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Since the continuous authentication (CA) system based on smartphone sensors has been facing the challenge of the low-data
regime under some practical scenarios, which leads to low accuracy of CA, it needs to be solved urgently. To this end, currently, the
generative adversarial networks (GAN) provide a powerful method to train the result generative model that could generate very
convincing verisimilar data. Te framework of the GAN and its variants shed much light on improving the performance of CA.
Terefore, in this article, we propose a continuous authentication system on smartphones based on a Wasserstein generative
adversarial network (WGAN) for sensor data augmentation, which utilizes accelerometers, gyroscopes, and magnetometers of
smartphone sensors to sense phone movements caused by user operation behavior. Specifcally, based on sensor data under
diferent user activities, the WGAN is used to create additional data in training data for data augmentation. With the augmented
data, we design a convolutional neural network to learn and extract deep features from sensor data, and then use four classifers of
RF, OCSVM, DT, and KNN to train these features. Finally, we train and test on the HMOG dataset, and the results show that the
EER of the authentication system is between 3.68% and 6.39% on the sensor data with a time window of 2 s.

1. Introduction

With advances in smartphones in terms of computing power
and storage capacity, it has evolved into a versatile device
that can meet both personal and business needs. Users often
store photos, chat messages, and sensitive fles on such
mobile devices. However, sensitive information stored on
mobile devices has the problem of information leakage.
Tus, there are higher requirements for the security
mechanism of user authentication. Traditional authentica-
tion mechanisms are based on knowledge-based authenti-
cation (e.g., passwords and PINs) and authentication based
on physiological biometrics (e.g., voice and face patterns).
Tis one-time login process does not guarantee that the
identifed user is the real user throughout the login session. If
an illegal user can bypass the initial login session, this re-
striction may expose the device to information theft and

leakage. As a result, smartphones need a continuous au-
thentication (CA) mechanism that can protect user in-
formation throughout working hours to supplement the
initial login authentication, thereby providing more com-
prehensive security protection.

In the CA scheme, authentication based on user be-
havioral biometrics has higher security and reliability, where
the authentication-based motion pattern or touchscreen
gestures does not require additional equipment. In partic-
ular, for the studies using motion patterns as behavioral
biometrics, there are many factors that afect the acquisitions
of motion sensor signals in real-world scenarios, leading to
diferences in user behavior modeling between the enroll-
ment phase and the authentication phase. Smartphone built-
in motion sensors are designed to detect and measure
movement determined by various factors, such as human
activity (e.g., walking or sitting), smartphone holding
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postures, body posture, or psychological and physiological
states (eg., tension or stress). To provide accurate authen-
tication performance, most motion sensor-based studies
require the subjects to operate smartphones in a fxed usage
environment (eg., walking hand-held [1] and sitting on
a chair [2]). Tese stringent requirements make the au-
thentication system work well in a laboratory environment,
whereas it is hard to make robust authentication in real-
world scenarios.

As deep learning has shown its efectiveness in many
felds, many deep learning methods have been gradually
applied to continuous authentication research [3–6]. Te
scarcity of training data still endures as an obstacle to the
establishment of robust deep authentication models. For
instance, Tran and Choi [3] proposed two data augmenta-
tion algorithms, arbitrary time deformation (ATD) and
stochastic magnitude perturbation (SMP), by observing the
changes in actual gait data to solve the data scarcity problem
and improve the robustness of deep gait models. Lu et al. [4]
proposed an authentication framework based on a recurrent
neural network to capture the unique behavioral biometrics
of the user when entering a password. It can infer malicious
imposters from limited training data. Amini et al. [5]
extracted the time domain and frequency domain features
from the smartphone’s motion sensor, combined with the
long short-termmemory (LSTM)model, and constructed an
authentication framework.Te framework can identify users
with 96.70% accuracy within 20 seconds. Zou et al. [6]
proposed to capture human gait behavior based on motion
sensors (an accelerometer and a gyroscope) and apply hy-
brid deep neural networks to extract gait features, making
gait recognition robust.

