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A B S T R A C T   

Paddy cultivation in Malaysia plays a crucial role in food production, with a focus on improving crop quality and 
quantity. With current national self-sufficiency levels ranging between 67 and 70%, the Malaysian government 
intends to produce higher-quality crops and boost agricultural production. However, the prominent paddy- 
producing state of Kedah has witnessed a decline in yields over the years. To address this, the study explores 
the effectiveness of unmanned aerial vehicles (UAVs) equipped with vegetation indices (VIs) for monitoring 
paddy plant health at various growth stages. Researchers acquired aerial imagery during two seasons in 2019, 
capturing three distinct growth stages: tillering (40 days after sowing), flowering (60 days after sowing), and 
ripening (100 days after sowing). These stages represent critical points in the paddy plant’s life cycle. Agisoft 
Metashape software processed the images to extract VIs data. The study found that the Normalized Difference 
Vegetation Index (NDVI) and Blue Normalized Difference Vegetation Index (BNDVI) exhibited over 90% simi-
larity. In contrast, the Normalized Difference Red Edge Index (NDRE), utilizing near-infrared and red-edge light 
reflections, demonstrated a unique relationship. NDRE outperformed NDVI and BNDVI with an R-squared value 
of 0.842, showcasing its superior accuracy, especially for dense crops like paddy plants sensitive to subtle 
changes in vegetation. In conclusion, this research highlights the potential of UAV-based VIs for effectively 
monitoring paddy plant health during different growth stages. The NDRE index, in particular, proves valuable for 
assessing dense crops, offering insights for precision agriculture and crop management in Malaysia.   

1. Introduction 

The eating of rice is synonymous with the Asian culture, including in 
Malaysia. According to Che Omar et al. (2019), Asian countries pro-
duced 495 million Metric Ton (MT) of rice in 2013. Southeast Asia 
contributes almost 40 % of the world’s rice export, with Thailand, 
Vietnam, and Cambodia exporting the highest percentage of rice of 
24.5%, 12.9%, and 1.3%, respectively. Malaysia is a rice importer, and 
in 2016, the country imported 2.2 % of the total world rice import (Che 
Omar et al., 2019; FAO, 2019). A total of ten granary areas in Malaysia 
are planted with paddy, and one of them is the Muda Agricultural 

Development Authority (MADA) located in Kedah, a state in the North of 
Peninsular Malaysia. MADA contributes almost 40% of the nation’s 
paddy production and is responsible for farm monitoring and providing 
advice and farm infrastructures to farmers. The MADA granary area 
covers the whole Kedah State, and some parts of Perlis State with a total 
planted area of up to 100 thousand hectares (Che Omar et al., 2019). 

However, rice producing countries, including Malaysia, are faced 
with threat such as diseases (Abdul Hamid, 2018; Carneiro et al., 2019; 
Herman et al., 2015), water-related problems such as the water quality, 
sources, and irrigation system (Aboelsoud et al., 2022; Fikri Abdullah 
and Wan Mustapa, 2016; Gain et al., 2004; Mahmood et al., 2009; Ngoc 
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Thuy and Ha Anh, 2016; Rad et al., 2011; Sakaguchi et al., 2014; 
Shereen et al., 2005), and land scarcity (Amedie, 2013; Che Omar et al., 
2019; Marfai, 2011) as well as the land fertility (Abdelrahman et al., 
2022). The aforementioned paddy plant related threats have caused the 
country to suffer losses as a result of declining revenue. 

Previously, paddy growth was monitored manually by the farmers 
(Sangeetha et al., 2019) and all decisions were made based on experi-
ence and instinct. Even though precision agriculture or precision 
farming began in the 1980s (Mulla, 2013), geospatial technology was 
used extensively in the early 2000 which involve the use of Geographic 
Information System (GIS), Remote Sensing (RS) and Unmanned Aerial 
Vehicles (UAV). Unlike the conventional method, these methods are 
able to track plant health effectively (Che Omar et al., 2019; Mulla, 
2013; Sangeetha et al., 2019). 

