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Abstract
In recent years, there has been a renewal of interest in brain–computer interface (BCI). One of the BCI tasks is to classify

the EEG motor imagery (MI). A great deal of effort has been made on MI classification. What seems to be lacking,

however, is multiple MI classification. This paper develops a single-channel-based convolutional neural network to tackle

multi-classification motor imagery tasks. For multi-classification, a single-channel learning strategy can extract effective

information from each independent channel, making the information between adjacent channels not affect each other. A

data evaluation method and a mutual information-based regularization parameters auto-selection algorithm are also pro-

posed to generate effective spatial filters. The proposed method can be used to tackle the problem of an inaccurate mixed

covariance matrix caused by fixed regularization parameters and invalid training data. To illustrate the merits of the

proposed methods, we used the tenfold cross-validation accuracy and kappa as the evaluation measures to test two data

sets. BCI4-2a and BCI3a data sets have four mental classes. For the BCI4-2a data set, the average accuracy is 79.01%, and

the kappa is 0.7202 using data evaluation-based auto-selected filter bank regularized common spatial pattern voting (D-

ACSP-V) and single-channel series convolutional neural network (SCS-CNN). Compared to traditional FBRCSP, the

proposed method improved accuracy by 7.14% for the BCI4-2a data set. By using the BCI3a data set, the proposed method

improved accuracy by 9.54% compared with traditional FBRCSP, the average accuracy of the proposed method is 83.70%,

and the kappa is 0.7827.

Keywords Brain–computer interface � Motor imagery � Electroencephalogram � Convolutional neural network �
Common spatial pattern

1 Introduction

Brain–computer interface has many applications in various

fields. Motor imagery classification is one of the BCI

applications. People hope to control the machine in an

imaginary way only with brain imaging. In biomedical

engineering, a brain-controlled wheelchair is one of the

applications that can help the disabled use the brain’s

imagination to complete the activities of moving the

wheelchair [1]. So far, many researchers have made certain

progress in the research of imaginary movement. However,

most of them mainly study the binary classification prob-

lem, especially the classification of left-hand and right-hand

motor imagery [2]. Multi-classification is essential. Take

the brain-controlled wheelchair as an example, the two-

class method can only classify the forward and stop com-

mands, so it is insufficient for practical applications [3].

There are two essential steps for the motor imagery multi-

classification task: feature extraction and classification.

Feature extraction can obtain useful information from

EEG signals. Common spatial pattern (CSP) is an excellent
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method to extract EEG features in the space domain [4]. It

extracts the two-class EEG signal with the most significant

difference in information. CSP cannot be used for multi-

classification problems directly because CSP is a binary

feature extraction method. If CSP is used for multi-clas-

sification tasks, some strategies must be used. The existing

common CSP strategies are the one-vs-one (OVO) strategy

and one-vs-remain (OVR) strategy [5]. Besides, some

novel strategies can also be used to extend CSP into a

multi-class CSP method. For example, [5] proposed two

new extension strategies, namely divide-and-conquer (DC)

and pair-wise (PW) strategies. Compared to OVR and

OVO strategies, the proposed techniques can retain more

effective information on EEG features. In addition to the

extension strategies, some advanced algorithms can also be

used for multiple feature extraction tasks. [6] applied joint

approximate diagonalization (JAD) algorithm to the CSP

method, which can tackle the multi-classification tasks.

The advantage of this method is that it can effectively

against the effects of the artifacts. In addition, they also use

self-regulated supervised Gaussian fuzzy adaptive system

art (SRSG-FasArt) as the classifier, which decreases neuron

proliferation and over-training probability. Additionally,

[7] proposed local temporal common spatial patterns

(LTCSP), which tackle multi-classification tasks by maxi-

mizing the harmonic mean of the KL divergences. Com-

pared to the traditional CSP method, LTCSP incorporates

the EEG information before calculating the spatial filter,

which can better improve discriminant ability.

Although CSP can extract the EEG features from the

spatial domain, EEG features also exist in the time–fre-

quency domain. Some papers extracted features from the

time and frequency domain and combined the spatial fea-

tures generated by CSP as imaginary motion classification

features. In [8], wavelet packet transform was used to

divide EEG signals into equal frequency bands, and then,

they found the sub-signals that were easy to distinguish on

the frequency bands. CSP is used to continue to obtain the

spatial features of the extracted frequency band signals.

This method can adaptively select the effective frequency

band according to different individuals. [9] proposed the

sparse time–frequency segment common spatial pattern

(STFSCSP) algorithm for feature extraction. The advan-

tage of this algorithm is that they use sparse regions based

on time–frequency characteristics to select important spa-

tial features so that features have obvious spatial and time–

frequency differentiation. [10] combined multivariate

empirical mode decomposition (MEMD) with CSP and

first decomposed the EEG signal using MEMD and then

extracted the effective components from the sub-signal

using CSP. They identified the subject’s specific MIMFs

based on the mean frequency. According to these MIMFs,

they can select the specific frequency range of the subject,

which contributes to the motor-related rhythms. This is

helpful in extracting more effective frequency-domain

features.

The performance of CSP relies on the estimation of

sample covariance. If the number of sample data is small,

the performance of the spatial filter may not be good. The

small sample data may be prone to overfitting. [11] used

regularized common spatial pattern (RCSP) to resolve this

problem. RCSP is an improved method of CSP. It adds data

from other subjects when calculating the covariance

matrix. It introduces two regularization parameters. Two

regularization parameters are used to control the weight of

the covariance, thereby reducing the estimation error of the

covariance matrix. It solves the problem of insufficient data

information for small sample data. The original and other

subjects’ data are jointly used to calculate the spatial filter.

[12] also used RCSP, in which the authors counted the

results of using different regularization parameters and

proved the effectiveness of RCSP. In addition, [13] com-

bined FBCSP with RCSP. They used multiple frequency

filters to get multiple sub-signals and then applied RCSP on

each sub-signal. In this way, different frequency data of

other subjects were added to each frequency band. [14] also

used multiple band-pass filters to filter the signals and then

applied RCSP on each band signal, making the final

characteristics more diverse.

In addition to CSP, there are also some other spatial

transform-related algorithms that can be used to extract

EEG features. [15] summarized the existing EEG signal

recognition methods. Some traditional feature extraction

methods include CSP, independent component analysis

(ICA) and principle component analysis (PCA), and com-

mon classifiers include support vector machine (SVM),

linear discriminant analysis (LDA) and k-nearest neighbors

(KNN). By comparing the experimental results, the best

classification effect can be obtained by CSP and SVM.

Although these signal decomposition-related algorithms

are not as effective as CSP, they have the potential to

reduce the size of the features. PCA is an extension method

of the singular value decomposition (SVD) algorithm.

They can decompose the main components of the target

signal. Some papers proposed improved SVD algorithms to

extract EEG features. [16] used linear prediction singular

value decomposition (LP-SVD) to decompose EEG sig-

nals. Its purpose is to reduce the dimension of data. The

author adjusted LP coefficients, error variance and trans-

form coefficients and finally corrected the outputs using

auto-regression (AR) model. In this paper, the authors

compared the proposed method to discrete cosine trans-

form (DCT), which is a widely used unsupervised signal

independent linear feature extraction method. The pro-

posed method can improve the classification accuracy by

25%. Similarly, [17] proposed a feature extraction
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algorithm of linear prediction in conjunction with QR

decomposition (LPQR), which is an improved method

based on the LP-SVD algorithm. Although they both

compress the common information of multi-channel EEG

signals through matrix decomposition, the spatial features

extracted by the LPQR algorithm are more informative,

while LP-SVD can achieve better classification accuracy.

Manifold learning is a nonlinear dimensionality reduc-

tion technique. Compared to PCA or ICA algorithm, this

method can better compress the complicated EEG signal.

[18] tried to preserve the useful information of the EEG

data by distance preservation to local means (DPLM). By

using this method, some nonlinear EEG features can be

converted into a new dimension, in which EEG features

have better discrimination. However, this algorithm has

two disadvantages. The first drawback is that the calcula-

tion speed may decrease when we use more samples.

Another one is that some outliers may be caused if the data

is too complicated. [19] proposed two manifold learning

methods, namely minimum distance to sub-manifold mean

(MDSM) and tangent space of sub-manifold (TSSM). The

main idea of this paper was to treat the signal as a spatial

figure using spatial geometric transformation. It expanded

the spatial graphics and kept the distance between adjacent

points unchanged. It can also be understood as keeping the

signal information unchanged and compressing effective

information. This method belongs to manifold learning, but

the main idea is to obtain EEG features in the space

domain.

A neural network is not only a suitable feature extrac-

tion method but also a classifier. [20] proposed a modular

network to classify the brain signals. The modular network

was composed of four expert CNNs, each expert CNN

performs binary classification, and a fully connected net-

work was used to integrate their outputs. Besides, they also

used the Bayesian optimization algorithm to optimize

training hyperparameters, which is helpful in avoiding the

overfitting problem. [21] first used short-time Fourier

transform (STFT) to convert EEG signals into two-di-

mensional images and then proposed a capsule network to

classify time–frequency-domain feature maps. In the cap-

ital network, they introduced activity vectors that represent

variant properties of the features, such as position, size and

rotation. The activity vector can be regarded as a capsule,

which replaces the pooling layer because some original

spatial information of EEG signals may be lost when

applying pooling layers. Thus, compared to the traditional

network, the proposed method can reduce feature infor-

mation loss.

