs density also expose
a granularity trajectory. The traditional localization techniques can be classified into distance
measurement, angle measurement, area measurement, and hop-count measurement [415], as
follows.
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Table 6.1: Difference of localization techniques in current vehicular networks and future vehic-
ular networks.

Localization
techniques

Features of
future
vehicular
networks

Corresponding
techniques in current
vehicular networks

Difference

Traditional
localization

High data rates
High scalability

Cellular radio-based
tracking

More BS and UE
More frequent signal
transmission
More accurate
localization

Cooperative
localization

Ultra-low
latency
High scalability

Sensing infrastructure-based
tracking
Cellular radio-based
tracking
Upper-layer message-based
tracking

More sensors
More frequent signal
transmission
Closer BS and UE

AI-based
localization

High data rates
High scalability

Sensing infrastructure-based
tracking
Optical vision-based
tracking
Upper-layer message-based
tracking

More sensors
More detailed dataset
Massive devices

Channel
charting

High scalability

Cellular radio-based
tracking
Sensing infrastructure-based
tracking
Upper-layer message-based
tracking

Considering channel
state information

Driver
tracking
localization

High data rates
Ultra-low
latency

Sensing infrastructure-based
tracking
Upper-layer message-based
tracking

More sensors
3D vehicular network

Multipath
exploiting
localization

Ultra-low
latency
High scalability

Cellular radio-based
tracking

More sensors
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SLAM

High data rates
Ultra-low
latency
High scalability

Vehicle driving log-based
tracking
Upper layer message-based
tracking
Cellular radio-based
tracking

More sensors
Considering
time-varying states
More fixed landmarks

Context-
aware
localization

High data rates
Ultra-low
latency

Vehicle driving log-based
tracking
Upper-layer message-based
tracking

Intelligent prediction
Massive personal
information

• Distance Measurement: Distance measurement calculates the positions with the obtained
distance-related measurements. The distance-related measurements leverage transmission time
(e.g., time difference of arrival), received signal strength indicator, and connectivity condi-
tion [416].

• Angle Measurement: Angle measurement employs trigonometry and geometric calculation,
which requires the distance and angular information between the target and BSs [417].

• Area Measurement: Area measurement localization technology uses the center intersection
of all overlapping coverage regions as the estimation position [418]. The more restricted zones
are obtained, the higher precision can be achieved [419].

• Hop-count Measurement: This kind of localization can be realized by analyzing the number
of hops [420], [421].

Cooperative Localization

Cooperative localization has been employed in current vehicular networks, as the vehicles
and other devices can communicate with others directly through D2D communication proto-
cols [422]. Cooperative localization allows UEs to measure the distance and angular information
on each D2D link [423]. UEs are typically closer to each other than to the BSs in D2D com-
munication, which has higher signal-to-noise ratio [424]. This method provides a high position
precision for cooperative localization. Due to the ultra-low latency and high scalability, mas-
sive nodes in future vehicular networks would be connected in the network, and the distance
between UEs would be closer than that in current version. Hence, the precision of cooperative
localization would be significantly more accurate in future vehicular networks than in current
version.

AI-based Localization

AI-based localization is a data-centric technique [411]. The localization algorithms utilize ma-
chine learning to generate a fingerprint database of the environment [425]. The fingerprinting
database contains the channel parameters (e.g., channel state information) that are measured
at the known locations (reference points) [426]. Then, the localization algorithms can compare
the information of the environment surrounding vehicles to estimate the drivers’ positions. In
future vehicular networks, the dataset for machine learning could be more detailed due to the
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features like hierarchical coexistence, flexible storage, and flexible processing.

Table 6.2: Localization technologies in future vehicular networks.

Localization BS Density Cost Precision

Traditional High Low [427] Low [428]
Cooperative Low Low [429] Medium [430]
AI-based Medium High [431] High [431]

Channel Charting Depends Depends Depends
Driver Tracking Medium Low [432] Medium [432]

Multipath Exploiting Low Medium [433] High [434]
SLAM Low Depends High [435]

Context-aware High Medium [436] High [437]

Channel Charting

Channel charting localization employs AI-based algorithms [438]. It generates a virtual map
based on the gained channel state information. The drivers can be located and tracked on
the virtual map. Although the map cannot provide the drivers’ actual locations, it offers a
real-time pseudo-location as reference [412].

Driver tracking localization

Driver tracking localization continuously infers the driver’s position to smooth out the esti-
mation errors [411]. This localization technique can predict the drivers’ trajectories with the
vehicle sensor data as follows.

• Passive Sensing: Passive sensing in future vehicular networks is also known as passive radar
or passive coherent location [412]. Passive sensing locates the target by receiving and process-
ing the energy reflected by the targets [439]. In future sensing infrastructure-based vehicular
networks, it is almost impossible to avoid disclosing location privacy by sensor signals.

• Active Sensing: Active sensing (radar) localization is employed in various scenarios, e.g.,
adaptive cruise control and cross-traffic alerts [440]. In future vehicular networks, sensors could
share the data related to the location information to support the high-precision localization
applications. The sensor localization will provide high-precision distance in 3D vehicular net-
works [412].

Multipath-based Localization

Multipath-based localization discloses the drivers’ positions by combining multipath compo-
nents and environment geometry [441]. The multipath components can be seen as mirror images
of a physical environment [442]. Using the road network environment knowledge, multipath-
based localization can be launched with the information of the radar signal path. Thus, the
multipath-based localization can exploit additional position-related data in radio signals, even
if the vehicles are not in the line of sight [443]. As the vehicles in future vehicular networks
would equip with multiple sensors, the radar-like signals from the sensors could be utilized in
multipath-based localization.
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Simultaneous Localization And Mapping (SLAM)

High data rates, ultra-low latency, and high scalability of the future vehicular networks in-
troduce SLAM for the vehicles. SLAM localization aims to estimate the state of the vehicles
and the landmarks [444]. The vehicles and other mobile devices in SLAM consider vehicles
with time-varying states [435]. In future vehicular networks, the SLAM can be classified into
vision-based SLAM and radar-based SLAM as follows.

• Vision-based SLAM : It uses image sensors (e.g., cameras) to detect landmarks whose states
are fixed or changing slowly.

• Radar-based SLAM : It requires laser sensors that can provide higher accuracy than vision-
based sensors. 3D lidar point clouds would be widely used in future autonomous vehicular
networks.

The entities in future vehicular networks can collect location information with radar-like signals
from other vehicles, fixed infrastructures, and sensors [445].

Context-aware Localization

The future 5G/6G-enabled vehicular networks allow intelligent data transmission and multi-
modal localization prediction by combining highly personal information with public data [437].
The drivers can select and change communication channels and technologies according to their
locations and contexts [436]. Thus, future vehicular networks could utilize the message context
in channels for localization.

