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Abstract

Abstract: In recent years, the application of deep learning models in the realm

of spatial-temporal forecasting has significantly outpaced traditional statistical

learning methods such as ARMA, VAR, and STL. However, a notable drawback

to these models is their ’black box’ nature, leaving their internal workings largely

uninterpretable. Furthermore, recent studies have exposed the limitations of deep

learning models, particularly those within the Transformer family, which often fall

short when compared to carefully crafted linear models in various situations. These

revelations invite reconsideration of the indispensability of deep learning models in

spatial-temporal forecasting.

This thesis seeks to explore the complexities of modeling spatial-temporal

data, striving to devise an interpretable, adaptive, and scalable spatial-temporal

forecasting model that can compete with current state-of-the-art methodologies. By

accomplishing this, it is anticipated that a deeper understanding of the underlying

processes will be achieved, potentially paving the way for advancements in the field

of spatial-temporal forecasting. This research encapsulates three key contributions:

1. The development of an attention-based method to probe correlations within

diverse spatial-temporal contexts, addressing both adaptability and interpretability

challenges; 2. The invention of a normalization-based method to take advantage

of the characteristics of spatial and temporal data distribution, grappling with



x

adaptability, interpretability, and scalability issues; 3. The introduction of a novel

framework designed to emulate the dynamic behavior of underlying components in

time series data, tackling adaptability, interpretability, and scalability concerns.
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Chapter 1

Introduction

1.1 Background and Research Objective

Time series forecasting has long been a pivotal area of inquiry within the disciplines

of machine learning, statistics, and data science. Its applications are manifold,

extending across a diverse array of sectors including, but not limited to, finance,

healthcare, energy management, and telecommunications. While traditional uni-

variate time series models such as Auto-Regressive Integrated Moving Average

(ARIMA) and Exponential Smoothing techniques have demonstrated efficacy in

isolated systems, they often fall short in capturing the complexity inherent in open

and multi-variable systems. It is in this context that spatial-temporal forecasting

emerges as a critical extension, allowing for the simultaneous analysis of multiple,

interrelated temporal variables.

In the financial sector, spatial-temporal forecasting can be employed to model the

intricate relationships between stock prices, trading volumes, and macroeconomic

indicators. In healthcare, it can be used to predict patient outcomes based on a

multitude of variables like vital signs, medication schedules, and other treatment

parameters. The field also holds promise for climate science, where variables
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such as temperature, humidity, and wind speed are intrinsically linked. Moreover,

in the realm of supply chain management, spatial-temporal forecasting can offer

invaluable insights by analyzing the interdependencies between inventory levels,

demand fluctuations, and production schedules.

The overarching aim of this research is to advance the state-of-the-art in spatial-

temporal forecasting by developing models that are not only powerful but also

adaptive, scalable and interpretable. This involves a two-pronged approach: firstly,

the extension and refinement of existing statistical methodologies to accommodate

multivariate data; and secondly, the integration of cutting-edge machine learning

algorithms such as Recurrent Neural Networks (RNNs), Long Short-Term Mem-

ory (LSTM) networks, and Graph Neural Networks (GNNs) into the forecasting

framework.

By pushing the boundaries of what is currently achievable in spatial-temporal

forecasting, this research aspires to catalyze transformative changes across a mul-

titude of applications. The ultimate objective is to provide actionable, accurate,

and timely forecasts that can significantly improve decision-making processes and

optimize resource allocation in complex, multi-variable systems.

1.2 Research Questions and Motivations

As discussed in the last section, the research objective is to build interpretable, adap-

tive and scalable deep-learning models for spatial-temporal forecasting. This derives

the two RESEARCH QUESTIONS of this thesis, namely space-time-varying

correlations and spatial-temporal scalability, that set spatial-temporal forecasting

apart from other machine learning tasks.
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1.2.1 Space-time-varying Correlations

Clarification of variables: Before introducing space-time-varying correlation,

we clarify the concept of variables in our context. Instead of complying with that

in the context of MTS, which is defined as a sequence of chronologically ordered

observations, we base the definition of the variable on space and time jointly. To

be more specific, a spatial point paired up with a temporal point corresponds to

a variable in our modeling. This definition appears to be counter-intuitive, given

that each variable can only produce at most one observation, instead of obtaining

an array of observations as in a common supervised learning scenario. Key support

for the identification of the spatial-temporal points as variables rather than pure

observations is that they tend to be not independently and identically distributed.

Just as Heraclitus, the ancient Greek pre-Socratic philosopher, said, "No man ever

steps in the same river twice. For it’s not the same river and he’s not the same

man." This metaphor also works well for the dynamics of time series which are

subject to constant changes, especially in the open environment. Therefore, the

spatial-temporal points better fit the concept of variable than pure observation.

Space-time-varying correlations: One of the most salient challenges in spatial-

temporal forecasting pertains to the dynamic nature of correlation patterns across

both spatial and temporal dimensions. Traditional machine learning models often

operate under the assumption of identically distributed and independent data

samples over time. This assumption, however, is frequently violated in the realm of

spatial-temporal data. Specifically, the data distribution is subject to shifts across

different spatial locations and temporal intervals, as illustrated in Fig.1.1a, thereby

undermining the foundational assumptions that ensure the efficacy of machine
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learning and deep learning algorithms. Such distributional shifts can significantly

compromise the performance of these models, particularly when they are applied

to new, unseen data.

This issue is further exacerbated by the intricate interdependencies that char-

acterize spatial-temporal data samples, as illustrated in Fig.1.1b. Unlike the

assumption of independence, these data samples are often entangled in complex

relationships that can fluctuate both temporally and across different series. Ac-

curately capturing these interdependencies is not merely an added nuance; it is a

critical requirement for generating reliable forecasts. The presence of these dynamic

interdependencies introduces an additional layer of complexity that any robust

spatial-temporal forecasting model must effectively address. Failure to account for

these complexities can result in models that are not only less accurate but also

less reliable when applied to real-world scenarios, thereby limiting their utility in

decision-making processes.

Causes of space-time-varying correlations: This heterogeneity in correlations

can be driven by numerous factors, such as alterations in environmental conditions,

policy changes, or technological innovations, leading to differing shifts in the

underlying data distributions across the time series. In addition, these factors

trigger heterogeneous patterns in time series data, some of which persist for an

extended time, some recur periodically, and some occur irregularly showing volatile

fluctuations. Take the daily returns of different stocks in a stock market as a

typical scenario, factors such as changes in market conditions, macroeconomic

policies, or the introduction of disruptive technologies can lead to shifts in the

correlations between different stocks. Specifically, two technology companies might

exhibit a stronger correlation during a period of rapid technological advancement,
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while the same companies might show a weaker correlation during an economic

downturn that affects different sectors of the economy unevenly. As for another

scenario of retail sales across multiple product categories, seasonal products like

winter clothing may exhibit sales peaks during colder months, while non-seasonal

products like kitchenware may have more evenly distributed sales throughout the

year. Promotional events could also cause sudden shifts in sales distribution, but

these shifts would likely impact different product categories to varying extents,

depending on the nature of the promotion.

Relation with other relevant concepts: Instead of in line with the convention

of this field to use spatial-temporal correlation, we coin space-time-varying correlation

for the purpose of highlighting the changing behavior of statistical properties of

time series data over space and time. Furthermore, we also find three related and

commonly referred concepts in the relevant literature, consisting of heteroscedasticity

[36, 15], distribution shift [48, 132] and concept drift [133, 64, 27]. In statistics,

heteroscedasticity happens when the standard deviations of a predicted variable,

monitored over different values of an independent variable or as related to prior time

periods, are non-constant [36, 15]. In the field of machine learning and statistics, a

distribution shift refers to a change in the way data is distributed. Concept drift and

distribution shift are related but distinct terms in the machine learning literature,

both pertaining to changes in the underlying data that a model is working with.

A distribution shift refers to a change in the distribution of data [48, 132]. It’s a

broad term that encompasses any situation where the probability distribution of

the data changes. This could be due to changes in the input features (covariate

shift), changes in the output variable (prior probability shift), or changes in the

relationship between input and output variables. Concept drift is a specific type
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of distribution shift that occurs when the relationship between the input features

(also known as predictors or covariates) and the output variable (also known as the

target or response variable) changes over time [133, 64, 27]. In other words, it’s

when the function that maps inputs to outputs — the "concept" that the model is

trying to learn — changes.

Challenges to conventional statistical learning methods: Space-time-

varying correlations impose tremendous challenges to time series forecasting, carry-

ing significant implications. Traditional statistical models, such as autoregressive

integrated moving average (ARIMA) models [38] or vector autoregressive (VAR)

models [40] work in a restrictive scenario where the variables are linearly inter-

dependent and the correlations among the variables are constant over time. Extend-

ing the ability of these models to handle more complicated scenarios requires the

practitioners to manually specify the form of the model that possesses the capacity

to accurately characterize the dynamics of time series data, potentially by con-

structing various interactions among the variables based on their understanding of

the data dynamics. However, the introduction of high-order interactions among the

variables substantially complicates the estimation of the model’s parameter, often

disabling the analytical solution. Besides, this method still falls short in handling

the space-time-varying correlations. To model varying correlations, intensive and

complex computations are necessitated. This complexity arises due to the need

to constantly update the correlation matrix as new data comes in, especially in a

high-dimensional time series context where the number of correlations grows super-

linearly with the number of variables. Each update requires a new estimation of

the correlation matrix, and the computational cost can be substantial, particularly

for large datasets. The use of more advanced models, like Dynamic Conditional
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Correlation (DCC) models [22] or copula models [74], can help address this issue,

but these models themselves are also complex and computationally demanding.

They involve additional layers of estimation and often rely on iterative algorithms,

which can be time-consuming to run, especially on large datasets. Furthermore,

these models require careful specification and validation, adding to their complexity.

Challenges to modern deep learning methods: Advanced deep-learning

techniques can capture the space-time-varying correlations to a certain extent, but

they still struggle with the issue of distribution shifts, especially in those cases where

the change occurs without explicit indications or much regularity [129, 117, 118].

The failure in handling distribution shifts is attributed not to the low capacity, but

to the low generalization ability of the model. Theoretically, a multilayer perceptron

(MLP) with a sufficient number of hidden units and hidden layers possesses the

ability to mimic any dynamics. However, this success typically necessitates large

volumes of data samples drawing from various patterns uniformly. For those patterns

with limited or no data samples, the prediction accuracy provided by the model will

substantially degrade. This requirement on the data is typically not met in a time

series context, given that there are patterns that only appear at some points in the

future and cannot be accessed when the model is trained. In addition, since the

data distribution constantly changes, even for the patterns that are already present,

we may only collect a restricted number of samples of them that are corrupted with

noise. In this case, the optimizer is prone to be misled by noisy signals, incurring

the overfitting issue. As showcased by [44], the dedicated handling of the trend,

which serves as a measure of data distribution, can strengthen the generalization

ability of the deep learning model on data that inherently behaves gradual shift in

trend level.
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In summary, space-time-varying correlation in time series data poses a unique

challenge in time series forecasting, demanding an intensive investigation of appro-

priate analytical strategies. Despite the associated challenges, addressing this issue

effectively can substantially enhance the performance of forecasting models.

1.2.2 Spatial-temporal Scalability

As the magnitude of data collection continues to expand, the management and pro-

cessing of large-scale time series data have become increasingly complex tasks. This

necessitates the development of scalable prediction algorithms that can efficiently

handle vast datasets while maintaining high forecast accuracy.

The challenge of scalability becomes more complex due to the intricate long-term

dependencies found in time series data. Forecasting typically involves using an

extended sequence of historical data as input to make predictions about future

values. In several instances, the size of the input sequence may span numerous

consecutive days. Prediction accuracy generally improves as the size of the input

sequence increases, however, at the cost of intensive computations, leading to longer

latency in the prediction process. This becomes problematic in domains that have

little tolerance for delay, like financial markets.

The implications of scalability: Scalability is a measure of an algorithm or

system’s capacity to manage an increasing workload, typically quantified by the

volume of computations performed. If an algorithm can handle a growing volume of

computations without significantly increasing computational resources or time, it’s

considered to have good computational scalability. The potential for parallelization

— the capacity to execute multiple computations or processes concurrently — is

also a vital factor influencing computational scalability. If an algorithm or system
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Figure. 1.2 Spatial-temporal Scalability

can effectively leverage parallel computing resources (like multi-core processors

or distributed computing systems), it can significantly improve its computational

scalability. Therefore, by minimizing computations and promoting parallelization,

an algorithm’s scalability can be substantially improved.

Unnecessary computations: Traditional neural network architectures, such

as Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and

Transformers, are designed with densely-connected and symmetric structures. These

architectures allocate uniform computational resources, including the number of

parameters and operations, to each observation in the input sequence. While this
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design is well-suited for tasks like time series classification, it may not be the most

efficient for forecasting tasks, which inherently possess a skewed structure.

In the realm of time series forecasting, more recent data points often carry

greater predictive value and thus warrant more complex computational engagement

for effective information extraction. Conversely, earlier observations may not require

such computational intensity, as they often contribute less to the accuracy of future

forecasts. This asymmetry in the importance of data points suggests that the

traditional symmetric and densely connected neural network architectures may

introduce unnecessary computational complexity, as illustrated in Fig. 1.2a. This

is particularly true for earlier observations, which do not significantly contribute to

the forecast and yet consume equal computational resources.

Redundant computations: The second challenge pertains to redundant com-

putation, especially during the inference phase of spatial-temporal forecasting.

Once deployed, forecasting models often operate on a rolling basis, which leads to

overlapping data and, consequently, redundant computations between consecutive

runs, as illustrated in Fig. 1.2b. This redundancy can be particularly costly in

terms of computational resources, especially when dealing with extensive input

sequences.

Such computational redundancy not only increases operational costs but also can

slow down real-time forecasting applications where timely decision-making is crucial.

Eliminating this redundancy is a focal point of our research. Our investigations aim

to address these scalability challenges by developing more efficient computational

strategies, thereby contributing to the advancement of spatial-temporal forecasting

models that are both effective and resource-efficient.
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One potential solution to eliminate redundant computations is to reuse com-

putation results across executions, reducing the need to process the entire input

sequence. If the features of the segment are extracted appropriately, they can

remain useful in subsequent executions, thus eliminating repetitive and unnecessary

computations.

Different deep architectures have different potentials to be optimized in terms of

computational efficiency in the online testing mode. For instance, models such as the

Multilayer Perceptron (MLP) [117, 118] and Transformer-based methods [129, 102]

exhibit computational complexities that super-linearly correspond to the number

of backward steps input to the model, irrespective of whether they are deployed

in offline training or online testing mode. This is attributed to their intrinsic

design to measure the contributions of each backward step to the forward horizon

independently. Consequently, this prompts the need for continuous re-estimation

of the contribution from every preceding step as time progresses. In contrast,

Temporal Convolutional Networks (TCNs) [3] achieve computational complexity

that is linearly proportional to the size of the input sequence in offline training

mode, but sublinearly proportional in online testing mode, thanks to the reuse of

features extracted in prior executions. Models within the Recurrent Neural Network

(RNN) family [92, 91, 125] are more efficient, achieving minimal computation cost

on a rolling basis due to their state variable that memorizes useful information

propagated from the past. However, their performance tends to lag behind TCN

and Transformer-based models. In essence, there is a noticeable vacuum in the

availability of algorithms that are both effective and scalable.

Relation with space-time-varying correlation: The pursuit of developing

scalable spatial-temporal inference algorithms is intrinsically linked with managing
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space-time-varying correlations. Improving scalability inherently involves an efficient

estimation of the shifting correlations in an online manner, which prompts us to

investigate the structure and changing patterns of the correlations. Given that the

correlations typically vary smoothly at a low rate, the calculation at the current

iteration has great potential to be reused with minor adjustments at subsequent

iterations. Furthermore, real-world time series data tend to exhibit multiple types

of correlations with heterogeneous changing patterns, such as trend and seasonality.

As a result, different correlations have to be decomposed and modeled individually.

1.2.3 Contrast with Other Tasks

To further underscore the distinction of time series forecasting, it is insightful to

compare it with other common machine learning tasks. Specifically, tasks in the

domains of image recognition and natural language processing, while complex in

their own right, present different challenges and characteristics. As we will see in

the following paragraphs, the dynamic and heterogeneous nature of time series data

contrasts sharply with the more static and less distributionally volatile nature of

data in image recognition and NLP tasks.

Image Recognition: Image recognition, a subfield of computer vision, is

concerned with identifying and detecting objects or features in digital images

[19]. The task typically involves processing static, two-dimensional arrays of pixel

intensities. For example, in an image classification task, the goal might be to

determine whether a given picture contains a cat or a dog. The model would

identify relevant features, such as the shape of the animal, the texture of the fur,

and the colors present in the image. These features are extracted from spatial
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correlations between neighboring pixels and are usually static across different images.

The correlations do not change over time as they would in a time series dataset.

A key point is that in image recognition, the correlations between different

features (e.g., the shape of the ears, the color of the fur) are typically fixed and

do not exhibit the kind of heterogenous correlations found in time series data. For

instance, the relationship between ear shape and fur color in determining whether

an image contains a cat or a dog is not expected to change over time or under

different conditions.

Further, the distribution of these features is generally stationary. For example,

the distribution of shapes, colors, and textures in a large dataset of cat and dog

images is expected to remain relatively stable unless there’s a significant change in

the image-capturing process or in the types of images being included in the dataset.

This is in stark contrast to time series data, where the underlying distribution can

shift due to a multitude of factors, leading to heterogeneous distribution shifts.

In summary, while image recognition involves complex patterns and structures,

the nature of these patterns is fundamentally different from those encountered

in time series data. The lack of temporal dynamics, evolving correlations, and

distribution shifts distinguishes image recognition tasks from time series forecasting

tasks, and models that work well for image recognition might not be suited to the

unique challenges of time series forecasting.

Natural Language Processing (NLP): NLP is a subfield of artificial intel-

ligence that focuses on the interaction between computers and humans through

natural language. The ultimate objective of NLP is to read, decipher, understand,

and make sense of human language in a valuable way.
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Consider the task of sentiment analysis, where the goal is to determine the

sentiment (e.g., positive, negative, neutral) of a given text. In this case, the sequence

of words (discrete symbols) in a sentence or paragraph forms the input data. The

model needs to identify relevant features, such as the presence of positive or negative

words and the overall context, to determine the sentiment. The correlations between

these features (e.g., the sequence and context of words) are primarily determined

by the grammatical and semantic rules of the language. However, unlike in time

series data, these correlations are generally static within a given language. For

instance, in English, the phrase "not good" typically has a negative sentiment,

regardless of when or where it is used. This static nature of correlations contrasts

with the dynamic, heterogenous correlations observed in time series data, where

the relationship between variables can change over time due to a variety of factors.

Regarding data distributions, while certain shifts can occur in NLP (for example,

the increased usage of certain words or phrases over time), they are often less

pronounced and less impactful on model performance compared to the heterogenous

distribution shifts in time series data. In NLP tasks, the distribution shifts are

usually related to changes in language use over time or across different domains,

but the fundamental grammatical and semantic structures remain relatively stable.

In summary, while NLP tasks involve complex sequences and structures, the

nature of these sequences is fundamentally different from those in time series data.

The static correlations and less impactful distribution shifts distinguish NLP tasks

from time series forecasting tasks, emphasizing the need for specialized models that

can handle the unique challenges of time series data.
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1.3 Contributions of the Thesis

This thesis presents potential solutions for the development of adaptive and scalable

time-series forecasting models, as illustrated in Fig. 1.3. The key contributions of

this thesis are outlined below:
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Figure. 1.3 Framework overview of three proposed methods. For each method,

the techniques used for spatial and temporal modeling are labeled, along with the

abilities demonstrated by these techniques. Arrows indicate the development of

one technique from another, with the head side technique evolving from the tail

side technique.

Contribution 1. We designed an attention-based method to investigate correla-

tions within diverse spatial-temporal contexts, effectively addressing the issue of

space-time-varying correlations.

• A multi-view representation learning module for time series data is proposed,

integrating both periodic and real-time views.
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• A co-evolving pattern learning and fusion module is introduced. This module

extracts co-evolving patterns by identifying dynamic correlations between

different time series.

• We implement multi-scale information-based forecasting, where the original

time series represents fine-scale information and the co-evolving patterns

represent coarse-scale information.

Contribution 2. We proposed a normalization-based method to extract the

characteristics of spatial and temporal data distribution, effectively addressing both

the space-time-varying correlations and spatial-temporal scalability issues.

• We provide both theoretical and empirical evidence that certain distribution-

level features pose inherent challenges for deep learning models.

• Two types of normalization modules are proposed to refine the components

representing spatial and temporal data distribution respectively.

• Extensive experiments are conducted to highlight the significant advantages

of normalization-based methods in terms of efficacy, computational cost, and

convergence speed.

Contribution 3. We proposed a novel framework aimed at simulating the chang-

ing behavior of the underlying distribution in time series data, effectively addressing

both the space-time-varying correlations and spatial-temporal scalability issues.

• We introduce the Structured Component Neural Network (SCNN) for multi-

variate time series forecasting, marking the first fully decomposition-based

neural architecture.



18 Introduction

• A novel structural regularization method is proposed to explicitly shape the

structure of the representation space learned from SCNN.

• Extensive experiments on three public datasets validate the effectiveness of

SCNN, with observed general improvement over competing methods. Both

empirical and analytical evidence demonstrate SCNN’s superior performance

in handling distribution shifts and anomalies, along with a significant reduction

in computational cost.

1.4 Thesis Outline

The structure of the remaining chapters of this thesis is organized as follows.

• Chapter 2 summarizes the literature on time series forecasting, particularly

the deep learning-based methods.

• Chapter 3 presents an attention-based method to investigate correlations

within diverse spatial-temporal contexts.

• Chapter 4 presents a normalization-based method to extract the characteristics

of spatial and temporal data distribution.

• Chapter 5 presents a novel framework aimed at simulating the changing

behavior of underlying distributions in time series data.

