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A B S T R A C T

Light-harvesting systems (LHSs) play an important role in natural photosynthesis for converting light energy into 
chemical energy, which paves a prospective way for the exploitation of renewable energy resources. In this work, 
two artificial light-harvesting systems with an efficient energy transfer were constructed successfully in the 
aqueous media based on sulfobutylether-β-cyclodextrin (β-CD) and curcumin (Cur) through host-guest inter-
actions, in which two different fluorescence dyes, sulforhodamine (SR101) and Nile blue (NiB) were employed as 
energy acceptors. The obtained artificial LHSs can achieve an efficient energy transfer process from β-CD+Cur 
to SR101 or NiB with energy transfer efficiencies of up to 16.3% and 15.8%, respectively. The energy harvested 
by the acceptors (SR101 and NiB) was used for photocatalysis in the aqueous phase dehalogenation of the α- 
bromoacetophenone reaction with a yield of up to 80%.

1. Introduction

Green plants convert solar light into chemical energy through pho-
tosynthesis, which is the basis for living things to survive in nature [1–3]. 
Photosynthesis mainly depends on the absorption of photons by the 
contained LHSs, which effectively transfers excitation energy to the ac-
ceptor dye molecules in the reaction center through electron transfer or 
energy transfer, triggering a series of redox reactions [4]. This process 
has inspired many scientists, so the construction of various artificial LHSs 
by simulating the process of photosynthesis is gradually coming into 
people's view. After decades of development, various artificial LHSs 
based on non-covalent interactions including hydrogen bonding [5–9], 
coordination-induced self-assembly [10–14], supramolecular polymers 
[15–21], micelles [22–28] or vesicle [29,30], liquid crystal [31], elec-
trostatic interaction [32–35] and host-guest interactions [36–41,49] have 
been constructed, in which the solar energy can be efficiently trans-
ferred. For example, Liu et al. reported an artificial light-harvesting 

supramolecular assembly with the host-guest interaction by using poly-
anionic γ-cyclodextrin (COONa-γ-CD), pyrene derivative (PYC12), Nile 
red (NiR), and diarylethene derivative (DAE) in aqueous solution [42]. 
Then, in 2020, Liu et al. synthesized a novel triazole bridging cucurbituril 
(CB)-cyclodextrin (CD) dimer and constructed a stable supramolecular 
inclusion complex with high-efficiency fluorescence resonance energy 
transfer [43]. Subsequently, Liu et al. reported an efficient artificial light- 
harvesting system based on sulfato-β-cyclodextrin, an oligo(phenylene-
vinylene) derivative (OPV-I), and a fluorescent dye, Nile red (NiR), via 
noncovalent interactions in the aqueous solution [36]. However, the 
mentioned above processes in the construction of artificial LHS all used 
strong fluorescent groups as energy donors or by other means, and the 
synthesis of fluorescent molecules required complex synthesis and se-
paration processes. Therefore, it is a good strategy to construct artificial 
LHS through host-guest interaction and electrostatic interaction by using 
the hydrophobic cavity of sulfobutylether-β-cyclodextrin (β-CD) to en-
capsulate hydrophobic dye as an energy donor.
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At the same time, based on constructing artificial LHSs for energy 
transfer, scientists have studied its application in the field of photo-
catalytic organic reactions, including dehalogenation of α-bromoace-
tophenone [44–46], cross-dehydrogenation coupling (CDC) reaction 
[47], alkylation of C-H bonds [34,35], photooxidation reaction of sul-
fide [48] and so on. Therefore, it is a good research strategy to apply 
our constructed artificial LHSs based on fluorescent dyes to the pho-
tocatalytic reactions mentioned above.

Herein, the anionic highly water-soluble sulfobutylether-β-cyclo-
dextrin (β-CD) was utilized to construct high-efficiency artificial LHSs 
by reducing the distance between energy donors (Cur) and energy ac-
ceptors (SR101 and NiB) through host-guest interactions, which can 
also be successfully used in the photocatalytic dehalogenation of α- 
bromoacetophenone in the aqueous phase (Scheme 1). After a series of 
tests including the zeta potential test and steady-state spectra test, β-CD 
+Cur was used as energy donors with cooperative energy level 
matching fluorescent dyes (SR101 and NiB) to construct two β-CD 
+Cur-based artificial LHSs with the efficient energy transfer process. 
Then, the fluorescence quantum yields of the two β-CD+Cur-based 
artificial LHS (β-CD+Cur+SR101 and β-CD+Cur+NiB) were obtained 
respectively, which ensured the efficient transfer of light energy. Sub-
sequently, to further use the energy harvested by the energy acceptors, 
we applied the β-CD+Cur-based artificial LHSs for photocatalysis de-
halogenation of α-bromoacetophenone in the aqueous solution.