6.1.2 Limitations and Opportunities of LPPMs for Future Upper
Layer Location Privacy Attacks

With the development of vehicular networks, there would be new challenges for the existing
LPPMs. The existing LPPMs mainly focus on upper-layer message-based tracking that the
adversaries with other tracking techniques (i.e., sensing infrastructure-based, optical vision-
based, vehicle driving log-based, and cellular radio-based) cannot be defended in the existing
vehicular networks. Nevertheless, as shown in Table 6.3, the existing LPPMs could not provide
acceptable location privacy protection under the upper-layer message-based attack scenario in
future vehicular networks.

User-side LPPM

Most of the existing user-side LPPMs cannot suit the low latency of the future vehicular
networks, i.e., pass-and-run, certificate, and secure computation. Although data perturbation
can satisfy the latency requirement, the location data protected by data perturbation cannot
provide high-precision LBSs for high-precision localization applications.

• Pass-and-Run: The communication delay in the pass-and-run is high since the vehicles apply
LBSs by routing through other nodes. Identity verification is also a challenge for the pass-and-
run-based vehicles because it would lead to high communication delays for legal cooperator
authentication [446]. The frequent communication among multiple vehicles could also increase
the precision of signal-based localization, i.e., basic localization and cellular radio-based local-
ization.
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Table 6.3: Challenge of location privacy in future vehicular networks.

Techniques New challenges
LPPMs that are
available

LPPMs that
need to be
improved

THz

Small coverage area
Spectrum penetration
power
Centimeter-level
precision via APs

Pass-and-run
Certificates for Privacy
Secure computation
Homomorphic
encryption
Private information
retrieval
Searchable encryption
Secure communication

Data
perturbation
Statistical
disclosure
control
Trusted third
party

VLC

Signal scatter
Observation signal
Effective transmission
requirement

Certificates for Privacy
Secure communication
Trusted third party

Pass-and-run
Data
perturbation
Secure
computation
Statistical
disclosure
control
Private
information
retrieval
Homomorphic
encryption
Searchable
encryption

mmWave

Exchange CSI frequently
Low latency requirement
Eavesdrop channel easily

Certificates for Privacy
Secure computation
Data perturbation
Statistical disclosure
control
Homomorphic
encryption
Private information
retrieval
Searchable encryption
Trusted third party
Secure communication

Pass-and-run
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Sub-6 GHz

Flexible antenna design
Fake BS and malicious
devices
In-vehicle tracking

Pass-and-run
Certificates for Privacy
Secure communication
Trusted third party

Secure
computation
Data
perturbation
Statistical
disclosure
control
Homomorphic
encryption
Private
information
retrieval
Searchable
encryption

Satellite
Communic-

ation

Long propagation delay
Difficult to allocate
MIMO
Communication resource
allocation

Certificates for Privacy
Data perturbation
Statistical disclosure
Secure communication
Trusted third party

Pass-and-run
Secure
computation
Homomorphic
encryption
Private
information
retrieval
Searchable
encryption

QC
Quantum channel
Quantum computer

Certificates for Privacy
Secure computation
Data perturbation
Statistical disclosure
control
Secure communication
Trusted third party

Pass-and-run
Homomorphic
encryption
Searchable
encryption
Private
information
retrieval
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The transmission delay caused by routing can be decreased by sensors that are fully used in
future vehicular networks. With the sensors, the drivers can have full knowledge of the road
network and communication environment to select the channels and routers (i.e., vehicles and
sensors) [447]. The trust issues of the pass-and-run can be solved by trust management, i.e.,
authentication and certificate. The advanced blockchain technologies [448] would be utilized in
future vehicular networks, which can also be employed for trust management.

• Certificates for Privacy: Certificate-based LPPMs achieve authentication by verifying the
certifications and signatures [182]. There are two limitations of the certificate-based LPPMs in
future vehicular networks: requiring a trusted authority and storage consumption of certificate
management [380]. The delay caused by the authentication process might be unacceptable
for communication consumption [449]. The massive nodes, i.e., vehicles and sensors, would
increase the storage consumption, which would be challenging to manage certificates.

The features of blockchain, i.e., immutable, secure, and consensus, satisfy the authentication
requirement [17]. Therefore, the blockchain platform could be utilized as a support for certifi-
cates [284]. The information collected by sensors could also be referred to for authentication.

• Secure Computation: The major limitation of secure computation is computation delay,
although it satisfies the requirement of flexible storage and processing. Even in current vehicular
networks, the computation consumption of the existing secure computation is still a problem [5].

• Data Perturbation: Data perturbation is flexible for storage and processing [15]. The commu-
nication and calculation delays of the data perturbation are also low. Nevertheless, the future
vehicular networks require highly accurate location data, i.e., centimeter-level or millimeter-
level, but the existing data-perturbation-based LPPMs generally generate meter-level preci-
sion [450]. If the data perturbation provides centimeter-level or millimeter-level precision, the
location privacy-preserving capability of the LPPMs could be extremely low [451].

The scenario for data perturbation in future vehicular networks would be limited. Hence, it
should be combined with other LPPMs and use adaptive noise to satisfy the future scenario.

Server-side LPPM

The low latency requirement also challenges the existing server-side LPPMs, as the process at
the server side could bring computation delay.

• Statistical Disclosure Control: The statistical disclosure control is achieved by using LPPMs,
like data perturbation, secure computation, and anonymity on the server side [222]. Therefore,
the limitations of the corresponding LPPMs on the user side also exist on the server side. As
data transmission in future vehicular networks would be ultra frequent and the amount of data
would be huge, computing consumption, storage consumption, and data management would be
great challenges for statistical disclosure control.

The data management and storage consumption of statistical disclosure control could be op-
timized by utilizing blockchain-based techniques, but the computing consumption would be
difficult to decrease [227]. AI-based LPPMs can be launched to achieve adaptive protection
and efficient analysis to simplify the process [51]. Trust management could also be employed
in statistical disclosure control to avoid costing computational resources on trusted entities.

• Homomorphic Encryption: Homomorphic encryption is one of the popular, secure computa-
tions. The server-side homomorphic encryption is also limited by its computation delay, which

125



can lead to a high computational and communication consumption [250]. It is necessary to
simplify the process of homomorphic encryption for computational consumption reduction.

• Private Information Retrieval: The computational consumption of the PIR cloud be high,
which is difficult to be allocated in current vehicular networks. For the future vehicular networks
with low-latency requirements, the current version of PIR would also be impossible to be
launched in practice.