• Chapter 6 summarizes the findings of this thesis and points out the directions

of future work.
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Chapter 2

Literature Review

Deep learning models have achieved unparalleled success in computer vision. This

success has spurred a vast body of literature related to deep learning methods,

particularly in multivariate time series forecasting. Most research endeavors focus

on drawing inspiration from computer vision, natural language processing, and

graph data analysis, with only slight modifications or improvements to address

the distinctive properties of spatial-temporal data. The rationale behind such

cross-disciplinary applications is the intrinsic ability to frame spatial-temporal data

as grids, graphs, sequences, or a combination of these, reflecting the abstract traits

found in images, graphs, and languages.

In the realm of computational models, a majority of research relies on three

core operations: the attention operator, the convolution operator, and the recurrent

operator. Specifically, the attention operator has evolved into specialized forms such

as spatial attention [25, 127, 58], temporal attention [131, 127], and sparse attention

for computational efficiency [102, 129, 55]. Similarly, the convolution operator has

been extended into spatial convolution [113, 56, 30], temporal convolution [104, 103],

spatial-temporal convolution [33, 108], and adaptive convolution, which allows the

operator’s parameters to adapt to external conditions [71]. Lastly, the recurrent
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operator has led to the development of gated recurrent units (GRU) [126], long

short-term memory (LSTM) [110, 111], and adaptive RNNs [93, 78, 75, 71].

Despite notable advancements, a breakthrough solution with capabilities akin

to GPT has yet to emerge. Recent research indicates that even a basic linear

model, when augmented with trend decomposition techniques, can rival or surpass

the performance of intricate deep learning models, particularly those based on the

Transformer architecture. These findings have reverberated throughout the scientific

community, challenging the prevailing belief that deep learning is revolutionizing

time series forecasting as well. The limitations of deep learning models, especially

those using the Transformer architecture, are often attributed to the inherent

lack of structure in time series data. Unlike natural language, which consists of

discrete tokens, time series data is made up of continuous points sampled at discrete

intervals. This leads to a situation where two time series with diverging future

trends may still be closely located in the feature space, making them hard to

distinguish. To overcome this challenge, much of the existing literature aims to

improve time series forecasting by incorporating the inherent structure of the time

series as prior knowledge.

In our literature review, we conduct a comprehensive survey of this field, organiz-

ing studies based on the underlying framework they employ, such as the Transformer

or MLP, and the specific type of structure they aim to enhance in time series data.

This structure can be examined from two perspectives: temporal and spatial. The

temporal perspective includes long-term, seasonal, and short-term components.

These elements help to understand the time-based patterns and fluctuations in

the data. On the other hand, the spatial perspective focuses on co-evolving and

local components. The local component pertains to interconnected nodes within a
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physical space. For example, in the context of traffic, intersections connected by

the same road may show similar variations. The co-evolving component, however,

affects nodes that are geographically dispersed but exhibit similar trends or behav-

iors. By categorizing the studies in this manner, we aim to provide a structured

overview of the current state of research, highlighting the various approaches taken

to address the complexities of time series forecasting.

2.1 Multi-layer Perceptrons

Zhang et al. [118] pioneered the study of utilizing deep learning models for spatial-

temporal forecasting, demonstrating the potential of this burgeoning algorithmic

paradigm in time series forecasting tasks. They developed a model called DeepST,

derived from deep convolutional neural networks (CNNs) and tailored for handling

grid-based spatial-temporal data, such as traffic flow. DeepST exhibits exceptional

proficiency in projecting traffic flow, significantly outperforming traditional time

series forecasting models, including ARIMA, SARIMA, and VAR. These models,

while effective in certain scenarios, are limited in their ability to capture complex

spatial-temporal dependencies. In a novel approach, Zhang et al. [118] formulated

the snapshot of traffic flows distributed across an entire city as a channel of an

image, represented by a matrix of pixels, in the sense that spatially adjacent values

are correlated in the context of both spatial-temporal data and image data. This

innovative representation allowed DeepST to take advantage of CNNs’ capability

to learn and recognize patterns in spatial data.

In the subsequent works [117, 119], they integrated the residual component

into DeepST, resulting in an architecture called ST-ResNet, which resembles the

well-known ResNet (Residual Network). The residual component further enhanced
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DeepST’s performance by facilitating the training process of model parameters,

allowing them to converge at a more optimal position. This is achieved by adding

shortcuts or skip connections between layers, enabling the network to learn more

efficiently and effectively. Since ST-ResNet’s inception, it has gained widespread

popularity and drawn increasing attention to the field of deep learning-based spatial-

temporal forecasting. It also serves as a widely adopted and competitive benchmark

model in subsequent studies, setting a new standard for research in this area. This

line of literature also includes [60, 26].

2.1.1 Short-term Enhanced MLP

By design, a Multilayer Perceptron (MLP) does not inherently capture the temporal

order among data points in an input sequence, lacking what is known as ’inductive

bias’ for time series. To illustrate, consider an example where we permute the

elements of any given input sequence in a fixed order. For any MLP, the permuted

sequence would be treated as equivalent to the original sequence across all sample

instances. This is because the weights of the MLP can be rearranged without the

need for retraining, producing a consistent output for the permuted sequence that

equals the original prediction. However, it is clear that such a permutation destroys

the temporal structure inherent to the sequence. Therefore, this underscores the

need to incorporate inductive biases to capture temporal relationships. First and

foremost is to make the model aware of the neighboring relationship among the

data points. One line of research employs convolution or moving average techniques

to extract the short-term components [41, 90], which reflect the local trend over a

short segment of observations. TimesNet [101] further extends this line of research

by considering variations at multiple scales or resolutions.
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2.1.2 Long-term (Trend) Ehanced MLP

The emergence of DLinear[116] challenges the need for using the Transformer as the

primary model for time series forecasting, bringing the attention of the community

back to exploring the ability of MLP enhanced by the components designed for

recovering and modeling the structure of time series data. Zeng et al. [116] demon-

strated that by employing a divide-and-conquer strategy, which separately models

the evolution trend and the residual components with a straightforward linear

model, the performance can compete against that of intricate Transformer-based

models.

2.1.3 Seasonality Enhanced MLP

N-BEATS[68] offers a hierarchical decomposition approach that alternately isolates

the trend and seasonal components of time series data, layer by layer. To endow the

model with interpretability, the hypothesis space for trend components is restricted

to polynomial functions of limited orders. Meanwhile, the seasonal components are

modeled using the Fourier series. The coefficients associated with the polynomial

functions and the Fourier series are learned from data via MLPs. N-HITS[8] is the

follow-up work built upon N-BEATS.

DEPTS[24] estimates the seasonal component using a time-dependent function,

specifically a series of cosine functions, independent of real-time data. This approach

contrasts with existing methods, which rely on data collected over multiple previous

periods to capture the seasonal component. One potential advantage of DEPTS lies

in its reduced storage and computational demands, as well as its resilience to data

noise, given that it solely uses the time variable to infer the seasonal component.

However, this method has a limitation: the seasonal component will exhibit a
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consistent pattern over time due to the periodicity of the cosine functions, limiting

its ability to adapt to changes in the seasonal component. Other relevant studies

include [99].

2.1.4 Position Encoding Enhanced MLP

Building on DLinear’s foundation, TiDE [16] (an acronym for Time-series Dense

Encoder) further integrates both dynamic covariates and static attributes into the

time series data input. An MLP implements the model, enabling the capture of

non-linear transitions between time steps. By including covariates, such as times

of day, the model embeds the time series data within a structured feature space.

Specifically, it biases the encoding to favor time series with identical or overlapping

sequences of covariates, ensuring they are represented similarly, while minimizing

correlations for time series with distinct or minimally shared covariates. A similar

principle applies to static attributes. Consequently, the resulting feature space

structure from this method is more robust than one without any structure prior.

Both ST-MLP [96] and STID [81] build upon this research direction, delving

into the spatial-temporal domain. Their architectures are augmented by integrating

both spatial and temporal embeddings. Moreover, ST-MLP [96] manages to encode

a predefined graph structure as a set of biases specific to each series. This approach

enables the physical distance to condition the structure of the feature space.

2.2 Recurrent Neural Networks

Despite the success of MLPs, they fall short in accounting for sequential order

among input values, resulting in a limited ability to capture temporal correlations.

To address this limitation, a series of studies [78] turned to the RNN (Recurrent
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Neural Network) [76] framework, which inherently models sequential orders by

recursively processing each observation in the sequence from beginning to end using

the same pair of parameters. Moreover, the gating mechanism implemented by the

sigmoid function in RNNs, such as the Long Short-Term Memory (LSTM) [39] and

Gated Recurrent Unit (GRU) [13] networks, allows them to mimic the decaying

behavior exhibited by the autocorrelation function, ensuring that observations in

the distant past have limited or no impact on predictions. This adaptive memory

management helps in effectively capturing long-term dependencies in time series

data. These two distinctive and logical characteristics of RNNs have led to a surge

in their application to spatial-temporal problems, addressing the limitations of

earlier models and paving the way for more accurate and efficient forecasting in

various domains. Representative works following this line include ConvLSTM [82],

PredRNN [94, 92, 91], DeepAR[77].

2.2.1 Spatially-Enhanced RNN

The central issue in spatially-enhanced RNN is how to effectively model the inter-

dependencies between different time series. These inter-dependencies can be sourced

in two ways: Expert Input or Side Information: This includes information like road

networks. Methods based on this source are exemplified by works like [110]. Data-

Driven Approaches: These derive inter-dependencies through statistical analysis or

coefficient estimation. Notable works in this category include [72]. Shang et al. [80]

focus on learning the graph structure based on the complete time series sequences,

rather than just the sub-sequences immediately preceding the forecast period.

This results in an invariant graph structure that is resilient to sudden disruptions.

However, this approach may not be suitable when the inter-dependencies change
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over time. In contrast, BAI et al. [2] introduces a model that incorporates an

adjacency matrix with learnable elements into the RNN framework. This allows

the model to progressively update the inter-dependencies through backpropagation.

Given that this model also assumes a consistent graph structure, it suffers from

the same problem of performance degradation if the relationships between the time

series change over time.

2.2.2 Seasonality Enhanced RNN

While RNNs can capture long-term dependencies through selective memory updates,

they still inevitably experience significant information loss due to the gating effect,

which grows exponentially over time. For instance, with a decay rate of 0.01 per

hour, only about 20% of the information from the same time last week would be

considered at the current time point. This limitation, arising from the recursive

propagation of information, drives the optimization of RNN structures, such as

introducing direct connections between non-consecutive time points. This allows

crucial information from the distant past to be instantly transmitted to the present,

bypassing cascading gates. However, this comes with a substantial increase in

computational complexity if every pair of non-consecutive time points is explicitly

connected.

To manage computational costs, existing studies leverage prior knowledge to

select necessary links. For instance, some studies bridge periodic observations,

allowing periodic information to pass through time steps without loss [134, 128].

These studies represent links as binary digits, where 1 signifies a connection, and 0

indicates its absence. Algorithmically, if links are sequentially connected, another

RNN can be used to process the information held within the chain of connections.
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This additional RNN, operating at specific intervals, can interact with the original

RNN, which operates at each time step, to mutually enhance their capabilities.

This approach can also be seen as a hierarchical multi-scale RNN, where multiple

RNNs process time series data at different sampling rates in parallel.

However, this solution’s drawback lies in its dependence on prior knowledge

of recurring time series patterns, which limits its applicability when identifying

such patterns is challenging. The emergence of the attention mechanism addresses

this issue by learning connections without additional hints or supervision. Instead

of using undifferentiable binary representations for connections, the attention

mechanism employs a continuous number, known as the attention score, ranging from

0 to 1 to represent connection intensity. This enables optimization through gradient

descent. Specifically, an attention score close to 0 indicates weak connections

between associated observations, with little valuable information transfer, while a

score near 1 suggests a strong correlation. Moreover, the values corresponding to

an observation’s historical connections are constrained to sum to 1. The desired

outcome is that attention scores emphasize essential observations in history while

suppressing irrelevant ones. Numerous studies fall into this category. Other studies

[4] supplement RNN with decomposition techniques, forcing the RNN to optimize

the prediction of the remainder component that cannot be explained by the seasonal

component.

Recent studies seek to apply the Transformer framework, which comprises

multiple layers of attention mechanisms and fully connected operations, to time

series forecasting tasks. These efforts explore the possibility of discarding the

recurrent architecture altogether.
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2.3 Transformer Framework

The Transformer framework [88], which has its roots in natural language processing,

has dominated the field of NLP due to the unprecedented success of models like

BERT [20], BART [51], GPT [5], and, recently, ChatGPT [69]. Both natural

language and time series data share the characteristic of exhibiting sequential

patterns, making the Transformer an appealing choice for time series forecasting.

As a result, it has served as the backbone architecture in numerous studies. However,

the symmetric and parallel architecture of the Transformer makes it less suited for

processing time series data compared to RNNs with sequential architectures, where

RNNs inherently perceive the temporal order of observations based on the order in

which they are fed into the model. To imbue the Transformer with the capability to

capture sequential orders, researchers explicitly encode the positions of tokens into a

vector space. The intricate combination of positional encodings and token encodings

gives rise to the ability to capture rich and abundant semantics. Consequently,

positional encodings are of fundamental importance to the Transformer’s success.

In the context of time series forecasting, the design of positional encodings

takes center stage, becoming even more critical than in the NLP context. This

is because spatial-temporal data exhibit more complex structures than natural

language, including both sequential structure, seasonal structure, and spatial struc-

ture. Positional encodings significantly determine the type of temporal structure

the Transformer can perceive in addition to the input data. For instance, some

studies draw inspiration from NLP and implement positional encodings using sine

and cosine functions of their indexes in the sequence. Later studies found that

enabling the positional encodings to be learnable, instead of freezing them, can
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further strengthen the Transformer, significantly boosting the forecast accuracy.

From then on, much attention has been brought to the Transformer framework.

Despite widespread applications, the Transformer framework does not demon-

strate a dominant advantage over other frameworks in the field of time series

forecasting. In some cases, even a simple linear model [115] or an MLP [16] can

outperform Transformer-based state-of-the-art models, if they also incorporate the

crafted position encodings. Therefore, whether the attention mechanism plays an

indispensable role in time series forecasting, as it achieves in NLP, remains an open

question.

Another concern is the prohibitive computational cost in training and making

inferences with Transformers, as it asks for computing dot products between every

pair of historical observations. A milestone study [129] showed that the attention

scores follow a long-tailed distribution with a substantial amount of attention scores

near zero. This implies that massive computations executed by Transformers are

essentially useless in the scenario of time series forecasting. Therefore, improving

the efficiency of the Transformer has become a hot subject in this field, giving rise

to a series of insightful and pragmatic works.

2.3.1 Long-term (Trend) Enhanced Transformer

The fluctuations in long-term (trend) components over time introduce distribution

shift issues, which can compromise the performance of Transformer models. RevIN

[45] pioneered the approach to address this shift seen in the long-term component.

It encases the Transformer or other core models with a normalization module at the

initial layer and a denormalization module at the terminal layer. Specifically, the

normalization module adjusts the mean and standard deviation of the input time
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series data to 0 and 1, respectively. Reversely, the denormalization module brings

the Transformer’s projections back to the original mean and standard deviation.

The Non-stationary Transformer [63] builds on RevIN’s framework, aiming to

recognize temporal dependencies across data samples with varying measures of

mean and standard deviation. This recognition stems from the understanding that

normalization might mask dependencies associated with these statistics. Extending

the approach of RevIN, it weaves the original statistics and the raw data into the

calculation of attention scores, in conjunction with the queries and keys derived

from the normalized data.

Fan et al. [23] noted that distribution shifts appear both across varying sampling

frequencies and between the lookback window and the horizon window. From their

viewpoint, this implies that traditional statistical methods might fall short in

accurately measuring the genuine statistics of the distribution, which includes mean

and standard deviation. While earlier methods relied on fixed long-term statistics

to normalize time series data[45], they often struggled to navigate the complexities

highlighted above. Addressing this challenge, the researchers introduced a neural

module termed Dish-TS [23]. Dish-TS deploys an MLP to learn a level coefficient

and a scaling coefficient, using backward data as its input. These coefficients are

intended to offer a more nuanced depiction of the data distribution compared

to the traditional mean and standard deviation, thereby addressing the intricate

distribution shift challenge. To regulate these coefficient estimates, an auxiliary

loss was incorporated, aiming to narrow the gap between the level coefficient and

the traditional mean. In prior work, DAIN[73] also substantiated the importance

of normalizing time series data with adaptive mean and standard deviation. The

standout feature of Dish-TS and DAIN lies in its nuanced understanding of the
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complexities associated with varying data distributions over time and across different

sampling frequencies. Nonetheless, it overlooks the fact that when focusing on

either the lookback or horizon window, the data might originate from a multimodal

distribution. Such a distribution might be a poor fit for Gaussian approximation.

Consequently, it’s still up for debate as to what the coefficients generated by Dish-TS

truly represent.

2.3.2 Seasonality Enhanced Transformers

Autoformer [102] is one of the earliest studies to highlight the limitations of tra-

ditional attention models in capturing seasonal components. It posits that spikes

occurring at individual points in time series can mislead attention models, leading

them to mistakenly assign high attention scores to false points [122]. To improve

the accuracy of identifying time points with similar seasonal effects, the authors

introduced a period-based attention mechanism. Instead of using dot-product

similarities at individual time points, this mechanism employs autocorrelations at

the period level for attention scores.

FEDformer [130], recognizing the inherent separation of seasonal and irregular

components when representing time series using Fourier bases, shifts the represen-

tation of time series from the temporal to the frequency domain using a Fourier

transform. In this domain, frequency modes with large amplitudes correspond

to seasonal components, while those with smaller amplitudes relate to irregular

components. Capitalizing on this observation, FEDformer reduces irregular noise

by randomly omitting certain frequency modes, ensuring a small loss of seasonal

information. Empirical evidence provided by the authors suggests that randomly

selecting a mix of low and high-frequency modes preserves time series information,
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predominantly consisting of seasonal components, more effectively than retaining

only a fixed set of low-frequency components. However, it remains to be explored

whether this random selection strategy outperforms a method focused solely on

high-amplitude frequency components, as the latter might minimize information

loss.

TDformer [122] shows that detrending time series data prior to Fourier trans-

formation can maximize the advantages of attention models in the Fourier domain.

Additionally, the study illustrates the difficulties attention models face in generaliz-

ing and extrapolating trend components, emphasizing the need for a specialized

model for these components. In TDformer’s approach, this is achieved by combining

multiple average filters of varying sizes with an MLP for prediction.

Yet, a common oversight in these studies is the lack of a clear rationale for apply-

ing attention to frequency domain representations across different frequency modes.

Since Fourier bases are mutually orthogonal and convey independent information,

the benefits of inter-base information exchange remain unclear, warranting further

exploration. While there are aspects of these methods that invite debate, their

collective contributions to the field are undeniable. They collectively underscore

that when seasonal components are processed effectively, there can be significant

performance enhancements.

2.3.3 Spatially and Short-Term Enhanced Transformers

Much of the prior research has predominantly centered on bolstering the trend and

seasonality components, with comparatively less emphasis placed on the spatial

and short-term components. In our investigation, we identified Crossformer [123]

as the pioneering work in this research direction. Subsequent advancements have
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been made by DSFormer [114] and Scaleformer [79], which extend the capabilities

of Crossformer by focusing on capturing multi-scale components.

Crossformer [123] enriches the information in the representation of time series

by encoding data at the segment level and tapping into inter-dependencies between

different series. This adaptation allows the Transformer-based model to identify

short-term variations across the series, achieving marked advancements over earlier

methods within the Transformer family [129, 102, 62]. We emphasize that the

novelty of these techniques is apparent only when considered within the scope of

methods that employ the Transformer framework. This is because similar concepts

have already been explored in a range of pertinent studies related to traffic fore-

casting and multivariate time series forecasting [103, 104, 43], the earliest among

which came up in 2019, four years prior to the development of Crossformer. The

notable efficacy exhibited by Crossformer has brought the researchers’ focus to

the Transformers’ constraints in harnessing short-term and spatial correlations.

CARD [107] introduced a learnable token at the beginning of the input sequence

to infuse statistical features characterizing the entire history of the relevant series.

Furthermore, they employed the Exponential Moving Average (EMA) when calcu-

lating attention scores, giving more emphasis to short-term features—a strategy

also embraced by Ma et al. [65], Woo et al. [100]. Building on this research trajec-

tory, SageFormer[124] and PETformer[59] recently introduced distinct attention

mechanisms to facilitate information propagation across series/channels.

While Crossformer has achieved notable success, it might not fully harness

the potential of building interactions among the series. Some studies, such as

PatchTST[67] (short for channel-independence patch time series Transformer)

and CI[35] (short for Channel Independence training strategy), have exhibited
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advantages on some datasets when applying the Transformer independently to each

channel, which in our context is referred to as a series. These approaches contrast

not only with conventional methods [129, 130, 102] that merge all channels and use

this combined input for the Transformer but also with Crossformer [123], which

takes into account the inter-dependencies among series. The authors of PatchTST

further suggest that capturing local semantic information, in their case through

a convolution operation with strides, can enhance Transformers that by nature

operate on a single time step. As a result, there remains an open question regarding

under what conditions spatial components are beneficial and when they might

produce adverse effects.

While the intuitions behind these strategies have deep-seated roots, with some

even finding similar implementations in traffic prediction and multivariate time

series forecasting [17, 81], it’s encouraging to observe scholars in the Transformer

community catching up with advancements in related fields. We remain hopeful

that groundbreaking and truly transformative research will further elevate the field

of time series forecasting in the imminent future.