2. Experimental

2.1. Materials

Unless specifically mentioned, all chemicals are commercially 
available and were used as received.

2.2. Characterizations

1H NMR was characterized by the Bruker Avance 400 NMR instru-
ment. Shimadzu UV-2450 spectrophotometer characterized the UV–vis 

absorption spectra. Fluorescence emission spectra were obtained by 
fluorescence spectrophotometer F-380A. Dynamic light scattering (DLS) 
and Zeta potential tests were constructed on Malvern Zeta sizer Nano 
ZS90. Transmission electron microscopy (TEM) images were obtained 
on a JEM 2100 operating at 200 kV. Samples for TEM measurements 
were prepared by dropping the mixed ethanol solution on the microgrid 
(diameter: 3 mm) and drying by slow evaporation. Fluorescence decay 
curves were carried out on an FLS920 Edinburgh spectrometer. The 
fluorescence quantum yields were characterized by Hamamatsu abso-
lute quantum yield measuring instrument Quantaurus-QY.

3. Results and discussion

Sulfobutylether-β-cyclodextrin (β-CD) has a hydrophobic cavity, 
which allows it to hold hydrophobic fluorescent dyes into the cavity to 
exhibit photophysical properties. Because β-CD has good water solu-
bility, it can be dissolved in an aqueous solution with a negative po-
tential of − 23.9 mV (Fig. 1a). Then, we selected a hydrophobic 
fluorescent dye curcumin (Cur), which can be transferred into the 
cavity of β-CD in the aqueous solution (5.0 ×10−5 M) by ultrasound. 
The steady-state spectral property results of β-CD and β-CD+Cur so-
lution showed that the β-CD solution alone did not have absorption 
and emission in the aqueous solution. However, after the addition of 
Cur, the β-CD+Cur showed an absorption peak at 440 nm and an 
emission peak with light-yellow fluorescence at 540 nm (Fig. S1), in-
dicating that the Cur successfully entered into the hydrophobic cavity 
of β-CD. Meanwhile, the zeta potential changed from − 23.9 mV to 
− 23.6 mV after the addition of Cur (Fig. 1b). Moreover, dynamic 
light scattering (DLS) was employed to further investigate the self- 
assembly properties of β-CD and β-CD+Cur. It can be seen that β-CD 
exhibited an aggregate with a particle size at ∼200 nm (Fig. 1c). After 
the addition of Cur, the particle size increased to ∼230 nm (Fig. 1d), 
indicating that the Cur was entered into the hydrophobic cavity of 
β-CD. Meanwhile, under the irradiation of a laser lamp, β-CD and 
β-CD+Cur both showed an obvious Tyndall effect, indicating the 
formation of large aggregates.

Scheme 1. Schematic diagram of artificial LHSs with efficient energy transfer process based on β-CD and Cur. 
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Because β-CD+Cur exhibits excellent fluorescence properties in the 
aqueous solution, which is expected to be used as a good energy donor 
to construct β-CD+Cur-based artificial LHS. Meanwhile, β-CD can self- 
assemble into negatively charged aggregate in the aqueous solution 
before and after the addition of Cur. Therefore, a cationic dye NiB and 
an amphoteric dye SR101 (Fig. S2) were selected to interact with β-CD 
+Cur to reduce the distance between the energy donors and energy 
acceptors. Moreover, in the process of constructing efficient artificial 
LHS, it is very important to select fluorescent dyes with matching en-
ergy levels. The amphoteric fluorescent dye SR101 (absorption band: 
500–625 nm) (Fig. 2a) and NiB (absorption band: 500–675 nm) 
(Fig. 2b) were selected to construct artificial LHSs with β-CD+Cur 
through electrostatic interaction, which was well overlapped with the 
fluorescence emission spectra of β-CD+Cur.

