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Abstract

Model extraction attacks (MEAs) enable an attacker to repli-
cate the functionality of a victim deep neural network (DNN)
model by only querying its API service remotely, posing a
severe threat to the security and integrity of pay-per-query
DNN-based services. Although the majority of current re-
search on MEAs has primarily concentrated on neural classi-
fiers, there is a growing prevalence of image-to-image trans-
lation (I2IT) tasks in our everyday activities. However, tech-
niques developed for MEA of DNN classifiers cannot be di-
rectly transferred to the case of I2IT, rendering the vulnera-
bility of I2IT models to MEA attacks often underestimated.
This paper unveils the threat of MEA in I2IT tasks from a new
perspective. Diverging from the traditional approach of bridg-
ing the distribution gap between attacker queries and victim
training samples, we opt to mitigate the effect caused by the
different distributions, known as the domain shift. This is
achieved by introducing a new regularization term that penal-
izes high-frequency noise, and seeking a flatter minimum to
avoid overfitting to the shifted distribution. Extensive exper-
iments on different image translation tasks, including image
super-resolution and style transfer, are performed on differ-
ent backbone victim models, and the new design consistently
outperforms the baseline by a large margin across all metrics.
A few real-life I2IT APIs are also verified to be extremely
vulnerable to our attack, emphasizing the need for enhanced
defenses and potentially revised API publishing policies.

1 Introduction
Deep neural networks (DNNs) have exhibited remarkable
success in diverse domains, driven by substantial invest-
ments in data processing, computational power, and exper-
tise knowledge (Pouyanfar et al. 2018). This success has
been capitalized through the introduction of pay-per-query
API services (Amazon 2023; Google 2023). However, re-
cent research has uncovered a notable vulnerability: model
extraction attacks (MEAs). These attacks empower an ad-
versary to replicate the remote DNN’s functionality by craft-
ing surrogate models (Tramèr et al. 2016). Consequently,
this allows unauthorized access to the service, enabling the
adversary to launch adversarial attacks or privacy attacks
on the service provider (Papernot et al. 2017; Zhang et al.
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2022b; Ma et al. 2023; Ye et al. 2022). Such vulnerabilities
not only undermine the security of the entire model supply
chain but also pose a critical challenge to the integrity of
DNN-based services.

Despite the apparent simplicity of this attack process, a
significant challenge persists for the adversary: the queried
samples are unlikely to perfectly match the secret training
dataset utilized for training the victim model, then how can
the MEA be executed in a manner that ensures both ef-
fectiveness and efficiency, given this discrepancy between
queried and training samples?

To close the distribution gap between query and training
samples, numerous works have been proposed for various
classification tasks, including image processing (Orekondy,
Schiele, and Fritz 2019; Pal et al. 2020; Yuan et al. 2022;
Barbalau et al. 2020), NLP processing (Krishna et al. 2019;
Xu et al. 2021), and graph data processing (Wu et al. 2022;
Shen et al. 2022). For instance, in image classification,
(Orekondy, Schiele, and Fritz 2019) suggested using rein-
forcement learning, and (Pal et al. 2020) suggested using
active learning as a means to identify better query sam-
ples. Alternatively, (Yuan et al. 2022; Barbalau et al. 2020)
advocated aligning the distribution of the secret training
dataset with Generative Adversarial Networks (GANs). In
NLP tasks, (Xu et al. 2021) suggested targeting an ensemble
of victim APIs simultaneously, all providing the same ser-
vice, to make them implicitly vote for good query samples.

Concurrent with classification tasks, image-to-image
translation (I2IT) tasks, such as image super-resolution or
restoration, constitute another significant application do-
main of DNNs. As a testament to this prevalence, Table 1
makes a comparison of the pay-per-use price between clas-
sification and I2IT tasks on different platforms (Baidu AI
Cloud 2022; Imglarger 2022; VanceAI Technology 2022;
Amazon 2023; Google 2023). Nonetheless, the MEA vul-
nerabilities in I2IT are rarely explored, making their risk
largely underestimated.

We attribute this to the natural difference between study-
ing MEA on classification models and I2IT models. In par-
ticular, extracting a classification model corresponds to ef-
fectively identifying its decision boundary (Pal et al. 2020).
Hence, any alteration in the label or confidence scores of a
queried sample (results yielded by the victim API) implies
the sample is crossing the decision boundary or changing its



Image translation
Service provider Baidu AI Cloud Imglarger VanceAI
Pricing (/image) $0.0064-0.0614 $0.09 $0.035

Classification
Service provider Amazon Google Cloud Baidu AI Cloud
Pricing (/image) $0.0008-0.001 $0.001-0.0015 $0.00029-0.00041

Table 1: Pay-per-use price comparison on different APIs.

proximity to the boundary, which can be exploited directly
by the adversary to select better queries. In contrast, I2IT
models take images as inputs and produce images as their
outputs. It remains unknown what kind of information re-
garding the victim model the output images carry, and which
output image carries more.