Terefore, in this article, we propose a robust continuous
authentication system using a WGAN on the smartphone
for sensor data augmentation, which mainly focuses on the
use of smartphones for user authentication under diferent
activities. Diferent from the state-of-the-art authentication
methods, the existing method usually requires the user to
swipe the screen and press the keys of the mobile phone
under a specifed activity. Our method collects motion
sensor (an accelerometer, a gyroscope, and a magnetometer)
data under diferent activities. To obtain well authentication
performance, we utilize the WGAN model to create addi-
tional data from raw sensor data under diferent activities for
data augmentation. With the augmented data, we design
a convolutional neural network to learn and extract deep
features from sensor data, and then use four classifers of RF,
OCSVM, DT, and KNN to train these features. Finally, we
train and test on the HMOG dataset.

Te main contributions of this article are as follows:

(i) Based on sensor data under diferent user activities,
we propose the WGAN to generate additional data
in the training data for data augmentation.

(ii) With the augmented data, we design a convolu-
tional neural network to learn and extract deep
features from sensor data, then use four classifers of
RF, OCSVM, DT, and KNN to train these features,
and fnally test on diferent user activity data.

(iii) Te experiments are evaluated and analyzed on the
HMOG [7] dataset, and the results show that the
EER of the authentication system is between 3.68%
and 6.39% on the sensor data with a time window of
2 s.

Te rest of this article is organized as follows: Section 2
mainly reviews the related work of reviewing the data
augmentation in authentication systems and the continuous
authentication based on deep learning. Section 3 presents
the details of our proposed method. Section 4 describes our
experimental results and analysis. Section 5 concludes our
approach.

2. Related Work

In this section, we review the data augmentation in au-
thentication systems and the continuous authentication
based on deep learning.

2.1. Data Augmentation in Authentication Systems. Data
augmentation is an efective method to solve the problem of
data scarcity and improve the robustness of deep learning
models. In this approach, the amount of training data is
multiplied by introducing noise or appropriately modifying
the raw data [8]. In deep learning, using more training data
can reduce the overftting and train a more robust deep
model. Due to its efectiveness, data augmentation is widely
used in various tasks (such as image recognition [9–11],
speech recognition [12, 13], and anomaly detection).

In continuous authentication methods, data augmentation
techniques have not been given enough attention in continuous
authentication based on motion sensors. To the best of our
knowledge, there are currently few studies utilizing data
augmentation methods to augment sensor data. For instance,
Li et al. [14] propose a sensor-based continuous authentication
system for continuously monitoring users’ behavior patterns.
In this system, the rotation method is applied to the collected
raw data to create additional data, thereby improving the
robustness of the authentication system. Buriro et al. [15]
proposed SwipeGAN: generating swipe samples for smart-
phone user authentication. Experimental results demonstrate
the quality of the generated synthetic samples and their ef-
fectiveness in improving the accuracy of the authentication
scheme. Li et al. [16] proposed a smartphone-based continuous
authentication based on user behavior patterns. By utilizing the
accelerometer and gyroscope in the smartphone, data aug-
mentation techniques such as permutation, sampling, scaling,
cropping, and jittering were applied to the training data to
create additional data. Sitova et al. [7] adds HMOG (hand
movement, direction, and grasping) features for continuous
authentication of smartphones, which greatly improves the
authentication performance.

2.2. Deep Learning for Continuous Authentication. Deep
learning algorithms are becoming increasingly popular to
improve the performance of continuous authentication
systems.
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Amini et al. [2] proposed a continuous authentication
method based on user action behavior. Te method
extracted the time-domain and frequency-domain features
of the user’s motion behavior and then uses the LSTM al-
gorithm to learn the time-domain and frequency-domain
features to establish a continuous authentication model,
which can identify users with an accuracy of 96.70% within
20 seconds. Zhang et al. [17] proposed an LSTM-based user
authentication system. Te system uses the mutual in-
formation model and the principal component analysis
model to process data, extract features of gait data, and verify
the identity of legitimate users. Te results show that the
average recognition accuracy of the LSTM model is about
95%. Lu et al. [4] used a unique motion pattern as a be-
havioral biometric when the user entered a password and
used the recurrent neural network (RNN) model to learn the
deep representation of the movement patterns. Experiments
show that DeepAuth can well solve the security problems of
resource-constrained devices. Zou et al. [6] proposed a hy-
brid model based on the CNN and the RNN to learn robust
gait features, including time-domain and frequency-domain
characteristics, to deal with the problem of user identif-
cation in complex scenes.