Some papers proposed advanced network structures to

resolve EEG classification tasks. [22] applied a convolu-

tional neural network to EEG motor imagery recognition

tasks. The author proposed a new shadow network and

compared three different convolutional network structures,

including the traditional network, shadow network and

residual network. A shallow network has a larger kennel

size when convolving the features. In addition, the shadow

network involves the voluntary computation and filter bank

common spatial pattern (FBCSP) algorithm in a single

network, and thus, all steps can be optimized jointly. [23]

used 3DCNN, which composed 22 channels into a two-

dimensional image and then obtained features on each

channel as the height of the three-dimensional input. The

network learned the feature from 3 dimensions together. By

applying this network, the kappa was improved by 0.073

compared to the FBCSP method. [24] compared three

different convolution methods of convolution networks, in

which the convolution strategy of channel-wise convolu-

tion with channel mixing (C2CM) is to learn more complex

features from time and space domains. This method can

increase the flexibility of the network but with the cost of

increasing the number of parameters due to the introduc-

tion of a new computational layer. [25] proposed a con-

volutional recurrent attention model (CRAM) where a

convolutional neural network was used to encode the EEG

signals, and a recurrent attention mechanism was applied to

explore the temporal dynamics of the EEG signals. This

method effectively takes advantage of both CNN and

recurrent neural network (RNN), which can better learn the

EEG information along the time sequence.

There are also some other effective techniques to

improve the feature extraction methods or the classifiers,

which are used to classify the EEG motor imagery tasks.

[26] proposed an attractor metagene bat algorithm SVM.

Attractor metagene is an unsupervised learning method

used to filter the features, and the bat algorithm was used to

optimize the parameters in SVM. Eventually, they com-

bined these two methods with SVM, which improved the

kappa value by 0.14 compared to the traditional SVM. In

[27], the current source density (CSD) method is used to

preprocess the signal before using CSP to extract features.

CSD is a Laplacian method that standardizes the EEG

signal according to its energy distribution. This method can

increase spatial resolution. Compared to the traditional

common average reference (CAR) processing method, it is

easier to extract more distinct spatial features by using the

data processed by CSD. [28] proposed a multi-class

F-score-based time–frequency selection method, which

uses Fisher discriminant analysis (FDA) to select the

effective frequency bands and time periods of EEG signals.

By selecting the effective EEG information, this method

can effectively improve the inter-subject robustness.

From the literature review mentioned above, there are

three limitations we need to overcome.
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• Limitation 1 RCSP can be used to tackle the problem of

inaccurate covariance matrix caused by using small

sample data. Although many researchers have used the

regularization parameters to control the ratio of the

covariance matrix calculated by using other subjects’

data, little attention has been paid to dynamic regular-

ization parameters. The selection of the parameters

significantly affects the performance of the spatial

filters. However, selecting the appropriate regulariza-

tion parameters is difficult to fuse with other subjects’

covariance matrixes.

• Limitation 2 Although we can select suitable parameters

based on mutual information, there is no guarantee that

all data used to calculate the mixed covariance matrix

have motor imagery characteristics. If the selected data

is invalid or the motor imagery features are not

significant, the obtained spatial filter may still not be

accurate. The quality of motor imagery data can also

affect the performance of the spatial filter.

• Limitation 3 It is difficult for traditional methods to

classify motor imagery tasks. Little research has been

devoted to multiple classification tasks. Although some

methods can be used on multi-classification tasks, they

cannot achieve good performance.

In this paper, three approaches are proposed to over-

come these three limitations:

Approach 1 We propose an auto-selected filter bank

regularized common spatial pattern (ACSP) algorithm,

which can automatically select the regularization parame-

ters. Two regularization parameters are used to control the

proportion of additional data from other subjects and cor-

rect the error of the mixed covariance matrix. We use

mutual information to evaluate the degree of the difference

among the generated features by using multiple groups of

regularization parameters. The mutual information esti-

mation matrix can be used to determine whether the

selected regularization parameters are appropriate to the

mixed covariance matrix. The distribution of the filtered

data selected by this method is close to the distribution of

the target classification features. Thus, the spatial features

obtained by the selected regularization parameters are more

suitable for the network to do classification. In addition, it

can automatically adjust the parameters based on the

extracted features from different subjects for different

motor imagery tasks. This method significantly improves

the accuracy compared to traditional FBRCSP using the

fixed regularization parameters. This method is introduced

in the Methodology Section C Method 1, used to resolve

limitation 1.

Approach 2 We propose a motor imagery data evalua-

tion algorithm which can be used to check whether the data

has the motor imagery characteristics. The activation

channels can be found when performing the motor imagery

tasks. Two indicators are proposed to evaluate the degree

of energy changes in these activation channels’ frequency

and time–frequency domains. These indicators can also

check the ERD or ERS in the motor-related frequency

bands. Thus, this model can more comprehensively mea-

sure the quality of motor imagery data. In addition, the

fuzzy model is proposed to integrate different levels of

evaluation indicators and fuzzify the indicators in desired

ranges. This model is more flexible because the fuzzy rules

can be designed by experience. The threshold limits the

data quality levels based on the experience or the subjects’

mental states. This data evaluation model considers all the

information from the spatial, frequency and time–fre-

quency domains to check motor imagery data quality. The

high-quality motor imagery data is selected to calculate

further the RCSP mixed covariance matrix, which can

improve the performance of spatial filters. This method is

introduced in the Methodology Section D Method 2, which

is used to resolve limitation 2.

Approach 3 We propose a single-channel serial convo-

lutional neural network (SCS-CNN) within a voting strat-

egy to resolve the multi-class motor imagery classification

task using the BCI4-2a and BCI3a data sets. The classifi-

cation accuracy using this network is better than using

some traditional classifiers. The single-channel learning

strategy used in the network can extract the EEG infor-

mation from each independent channel. It is more suit-

able for spatially transformed data because the whitening

matrix in the CSP filters removes the correlation among all

the channels. In addition, this network can get a broader

learning horizon in the learning process so that the learned

information can express more data features. The network

also contains the residual net structure, which is used to

tackle the problem of gradient disappearance. Combining

the network with a voting strategy further increases the

diversity of the extracted features. Using more features

makes the model learn more EEG information. Integrating

the information from multiple features to classify makes

the system more stable. This method is introduced in the

Methodology Section D Method 3, which is used to resolve

limitation 3.

2 Methodology

2.1 Overview of the system

The block diagram of the entire system is presented in

Fig. 1. Firstly, the raw data is preprocessed, including re-

reference and average removal. Then, the motor imagery

data evaluation model evaluates other subjects’ data, and

the high-quality data is selected. After that, the
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preprocessed EEG signal Sc and other subjects’ high-

quality data dScH are input into the auto-selected filter bank

regularized common spatial pattern model to calculate the

spatial filtered data Zc which can be used as the final EEG

features. Eventually, the extracted features are input into

the single-channel-based serial convolutional neural net-

work to perform classification. Important abbreviations and

variable names are listed in Table 1.

2.2 Method 1: auto-selected filter bank
regularized common spatial pattern

Auto-selected filter bank regularized common spatial pat-

tern algorithm is proposed to automatically select the

regularization parameters and construct spatial filters. The

two regularization parameters selected by this algorithm

can better fuse the motor imagery data from the target

subject and other subjects to make the extracted spatial

features more accurate and improve the classification per-

formance. The block diagram of this method is shown in

Fig. 2. Firstly, multiple band-pass filters are used to filter

the preprocessed signal Sc. The filtered data and other

subjects’ EEG data bSc within multiple regularization

parameters bc; cc are used to calculate RCSP filters. Then,

the multiple groups of spatial filters are applied to the

preprocessed signal Sc to obtain the feature matrix Xc. Use

mutual information to evaluate these features, select suit-

able regularization parameters, and use the parameters to

rebuild the final RCSP filter Wc, which can be applied to

the preprocessed data to extract the EEG spatial filtered

data Zc.

2.2.1 Regularized common spatial pattern

Common spatial pattern (CSP) is an effective method for

extracting the features of the EEG signal. Its main principle

is to perform matrix decomposition on two EEG signals to

extract effective components to maximize the variance

difference between two signals. However, the covariance

matrix calculated by the CSP under a small sample is not

accurate. There is a way to resolve a small sample’s

inaccurate estimation problem, which is the regularization

method. When estimating the covariance matrix and using

the original data, the data from other subjects of the same

task is also used. It indirectly increases the number of

samples and improves the accuracy of the estimation.

Considering Sc is the preprocessed target EEG data and bSc
is the EEG data of other subjects, we can calculate Rc that

is the covariance of Sc and cRc that is the covariance of bSc :

Rc ¼
X
Nt

n¼1

ScnS
T
cn

trace ScnSTcn
� � ð1Þ

cRc ¼
X

bNt

n̂¼1

cScn̂ cScn̂
T

trace cScn̂ cScn̂
T

� � ð2Þ

where trace(Sc) is the sum of elements on the diagonal of

the matrix Sc; Nt is the number of trials of Sc; and cNt is the

number of trials of bSc . Then we can obtain Jc which is the

regularized covariance matrix and R bc; ccð Þ which is the

mixed covariance matrix by using the regularization

parameters bc and cc. We have:

Fig. 1 Block diagram of the entire system

Neural Computing and Applications (2023) 35:12001–12027 12005

123



Jc bcð Þ ¼ 1 � bcð Þ � Rc þ bc � cRc

1 � bcð Þ � Nt þ bc �cNt

ð3Þ

Rc bc; ccð Þ ¼ 1 � ccð Þ � Jc bcð Þ þ cc
Nc

trace Jc bcð Þ½ � � I ð4Þ

where Nc is the total channel numbers; bc controls the

variance of the estimated covariance; and cc is the second

regularized parameter, which can reduce large eigenvalues

and increase small eigenvalues. Then, decompose the

mixed covariance matrix and obtain eigenvalue kc and

eigenvector Uc. Sort eigenvalue Uc in descending order

and obtain the whiting matrix Pw.