• Searchable Encryption: The LBSs in future vehicular networks require high-precision location
data, but the existing SE schemes would return results with errors to the drivers. The existing
works allow the drivers to use SE and other LPPMs together to improve the accuracy of results.
Nevertheless, the computational consumption could also be increased when SE schemes are
combined with certificated-based or other tools.

Information from sensors in future vehicular networks could be referred to correct the result,
as massive sensors would be allocated. Also, AI-based LPPMs can be introduced to optimize
the result according to the driver’s historical information, which would be fine-grained [452].

User-server-interface LPPM

The user-server-interface LPPMs would attract more researchers’ attention in future vehicular
networks than in the current version because future vehicular networks would ask the vehicles
to share data through frequent V2X communication. Protecting location privacy in channels
would be an approach to defend basic localization, channel charting localization, and driver
tracking localization.

• Secure Communication: The communication channel protocols of future vehicular networks
would be improved to be different from the current protocols. As the protocols of current
vehicular networks have not been completely developed, we do not consider the protocols in
this part. For the end-to-end encrypted services of secure communication, it is seldom used
in current vehicular networks [273]. The computational consumption of data encryption and
decryption could be high, increasing the latency of communication.

• Trusted Third Party (TTP): TTP in current vehicular networks is an ideal scenario which is
difficult to achieve privacy, as the adversaries can hijack the TTP even if the TTP is controlled
by government1. In future vehicular networks, there will be massive sensors and vehicles which
can generate a huge amount of data. A hijacked TTP could lead to serious privacy disclosure.
The trust issues of the massive sensors and vehicles also reduce the efficiency of TTP. To solve
these limitations, TTP should be combined with other LPPMs, such as encryption, blockchain,
AI-based LPPMs, anonymity, and data perturbation.

6.1.3 Location Privacy Challenges and Emerging Wireless Technolo-
gies

Different from the existing vehicular networks, the future version transmits data through new
communication mediums. The new communication mediums improve the efficiency of vehicular
networks but bring new cross-layer location privacy issues.

1bleepingcomputer.com/news/security/hacker-claims-to-have-stolen-data-on-1-billion-

chinese-citizens/
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• Sub-6 GHz: The Sub-6 GHz has a spectrum range from 0.45 GHz to 6 GHz and wavelength
from 0.15 cm to 2 cm [115]. The wide coverage capability and low cost have been extensively
investigated in the existing works to support V2X communications [453].

The sub-6 GHz techniques introduce new challenges to the existing physical-layer LPPMs be-
cause of the flexible antenna design [454]. However, the flexible antenna design allows the
pass-and-run to transform data effectively. By using fake BSs and malicious devices, the ad-
versaries can obtain distance and angular data by monitoring multiple sub-6 GHz links, with
which the adversaries can calculate the positions of vehicles in high precision [455]. The above
two issues could be solved by using the certificate and a trusted third party, which aims to de-
tect illegal entities for authentication. Nevertheless, data perturbation and statistical disclosure
control increase the difficulty of illegal entity detection.

Malicious applications can be installed on mobile devices or vehicles for tracking the vehicles.
The Pegasus developed in Israel can be installed on Android and iOS mobile phones to monitor
drivers’ location data. The in-vehicle communication via the sub-6 GHz channel can expose
the vehicles’ location data, as mobile phones have similar location data to the vehicles if the
drivers carry mobile phones when driving [142]. To protect location privacy in such a scenario,
the driver can hide its semantic information in the location data and block the adversaries’
eavesdropping links. Hence, the user-server-interface LPPMs and server-side LPPMs would
attract attention to the sub-6 GHz techniques when combined with the AI and blockchain
techniques.

• mmWave: The mmWave has a spectrum range from 30 GHz to 100 GHz and a wavelength
from 1 nm to 10 mm [456]. Due to the beam-based directional transmissions and the utilization
of the huge spectrum, mmWave can reach a high multi-gigabit speed and communicate in all
weather [457].

In future vehicular networks, the frequent changing of the network topology and channel re-
quires nodes (e.g., vehicles, RSUs, and sensors) to exchange CSI with a low delay, which
increases communication consumption [458]. As the V2X communication needs a low trans-
mission delay, the LPPMs in future vehicular networks should be highly efficient. Pass-and-run
will increase the transmission delay, so it cannot satisfy the low latency requirement of mmWave.

The adversaries can eavesdrop on the mmWave to obtain and infer the transmitted location
data [459]. However, the Doppler shift of signal transmission, which is unavoidable in future
mmWave-based vehicular networks, can be combined with the data perturbation and anonymity
to protect location privacy [460]. Then, the adversaries cannot obtain the real information by
eavesdropping. Secure computation, homomorphic encryption, private information retrieval,
and searchable encryption could be used to prevent the adversaries from obtaining the useful
information by eavesdropping because they do not expose the private information in the channel.

• Terahertz (THz) communication: The THz has a spectrum range from 100 GHz to 10 THz
and a wavelength from 30 μm to 3000 μm [461]. Nevertheless, the communication region of the
THz is small, i.e., less than 50 m [462]. The frameworks of the THz-based vehicular networks
have been designed in the existing studies, e.g., [463]–[465]. To overcome the limitation of small
coverage regions and improve the utilization of THz bands, the design in [463] used an SDN
controller to select an optimal route between the source and the destination.

As shown in Table 6.3, the existing LPPMs would face new challenges with THz communication.
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The pass-and-run mechanism could be improved with the THz-based routing, but the trust
issues would be more serious in future vehicular networks than that in current version. Hence,
the certificate-based LPPMs would be popular in future THz-band communication. Although
the low coverage area and penetration power of THz spectrum increase the privacy level of the
communication medium, THz-band communication requires the vehicles’ private information,
e.g., whereabouts, driving status, road network information, and traffic condition [463]. The
potential optimization for the above two drawbacks could be overcome by combining the trust
management mechanisms and blockchain or AI-based techniques. As the coverage area of the
THz is small, the data perturbation and statistical disclosure control cannot provide expected
location privacy protection with a small number of perturbation candidates. The numerous
legal sensors in future networks could also be a good choice to route the data.

The Access Points (APs) for THz-band communication, which are a kind of trusted third party,
can achieve centimeter-level precision of localization when tracking the vehicle’s mobility to
overcome the limitations of the existing vehicular networks (e.g., frequent network disconnection
and volatility of connection) [466]. Nevertheless, the existing DP-based user-side LPPMs cannot
satisfy the high-precision localization in such a scenario. Thus, the DP-based LPPMs on the
server side have more widespread application prospects than they are on the user side. In future
vehicular networks, the user-side DP-based LPPMs should focus on more driving states rather
than only using location data to achieve high data utility [467].