2.4 Graph Neural Network

In parallel to the development of various attention schemes, the surge of graph

neural networks (GNNs) ignites a synchronous burst of studies employing GNNs of

various architectures over spatial and temporal spaces, respectively or jointly, to

handle spatial-temporal forecasting. GNNs feature modeling the local relationships,

including proximity in space and time, while distinguishing the positions of the nodes

(observations) with its asymmetric processing of the hub node and (temporal/spatial)

neighboring nodes of different orders. Thereby, GNNs can naturally capture, at least
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a portion of, the temporal and spatial information without integrating positional

encodings. However, GNNs struggle with long-range dependencies due to the

well-known issues of over-smoothing and over-squashing. The explanation for over-

smoothing is that node representations become indistinguishable when the number

of convolutional layers increases [54]. Over-squashing consists of the distortion of

an exponential amount of information from distant nodes trying to pass through

some edges, called “bottlenecks”, in the graph [1].

We conjecture that this is because, unlike natural language, which inherently

presents distinguishable structures in the data, such as being able to spot differences

between any pair of sentences merely by reviewing their constituting words and

the order among the words, time series data can have indistinguishable structures

across many contexts. For instance, subsequences collected on Monday morning and

Friday morning may have similar upward trends but are associated with different

contexts in terms of the day of the week. If the model struggles to discern the

divergence between subsequences, it will encounter severe difficulty in modeling the

structure of time series data, which involves not only putting together subsequences

of the same semantic but also putting apart subsequences of different semantics.

Moreover, the strong capacity of deep learning models can exacerbate this problem,

increasing the risk of overfitting, as the model strives to probe every subtle and

spurious difference that results from variations in noise rather than patterns. We

conduct a theoretical investigation into this problem in our studies, so we leave

further discussion for the main part of our thesis.

To address the above issue, the core idea is to leverage domain knowledge,

which can explicitly recover the structure of time series data, strengthening the
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correlation between subsequences corresponding to the same context and attenuating

correlations between samples corresponding to different contexts.

2.4.1 Spatially-Enhanced GNN

This subsection delves into the nuances of enhancing Graph Neural Networks

(GNNs) with spatial correlations. Spatial correlations in data can manifest in

various forms, and understanding these forms is crucial for effective modeling. The

first form is geographical closeness, which is well-captured by Tobler’s first law

of geography: "Everything is related to everything else, but near things are more

related than distant things" [84]. Techniques like Convolutional Neural Networks

(CNNs) [118, 117, 111], Graph Convolutional Networks (GCNs) [113, 56], and Graph

Attention Networks (GATs) [37, 31, 127, 105] have been particularly effective in

modeling this type of spatial correlation. The second form is connectiveness, where

regions connected by main roads or with high volumes of transitions between them

are strongly correlated [28, 7, 95, 111]. The third form is functional similarity,

where regions with similar functions, such as business districts, exhibit similar

traffic patterns. This has been modeled using local point-of-interest (POI) statistics

and GCNs [60, 28]. Recent advancements in this area include the application

of meta-learning techniques to develop custom models for regions based on their

specific functionalities [71, 72].

2.4.2 Temporally-Enhanced GNN

Temporal correlations are another critical aspect that can be integrated into GNNs

for more robust and accurate models. Two primary types of temporal correlations

are considered: recentness and periodicity. Recentness is based on the assumption

that recent observations are more closely related to each other. To capture this,
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various sequence modeling techniques have been employed, including ARIMA [70],

LSTM [111, 110, 42, 109], attention networks [31, 105, 131], and Wavenet [104, 25].

Periodicity, on the other hand, refers to the recurring patterns in data, such as daily

or weekly traffic patterns. Basic approaches to capture this include the engineering

of temporal features [117, 85, 57]. More advanced methods incorporate this property

directly into the hidden layers of deep neural networks [134, 10]. A growing body

of work is focusing on the simultaneous modeling of both spatial and temporal

correlations to capture more complex spatiotemporal patterns [9, 32].

2.4.3 Attention Enhanced GNN

We separate the literature on the attention mechanism from that of the Transformer,

since studies integrating the attention mechanism into GNNs have a history that

predates those employing Transformers. The attention mechanism has been widely

applied to spatial-temporal data forecasting, especially in short-term forecasting,

since 2018 [58, 31]. This trend started almost three years before the introduction

of the Informer [129], which is primarily tested on long-term forecasting. In these

earlier studies, researchers utilized spatial and temporal attention in various ways

to capture spatial and temporal correlations. However, the complex and noisy

nature of time series data can sometimes result in inaccurate attention scores,

which could hinder the optimal utilization of historical spatial-temporal patterns

crucial for predicting upcoming observations. Addressing this problem, GMAN

[127] is, to the best of our knowledge, the pioneering work that integrates spatial

and temporal embeddings with time series data to enhance the impact of spatial

and temporal attention. These embeddings serve as an inductive bias, introducing

prior information for attention weights between each pair of spatial-temporal points.
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These priors are determined by the characteristics of the involved series as well as

the properties of the associated time steps - for example, the time of day and day

of the week. [14, 120, 34, 128] follows this line of research.



Chapter 3

Deciphering Dynamic
Interdependencies in Urban Travel
Demand

Forecasting urban travel demand is crucial for service providers, ranging from bus

companies to ride-hailing platforms. While many studies have focused on individual

transportation modes, our approach is more comprehensive, encompassing multiple

transportation modes. We aim to integrate data from various transportation

channels, delving into their co-evolving dynamics. These dynamics, deeply rooted

in space-time-varying interdependencies, manifest as synchronized patterns that

different modes display within specific temporal and spatial contexts.

Such co-evolution reflects the intricate space-time-varying interdependencies

among transportation modes. The simultaneous evolution of these modes under-

scores their mutual interconnectedness, which varies both temporally and spatially.

For instance, in a business district, the interdependencies might lead to a synchro-

nized surge in demand across all transportation forms during evening rush hours,

only to diminish post-rush hour. In contrast, entertainment districts, influenced
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by different space-time factors, might experience an opposite trend, with demand

peaking post-rush hours, mirroring the area’s nighttime activities.

Our research introduces a groundbreaking co-evolving pattern learning frame-

work, specifically tailored to decipher these space-time-varying interdependencies.

This model excels at identifying dynamic correlations across the transportation

spectrum and is also adept at capturing the nuanced interplay of demand influenced

by both time and location. This highlights the significance of space-time-varying

interdependencies in urban mobility forecasting.

3.1 Introduction

Urban transportation demand prediction is a real-world problem of growing im-

portance. Online ride-sharing platforms like Didi, Uber, and Lyft heavily rely on

demand prediction services to dynamically adjust their driver-customer matching

strategies [106, 53]. Moreover, public transport operators, such as government tran-

sit agencies and private transport companies, can offer better service by allocating

adequate transport capacities to different regions, aiming to match supply with

demand [29]. Thus, predicting future transportation demand volume is desirable.

Typically, past transportation volume data is used for this purpose. To accurately

predict demand in the near future, it is crucial to focus on short-term patterns

[111, 118, 117]. However, identifying and extracting these patterns can be challeng-

ing due to the potential fluctuations in short-term demand. A temporary deviation

might cause the model to misinterpret a pattern change, leading to inaccurate

predictions. In this paper, we discuss forecasting the future demand of one mode of

transport (e.g., taxi) using demand data from another source (e.g., shared-bike).

Here, target demand refers to the predicted demand, and reference demand
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refers to the demand assisting the prediction. Notably, our model can incorporate

reference demand from multiple sources, such as shared-bike, bus, and subway.

However, due to data availability limitations, we focus on the relationship between

taxi and shared-bike demand.

(a) NYC Yellow Taxi (b) NYC Citi Bike

Figure. 3.1 The distribution of taxi and shared-bike orders over New York City.

To address this, we posit that, for a specific district in a city during a certain time

period, different types of transportation tend to exhibit similar trends. Leveraging

behavior patterns from other transportation types can help eliminate random

disturbances that might hinder pattern extraction. Once data from different

transportation systems is collected, we can enhance the demand forecasting system

for each mode.

To elucidate the relationship between taxi and bike demand, we visualize real

data from New York City (NYC). Fig. 3.1 displays the starting points of taxi and
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Figure. 3.2 An example region R. The left figure shows a park and a hospital in

R, indicating residential use. The right figure shows the bike and taxi demand in

R, exhibiting varying correlations throughout the day (colored in red, blue, and

green).

bike trips over the city during a workday, while Fig. 3.2 shows the evolution of

aggregate taxi and bike demand within an example region R over 3 days. From the

spatial perspective, areas with high taxi demand often also have high bike demand.

Temporally, during certain daily periods like rush hours, bike and taxi demand

patterns often align. However, sometimes these patterns experience temporal shifts,

as seen in the blue-highlighted time period.

Both spatial and temporal views suggest that taxi and bike demands are well-

correlated in terms of scale and variation. Thus, they can act as a pulse detector

for each other, providing insights into shared co-evolving patterns.

The challenge lies in determining the co-evolving correlation, a measure

of the correlation between pairs of short-term patterns. A high value indicates

that the patterns are aligned or co-evolving. However, deriving this correlation is

challenging due to:

Diversity of co-evolving correlation. This correlation depends on the

intrinsic attributes of the region and the time period. (1) Regional attributes reflect

the active population in the region, influencing the correlation. For example, in an
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Figure. 3.3 Overview of the framework.

educational area, students might prefer cheaper transportation like shared bikes

and buses over taxis. Conversely, business districts with office workers might see

usage of both taxis and bikes. (2) Time period: Transportation preferences vary

throughout the day, leading to different correlations. As seen in Fig. 3.2, bike and

taxi demand correlate highly during morning and evening rush hours but less so

during other times.

Multi-modal data fusion. Effective co-evolving correlation discovery involves

multi-modal data, such as bike and taxi demand data, geographical data, and

temporal data. These data types have different representations. For instance,

bike and taxi demand data are numerical and evolve over time, while geographical

data, like road networks, is static. Fusing these data types requires a unified

framework, and different fusion methods can yield different forecasting results. A

naive solution is to concatenate all features into a wide vector, but this overlooks

temporal relationships among features and doesn’t handle heterogeneity well. Thus,

understanding the relationships between modalities is crucial for selecting an efficient

fusion method.
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To address these challenges, we introduce the co-evolving spatio-temporal neural

network (CEST), outlined in Fig. 3.3. CEST first learns a multi-view representation

for each demand type, combining periodic and real-time views. The periodic view

captures the demand’s recurring patterns, while the real-time view captures its

irregularities. We obtain this representation hierarchically, first integrating periodic

features (e.g., time of day) with region identities and real-time demand maps to

derive periodic and real-time view representations. Next, we fuse these views.

Co-evolving patterns are then extracted by matching target and reference demands

across timestamps. These patterns are fused with the target demand’s original

patterns to create a calibrated pattern. Finally, we use a multi-scale representation,

combining the calibrated pattern representation and raw demand value, to predict

the next timestamp.

Several existing studies [41, 58, 112] address similar topics. However, our work

distinguishes itself by encoding periodic features into demand representation and

addressing temporal shifts commonly observed in real-world transportation systems.

Our contributions are:

• A multi-view demand representation learning module for each demand type,

unifying periodic and real-time views.

• A co-evolving pattern learning and fusion module that extracts and fuses

patterns to obtain a calibrated target demand pattern.

• Multi-scale information-based forecasting, combining original demand volume

(fine-scale information) with calibrated pattern representation (coarse-scale

information).
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3.2 Preliminaries

In this section, we introduce the definitions and the problem statement. Frequently

used notations are summarized in Table 3.1.

Definition 1. City Graph. We represent the city as an unweighted graph

G = {V , E}. Here, V denotes a set of predefined nodes representing grids or

irregular regions. E is a set of edges indicating the connection between nodes. In

our work, connections are based on geographical proximity, but this can be extended

to other types of spatial relationships.

Definition 2. Demand. Demand at a node encompasses both the volume of

inflow to that node and the volume of outflow from it. Assuming we have demand

data from a target source and Nr reference sources, and there are Nl nodes in

the city, each reporting dtg types of information about the target demand and drf

types of information about the reference demand over historical T timestamps. The

target demand data is then represented as a tensor X ∈ RT ×Nl×dtg . Similarly, the

reference demand data is represented as X̂ = {X̂(0), · · · , X̂(Nr−1)}. In our scenario,

both dtg and drf are set to 2, representing inflow and outflow data. The expected

values for citywide target demand at the upcoming timestamp T + 1 are denoted

as YT +1 ∈ RNl×dtg .

Definition 3. Co-evolving Correlation. Co-evolving correlation measures the

relationship between the short-term patterns of target and reference demands.

Problem 1. Given the previous τ steps of demand data from the target source

XT −τ+1:T and from the reference sources {X̂(0)
T −τ+1:T , · · · , X̂(Nr−1)

T −τ+1:T }, the goal is to

predict the expected values YT +1 for the target demand at the next timestamp.
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Table 3.1 Notations

Notation Description
Nr, Nl, T Number of reference sources / locations / timestamps.
X ∈ RT ×Nl×dtg Demand data collected from the target source.
X̂(r) ∈ RT ×Nl×drf Demand data collected from the reference source r.
YT +1 ∈ RNl×dtg Actual demand at timestamp T + 1.
ȲT +1 ∈ RNl×dtg Predicted demand at timestamp T + 1.
E ∈ RT ×Nl×dh Periodic-view representation.
F ∈ RT ×Nl×dh Real-time-view representation.
H ∈ RT ×Nl×dh Multi-view representation.
S ∈ RT ×Nl×dh Pattern representation.
Z ∈ RT ×Nl×dh Calibrated pattern representation.
x, y, ȳ, e, f , h, s, z 2d matrices that represent certain region.
Ê(r), F̂(r), Ĥ(r), Ŝ(r) Representations corresponding to the reference source r.

3.3 Co-evolving Spatio-temporal Neural Network

In this section, we detail each component of CEST, the architecture of which is

depicted in Fig. 3.4.

3.3.1 Multi-view Demand Representation Learning

The multi-view demand representation considers both the periodic view and the

real-time view. The periodic view pertains to the intrinsic attributes of a region,

such as entertainment, residence, and business, which typically change periodically.

Specifically, most regions exhibit different functionalities at various times of the

day, leading to distinct human mobility patterns that influence transportation

demand. For example, a Central Business District (CBD) functions as an office

area during working hours but also offers shopping and dining services post-work.

Furthermore, the dominant function of a region often follows a periodic pattern,

where the same time across different days displays consistent dominant functions.

While the periodic view can account for a significant portion of transportation
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Figure. 3.4 The architecture of CEST. The top part illustrates the processing of

target demand, the bottom part showcases the processing of reference demand from

multiple sources, and the middle part highlights the multi-scale information-based

temporal forecasting via GRU.

demand, there are irregular factors, like current weather conditions or events, that

can’t be captured without extensive external information. To address this, we

introduce the real-time view. This view pertains to the real-time demand over

a local area, encompassing the central region and its neighboring regions. This

can somewhat reflect the aforementioned external factors. We separately learn

the periodic-view and real-time-view demand representations and then fuse them

to obtain a multi-view demand representation using our proposed cross-view self-

attention block, which is an adaptation of the classical self-attention mechanism

[88]. This workflow is illustrated in Fig. 3.5.
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Figure. 3.5 An illustration of the workflow for learning multi-view demand rep-

resentation over node 0 at time t. (a) Generation of the periodic-view demand

representation through node and time embeddings. (b) Generation of the real-time-

view demand representation using time embedding and demand value. (c) Fusion

of the periodic-view and real-time-view demand representations to produce the

multi-view demand representation.

The periodic-view demand representation is based on the current identity of the

node, which can be interpreted as the current functionality of the corresponding

region. Pan et al. [71] used POI data to reflect this identity. However, since POI

data is not available in many cities, we draw inspiration from word2vec [66]. We

create a lookup table V N for nodes and another lookup table V T for features

related to periodicity. Specifically, V N stores node encodings:

V N = {V N(1), · · · , V N(Nl)}, (3.1)

where V N(i) ∈ Rdn represents the encoding of node i. Regarding V T , it is further

divided into sub-tables based on different periodicities, such as hour of the day and

day of the week. Each sub-table stores encodings of different time displacements for
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the corresponding periodicity. In our case, we consider daily and weekly periodicities,

so V T comprises two sub-tables: V D (hour of the day) and V W (day of the week).

The composition of V T is:

V T = {V D, V W}, (3.2)

V D = {V D(0), V D(1), · · · , V D(23)}, (3.3)

V W = {V W (0), V W (1), · · · , V W (6)}, (3.4)

where both elements of the two sub-tables, V D(h) and V W (d), belong to Rdh .

V T operates as follows: upon receiving a real-time timestamp t, it first identifies

the hour of the day and the day of the week associated with t. It then retrieves

the encodings corresponding to the identified hour and day from their respective

sub-tables. Finally, it aggregates the encodings using summation to obtain the

encoding for timestamp t. This process can be formally described as:

t → hour, day, (3.5)

V T (t) = V D(hour) + V W (day). (3.6)

Notably, all encodings in V T and V N are randomly initialized and are integrated

into the model as free parameters, updated throughout the training process.

To derive the periodic-view demand representation of a node, we combine the

node encoding with the periodic-feature encoding. Formally, for the periodic-view

demand representation of node i at time t, denoted as Et,i ∈ Rdh , we retrieve the

associated encoding of node i from V N and the associated encoding of time t from

V T . We then combine them using a fully connected layer, as depicted in Fig. 3.5
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(a). The formula is:

Et,i = tanh (WvnV N(i) + WvtV T (t)) , (3.7)

where Wvn ∈ Rdh×dn and Wvt ∈ Rdh×dt are parameters of the fully connected layer.

The real-time-view demand representation of a node is derived based on the

real-time demand over the node itself and its neighboring nodes in the city graph,

reflecting spatial locality. We also integrate features related to periodicity with the

real-time demand to provide contextualized semantics. As shown in Fig. 3.5 (b),

the embedding for individual node i at timestamp t, denoted by Ft,i ∈ Rdh , is:

Ft,i = tanh (WxXt,i + W′
vtV T (t)) , (3.8)

where Wx ∈ Rdh×dtg (recall that dtg is the dimension of the input feature for target

demand) and W′
vt ∈ Rdh×dt are parameters. The real-time-view representation is

then composed of the embeddings for individual nodes in Ni, where Ni includes the

neighborhoods of i and i itself. This is formally expressed as SFt,i = {Ft,j | j ∈ Ni}.

Next, we fuse the periodic-view representation with the real-time-view represen-

tation through the cross-view self-attention block, as shown in Fig. 3.5 (c). The

periodic-view captures the regular pattern that presents itself repeatedly on a daily

or weekly cycle, while the real-time-view captures the real-time pattern. Although

the real-time-view contains comprehensive information regarding the demand at

that timestamp, some of it is random disturbance that doesn’t impact future

demand. The periodic-view is also not perfect, as it lacks information about the

current state. We filter out the useful information from both views in parallel and

then fuse them. We achieve this by proposing a cross-view self-attention block. The

query is the periodic-view representation Et,i, and the keys consist of the elements
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in the real-time-view representation SFt,i as well as the periodic-view representation

Et,i itself. This allows the model to automatically learn the importance weights of

the periodic and real-time views. Let αt,i,j be the attention weight for the element

related to node j in Ni, and βt,i be the attention weight for the periodic-view

representation of node i itself. We compute them as:

αt,i,j = exp(at,i,j)∑
j∈Ni

exp(at,i,j) + exp(bt,i)
∀j ∈ Ni, (3.9)

βt,i = exp(bt,i)∑
j∈Ni

exp(at,i,j) + exp(bt,i)
, (3.10)

where

at,i,j = Et,i
⊤UdFt,j, ∀j ∈ Ni, (3.11)

bt,i = Et,i
⊤UdEt,i. (3.12)

Here, Ud ∈ Rdh×dh is a trainable weight matrix. The multi-view representation Ht,i

is then calculated by the linear combination of the periodic-view and real-time-view

representations, weighted by the attention scores:

Ht,i =
∑

j∈Ni

αt,i,jFt,j + βt,iEt,i, (3.13)

In the cross-view self-attention block, we treat the periodic-view and real-time-

view representations equally, as the learning process for these two representations

adequately projects both into the same latent space.

The representation of the demand from reference source r is computed similarly

and is denoted as Ĥ(r)
t,i . Notably, we create separate lookup tables ˆV T

(r) and
ˆV N

(r) for each source r, since the demand for different transportations exhibits

distinct evolving patterns throughout the day. For example, the shared-bike demand
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between 10:00 and 17:00 is relatively lower than the taxi demand, as shown in Fig.

3.2.

3.3.2 Co-evolving Pattern Learning and Fusion

(a) 5:00-8:00 (b) 10:00-13:00 (c) 17:00-20:00

Figure. 3.6 Detailed comparison of bike demand and taxi demand in region R

over different time ranges, following Fig. 3.2. Taxi demand and bike demand are

separately normalized between [0, 1] in different time windows for comparison.

A co-evolving pattern represents the short-term trends observed concurrently

in the evolution of both target and reference demands. Two challenges arise when

extracting this co-evolving pattern: 1) A short-term pattern is constructed from

multiple consecutive observations. 2) The degree of co-evolution between taxi and

bike demands varies throughout the day, sometimes exhibiting temporal drifts, as

depicted in Fig. 3.6.

To address the first challenge, we generate a set of short-term pattern repre-

sentations for each demand, summarizing different evolutionary segments. For the

second challenge, we utilize the cross-view self-attention block, as introduced in Sec.

3.3.1. This block computes co-evolving correlations between key-query matching
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Figure. 3.7 (a) An illustration of pattern learning. (b) A network design for learning

co-evolving patterns and fusing them with the target demand patterns at each

timestamp.

patterns, extracts co-evolving patterns, and then fuses the co-evolving patterns

with target patterns in a weighted manner to produce calibrated target patterns.

For short-term pattern extraction, we group temporally adjacent frames to form

a segment and encode them into a unified representation. Specifically, we apply a

1D convolution along the time axis followed by an activation function to derive the

pattern representation. We choose a kernel size of 3 for both target and reference

demands and apply zero padding of size 2 to the sequence’s left tail to maintain

consistency between input and output lengths. This process is illustrated in Fig.