UckcU
T
c ¼ Rc ¼ Rc1 þ Rc2 ð5Þ

Pw ¼
ffiffiffiffiffiffiffi

k�1
c

q

UT
c ð6Þ

where Rc1 is the mixed covariance matrix of the first-class

data and Rc2 is the mixed covariance matrix of the second-

Table 1 Important

abbreviations and variable

names

Abbreviation Full name

ACSP Auto-selected filter bank regularized common spatial pattern

BCI Brain–computer interface

BSML Bilinear sub-manifold learning

C2-CNN Channel mixing convolutional neural network

CAR Common average reference

CNN Conventional neural network

CR Common reference

CSD Current source density

CSP Common spatial pattern

CWCNN Channel-wise convolutional neural network

CWT Continuous wavelet transform

D-ACSP Data evaluation-based auto-selected filter bank regularized common spatial pattern

DFFN Densely feature fusion deep learning network

EEG Electroencephalogram

EMD Empirical mode decomposition

ERD Event-related desynchronization

ERS Event-related synchronization

FBCSP Filter bank common spatial pattern

FBRCSP Filter bank regularized common spatial pattern

FD Frequency distance

FFT Fast Fourier transform

ICA Independent component analysis

IMFs Intrinsic mode functions

JAD Joint approximate diagonalization

KNN K-nearest neighbors

LDA Linear discriminant analysis

LSTM Long short-term memory

MDSM Minimum distance to sub-manifold mean

MEMD Modified empirical mode decomposition

MI Motor imagery

OVO One-vs-one

OVR One-vs-remain

PCA Principal component analysis

RCSP Regularized common spatial pattern

SCS-CNN Single-channel-based series convolutional neural network

SVM Support vector machine

TFD Time–frequency distance

TSSM Tangent space of sub-manifold

WT Wavelet transform
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class data. Apply Pw to the two classes mixed matrix to

obtain the whiten matrix of the first-class data Sw1 and the

whiten matrix of the second-class data Sw2. After that,

continue to decompose one of the class matrixes Sw1 to

obtain the eigenvalues kB and eigenvectors Ub.

Sw1 ¼ PwRc1P
T
w ð7Þ

Sw2 ¼ PwRc2P
T
w ð8Þ

UbkBU
T
b ¼ Sw1 ð9Þ

Eventually, we can obtain the spatial filter Wc. We apply

the filter to the preprocessed signal to obtain the feature

matrix Xc.

Wc ¼ UT
b Pw ð10Þ

Xc ¼ var Wc � Scð Þ ð11Þ

where varðÞ is the function of calculating variance.

2.2.2 Auto-selected RCSP weight selection

After using the RCSP spatial filter, the variance feature can

be obtained. The corresponding labels are defined for the

two types of variance features. The feature vector is Xc,

and the label vector is Yc. Their information entropy

HI Xcð Þ and HI Ycð Þ can be calculated. Then, use their joint

probability density function to calculate their mutual

information MI Xc; Ycð Þ.

HI Xcð Þ ¼ �
X

x2Xc

P xð Þ log2 P xð Þ ð12Þ

HI Ycð Þ ¼ �
X

y2Yc
P yð Þ log2 P yð Þ ð13Þ

MI Xc; Ycð Þ ¼
2
P

y2Yc
P

x2Xc
P x; yð Þ log

P x;yð Þ
P xð ÞP yð Þ

� �

HI Xcð Þ þ HI Ycð Þ ð14Þ

where pðxÞ is the probability of x; pðyÞ is the probability of

y; and pðx; yÞ is the joint probability of x and y. We assume

that the Xc and Yc are relatively independent, then

p x; yð Þ ¼ pðxÞpðyÞ. The final calculated mutual information

MI Xc; Ycð Þ = 0. If the value of MI is larger, the feature is

closely related to the label. In this way, MI can be used to

evaluate whether the obtained EEG signal characteristics

are suitable for distinguishing the two categories. The two

parameters of RCSP can take values within a certain range.

Then calculate the mutual information matrix of the feature

labels of each set of RCSP parameters. In this matrix, the cc
and bc corresponding to the maximum value are used as the

final RCSP parameters. Eventually, we apply the spatial

filter corresponding to these two parameters to the pre-

processed signal and obtain the spatial filtered data Zc.

Zc ¼ Wc � Sc ð15Þ

2.3 Method 2: motor imagery data evaluation
model

A motor imagery data evaluation algorithm is proposed to

check whether the data has motor imagery characteristics.

This method can determine how much the subject is doing

motor imagery tasks by calculating the energy changes of

the signal at a specific brain location in a specific frequency

domain. Thus, this algorithm can select the high-quality

motor imagery data, which can improve the accuracy of the

mix covariance matrix when calculating the spatial filter.

The block diagram of the data evaluation model is shown

in Fig. 3. When EEG data is coming, it is re-referenced,

filtered in motor-related frequency bands and processed by

removing the mean value. Then the preprocessed data can

be divided into baseline data and motor data. The variance

of each data is calculated, and the energy distribution of

both data can be obtained. Based on the distribution dif-

ference, it can obtain effective channel data. The selected

channel data is analyzed in the frequency and time–fre-

quency domains using continuous wavelet transform

(CWT) and Welch method. Different motor-related

Fig. 2 Block diagram of the auto-selected filter bank regularized standard spatial pattern algorithm
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frequency bands can get various groups of time–frequency

distance (TFD) and frequency distance (FD). Each group of

motor imagery feature evaluation indicators is integrated

by fuzzy models. The outputs of all fuzzy models are

combined by the weights to obtain the final imagination

level. This final indicator can be used to evaluate the motor

imagery data quality.

2.3.1 Energy distribution calculation

Re-reference and filter the original data. Then, calculate the

variance Vc of each channel of motor state data and the rest

state data.

Vc ¼
1

Np

X

Np

i¼1

ðSci � ScÞ2 ð16Þ

where Sci is the ith sample point; Sc is the mean value; and

Np is the total number of sample points. Using Eq. (16), we

can obtain the variance of motor state data Vct and the

variance of rest state data Vcr. We can regard the rest state

variance as the baseline variance. Calculate the change in

energy distribution Dc compared to the baseline state when

the subject is doing an imaginary task:

Dc ¼
�Vcr

Vct
; Vct\Vcr

Vct

Vcr
; Vct �Vcr

8

>

<

>

:

ð17Þ

The obtained variance of all channels can describe the

distribution of brain energy changes in a specific frequency

range. Generally, for left- and right-hand motor imagery

tasks, the EEG signal energy will decrease in the motor-

related frequency bands and event-related desynchroniza-

tion. However, for the foot or tongue motor imagery task,

the energy may not decrease. Sometimes, it could even

increase. Also, the area of spatial activation is slightly

different, and the state of each experiment can also affect

the change of energy amplitude. Therefore, the brain area

energy changes obtained from all experiments should be

superimposed and averaged to reduce the error. The

superimposed and averaged energy change Ec can be

calculated:

Ec ¼
1

Nt

X
Nt

i¼1

Dci ð18Þ

where Dci is the brain energy change of the ith trial and Nt

is the total number of trials. Ec can roughly present the

Fig. 3 Block diagram of the data evaluation model
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relevant activation area of the specific motor imagery task.

Select the top Ncs channels with the largest absolute value

of Ec, and perform frequency-domain analysis and time–

frequency analysis on the selected channels, respectively.

2.3.2 Frequency-domain analysis

In frequency-domain analysis, we use Welch method.

Firstly, apply the window function to the EEG signals and

taper the signals. Then, apply fast Fourier transform (FFT)

to each window signal and calculate the average of squared

absolute values of FFT outputs. Finally, integrate all the

outputs of different frequency ranges. The frequency

spectrum Oc can be obtained:

Oc ¼
1

Nw

X
Nw

k¼1

FFTk fð Þj j2 ð19Þ

where Nw is the number of segmented signals and FFTðf Þ
is the FFT output on frequency f . Apply the Welch method

to the motor state signal and the rest state signal to obtain

the frequency spectrum Oct and Ocr of the two signals.

Eventually, the frequency spectrums got from each window

are normalized and averaged. The normalized frequency

spectrums of motor state signal Octn and the normalized

frequency spectrums of rest state signal Ocrn can be

calculated:

Octn ¼
Oct � Min Oct;Ocrð Þ

Max Oct;Ocrð Þ � Min Oct;Ocrð Þ ð20Þ

Ocrn ¼
Ocr � Min Oct;Ocrð Þ

Max Oct;Ocrð Þ � Min Oct;Ocrð Þ ð21Þ

where Np is the total number of the sample; frequency

spectrums are used to calculate the frequency distance XFD

which is used to describe the distance of spectrums in the

frequency domain.

XFD ¼ Ocrn � Octn

Np
ð22Þ

2.3.3 Time–frequency-domain analysis

The imaginary movement may be intermittent for a while.

Thus, it is not only related to frequency, but it is also

related to time. Therefore, we also use continuous wavelet

transform (CWT) to analyze the time–frequency features of

EEG signals. The idea of CWT is to use a wavelet to apply

convolution calculation to the original signal. By stretching

and transforming the wavelet, we can obtain time and

frequency information with different precision from the

original data. Morlet wavelet is suitable for EEG analysis.