• Visible Light Communication (VLC): Lighting devices in vehicular networks, such as traffic
signals, roadside lights, and vehicle lights, can be employed for VLC to send data with Light-
Emitting Diode (LED) installations [468]. VLC has a spectrum range from 400 THz to 800
THz and a wavelength from 380 μm to 780 μm [469]. VLC assists the communication for V2X
with low energy consumption and high efficiency [470].

Due to the inevitable scatter issues, VLC outside is not as safe as it is inside [471], and it can
be eavesdropped on by the adversaries. For outside VLC for V2X, the scattered signals can
be received by the adversaries, i.e., eavesdropper [472], even though the techniques like non-
orthogonal multiple access [473] and pseudo surface waves [474] can minimize the attenuation
effect. Therefore, the pass-and-run in VLC will increase the risk of eavesdropping. Data
perturbation and statistical disclosure control cannot protect location data when the source of
the signal can be physically observed. As the signal has been observed on the user side, the
server-side LPPMs cannot provide location privacy protection.

As the privacy risk introduced by the use of VLC is related to its physical channel characteris-
tics, the certification for authentication and the user-server-interface LPPMs could outperform
other existing LPPMs. The certification-based methods can achieve high location privacy pro-
tection in short-range VLC by preventing unauthorized receivers from joining VLC, as the
scattered signals in shot-range VLC can be ignored [471]. When VLC is allocated for remote
communication, the physical layer LPPMs, e.g., cooperative jamming [475] and Channel State
Information (CSI) estimation [472], can be used to prevent the eavesdropper from obtaining
the transmitted private information. Cooperative jamming is a positive LPPM that aims to
block the eavesdropper’s channel by allowing multiple legal nodes to route the signal [476].
The CSI estimation is a passive LPPM that asks the legal nodes to infer the CSI of legal and
eavesdropping links with which the legal nodes can select different devices to send signals [472].

• Quantum Communication (QC): The QC utilizes the quantum states of lights, which achieves
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secure communication by using microscopic particles to carry quantum information [477].

Quantum Key Distribution (QKD) has been integrated with existing classical optical networks
in QC to achieve cost-efficient and secure communication [478]. Tradition cryptography that
relies on mathematical computations is challenged by the development of quantum computing,
making QKD important in QC [479]. QKD is based on Heisenberg’s uncertainty principle and
quantum no-cloning theorem enabling detection of eavesdropping on the key distribution [480].
However, QKD cannot protect location privacy in vehicular networks, as the laser for QC can
be used to infer the direction of the source and destination vehicles. To address this limitation,
quantum homomorphic encryption [481], quantum searchable encryption [482], and quantum
private information retrieval [483] have been developed for secure QC based on QKD. These
techniques enhance the security of QC by enabling computation on encrypted data without
decryption, secure search of encrypted data, and retrieval of data from a database without
revealing the query contents, respectively.

To enable scalable quantum communication with massive nodes, researchers have been explor-
ing quantum teleportation (QT) in long-range communication scenarios. QT allows for the
sender to divide information into traditional and quantum channels and transfer the message
to the receiver through both channels, with the message at the sender side being destroyed
during transmission. This method has received significant attention due to its potential for
log-range communication [484], [485]. However, the use of QT in vehicular networks presents a
challenge to existing routing-based PPMs, such as pass-and-run, as they become ineffective in
this scenario [485].

Quantum Identity Authentication (QIA) and Quantum Signature (QS) are introduced to realize
trust management for secure and reliable QC. The trust management in QC can be classified
into objective trust and subjective trust, as follows,

• Objective Trust: The trust management is based on certifiable evidence, e.g., certification.

• Subjective Trust: The trust management is based on a kind of group, which has specific
characteristics or behaviors, e.g., TTP.

Hence, the certification-based LPPM and statistical disclosure control can be improved to
achieve a secure QC in vehicular networks.

• Reconfigurable Intelligent Surface (RIS): Comprising passive reflect arrays and control ele-
ments, RIS provides a programmable wireless environment for the vehicle-road-human inte-
grated network, which exploits the advantages of the novel electromagnetic wave manipulation
technique, i.e., metamaterials [486]. As there are no specific or complicated requirements for
the installation location of the metamaterials, RIS can be easily installed, e.g., on the building
facades and billboards, which are close to the roads for communication support [487]. The
metamaterials would have low computational and energy consumption [488]. Hence, RIS is
conducive to future large-scale deployment, which can also conform to the concept of green
communication and sustainable development. The support of full-duplex and full-band com-
munication in RIS provides comprehensive coverage and diverse options for vehicular commu-
nications [489]. Furthermore, Multi-Input Multi-Output (MIMO) technology could be applied
to RIS to utilize the large surface area of RIS for better antenna deployment, which shows
great potential in future vehicular networks [490]. However, the mobility and personalization
of the drivers in vehicular networks have been overlooked by the existing RIS design [491].
The dynamic network topology and disconnection of vehicular networks lead to a low utility
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of RIS in vehicular networks, as the RIS cannot gain knowledge from the frequently changed
environment or the limited feedback from the drivers [491].

6.1.4 Challenges Arising from Networks Convergence

In the integrated vehicular networks, the vehicles can exchange information and communicate
with other vehicles, roadside infrastructure, and pedestrians automatically through real-time
V2X communications [492]. With the support of V2X technology, traffic information (e.g.,
vehicle status, live road conditions, and pedestrian information) enable the formation of the
integrated vehicle-road-human network [115]. The components with 5G/6G characteristics in
the integrated vehicle-road-human network are illustrated as follows.

• Integrated Satellite and Terrestrial Network (ISTN): The satellite communication, which is
vulnerable to changeable weather, can provide future vehicular 3D services while cooperating
with the existing ground vehicular networks [115].

Satellite communication has the limitations such as long propagation delay, difficulty in allocat-
ing massive Multiple-Input Multiple-Output (MIMO) networks, and communication resource
allocation [453]. Therefore, the pass-and-run is difficult to be used in satellite communication
because of its transmission delay. Other existing LPPMs, e.g., homomorphic encryption and
secure communication, which have high computational consumption and communication delay,
should be optimized to improve their efficiency. To overcome the above limitations, the recourse
consumption methods could be run on trusted third parties. The data perturbation and sta-
tistical disclosure control can protect location privacy effectively so that they can outperform
their counterparts in satellite communications.