Unmanned Aerial Vehicles popularly known as UAV, is the latest 
technology for capturing all features of an object without touching the 
object. UAV has the ability to observe all objects in the horizontal and 
vertical direction (Ab Rahman et al., 2017; Abdul Maulud et al., 2019). 
Hassan et al. (2018) used UAVs in their study to determine the effec-
tiveness of predicting wheat cultivation by using a multispectral 
approach in North China. This UAV platform can be used efficiently for 
field -based selection and grain yield prediction. While, Ivushkin et al. 
(2019) and Shi et al. (2016) used UAV to determine the salinity content 
and arsenic level of agriculture soil, respectively. These researchers 
found that the Photochemical reflection index (PRI) was able to estimate 
the soil conditions, especially salt stress and arsenic soils. This tech-
nology has also been used to detect problems related to irrigation sys-
tems in an olive grove in Barcelona, Spain (Jorge et al., 2019). 

With the advancements in spatial technologies, a number of studies 
have been conducted in the rice sector by using GIS. The rice chlorophyll 
content can be assessed using five vegetation Indices (VIS) from the 
hyperspectral data, namely Normalized Difference Vegetation Index 
(NDVI), Modified Simple Ratio Index (MSR), Modified Chlorophyll Ab-
sorption Ratio Index (MCARI), Transformed Chlorophyll Absorption 
Ratio Index (TCARI), and Optimized Soil-Adjusted Vegetation Index 
(OSAVI) (Xu et al., 2011). Huang et al. (2013) attempted to estimate rice 
yield by using several NDVI variables, while Mosleh et al. (2015) 
explored the use of microwave RS to predict rice yield. These researchers 
found that NDVI always has a positive effect on paddy yield. 

In 2018, Deng et al. discovered that VIs (NDVI and red-edge NDVI 
(reNDVI)) are not entirely dependent on reflectance accuracy. VI is 
widely used as an essential element in the monitoring and managing of 
many activities in agriculture, particularly regarding plant conditions 
(Hassan et al., 2018). Most of the indices have similar functions and use 
the inverse relationship between red with 630–690 nm wavelength and 
near-infrared (NIR) with 760–900 nm wavelength reflectance correlated 
with healthy green vegetation (Gao, 1996; Hunt et al., 2012; Liu et al., 
2019; Lu and Zhuang, 2010; Migliavacca et al., 2018; Yebra et al., 2013) 
such as Normalized Difference Vegetation Index (NDVI) (Rouse et al., 
1973), Blue Normalized Difference Vegetation Index (BNDVI) (Wang 
et al., 2007), and Normalized Difference Red Edge (NDRE) (Buschmann 
and Nagel, 1993). 

NDVI is frequently used for monitoring vegetation cover and crop 
stress by using red band with 630–690 nm wavelength (Hunt et al., 
2012). This VI is used to measure biomass in precision farming, and in 
forestry applications it is used to quantify forest supply and leaf area 
index (Huete et al., 2002; Junior et al., 2016). However, NDVI has its 
limitations, especially when used on dense crop, and may give inaccu-
rate estimates of index values as a result of atmospheric contaminants 
(Xie et al., 2018; Yeom et al., 2019). According to Wang et al. (2007), 
BNDVI is an index which requires analysis of visible blue with 450–520 
nm wavelength (Hunt et al., 2012) of the UAV aerial images. According 
to Avtar and Watanabe (2020), this index can be used to locate possible 
over-fertilized areas. Excessive use of fertilizers can affect the water 
quality of an area and this in consequent affect plant, animal and human 
health. 

Conversely, NDRE is sensitive to the chlorophyll content of leaves 
against soil background effects. This index can only be formulated when 
the red edge band is available with 700–730 nm wavelength (Hunt et al., 
2012). In addition, it is susceptible to changes in plants growth and has 
been proven to be more beneficial than NDVI (Jorge et al., 2019; Mac-
cioni et al., 2001). 

Despite the success of the VIs approach in agriculture, there is still 
inadequate information regarding the best vegetation index for dense 
crops, especially paddy plants, when measuring the level of plant 
growth. Previous research has predominantly focused on the growth 
stages of paddy plants at a single level, primarily utilizing typical 
vegetation indices such as NDVI and BNDVI. Consequently, the main 
goal of this research is to assess the performance of three vegetation 
indices (VIs), namely NDVI, BNDVI, and NDRE, in accurately depicting 
the health of paddy plants across three different stages of growth. 