The reason of using this wavelet is that Morlet wavelet is

non-orthogonal, so we can obtain continuous wavelet

amplitudes when analyzing EEG signals. Moreover, the

Morlet wavelet is more similar to an EEG signal, which is

helpful for signal compression. In addition, in order to

obtain the amplitude and phase information of the time

series, it is necessary to select the complex wavelet because

the complex wavelet has an imaginary part, which can

express the phase well. Morlet wavelet is not only non-

orthogonal but also complex exponential wavelet regulated

by Gaussian. Morlet wavelet has a good balance between

time and frequency information. Therefore, the Morlet

wavelet is better for time–frequency analysis of EEG sig-

nals. First, calculate the width of Gauss window sw and the

amplitude Aw:

sw ¼ lw
2pf

ð23Þ

Aw ¼ 1

sw
ffiffiffi

p
p

ð Þ
1
2

ð24Þ

where lw is the wavelet cycle and f is frequency. Then

combine the Gauss window and complex trigonometric

function to get the complex Morlet wavelet Gw:

Gw ¼ Awe
�t2

2s2wei2pft ð25Þ

where t is signal time. The obtained Morlet wavelet and

the original signal Sc are convolved to obtain the time–

frequency energy spectrum Mc:

Mc ¼ Convolute Gw; Scð Þ ð26Þ

Similar to the frequency-domain analysis, we not only

perform CWT on the motor state signal but also the rest

state signal. We want to compare the time–frequency

energy change when performing motor imagery tasks.

Therefore, CWT is performed on the rest state signal and

the motor state signal to obtain the rest state time–fre-

quency energy spectrum Mcr and the motor state time–

frequency energy spectrum Mct. After that, the time–fre-

quency energy spectrum of a specific frequency band is

normalized. The normalized time–frequency spectrum of

motor state signal Mctn and the normalized time–frequency

spectrum of rest state signal Mcrn are calculated:

Mctn ¼
Mct � Min Mct;Mcrð Þ

Max Mct;Mcrð Þ � Min Mct;Mcrð Þ ð27Þ

Mcrn ¼
Mcr � Min Mct;Mcrð Þ

Max Mct;Mcrð Þ � Min Mct;Mcrð Þ ð28Þ

The obtained spectrum energy range is between [0,1].

Segment the energy by multiple frequency ranges. The

energy of each frequency band at each time point is

counted. Then the energy distribution PN of the target

signal is obtained. Compare the time–frequency energy
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distributions of the rest state signal and the motor state

signal. If the two distributions are almost overlapping or

similar, the subject does not perform imagery tasks in this

segment of the signal. If the two distributions are different,

the subject may be doing imagery tasks. The way to judge

the similarity of two distributions is to calculate the center

of gravity of the distribution Kc:

Kc ¼
PNp

i¼1 PNi

Np
ð29Þ

where Np is the total number of the points and PNi is the ith
counting number of the distribution PN . Then the differ-

ence between the center of gravity is used to measure the

distance of the energy distribution of the two signals in

time-frequency domain. The larger the difference, the

farther the distance is, indicating that the energy of the

motor state signal has a significant change compared to the

baseline. Positive or negative represents a decrease or

increase in energy. XTFD is the time–frequency distance

used to describe the nonlinear distance of spectrums in the

time–frequency domain.

XTFD ¼ Kcr � Kct ð30Þ

where Kcr is the center of gravity of the rest state time–

frequency energy distribution and Kct is the center of

gravity of the motor state time–frequency energy

distribution.

2.3.4 Calculate data quality level

These two evaluation indicators can determine the degree

of the motor imagery signal energy changes in different

rhythms. These indicators should jointly determine whether

the data is a high-quality motor imagery signal. Therefore,

after getting the evaluation indicators of the selected

channels, a fuzzy logic model should be built to integrate

these indicators and output a final evaluation indicator. The

fuzzy logic is used because it has great freedom in

designing the fuzzy model. Thus, we can find the most

suitable fuzzy logic model according to the actual situation.

The fuzzy model is shown in Fig. 4.

There are two inputs, namely time–frequency distance

and frequency distance. According to experience, seven

degrees of energy changes are set, which are negative big

(NB), negative medium (NM), negative small (NS), zero

(ZE), positive small (PS), positive medium (PM) and

positive big (PB). The time–frequency distance and fre-

quency distance in the same channel are fuzzified. Thus, 49

rules should be developed. Finally, the output is de-fuzzi-

fied following the rules, and the de-fuzzification method

calculates the centroid of the area under the fuzzy output

set. The output variable Tf is used to describe the energy

changes of the selected channel under a specific frequency

range. The sign of the variable obtained can be defined by

the Dc obtained in (31). Negative indicates an increase, and

positive indicates a decrease.

Tf ¼
Tf ; Dc\0

�Tf ; Dc � 0

�

ð31Þ

It is to calculate the evaluation indicator for one chan-

nel. If there are multiple channels, the confidence of each

channel should gradually decrease. Thus, we set a

decreasing variable lf . The final quality evaluation level

QM of the motor imagery signal can be obtained:

QM ¼ 1

Ncs

X
Ncs

i¼1

l i�1ð Þ
f Tf ð32Þ

where Ncs is the number of selected channels. The energy

change of each frequency band should be independent. We

set a threshold nd. If the QM of at least one frequency band

is higher than the threshold, then the signal can be seen as

that it has motor imagery characteristics. This data can be

regarded as high-quality motor imagery data. When the

other subjects’ EEG data bSc is input into this model, the

high-quality motor imagery data dScH can be selected.

2.4 Method 3: single-channel-based serial
convolutional neural network
within a voting strategy

We propose the single-channel-based serial convolutional

neural network (SCS-CNN) as the classifier to classify the

motor imagery tasks. It only extracts the features between a

fixed size of points each time. The serial network structure

contains a residential network. It uses a single-channel-

based learning strategy. A single-channel learning strategy

means the CNN does not learn the relation between every

Fig. 4 Structure of the fuzzy model with 2 inputs and 1 output
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two channels. Each time, it will generate feature maps or

do a pooling operation based on only one channel. The size

of the first dimension of the image should also be

unchanged. Compared to the traditional network structure,

the proposed network can reduce the convolutional feature

complexity, which may avoid overfitting issues. In addi-

tion, this network is specially designed for the classification

features extracted by CSP-related method. Because

whitening is one of the steps in CSP filtering, the infor-

mation of each channel should have no relation. If we use a

traditional network, the information from different chan-

nels will be mixed up. Thus, this proposed network can

extract useful information from each independent channel

better.

In order to achieve this, the convolution size and stride

will be set to [1, No] and [1, So], where No is feature size

and So is stride. The pooling size and stride will also be set

in the same way. This feature extraction method is suit-

able for multi-dimensional data. EEG signals are multi-

dimensional signals related to time, frequency and channel

position in the brain. Thus, this kind of network is more

suitable for processing EEG data. It first learns the infor-

mation of different brain locations separately, which is

equivalent to compressing the information of different

locations, and finally recognizes and classifies the hybrid

features of each brain location. The structure of SCS-CNN

Fig. 5 Structure of single-channel-based serial convolutional neural network (SCS-CNN)

Table 2 Network parameters

Layer Filter size Stride Filter number

A1 convolution [1, 10] [1] 32

A1 max pooling [1, 4] [1, 4] –

B1 convolution [1, 8] [1] 32

B1 max pooling [1, 3] [1, 3] –

B2 convolution [1] [1] 64

B3 convolution [1] [1, 3] 64

C1 convolution [1, 5] [1] 64

C1 max pooling [1, 2] [1, 2] –

C2 convolution [1] [1] 128

C3 convolution [1] [1, 2] 128

D1 convolution [1, 3] [1] 128

D1 max pooling [1, 2] [1, 2] –

D2 convolution [1] [1] 256

D3 convolution [1] [1, 2] 256

E1 convolution [1, 2] [1] 256

E1 max pooling [1, 2] [1, 2] –

E2 convolution [1] [1] 512

E3 convolution [1] [1, 2] 512

F1 convolution [1, 2] [1] 1024

G1 average pooling [1, 3] [1, 3] –
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is shown in Fig. 5. The suggesting parameters are shown in

Table 2.

Before classification, multiple groups of features using

other subjects’ data and regularization parameters can be

obtained. We use the same structure network to classify

each group of features. The loss function of the network is

cross-entropy, and output should go through the Softmax

layer. Thus, the network’s output should be the categories

within the highest possibility obtained by the Softmax

layer. The possibility can be regarded as the confidence of

this category. When we apply the voting strategy [29], we

get the sum of the confidence of each category. The cate-

gory within the highest sum of confidence should be the

final output.

We use the soft voting method. The way is to calculate

the average probability of each category obtained by all

classifiers and finally select the category corresponding to

the maximum probability as the output. The result of hard

voting is ultimately determined by the model with a rela-

tively low probability value, while soft voting is deter-

mined by the model with a high probability value. The soft

voting method considers the additional information of

prediction probability, which gives more weight to those

models with high probability. Thus, its performance is

better than that of hard voting. Because only CNN is used

as the classifier, using multiple same type of models to soft

vote the results can reduce the variance of the integrated

model, thus improving the robustness and generalization

ability of the model.

3 Experiments and results

3.1 Data description

There are two data sets used for EEG motor imagery

classification. The first data set is BCI Competition 4-2a

(BCI4-2a) [30]. This data set has 9 subjects, 22 channels

and a total of 4 imaginary movement commands, which are

left-hand imaginary movement, right-hand imaginary

movement, foot imaginary movement and tongue imagi-

nary movement. The data is filtered from 0.5 to 100 Hz.