• Human Interaction: The rapid development of mobile devices carried by pedestrians has
brought powerful communication and data processing capabilities to enable information in-
teraction between the pedestrians and vehicles [493]. Communication between the vehicles
and humans (including the pedestrians, vehicle drivers and passengers) will be more frequent
and efficient in future vehicular networks, which can be utilized to improve the vehicular net-
works [494]. By sharing data actively and passively with the pedestrians, the vehicles can
overcome the limitations of blind spots in vehicular sensor cameras. And thus, the vehicles
can obtain services like accurate situation reporting and early warnings that can reduce the
traffic accidents and protect lives and property [495]. With the mobile devices equipped by
the drivers and passengers, the vehicles can communicate with the base stations efficiently and
can autonomously complete the required tasks. For instance, the vehicles without GPS can
also be accurately located with the smart devices of passengers [496]. Frequent communication
between the vehicles and pedestrians increases the risk of cross-layer attacks. The encounter
information can be combined to infer the trajectory of the target vehicle. Trust management-
based LPPMs can be employed to prevent the adversaries who can localize the drivers based
on the in-vehicle driving log and sensing information will be more serious.

6.2 Summary of Outcomes

In this thesis, we started by reviewing the existing localization techniques and LPPMs, where
their advantages and limitations are discussed. To balance location privacy protection and
data utility in real-world road networks, we proposed a personalized location privacy-preserving
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mechanism with a novel Road-Indistinguishability Theorem. Based on the RN-I, we then pro-
posed two mechanisms: obfuscated vehicular trajectory detection and cloak region obfuscation.
The former allows LBS providers to detect malicious vehicles without breaching the location
privacy protection, while the latter extends the parameters of the proposed RN-I. By using
anonymity and differential privacy, we proposed a novel Joint Trajectory Obfuscation and
Pseudonym Swapping mechanism, which is proven to combine two differential privacy process-
ing without introducing the additivity composition theorem of ε-DP.

6.3 Recommendations & Future Work

In future work, we will find the correlation between differential privacy and anonymity. We have
found that t-closeness is equivalent to differential privacy, and ε-DP can achieve eε-closeness
anonymity using only DP-based obfuscated results. The draft of this is about to be submit-
ted. The discovery will be extended to other scenarios, such as split learning and quantum
communication.
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Mezinárodnıé vztahy, vol. 56, no. 1, pp. 35–67, 2021.

[305] D. J. Leith and S. Farrell, “Contact tracing app privacy: What data is shared by Eu-
rope’s GAEN contact tracing apps,” in IEEE INFOCOM 2021 - IEEE Conf. Comput.
Commun., IEEE, 2021, pp. 1–10.

[306] J. Rannikko, P. Tamminen, R. Hellsten, J. P. Nuorti, and J. Syrjänen, “Effectiveness of
COVID-19 digital proximity tracing app in Finland,” Clin Microbiol Infect, 2022.

[307] J. H. Reelfs, O. Hohlfeld, and I. Poese, “Corona-Warn-App: Tracing the start of the
official COVID-19 exposure notification app for Germany,” in Proceedings of the SIG-
COMM’20 Poster and Demo Sessions, 2020, pp. 24–26.

[308] T. Alanzi, “A review of mobile applications available in the app and google play stores
used during the COVID-19 outbreak,” J. Multidiscip. Healthc., vol. 14, p. 45, 2021.

151



[309] P. Rodrıéguez, S. Graña, E. E. Alvarez-León, et al., “A population-based controlled
experiment assessing the epidemiological impact of digital contact tracing,” Nat. Com-
mun., vol. 12, no. 1, pp. 1–6, 2021.

[310] S. Geber and T. N. Friemel, “A typology-based approach to tracing-app adoption during
the COVID-19 pandemic: The case of the SwissCovid app,” J. Quant. Descr., vol. 1,
online, 2021.

[311] H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Imran, “BeepTrace:
Blockchain-enabled privacy-preserving contact tracing for COVID-19 pandemic and be-
yond,” IEEE Internet Things J., vol. 8, no. 5, pp. 3915–3929, 2020.

[312] S. Vaudenay, “Analysis of DP3T-between Scylla and Charybdis,” Tech. Rep., 2020.
[313] R. L. Rivest, J. Callas, R. Canetti, et al., “The PACT protocol specification,” Private

Automated Contact Tracing Team, MIT, Cambridge, MA, USA, Tech. Rep. 0.1, 2020.
[314] R. Gupta, M. Bedi, P. Goyal, S. Wadhera, and V. Verma, “Analysis of COVID-19 track-

ing tool in India: Case study of Aarogya Setu mobile application,” Digital Government:
Research and Practice, vol. 1, no. 4, pp. 1–8, 2020.

[315] G. Jung, H. Lee, A. Kim, and U. Lee, “Too much information: Assessing privacy risks of
contact trace data disclosure on people with COVID-19 in South Korea,” Public Health
Front., vol. 8, p. 305, 2020.

[316] J. K. Liu, M. H. Au, T. H. Yuen, et al., “Privacy-preserving COVID-19 contact tracing
app: A zero-knowledge proof approach,” Cryptology ePrint Archive, 2020.

[317] N. D. Shah, E. W. Steyerberg, and D. M. Kent, “Big data and predictive analytics:
Recalibrating expectations,” Jama, vol. 320, no. 1, pp. 27–28, 2018.

[318] A. M. Elbir, G. Gurbilek, B. Soner, A. K. Papazafeiropoulos, P. Kourtessis, and S.
Coleri, “Vehicular networks for combating a worldwide pandemic: Preventing the spread
of COVID-19,” Smart Health, vol. 26, p. 100 353, 2022.

[319] H. Stevens and M. B. Haines, “Tracetogether: Pandemic response, democracy, and tech-
nology,” Asian Sci. Technol. Soc., vol. 14, no. 3, pp. 523–532, 2020.

[320] T. Sharma and M. Bashir, “Use of apps in the COVID-19 response and the loss of
privacy protection,” Nat. Med., vol. 26, no. 8, pp. 1165–1167, 2020.

[321] H. Cho, D. Ippolito, and Y. W. Yu, “Contact tracing mobile apps for COVID-19: Privacy
considerations and related trade-offs,” arXiv preprint arXiv:2003.11511, 2020.

[322] C. Shachar, J. Engel, and G. Elwyn, “Implications for telehealth in a postpandemic
future: Regulatory and privacy issues,” Jama, vol. 323, no. 23, pp. 2375–2376, 2020.

[323] X. Wang, Z. Ning, M. Zhou, et al., “Privacy-preserving content dissemination for vehic-
ular social networks: Challenges and solutions,” IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1314–1345, 2018.

[324] V. K. Yadav, S. Verma, and S. Venkatesan, “Linkable privacy-preserving scheme for
location-based services,” IEEE Trans. Intell. Transp. Syst., 2021.