Considering this discrepancy, this paper introduces an in-
novative approach to initiate MEA on I2IT models. The core
idea is to directly mitigate the domain shift problem when
training the surrogate. To achieve this, we design two com-
plemented components: one regulates the behavior of the
surrogate to suppress noisy components in translation out-
comes while reducing model complexity, and the other pur-
sues a flatter optimum to avoid overfitting to the shifted dis-
tribution. To our best knowledge, this is the first time that
domain shift mitigation techniques is investigated in the con-
text of MEAs. The contribution of this work is twofold:
• Besides the traditional wisdom of closing the distribu-

tion discrepancy in MEA, we, for the first time, highlight
that mitigating the domain shift constitutes another angle
for launching MEA attacks. This approach proves espe-
cially advantageous in scenarios where how to select bet-
ter queries is not clear. This fresh angle on MEA attacks
is of independent research interest.

• We apply concrete domain shift mitigation strategies
(i.e., wavelet regularization and sharpness-aware mini-
mization) to extract GAN-based models in I2IT tasks.
Extensive experimental results in controlled laboratory
conditions and real-world scenarios corroborate that
MEA is a real threat to image translation systems.

2 Background and Related Work
GAN-based Image Translation
GAN functions by training two competing models to ulti-
mately learn the unknown true distribution, Pdata(x), of the
training data X . The generator model G, which creates a
synthetic imageG(z) from a random variable z, and the dis-
criminator model D, which operates as a binary classifier to
distinguish G(z) from true image x ∼ Pdata(x) are obtained
by solving

LGAN = min
G

max
D

Ex∼Pdata(x)[logD(x)]

+ Ez∼Pz
[log(1−D(G(z)))],

(1)

where Pz is a random distribution. Upon convergence (i.e.,
when G(z) approximates Pdata(x)), G can produce high-
quality and photo-realistic samples, rendering it valuable for
many image processing tasks.

By expanding the role of D to differentiate between im-
ages from a source domain and those from a target domain

(e.g., image super-resolution or style transfer), GAN and its
variants have gained widespread application in I2IT, which
is the primary concern of this work. According to (Pang
et al. 2021), I2IT can be divided into supervised and unsu-
pervised based on whether the training samples in the source
and the target domain are paired or not. This work considers
the widely used supervised framework Pix2Pix (Wang et al.
2018a) and the unsupervised framework CycleGAN (Kim
et al. 2019). Details of these two frameworks can be found
in Supp.-A.

Model Extraction Attacks
As mentioned in Sec. 1, by taking the victim model FV as
a labeling oracle, the goal of MEA involves creating an at-
tack model FA that emulates the functionalities of the vic-
tim model FV . In classification tasks, this goal translates to
finding the decision boundary while reducing the query bud-
get under the assumption of attackers’ knowledge. Strategies
include selecting better query samples with reinforcement
learning (Orekondy, Schiele, and Fritz 2019) or active learn-
ing (Pal et al. 2020), or even harnessing GAN to generate
images that are close to the secret training data of FV (Yuan
et al. 2022; Barbalau et al. 2020).

It is crucial to note that such strategies cannot be readily
transferred to MEA of I2IT models. In classification tasks,
the outputs of the victim model FV are labels or confidence
scores, which inherently carry rich information about the
decision boundary of FV . In contrast, I2IT victim models
merely return translated images upon query and do not ex-
pose their latent embeddings to attackers. Moreover, it re-
mains unknown (Hu and Pang 2021; Szyller et al. 2021)
what kind of translated images contain more information
about the victim FV , and this effect is exacerbated when
the attacker’s query data distribution deviates from the se-
cret training data of FV (i.e., the domain shift problem). As
such, instead of looking for better query samples, we adopt
an alternative route that directly mitigates the effect caused
by domain shift when extracting the underlying models of
I2IT.

3 Threat Model
Adversary’s Knowledge
We consider a victim model FV : X → Y that translates
images from a source domain X to a target domain Y has
been well-trained on a secret dataset DV = (DX

V , D
Y
V ). The

victim FV has been employed as the backbone to provide
API service to remote users. The attacker A is knowledge-
able of the general service domains (e.g., translating horse
pictures to zebra), but he cannot access the structure, param-
eters, hyperparameters, and the secret training dataset of FV .
The attacker first constructs his own training dataset DA by
querying the API service with public samples x ∈ DX

A and
collecting labeled pairs (x, FV (x)). Then A develops a lo-
cal attack model FA that mimics the functionality of FV by
solving

min
FA

Ex∼pA(x) d(FA(x), FV (x)), (2)

where pA(x) represents the data distribution of DX
A and d is

a distance metric.
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Figure 1: An illustration of the domain shift problem: The
problem arises when there is a disparity between the do-
mains of the victim model’s training data and the attack data.
This mismatch causes certain attack data to be incorrectly
mapped to the target domain.

Flat and smooth

Loss

𝐹𝐴 trained with flat min and lower 
model complexity to mitigate the 
effect of the domain shift.

𝐹𝑉 normal training with 𝐷𝑉.