2. Methods and materials 

This study was conducted in Kampung Padang Garam, Kuala Kedah, 
Malaysia which is on the west coast of Peninsular Malaysia as shown in 
Fig. 1. The study involved an area of approximately 20 ha of paddy field. 
This research involved two different paddy cultivation seasons for the 
period from May 2019 to January 2020. The first season was from May 
to September 2019, while the second season was from October 2019 to 
January 2020. The two seasons are classified as South-West Monsoon 
and North-East Monsoon by the Malaysia Meteorology Department 
(2019b). The weather during the South-West Monsoon can be extremely 
dry, while the North-East Monsoon is a wet season with heavy rainfall. 
The average temperature recorded during the investigation period is 
32.7 and 33.3 degrees Celsius for season 1 and 2, respectively. 

The study consists of two phases, UAV image acquisition and sec-
ondary data analysis, as illustrated in Fig. 2. The two phases are essential 
for obtaining the best data and facilitating the achievement of the ob-
jectives of the study. 

The first phase of this study has been started by involving a UAV 
platform to capture multispectral images throughout the cultivation 
season from May 2019 until January 2020, as listed in Table 1. 

Three flights were made throughout the season to in an effort to 
predict paddy growth condition on 40, 60, and 100 Day After Sowing 
(DAS), which represents the tillering, flowering and maturing stage, 
respectively, as illustrated in Fig. 3. 

The UAV platform was prepared and equipped with the Micasense 
RedEdge-M multispectral camera sensor shown in Fig. 4. This camera 
sensor is an advanced multispectral camera specially designed for small 
unmanned aircraft systems. It provides accurate multiband data (red, 
green, blue, red-edge, and near-infrared) for agriculture remote sensing. 
In order to capture consistent multispectral images over time, the Dro-
neDeploy mobile application was used to produce the flight plan and was 
connected to the DJI Inspire 2. According to Abdul Maulud et al. (2019); 
Arif et al. (2018); Zhang and Kovacs (2012), despite its low operational 
cost, the UAV platform is well-known to have high spatial and temporal 
resolution and is easy to handle during the image acquisition stage. 

Thousands of aerial images were captured during acquisition and 
subsequently processed and analyzed using the Agisoft Metashape and 
ArcGIS software, which uses a spatial analysis approach. The Agisoft 
Metashape software encompasses a series of seven distinct stages for 
multispectral processing. These stages involve essential post-imagery 
processing procedures, which include: (1) the importing of multispec-
tral images; (2) the computing of camera reflectance; (3) the aligning 
and optimizing of the camera; (4) the reconstructing of the surface; (5) 
the generating of an orthomosaic; (6) the calculating of indices utilizing 
raster calculator tools; and (7) the exporting of the resulting data. 

Three vegetation indices were selected for examination in this study, 
namely, NDVI, NDRE and BNDVI. These VIs were calculated using raster 
transform in the sixth processing stage using the following formulas: 
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Fig. 1. Study area comprising 12 paddy plots in Kuala Kedah, Malaysia.  

Fig. 2. Phases in the methodology.  
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NDVI =
(NIR − Red)
(NIR + Red)

(Rouse et al., 1973) (1)  

BNDVI =
(NIR − Blue)
(NIR + Blue)

(Wang et al., 2007) (2)  

NDRE =
(NIR − RedEdge)
(NIR + RedEdge)

(Buschmann & Nagel, 1993) (3) 

The orthomosaic images with different VIs values were identified by 
converting the raster image into a vector. The index value was generated 
through several processes in ArcGIS: (1) raster clipping to cut the raster 
image according to the paddy plot area; (2) raster reclassify to classify 
the index values, as shown in Table 2; (3) converting tools to transform 
the raster into a polygon; and (4) calculate the area for each VI based on 
the index value categories, as shown in Table 2. 

Subsequently, the implementation of phase two entailed the collec-
tion of required secondary data from relevant local agencies. The 
meteorological data, encompassing average temperature and rainfall 
intensity statistics, were collected from the Department of Meteorology 
Malaysia. The paddy production data was obtained from the local gov-
ernment as well as the main national regulatory authorities involved in 
the production chain, namely MADA and Beras Nasional (BERNAS). The 
rice production data for Seasons 1–2019 and 2–2019 were collected and 
organized according to plot number and farmer’s name. 