Existing research and results have proved the efectiveness
of deep learning in user behavior identifcation. However,
deep learning-based authentication models must be based on
sufcient user behavior data. Specifcally, training a deep
network typically requires a large, dispersed dataset that
covers a large number of data instances that may arise in
practice. In this article, we propose a continuous authenti-
cation system based on WGAN-generated sensor data.

3. Proposed Method

In this section, we describe a robust continuous authenti-
cation system based on smartphone sensors andWasserstein
Generative Adversarial Networks. Te built-in sensors of
smartphones, including accelerometers, gyroscopes, and
magnetometers, are used to perceive the user’s sliding screen
and click.

As shown in Figure 1, the authentication system ar-
chitecture mainly includes two parts: enrollment phase and
authentication phase. Te raw data refer to the sensor data
recorded when the user operates the smartphone with
diferent tasks. Te enrollment phase is mainly for data
augmentation of the training data, CNN deep feature
learning, and the construction of a training model. Te user
authentication phase is mainly to verify the test data and
judge the legitimacy of the user.

3.1. Raw Data. In this article, we use the public HOMG
dataset, which records real-time touch, sensor, and key-
stroke data invoked by 100 users when they interact with the
smartphone (sampling frequency f � 100Hz). Data were
recorded for three smartphone usage scenarios: (1) reading
documents; (2) text production; and (3) navigation on a map
to locate a destination. Te tasks lasted 5 to 15minutes
(participants were randomly assigned), and each participant

completed 24 stages (8 reading stages, 8 writing stages, and 8
map navigation stages) for a total of 2 to 6 hours of behavior
feature.

Based on the above dataset, we chose three sensors on the
smartphone, namely an accelerometer, a gyroscope, and
a magnetometer, to monitor the user’s behavior on the
smartphone. Te accelerometer and gyroscope are motion
sensors that capture the user’s coarse-grained and fne-
grained motion patterns, respectively, while the magne-
tometer is a position sensor that determines the phone’s
physical location in the real frame of reference.

In the enrollment phase, we select 100minutes of data
for each user and train the data with a time window t � 2 of
seconds, step size is 0.25 seconds, the sample size is n � t∗f,
and f is the sampling frequency. In the authentication phase,
we collect sensor samples, and the samples represent <t, x, y,
z>, where t represents the time stamp and x, y, and z
represent the diferent axis values of the accelerometer,
gyroscope, and magnetometer. Each of t, x, y, and z is stored
as a vector of a diferent sensor.

3.2. Data Preprocessing. In this section, the data pre-
processing stage aims to feature extraction from the raw
sensor. We select the sensor data under diferent tasks
(Reading + Sitting, Reading +Walking, Writing + Sitting,
Writing +Walking, Map + Sitting, and Map+Walking)
from the raw data. According to diferent tasks, we read the
values of the accelerometer, gyroscope, and magnetometer.
In our study, we consider two diferent types of input data
for these three sensors to evaluate our proposed model. One
is the raw data input, which is used for CNN learning (see
Section 3.4). Te other extracts handcrafted features from
the raw data, such as the mean over a sliding window, which
is used on experimental benchmark data.

For the sensor data for each task, the data are then
segmented according to time windows. For raw data,
each input is a matrix of size:
X � X(k)􏼈 􏼉 � d(k)∗2f∗T(see Section 3.4 for detailed de-
scription), as the input ofWGANdata augmentation andCNN
feature extraction. Te length of the feature vector depends on
the sampling frequency f of the sensor and the time intervalTof
data acquisition.