3.7 (a). For simplicity, we use lowercase notation to denote the representation of a

specific region. Let st represent the pattern of a certain region from t − 2 to t. It is

defined as:

st = tanh
(
W1

sht−2 + W2
sht−1 + W3

sht

)
, (3.14)

where W1
s ∈ Rdh×dh , W2

s ∈ Rdh×dh , and W3
s ∈ Rdh×dh are parameters. ht is the

multi-view demand representation of this region, as derived in Sec. 3.3.1. The

tim
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pattern representation for each reference demand is similarly computed using a

distinct parameter set, denoted as ŝ(r)
t .

Next, we jointly conduct co-evolving pattern learning and fusion, as depicted in

Fig. 3.7 (b). By leveraging the cross-view self-attention block introduced earlier,

the model can determine the optimal combination of reference patterns to compose

the co-evolving pattern. It can also find the best combination of the co-evolving

pattern and the target pattern itself. In our approach, we use the entire set of

patterns from different reference sources as keys, irrespective of the timespan, to

address the issue of temporal drift, given that we only consider a short span of

historical data. Specifically, we denote the attention weight over the pattern from

reference source r at timestamp t′ as γ
(r)
t,t′ , and the attention weight over the target

pattern itself as ϕt. Let Nt = {t − τ + 1, · · · , t} be the set of considered timestamps,

and R = {1, · · · , Nr} be the set of indices for different reference sources. The

computation of γ
(r)
t,t′ and ϕt is as follows:

γ
(r)
t,t′ =

exp(p(r)
t,t′)∑

r∈R
∑

t′∈Nt
exp(p(r)

t,t′) + exp(qt)
, ∀t′ ∈ Nt, r ∈ R, (3.15)

ϕt = exp(qt)∑
r∈R

∑
t′∈Nt

exp(p(r)
t,t′) + exp(qt)

(3.16)

where

p
(r)
t,t′ = st

⊤Upŝ(r)
t′ , ∀t′ ∈ Nt, r ∈ R, (3.17)

qt = st
⊤Upst, (3.18)

with Up ∈ Rdh×dh being a trainable weight matrix.

Finally, the representation of the calibrated pattern, zt ∈ Rdh , is computed as

the average of the pattern representations from the target source and the reference
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sources, weighted by their respective attention scores:

zt =
∑
r∈R

∑
t′∈Nt

γt,t′,iŝ(r)
t′ + ϕtst. (3.19)

3.3.3 Multi-scale Information-based Forecasting

We concatenate the calibrated pattern representation zt with the real-time demand

volume xt and feed the combined representation into a gated recurrent unit (GRU)

[11]. The coarse-scale and fine-scale representations can mutually regulate the

information flow to the long-term memory. For simplicity, we omit the node index.

Let mt ∈ Rdg represent the memory state at time t. The unit takes zt, xt, and the

previous state mt−1 as inputs and produces the current state mt. The reset gate

rt ∈ Rdg determines the influence of mt−1 on the intermediate state ct. The update

gate ut ∈ Rdg controls the contribution of the intermediate state ct to mt. The

current state can be calculated as:

gt =
[
z⊤

t , x⊤
t

]⊤
(3.20)

ut = σ
(
Wu

g gt + Wu
mmt−1

)
, (3.21)

rt = σ
(
Wr

ggt + Wr
mmt−1

)
, (3.22)

ct = tanh
(
rt ◦ mt−1 + Wc

ggt

)
, (3.23)

mt = ut ◦ mt−1 + (1 − ut) ◦ ct, (3.24)

where ◦ denotes the Hadamard product, and σ(·) is the sigmoid function. The

matrices Wu
g , Wu

m, Wr
g, Wr

m, and Wc
g are the GRU weights.

The predicted demand value for the subsequent timestamp is given by:

ȳt+1 = Womt, (3.25)
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where Wo ∈ Rdtg×dg is the output projection matrix. The predictions ȳt+1 from

different nodes are aggregated to form the citywide prediction Ȳt+1. The training

objective is to minimize the mean squared error between the predicted and actual

values:

L = 1
Nl

||Ȳt+1 − Yt+1||2. (3.26)

We use the Adam optimizer [47] to minimize this objective.

3.4 Evaluation

3.4.1 Experimental Setting

Datasets

We validate our model’s effectiveness by conducting experiments on two renowned

cities: Chicago and New York City. The study area in NYC is bounded by the coor-

dinates (40.68°, −73.99°), (40.77°, −73.93°), (40.79°, −73.98°), and (40.70°, −74.04°).

In Chicago, the boundaries are (41.73°, −87.54°), (42.01°, −87.54°), (42.01°, −87.74°),

and (41.73°, −87.74°). For each city, we gather taxi and shared bike trip data and

design two tasks, where taxis and bikes alternately serve as the target and reference

transportation modes. The study period spans from April 1, 2016, to June 30, 2016.

Each dataset’s details are as follows:

• NYC Citi Bike: The NYC Bike Sharing System, Citi Bike, provides order

data on its official website1. During the specified period, approximately 3.7

million transaction records were generated. Each record contains information

about pick-up and drop-off locations and times.
1https://www.citibikenyc.com/system-data
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• NYC Yellow Taxi: The NYC Yellow Taxi dataset comprises around 35

million taxicab trip records in New York2. On average, about 380,000 trip

records are generated daily. This dataset also includes information similar to

the NYC Citi Bike dataset.

• Chicago Bike: The Divvy bike sharing system in Chicago provides trip data

on its website3. An average of 11,768 trips were recorded daily during the

study period.

• Chicago Taxi: The Chicago taxi data, provided by the local government on

the Chicago Data Portal4, indicates an average of 72,104 transaction records

per day based on our analysis.

Task Description

We partition the study area of NYC into a 7 × 14 grid and construct a city graph

based on the grid’s geographical properties. Specifically, each cell in the grid

corresponds to a node in the graph. The neighbors of a cell in the graph are defined

as the cells that are vertically, horizontally, or diagonally adjacent to it in the

grid. We apply zero padding to the grid’s boundary. It’s worth noting that our

approach is also applicable in environments with irregular topologies, where the

number of neighbors varies. The time interval is set to half an hour. We then

determine the inflow and outflow volumes for bikes and taxis in each region. We

normalize the demand values of taxis and bikes to the range [−1, 1] to facilitate

easier identification of their relationships. For Chicago, the settings are similar, but

the grid size is 17 × 30 due to the larger study area compared to NYC.
2https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
3https://www.divvybikes.com/system-data
4https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
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For prediction, we use the six most recent observations, covering three hours.

We randomly partition the first eighty days into disjoint training and validation

sets at a ratio of 7 : 1, while the last ten days form the testing set.

Network Setting

We implement the network using the PyTorch toolkit. The network architecture

tested in the experiment is depicted in Fig. 3.4. In the multi-view representation

learning module, the dimensions of the periodic-feature embedding dt, node embed-

ding dn, and demand representation dh are all set to 8. In the co-evolving patterns

learning module, the dimension of the short-term pattern representation dh is also

8. Furthermore, we use a one-layer GRU with 8 hidden channels for multi-scale

information-based forecasting. We also tested other hyper-parameter settings to

demonstrate our model’s robustness. The learning rate for the Adam optimizer

is set to 0.0002, and other hyper-parameters use the default settings in PyTorch.

Parameters in the network are initialized using PyTorch’s default settings. We

update the model parameters iteratively through batch training until convergence,

with a batch size of 8.

3.4.2 Evaluation Metrics

We evaluate our algorithm using root mean square error (RMSE) and mean absolute

error (MAE):

MAE = 1
n

n∑
i=1

|yi − ŷi| , (3.27)

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3.28)
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where n is the total number of instances, yi represents the ground truth value,

and ŷi is the predicted value.

3.4.3 Baselines
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Figure. 3.8 The architectures of three baseline models: (a) MiST, (b) GeoMAN,

and (c) CoST-Net. We provide a skeleton for each to illustrate its core idea. For

more detailed implementation, we refer readers to their original papers [112, 58, 41].

In each figure, blue lines represent input flows; green lines represent output flows;

and red lines represent recurrent flows. In the region-wise and source-wise attention

modules of MiST and GeoMAN, representations of specific regions are derived by

applying attention over neighboring regions and different sources. In GeoMAN’s

time-wise attention module, it focuses on representations at historical timestamps

to make predictions for the current timestamp.

• HA. Historical Average predicts future demand using the average of historical

values from the same time interval.
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• ARIMA. Autoregressive Integrated Moving Average (ARIMA) is a linear

model. We build and train an ARIMA model for each region using the ARIMA

module from the statsmodel Python package, setting the orders to (6, 1, 0).

• GBRT. Gradient Boosted Regression Trees (GBRT) is a non-parametric

statistical learning technique for regression. The input feature comprises

the historical demand of the target region and its neighboring regions. We

use the GBRT implementation from the sklearn Python package. Key pa-

rameters for GBRT are set as follows: n_estimators = 500, max_depth =

3, min_samples_leaf = 1. All other parameters use default settings.

• STResNet [117]. A state-of-the-art model for spatio-temporal forecasting,

STResNet models spatio-temporal correlations using residual units. Our input

is a four-channel tensor, with each channel representing a type of demand: taxi

inflow, taxi outflow, bike inflow, and bike outflow. The ResNet architecture

consists of 2 residual blocks with 8 hidden units each. We concatenate the

representation from each region output from ResNet’s final layer with an

8-dimensional time embedding and map the concatenation to the prediction

using a 1-layer fully-connected network.

• MiST [41]. MiST, depicted in Fig. 3.8 (a), is a multi-source spatial-temporal

forecasting model with an attention mechanism. Its primary distinction from

GeoMAN is its use of event encodings (or transportation encodings in our

context) and region encodings when computing attention weights. We set

the dimension of these encodings to 8. Additionally, two recurrent networks

encode sequences at different levels, each implemented using an LSTM with 8

hidden units.
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• GeoMAN [58]. As illustrated in Fig. 3.8 (b), GeoMAN is designed for multi-

source spatial-temporal data, applying attention over different data sources,

spatial neighbors, and timestamps. In our context, it assigns attention weights

to taxi and bike demands at each timestep to identify the more crucial signal

for forecasting. We use an LSTM with 8 hidden units for sequential modeling.

Unlike the original work, we perform "global attention" on each region’s spatial

neighbors since long-range relationships are weak in our context.

• CoST-Net [112]. CoST-Net, shown in Fig. 3.8 (c), models multi-source

demand by constructing a wide recurrent neural network. The input is the

concatenation of representations of each demand type within a patch of regions.

Specifically, we obtain each representation using a 1-layer deep convolutional

encoder with 4 filters. A 1-layer LSTM with 16 hidden units (due to our 4

demand types) encodes the sequence. We also encode the temporal feature

into the sequence’s high-level representation similarly to STResNet. Finally,

each demand type is decoded by a 1-layer deep convolutional network, which

inversely processes the encoder to make the forecast.

For all baseline models, input features match those of our proposed model,

including taxi inflow, taxi outflow, shared-bike inflow, shared-bike outflow, and

external features like the hour of the day and day of the week. We also employ the

Adam optimizer [47] with the same setup as our model.

3.4.4 Experiment Results

We present the detailed experimental results for NYC in Table 3.2, and for Chicago

in Table 3.3. Specifically, regarding the repeated tests in NYC, we analyze detailed

statistics, including the mean and standard deviation, from both temporal and
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Table 3.2 Performance on NYC tasks.

Models HA ARIMA GBRT STResNet GeoMAN CoST-Net MiST CEST

Taxi

overall MAE 13.74 9.60 7.45 7.82 ± 0.22 8.27 ± 0.11 8.02 ± 0.03 7.54 ± 0.03 7.09 ± 0.03
RMSE 27.87 17.50 13.37 13.84 ± 0.37 14.72 ± 0.16 14.04 ± 0.06 13.51 ± 0.05 12.62 ± 0.04

0:00∼6:00 MAE 14.28 7.55 4.68 5.49 ± 0.25 5.29 ± 0.07 5.19 ± 0.07 4.84 ± 0.03 4.60 ± 0.02
RMSE 29.44 13.36 9.02 9.88 ± 0.31 9.90 ± 0.13 9.57 ± 0.08 9.17 ± 0.05 8.63 ± 0.05

6:00∼12:00 MAE 13.92 9.66 7.57 7.87 ± 0.19 8.80 ± 0.13 8.66 ± 0.04 7.92 ± 0.05 7.32 ± 0.04
RMSE 31.95 18.01 13.26 13.84 ± 0.41 14.93 ± 0.23 14.72 ± 0.21 13.84 ± 0.13 12.81 ± 0.14

12:00∼18:00 MAE 11.82 9.30 7.77 7.94 ± 0.23 7.98 ± 0.09 7.82 ± 0.03 7.52 ± 0.04 7.01 ± 0.03
RMSE 20.62 16.02 12.83 13.21 ± 0.45 13.12 ± 0.11 12.55 ± 0.07 12.51 ± 0.07 11.56 ± 0.07

18:00∼24:00 MAE 14.92 11.88 9.75 10.00 ± 0.19 11.02 ± 0.14 10.43 ± 0.02 9.81 ± 0.05 9.35 ± 0.03
RMSE 28.18 21.56 17.12 17.39 ± 0.33 19.34 ± 0.20 17.97 ± 0.06 17.26 ± 0.07 16.30 ± 0.06

Bike

overall MAE 3.69 3.33 2.44 2.62 ± 0.038 2.59 ± 0.042 2.50 ± 0.015 2.44 ± 0.005 2.29 ± 0.006
RMSE 7.57 6.20 4.29 4.59 ± 0.088 4.56 ± 0.057 4.37 ± 0.012 4.35 ± 0.013 4.03 ± 0.014

0:00∼6:00 MAE 0.72 1.42 0.69 1.04 ± 0.023 0.73 ± 0.007 0.72 ± 0.011 0.68 ± 0.005 0.66 ± 0.003
RMSE 1.48 2.18 1.29 1.57 ± 0.027 1.33 ± 0.014 1.31 ± 0.018 1.25 ± 0.012 1.22 ± 0.012

6:00∼12:00 MAE 5.12 4.07 2.82 2.95 ± 0.052 3.13 ± 0.078 3.01 ± 0.027 2.87 ± 0.021 2.62 ± 0.013
RMSE 9.51 7.45 4.65 4.98 ± 0.146 5.08 ± 0.091 4.88 ± 0.015 4.75 ± 0.020 4.32 ± 0.019

12:00∼18:00 MAE 4.51 4.24 3.32 3.40 ± 0.050 3.34 ± 0.046 3.34 ± 0.012 3.34 ± 0.009 3.09 ± 0.005
RMSE 8.31 7.46 5.27 5.49 ± 0.096 5.57 ± 0.058 5.27 ± 0.022 5.37 ± 0.010 4.88 ± 0.014

18:00∼24:00 MAE 4.42 3.60 2.92 3.09 ± 0.054 3.00 ± 0.039 2.92 ± 0.014 2.88 ± 0.003 2.79 ± 0.006
RMSE 8.23 6.14 4.77 5.19 ± 0.107 4.96 ± 0.051 4.82 ± 0.011 4.76 ± 0.028 4.58 ± 0.017

spatial perspectives. For Chicago, we only display the mean overall error for brevity.

Notably, HA, ARIMA, and GBRT produce consistent forecasting results, so their

standard deviation is 0. This is omitted in Table 3.2 for brevity. The reasons

are: HA solely computes the average of historical records as predictions without

involving any parameters; ARIMA assumes a linear relationship between past and

future timesteps, resulting in a unique parameter solution; GBRT constructs a

Table 3.3 Performance on Chicago tasks.

Models Taxi Bike
MAE RMSE MAE RMSE

HA 0.99 6.49 0.39 1.91
ARIMA 0.62 3.05 0.36 1.55
GBRT 0.59 2.65 0.33 1.27

STResNet 0.68 2.65 0.36 1.27
GeoMAN 0.74 2.79 0.33 1.24
CoST-Net 0.64 2.45 0.34 1.16

MiST 0.59 2.55 0.32 1.22
CEST 0.55 2.36 0.28 1.11
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set of regression trees based on the entire training samples using a deterministic

criterion, ensuring the model remains unchanged each time.

In the NYC taxi demand task, CEST surpasses the state-of-the-art model,

MiST, by 6.0% and 6.6% in overall MAE and RMSE, respectively. For bike demand

forecasting, CEST also demonstrates superior performance, outperforming the state-

of-the-art model by 6.2% in MAE and 7.4% in RMSE. Traditional methods like HA

and ARIMA underperform because they fail to model the complex non-linear spatial

and temporal relationships. GBRT’s performance heavily depends on the number of

parameters. Compared to deep models, none of the previous approaches extract co-

evolving patterns between taxi and bike demands. Moreover, except for MiST, other

methods neglect region identity. For MiST, attention scores are computed based

on demand correlation without considering pattern matching, making outcomes

susceptible to temporal drift. GeoMAN considers the entire sequence when applying

attention but treats taxi and bike demands equally, overlooking their heterogeneity.

Both CoST-Net and STResNet don’t utilize attention mechanisms, potentially

incorporating irrelevant features into target demand.

Additionally, we compare model performance across different times of the day.

We divide a day into four time periods: 0:00~6:00, 6:00~12:00, 12:00~18:00, and

18:00~24:00. Our model outperforms baseline models in all four periods, with

the most significant improvements observed between 6:00~12:00 and 12:00~18:00.

During 6:00~12:00, the MAE for taxi demand decreases by 7.3%, and the bike

demand MAE drops by 8.8%. Between 12:00~18:00, the MAE for taxi demand

reduces by 6.8%, and the bike demand MAE decreases by 7.6%. These improvements

can be attributed to both bike and taxi demands experiencing peak emergence and

decline during these periods, resulting in strong co-evolving correlations that enhance
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(a) NYC Yellow Taxi.

(b) NYC Citi Bike.

Figure. 3.9 Hourly comparison.

performance. For other periods, the correlation is less pronounced, especially for

bike demand, due to lower rental frequencies at night. We also provide a detailed

hourly comparison in Fig. 3.9.

Furthermore, we assess our model’s performance from a spatial perspective. The

improvement over three baseline models at a regional level is depicted in Fig. 3.10.

Our model consistently outperforms baseline models in nearly all regions.

3.4.5 Ablation Study

To understand the impact of each component in our model, we design four variants.

Each substitutes one or more components of our model with commonly used modules.

We evaluate their performance on NYC tasks and briefly describe these variants:
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(a) NYC Yellow Taxi.

(b) NYC Citi Bike.

Figure. 3.10 Comparison from spatial view.
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• SD: SD (single demand) only considers the target demand as input and uses

GRU to model the temporal relationship. Temporal features are also encoded

into the demand to obtain real-time demand representation. This variant

aims to verify the significance of reference demand in forecasting.

• MD-GAT: MD-GAT (multi-demand) considers both target and reference

demands. It employs GAT [89] for demand representation learning, an

alternative to our multi-view demand representation learning (MVL) module.

A GRU encodes the concatenation of target and reference demands in time

order, but without extracting co-evolving patterns.

• CEST-GAT: CEST-GAT uses GAT for demand representation learning and

subsequently extracts co-evolving patterns as described in Sec. 3.3.2.

• MD-MVL: MD-MVL obtains demand representation using the MVL module

as per Sec. 3.3.1. It also encodes the sequence of demand representations

using GRU.

The evaluation results are presented in Fig. 3.11. Each proposed component

enhances performance, with a combination of these components delivering the

best results. The MVL outperforms GAT due to the seasonality of bike and taxi

demands. Specifically, the periodic view, comprising temporal and regional features,

introduces prior knowledge that patterns repeat daily and weekly. This effectively

narrows the model’s search space. Additionally, the co-evolving pattern learning

module addresses issues of lagged co-evolving correlation and varying co-evolving

correlations throughout the day. It adaptively integrates the correlated pattern of

reference demand with the target demand pattern.
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(a) NYC Yellow Taxi. (b) NYC Citi Bike.

Figure. 3.11 Effect of different components.

Figure. 3.12 Effect of varying settings on NYC Yellow Taxi.

3.4.6 Hyperparameter Evaluation

CEST has several hyperparameters to set manually, including the dimension of

node embedding, time embedding, demand representation, and the number of GRU

hidden units. We test different settings for the NYC task and present the results in

Fig. 3.12 and Fig. 3.13.

Performance isn’t sensitive to the dimension of time embedding in both tasks.

This is because consecutive timestamps have strong correlations, placing temporal
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Figure. 3.13 Effect of varying settings on NYC Citi Bike.

(a) Region A. (b) Region B.

Figure. 3.14 . The predicting results of our model against the ground truth and

two competitive baseline models.

features in a low-dimensional latent space. Increasing the dimension of node

embedding initially reduces error, with optimal results around the value of 16.

This is because nodes exhibit spatial correlations, with demand evolution over

neighboring nodes being similar. The structure of demand representation is more

complex than node and time embeddings since it encompasses information on

nodes, time, and real-time demand volume. Therefore, adjusting the dimension

of demand representation significantly affects error. The number of GRU hidden

units is also influential, capturing diverse temporal dynamics. Setting the last two

hyperparameters too high can easily lead to overfitting.



3.4 Evaluation 71

(a) Region C.

(b) Region D.

Figure. 3.15 The left part shows the movement of bike demand and taxi demand

over the region, and the right part shows the performance achieved by different

models.
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(a) High correlation. (b) Medium correlation.

(c) Low correlation.

Figure. 3.16 The demand evolution of three regions with high, medium and low

co-evolving correlation respectively.
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3.4.7 Case Study

We conduct three case studies on the NYC Yellow Taxi task to further investigate

CEST’s effects qualitatively.

Study on Performance at Specific Timestamps

In Fig. 3.14, we illustrate the predictions of CEST for the upcoming predictive time

interval, comparing them with the ground truth and two baseline models. Some

intriguing observations are highlighted with red dashed rectangles. The results show

that CEST captures a more accurate local trend compared to MiST and CoST-Net.