3. Results and discussion 

3.1. Correlation between index value, yield and plot area 

Fig. 5 shows the amount of rice produced in Season 1 and Season 2, 
as recorded by BERNAS. The figure shows that three plots (plot-1, plot-7 
and plot-12) do not have a value as the farmers did not declare their 
yield to BERNAS. According to the statistics provided by BERNAS for 
Season 1 and Season 2, each plot showed a positive increasing trend in 
rice production. Three plots recorded the highest increase of 25%, 
namely plot-2, plot-3 and plot-9, while the yield for plot-5, plot-10 and 
plot-11 showed an increase of less than 10%. However, plot-8 recorded a 
reduction of about 0.2%. 

Based on the observation, despite having a large paddy cultivation 
area, it does not promise more yield than a small area, as revealed in 
Fig. 5. This figure clearly shows the higher yield was recorded from plot- 
9 and plot-10, which have smaller plot areas compared to plot-4 and 
plot-5. This is indicates that the yield is directly or indirectly influenced 
by a number of factors, especially environmental factors and proper 

agricultural practices, which aligned with a report by (Ceyhan et al., 
2012; Singh and Singh, 2016). 

Therefore, the plant’s conditions were examined on the basis of the 
NDVI, BNDVI and NDRE values. During Season 1, the average produc-
tion for the 12 plots is 2,842 kg per hectare compared to the 3,428 kg per 
hectare recorded for Season 2. Fig. 6 shows the higher VI values for both 

Table 1 
UAV acquisition during season 1–2019 and season 2–2019.  

Growth Stage Season 1–2019 Season 2–2019 

40 DAS 28 Jun 2019 20 Nov 2019 
60 DAS 18 Jul 2019 7 Dec 2019 
100 DAS 27 Aug 2019 15 Jan 2020 

Note: DAS = Day After Sowing. 

Fig. 3. Stages of paddy growth (Che Omar et al., 2019).  

Fig. 4. DJI Inspire 2 equipped with MicaSense RedEdge-M camera sensor.  

Table 2 
Category based on the values of VIs (Akmal et al., 2011; Giacomo & 
David, 2018; Hashim et al., 2019; Jesslyn, 2015; Zaitunah et al., 
2018).  

Index Value Description 

< 0 No vegetation or plant 
0 to 0.1 Poor vegetation density 
0.1 to 0.3 Moderate vegetation density 
0.3 to 0.6 High vegetation density 
0.6 to 1.0 Very-high vegetation density  

Fig. 5. Plot area and rice production for Season 1–2019 and Season 2– 2019.  
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seasons. 
NDRE appears to have the lowest value, with an average value of 

0.409 and 0.504 for season 1 and 2, respectively, which is categorized as 
High Density Vegetation. Meanwhile, NDVI and BNDVI are in the Very 
High Density Vegetation class with average values of 0.782 and 0.839, 
and 0.831 and 0.895 for season 1 and 2, respectively. Therefore, in the 
context of the VIs approach used in plants monitoring, NDRE provides a 
more accurate value compared to NDVI and BNDVI. This scenario and 

findings are congruent with the findings reported by Jorge et al. (2019) 
and Lu and Zhuang (2010). Additionally, the trend for both VI and rice 
production indicates a strong relationship between the two parameters 
compared to yield, as discussed in the previous paragraph. There is a 21 
percent increase in rice production, and the increase of 23 percent in 
NDRE is significantly higher that the increase of 8 percent recorded for 
both NDVI and BNDVI. 

In addition, this VIs assessment is also made based on the paddy 

Fig. 6. Index values versus rice production for Season 1–2019 and Season 2– 2019.  

Fig. 7. Map of vegetation index for Season 1–2019 and Season 2–2019. *Note: DAS is Day After Sowing.  
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growth stages for both seasons. Each VI is represented by five categories, 
as shown in Table 2. The values for Season 1–2019 show that the highest 
area percentage of NDVI and BNDVI changed from high vegetation 
density on 40 DAS to very high vegetative density on 60 DAS and 100 
DAS. However, the NDRE showed a change from moderate vegetative 
density on 40 DAS to high vegetation density on 60 DAS. These results 
are congruent with those reported by Carneiro et al. (2019), where 
NDRE has a higher correlation with productivity values on 60 DAS. The 
percentage difference for NDVI and NDRE during this season is 65 
percent, 53 percent and 92 percent for 40, 60 and 100 DAS, respectively. 