For handcrafted features, we calculate the min, max,
mean, mean square, variance, standard deviation, mean
squared, root-mean-square (RMS), mean-squared-error
(MSE), peak, mean-square- frequency (MSF), root-mean-
square-frequency (RMSF), and root-mean-square-error
(RMSE) over the window. Tese features are computa-
tionally easier to implement and have been shown to be
efective for CA [18]. Ten, each window is a vector of size:
number of extracted features × number of sensor channels.

Finally, to reduce the efect of noise, we normalize the
raw data and handcrafted features andmap the interval (xmin
and xmax) to the unit scale (0 and 1).

x �
x − xmin

xmax−xmin
, (1)
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where xmin min and xmax are the minimum and maximum
values in the feature vector.

3.3. Data Augmentation. Te GAN [19] is a deep learning
model, which consists of a generator and a discriminator.
Te discriminator is used to assist in training a generator
that can accurately learn the distribution characteristics of
the raw data. Te generator continues to evolve to generate
synthetic data that is closer to the real data, while the dis-
criminator also continues to evolve to improve its ability to
discriminate between real and fake data. In an ideal state,
both of them reach a dynamic equilibrium and optimize
their performance through adversarial game training: the
generator learns the distribution properties of real data
accurately by receiving random noise (usually from uniform
or normal distribution) and generates data that can be faked,
while the discriminator distinguishes real data from gen-
erated data [20]. In this section, we design a WGAN based
on the GAN for data augmentation in a continuous au-
thentication system.

3.3.1. WGAN. Te GAN training process consists of two
adversarial networks: the generator networkGmaps noise to
the input space, and the discriminator network D distin-
guishes between real and generated data. In this article, we
input real sensor data x for the following two-player
minimax game with equation (2):

minmaxL(D, G) � Ex ∼ pr[logD(x)]

+ Ex ∼ pg[log(1 − D(x))],
(2)

where pr is the distribution of real data, and pg is the
generative data distribution implicitly defned by x�G (z)
and z∼p(z), for which z is sampled from Gaussian
distribution.

Based on equation (2), to efectively address the
problem of mode collapse, we measure the distance

between real samples and generated samples by Wasser-
stein distance instead [21]. Te Wasserstein distance is
defned as follows:

W pr, pg􏼐 􏼑 � inf
c∈􏽑 pr,pg( 􏼁

E[‖x − y‖],
(3)

where 􏽑(pr, pg) denotes the entire set of feasible joint
distributions c (x, y) of the true data distribution pr and
generative data distribution pg. However, equation (3) is
highly intractable. We use the Kantorovich–Rubinstein [21]
duality to reconstruct the Wasserstein distance as follows:

W pr, pg􏼐 􏼑 � sup
‖D‖L≤ 1

Ex∼pr
[D(x)] − Ex∼pg

[D(x)], (4)

where D is the set of Lipschitz continuous functions subject
to this constraint (as in equation (5)) and sup is the least
upper bound.

D x1( 􏼁 − D x2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ x1 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (5)

Te objective function between the generator and the
discriminator of the WGAN is as follows:

min
G

max
D

L(D, G) � Ex∼pr
[D(x)] + Ex∼pg

[D(G(􏽥x))].

(6)

To perform the discriminator of the WGAN, we utilize
parameters to clip the weights of the discriminator. c is
a controlled hyperparameter [22], and the weights of the
discriminator must be in a certain range (−c, c).

3.3.2. WGAN for Diferent Activity Data. In this section, we
randomly separate the 88 participants’ data into two
parts. 60 participants’ data are frst augmented by the
WGAN and then used for the designed CNN training and
validation, while 28 participants’ data are just extracted
features by the trained CNN for classifer training. We
use 60 participants’ data as the input of the WGAN.

Accelerometer
Gyroscope 

Magnetometer

Raw Data
Training 

data

Testing data

Data 
Preprocessing

WAGN for Data 
Augmentation

CNN-Learned 
Features

OCSVM, RF,
KNN, DT

CNN-Learned 
Features

Data 
Preprocessing Authentication

Enrollment phase

Authentication phase

Figure 1: Te architecture of continuous authentication.
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According to the task types under diferent user activi-
ties, we choose diferent neural network modules (LSTM
and CNN) to build a generative adversarial network
model. One is for user actions while walking (see
Figure 2(a)), and the other is for user actions while sitting
(see Figure 2(b)).