Study on Performance Across Specific Regions

Regarding Region C, as depicted in Fig. 3.15a, CEST outperforms CoST-Net and

GeoMAN but yields results comparable to MiST. It’s worth noting that CEST takes

into account both the periodic view and temporal shift issues, which MiST overlooks.

The ineffectiveness of the periodic view in this context arises because, apart from

during morning rush hours, the movements of both bike and taxi demands fluctuate

drastically and irregularly, leading to a weak co-evolving correlation, even from a

periodic perspective. The failure of temporal alignment can be attributed to the

observed phenomenon where, in most cases, the local peak of bike demand occurs

later than the corresponding peak of taxi demand. As a result, the change in taxi

demand acts as a leading signal for bike demand, rendering temporal alignment

ineffective.

For Region D, as shown in Fig. 3.15b, modeling the periodic view and actively

aligning temporally are crucial for accurate forecasting. The effectiveness of the

periodic view is due to the pronounced periodicity observed in the movements of

both taxi and bike demands. Furthermore, changes in bike demand serve as leading
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signals for changes in taxi demand, necessitating temporal alignment to incorporate

bike data more effectively.

Study on Co-evolving Correlations

In Fig. 3.16, we display the bike and taxi demands for three regions, each with

varying levels of daily average co-evolving correlation. The daily average co-evolving

correlation is calculated as γ̄ = 1
T

∑T
t=1

∑t
t′=t−τ+1 γt,t′ , where T represents the number

of time intervals in a day (i.e., 48 in our case), and γt,t′ denotes the co-evolving

correlation between target demand at t and reference demand at t′, as defined in

Sec. 3.3.2. In Fig. 3.16a, the morning and evening peaks overlap with a slight

temporal drift. Although there exists a systematic difference between taxi and

bike demands during working hours, our model can discern that their underlying

evolving patterns are similar. In Fig. 3.16b, post evening rush hour, bike and taxi

demands exhibit diverging trends, leading to a reduced co-evolving correlation. In

Fig. 3.16c, the peak of bike demand is in the morning, while the taxi demand peaks

around noon, suggesting entirely different evolving patterns.



Chapter 4

Disentangling Low-Frequency
Components in Spatial-Temporal
Data

Time series data is characterized by its inherent complexity due to the dynamic pat-

terns observed across spatial and temporal dimensions. Consider the determinants

of traffic volume: the population density of an area, the specific time of day, the

day of the week, and prevailing weather conditions. Each determinant introduces a

distinct frequency component: The time of day, with its hourly variations, represents

a high-frequency component; The day of the week, changing weekly, introduces a

medium-frequency component; The population density of an area, which evolves

over longer periods due to factors like migration, is indicative of a low-frequency

component; Weather conditions, which can be erratic and not always consistent

with historical traffic data, contribute an irregular component. Collectively, these

components provide insights into the space-time-varying distribution of

the data.

While many existing methodologies aim to capture these spatial-temporal

correlations by integrating external spatial and temporal information, they might
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not fully encapsulate the nuances of space-time-varying distribution. Given the

challenge of comprehensively identifying and evaluating all relevant factors, our

approach focuses on extracting these determinants directly from the time series data.

These extracted determinants, which reflect the space-time-varying distribution,

are subsequently integrated into our model.

Each observation in a time series dataset is influenced by multiple determinants.

Isolating these determinants based on a single observation can be challenging.

However, if two observations exhibit similar trends, they might be influenced by

a shared determinant. For instance, if an uptick in foot traffic in one area is

consistently mirrored in a neighboring area, a shared event or factor influenced by

space-time-varying distribution might be the underlying cause.

In our research, we categorize these shared determinants across observations as

’low-frequency components’. Spatial attributes, for instance, serve as low-frequency

components within a time series, contrasting with high-frequency components such

as the time of day. To address the intricacies of space-time-varying distribution, we

introduce a specialized module. This module, designed to differentiate between low

and high-frequency components, is strategically incorporated at the beginning of

each hidden layer in our deep learning architecture. Its integration ensures that the

model captures both the broader and more specific patterns of space-time-varying

distribution.

4.1 Introduction

Time series forecasting is an imperative problem in many industrial and business

applications. For instance, a public transport operator can allocate sufficient

capacity to mitigate the queuing time in a region in advance, if they have the means
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to foresee that a particular area will suffer from a supply shortage in the next

couple of hours [28]. Taking another example, an investor can avoid economic loss

with the assistance of a robo-advisor which is able to predict a potential market

crash [21]. Due to the complex and continuous fluctuation in impacting factors,

real-world time series tends to be extraordinarily non-stationary, that is, exhibiting

diverse dynamics. For instance, the traffic volume over a road is primarily affected

by the road’s condition, location, and current time and weather conditions. In

the case of retailing, the current season, price and brand serve as determinants for

merchandise sales. The diverse dynamics impose an enormous challenge on time

series forecasting. In this work, we will study multi-variate time series forecasting,

where multiple variables evolve with time.

Traditional time series forecasting algorithms, such as ARIMA and state space

models (SSMs), provide a principled framework for modeling and learning time

series patterns. However, these algorithms have a rigorous requirement for the

stationarity of a time series, which encounters severe limitations in practical use

if most of the impacting factors are unavailable. With the recent advance in

deep learning techniques, we are now capable of handling complex dynamics

as a single unit, even without any additional supplement of impacting factors.

Common neural architectures applied on time series data include recurrent neural

network (RNN), long-short term memory (LSTM) [39], Transformer [55], Wavenet

[van den Oord et al.] and temporal convolution networks (TCN) [3].

4.1.1 Preliminary Analysis

There is a rich quantity of existing works that deal with MTS forecasting. Nonethe-

less, little work has identified precisely the key bottleneck in this kind of problem.
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Herein, before formally proposing our solution, we start by systematically analyzing

the problem to obtain greater insight. In real-world circumstances, we roughly

classify an impact imposed on MTS into four classes in accordance with its activated

ranges on the spatial and temporal dimensions. The four classes are composed

of low-frequency local impact, low-frequency global impact, high-frequency local

impact and high-frequency global impact. Here, "low-frequency" / "high-frequency"

describes the activated range of the impact from the temporal view, and "global"

/ "local" describes the activated range from the spatial view. In particular, "low-

frequency" means that the impact varies smoothly or, in other words, it tends to

stay stable for a relatively long time; "high-frequency" means that the impact varies

drastically; "global" means that the impact imposes a similar effect on all time

series; "local" means that the impact only affects individual time series, or imposes

different effects on different time series. Although the activated range on either the

temporal or spatial dimension lies in a continuous spectrum, we consider only these

four extreme cases as sufficient to reveal the essence of MTS. Any measurement of

a time series is a mixture of four components respectively associated with the four

classes of impacts, which can be formulated as follows:

Xi,t = Xlh
i,tXll

i,tX
gh
t Xgl

t + const, (4.1)

where Xi,t ∈ R is the measurement of the ith time series on time t, Xlh
i,t ∈ R

denotes the local high-frequency component, Xll
i,t ∈ R denotes the local low-

frequency component, Xgh
t ∈ R denotes the global high-frequency component and

Xgl
t ∈ R denotes the global low-frequency component. To understand this form

of factorization more thoroughly, the following real-world example is used as the

showcase. The time series data we present is the evolution of demand for a shared
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bike over three selected regions in New York City, as manifested in Fig. 4.1. In this

example, the time of day serves as a global high-frequency impact; region identity,

including regional population and functionality, serves as a local low-frequency

impact; the day of week serves as a global low-frequency impact. Local high-

frequency impacts are indistinguishable from the raw data, such as traffic accidents

or congestion.

Figure. 4.1 NYC shared bike demand.

Time series forecasting is based mainly on its recent dynamics which is composed

of contiguous measurements. Formally, the dynamics is expressed as a vector

[Xi,t, Xi,t−1, · · · , Xi,t−δ+1]⊤, where δ is the spanning time. However, canonical deep

learning architectures employed in general time series forecasting tasks, such as

LSTM [39], Transformer [88, 55] and Wavenet [van den Oord et al.], only capture

the directional information of this vector, which is a special type of temporal

relationship, that results in discarding some informative components. To obtain the

specific form of temporal relationship actually modeled, we presume two postulations

which hold in the majority of real-world problems: (1) the low-frequency components

(including both the global low-frequency and local low-frequency components) are

stable over a given period; (2) the global high-frequency component well-dominate

the local high-frequency component. Based on the factorization in Eq. (4.1) along
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with these two postulations, it is natural to derive the direction of the vector from

the basis of its constant origin, the entry associated with historical time t0 of which

is calculated as follows:

Xi,t0√∑δ−1
t′=0(Xi,t−t′)2

=
Xlh

i,t0Xll
i,t0Xgh

t0 Xgl
t0√∑δ−1

t′=0(Xlh
i,t−t′)2(Xll

i,t−t′)2(Xgh
t−t′)2(Xgl

t−t′)2

≈
Xgh

i,t0√∑δ−1
t′=0(X

gh
i,t−t′)2

, (4.2)

where the sign of each quantity is omitted for conciseness, as they do not influence

our asserted conclusion. We note that the obtained directional vector merely

accounts for the global high-frequency component, totally discarding the global

low-frequency component, and its local-low frequency and local high-frequency

counterparts.

Discarding the other three components incurs spatial indistinguishability and

temporal indistinguishability. Spatial indistinguishability means that dynamics

yielded by different variables are not adequately discernible. And temporal indistin-

guishability means that dynamics measured at specific times are not substantially

discrete. For instance, looking at the three regions in Fig. 4.1, we consider their

dynamics measured between 8pm and 9pm on different days, so they share the same

global high-frequency element. In Fig. 4.2a, we plot the measurement at 8pm versus

the measurement at 9pm over the three regions, where the data points are colored

in accordance with their regional identities. Hence, a cluster of dynamics with the

same color shares the identical local low-frequency component. In Fig. 4.2b, we

only plot measurement pairs of region A, and separate them based on weekday

or weekend. Here, a cluster of dynamics with the same color share the identical

global low-frequency component. Different clusters of dynamics are supposed to
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be distinguishable, as their underlying local low-frequency components or global

low-frequency components are disparate. However, the cluster-wise relationships

(indicated by the direction of a straight line fitting the intra-cluster data points)

are highly correlated, which signifies either the spatial or the temporal indistin-

guishability. Such indistinguishability hinders deep neural networks from perceiving

the spatial and temporal difference. It should be noted that, once the model

tunes the fraction of parameters uniquely responsible for a cluster of dynamics, the

forecast of other clusters will inversely degenerate in reaction to this action. This

makes the current update prone to be counteracted by any subsequent updates,

as the temporary status is not even locally optimal. Hence, the ultimate model

mainly captures an average property of these clusters, emanating from the common

global high-frequency component. This outcome also conforms completely to our

deduction in Eq. (4.2).

(a) (b)

Figure. 4.2 (a) Spatial indistinguishability; (b) Temporal indistinguishability.
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4.1.2 Contributions

To address the above issues, the key is to refine more types of components from the

original measurement. Thereby relationships that distinguish dynamics from the

spatial view or the temporal view can be captured. In our work, we propose two kinds

of normalization modules – temporal normalization (TN) and spatial normalization

(SN) – which separately refine the high-frequency and local components. Specifically,

the high-frequency component assists with distinguishing dynamics from the spatial

view, and the local component facilitates differentiating the dynamics from the

temporal view. With distinguishability on space and time, the model is able

to exclusively fit each clusters of samples, especially some long-tailed samples.

Moreover, we show the connection between our method and other state-of-the-art

(SOTA) methods which rely on mutual relationship establishment to distinguish

dynamics. We now have two prominent advantages, apart from the higher prediction

accuracy: (1) the computational cost remains in O(NT ), rather than scaling up to

O(N2T ); (2) the converging speed is faster, as demonstrated by the experiments

conducted.

4.2 Preliminaries

In this section, we introduce the definitions and the assumption. All frequently

used notations are reported in Table 5.1.

Definition 4 (Time series forecasting). Time series forecasting is formulated as

the following conditional distribution:

P (Y|X) =
Tout∏
t=1

P (Y:,t|X),
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Table 4.1 Notations

Notation Description
N, Tin, Tout Number of variables / input steps / output steps.
X ∈ RN×Tin Input data.
Y ∈ RN×Tout Output data.
Z ∈ RN×Tin×dz Latent data.
Zlh ∈ RN×Tin×dz Local high-frequency component.
Zll ∈ RN×Tin×dz Local low-frequency component.
Zgh ∈ RTin×dz Global high-frequency component.
Zgl ∈ RTin×dz Global low-frequency component.
x, y, z Vector or matrix that represents certain variable.
+, ·, / Element-wise addition / multiplication / division.
i.i.d.= Two variables are i.i.d..
* Placeholder.

Definition 5 (Time series factorization). Time series factorization generalizes Eq.

(4.1) into the latent space, which takes the following form:

Zi,t = Zlh
i,tZll

i,tZ
gh
t Zgl

t , (4.3)

where:

Zlh
i,t

i.i.d.= Zlh
i,t−1, Zll

i,t ≈ Zll
i,t−1, Zgh

t
i.i.d.= Zgh

t−1, Zgl
t ≈ Zgl

t−1, Zl*
i,t

i.i.d.= Zl*
j,t.

Assumption 1. The set of elements of Zlh
i,t, Zll

i,t, Zgh
t and Zgl

t are mutually inde-

pendent, which is formally written as:

P (Zll
i,t, Zlh

i,t, Zgh
t , Zgl

t ) =
dz∏

k=1
P (Zll

i,t,k)P (Zlh
i,t,k)P (Zgh

t,k)P (Zgl
t,k). (4.4)

4.3 Methodology

We display the overview of the architecture being leveraged in our work in Fig.

5.3. Some key variables with their shapes are labeled at their corresponding
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Figure. 4.3 Overall architecture, where we just draw two residual blocks for illustra-

tion, but multiple blocks can be stacked layer by layer. +, × and || respectively

denote element-wise addition, element-wise multiplication and concatenation
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Figure. 4.4 Dilated Causal Convolution.

positions along the computation path. Generally, our framework follows a structure

similar to Wavenet[3], except that we add both spatial normalization and temporal

normalization modules which together are abbreviated as ST-Norm or STN.

4.3.1 Dilated Causal Convolution

In this section, we briefly introduce dilated causal convolution where the filter is

applied with skipping values. For a 1-D signal z ∈ RT and a filter f : {0, . . . , k−1} →

R, the causal convolution on element t is defined as follows:

F (t) = (z ∗ f)(t) =
k−1∑
i=0

f(i) · zt−i. (4.5)

This formula can be easily generalized for multi-dimension signal but we omit its

general form here for brevity. Moreover, padding (zero or replicate) with size of

k − 1 is appended to the left tail of the signal to ensure length consistency. We can

stack multiple causal convolution layers to obtain a larger receptive field for each

element.

One shortcoming of using causal convolution is that either the kernel size or

the number of layers increases in a linear manner with the range of the receptive

field, and the linear relationship causes an explosion of parameters when modeling
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long history. Pooling is a natural choice to address this issue, but it sacrifices the

order information presented in the signal. To this end, dilated causal convolution is

leveraged, a form which supports the exponential expansion of the receptive field.

The formal computing process is written as:

F (t) = (z ∗d f)(t) =
k−1∑
i=0

f(i) · zt−d·i, (4.6)

where d is the dilation factor. Normally, d increases exponentially w.r.t. the depth

of the network (i.e., 2l at level l of the network). If d is 1 (20), then the dilated

convolution operator ∗d reduces to a regular convolution operator ∗.

4.3.2 Temporal Normalization

Temporal normalization (TN) aims to refine the high-frequency components – both

global and local – from the hybrid signal. Here, for conciseness, we introduce two

notations to individually summarize high-frequency components and low-frequency

components, which are expressed as:

Zhigh
i,t = Zlh

i,tZ
gh
t , Zlow

i,t = Zll
i,tZ

gl
t .

The applicability of TN is based on a reasonable assumption that the changing

rates of low-frequency components are much slower than those of the high-frequency

components. Or more technically, each low-frequency component approximately

equals a constant over a period. Under this assumption, we are can apply TN

on time series without the additional supplement of features characterizing the

frequency. Such characteristic is well-suitable for an ample number of real-world

problems, where the specific frequency is not available.
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We start with expanding Zhigh
i,t to obtain a desirable form whose distinct quanti-

ties can be derived from data:

Zhigh
i,t =

Zhigh
i,t − E

(
Zhigh

i,t

∣∣∣i)
σ

(
Zhigh

i,t

∣∣∣i) + ϵ
σ

(
Zhigh

i,t

∣∣∣i) + E
(
Zhigh

i,t

∣∣∣i)

=
Zhigh

i,t Zlow
i,t − Zlow

i,t E
(
Zhigh

i,t

∣∣∣i)
Zlow

i,t σ
(
Zhigh

i,t

∣∣∣i) + ϵ
σ

(
Zhigh

i,t

∣∣∣i) + E
(
Zhigh

i,t

∣∣∣i)

=
Zi,t − E

(
Zi,t

∣∣∣Zlow
i,t , i

)
(±)σ

(
Zi,t

∣∣∣Zlow
i,t , i

)
+ ϵ

σ
(
Zhigh

i,t

∣∣∣i) + E
(
Zhigh

i,t

∣∣∣i)

=
Zi,t − E

(
Zi,t

∣∣∣Zlow
i,t , i

)
σ

(
Zi,t

∣∣∣Zlow
i,t , i

)
+ ϵ

(
(±)σ

(
Zhigh

i,t

∣∣∣i))
+ E

(
Zhigh

i,t

∣∣∣i) , (4.7)

where ϵ is a small constant to preserve numerical stability; Zi,t is observable;

E
(
Zhigh

i,t

∣∣∣i) and (±)σ
(
Zhigh

i,t

∣∣∣i) are mean and standard deviation (plus or minus) of

the high-frequency impact on the ith time series over time, which can be approxi-

mated by a pair of learnable vectors γhigh
i and βhigh

i with the size of dz. To estimate

E
(
Zi,t

∣∣∣Zlow
i,t , i

)
and σ

(
Zi,t

∣∣∣Zlow
i,t , i

)
can be estimated as follows under Def. 5 and

Assumption 1:

E
(
Zi,t

∣∣∣Zlow
i,t , i

)
≈ 1

δ

δ∑
t′=1

Zhigh
i,t−t′+1Zlow

i,t

≈ 1
δ

δ∑
t′=1

Zhigh
i,t−t′+1Zlow

i,t−t′+1

= 1
δ

δ∑
t′=1

Zi,t−t′+1 (4.8)

σ2
(
Zi,t

∣∣∣Zlow
i,t , i

)
= E

[(
Zi,t − E

(
Zi,t

∣∣∣Zlow
i,t , i

))2
∣∣∣∣Zlow

i,t , i
]

≈ 1
δ

δ∑
t′=1

(
Zhigh

i,t−t′+1Zlow
i,t − E

(
Zi,t

∣∣∣Zlow
i,t , i

))2
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≈ 1
δ

δ∑
t′=1

(
Zhigh

i,t−t′+1Zlow
i,t−t′+1 − E

(
Zi,t

∣∣∣Zlow
i,t , i

))2

= 1
δ

δ∑
t′=1

(
Zi,t−t′+1 − E

(
Zi,t

∣∣∣Zlow
i,t , i

))2
, (4.9)

where δ is a period during which the low-frequency component approximately

remains to be a constant. In our work, for simplicity, we let δ equal to the number

of input time steps. By substituting the estimations of the four unobservable

variables into Eq. (4.7), we are able to obtain the representation of the high-

frequency component:

Zhigh
i,t =

Zi,t − E
(
Zi,t

∣∣∣Zlow
i,t , i

)
σ

(
Zi,t

∣∣∣Zlow
i,t , i

)
+ ϵ

γhigh
i + βhigh

i (4.10)

Noticeably, TN has a close relationship with instance normalization (IN) for

image data [86], where style plays the role of a low-frequency component and

content serves as a high-frequency component. The novelty of our work is that we

trace the origin of TN under the context of MTS, and deduce TN step-by-step from

its origin.

4.3.3 Spatial Normalization

The objective of spatial normalization (SN) is to refine local components, composed

of the local high-frequency component and the local low-frequency component. To

achieve this objective, the primary task is first to eliminate global components,

resulted from global impacts such as time of day, day of week and weather condition,

etc. We also introduce two notations to summarize local and global components:

Zglobal
t = Zgh

t Zgl
t , Zlocal

i,t = Zlh
i,tZll

i,t.
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Likewise, the applicability of SN is based on the assumption that the global

impacts impose similar effects on all time series. For instance, in Fig. 4.1, there

are common upward trends over the three regions with similar increasing rates

when moving from 8am to 9am. Here, we need to clarify that we do not require

the global impacts to strictly exert the same influence on each time series. Those

effects that are not evenly observed on each time series could be complemented by

the defined local component.

We firstly expand Zlocal
i,t to an expression where each term can be approximated

from data or be assigned with learnable parameters:

Zlocal
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where Zi,t is directly observable; (±)σ
(
Zlocal

i,t

∣∣∣t) and E
(
Zlocal

i,t

∣∣∣t) are approximated

by two learnable vectors1 γlocal and βlocal; the estimation of E
(
Zi,t

∣∣∣Zglobal
t , t

)
and

σ
(
Zi,t

∣∣∣Zglobal
t , t

)
can be derived from data in the following ways under Def. 5 and

1Each time would possess the identical prior distribution if dynamic laws, such as periodicity,
is unknown.
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Assumption 1:

E
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t , t

)
≈ 1
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By substituting the approximations of the four unobservable variables into Eq.

(4.11), we are able to obtain the composite representation of the local components:

Zlocal
i,t =

Zi,t − E
(
Zi,t

∣∣∣Zglobal
t , t

)
σ

(
Zi,t

∣∣∣Zglobal
t , t

)
+ ϵ

γlocal + βlocal (4.14)

SN is a counterpart of TN in the spatial domain, where high-frequency com-

ponents act as local components, and low-frequency components correspond to

global components. By distilling the local or high-frequency components from the

original signal, the model can capture fine-grained variation, which is extraordinarily

instrumental in time series forecasting.