Generally, the paddy plants grew at an acceptable range during 
Season 1–2019. In contrast, the growth during Season 2–2019 was 
relatively unstable due to environmental factors, namely the South-West 
and North-East Monsoon seasons. However, the results of field obser-
vations and analysis show that the NDRE values represent the best actual 
condition of the plants compared to the values of NDVI and BNDVI. This 
result is similar to those reported by Jorge et al. (2019) and Lu and 
Zhuang (2010) where the accuracy of NDRE is better than those for 
NDVI and BNDVI. 

3.2. Mapping and evaluation of VI values for three different growth stage 

The map in Fig. 7 shows the NDVI, BNDVI and NDRE values for the 
three growth stages during Season 1–2019 and Season 2–2019. These 
figures clearly show the actual scenario for each growth stage. The 
NDRE maps show a more accurate variation of the actual situation in the 
field for both seasons. However, the maps for NDVI and BNDVI show 
similarity in terms of color distribution. 

Fig. 8 and Fig. 9 show the percentage of NDVI, BNDVI and NDRE 
during three different growth stages for both seasons. Each VI is repre-
sented by five categories, as shown in Table 2. The values for Season 
1–2019 show that the highest area percentage of NDVI and BNDVI 
changed from high vegetation density on 40 DAS to very high vegetative 
density on 60 DAS and 100 DAS. However, the NDRE showed a change 
from moderate vegetative density on 40 DAS to high vegetation density 
on 60 DAS. These results are congruent with those reported by Carneiro 
et al. (2019), where NDRE has a higher correlation with productivity 
values on 60 DAS. The percentage difference for NDVI and NDRE during 
this season is 65 percent, 53 percent and 92 percent for 40, 60 and 100 
DAS, respectively. 

In addition, the trends for NDVI and BNDVI during Season 2–2019 
are similar to those during Season 1–2019 with the exception of the 
pattern for NDRE. During Season 2–2019, the change in the highest area 
of NDRE recorded a moderate vegetation density on 40 DAS and 60 DAS 
to high vegetation density on 100 DAS. The percentage difference for 
NDVI and NDRE during this season is 83 percent, 7 percent and 99 
percent for 40, 60 and 100 DAS, respectively. 

Generally, the paddy plants grew at an acceptable range during 
Season 1–2019. In contrast, the growth during Season 2–2019 was 
relatively unstable due to environmental factors, namely the South-West 
and North-East Monsoon seasons. However, the results of field obser-
vations and analysis show that the NDRE values represent the best actual 
condition of the plants compared to the values of NDVI and BNDVI. This 
result is similar to those reported by Jorge et al. (2019) and Lu and 
Zhuang (2010) where the accuracy of NDRE is better than those for 
NDVI and BNDVI. 

3.3. Mapping and evaluation of VI values for three different growth stages 
by plot 

For a detailed analysis, the map was analyzed on the basis of the 
condition of each paddy plot, as shown in Fig. 10. Twelve plots were 
identified and analyzed in this study based on the ownership of the plot. 

Fig. 11a shows the percentage of NDVI for the area at 40, 60 and 100 
DAS based on the plot number. With the exception of plot 12, all plots 
showed a good growth increment throughout the growth stage. 

The NDVI values showed a good plant density in the first stage of 
growth (40 DAS), and the values decreased slightly in the second stage 
of growth (60 DAS). In contrast, the plants’ condition was recorded in a 
moderate vegetation density category. However, the value increased to 
very-high vegetation density during the third stage of growth (100 DAS). 
This trend is similar to the pattern observed for the BNDVI value in 
Fig. 11b. 

In addition, as can be seen in Fig. 11c, the trend for NDRE values was 
similar to that of NDVI values, where the value was significant in the 
first stage of growth but decreased during the second stage, and returned 
to a good condition in the third stage of growth. Surprisingly, 10 of the 
12 plots showed a lower value during the second stage. The two plots 
that showed an increase are plots 9 and 10. 