Each volunteer performs imaginary activities following the

screen prompts. The experiment lasted for a total of 8 s. In

the first two seconds of the experiment, the computer only

prompts the subject to start the experiment. The screen

showed specific movement prompts for 1.25 s from the

third second. The participant has 2.75 s to perform the

imaginary movement. The imaginary movement ends in

the 6th second. There is a 1.5 s rest period. Finally, 72

trials of data are collected for each imaginary movement

instruction using the same way, so 288 trials of data are

collected for each subject.

The second data set is BCI Competition 3a (BCI3a)

[31]. This data set has three subjects, 60 channels and a

total of 4 imaginary movement commands, which are the

same as the BCI competition 4-2a data set. However, the

trial number for each subject is different. There are 45 trials

for each imaginary movement and 180 trials for subject

k3b. There are 30 trials for each imaginary movement and

120 trials for subjects k6b and l1b. The strategy of data

collection is the same as the data set BCI4-2a. The specific

information of these two data sets is shown in Table 3.

3.2 Experiments

3.2.1 Evaluation methods

In the experiments, we use tenfold cross-validation accu-

racy as the evaluation method. In addition, we also use the

kappa to evaluate the performance of the proposed method.

Kappa is a statistic that is used to measure inter-rater

reliability for categorical items [32]. The calculating

method of kappa j and the standard error of kappa se is

shown in (34) and (35).

pe ¼
P

i nki � nik
Ng � Ng

ð33Þ

j ¼ p0 � pe
1 � pe

ð34Þ

se jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0 � p2
e �

P

i nki � nik � nki þ nikð Þ½ �=N3
p

q

1 � peð Þ
ffiffiffiffiffiffi

Np

p ð35Þ

where nki and nik are the sums of each column and each

row; pe is a probability of agreement by chance; p0 is the

relative observed agreement; and Np is the total number of

samples.

Table 3 Description of two public data sets

Data set name BCI4-2a BCI3a

Trial number (total) 288 (each subject) 180/120/

120

Trial number (each) 72 45/30/30

Class number 4 4

Subject number 9 3

Trial used this paper (total) 280 180/120/

120

Trial used this paper (each class) 70 45/30/30
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3.2.2 Experiment A: compare SCS-CNN with other
classifiers

This experiment uses traditional CSP and FBCSP as feature

extraction methods. We use SCS-CNN, long short-term

memory network (LSTM) [33], LSTM-CNN [34], SVM

[35] and random forest (RF) [36] as classifiers to classify

the extracted EEG features and then compare the classifi-

cation results. LSTM can extract the features along the

time sequence. LSTM-CNN compresses the information of

each window and extracts the features along the time

sequence from multiple windows. The BCI4-2a and BCI3a

data sets are used for testing. Before the experiment, the

data is re-referenced and processed by removing the

average. In terms of frequency filtering, for CSP, the filter

band is 4–28 Hz. For FBCSP, we perform a 1–40 Hz

multiple band-pass filter on the data. The filter bands are

1–4 Hz, 4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz,

20–24 Hz, 24–28 Hz, 28–32 Hz, 32–36 Hz, and 36–40 Hz.

All the experiments adopt tenfold cross-validation accu-

racy and kappa as evaluation measures.

We first divide the data into the training set and testing

set. CSP is used to solve binary classification problems, but

our purpose is to classify four motor imagery tasks. Thus, a

multi-classification strategy is adopted. We use the one-vs-

remain (OVR) strategy in this experiment. The method

uses one category of data as the first class and the

remaining data as the second class. The multi-classification

problem is transformed into a binary classification

problem.

We first calculate the CSP spatial filter. We obtain the

four spatial filters because there are four motor imagery

classes. Then we apply the filters to the target data to obtain

the spatially filtered data. We calculate the variance of the

filtered data as the CSP feature, which is input into SVM

classifier. Four-channel filtered data with the top 4 largest

variances difference is selected, and the data of each

channel are stacked as the features to input into SCS-CNN,

LSTM and LSTM-CNN. For FBCSP, we first use multiple

frequency filters to filter the data from various frequency

bands. Then, we calculate the CSP spatial matrix using

each sub-band data. Other steps are the same as CSP.

We adopt Adam optimization algorithm as the training

method. The classification results are shown in Tables 4

and 5.

From the results, using the same classifiers, the accuracy

obtained by FBCSP is better than CSP. When we use CSP

or FBCSP as feature extraction methods, using SCS-CNN

can achieve better accuracy. The accuracy of most subjects

and the mean accuracy obtained by SCS-CNN are the best.

LSTM and LSTM-CNN have similar performances. Using

SVM as a classifier can improve accuracy than LSTM and

LSTM-CNN for the BCI3a data set but worse than that for

the BCI4-2a data set. Using FBCSP as feature extraction

and SCS-CNN as a classifier is more suitable for motor

imagery multi-classification tasks.

3.2.3 Experiment B: auto-selected regularized FBCSP

Using FBCSP as a feature extraction method and SCS-

CNN as a classifier can get the best classification results

from experiment A. In this experiment, we first apply the

regularization to FBCSP, which updates the method to

regularized FBCSP. The main idea of regularization is to

add extra data from other subjects when constructing the

covariance matrix. There are two regularization parameters

bc and cc, which control the proportion of additional data

of other subjects and the regularization ratio. In this

experiment, we randomly selected the same amount of data

as the training data from other subjects as the additional

data. cc is set to 0.1, bc is set to 0.2.

Then, we introduce the auto-selected method to adjust

the two parameters in this experiment. First, filter the data

in defined frequency bands. Before building the CSP

matrix, calculate other subjects’ data covariance and use

Eq. (4) to get the mixed covariance matrix. In this step, we

use multiple groups of bc and cc; the range of the two

parameters is between 0 and 1. cc takes [0,0.1,0.2,0.3], and

bc takes [0,0.1,0.2,0.3,0.4]. The reason for using these

values is that the large bc represents that most of the data

used in the covariance matrix calculation are other sub-

jects’ data, which may cause much original data informa-

tion loss. Thus, if the bc exceeds 0.5, the structure of

generated spatial filters could be affected significantly and

the classification accuracy cannot be improved or even

decreased. Therefore, we only use five bc values, which are

all less than 0.5. cc is used to correct the covariance error

caused by the small value of the mixed matrix. The

covariance matrix could also lose useful information if the

correction ratio is too large. Thus, we only use four cc
values less than 0.4.

Then, we use bc and cc to calculate the CSP spatial

filters. There are a total of 20 sets of spatial filters which

are obtained in each frequency band. The 20 sets of filters

are applied to the original data to obtain the spatially fil-

tered data. The variance of the filtered data is calculated as

the features. Use the variance features to calculate the

mutual information following Eq. (14). The larger mutual

information means the bc and cc of this set of RCSP filters

are better. Therefore, use this group of bc and cc as the final

regularization parameters. The testing results are shown in

Tables 6 and 7.
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The data of some subjects with high classification

accuracy may be significantly affected when mixed with

the data from other subjects. When we use fixed regular-

ization parameters, this may change the structure of spatial

filters, which is not suitable for target classification data.

Compared to regularized FBCSP with fixed regularization

parameters, auto-selected regularized FBCSP can signifi-

cantly improve the performance, especially for subjects 5

and 8 of BCI4-2a data set and subject l1b of BCI3-a data

set. In addition, compared to FBCSP in experiment A,

auto-selected regularized FBCSP can also achieve better

performance for most subjects. Using suitable regulariza-

tion parameters can generate better CSP filters and obtain

more distinct features.

3.2.4 Experiment C: data evaluation-based auto-selected
regularized FBCSP

The purpose of RCSP is to use the other subjects’ data to

resolve the problem of inaccurate covariance matrix due to

the small amount of sample. However, if the other subjects’

data quality is bad, it may also cause an inaccurate

covariance matrix. Therefore, to ensure that the additional

data is valid, we evaluate the data quality before adding

other subjects’ data.

First, perform 8–13 Hz and 16–25 Hz filtering on the

data of other subjects because these two frequency bands

are the two most relevant frequency bands for imaginary

motion. Then we calculate the variance of each channel.

We take the subject’s 2 s data before the motor imagery

cue as the baseline data and take the 4 s data after the cue

as the motor data. Calculate the energy change distribution

by using Eq. (17).

Take the Ncs channel data with the most significant

energy change, perform CWT and Welch, and then, cal-

culate frequency and time–frequency distances according

to Eqs. (22) and (30). Then, build a fuzzy model to inte-

grate the two indicators and calculate QM by using the

Eq. (32). According to statistical experience, it can be

concluded that XTFD in [- 0.03,0.03] indicates that the

time–frequency characteristics of the motor state signal are

almost unchanged compared to the rest state signal. XTFD

in [0.03,0.09] indicates that the time–frequency energy of

the motor state signal is reduced in different degrees

compared to the rest state signal. XTFD is higher than 0.09,

indicating that the energy decreases significantly. XFD in

[- 0.2,0.2] indicates that the frequency-domain charac-

teristics of the motor state signal are almost unchanged

compared to the rest state signal. XFD in [0.2, 0.6] indicates

that the frequency-domain energy of the motor state signal

is reduced to different degrees compared to the rest state

signal. XFD is higher than 0.6, indicating that the energy

decreases significantly. We design input, output and fuzzyTa
bl
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rules based on the above information. The two inputs are

shown in Figs. 6 and 7. The output of the fuzzy model is

shown in Fig. 8. The fuzzy rules are shown in Table 8.

In this experiment, C is set to 3, l is set to 0.9. Finally,

select the high-quality motor imagery data as the additional

data to initialize the RCSP covariance. In this experiment,

n is set to 0.1. The results of using DE-ARFBCSP are

shown in Tables 9 and 10.