UV–vis absorption and fluorescence emission spectra were carried 
out to investigate the energy transfer properties from β-CD+Cur to 
SR101 or NiB in the aqueous solution. The UV–vis absorption spectra 
results showed that the absorption at 430 nm decreased while the ab-
sorption at 580 nm increased gradually with the addition of SR101 
(acceptor) to the aqueous solution of β-CD+Cur (donor) (Fig. 2c). 
Meanwhile, when β-CD+Cur was excited with a wavelength of 430 nm, 
the fluorescence emission at 540 nm decreased while the emission at 
620 nm increased gradually with the addition of SR101 to the aqueous 
solution of β-CD+Cur (Fig. 2e). The energy transfer efficiency (ΦET) 
and antenna effect (AE) of this system were calculated as 16.3% (Fig. 
S3a) and 4.7 (Fig. S3b), while the fluorescence quantum yields in-
creased from 0.2% to 5.6%. It can be observed in the CIE coordinate 
diagram that the color of the β-CD+Cur+SR101 mixed solution 
changed from light yellow to light red (Fig. S4a) compared with the β- 
CD+Cur. Meanwhile, the zeta potential of β-CD+Cur+SR101 was 
− 27.5 mV and the particle size increased to ∼160 nm in the aqueous 
solution (Figs. S5a and S6a). Meanwhile, transmission electron 

microscopy (TEM) further confirmed the spherical structures with the 
size of ∼150 nm (Fig. S7a).

The UV–vis absorption spectra results showed that the absorption at 
430 nm decreased while the absorption at 640 nm increased gradually 
with the addition of NiB (acceptor) to the aqueous solution of β-CD 
+Cur (donor) (Fig. 2d). Meanwhile, when β-CD+Cur was excited with 
a wavelength of 430 nm, the fluorescence emission at 540 nm decreased 
while the emission at 675 nm increased gradually with the addition of 
NiB to the aqueous solution of β-CD+Cur (Fig. 2f). The ΦET and AE of 
the system reached 15.8% (Fig. S3c) and 6.5 (Fig. S3d), while the 
fluorescence quantum yields increased from 0.2% to 10.3%. More im-
portantly, it can be observed in the CIE coordinate diagram that the 
colors of the β-CD+Cur+NiB mixed solution changed from light- 
yellow to bluish-yellow (Fig. S4b), indicating that there was an effective 
energy transfer between β-CD+Cur and NiB. Meanwhile, the zeta po-
tential of β-CD+Cur+NiB was − 19.6 mV and the particle size in-
creased to ∼170 nm in the aqueous solution (Figs. S5b and S6b). 
Meanwhile, transmission electron microscopy (TEM) further confirmed 
the spherical structures with the size of ∼150 nm (Fig. S7b).

To make better use of the energy harvested from the energy ac-
ceptors (SR101 and NiB), we used two β-CD+Cur-based artificial LHSs 
(β-CD+Cur+SR101 and β-CD+Cur+NiB) to photocatalyse the deha-
logenation of α-bromoacetophenone in the aqueous solution. As shown 
in Table 1, in the presence of β-CD+Cur+SR101 (β-CD+Cur+30 µL 
SR101) and β-CD+Cur+NiB (β-CD+Cur+100 µL NiB), the yield can 
reach 80% and 75% after irradiation with white light for 8 h (Fig. S8). 
In contrast, it can be concluded by comparison experiments that β-CD 
(37%), SR101 (45%), NiB (45%), β-CD+Cur (67%), without photo-
catalyst (30%) or without light (no reaction) (3 mL, at the same con-
centration) all obtained lower reaction yields in water solution than 
that of β-CD+Cur+ 30 µL SR101 (3 mL) and β-CD+Cur+ 100 µL NiB 
(3 mL). Meanwhile, the β-CD+Cur+ 30 µL SR101 (3 mL) obtained a 

Fig. 1. Zeta potentials of β-CD (a) and β-CD+Cur (b); Particle size of β-CD (c) and β-CD+Cur (d). Inset: photographs of β-CD and β-CD+Cur. [β-CD]= 5.0 × 10−5 

M, [SR101]= 5.0 × 10−5 M, [NiB]= 3.75 × 10−5 M.
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higher yield than that of β-CD+Cur+ 100 µL NiB (3 mL). Therefore, we 
selected β-CD+Cur+ 30 µL SR101 (3 mL aqueous solution) as the op-
timal reaction condition for substrate expansion. The excellent catalytic 
effect of the β-CD+Cur+SR101 system and β-CD+Cur+NiB may be 
due to the fact that after the assembly of β-CD+Cur and SR101 (NiB) 
based on electrostatic interactions, SR101 or NiB molecules are ar-
ranged in a more orderly manner, and a higher energy transfer effi-
ciency was obtained, indicating the best catalytic yield.