4.3.4 Forecasting and Learning

We let Z(L) ∈ RNl×Tin×dz denote the output from the last residual block, where

each row z(L) ∈ RTin×dz represents a variable. Then, we employ a temporal pooling

block to perform temporal aggregation for each variable. Several types of pooling

operations can be applied, such as max pooling and mean pooling, depending on

the problem being studied. In our case, we select the vector in the most recent time
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(a) TN (b) SN (c) Graph-based

Figure. 4.5 Relationships produced by the three operations.

slot as the pooling result, which is treated as the representation of the entire signal.

Finally, we make a separate prediction for each variable, based on the obtained

representation by a shared fully connected layer.

In the learning phase, our objective is to minimize the mean squared error

between the predicted values and ground truth values. In addition, we use the

Adam optimizer [46] to optimize this target.

4.3.5 Discussion

4.3.5.1 Feature Space

To illustrate how TN and SN reframe the feature space, we apply them over the

raw input data, and examine whether they mitigate the issues we raise in Fig. 4.2.

We plot the original quantity versus the temporally normalized quantity in Fig.

4.5a, and the original quantity versus the spatially normalized quantity in Fig. 4.5b.

It is apparent that the pairwise relationship between the original quantity and

the temporally normalized quantity separates different regions, and the pairwise
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relationship between the original quantity and the spatially normalized quantity

separates different days.

4.3.5.2 Computational Complexity

A few SOTA approaches [104, 103, 2] propose to establish a mutual relationship

between different time series in order to refine the local component. In essence, they

contrast a pair of time series which share the same global components over time,

thereby allowing the local component of individual time series to be highlighted.

For instance, we contrast the three time series in Fig. 4.1 with a single time series

(regarded as an anchor), which results in a pairwise relationship reflecting the

identity of each time series as shown in Fig. 4.5c. However, the eligible anchors

are often unknown, and different time series may need to be paired with different

anchors. To automatically identify the anchor for each time series, these methods

employ a graph-learning module to explore every possible pair of time series.

Their computational complexity is O(TN2). Unlike other approaches proposed in

this area, the normalization modules involved in our method only require O(TN)

operations.

4.3.5.3 Generalizability

ST-Norm’s efficacy guarantee hinges on the behavior consistency of time series

between training data and testing data, which is applicable for scenarios with

demonstration of stable and recurring patterns, where low-frequency components

are subject to little or slight changes. Specifically, behavior consistency ensures

the unbiasedness of the derived mean and standard deviation for testing data,

effectively centering the group of normalized features at 0, averting the occurrence

of distribution shift from the training data. As such, ST-Norm is expected to deliver
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generalizablility, provided that the distribution of testing data does not deviate

substantially from that of the training data. For adjustment with respect to data

structuring, such as modifying the spatial resolution or the temporal granularity, the

training data and testing data will be impacted in a consistent manner, unless using

different adjustment configurations for them, respectively, so the divergence will be

maintained at distribution level. For complex scenarios undergoing unpredictable

variation in low-frequency components, our next study has the potential to cope

with.

4.4 Evaluation

In this section, we conduct extensive experiments on three common datasets to

validate the effectiveness of ST-Norm from different aspects.

4.4.1 Experimental Setting

4.4.1.1 Datasets

We validate our model on three real-world datasets, including BikeNYC, PeMSD7

and Electricity. The statistics regarding each dataset as well as the corresponding

settings of the designed task are reported in Table 5.2. We standardize the values

in each dataset to facilitate training and transform them back to the original scale

in the testing phase.

In Table 5.2, statistics of the datasets are reported. More details regarding the

datasets are introduced below.

• PeMSD7 [113]. The data is collected from Caltrans Performance Measurement

System (PeMS) by sensor stations, which are deployed to monitor traffic speed



94 Disentangling Low-Frequency Components in Spatial-Temporal Data

Table 4.2 Dataset statistics.

Tasks Electricity PeMSD7 BikeNYC
Start time 10/1/2014 5/1/2012 4/1/2014
End time 12/31/2014 6/30/2012 9/30/2014
Sample rate 1 hour 30 minutes 1 hour
# Timesteps 2184 2112 4392
# Variate 336 228 128
Training size 1848 1632 3912
Validation size 168 240 240
Testing size 168 240 240
Output length 3 3 3

across the major metropolitan areas of the California state highway system.

We further aggregate the data to 30-minute interval by average pooling.

• Electricity2. The original dataset contains the electricity consumption of 370

points/clients, from which 34 outlier points that contain extreme values are

removed. Moreover, we calculate the hourly average consumption for each

point, and take it as the time series being modeled.

• BikeNYC [117]. Each time series in this dataset denotes the aggregate demand

for shared bikes over a region in New York City. We do not consider the

spatial relationship presented in the PeMSD7 and BikeNYC data, since our

objective is to study the temporal patterns.

Furthermore, we display the data distribution and several exemplar time series

in Fig. 5.8 to gain more insights from each dataset. We can observe that each

of the three types of data lays in a wide range of scale, and exhibits periodicity

to some extent. However, their evolving patterns are entirely different where the

electricity time series shows the greatest diversity.
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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(a) PeMSD7.

(b) Electricity.

(c) BikeNYC.

Figure. 4.6 For each (a), (b) and (c), the left figure shows the probability density

function of observed values aggregated from all variables at all time steps, and the

right figure displays some sample time series.
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4.4.1.2 Network Setting

We add an instance normalization (IN) module [86] in parallel with SN and TN

as another complement3. The batch size is 4, and the input length of the batch

sample is 16. For the Wavenet backbone, the layer number is set to 4, the kernel

size of each DCC component is 2, and the associated dilation rate is 2i, where i

is the index of the layer (counting from 0). Such settings collectively enable the

output from Wavenet to perceive 16 input steps. The number of hidden channels

dz in each DCC is 16. We apply zero-padding on the left tail of the input to enable

the length of the output from DCC to equal to 16 as well. The learning rate of the

Adam optimizer is 0.0001.

4.4.1.3 Evaluation Metrics

We validate our model by root mean squared error (RMSE), mean absolute error

(MAE) and mean absolute percentage error (MAPE). We repeat the experiment

ten times for each model on each dataset and report the mean of the results.

4.4.2 Baseline Models

• MTGNN [103]. MTGNN constructs inter-variate relationships by introduc-

ing a graph-learning module. Specifically, the graph learning module connects

each hub node with its top k nearest neighbors in a defined metric space.

MTGNN’s backbone architecture for temporal modeling is Wavenet.

• Graph Wavenet [104]. The architecture of Graph Wavenet is like MTGNN.

The major difference is that the former derives a soft graph where each pair

of nodes has a continuous probability of being connected.
3The implementation can be found in our code.
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• AGCRN [2]. AGCRN also equips with a graph-learning module to establish

inter-variate relationship. Furthermore, it uses a personalized RNN to model

the temporal relationship for each time series.

• Transformer [55]. This model captures the long-term dependencies in time

series data through using an attention mechanism, where the keys and queries

are yielded by causal convolution over local context to model segment-level

correlation.

• LSTNet [49]. There are two components in LSTNet: one is a conventional

autoregressive model, and the other is an LSTM with an additional skip

connection over the temporal dimension.

• TCN. [3] The architecture of TCN is like Wavenet, except that the nonlinear

transformation in each residual block is made up of two rectified linear units

(ReLU).

We also test the performance of TCN and Transformer incorporating STN,

where STN is similarly applied before the causal convolution operation in each

layer.

4.4.3 Experiment Results

Table 4.3 Performance on the BikeNYC dataset

Models 1 hour 2 hour 3 hour
MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTNet 19.6% 2.55 5.35 21.1% 2.77 6.04 22.6% 2.99 6.63
AGCRN 17.3% 2.34 4.76 18.7% 2.56 5.51 20.3% 2.77 6.07
Graph Wavenet 18.0% 2.39 4.78 19.4% 2.65 5.53 20.8% 2.86 6.05
MTGNN 19.0% 2.55 5.05 21.1% 2.88 6.00 22.9% 3.13 6.61
Transformer 22.8% 2.98 6.16 27.1% 3.66 7.88 29.7% 4.12 8.95
Transformer + STN 17.7% 2.36 4.75 19.1% 2.57 5.51 20.7% 2.78 6.09
TCN 22.4% 2.90 5.98 26.4% 3.57 7.66 29.1% 4.07 8.76
TCN + STN 16.8% 2.30 4.51 18.6% 2.55 5.34 20.4% 2.77 5.92
Wavenet 22.1% 2.86 5.92 26.3% 3.52 7.58 29.0% 3.97 8.68
Wavenet + STN 16.9% 2.23 4.48 18.3% 2.47 5.28 20.1% 2.68 5.88
Improvements +2.8% +4.7% +5.8% +2.1% +3.5% +4.1% +0.9% +3.2% +2.8%
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Table 4.4 Performance on the PeMSD7 dataset.

Models 30 min 60 min 90 min
MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTNet 8.10% 3.88 6.52 8.43% 4.01 6.71 9.06% 4.30 7.12
AGCRN 4.87% 2.34 4.24 6.48% 3.07 5.58 7.27% 3.43 6.19
Graph Wavenet 4.90% 2.33 4.25 6.77% 3.19 5.69 7.57% 3.57 6.25
MTGNN 5.18% 2.46 4.48 7.61% 3.57 6.31 9.03% 4.25 7.26
Transformer 5.82% 2.75 5.03 9.31% 4.34 7.51 11.8% 5.49 9.02
Transformer + STN 4.86% 2.33 4.26 6.50% 3.08 5.65 7.33% 3.48 6.31
TCN 5.80% 2.75 4.97 9.44% 4.43 7.53 12.0% 5.61 9.06
TCN + STN 4.91% 2.34 4.22 6.42% 3.04 5.51 7.12% 3.38 6.05
Wavenet 5.50% 2.61 4.80 8.75% 4.10 7.20 11.0% 5.16 8.61
Wavenet + STN 4.71% 2.25 4.12 6.23% 2.95 5.48 6.97% 3.29 6.01
Improvements +3.2% +3.4% +3.0% +3.8% +3.9% +1.7% +4.1% +4.0% +2.9%

Table 4.5 Performance on the Electricity dataset.

Models 1 hour 2 hour 3 hour
MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTNet 22.4% 31.1 61.2 23.0% 31.8 62.6 24.8% 33.8 66.8
AGCRN 12.2% 17.1 36.3 16.1% 22.3 49.1 19.1% 26.0 56.6
Graph Wavenet 10.9% 15.9 34.9 15.8% 22.4 49.9 19.1% 26.5 57.7
MTGNN 11.1% 15.8 32.5 16.0% 22.2 46.3 19.6% 26.5 54.6
Transformer 11.2% 16.6 36.3 17.6% 25.4 53.7 22.2% 31.8 65.0
Transformer + STN 13.2% 17.4 35.9 17.7% 23.5 48.8 21.2% 27.9 58.0
TCN 11.1% 16.3 35.5 17.3% 25.0 52.4 21.5% 30.7 62.0
TCN + STN 13.2% 16.7 31.7 16.5% 21.5 42.8 20.1% 25.4 50.9
Wavenet 10.8% 15.8 33.3 16.8% 23.8 49.5 21.1% 29.5 60.3
Wavenet + STN 12.0% 15.6 30.9 15.1% 20.1 42.2 17.1% 23.0 49.2
Improvements -11.0% +1.2% +4.9% +4.4% +9.4% +8.8% +10.4% +11.5% +9.8%

The experimental results on the BikeNYC, PeMSD7 and Electricity datasets

are separately reported in Table 5.3, Table 5.4 and Table 5.5. The improvements

achieved by Wavenet + STN over the best benchmarks are recorded in the last row

of each table.

It is obvious that Wavenet + STN achieves SOTA results over almost all horizons

on BikeNYC, PeMSD7 and Electricity data. The reason is that we refine the high-

frequency components from both the temporal view and the spatial view, which

are generally overlooked by baseline models. Next, we reveal the cause of Wavenet

+ STN’s under-performance on the electricity dataset over the first horizon with

respect to MAPE. As shown in Fig. 4.6b, electricity data follows a long-tailed

distribution – there is a certain portion of quantities exceeding a relatively high

level. Recall that the optimization targets minimizing mean squared error, which

means that more weights are placed on large errors. Moreover, every sample is
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(c) Electricity

Figure. 4.7 Loss convergence.

treated equivalently in the estimation of global statistics. Therefore, the model can

fit long-tailed samples better, but at the cost of degrading the fitness on normal

samples.

We also display the process of loss convergence in Appendix ??. It shows

that with the additional STN module, the converging speeds of the models are

accelerated by a large margin, faster than that of nearly all baseline models.

4.4.4 Ablation Study

To validate the effectiveness of SN and TN, we design several variants as follows.

We also investigate whether a graph-learning module complements STN by testing
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Table 4.6 Ablation Study

GSTN STN Graph TN SN Vanilla

B
RMSE 5.18 5.21 5,46 5.63 6.37 7.40
MAE 2.45 2.47 2.63 2.64 2.99 3.44

MAPE 18.4% 18.7% 19.4% 19.8% 22.6% 25.8%

P
RMSE 5.16 5.22 5.40 5.35 6.12 6.87
MAE 2.77 2.83 3.03 2.90 3.47 3.96

MAPE 5.86% 5.97% 6.41% 6.08% 7.41% 8.43%

E
RMSE 38.9 40.8 47.5 44.1 45.9 47.9
MAE 18.9 19.6 21.6 21.4 22.6 23.1

MAPE 14.4% 14.7% 15.3% 16.2% 16.7% 15.9%

a variant containing them both. As all the variants contain the standard Wavenet

backbone, we omit Wavenet in the name for brevity.

• GSTN. STN with an adaptive graph learning module as in Graph Wavenet.

• Graph. Graph Wavenet.

• SN. Wavenet with SN module.

• TN. Wavenet with TN module.

We evaluate these variants on all the three datasets and report the overall results

in Table 5.6. It is evident that both of SN and TN contribute to the enhancement.

Moreover, with an adaptive graph-learning module, the performance of STN rises

marginally. We can conclude that STN largely substitutes and surpasses the

graph-learning module.

4.4.5 Hyper-parameter Analysis

We further study the effect of different settings of the hyper-parameters in the pro-

posed modules. There are four hyper-parameters to be manually set by practitioners,
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Figure. 4.8 Hyper-parameter analysis.

consisting of the dimension of hidden channels dz, the number of historical steps

input to the model, the kernel size of DCC and the batch size. The study results

are reported in Fig. 5.9, from which we are able to draw a major conclusion: STN

not only boosts the performance, but also increases the stability of the performance

under different hyper-parameter settings.

4.4.6 Case Study

The time series data we leveraged for the case study is BikeNYC. For each of

SN and TN, we examine three representative regions at specified times to reflect

what the module extracts from data. We collect the intermediate representations

output from the two normalization modules installed in the top residual block and
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compress them via t-SNE for the sake of visualization. For comparison, we also

examine their associated input representations, each of which is a concatenation

of raw measurements. Next, we will discuss separately the outcomes of the two

modules in details.

4.4.6.1 Spatial Normalization
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Figure. 4.9 Case study on SN.

SN removes the global component Zglobal
t from the original measurement, while

retaining the local component Zlocal
i,t . In Fig. 4.9a, we display the demand evolution

during a given period over the three investigated regions. We can observe that

the three regions have similar evolution patterns, especially regions B and C. The
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Figure. 4.10 Case study on TN.

representations concatenated by original measurements are plotted in Fig. 4.9b,

and the intermediate representations output from SN are plotted in Fig. 4.9c. We

can observe that SN completely rearranges the representations in accordance with

its regional identity. This observation demonstrates that the low-frequency parts in

the local components are roughly invariant within the group belonging to the same

region. This coincides with our understanding that some regional attributes, such

as the population and the functionality, are stable over time.
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4.4.6.2 Temporal Normalization

TN attempts to eliminate the low-frequency component Zlow
i,t , while highlighting the

high-frequency component Zhigh
i,t . To reflect the characteristics of the representations

output from TN, we take another D into consideration, as shown in Fig. 4.10a.

Noticeably, the magnitude of the demand over region D is substantially smaller

than those over regions A or B. Here, we account for three different times in a day,

consisting of 1am, 8am and 12pm. Likewise, the input representations are plotted

in Fig. 4.10b, and the intermediate representations in Fig. 4.10c. As shown in Fig.

4.10b, instances belonging to region D are mixed up without separation between

different times, which signifies that the model will struggle to differentiate the times

those instances occurred. By contrast, TN mitigates this issue as it forms clusters

of the instances with the same occurrence time.



Chapter 5

An Adaptive, Scalable and
Partially Interpretable Framework

In the dynamic landscape of time series data analysis, the quest for models that

embody adaptability, scalability, and interpretability is paramount. The burgeoning

complexity of data streams, characterized by intricate shifts in distribution and

autocorrelation, necessitates the development of advanced forecasting frameworks.

Our study embarks on this path, unveiling the Structured Component-based Neural

Network (SCNN), a transformative solution that marks a new paradigm in MTS

forecasting.

Our journey into the intricate world of time series data has unveiled complex

shifts in distribution. A novel revelation from our exploration is the dynamic

nature of not only the distribution but also the autocorrelation within

the data, exhibiting shifts both inter-days and intra-days. This dynamic

behavior underscores the need for a model capable of adeptly adapting to these

shifts, thereby minimizing the necessity for manual intervention. Delving deeper

into the patterns of distribution and autocorrelation, we discerned a fascinating

correlation: shifts in distribution are intrinsically linked with shifts in autocorrelation
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across various data subsets. This discovery hints at the potential of distribution

features serving as reliable indicators for changes in autocorrelation, paving the

way for more nuanced forecasting approaches. Inspired by these findings, we

have come to appreciate the multifaceted roles that statistics can assume in the

forecasting process. While previous studies have leveraged statistics, namely mean

and standard deviation, to delineate data distribution over subsets, we now envisage

these statistical components actively engaging in parameter estimation, thereby

enhancing forecasting accuracy. This is primarily due to the significant influence of

autocorrelation, which is correlated with data distribution, on the parameters of

the forecasting model.

The SCNN stands as a beacon of innovation in this domain, adeptly decoupling

the structured components of MTS data, thereby fostering enhanced interpretability

and traceability. This unique approach not only facilitates deeper insights into

data dynamics but also adeptly adapts to various types of space-time-varying

correlations, a distinctive feature of our model. Moreover, the SCNN promises

scalability, a vital attribute in handling the escalating volume and velocity of data

encountered in real-world applications. It maintains a linear computational cost,

avoiding the parameter increase typically associated with extended input sequence

lengths. Furthermore, we acknowledge the critical importance of interpretability,

a quality that grants humans a clear understanding of the decisions rendered by

a model. Despite the inherent complexity of deep neural networks, which often

operate as "black boxes", our endeavor is to enhance transparency, fostering trust

and facilitating model debugging. This commitment to interpretability also serves

to mitigate the propagation of biases present in the training data, ensuring a fair

and insightful analysis.
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In essence, the SCNN emerges as a robust, efficient, and insightful tool, adeptly

navigating the challenges of MTS forecasting. Through its adaptive, scalable, and

interpretable framework, it promises to revolutionize time series analysis, setting a

new benchmark in the field.

5.1 Introduction

Multivariate time series (MTS) forecasting is a fundamental problem in the machine

learning field [? 117]. In the era of big data, a wide array of promising applications

can be conceptualized as MTS forecasting problems. Examples include predicting

activities and events [42], nowcasting precipitation [50], forecasting traffic [117],

and estimating pedestrian and vehicle trajectories [52]. The primary challenge

in MTS forecasting is to effectively capture spatial-temporal patterns from MTS

data. Spatial characteristics arise from external factors such as regional population,

functionality, and geographical location. Temporal characteristics are influenced by

factors like the time of day, day of the week, and weather conditions.

Traditional methods assume that the time series to be modeled is stationary [83].

However, real-world multivariate time series are often non-stationary, containing

diverse and heterogeneous structured patterns such as multiple-resolution continuity

and seasonality. These patterns significantly complicate the dynamics of time series,

leading to various forms of distribution shifts, as illustrated in Fig. 5.1a and Fig.

5.1b. These shifts occur constantly and irregularly across hours and days, influenced

by long-term continuity and seasonality. Additionally, as shown in Fig. 5.1c and Fig.

5.1d, not only does the data distribution change over time, but the auto-correlation

also varies. This variation in auto-correlation, which has received little attention
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Figure. 5.1 (a) P (Yt|t.day); (b) P (Yt|t.day, t.hour); (c) Corr(Yt, Yt−i|t.day); (d)

Corr(Yt, Yt−i|t.day, t.hour). These visualizations emphasize that both data distri-

bution and auto-correlation exhibit complex, heterogeneous shifts correlated with

factors like time span and hour of the day.

in literature, suggests that the relationships between historical observations and

future targets are also unstable, making prediction more challenging.

To address non-stationary time series, modern methods employ deep neural

networks like Transformers, temporal convolution networks (TCNs), and recurrent

neural networks (RNNs), which do not rely on the assumption of stationarity.

However, their effectiveness is limited to handling in-distribution (ID) non-stationary

patterns. For example, with sine and cosine functions, their non-stationary patterns

recur over time, allowing their dynamics to be captured accurately by deep learning

models. However, for out-of-distribution (OOD) non-stationary patterns, the

performance of these models often degrades significantly. Thus, adaptability and
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generalization under complex distribution shifts remain under-explored in current

deep spatial-temporal models [49, 2, 104, 103, 121]. Additionally, these methods

render the prediction process a black box, lacking interpretability. They also

require extensive parameters and operations, leading to prohibitively expensive

computations.

Time series decomposition [83], which separates time series into trend, seasonal,

and residual components, has recently emerged as a promising approach to enhance

adaptability to OOD non-stationary patterns and improve interpretability of deep

learning models [102, 97, 18, 63, 98]. Even simple linear models [116] have shown

the ability to outperform various deep learning models [102, 129, 130] when using

this approach.