Compared to auto-selected regularized FBCSP in

experiment B, the classification performance is further

improved for both data sets. It proves that using high-

quality data to initialize the mix covariance matrix can

make the generated spatial filters more effective. More-

over, it also proves that using the proposed data evaluation

method can select high-quality data with significant motor

imagery features.

3.2.5 Experiment D: data evaluation-based auto-selected
regularized FBCSP voting

Since the additional data used come from different sub-

jects, the brain states of these subjects are also different.

Although the validity of the data can be guaranteed, the

CSP filter matrix generated each time is slightly different.

The obtained EEG features are also different. In order to

make the features more diversified, the voting strategy is

adopted. First, randomly select different data from other

subjects each time to generate multiple sets of CSP filter

matrices. Then, use different sets of spatial filters each time

to obtain multiple groups of filtered features. Finally,

multiple SCS-CNNs with the same structure are used to

classify each group of features. The multiple classified

outputs are voted to get the final classification output. In

this experiment, we generate five groups of spatial features.

The results are shown in Tables 11 and 12.

From the results, the voting strategy can slightly

improve the performance for the BCI4-2a data set and

significantly improve the performance for BCI3a. The

possible reason is that the number of trials of BCI3a is less

than BCI4-2a. Thus, the voting strategy can increase the

feature diversity for the data with a small sample size, such

as BCI3a. For the BCI4-2a data set, after using the voting

strategy, the performance of most subjects is improved

slightly or unchanged except for subject 6. Thus, it appears

that the testing performance of the model is already stable.

Although the feature diversity is increased, the distribution

of overall features is unchanged. Thus, the voting strategy

is only used as a tip to improve the performance slightly.
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4 Discussion

4.1 Auto-selected regularized FBCSP

4.1.1 The regularization parameters effects on mixed
spatial filters

From the results of experiment A, using the same classifier,

the classification accuracy of FBCSP is slightly higher than

that of CSP. This could be because FBCSP extracts various

spatial features of EEG signals in different frequency

bands, while CSP only extracts a few features at a fixed

frequency range. Thus, the feature diversity of FBCSP is

much higher than that of CSP. However, from experiment

B’s results, it seems that applying regularization to FBCSP

decreases the accuracy. Regularization is to use the other

subjects’ data and target data to calculate the covariance

matrix jointly. It is possible that the selection of the reg-

ularization parameters bc and cc are not suitable for the

target subject’s data. bc is used to control the proportion of

other subjects’ data added to the calculation of the mixed

covariance matrix. If bc is large, it means that the entire

model trusts the data of other subjects more. However, the

states and imagination abilities of different subjects are

different. Therefore, if we only use other subjects’ data to

calculate the covariance matrix, the spatial information

distribution of other subjects may be different from the

target subject, which may cause the generated spatial filter

may not be suitable for the target subject’s data. Eventu-

ally, it could lead to a decrease in classification accuracy.

In addition, cc is used to control the covariance error

caused by the small value of the covariance matrix. This

parameter does not provide much information on the

original data covariance or newly added data covariance. It

is only used to correct the deviation when adding other

subjects’ data. Therefore, if this parameter is significant,

the model correction is strong. The correction information

may be increased, but lots of information from the original

covariance matrix could be lost. Therefore, the selection of

these two parameters primarily affects the performance of

Table 6 Comparison of the performance for BCI4-2a using regularized FBCSP with SCS-CNN and auto-selected regularized FBCSP with SCS-

CNN

Regularized FBCSP with SCS-CNN Auto-selected regularized FBCSP with SCS-CNN

Accuracy (%) Kappa Se Accuracy (%) Kappa Se

Sub 1 85.07 0.8009 0.0640 87.85 0.8380 0.0653

Sub 2 64.24 0.5231 0.0528 71.88 0.6250 0.0572

Sub 3 88.89 0.8519 0.0658 93.75 0.9167 0.0680

Sub 4 56.60 0.4213 0.0483 58.68 0.4491 0.0496

Sub 5 47.92 0.3056 0.0424 61.11 0.4815 0.0511

Sub 6 48.26 0.3102 0.0427 52.08 0.3611 0.0453

Sub 7 88.89 0.8519 0.0658 93.75 0.9167 0.0680

Sub 8 81.94 0.7593 0.0625 89.24 0.8565 0.0660

Sub 9 82.99 0.7731 0.0630 87.50 0.8333 0.0651

Mean ± std 71.64 ± 17.32 0.6219 ± 0.23 0.0564 ± 0.0099 77.31 ± 16.48 0.6975 ± 0.22 0.0595 ± 0.0089

Table 7 Comparison of the performance for BCI3a using regularized FBCSP with SCS-CNN and auto-selected regularized FBCSP with SCS-

CNN

Regularized FBCSP with SCS-CNN Auto-selected regularized FBCSP with SCS-CNN

Accuracy (%) Kappa Se Accuracy (%) Kappa Se

k3b 88.33 0.8444 0.0829 93.33 0.9111 0.0858

k6b 58.33 0.4444 0.0765 65.83 0.5444 0.0835

l1b 70.00 0.6000 0.0871 82.50 0.7667 0.0971

Mean ± std 72.22 ± 15.12 0.6296 ± 0.20 0.0822 ± 0.0053 80.56 ± 13.85 0.7407 ± 0.18 0.0888 ± 0.0073
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the final spatial filter and indirectly affects the accuracy of

the extracted features.

4.1.2 Select suitable regularization parameters

We propose a parameter auto-selected method to resolve

this issue. Suppose we know whether each spatial filter

generated using the selected group of regularization

parameters can be highly distinguished before extracting

the features. In that case, we can use this group of regu-

larization parameters to generate the best spatial filter.

Mutual information can evaluate the degree of the differ-

ence between the two groups of data. Thus, we can use

mutual information to evaluate whether two groups of

generated features can be better distinguished. If they can

be easily distinguished, the mutual information should be

significant. In addition, we use the convolutional neural

network as a classifier. The loss function is cross-entropy,

which also belongs to another type of mutual information.

Thus, when we use mutual information to evaluate the

difference of the features, the features obtained are also

helpful for the network to do classification.

Therefore, we can calculate the mutual information of

the features obtained by using each regularization param-

eter group and comparing the difference. The feature

mutual information generated by different parameters can

be arranged into a matrix. We can draw the map of the

matrix. The mutual information map of one of the subjects

is generated using this subject training data. There are four

motor imagery tasks. For each task, we take bc from [0,

0.4] and cc from [0, 0.3]. The maps are shown in Fig. 9.

In the map, the light color represents the significant

mutual information while dark color represents the low

mutual information. Significant mutual information

Fig. 6 Fuzzy model input 1: time–frequency distance (XTFD)

Fig. 7 Fuzzy model input 2: frequency distance (XFD)

Fig. 8 Fuzzy model output: evaluation variable (Tf )

Table 8 Fuzzy rules which are used to integrate frequency distance

(XFD) and time–frequency distance (XTFD)

XFD

NB NM NS ZE PS PM PB

XTFD NB NB NB NB NB NB NM NS

NM NB NM NM NM NM NS ZE

NS NB NM NS ZE ZE ZE PS

ZE NM NS ZE ZE ZE PS PM

PS NS ZE ZE ZE PS PM PB

PM ZE PS PM PM PM PM PB

PB PS PM PB PB PB PB PB
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represents a higher degree of discrimination of the

extracted features. From the map, the regularization

parameter bc of most of the better features produced is

between [0, 0.2], cc is between [0, 0.1]. However, for this

subject’s right motor imagery task on the right-top in

Fig. 8, the best bc is 0.4 and cc is 0.1. It also proves that it

should use different regularization parameters for different

mental tasks. Thus, automatically selecting the regular-

ization parameters according to the mutual information

map can generate better spatial filters. It could more

effectively apply the regularization function to the target

data. From the results of experiment B, we can also see that

the accuracy of using the ACSP with auto-selected spatial

filters is about 8% higher than that of the FBRCSP with the

fixed parameters. It also proves that dynamically selecting

the regularization parameter can generate more suit-

able spatial filters for the target data.

4.2 Data quality evaluation

4.2.1 Find the activation channels

Another way to enhance the mixed covariance matrix is to

ensure that the added data has distinct motor imagery

features. ERS and ERD are standard EEG motor imagery

characteristics. They can be regarded as energy changes in

motor-related frequency bands. Thus, if we can check that

the target data has distinct energy changes in these fre-

quency bands, we can say that this EEG data may have

motor imagery characteristics.

The energy changes should be considered based on the

baseline. Thus, if we want to check the energy changes, we

should have baseline energy. People may generate different

EEG signals when they are in different states. Therefore,

the baseline energy should always change as the dynamic

brain activities. In the two public data sets, before the

subject performs the motor imagery tasks, they all have a

period where they do not know the next task. The overall

state of the brain may not change a lot in a short time, so

we can assume that in this short time, the overall brain state

of this subject is unchanged. Therefore, the data in this

period can be regarded as the baseline.

Our purpose is to evaluate whether there are energy

changes when performing motor tasks. However, the

imagination abilities of different subjects are different.