Figure 2(a) shows a generator based on a LSTM layer and
uses a Tanh activation on its output. Te generator’s re-
sponsibility is to generate data from the noise data that has
a similar structure to the real sensor data.

Te discriminator has a CNN layer using 32 flters with
ReLU activation function and a dense layer with Tanh ac-
tivation function. Te output layer has a single neuron
without an activation function. Te discriminator’s re-
sponsibility is to predict if its input is real or not based on its
Wasserstein distance.

Figure 2(b) shows a generator based on a CNN with 32
flters. Te model utilized a dense layer and a sigmoid ac-
tivation function.We applied dropout with a rate of 50% and
a dense layer that used the sigmoid activation function. We
then added a batch normalization layer and a dense layer,
which applied the sigmoid activation function. We again
applied the batch normalization layer. Te output layer of
the generator was dense with the Tanh as an activation
function.

Te discriminator used the CNN of 32 kernels with
ReLU activation and a dense layer with Tanh activation
function. We also added a dense layer of one unit with

a sigmoid activation function. Te output layer is a further
dense layer of one neuron but without an activation
function.

3.4. CNN for Feature Extraction. For augmented sensor data
and real sensor data, based on DeepSense [23], this article
designs a CNN architecture to learn and extract deep fea-
tures, which consists of two parts: (1) a separate volume for
each input sensor tensor X(k) product network and (2) k
separate convolutional network outputs combined convo-
lution, where k� 3.

Te model transfers the input (X(k) ∈ d(k)∗2f∗T), as
shown in Figure 3, where d(k) represents the value corre-
sponding to the k sensor signal, k is the number of sensor
types, T collects the time for each sensor data, and f is the
sampling frequency.

Since the structure of a single convolutional network for
diferent sensors is the same, this article focuses on a single
convolutional subnet of the input tensor X(k).

3.4.1. CNN for Single Sensor Data. Each sensor sample data
contains multiple time windows, and this article will process
it layer by layer in Tdimension (one window at a time). Each
d(k)∗2f window slice through the convolutional neural
network component consists of three stages, as shown in
Figure 4:

Input

LSTM (25)

Output (tanh)

Input

CNN (10,ReLu)

Dense (1,tanh)

Output

Generator Discriminator Generator Discriminator

Input

CNN (32)

Dense (32,sig)

Dropout (50%)

Input

CNN (32,ReLU)

Dense (16,tanh)

OutputDense (8,sig)

Bathc Norm.

Dense (4,sig)

Bathc Norm.

Output (tanh)

Dense (1,sig)

(a) (b)

Figure 2: Te WGAN for diferent activity data. (a) Is the WGAN for walking? (b) Is the WGAN for sitting?
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We use 2D convolutional flters to capture interactions
between dimensions in the local frequency domain. Te
output is then passed through a 1D convolutional flter layer
to capture high-level relations. Te output of the last flter
layer is fattened to produce sensor feature vectors.

3.4.2. Integrate Multisensor Data. Te procedure given
above is followed for each K sensor. We now have K sensor
features, which we can pack into a matrix with K rows.

Te sensor feature matrix is then passed through a second
convolutional neural network component with the same
structure as subsection 3.4.1.Tat is, the 2D convolutional flter
layer is followed by two 1D vector layers. Finally, we fatten the
output of the last flter into the integrated sensor feature vector.
Te window width t is appended at the end of this vector.

A timewindownowhas the combined sensor feature vector,
and we need to repeat the above process for all T windows.

3.5. Classifcation Algorithm. With the CNN-learned deep
features, we adopt an oversampling strategy to deal with the
data imbalance problem [24], then use four classifers of RF,
OCSVM, DT, and KNN to train these features, and fnally
test them on diferent user activity data.