[325] H. Zhao, J. Yan, X. Luo, and X. Gua, “Privacy preserving solution for the asynchronous
localization of underwater sensor networks,” IEEE/CAA J. Autom. Sin., vol. 7, no. 6,
pp. 1511–1527, 2020.

[326] Z. Ding, X. Li, C. Jiang, and M. Zhou, “Objectives and state-of-the-art of location-
based social network recommender systems,” Acm Comput. Surv. (Csur), vol. 51, no. 1,
pp. 1–28, 2018.

[327] W. Lin, X. Zhang, L. Qi, et al., “Location-aware service recommendations with privacy-
preservation in the Internet of Things,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 1,
pp. 227–235, 2020.

152



[328] R. Al-ani, B. Zhou, Q. Shi, T. Baker, and M. Abdlhamed, “Adjusted location privacy
scheme for VANET safety applications,” in NOMS 2020-2020 IEEE/IFIP Netw. Oper.
Manag. Symp., IEEE, 2020, pp. 1–4.

[329] Y.-B. Zhang, Q.-Y. Zhang, Z.-Y. Li, Y. Yan, and M.-Y. Zhang, “A k-anonymous location
privacy protection method of dummy based on geographical semantics.,” Int. J. Netw.
Secur., vol. 21, no. 6, pp. 937–946, 2019.

[330] I. Ullah, M. A. Shah, A. Wahid, A. Mehmood, and H. Song, “ESOT: A new privacy
model for preserving location privacy in Internet of Things,” Telecommun. Syst., vol. 67,
no. 4, pp. 553–575, 2018.

[331] C. Gao, C. Huang, Y. Yu, H. Wang, Y. Li, and D. Jin, “Privacy-preserving cross-domain
location recommendation,” Proc. of the ACM on Intera. Mobile Wear. Ubi. Technol.,
vol. 3, no. 1, pp. 1–21, 2019.

[332] C. A. Ardagna, M. Cremonini, S. D. C. di Vimercati, and P. Samarati, “An obfuscation-
based approach for protecting location privacy,” IEEE Trans. Depen. Secu. Comput.,
vol. 8, no. 1, pp. 13–27, 2009.

[333] K. Wei, J. Li, M. Ding, et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forens. Secu., vol. 15, pp. 3454–3469, 2020.

[334] L. Wang, D. Zhang, D. Yang, B. Y. Lim, X. Han, and X. Ma, “Sparse mobile crowdsens-
ing with differential and distortion location privacy,” IEEE Trans. Inf. Forens. Secur.,
vol. 15, pp. 2735–2749, 2020.

[335] F. Koufogiannis, S. Han, and G. J. Pappas, “Optimality of the laplace mechanism in
differential privacy,” arXiv preprint arXiv:1504.00065, 2015.

[336] R. Mendes, M. Cunha, and J. P. Vilela, “Impact of frequency of location reports on the
privacy level of geo-indistinguishability,” Proc. Priv. Enh., vol. 2020, no. 2, pp. 379–396,
2020.

[337] J. Xiong, R. Ma, L. Chen, et al., “A personalized privacy protection framework for
mobile crowdsensing in iiot,” IEEE Trans. Industr. Inform., vol. 16, no. 6, pp. 4231–
4241, 2019.

[338] H. Zhong, J. Ni, J. Cui, J. Zhang, and L. Liu, “Personalized location privacy protection
based on vehicle movement regularity in vehicular networks,” IEEE Syst. J., 2021.

[339] Y. Qu, S. Yu, W. Zhou, and Y. Tian, “GAN-driven personalized spatial-temporal private
data sharing in cyber-physical social systems,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4,
pp. 2576–2586, 2020.

[340] Y. He, J. Zhang, L. Shuai, J. Luo, X. Yang, and Q. T. Sun, “A personalized secure pub-
lishing mechanism of the sensing location data in crowdsensing location-based services,”
IEEE Sensors J., 2021.

[341] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobility based on
GPS data,” in Proc. of the 10th Int. Conf. Ubi. comput., 2008, pp. 312–321.

[342] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from the physical
world,” in Proc. of the 17th ACM SIGKDD Int. Conf. Knowl. Disc. data mining, 2011,
pp. 316–324.

[343] V. K. Yadav, S. Verma, and S. Venkatesan, “Efficient and secure location-based services
scheme in VANET,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 567–13 578, 2020.

[344] I. Ullah, M. A. Shah, A. Khan, and G. Jeon, “Privacy-preserving multilevel obfuscation
scheme for vehicular network,” Trans. Emerg. Telecommun. Technol., e4204, 2020.

[345] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model
with effective learning algorithms for classification, approximation, and prediction,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 2, pp. 601–614, 2018.

153



[346] P. Zhang, S. Shu, and M. Zhou, “An online fault detection method based on SVM-grid
for cloud computing systems,” IEEE/CAA J. Automat. Sinica, vol. 5, no. 2, pp. 445–
456, 2018.

[347] J.-J. Wang and T. Kumbasar, “Optimal PID control of spatial inverted pendulum with
Big Bang–Big Crunch optimization,” IEEE/CAA J. Automat. Sinica, vol. 7, no. 3,
pp. 822–832, 2018.

[348] H. Teng, M. Dong, Y. Liu, W. Tian, and X. Liu, “A low-cost physical location discovery
scheme for large-scale Internet of Things in smart city through joint use of vehicles and
UAVs,” Future Gener. Comput. Syst., vol. 118, pp. 310–326, 2021.

[349] L. Sharma, A. Javali, R. Nyamangoudar, R. Priya, P. Mishra, and S. K. Routray, “An
update on location based services: Current state and future prospects,” in 2017 Interna-
tional Conference on Computing Methodologies and Communication (ICCMC), IEEE,
2017, pp. 220–224.

[350] Y. Wang, Z. Cai, X. Tong, Y. Gao, and G. Yin, “Truthful incentive mechanism with
location privacy-preserving for mobile crowdsourcing systems,” Comput. Netw., vol. 135,
pp. 32–43, 2018.

[351] Z. Liu, L. Wu, J. Ke, W. Qu, W.Wang, and H. Wang, “Accountable outsourcing location-
based services with privacy preservation,” IEEE Access, vol. 7, pp. 117 258–117 273, 2019.

[352] Z. Xiong, Z. Cai, Q. Han, A. Alrawais, and W. Li, “Adgan: Protect your location privacy
in camera data of auto-driving vehicles,” IEEE Trans. Ind. Inform., vol. 17, no. 9,
pp. 6200–6210, 2020.

[353] I. A. T. Hashem, V. Chang, N. B. Anuar, et al., “The role of big data in smart city,”
Int. J. Inf. Manage., vol. 36, no. 5, pp. 748–758, 2016.