When doing different motor imagery tasks, they may

activate different channels. For example, several

researchers have reported that C3 and C4 are two activation

channels when the subject is performing left- or right-hand

Table 9 Performance for BCI4-2a using data evaluation-based auto-

selected regularized FBCSP with SCS-CNN

Accuracy (%) Kappa Se

Sub 1 89.58 0.8611 0.0661

Sub 2 71.88 0.6250 0.0573

Sub 3 94.10 0.9213 0.0682

Sub 4 59.38 0.4583 0.0501

Sub 5 64.58 0.5278 0.0532

Sub 6 55.56 0.4074 0.0477

Sub 7 93.40 0.9120 0.0679

Sub 8 90.28 0.8704 0.0664

Sub 9 90.28 0.8704 0.0664

Mean ± std 78.78 ± 15.79 0.7171 ± 0.21 0.0604 ± 0.0083

Table 10 Performance for BCI3a using data evaluation-based auto-

selected regularized FBCSP with SCS-CNN

Accuracy (%) Kappa Se

k3b 96.11 0.9481 0.0874

k6b 67.50 0.5667 0.0849

l1b 81.67 0.7556 0.0965

Mean ± std 81.76 ± 14.31 0.7568 ± 0.19 0.0896 ± 0.0061

Table 11 Performance for BCI4-2a using data evaluation-based auto-

selected regularized FBCSP with voting strategy and SCS-CNN

Accuracy (%) Kappa Se

Sub 1 89.93 0.8657 0.0663

Sub 2 72.92 0.6389 0.0578

Sub 3 95.14 0.9352 0.0687

Sub 4 59.03 0.4537 0.0499

Sub 5 65.97 0.5463 0.0540

Sub 6 54.17 0.3889 0.0468

Sub 7 94.10 0.9213 0.0682

Sub 8 90.63 0.8750 0.0666

Sub 9 89.24 0.8565 0.0660

Mean ± std 79.01 ± 16.09 0.7202 ± 0.21 0.0605 ± 0.0085

Table 12 Performance for BCI3a using data evaluation-based auto-

selected regularized FBCSP with voting strategy and SCS-CNN

Accuracy (%) Kappa Se

k3b 96.11 0.9481 0.0874

k6b 70.00 0.6000 0.0871

l1b 85.00 0.8000 0.0991

Mean ± std 83.70 ± 13.10 0.7827 ± 0.17 0.0912 ± 0.0068
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motor imagery. However, this conclusion applies to most

cases, not all situations. The actual activation channels may

be close to these two channels, but not always these two.

Using Eq. (17) can obtain the distribution of brain area

information. We also present the energy distribution of one

subject in Fig. 10, where the red color represents energy

increase while blue color represents energy decrease. When

the subject is doing left-hand or right-hand motor imagery,

there are significant energy changes near the motion areas

C3 and C4 on the top two maps in Fig. 10. When doing

foot motor imagery, there are significant energy changes in

the central motion area on the left bottom map in Fig. 10.

When doing tongue motor imagery, there are significant

energy changes in the back of the head on the right bottom

map in Fig. 10. It follows the general spatial distribution

when performing motor imagery tasks, but the specific

activation channels have a certain difference.

However, there is no guarantee that all subjects and all

data trials can follow this distribution. The distribution

could be affected by the subjects’ states, feelings and some

external factors. This calculated distribution can only prove

that most data trials follow this distribution when the

subject is doing a specific motor imagery task. Therefore,

this cannot prove that the data of each trial meets the motor

imagery characteristics of the spatial information distri-

bution. These findings confirm that various brain areas are

activated when the subject is doing different motor imagery

tasks. We should continue to extract the frequency and

time–frequency features for these brain areas to prove this

data contains motor imagery characteristics.

4.2.2 Evaluate the degree of energy changes

We perform frequency and time–frequency analysis on the

selected channels. The purpose is to detect whether the data

has motor imagery’s frequency and time–frequency char-

acteristics. We introduce two indicators to evaluate the

energy changes of the data in these two domains. In the

experiment, we use two frequency bands, namely 8–13 Hz

and 16–25 Hz, because these two frequency bands are the

most relevant frequency bands of motor imagery.

Fig. 9 Mutual information maps for different motor imagery tasks
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FD and TFD are the two indicators used to judge the

degree of energy changes. After CWT transformation, we

can obtain the energy feature map. From the map, we can

check the energy changes. However, because the moto

imagery can last for a long time, it may also occur many

times in a short period. Therefore, the idea of TFD is to

transform the energy feature map into distribution and use

the distance between rest state distribution and motor state

distribution to evaluate the degree of the energy changes.

Thus, whether the motor imagery lasts for a long time or

occurs many times, this indicator can still evaluate the

degree of energy changes from the nonlinear term. FD is to

calculate the overall difference of energy between motor

state data and baseline in the motor-related frequency

bands. Therefore, FD uses the linear way to evaluate the

energy change. Through experiments, we can obtain the

relationship between the amplitude of the indicators and

the degree of energy changes. Figure 11 shows the

frequency spectrum difference between motor state and

baseline signals.

In Fig. 11, when the subject performs an imaginary task

in the frequency domain, the motor state energy decreases

to different degrees than the rest state energy. The value of

FD can be used to describe the degree of energy reduction

in the frequency domain. The two maps on the top in

Fig. 11 show that when FD is greater than 0.5, the ampli-

tude of energy change is significant. It means that the data

has a relatively distinct frequency characteristic of motor

imagery. The map on the right bottom in Fig. 11 shows that

when the FD is less than 0.25, the frequency-domain

energy of the rest state and the motor state are mixed.

There is no significant energy change. Thus, the frequency

characteristics of the motor imagery of this data are not

significant.

Similarly, Fig. 12 shows the time–frequency spectrum

difference between motor state and baseline signals. The

first 2 s of data are baseline data, and the remaining 4 s of

Fig. 10 Energy distribution maps for different motor imagery tasks
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data is motor data. Different TFDs also indicate that the

data has different degrees of time–frequency characteris-

tics. The two maps on the top in Fig. 12 show when TFD is

greater than 0.1, the time–frequency energy of the motor

state data in the last four seconds is significantly reduced

compared to the rest state data in the first two seconds. The

Fig. 11 Frequency spectrum for different FDs

Fig. 12 Time–frequency spectrum map for different TFDs
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map on the right bottom in Fig. 12 shows when TFD is less

than 0.05, the motor state energy does not change signifi-

cantly compared to the rest state time–frequency energy.

Therefore, these findings confirm that the two proposed

indicators can be used to describe the degree of energy

changes.

4.2.3 Fuzzify energy description indicators to evaluate data
quality

Consider that if we want to evaluate whether the data is

good or not, we need a threshold to measure the level of the

quality. However, only using the threshold method cannot

describe the energy difference well in the two domains. For

the same trial of data, it may have significant time–fre-

quency characteristics, but the frequency-domain charac-

teristics may not be significant. In this case, the threshold

cannot be set to reasonably select effective data. The

characteristics of these two domains should jointly deter-

mine whether the data has motor imagery features.

Therefore, although we can obtain both frequency and

time–frequency energy information, it cannot describe the

overall degree of the energy changes. Thus, the fuzzy logic

model is proposed to solve this problem. The fuzzy model

can fuzzify the data to a fixed range. It transforms the real

evaluation value into a variety of continuous fuzzy values.

In addition, the fuzzy model is developed based on statis-

tical experience. We can use the rules to define the degree

of energy changes.

FD contains the frequency-domain energy information,

representing the overall energy changes. TFD contains the

time–frequency-domain energy information, representing

the detailed energy changes. Generally, TFD should con-

tain more information than FD, because TFD contains both

time and nonlinear frequency information. Nevertheless,

we cannot ignore FD because it provides comprehensive

linear frequency information. Therefore, when we design

the fuzzy rules, we can trust more on TFD. If TFD is very

large and FD is small, the output should be large.

In contrast, if FD is very large and TFD is small, it is

possible that the frequency energy changes a lot which a

suddenly unnormal fluctuation may cause. In this case, the

output should be medium because we are not sure whether

the fluctuation is what we expect. Thus, FD as the overall

evaluation indicator also functions to correct unnormal

information.

The output is de-fuzzified according to the rules to

obtain a comprehensive indicator. This indicator can better

integrate the information in the frequency and the time–

frequency domain. It can describe whether the data has

motor imagery features on a selected activation channel.

The sign represents the energy increase or decrease. The

amplitude represents the degree of motor imagery.

We used three channels with the most significant energy

changes in the experiments. They are independent and have

different contributions to the motor imagery task. There-

fore, the contribution weight is introduced to control the

confidence. Confidence means how much the model should

trust the information from this channel. The lower ranking

indicates the smaller confidence. After applying the con-

fidence to the fuzzy outputs, the final obtained parameter

can be used to evaluate the degree of imaginary movement

in different frequency ranges. This evaluating parameter

considers spatial, frequency and time–frequency informa-

tion. Thus, it can be used to describe the motor imagery

data quality.

We can evaluate the quality of the data by using this

parameter. It can be used to select the EEG data from other

subjects. Selecting high-quality data to calculate the mixed

covariance can better reduce the error. The mixed covari-

ance matrix has more effective motor imagery information,

which can indirectly improve the performance of the spa-

tial filters. Compared to AFBCSP, the spatial filter obtained

by using selected high-quality data can extract effective

features more accurately and improve the accuracy.

4.3 SCS-CNN and voting

4.3.1 SCS-CNN extracts multiple time interval features
from an independent channel

From the results of experiment A, using the same feature

extraction method, SCS-CNN as a classifier can better

classify the EEG motor imagery tasks. SVM and RF both

use the variance of filtered data as the features, while SCS-

CNN, LSTM and LSTM-CNN all use the spatially filtered

data as the features. Although SVM and RF can be trained

fast, this way may lose some useful information. Compared

to these classifiers, a neural network can retain more

original data information and extract new features from the

spatially filtered features.