The results for Season 2–2019 showed that the value for each index is 

Fig. 8. Range of vegetation index during Season 1–2019.  
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similar, as can be seen in Fig. 12a, Fig. 12b and Fig. 12c. Each index 
showed a fluctuation in the value of paddy plots for the entire season. 
The trends for NDVI, BNDVI and NDRE values are comparable with 
those for Season 1–2019. The vegetation density, however, showed a 
deterioration in the second phase and the value is considerably higher 
than the value from the previous season. 

Fig. 12b shows that there is a problem with regard to the fertilizer 
used and 9 of the 12 plots were adversely affected in the flowering stage. 
The red color in the figure indicates that less fertilizer was used 
compared to that with green color, and this has had an impact on plant 
growth; this scenario can be classified as current fertilizer levels in the 
plots (Avtar and Watanabe, 2020). As reported by the Malaysian 

Fig. 9. Range of vegetation index during Season 2–2019.  

Fig. 10. Map of vegetation index for each plot during Season 1–2019 and Season 2–2019.  
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Meteorological Department (2019a), the lack of rainfall in Kedah has 
resulted in reduced water levels in the paddy plot. The soil became 
extremely dry, and this has adversely affected the paddy plants, where 
there was a deterioration in the plant’s growth and the plants were even 
destroyed due to the inadequate amount of fertilizer used (Osakabe 
et al., 2014; Rad et al., 2012; Salehi Lisar et al., 2012). Additionally, 
contaminated irrigation water also affects the soil fertility, which has an 
adverse effect on plant growth (Aboelsoud et al., 2022; El Baroudy et al., 
2020). 

Generally, both seasons showed a decreasing trend for the VI values 
on 40 DAS, which then increased to 100 DAS. During the period of up to 
60 DAS, the rice plots were in a watery state and the paddy plants were 
able to grow well into dense crops despite the turbulent flow (Sharil 
et al., 2016) caused by factors such as heavy rains and strong winds. The 
amount of water in the rice plots was reduced upon entering the 100 
DAS stage to ensure that the rice seeds reach maturity and could be 
harvested at the right time. However, the VI values showed a positive 
increase, which indicates better condition of the plants. 

Overall, the results show the index value for each VI increased during 
Season 1–2019 and Season 2–2019. Among these three VIs, NDRE shows 
a lower value than the other VI because it is more sensitive to changes in 
chlorophyll content that affect the color of plant leaves. As reported by 
Abdelrahman et al. (2022), plants exhibiting less photosynthetic ca-
pacity tend to exhibit heightened reflectance in the visible spectrum -
while displaying reduced reflectance in the near-infrared (NIR) range. 
However, through statistical analysis, NDRE gives a more accurate value 
with R square values of 0.842 compared to 0.706 and 0.575, respec-
tively, for NDVI and BNDVI values, even though these three VI have p 
values <0.05. 

4. Conclusion 

The demand for rice in Malaysia increases each year despite the 
scarce resources needed to produce rice, especially land. As a major 
contributor to the economic sector, rice cultivation activities have to be 
monitored and managed appropriately. Even though the harvested plot 
area is bigger, there is no assurance of higher yield compared to the 
smaller harvested plot area. Therefore, geospatial technology ap-
proaches have been used to monitor field conditions on a regular basis to 
ensure that the targeted maximum yield is achieved to meet national 
demand. The high accuracy UAV fitted with excellent resolution Red- 
Edge Multispectral camera was able to produce good results in the 
effort to establish a monitoring framework for better rice management. 
The percentage difference for NDVI and NDRE during Season 2–2019 is 
higher than that for Season 1–2019. Based on a comparison of the NDVI 
and NDRE values, it can be concluded that NDRE gives a more signifi-
cant, accurate, and reliable value. The value for BNDVI is a reliable 
index that represents the actual condition of plants, especially during the 
fertilization activity in the cultivation cycle. In conclusion, VIs is 
instrumental in the monitoring of crop growth in the field, which is 
beneficial for all stakeholders, like farmers, local authorities, and the 
government. The utilization of remote sensing technology holds signif-
icant importance in the evaluation of the influence of climate change on 
rice cultivation. The integration of temperature, precipitation, soil 
moisture, and vegetation indicators into monitoring systems can 
contribute to the development of agricultural methods that are robust to 
climate change. 

Fig. 11. Different VIs values according to plot number during Season 1–2019 using. (a) NDVI; (b) BNDVI; and (c) NDRE.  
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