[354] C. Dwork, “Differential privacy,” vol. 2006, ICALP, 2006, pp. 1–12.
[355] L. Yu, L. Liu, and C. Pu, “Dynamic differential ;ocation privacy with personalized error

bounds.,” in Network and Distributed System Security Symposium (NDSS), 2017.
[356] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, “Quantifying lo-

cation privacy,” in 2011 IEEE symposium on security and privacy, IEEE, 2011, pp. 247–
262.

[357] Y. Xiao, L. Xiong, S. Zhang, and Y. Cao, “Loclok: Location cloaking with differential
privacy via hidden markov model,” Proc. of the VLDB Endowment, vol. 10, no. 12,
pp. 1901–1904, 2017.

[358] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, and S. Li, “Real-time detection of
anomalous taxi trajectories from GPS traces,” in International Conference on Mobile
and Ubiquitous Systems: Computing, Networking, and Services, Springer, 2011, pp. 63–
74.

[359] J. Mao, T. Wang, C. Jin, and A. Zhou, “Feature grouping-based outlier detection upon
streaming trajectories,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2696–2709,
2017.

[360] D. Yao, C. Zhang, Z. Zhu, et al., “Learning deep representation for trajectory clustering,”
Expert Syst., vol. 35, no. 2, e12252, 2018.

[361] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[362] N. Nikhil and B. Tran Morris, “Convolutional neural network for trajectory prediction,”
in Proc. of the European Conference on Computer Vision (ECCV) Workshops, 2018.

[363] D. Suo, M. E. Renda, and J. Zhao, “Quantifying the tradeoff between cybersecurity and
location privacy,” arXiv preprint arXiv:2105.01262, 2021.

154



[364] M. Zurbarán, K. Avila, P. Wightman, and M. Fernandez, “Near-rand: Noise-based lo-
cation obfuscation based on random neighboring points,” IEEE Latin America Trans.,
vol. 13, no. 11, pp. 3661–3667, 2015.

[365] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2016, pp. 770–778.

[366] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[367] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-
cam: Visual explanations from deep networks via gradient-based localization,” in Proc.
of the IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 618–
626.

[368] G. Maier, “Openstreetmap, the wikipedia map,” REGION, vol. 1, no. 1, R3–R10, Dec.
2014. doi: 10.18335/region.v1i1.70. [Online]. Available: https://openjournals.
wu-wien.ac.at/ojs/index.php/region/article/view/70.

[369] M.-h. Oh and G. Iyengar, “Sequential anomaly detection using inverse reinforcement
learning,” in Proc. of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & data mining, 2019, pp. 1480–1490.

[370] K. Gray, D. Smolyak, S. Badirli, and G. Mohler, “Coupled igmm-gans for deep multi-
modal anomaly detection in human mobility data,” arXiv preprint arXiv:1809.02728,
2018.

[371] Y. Zhao, B. Ma, Z. Wang, Z. Liu, Y. Zeng, and J. Ma, “Trajectory obfuscation and detec-
tion in internet-of-vehicles,” in 2022 IEEE 25th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), IEEE, 2022, pp. 769–774.

[372] S. Khan, I. Sharma, M. Aslam, M. Z. Khan, and S. Khan, “Security challenges of location
privacy in vanets and state-of-the art solutions: A survey,” Future Internet, vol. 13, no. 4,
p. 96, 2021.
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Anonymously sharing your location gives you away,” in 2018 IEEE International Con-
ference on Big Data (Big Data), IEEE, 2018, pp. 1218–1227.

[379] P. Asuquo, H. Cruickshank, J. Morley, et al., “Security and privacy in location-based
services for vehicular and mobile communications: An overview, challenges, and coun-
termeasures,” IEEE Internet Things J., vol. 5, no. 6, pp. 4778–4802, 2018.

155



[380] M. S. Sheikh, J. Liang, and W. Wang, “Security and privacy in vehicular ad hoc net-
work and vehicle cloud computing: A survey,” Wireless Communications and Mobile
Computing, vol. 2020, 2020.

[381] M. Yang, B. Ye, Y. Chen, et al., “A trusted de-swinging k-anonymity scheme for location
privacy protection,” Journal of Cloud Computing, vol. 11, no. 1, pp. 1–15, 2022.

[382] G. Li, Q. Zhang, J. Li, J. Wu, and P. Zhang, “Energy-efficient location privacy preserving
in vehicular networks using social intimate fogs,” IEEE Access, vol. 6, pp. 49 801–49 810,
2018.

[383] Y. Jiang, K. Zhang, Y. Qian, and L. Zhou, “Reinforcement-learning-based query opti-
mization in differentially private iot data publishing,” IEEE Internet Things J., vol. 8,
no. 14, pp. 11 163–11 176, 2021.

[384] X. Li, H. Zhang, Y. Ren, et al., “Papu: Pseudonym swap with provable unlinkabil-
ity based on differential privacy in vanets,” IEEE Internet Things J., vol. 7, no. 12,
pp. 11 789–11 802, 2020.

[385] T. Song, N. Capurso, et al., “Enhancing GPS with lane-level navigation to facilitate
highway driving,” IEEE Trans. Vel. Technol., vol. 66, no. 6, pp. 4579–4591, 2017.

[386] D. Ye, S. Shen, T. Zhu, B. Liu, and W. Zhou, “One parameter defense—defending
against data inference attacks via differential privacy,” IEEE Trans. Inf. Forens. Secur.,
vol. 17, pp. 1466–1480, 2022.

[387] Z. Gao, Y. Huang, L. Zheng, H. Lu, B. Wu, and J. Zhang, “Protecting location privacy
of users based on trajectory obfuscation in mobile crowdsensing,” IEEE Trans. Industr.
Inform., vol. 18, no. 9, pp. 6290–6299, 2022. doi: 10.1109/TII.2022.3146281.

[388] C. Xu, J. Ren, D. Zhang, and Y. Zhang, “Distilling at the edge: A local differential
privacy obfuscation framework for iot data analytics,” IEEE Commun. Mag., vol. 56,
no. 8, pp. 20–25, 2018.

[389] H. Artail and N. Abbani, “A pseudonym management system to achieve anonymity in
vehicular ad hoc networks,” IEEE Trans. Dependable Secure Comput., vol. 13, no. 1,
pp. 106–119, 2015.

[390] R. Yu, J. Kang, et al., “Mixgroup: Accumulative pseudonym exchanging for location
privacy enhancement in vehicular social networks,” IEEE Trans. Dependable Secure
Comput., vol. 13, no. 1, pp. 93–105, 2015.