The ideas of both LSTM and LSTM-CNN are to extract

time series information. EEG can be regarded as a time

series signal, but the time feature of motor imagery is not

continuous. Motor imagery may occur over some time, or it

can also occur multiple times within a period. Thus, using

LSTM or LSTM-CNN to extract continuous-time imagi-

nary motion features may not get good results.

The best classification performance is obtained from the

results by using SCS-CNN as the classifier. A single-

channel learning strategy is adopted. CNN will not learn

the relation between every two channels. Each time, it

generates feature maps or does a pooling operation based

on only one channel. The size of the first dimension of the

image should also be unchanged. The feature extraction

method is a CSP-related method. It can be regarded as
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transforming the information of EEG signals into another

space. Whitening is one of the steps in spatial transfor-

mation, which means that it removes the correlation among

all the channels. Therefore, the information in each channel

of the transformed signal should be independent. Thus, a

single-channel learning strategy can extract effective

information from each independent channel, making the

information between adjacent channels not affect each

other. It can be better to extract useful information from

spatial transformed EEG signals. The purpose of using an

SCS-CNN is that, in the time domain of the EEG signal, it

is difficult to determine how many points are relative, so

Table 14 Compare the accuracy c and kappa j of different models on the data set BCI Competition IIIa

BCI3a K3b K6b L1b Mean ± std

KL-CSP [7] c = 83.40%

j = –

c = 61.50%

j = –

c = 67.10%

j = –

c = 70.67% ± 11.38%

j = –

KL-LTCSP [7] c = 84.30%

j = –

c = 62.10%

j = –

c = 65.60%

j = –

c = 70.67% ± 11.94%

j = –

LP-SVD ? AR ? error variance [16] c = 58.75%

j = –

c = 76.66%

j = –

c = 66.66%

j = –

c = 67.35% ± 8.98%

j = –

LP-SVD ? logistic model tree [17] c = 86.38%

j = –

c = 74.58%

j = –

c = 77.08%

j = –

c = 79.35% ± 6.22%

j = –

LPQR ? logistic model tree [17] c = 90.00%

j = –

c = 76.25%

j = –

c = 77.91%

j = –

c = 81.38% ± 7.51%

j = –

ICA ? PCA ? SVM [15] c = –%

j = 0.95

c = –%

j = 0.41

c = –%

j = 0.52

c = –%

j = 0.63 ± 0.29

CSP ? SVM, LDA, KNN bagging [15] c = –%

j = 0.90

c = –%

j = 0.43

c = –%

j = 0.71

c = –%

j = 0.69 ± 0.24

WPT ? CSP [8] c = 83.21%

j = –

c = 76.17%

j = –

c = 76.17%

j = –

c = 78.52% ± 4.06%

j = –

DCT [16] c = 43.75%

j = –

c = 38.05%

j = –

c = 45.83%

j = –

c = 42.54% ± 4.03%

j = –

ARR [39] c = –%

j = 0.69

c = –%

j = 0.36

c = –%

j = 0.39

c = –%

j = 0.48 ± 0.18

Proposed D-ACSP-V ? SCS-CNN c = 96.11%

j = 0.95

c = 70.00%

j = 0.60

c = 85.00%

j = 0.80

c = 83.70% – 13.10%

j = 0.78 – 0.18

Bold values represent the best ones

Table 15 Accuracy’s p-value of

the purposed method to

traditional FBCSP and FBRCSP

method

FBCSP FBRCSP Proposed ACSP Proposed D-ACSP

p-value (FBCSP) – 0.0045 3.6563e-4 2.1819e-4

p-value (FBRCSP) 0.0045 – 9.7594e-4 6.9928e-4

p-value (ACSP) 3.6563e-4 9.7594e-4 – 0.0173

p-value (D-ACSP) 2.1819e-4 6.9928e-4 0.0173 –

Table 16 Accuracy’s p-value of the purposed method to other methods

CRAM [25] MCSP [6] CSD-CSP [27] C2CM [24] CWCNN [24] STFS_CSP [9]

T-test (p-value) 2.2141e-4 1.4919e-4 4.7676e-4 0.0300 0.0233 0.0016

DPLM [18] FBCSP ? PW strategy [5] TSSM ? LDA [19] KL-CSP [7] DCT [16] ARR [16]

T-test (p-value) 0.0028 0.0385 0.0097 0.0408 0.0204 0.0299
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the network is used to generate a certain number of feature

maps in different time intervals, and then, after the feature

maps are merged and compressed, it continues to learn

features at different time intervals. Finally, all time

sequences are converted into feature vectors to achieve the

purpose of second stage feature extraction. In other words,

this network can get a broader learning horizon so that the

learned information can express more data features in the

learning process.

In addition, the residual part is added to the network.

The main reason is that due to the increase in the number of

layers, there may be a problem of gradient disappearance.

The residual network may better solve the problem of

gradient disappearance [37]. The entire network update

could be more stable. As the number of network layers

increases, the network learning performance may be better,

but it may also worsen the learning. The function of short-

circuit learning is to prevent if the learning process

becomes worse, and the network can go directly over the

redundant network layer [38]. In our structure, the learning

effect of a 52-layer network can be at least as good as a

29-layer network. The one size convolution added in the

middle is to reduce the parameters and increase the number

of feature maps.

4.3.2 Voting strategy increases feature diversity

Voting is a tip to increase the diversity of the extracted

features. When we use RCSP to get the features, we add

other subjects’ data. Although we have already used the

data evaluation method to select the high-quality data, we

still cannot guarantee that the data from different subjects

has similar spatial energy activation distribution. There-

fore, developing many groups of spatial matrixes generated

using different groups of other subjects’ data can make the

spatial energy activation distribution closer to the target

distribution. In addition, although we can automatically

select the RCSP regularization parameters based on mutual

information, it cannot completely estimate the distance

between the distributions of the two target classes. It can

only be used to describe the difference in data information

roughly. Thus, these findings support the hypothesis that

developing various groups of spatial matrixes and selecting

various groups of regularization parameters can obtain

several different features. Using a voting strategy to inte-

grate the classification results using multiple features can

slightly improve the performance and make the system

more stable.

4.4 Compare to other methods

We compare the results of our method with other methods

proposed in recent years. We use the evaluation measures

of tenfold cross-validation accuracy, kappa and standard

error. The data sets are BCI4-2a and BCI3a. The compar-

ison results are shown in Tables 13 and 14. References

[6–8, 16, 17, 20, 25, 27] only provided accuracy, while

references [5, 9, 10, 15, 18, 19, 26, 39] only provided kappa

value. References [23, 24] shown both of them.

From the results, for the BCI4-2a data set, compared to

other papers’ methods, our method obtains the highest

accuracy by using the data of subjects 1, 2, 3, 7, 8, 9. Most

of them can reach over 0.8 kappa and over 75% accuracy

except subject 2. For the BCI3a data set, our method

obtains the highest accuracy by using the data of subjects

k3b and l1b. It can reach over 0.8 kappa.

In Tables 13 and 14, lots of paper proposed improved

CSP methods to get the feature vectors and classify the task

using SVM or LDA. This classification is easy to achieve,

but it may lose some useful EEG information. Thus, this

way is difficult to get a good result compared to network-

related methods. It also follows the conclusion we drew

from experiment A. Some other methods shown in

Table 13 use CSP as the feature extraction method and

networks with different structures. From the results, our

network structure is better than some other network

structures, such as the popular networks C2CM and

CWCNN.

However, compared to some unique feature extraction

methods or advanced classifiers, only using an SCS-CNN is

not enough. Combining D-ACSP-V and SCS-CNN can

significantly improve the classification performance. From

the result, for the BCI4-2a data set, expect subjects 4, 5 and

6, we can get the highest performance compared to other

papers’ methods. For the BCI3a data set, we can get the

highest performance on subject k3b and subject l1b. The

mean performance is also better than others using both two

data sets. Thus, these testing results support the original

hypothesis that our proposed method is more effective in

classifying motor imagery multi-classification tasks.

Tables 15 and 16 show the p-value of the purposed

method to traditional methods and other papers’ methods.

The p-values shown in the results are calculated from two-

tailed paired t-test. From the results, the p-values are all

less than 0.05, which means the proposed algorithm is

more robust and more effective than the traditional FBCSP

or FBRCSP methods and other publications’ methods.

5 Conclusion

In this paper, we propose a mutual information-based

regularization parameters selection method and a data

quality evaluation method to improve the regularized

spatial filters’ performance. When mixing the covariance

matrixes, the mutual information-based parameter selection
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method can automatically adjust the regularization

weights. The data evaluation method can analyze the motor

imagery features in the spatial, frequency and time–fre-

quency domains. This method can improve the perfor-

mance of RCSP, but it can also be used to check whether

the collected data has motor imagery features. In addition,

a single-channel-based series convolutional neural network

is introduced to classify the motor imagery multi-classifi-

cation tasks. Also, a voting strategy can be used as a tip to

improve the classification accuracy slightly. We use the

tenfold cross-validation method and kappa to test two data

sets in the experiments. For the BCI4-2a data set, the

method with the best accuracy is to use D-ACSP-V and

SCS-CNN. It obtains an average accuracy of 79.01% and a

kappa of 0.7202. We also tested the BCI3a data set, the

average accuracy is 83.70%, and the kappa is 0.7827.

Compared to the methods proposed in recent papers, our

method has higher accuracy. Therefore, D-ACSP-V is a

suitable motor imagery feature extraction method. SCS-

CNN is also a suitable classifier for motor imagery multi-

classification tasks.
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Schlögl A, Pfurtscheller G, Millán JdR, Schröder M, Birbaumer
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