4. Experimental Results and Analysis

In this section, to evaluate the authentication performance of
the WGAN, we introduce the experimental setup and then
conduct extensive experiments. Next, we evaluate the ef-
fectiveness of the WGAN, analyze and discuss the au-
thentication accuracy of the WAGN on data augmentation
and CNN-learned features, explore the authentication ac-
curacy of unseen users, and fnally compare with existing
authentication methods.

t1

x

y

z

t2 t3 t4 t5 tn

d d × 2f × T
T

2*f

Figure 3: Sensors segment and measure data.

(d(k), conv1)

(1, conv2)

(1, conv3)

Flatten

x

y

z

Data processing for time windows

Figure 4: Te CNN for single sensor data.
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4.1. Experimental Settings

(1) CNN and Classifer Training: For CNN training, 80%
randomly-selected 60 users’ data are used for
training and the rest 20% for validation. For classifer
training, we randomly select one user from the 28
users as a legitimate user and the remaining 27 users
as impostors. We perform ten-fold cross validation
on every legitimate user. Tat is, the positive samples
of legal users are divided into 10 subsets on average,
of which 9 subsets are used as training sets, and the
rest are used as test sets. Ten, the negative samples
from all the impostors with the same size to positives
are selected and then divided into ten subsets, where
one of them is used as the testing set. Te above
process is repeated 10 times until each positive or
negative sample subset is tested once. Finally, we
repeat the 10-fold cross validation 28 times until each
of the 28 users is selected as a legitimate user once.

(2) Evaluation Metrics: We evaluate the efectiveness of
the method using two evaluation metrics: accuracy
and EER. Te accuracy is the percentage ratio of the
total number of correct authentication against the
total number of authentication. EER is the point that
the true acceptance rate (FAR) equals the true re-
jection rate (FRR). Te lower the EER, the higher the
authentication accuracy [25].

4.2. Efciency of theWGAN. We design the WGAN that can
learn the details of raw sensor data for diferent activities
(operation while sitting or walking). As shown in Figure 4,
the red lines represent the loss of generating sensor data in
the process of iterative training, and the blue line represents
the loss of identifying true and false data in the process of
iterative training. With the number of iterations increases,
the discriminator and generator gradually converge to
a small value. In particular, when the iteration period rea-
ches 3000, the discriminator and generator loss converges to
0, indicating that the generated sensor data are highly similar
to the real data.

Trough continuous training of the WGAN model, the
ability of the generator to capture real sensor data distri-
bution during human-computer interaction is improved.
From Figure 5, we can see that the data generated when
standing on the mobile phone are more stable than the data
generated when walking.

From the generator’s point of view, diferent WGAN
models can achieve stable results. Te test results meet our
goal of the generator being able to learn the true distribution
of real sensor data and output synthetic sensor data that is
close to real sensor data.

4.3.Efectiveness ofWGANAugmentation. In this section, we
evaluate the authentication performance on real and aug-
mented data. Tese data are all extracted by the CNN. As
shown in Table 1, we use four classifers to validate the mean
EER from diferent data sizes.

We can see from Table 1 that the combination of real
data and augmented data improves the authentication
performance. For example, when the data size is 75% of the
training data, the OCSVM classifer has the highest mean
EER. Te mean EER is reduced by 48% after the WGAN
augmentation method is used, and the mean EER is 3.68%, it
performs the best performance. For other classifers, as the
size of the data set increases, the authentication performance
is better. In particular, the mean EER is generally reduced
after the data augmentation method is used.

4.4. Efectiveness of the CNN. In this section, to evaluate the
efectiveness of the features learned by the CNN, we choose
four classifers to test on handcrafted features (See Reference
[18] for features extracted) and CNN-learned features, and
the accuracy of our proposed method on the four classifers
is shown in Figure 6.

As presented in Figure 5, we can see that the authen-
tication EER of the CNN-learned features (yellow box) is
signifcantly better than that based on handcrafted features
(purple box). In particular, based on CNN-learned features
with the OCSVM classifer shows the best EER. In addition,
as shown in Table 2, the mean ERR of the OCSVM classifer
based on CNN-learned features proposed in this article
reaches 3.86%, which is 6.61% lower than statistical features.

We compared the results of handcrafted features and
CNN features without any data augmentation (DA) on OC-
SVM, as shown in Table 3.