After establishing optimal reaction conditions (3 mL β-CD+Cur 
+30 µL SR101), the photocatalytic dehalogenation of α-bromoaceto-
phenone derivatives was studied. As shown in Table 2, for methyl α- 
bromoacetophenone derivatives (2b), the system achieved 82% yields, 
while for methoxyl derivatives, the yields were 75% (2c), 90% (2d) and 
85% (2j), respectively. High yields of 2e (85%), 2 f (83%), 2 g (80%), 
and 2 h (75%) were also found for the following α-bromoacetophenone 

derivatives with electron-withdrawing groups. In addition, the 
p-trifluoromethyl acetophenone can also be obtained with a 90% (2i) 
yield. These results indicated that β-CD+Cur+SR101 had universal 
applicability as a catalyst for photocatalytic dehalogenation of α-bro-
moacetophenone and its derivatives (Figs. S9–S17). More importantly, 
the above experimental process further proved the application of β-CD 
+Cur-based LHSs in the field of photocatalysis.

We have also proposed a mechanism of photocatalytic dehalo-
genation of α-bromoacetophenone (2a) (Scheme 2). First, the ground 
state β-CD+Cur changed to the excited state of [β-CD+Cur]* after 
harvesting energy under white light irradiation. Then, the energy ac-
ceptor SR101/NiB in the excited state transferred to the excited state 
[SR101/NiB]* after gaining energy from [β-CD+Cur]*. The excited 
SR101*/NiB* was converted to SR101.-/NiB.- by the electrons donated 
from N, N-diisopropylethylamine (DIPEA) and meanwhile, DIPEA 

Fig. 2. UV–vis absorption spectra of SR101 (a) or NiB (b) and fluorescence emission spectra of β-CD+Cur. UV–vis absorption spectra of β-CD+Cur with the addition 
of different concentrations SR101 (c) and NiB (d); Fluorescence emission spectra of β-CD+Cur with different amounts of SR101 (e) and NiB (f) in the aqueous 
solution. Inset: Photographs of β-CD+Cur, β-CD+Cur+SR101 and β-CD+Cur+NiB. [β-CD]= 5.0 × 10−5 M, [SR101]= 5.0 × 10−5 M, [NiB]= 3.75 × 10−5 M.
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transferred DIPEA.-. The α-bromoacetophenone was reduced by 
[SR101/NiB].- to produce phenylketone free radicals, while SR101/NiB 
was regenerated. The phenylketone radical can extract a hydrogen 

atom from the Hantzsch ester to obtain the product acetophenone (2a). 
The dehydrogenated Hantzsch ester cation reacts with [DIPEA].- to give 
pyridine ester as a byproduct (Scheme 2).

Table 1 
Photocatalytic dehalogenation of α-bromoacetophenone under different conditions.a

 
Entry Conditions Light irradiation Yieldb [%]

1 None Yes 30
2 β-CD Yes 37
3 SR101 Yes 45
4 β-CD+Cur Yes 67
5 β-CD+Cur+SR101 Yes 80
6 NiB Yes 45
7 β-CD+Cur+ NiB Yes 75
8c β-CD+Cur+ NiB No no reaction
9c β-CD+Cur+SR101 No no reaction

a Reaction conditions: Bromoacetone (40 mg, 0.2 mmol), Hantzsch ester (56 mg, 0.22 mmol), N, N-diisopropylethylamine (DIPEA) (70 µL, 0.4 mmol), β-CD+Cur 
+SR101 (3 mL) aqueous solution (5 mL), 10 W UV light, room temperature, nitrogen, 16 h.

b Isolated yields. c Without a UV light.

Table 2 
Expanded experiments on substrates for photocatalytic dehalogenation of α-bromoacetophenone derivatives.a

a isolated yields.
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4. Conclusions

In the present work, we have constructed a new supramolecular as-
sembly based on the anionic highly water-soluble sulfobutylether-β-cy-
clodextrin (β-CD) and hydrophobic dye curcumin (Cur) through host- 
guest interactions in the aqueous solution, which exhibited light yellow 
fluorescence. β-CD+Cur can be used to construct artificial light-har-
vesting systems (LHSs) with an efficient energy transfer process by at-
tracting fluorescent dyes sulforhodamine 101 (SR101) and Nile blue (NiB) 
with matching energy levels through electrostatic interaction. It was 
proved that the two artificial LHSs (β-CD+Cur+SR101 and β-CD+Cur 
+NiB) were successfully constructed. More importantly, the harvested 
energy from the β-CD+Cur+SR101 and β-CD+Cur+NiB systems can be 
used to promote the dehalogenation of α-bromoacetophenone with yields 
of 80% and 75% in the aqueous solution, which provides a new idea for 
the application of molecular assemblies based on host-guest interactions 
in light-harvesting systems and photocatalysis.
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