Despite these advancements, current studies still have limitations. First, they

focus mainly on long-term and seasonal components, capturing only coarse-grained

trends while neglecting short-term or volatile components crucial for detailed

deviations. Second, the segregated processing of different components without in-

formation exchange inhibits the extraction of high-order and non-linear interactions

among them. Third, they overlook the dynamic nature of auto-correlation, implying

the sub-optimality of using static models with fixed parameters for OOD forecasting,

given that optimal parameter solutions should be governed by auto-correlation eval-

uations. Due to these shortcomings, previous decomposition-driven methods still

rely on large-scale MLPs or Transformers to enhance model expressivity, reducing

scalability and interpretability [67, 63, 123].

Our study introduces a structured component-based neural network (SCNN)

for MTS forecasting. SCNN employs a divide-and-conquer strategy, strategically

disentangling time series data into multiple structured components, as shown in
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Seasonal component

Original time series data

Short-term component

Co-evolving component

Long-term component

Figure. 5.2 Structured components extracted by SCNN from BikeNYC time series

data. The underlying structure of TS might be far more complicated than just

trend (long-term) and seasonal components.
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Fig. 5.2, extending beyond long-term and seasonal components. These components

exhibit heterogeneous dynamics, suitable for simulation with simple, specially-

designed models. This approach significantly enhances the model’s ability to handle

heterogeneous distribution shifts while improving the transparency of its internal

mechanisms. Unlike previous methods, where decomposition and recomposition

are applied only at the input and output stages, respectively, we integrate these

operations into the design of the neural modules comprising SCNN. Deep and

iterative decoupling of components allows for incorporating a wide range of high-

order interactions among them, thereby enhancing the model’s expressivity. To

address auto-correlation shifts, each neural module features a bifurcated structure,

enabling dynamic and adaptive model parameter updates: one branch adjusts

model parameters based on real-time data, akin to a small hyper-network [? ],

while the other processes hidden features with the adjusted parameters. Further-

more, to improve SCNN’s generalization ability, we introduce auxiliary structural

regularization alongside the standard regression loss. This encourages the model to

focus more on structured components less prone to corruption. The components

utilized in SCNN enable an adaptive, interpretable, scalable, yet powerful neural

architecture for time series forecasting.

We summarize our contributions as follows:

• We introduce the Structured Component Neural Network (SCNN) for multi-

variate time series forecasting, marking the first completely decomposition-

based neural architecture.

• We propose a novel structural regularization method to explicitly shape the

structure of the representation space learned from SCNN.
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• We conduct extensive experiments on three public datasets to validate the

effectiveness of SCNN, and observe general improvement over competing

methods.

• Empirical and analytical evidence demonstrates the SCNN’s superior per-

formance in handling distribution shifts and anomalies, while maintaining

computational efficiency.

5.2 Preliminaries

In this section, we introduce the definitions and the assumption. All frequently

used notations are reported in Table 5.1.

Definition 6 (Multivariate time series forecasting). Multivariate time series is

formally defined as a collection of random variables {Yn,t}n∈N,t∈T , where n denotes

the index on the spatial domain and t denotes the index on the temporal domain.

Time series forecasting is formulated as the following conditional distribution:

P (Y:,t+1:t+Tout |Y:,t−Tin+1:t) =
Tout∏
i=1

P (Y:,t+i|Y:,t−Tin+1:t).

Our study delves into a specific category of time series that can be represented

as a superposition of various elementary signals. These include the long-term

(lt) component, the seasonal (se) component, the short-term (st) component, the

co-evolving (ce) component, and the residual component. Each component offers a

distinct perspective on the underlying dynamic system of the time series, enriching

the information content of the series.
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Table 5.1 Notations

Notation Description
N, L Number of variables / network layers.
Tin, Tout Number of input steps / output steps.
Y ∈ RN×T Multivariate time series.
Y in

n,t ∈ R Observation of nth variable at time t.

Ŷ out
n,t+i ∈ R Mean prediction of the nth variable for

the ith forecast horizon at time t
.

σ̂out
n,t+i ∈ R

Standard deviation prediction of the
nth variable for the ith forecast horizon
at time t.

.

lt, se, st, ce
Abbreviations for 4 types of structured
components: long-term, seasonal,
short-term, co-evolving.

µ∗
n,t, σ∗

n,t ∈ Rdz Historical structured component.
µ̂∗

n,t+i, σ̂∗
n,t+i ∈ Rdz Extrapolation of the structured component.

Hn,t ∈ R8dz
Concatenation of historical structured
components of 4 types.

Ĥn,t+i ∈ R8dz
Concatenation of extrapolated
structured components of 4 types.

Z
(l)
n,t ∈ Rdz

Historical residual representation at
the lth layer in the decoupling block.

Ẑ
(l)
n,t+i ∈ Rdz

Extrapolation of the residual
representation at the lth layer.

Zn,t ∈ R4dz
Concatenation of historical residual
representations at 4 layers.

Ẑn,t+i ∈ R4dz
Concatenation of extrapolated
residual representations at 4 layers.

Sn,t ∈ Rdz Historical state.
Ŝn,t+i ∈ Rdz Extrapolation of the state.
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Definition 7 (Generative Process for Multivariate Time Series). We postulate

that the time series is generated through the following process:

Z
(3)
n,t = σce

n,tRn,t + µce
n,t, (5.1)

Z
(2)
n,t = σst

n,tZ
(3)
n,t + µst

n,t, (5.2)

Z
(1)
n,t = σse

n,tZ
(2)
n,t + µse

n,t, (5.3)

Z
(0)
n,t = σlt

n,tZ
(1)
n,t + µlt

n,t, (5.4)

where Rn,t denotes the residual component; Z
(0)
n,t represents the original data, and

Z
(i)
n,t (i ∈ {1, 2, 3}) signifies the intermediate representation at the ith level. Each

structured component is defined by a multiplicative (scaling) factor σ∗
t and an

additive factor µ∗
t , with ∗ ∈ {ce, st, se, lt}.

To illustrate this generative process intuitively, consider the analysis of traffic

density data. In this scenario, different components capture distinct aspects of traffic

dynamics. The long-term component reflects overarching trends in traffic patterns,

such as increases due to urban development or population growth. The seasonal

component represents cyclical changes, like the rush hour peaks or reduced flow

during off-peak times. The short-term component captures immediate, transient

effects caused by events like road work or weather changes. The co-evolving

component quantifies the simultaneous impact of sudden events on multiple traffic

series, such as a traffic accident affecting adjacent roads. Finally, the residual

component accounts for random effects, including unpredictable elements like sensor

errors.

It’s crucial to understand that these classifications in traffic data analysis are

dynamic. For example, a sudden traffic increase at a junction might initially be

considered an anomaly (residual component) but could evolve into a short-term
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Figure. 5.3 A schematic diagram of SCNN.

pattern if it persists due to a temporary detour. If this change becomes permanent,

it would then shift to the long-term component. This fluidity highlights the need

for adaptable and dynamic analytical methods in traffic data analysis.

Each component in this framework exhibits both multiplicative and additive

effects, reflecting the intricate nature of traffic dynamics. The multiplicative effect

is vital for understanding proportional changes in traffic volume, such as varying

impacts of percentage increases during peak or off-peak hours. The additive effect,

on the other hand, represents uniform changes, such as the consistent impact of road

constructions or new traffic signals, irrespective of current traffic levels. Incorporat-

ing both effects into each component ensures a thorough understanding of traffic

dynamics, as different scenarios may necessitate focusing on either proportional

(multiplicative) or absolute (additive) changes.
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5.3 Structured Component-based Neural Network

Figure 5.3 illustrates an overview of our model architecture. SCNN is composed of

three major parts, namely component decoupling, component extrapolation, and

structural regularization. We will introduce each part in the following sections.

5.3.1 Component Decoupling

This section introduces how to estimate a specific structured component, and

decouple this component from the residuals by applying a normalization operator.

This process is presented in the left part of Fig. 5.3.

5.3.1.1 Long-Term Component

The long-term component aims to be the characterization of the long-term patterns

of the time series data. To avoid ambiguity, we refer to the pattern as the distribution

of the aggregated samples without considering the chronological order among them;

the long-term pattern refers to the data distribution over an extended period that

should cover multiple seasons. By aggregating the samples collected from multiple

seasons, we can eliminate the short-term impact that will affect only a handful of

time steps, and acquire the estimation of the long-term component with less bias.

We create a sliding window of size ∆ to dynamically select the set of samples

over time. Then, the location (mean) and scale (standard deviation) of the samples

are computed and jointly taken as the measurement of the long-term component.

Finally, we transform the representation by subtracting the location from it and

dividing the difference by the scale, in order to unify the long-term components for
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different samples. The formula takes the following form:

µlt
n,t = 1

∆

∆−1∑
i=0

Z
(0)
n,t−i , (5.5)

(σlt
n,t)2 = 1

∆

∆−1∑
i=0

(Z(0)
n,t−i)2 − (µlt

n,t)2 + ϵ, (5.6)

Z
(1)
n,t =

Z
(0)
n,t − µlt

n,t

σlt
n,t

, (5.7)

where µlt
n,t and σlt

n,t are the location and the scale respectively; Z
(1)
n,t is the first-layer

normalized representation and passed to the following normalization layers.

Previous studies [44, 63, 18] let the ϵ to be an infinitesimal value, e.g. 0.00001,

for the purpose of avoiding the division-by-zero issue. We find that this trick,

however, incurs an unstable optimization process in some cases, resulting in a

sub-optimal solution on the parameter space. Imagine a time series that rarely

receives non-zero measurements which can be viewed as unpredictable noises. The

standard deviation of this time series would be very small, leading its inverse to

be exceptionally large. As a result, the noises would be undesirably magnified,

driving the model to fit these chaotic patterns without any predictable structure.

To alleviate this dilemma, our study sets ϵ as 1, which, on the one hand, can prevent

the explosion of noises and, on the other hand, cannot dominate the original scaling

factor. This simple trick is also employed by [78], but they only used it to preprocess

the time series data.

When deployed for online inferencing, this process can be optimized in an

iterative manner to minimize redundant computations. This optimization leverages

estimators from the previous time step, updating them based on the current
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observation. This update is weighted by an updating rate, denoted as αlt:

µlt
n,t = (1 − αlt)µlt

n,t−1 + αltZ
(0)
n,t , (5.8)

M lt
n,t = (1 − αlt)M lt

n,t−1 + αlt(Z(0)
n,t )2 , (5.9)

(σlt
n,t)2 = M lt

n,t − (µlt
n,t)2 + ϵ. (5.10)

Considering that the long-term component is designed to capture sustained trends,

the value of αlt should be set quite low. This ensures that historical observations are

retained and not dismissed quickly. It’s important to note that this configuration

doesn’t apply to the short-term component, which is tailored to concentrate on a

more limited span of observations.

5.3.1.2 Seasonal Component

Our study makes a mild assumption that the cycle length is invariant over time. For

those applications with time-varying cycle lengths, we can resort to the Fast Fourier

Transform (FFT) to automate the identification of cycle length, which is compatible

with our framework and is applied in a bunch of methods like Autoformer [102].

Disentanglement of the seasonal component resembles the long-term component,

except that we apply a dilated window whose dilation factor is set to the cycle

length. Let τ denote the window size, and m denote the dilation factor. The

normalization then proceeds as follows:

µse
n,t = 1

τ

τ−1∑
i=0

Z
(1)
n,t−i∗m , (5.11)

(σse
n,t)2 = 1

τ

τ−1∑
i=0

(Z(1)
n,t−i∗m)2 − (µse

n,t)2 + ϵ, (5.12)

Z
(2)
n,t =

Z
(1)
n,t − µse

n,t

σse
n,t

. (5.13)
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In this context, the derived values of µse
n,t and σse

n,t will solely reflect seasonal patterns,

devoid of any influence from transient or short-term effects. The online inferencing

procedure is then executed as outlined below, governed by a distinct updating rate

αse:

µse
n,t = (1 − αse)µse

n,t−m + αseZ
(1)
n,t , (5.14)

M se
n,t = (1 − αse)M se

n,t−m + αse(Z(1)
n,t )2 , (5.15)

(σse
n,t)2 = M se

n,t − (µse
n,t)2 + ϵ. (5.16)

The value of αse depends on how long memory of the seasonal component the

practitioner wants to keep.

5.3.1.3 Short-Term Component

The short-term component captures the irregular and short-term effects, which

cannot be explained by either the long-term component or the seasonal component.

In contrast to the long-term normalization, the window size here needs to be set to

a small number, notated by δ, such that the short-term effect will not be smoothed

out. Likewise, the formula takes the following form:

µst
n,t = 1

δ

δ−1∑
i=0

Z
(2)
n,t−i , (5.17)

(σst
n,t)2 = 1

δ

δ−1∑
i=0

(Z(2)
n,t−i)2 − (µst

n,t)2 + ϵ, (5.18)

Z
(3)
n,t =

Z
(2)
n,t − µst

n,t

σst
n,t

. (5.19)

Unlike the long-term component, the online inferencing procedure for the short-term

component utilizes the same expression but is regulated by a higher updating rate
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αst:

µst
n,t = (1 − αst)µst

n,t−1 + αstZ
(2)
n,t , (5.20)

M st
n,t = (1 − αst)M st

n,t−1 + αst(Z(2)
n,t )2 , (5.21)

(σst
n,t)2 = M st

n,t − (µst
n,t)2 + ϵ. (5.22)

The downside of the short-term component is that it cannot timely detect a short-

term change in data, demonstrating response latency. Also, it is insensitive to

changes that only endure for a limited number (e.g., two or three) of time steps.

To mitigate this issue, we can make use of the contemporary measurements of the

co-evolving time series.

5.3.1.4 Co-evolving Component

The co-evolving component, derived from the spatial correlations between time series,

is advantageous for capturing instant changes in time series, which distinguishes it

from the above three components. A co-evolving behavior shared across multiple

time series indicates that these time series are generated from the same process.

Then, we can get an estimator of this process by aggregating multiple samples

drawn from it.

A key problem to be solved here is identifying which time series share the

same co-evolving component. Technically, this amounts to measuring correlations

between different time series. This measurement can be done either by hard-coding

the correlation matrix with prior knowledge or by parameterizing and learning

it. Our study adopts the latter practice, which allows for more flexibility, since

many datasets do not present prior knowledge about the relationship between time

series. We assign an individual attention score to every pair of time series, and then
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normalize the attention scores associated with the same time series via softmax to

ensure that all attention scores are summed up to 1. Formally, let αn,n′ denote the

attention score between the nth and n′th variable. The formula is written as follows:

an,n′ = exp(αn,n′)∑N
j=1 exp(αn,j)

, (5.23)

µce
n,t =

N∑
n′=1

an,n′Z
(3)
n′,t , (5.24)

(σce
n,t)2 =

N∑
n′=1

an,n′(Z(3)
n′,t)2 − (µce

n,t)2 + ϵ, (5.25)

Z
(4)
n,t =

Z
(3)
n,t − µce

n,t

σce
n,t

, (5.26)

where Z
(4)
n,t denotes the residuals that cannot be modeled by any of our proposed

components. This computation can be further modified to improve the scalability

via the adjacency matrix learning module proposed in [104].

The decoupled components and residual representations are sequentially con-

catenated to form a wide vector:

Zn,t =[Z(1)
n,t , Z

(2)
n,t , Z

(3)
n,t , Z

(4)
n,t ],

Hn,t =[µlt
n,t , σlt

n,t , µse
n,t , σse

n,t ,

µst
n,t , σst

n,t , µce
n,t , σce

n,t].

5.3.2 Component Extrapolation

We simulate the dynamics of each component with a customized and basic model.

This allows for the explainability of the features being accounted for by the model

and the provision of insights into the capacity of the forecasting model. With the

acquired understanding of the features and the model capacity, practitioners can

detect the anomaly points where the model may not present reliable results, and
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Figure. 5.4 Component Extrapolation

adopt specific measures to handle the anomalies. The components exhibit different

dynamics with varying degrees of predictability, motivating us to create separate

models to mimic the prospective development of their dynamics. The models are

visualized in Fig. 5.4.

For a short period of time in the future, the long-term component and the

seasonal component change in a relatively well-defined behavior, so we can directly

specify the law for extrapolation without introducing extra parameters. We trivially

reuse the (estimated) state of the long-term component at the current time point

for the extrapolation of each future time point.

µ̂lt
n,t+i = µlt

n,t , σ̂lt
n,t+i = σlt

n,t . (5.27)
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For the seasonal component and its residual, we also conduct replication but from

the time point at the same phase as the target time point in the previous season:

µ̂se
n,t+i = µse

n,t−m+i , σ̂se
n,t+i = σse

n,t−m+i . (5.28)

The short-term component, the co-evolving component, and the residual repre-

sentations vary with greater stochasticity and thereby less predictability than the

above two components due to their irregularity. Since the dynamics are now much

more complicated, we opt to parameterize the dynamical model to allow for more

flexibility than specifying a fixed heuristic law. For each of these three types of

representations, we employ an auto-regressive model, predicting the representation

for the ith forecast horizon based on the past δ representations. For the sake of

brevity, we present the extrapolation processes of the short-term and co-evolving

components together with the residuals in a single figure, given that they share the

same model form:

Ĝn,t+i =
δ−1∑
j=0

ŴjiGn,t−j + bi, (5.29)

where G ∈ {Z
(l)
n,t+i, µst

n,t+i, σst
n,t+i, µce

n,t+i, σce
n,t+i}; Ŵji, a parameter matrix of size

dz × dz, quantifies the contribution from Gn,t−j to Ĝn,t+i; bi is the bias term. Ŵji

and bi are subject to training.

We concatenate the extrapolated components, denoted as Ĥn,t+i, and the resid-

uals, Ẑn,t+i. We then model their interactions, parameterized by two learnable

matrices, Ŵ (1) and Ŵ (2), both belonging to Rdz×12dz , as follows:

Ŝn,t+i =
(
Ŵ (1)[Ẑn,t+i, Ĥn,t+i]

)
⊗

(
Ŵ (2)[Ẑn,t+i, Ĥn,t+i]

)
, (5.30)



124 An Adaptive, Scalable and Partially Interpretable Framework

Copy

...

Conv 1 kConv 1 k

...

......

...

Figure. 5.5 Component Fusion

So far, we construct a projection from the past to the future, consisting of

statistically meaningful operations.

5.3.3 Component Adaptive Fusion

As illustrated in Fig. 5.1a, there is a notable divergence in both the data distribution

and the temporal correlation, observed both intra-days and inter-days. While

the temporal correlation holds significance comparable to the data distribution,

it has been relatively overlooked in research and discussions. At its core, the

model aims to discern the temporal correlations between forward and backward

observations. Consequently, these correlations are intrinsically embedded within

the model parameters. Recognizing and adapting to the subtle shifts in temporal

correlations can enhance forecasting accuracy.
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To equip the model with the capability to discern when and how these temporal

correlations evolve, structured components prove beneficial. A closer examination

of Fig. 5.1a reveals a correlation between shifts in temporal correlations and shifts

in data distributions. This observation implies that structured components can

also serve as indicators of temporal correlations. Therefore, these components serve

a dual purpose in forecasting: they capture both data distribution patterns and

temporal correlations. To fully harness the capabilities of structured components,

we introduce a neural module bifurcated into two branches: one dedicated to feature

learning and the other to parameter learning. The outputs from these branches

are then amalgamated using an element-wise multiplication operation. For the

sake of simplicity, each branch employs a convolution operator, though this can

be augmented with more intricate operations, such as MLP. This computational

process is graphically represented in Fig. 5.5, and is formally written as:

Sn,t =
k−1∑

j=0
W

(1)
j [Zn,t−j , Hn,t−j ]


⊗

k−1∑
j=0

W
(2)
j [Zn,t−j , Hn,t−j]

 , (5.31)

where k is the kernel size of the convolution operator and W
(1)
j , W

(2)
j ∈ Rdz×12dz are

learnable matrices. Sn,t can be passed to another component estimation block as

Z
(0)
n,t to produce richer compositions of the structural components.

5.3.4 Structural Regularization

Conventionally, the objective function for time series forecasting aims to minimize

the mean squared errors (MSE) or mean absolute errors (MAE) between the

predictions and the ground truth observations. The assumption inherent to this
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Figure. 5.6 Structural Regularization. The term Lvanilla denotes the standard MSE

loss function. On the other hand, Lmain and Laux are specifically designed to

enforce regularization within the feature space, thereby ensuring a more structured

representation of the data. These two loss functions work together to optimize the

model’s performance.
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objective is that all the variables share the same variance of 1. However, this

does not enable the learned representations to be organized in a desired structure,

where variables can see different degrees of variance at different times due to the

time-varying scaling effects prescribed by the generative structure of time series.

Instead, we opt to optimize the maximum likelihood estimate (MLE) [78], which

allows SCNN to improve the shaping of the structure of the representation space.

In addition, an auxiliary objective function is designed to improve the nuances in

feature space at the component level. We graphically contrast the two designed

objective functions against the vanilla MSE loss Fig. 5.6

We apply linear transformations to the representations output from the com-

ponent extrapolation module, producing the location (i.e. mean) Ŷ out
n,t+i and the

scale (i.e. standard deviation) σ̂out
n,t+i, where σ̂out

n,t+i further goes through a SoftPlus

function to enable itself to be non-negative. The MLE loss is written as:

Lmain =
N∑

n=1

Tout∑
i=1

(log(SoftPlus(σ̂out
n,t+i)) +

(Yn,t+i − Ŷ out
n,t+i)2

2(SoftPlus(σ̂out
n,t+i))2 ).

The first term in the above loss function encourages the scaling factor to be small,

and the second term penalizes the deviation between the extrapolated data and

the ground truth data weighted by the inverse of the scaling factor.

Solely leveraging the above objective to learn the forecasting dynamics does

not ensure robust estimation of the structured components with their contribution

to the projection. The intuition is that since the residual components, especially

at the bottom levels, still contain a part of the structural information, they will

take a certain amount of attributions that are supposed to belong to the structured

components as learning the corresponding weights for the components. Attributing

improper importance to the residual components incurs considerable degradation
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in the model performance, once the time series data is contaminated with random

noise that heavily impacts the high-frequency signal.