In Figure 7 and Table 3, we can see that when the
sampling time is fxed, the authentication accuracy of CNN-
learned features (DA) and hand-crafted features (DA) is
generally higher. When there is no data augmentation,
CNN-learned features are compared with hand-crafted
features, and the accuracy of authentication based on
CNN-learned features is improved.

4.5. Authentication Performance under Diferent Activities.
To verify the robustness of the authentication system, we test
data on diferent user activities. Diferent new activity data
and old activity data are divided according to the task type.
We use the authentication model trained from historical
user activity data to deal with new activity data. Te au-
thentication results are as follows:

From Table 4, we can see the mean EER (%) of diferent
user activities for diferent classifers. Our proposed method
has the smallest mean ERR of 3.87% on the OCSVM clas-
sifer.Temean EER of the RF classifer on Sitting +Reading
and Walking +Map is 4.32% and 7.1%, respectively, and the
mean EER of the OCSVM classifer on Sitting +Map,
Walking + Reading, and Walking +Writing is 6.39%, 4.58%,
and 5.14%, respectively. In addition, we can see from Fig-
ure 8 that the EER values in diferent user activities are
generally low and stable, which indicates that the designed
CNN has high efciency and strong robustness.

4.6. Accuracy for UnseenUsers. To evaluate unseen users, we
explore the authentication accuracy of the WGAN on
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unseen users to evaluate the performance of the pretrained
CNN on unseen users. To conduct the evaluation, we
randomly select m users for CNN training and choose some
users from the rest (88−m) for classifer training and testing.

We set m� 40 and unseen users as 10, 20, 30, and 40, re-
spectively. Ten, we use the trained authentication model of
the 4 classifers for testing, and the authentication results are
shown in Table 5 as follows:

From Table 5 we obtain such a result. With unseen users
increasing, our authentication system keeps more than 90%
accuracy on 4 classifers. Specifcally, when n� 20, in these
four classifers, the OCSVM classifcation shows the best
accuracy of 98.72%. Te KNN classifer shows the best ac-
curacy of 94.54%, the RF classifer shows the best accuracy of
97.96%, and the DT classifer shows the best accuracy of
95.27%.Te test on unseen user data shows that the system is
robust.

4.7. Comparing with Other Existing Methods. To verify the
diferences between the proposed method and state-of-
the-art methods, we analyze the diferences with other au-
thentication methods. As shown in Table 6, this table shows
the existing methods, data sources, and authentication re-
sults of the methods to which they belong.

Table 1: Mean EER (%) of real data and augmented data for the
four classifers at diferent data sizes.

Classifers
Real data Real data +Augmented

data
25% 50% 75% 100% 25% 50% 75% 100%

KNN 21.28 15.54 13.65 12.78 12.18 11.69 9.08 8.57
OCSVM 22.18 13.58 9.87 10.56 25.13 11.83 3. 8 4.02
RF 19.25 10.58 9.67 8.86 7.89 6.94 5.48 4.84
DT 15.89 12.89 9.68 7.73 9.86 7.52 6.83 5.94
Temean EER is reduced by 48% after theWGAN augmentation method is
used, and the mean EER is 3.68%, it performs the best performance.
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Figure 5: (a) Discriminator and generator loss for walking. (b) Discriminator and generator loss for sitting.
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Figure 6: Mean ERR comparison on classifers with diferent
features.

Table 2: Mean ERR (%) of the four classifers on diferent features.

Features KNN OCSVM RF DT
Handcrafted features 9.87 10.57 9.35 11.45
CNN-learned features 6.56 3.86 6.94 9.34

Table 3: Accuracy (%) of handcrafted features and CNN-learned
feature without any data augmentation.