[391] Z. Liu, Z. Liu, L. Zhang, and X. Lin, “Marp: A distributed mac layer attack resistant
pseudonym scheme for vanet,” IEEE Trans. Dependable Secure Comput., vol. 17, no. 4,
pp. 869–882, 2018.

[392] D. Eckhoff, C. Sommer, et al., “Strong and affordable location privacy in VANETs:
Identity diffusion using time-slots and swapping,” in 2010 IEEE Vehicular Networking
Conference, IEEE, 2010, pp. 174–181.

[393] K. Sampigethaya, M. Li, L. Huang, and R. Poovendran, “Amoeba: Robust location
privacy scheme for vanet,” IEEE Journal on Selected Areas in communications, vol. 25,
no. 8, pp. 1569–1589, 2007.

[394] L. Benarous, B. Kadri, and S. Boudjit, “Alloyed pseudonym change strategy for location
privacy in vanets,” in 2020 IEEE 17th Annual Consumer Commun. Net. Conf. (CCNC),
IEEE, 2020, pp. 1–6.

[395] N. Takbiri, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik, “Matching anonymized
and obfuscated time series to users’ profiles,” IEEE Trans. Inf. Theory, vol. 65, no. 2,
pp. 724–741, 2018.

156



[396] H. Al-Balasmeh, M. Singh, and R. Singh, “Framework of data privacy preservation
and location obfuscation in vehicular cloud networks,” Concurrency Computat.: Pract.
Exper., vol. 34, no. 5, e6682, 2022.

[397] W. L. Croft, J.-R. Sack, and W. Shi, “Obfuscation of images via differential privacy:
From facial images to general images,” Peer-to-Peer Netw. Appl., vol. 14, pp. 1705–1733,
2021.

[398] S. Gopi, Y. T. Lee, and L. Wutschitz, “Numerical composition of differential privacy,”
Advances in Neural Information Processing Systems, vol. 34, pp. 11 631–11 642, 2021.

[399] T. Bao, L. Xu, L. Zhu, L. Wang, and T. Li, “Successive point-of-interest recommendation
with personalized local differential privacy,” IEEE Trans. Vel. Technol., vol. 70, no. 10,
pp. 10 477–10 488, 2021.

[400] Y. Li, Y. Yin, et al., “A secure dynamic mix zone pseudonym changing scheme based on
traffic context prediction,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9492–
9505, 2022. doi: 10.1109/TITS.2021.3125744.

[401] L. Benarous and B. Kadri, “Obfuscation-based location privacy-preserving scheme in
cloud-enabled internet of vehicles,” Peer-to-Peer Net. App., vol. 15, no. 1, pp. 461–472,
2022.

[402] N. Ahmed, Z. Deng, et al., “A survey on location privacy attacks and prevention deployed
with IoT in vehicular networks,” Wireless Commun. Mobile Comput., vol. 2022, 2022.

[403] B. Liu, W. Zhou, T. Zhu, L. Gao, T. H. Luan, and H. Zhou, “Silence is golden: Enhancing
privacy of location-based services by content broadcasting and active caching in wireless
vehicular networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9942–9953, 2016.

[404] W. Li, H. Guo, M. Nejad, and C.-C. Shen, “Privacy-preserving traffic management: A
blockchain and zero-knowledge proof inspired approach,” IEEE access, vol. 8, pp. 181 733–
181 743, 2020.

[405] M. Khodaei and P. Papadimitratos, “Cooperative location privacy in vehicular networks:
Why simple mix zones are not enough,” IEEE Internet Things J., vol. 8, no. 10, pp. 7985–
8004, 2020.

[406] M. Dibaei, X. Zheng, et al., “Attacks and defences on intelligent connected vehicles: A
survey,” Digital Communications and Networks, vol. 6, no. 4, pp. 399–421, 2020.

[407] H. Talat and T. a. Nomani, “A survey on location privacy techniques deployed in ve-
hicular networks,” in 2019 16th Int. Bhurban Conf. Applied Sci. Technol. (IBCAST),
IEEE, 2019, pp. 604–613.

[408] J. Liu, C. Zhang, K. Xue, and Y. Fang, “Privacy preservation in multi-cloud secure data
fusion for infectious-disease analysis,” IEEE Trans. Mob. Comput., vol. early access,
2022.

[409] D. Huang, S. Misra, et al., “Pacp: An efficient pseudonymous authentication-based con-
ditional privacy protocol for vanets,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3,
pp. 736–746, 2011.

[410] M. Luo and Y. Zhou, “An efficient conditional privacy-preserving authentication protocol
based on generalized ring signcryption for vanets,” IEEE Trans. Vel. Technol., vol. 71,
no. 9, pp. 10 001–10 015, 2022. doi: 10.1109/TVT.2022.3179371.

[411] O. Kanhere and T. S. Rappaport, “Position location for futuristic cellular communica-
tions: 5G and beyond,” IEEE Commun. Mag., vol. 59, no. 1, pp. 70–75, 2021.

[412] A. Bourdoux, A. N. Barreto, B. van Liempd, et al., “6G white paper on localization and
sensing,” arXiv preprint arXiv:2006.01779, 2020.

157



[413] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications,
trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–
142, 2019.

[414] Z. Qin, J. Wang, and Y. Lu, “Monogrnet: A geometric reasoning network for monocular
3D object localization,” in Proc. AAAI Conf. Artif. Intell, vol. 33, 2019, pp. 8851–8858.

[415] F. Khelifi, A. Bradai, A. Benslimane, P. Rawat, and M. Atri, “A survey of localization
systems in Internet of Things,” Mob. Netw. Appl., vol. 24, no. 3, pp. 761–785, 2019.

[416] N. A. Azmi, S. Samsul, Y. Yamada, M. F. M. Yakub, M. I. M. Ismail, and R. A.
Dziyauddin, “A survey of localization using RSSI and TODA techniques in wireless
sensor network: System architecture,” in Proc. 2nd Int. Conf. Telematics Future Gen.
Netw. (TAFGEN) 2018, IEEE, 2018, pp. 131–136.

[417] Y. Wang and K. Ho, “Unified near-field and far-field localization for AoA and hybrid
AoA-TDOA positionings,” IEEE Trans. Wirel. Commun., vol. 17, no. 2, pp. 1242–1254,
2017.

[418] A. K. Paul and T. Sato, “Localization in wireless sensor networks: A survey on algo-
rithms, measurement techniques, applications and challenges,” J. Sens. Actuator Netw,
vol. 6, no. 4, p. 24, 2017.

[419] J. R. Martinez-de Dios, A. de San Bernabé-Clemente, A. Torres-González, and A. Ollero,
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