To approach this issue, the basic idea is to accentuate the structured components

that suffer less from corruption with an additional regularizer. This regularizer

works to prompt the model to achieve a reasonable forecast using purely the

structured components without the need for residual components. In particular,

in the forward process of a training iteration, SCNN forks another branch after

the component extrapolation module. This branch starts by zero-masking all the

residual components, passing only structured components through the following

operations. Finally, it yields an auxiliary pair of forecast coefficients Ŷ aux
n,t+i and

σ̂aux
n,t+i, which are also being tailored by MLE.

The ultimate objective to be optimized is an aggregation of all the above

objective functions in a weighted fashion:

L = αLaux + Lmain, (5.32)

where α is the hyper-parameter that controls the importance of the corresponding

objective. We use the Adam optimizer [46] to optimize this target.

5.3.5 Complexity Analysis

We conduct an analysis of two types of complexity associated with our model: first,

the parameter complexity, which refers to the number of parameters involved in

the model; and second, the computational complexity. We draw a comparison

between the complexity of the SCNN and three prominent frameworks, namely the

Transformer, the TCN, and the MLP.
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Figure. 5.7 Data and computational flow. Each edge symbolizes an atomic operation

involving a single variable situated at the tail of the edge. If an operation is

parameterized, the corresponding edge is color-coded.
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Figure 5.7 provides a visual representation of the data and computational

flow associated with these four frameworks. Within these diagrams, each edge

symbolizes an atomic operation involving a single variable situated at the tail of

the edge. If an operation is parameterized, the corresponding edge is color-coded.

Edges sharing the same color denote operations utilizing the same set of learnable

parameters. Within the SCNN framework, the decoupling process is carried out

without parameterization, thus these edges are illustrated in black. The structured

components that emerge from this process are subsequently integrated, employing

component-dependent parameters.

Let’s denote the number of components crafted within our model as m. The

number of parameters within SCNN scales in proportion to the number of compo-

nents inherent in the time series, which is O(m). This contrasts with the majority of

state-of-the-art (SOTA) models, where the parameter count scales with the length

of the input sequence. To illustrate, TCN or WaveNet-based models necessitate at

least O(log T ) parameters to process a sequence of length T ; MLP or Linear Regres-

sion (LR)-based models require O(T ) parameters; and Transformer-based models

also demand O(T ) parameters to attain SOTA performance, as demonstrated in

[123]. Our approach aligns with the principle that the complexity of the underlying

dynamical system dictates the requisite number of parameters, regardless of the

input sequence length.

Regarding the computational complexity relative to sequence length, SCNN

attains a complexity of O(Tm). Notably, we can further reduce the complexity

of an inference step to O(m) by approximating the structured component using a

moving average approach. This stands in contrast to alternative methods such as

the MLP, which achieves a complexity of O(Th), with h representing the number
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of units in the hidden layer. The Transformer model yields a complexity of O(T 2),

while the TCN model reaches a complexity of O(T log T ). Therefore, in terms

of computational complexity with respect to sequence length, the SCNN proves

to be the most efficient model, particularly when the structured component is

estimated in a moving average manner. This observation underscores the advantage

of SCNN in scenarios where computational efficiency and scalability are critical

considerations.

5.4 Evaluation

In this section, we conduct extensive experiments on three common datasets to

validate the effectiveness of SCNN from various aspects.

5.4.1 Experiment Setting

5.4.1.1 Datasets

To evaluate the performance of our model, we conduct experiments on three real-

world datasets, namely BikeNYC1, PeMSD72 and Electricity3. The statistics and

the experiment settings regarding the three datasets are reported in Table 5.2. We

adopt the same data pre-processing strategy as most of the current works [104, 103],

where the TS data of each variable is individually standardized.

5.4.1.2 Network Setting

The input length is set to a multiple of the season length, so that sufficient frames

governed by approximately the same seasonal and long-term components can be
1https://ride.citibikenyc.com/system-data
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
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Table 5.2 Dataset statistics.

Tasks Electricity PeMSD7 BikeNYC
Start time 10/1/2014 5/1/2012 4/1/2014
End time 12/31/2014 6/30/2012 9/30/2014
Sample rate 1 hour 30 minutes 1 hour
# Timesteps 2184 2112 4392
# Variate 336 228 128
Training size 1848 1632 3912
Validation size 168 240 240
Testing size 168 240 240
Input length 144 288 144
Output length 3 3 3

Table 5.3 Performance on the BikeNYC dataset

Model MAPE (%) MAE RMSE
Horizon 1 Horizon 2 Horizon 3 Horizon 1 Horizon 2 Horizon 3 Horizon 1 Horizon 2 Horizon 3

Autoformer 20.1 21.1 22.8 3.01 3.11 3.38 6.17 6.44 7.08
LSTNet 21.2 22.3 23.8 2.71 2.91 3.15 5.80 6.34 6.97
StemGNN 19.0 20.8 22.5 2.50 2.74 2.93 5.25 6.09 6.62
AGCRN 17.4 18.8 20.5 2.28 2.50 2.68 4.74 5.50 5.97
GW 18.2 19.5 20.9 2.35 2.57 2.75 4.83 5.56 6.06
MTGNN 18.0 19.5 20.9 2.35 2.57 2.73 4.87 5.69 6.18
SCINet 17.9 19.8 21.4 2.38 2.68 2.94 4.88 5.78 6.60
STG-NCDE 18.7 20.6 22.2 2.40 2.67 2.90 5.04 5.86 6.56
GTS 20.6 23.6 26.7 2.38 2.58 2.74 4.85 5.53 6.01
ST-Norm 17.3 18.6 19.9 2.26 2.46 2.62 4.66 5.38 5.84
SCNN 16.5 17.3 18.4 2.13 2.27 2.40 4.44 5.02 5.42
Imp +4.6% +6.9% +7.5% +5.7% +7.7% +8.3% +4.7% +6.6% +7.1%

Table 5.4 Performance on the PeMSD7 dataset

Model MAPE (%) MAE RMSE
Horizon 1 Horizon 2 Horizon 3 Horizon 1 Horizon 2 Horizon 3 Horizon 1 Horizon 2 Horizon 3

Autoformer 9.01 9.41 9.86 4.57 4.75 5.03 6.85 7.15 7.38
LSTNet 7.48 7.77 8.19 3.58 3.71 3.90 6.24 6.40 6.64
StemGNN 5.50 7.33 8.09 2.65 3.49 3.84 4.55 5.99 6.53
AGCRN 4.97 6.49 7.21 2.35 3.02 3.34 4.29 5.57 6.10
GW 5.02 6.56 7.10 2.39 3.10 3.35 4.28 5.51 5.94
MTGNN 5.32 6.71 7.31 2.57 3.15 3.44 4.36 5.56 6.01
SCINet 5.16 6.72 7.23 2.47 3.18 3.45 4.31 5.60 6.05
STG-NCDE 4.94 6.63 7.58 2.32 3.06 3.47 4.42 5.91 6.70
GTS 5.35 6.97 7.70 2.53 3.26 3.58 4.42 5.74 6.30
ST-Norm 4.76 6.27 7.03 2.27 2.98 3.36 4.21 5.54 6.07
SCNN 4.47 5.92 6.50 2.10 2.75 2.99 4.06 5.29 5.76
Imp +6% +5.5% +7.5% +7.4% +7.7% +10% +3.5% +3.9% +3.7%

gathered to yield estimation without much deviation. The layer number is set to

4; The number of hidden channels d is 8; ∆ is set to the same quantity as the

length of the input sequence; δ is set to 8; the kernel size of the causal convolution

k is configured as 2. In the training phase, the batch size is 8; the weight for the
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Table 5.5 Performance on the Electricity dataset

Model MAPE (%) MAE RMSE
Horizon 1 Horizon 2 Horizon 3 Horizon 1 Horizon 2 Horizon 3 Horizon 1 Horizon 2 Horizon 3

Autoformer 22.1 22.1 21.9 32.5 32.4 32.5 67.0 68.0 68.7
LSTNet 22.4 23.0 24.8 31.1 31.8 33.8 61.2 62.6 66.8
StemGNN 10.8 13.7 15.7 15.5 19.6 22.3 34.3 43.9 49.7
AGCRN 11.4 15.6 18.0 17.3 23.0 26.4 38.9 51.2 57.9
GW 11.3 15.6 17.3 16.3 22.0 24.3 32.5 43.6 48.7
MTGNN 10.2 13.9 16.0 14.4 19.4 22.2 29.8 40.3 46.5
SCINet 10.3 13.7 16.2 14.7 20.2 23.6 33.2 44.0 51.7
STG-NCDE 10.9 14.2 16.0 16.2 21.1 23.7 36.3 47.7 52.9
GTS 10.0 14.2 17.1 14.1 19.0 22.1 31.6 42.5 48.2
ST-Norm 10.2 13.2 15.3 15.2 19.8 22.8 32.3 42.9 50.2
SCNN 7.69 10.5 12.2 11.1 15.0 17.3 23.9 32.9 38.4
Imp +23.1% +20.4% +20.2% 21.9% +20.9% +21.7% +19.7% +18.3% +17.4%

auxiliary objective α is 0.5; the learning rate of the Adam optimizer is 0.0001. We

also test other configurations in the hyper-parameter analysis.

5.4.1.3 Evaluation Metrics

We validate our model by root mean squared error (RMSE), mean absolute error

(MAE) and mean absolute percentage error (MAPE). We repeat the experiment

ten times for each model on each dataset and report the mean of the results.

5.4.2 Baseline Models

We compare SCNN with the following state-of-the-art models:

• Autoformer[102]. Autoformer is specifically designed to incorporate a

decomposition mechanism within the Transformer framework.

• LSTNet[49]. LSTNet uses CNN to extract local features and uses RNN to

capture long-term dependencies. It also employs a classical auto-regressive

model to address scale-insensitive limitations.

• StemGNN[6]. StemGNN models spatial and temporal dependencies in the

spectral domain.
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• GW[104]. GW proposes an adaptive graph learning module that progres-

sively recovers the spatial correlations during training. In addition, it employs

Wavenet to handle correlations in the temporal domain.

• MTGNN[103]. MTGNN designs a graph learning module that integrates

external knowledge like variable attributes to learn uni-directed relations

among variables.

• AGCRN[2]. AGCRN develops two adaptive modules to build interactions

between the variables. In addition, it selects RNN to undertake the job of

modeling temporal evolution.

• SCINet[61] SCINet proposes a downsample-convolve-interact architecture

which is beneficial for integrating multi-resolution features.

• STG-NCDE[12]. STG-NCDE takes advantage of Neural Controlled Dif-

ferential Equations (NCDEs) to conduct spatial-temporal processing. It

generalizes canonical RNN and CNN to continuous RNN and GCN based on

NCDEs.

• GTS[80]. GTS proposes a structure learning module to learn pairwise

relationships between the variables.

• ST-Norm[18]. ST-Norm designs two normalization modules to refine the

high-frequency and local components separately from MTS data.

In order to make the comparison fair, all the competing models are fed with the

same number of preceding frames as SCNN. We find that this extension of input

horizons can bring performance gain to various degrees.
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5.4.3 Experiment Results

The experiment results on the three datasets are respectively reported in Table 5.3,

Table 5.4, and Table 5.5. It is evident that the performance of SCNN surpasses

that of the baseline models by 4% to 20%, especially when performing forecasts for

multi-step ahead. This is because SCNN can extract the structured components

with a well-conditioned deviation. As we know, raw data contains much noise,

unavoidably interfering with the quality of the extracted components. SCNN can

effectively deal with this issue according to the central limit theorem. In contrast,

all the benchmark models, except ST-Norm, did not explicitly account for the

structured components. For example, SCINet, one of the most up-to-date state-of-

the-art models, struggled to achieve competitive performance in short-term MTS

forecasting, due to its deficiency in adapting to the short-term distribution shift

even with the enhancement of RevIN module proposed by [44]. GTS, GW, MTGNN

and AGCRN were capable of learning the spatial correlations across the variables to

estimate the translating effect of a co-evolving component, but were insusceptible to

the changes in its scaling effects over time. ST-Norm could decouple the long-term

component and the global component (a reduced form of co-evolving component),

but did not introduce the constraint to the structure of feature space.

5.4.3.1 Adaptability

The data patterns for the first and last few days covered by the datasets are

compared in Fig. 5.8. The solid line denotes the seasonal mean of MTS; the

bind denotes the evolution of the interval between (mean - std, mean + std).

It is worth noting that the data patterns for the three datasets, especially the

Electricity dataset, show systematic changes from the beginning to the end. As
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Figure. 5.8 Changes in data patterns as time evolves.

SCNN captures the data patterns on the fly, it can automatically adapt to these

statistical changes, which explains that the performance of SCNN, especially when

evaluated on Electricity, exceeds that of the other competing methods by a wide

margin.

5.4.4 Ablation Study

We design several variants, each of which is without a specific ingredient to be

validated. We evaluate these variants on all three datasets and report the overall

results on RMSE in Table 5.6. It is evident that each component can contribute to

the performance of the model, but to different degrees across the three datasets.
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Table 5.6 Ablation Study

Models BikeNYC PeMSD7 Electricity
w/o µlt and σlt 5.12 5.04 32.7
w/o µse and σse 5.35 5.37 37.8
w/o µst and σst 5.11 5.08 33.7
w/o µce and σce 5.56 5.17 32.5
w/o scaling 4.98 5.05 35.6
w/o non-negligible ϵ 5.50 5.12 30.6
vanilla MSE loss 5.22 5.10 32.1
SCNN 4.96 5.03 31.0

The co-evolving component is ranked as the most advantageous component in

the BikeNYC task. This is because the co-evolving component incorporates the

spectrum of effects ranging from long-term to short-term, and can be estimated with

reasonable accuracy when the number of co-evolving variables is adequately large,

which is the case for the BikeNYC data. The modeling of the long-term component

only brings incremental gain to the PeMSD7 task since the training data and the

testing data share an identical distribution. The scaling transformation results in

significant improvement in the Electricity dataset, owing to its unification of the

variables showing great differences in variance. The non-negligible ϵ, as introduced

in the last paragraph of Sec. 5.3.1.1, is particularly useful for training SCNN on

the BikeNYC dataset, as a part of TS in this dataset is very scarce, having only a

handful of irregular non-zero measurements. In contrast to the vanilla MSE loss, the

structural regularization can shape the structure of the feature space, preventing

the overfitting issue and unlocking more power from the structured components.

5.4.5 Hyper-Parameter Analysis

As shown in Fig. 5.9a, it is surprising that a 2-layer SCNN achieves fairly good

performance, and more layers only result in incremental improvements. This
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Figure. 5.9 Hyper-parameter analysis on BikeNYC data.
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Figure. 5.10 Comparison of robustness.

demonstrates that shallow layers work on coarse-grained prediction, and deep

layers perform fine-grained calibration by capturing the detailed changes presented

in the MTS data. Fig. 5.9b shows that the prediction error of SCNN firstly

decreases and then increases as the number of hidden channels increases. The

number of input steps can affect the estimation of the long-term component and the

seasonal component, thereby leading to differences in the accuracy of the forecast,

as illustrated in Fig. 5.9c. It is appealing to find from Fig. 5.9d that SCNN behaves

competitively with the kernel of size 1, which means that the correlations across

the local observations vanish once conditioned on the set of structured components.

Fig. 5.9e and Fig. 5.9f demonstrate the effectiveness of the setup of the other two

hyper-parameters.

5.4.6 Robustness

To evaluate model robustness, we subject each model to two commonly encountered

data corruptions: i.i.d. Gaussian noise and missing data. The less a model’s

performance degrades in the presence of these corruptions, the more robust it can

be considered. In our comparison, we include SCNN, SCNN w/o aux, SCINET,
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(a) (b)

Figure. 5.11 Case Studies. The results demonstrate that the SCNN consistently

achieves the lowest prediction error among the three models in diverse and chal-

lenging scenarios of distribution shifts and anomalies.

GW, MTGNN, and AGCRN, with ’SCNN w/o aux’ denoting the SCNN model

without the structural regularization module enabled.

As demonstrated in Fig. 5.10, SCNN consistently exhibits the smallest perfor-

mance degradation among all models under each type of corruption. This is true

even when compared to SCNN w/o aux, which underlines the important role of the

structural regularization module in enhancing SCNN’s robustness. These results

underscore SCNN’s superior robustness relative to the other models examined,

highlighting its resilience in the face of data corruption.

5.4.7 Case Studies

We provide evidence through two case studies that the SCNN consistently outper-

forms two competitive baselines, MTGNN and ST-Norm, particularly when dealing

with anomalous patterns. This is illustrated in Fig. 5.11. The left figure represents

an episode of a time series demonstrating irregular behavior, while the right figure



5.4 Evaluation 141

(a) (b) (c) (d) (d) 

Figure. 5.12 Visualization of residual representations.

exhibits another episode characterized by a distinct and primarily regular daily

cycle.

In examining both regular and irregular episodes, we focus on two specific

periods and plot the rolling predictions—predictions made on a rolling basis using

a sliding window of data—for the initial forecast horizon as generated by the three

models during these periods. The results demonstrate that the SCNN consistently

achieves the lowest prediction error among the three models in all four scenarios.

This indicates the efficacy of our design in enabling the SCNN to effectively handle

anomalies or distribution shifts in a variety of contexts. These results underscore

the potential of SCNN to deliver reliable and robust forecasting in diverse and

challenging scenarios.

5.4.8 Qualitative Study

We conduct a qualitative study to cast light on how the structure of represen-

tation space is progressively reshaped by iteratively disentangling the structured

components. The structured components are visualized in Fig. 5.13. For the
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Figure. 5.13 Visualization of structured components.

sake of visualization, we apply principal component analysis (PCA) to obtain the

two-dimensional embeddings of the residual representations. Then, to convey the

characteristics of the structure for any component, we perform two coloring schemes,
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where the first scheme, as shown in the first row of Fig. 5.12, separates the data

points according to their spatial identities, and the second one, displayed in the

second row of Fig. 5.12, respects their temporal identities. For clarity, we plot the

kernel density estimate (KDE) for each group of points. It is conspicuous that by

progressively removing the structured components from Z
(0)
n,t , the residual repre-

sentations with different spatial and temporal identities gradually align together,

suggesting that the distinct structural information has been held by the structured

components.





Chapter 6

Conclusion and Future Work

In the intricate domain of time series forecasting, the challenges and nuances

are manifold. This thesis has delved deep into these complexities, presenting a

series of comprehensive studies that collectively offer transformative solutions for

multivariate time series forecasting. Each chapter has contributed distinct insights,

methodologies, and frameworks, culminating in a holistic understanding of the field.

Chapter 3 embarked on the pivotal task of forecasting urban travel demand,

emphasizing the importance of considering multiple transportation modes. Un-

like traditional studies that focus on singular modes, our approach embraced the

co-evolving dynamics inherent in various transportation channels. The chapter’s

hallmark was the introduction of a co-evolving pattern learning framework, a pio-

neering model tailored to decode the intricate space-time-varying inter-dependencies.

This model’s ability to discern dynamic correlations across transportation modes,

while capturing the nuanced interplay of demand influenced by both time and

location, underscores its significance in urban mobility forecasting.

Chapter 4 shifted the lens to the dynamic patterns observed across spatial

and temporal dimensions in time series data. By dissecting determinants like

population density, time of day, and weather conditions, the chapter illuminated the
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space-time-varying distribution of data. Our approach’s novelty lay in its ability

to extract determinants directly from time series data, integrating them into our

model. The introduction of a specialized module to differentiate between low and

high-frequency components further showcased our commitment to capturing both

the broader and specific patterns of space-time-varying distribution.

Chapter 5 presented the Structured Component-based Neural Network (SCNN),

a groundbreaking solution in the realm of MTS forecasting. This chapter’s explo-

ration unveiled the dynamic shifts in distribution and autocorrelation, emphasizing

the need for models that can adapt to these shifts. The SCNN, with its capability

to decouple structured components of MTS data, emerged as a beacon of innova-

tion. Its adaptability, scalability, and interpretability set it apart, promising a new

benchmark in time series analysis.

In summation, this thesis has journeyed through the multifaceted world of time

series forecasting, presenting innovative solutions at each turn. From understand-

ing urban mobility’s co-evolving dynamics to delving into the space-time-varying

distribution of data, and finally, introducing the SCNN, a model that promises

adaptability, scalability, and interpretability, the contributions have been profound.

As we conclude, it’s evident that the future of multivariate time series forecasting

is on the cusp of a transformative era, and this thesis stands as a testament to that

impending revolution.

As we gaze into the horizon, three promising avenues beckon:

Automated Neural Architecture Identification: We aspire to automate

the discernment of optimal neural architectures, utilizing the foundational modules

and operations we’ve discussed as cornerstones. This endeavor could revolutionize

the tedious manual process of pinpointing the best architecture for each unique
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dataset. By doing so, we might unveil the intricate structures and meta-knowledge

embedded within time-series data. This exploration could potentially offer profound

insights into the very essence of time-series analysis.

Heterogeneous Time Series Relationships: Our goal is to dissect the

multifaceted relationships within time series at the component level. Recognizing

that time series data fragments into components with varied dynamics, we postulate

that these components might exhibit distinct inter-dependencies. This insight paves

the way for a deeper understanding of the intricate relationships between series pairs,

urging us to develop methods that can adeptly decode these inter-dependencies.

Addressing Irregular Components in Forecasting: One of the paramount

challenges in time series forecasting is the accurate emulation of erratic components.

While normalization techniques aid in distinguishing these from their regular

counterparts, replicating their dynamics remains a formidable challenge. Given

the volatile nature of these components, there’s a scarcity of consistent patterns

in datasets. We believe that curriculum learning could be the linchpin solution,

enabling us to pinpoint challenging instances and employ a progressive "hard to

easy" training strategy.
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