Features 10 s 20 s 30 s 40 s 50 s 60 s
Handcrafted features 93.35 95.47 96.89 98.7 99.12 99.35
CNN-learned features 98.12 99.25 99.36 99.45 99.58 99.52
Handcrafted features
(DA) 99.15 99.25 99.45 99.62 99.72 99.84

CNN-learned features
(DA) 99.35 99.46 99.56 99.72 99.88 99.98
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In Table 6, SensorCA [14] applied matrix rotation for
accelerometer, gyroscope, and magnetometer data,
resulting in an EER of 3.70% for the SVM-RBF classifer.
SensorAuth [16] explored fve data augmentation methods
of permutation, sampling, scaling, cropping, and jittering
to create additional accelerometer and gyroscope data and
achieved an EER of 6.29% with a dataset size of 200 by
combining the fve methods.Te CWGAN [26] achieved an
optimal EER of 3.72% with a data volume of 700, but it did
not take into account the impact of behavioural changes.
Based on the HMOG dataset, [7] an EER of 7.16% is ob-
tained for walking and an EER of 10.05% is obtained for
sitting. Te EER of the proposed method on diferent user
activity data is between 3.68% and 6.39%. Note that this
table only provides preliminary comparison results, and
each method has its advantages and disadvantages under
diferent conditions.

5. Conclusions and Future Work

In this article, we propose a robust continuous authenti-
cation system using a WGAN on smartphones for sensor
data augmentation, which mainly focuses on the use of
smartphones for user authentication under diferent activ-
ities. Diferent from the state-of-the-art authentication
methods, the existing method usually requires the user to
swipe the screen and press the keys of the mobile phone
under a specifed activity. Our method collects motion
sensor (an accelerometer, a gyroscope, and a magnetometer)
data under diferent activities. To obtain good authentication
performance, we utilize the WGAN model to create
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Figure 7: Accuracy (%) of handcrafted features and CNN-learned
features without any data augmentation.

Table 4: Mean EER (%) on diferent user activities for diferent
classifers.

Activities RF OCSVM KNN DT
Sitting + reading 4.32 5.52 6.52 5.52
Sitting +writing 9.87 3.87 4.99 4.43
Sitting +map 6.77  .39 6.64 6.93
Walking + reading 9.78 4.58 10.52 13.06
Walking +writing 10.78 5.14 11.52 9.49
Walking +map 7.10 6.36 13.38 10.48
Our proposed method has the smallest mean ERR of 3.87% on the OCSVM
classifer. Te mean EER of the RF classifer on sitting + reading and
walking +map is 4.32% and 7.1%, respectively, and the mean EER of the
OCSVM classifer on sitting+map, walking + reading, and walking +writing
is 6.39%, 4.58%, and 5.14%, respectively.
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Figure 8: EER on diferent user activities for diferent classifers.

Table 5: Accuracy (%) for unseen users on OCSVM.

Classifer\Unseen users 10 20 30 40
KNN 92.47 93.47 96.45 92.54
OCSVM 96.83 98.72 98.11 97.17
RF 92.28 97.17 96.39 97.27
DT 92.16 93.75 94.53 95.63
When n� 20, in these four classifers, the OCSVM classifcation shows the
best accuracy of 98.72%.

Table 6: Comparing with other existing methods.

Methods Data sources Results

SensorCA
[14]

Accelerometer,
gyroscope, and
magnetometer

EER: 3.70%
(SVM-RBF)

SensorAuth
[16]

Accelerometer and
gyroscope EER: 6.29%

CWGAN
[26]

Accelerometer,
gyroscope, and
magnetometer

EER: 3.72%

Our method
Accelerometer,
gyroscope, and
magnetometer

EER: 3.68% (OCSVM)

HMOG [7]
Accelerometer,
gyroscope, and
magnetometer

EER: 7.16% (walking)
and 10.05% (sitting)
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additional data from raw sensor data under diferent ac-
tivities for data augmentation. With the augmented data, we
design a convolutional neural network to learn and extract
deep features from sensor data, then use four classifers of
RF, OCSVM, DT, and KNN to train these features, and
fnally test on diferent user activity data. Te experiments
are evaluated and analyzed on the HMOG dataset, and the
results show that the EER of the authentication system is
between 3.68% and 6.39% on the sensor data with a time
window of 2 s.

However, since the accuracy for continual learning on
theWGAN still has room for improvement, in the future, we
will look into new techniques to generate high quality of
samples that best represent the real data while also en-
couraging the diversity.

Data Availability

Te research data supporting the results of this study are
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