𝐹𝐴 normal training with 𝐷𝐴, which is affected 
by the domain shift.

parameters w

Figure 2: Illustration of the effect of domain shift mitigation.

Adversary’s Goals
We consider two typical adversary’s goals following the ex-
isting literature of MEA (Jagielski et al. 2020).
Functionality Extraction aims to obtain a local replica that
is capable of completing the intended function of the vic-
tim model. Here, we define the Functional Completion De-
gree (Rcapability) to assess the capability of FA in accomplish-
ing the I2IT task. Rcapability represents the distance between
the region into which the source domain falls after being
mapped by the attack model and the target domain. It can be
written as

Rcapability = Ex∼ptest(x) d(FA(x), Y ),

where ptest(x) is the distribution of the test data. It’s essential
to note that FA might even outperform FV .
Fidelity Extraction is to minimize the discrepancy between
the output distribution of the attack model and that of the
victim model. We define the Output Fidelity (Rfidelity) as

Rfidelity = Ex∼ptest(x) d(FA(x), FV (x)).

It is noted that Rcapability and Rfidelity can vary indepen-
dently. In the situation that the attacker lacks access to the
target domain Y , Rfidelity is a practical metric to evaluate the
effectiveness of MEA.

4 Method
Domain Shift Problem
The domain shift problem, as discussed in (Glorot, Bordes,
and Bengio 2011), typically pertains to the decline in model
performance caused by disparities between the distribution

Secret training victim model 𝐹𝑉 . Train attack model 𝐹𝐴 in local.

Attack’s training dataset.

Victim’s training dataset.

Send queries.

Domain     
Shift

(𝒙 𝒊𝒏 𝑫𝑨
𝑿)

𝐷𝐴
𝑋 mixed with noise.

𝐹𝑉 𝑥 ∉ Y 

𝐹𝑉 𝑥 ∈ Y 

𝑭𝑽

𝐹𝐴

Wavelet
Regularization
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Modules for mitigating 
the impact of the domain 
shift.

𝑭𝑽

𝑫𝑽
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Figure 3: Approach overview.

of training data and that of test data. In this work, we identify
this phenomenon as a fundamental factor affecting the per-
formance of MEA. In MEAs, attackers lack access to the se-
cret data used to train the victim model and they usually only
use public datasets as attack data. When a disparity exists be-
tween the distribution of this public data and the distribution
of the secret data, it causes the attack model’s output quality
to decrease and can even result in deviations from the tar-
get domain. Such data that fails to effectively represent the
mapping relationship between the source and target domains
can be considered noise data, which hinders the training of
subsequent attack models.

Fig. 1 demonstrates such a scenario. The victim model
FV is trained to transfer images from the source domain
X to the target domain Y . However, the knowledge it has
learned is solely based on the data distributions of DX

V and
DY
V in its training dataset DV . Consequently, the domain

shift between DX
V and DX

A can lead to situations where the
model’s output may not necessarily correspond to the tar-
get domain, meaning that FV (x) might not be a valid repre-
sentation in Y for images x ∈ DX

A . The situation becomes
worse when the attacker utilizes a publicly available dataset.
In such cases, the discrepancies between the data distribu-
tion in DX

V and DX
A could be significant, exacerbating the

challenges of mapping the model’s output to the target do-
main accurately. We visualize this discrepancy with real ex-
amples from style transfer tasks in Supp.-B.

Attack Overview
For MEA of classification tasks, traditional wisdom aims at
closing the distributional gap between the victim dataset and
the attack dataset (Orekondy, Schiele, and Fritz 2019; Pal
et al. 2020; Yuan et al. 2022). Due to the unique challenge
of I2IT tasks, this work aims to address the impact of the
domain shift problem from an orthogonal perspective by re-
sorting to a flatter and smoother loss landscape for the attack
model. Fig. 2 illustrates our insight. In the sketch, we briefly
illustrate the effect of different factors on the model’s test
loss. Under vanilla training of the attack model, the obtained
FA will be fitted to the distribution of the attack’s training
set DA, hence deviating from the original optima of FV . In
contrast, when the model is enforced to be with lower com-
plexity (i.e., smooth) around a flat minimum area, such local
overfitting introduced by domain shift can be mitigated.



To achieve this, we introduce the following two tai-
lored components (as shown in Fig. 3). We first construct
a wavelet regularization term from a frequency perspec-
tive. This concept draws inspiration from recent investi-
gations (Zhang et al. 2022a) which highlight a particular
property of GANs’ behavior within the frequency domain.
Specifically, GANs tend to exhibit low errors within the low-
frequency range but usually fail to produce high-quality re-
sults in the high-frequency bands. We therefore apply the
discrete wavelet transform (DWT) to decompose images in
DX
A (i.e., the attackers’ input images) and DY

A (i.e., the im-
ages generated by the victim model’s from the attacker’s im-
ages) into different frequency bands, and penalize the L1
distance on the high-frequency band. The wavelet regular-
ization term can effectively reduce the complexity of the
I2IT network. This, in turn, encourages consistent outputs
between the victim model and the attack model, particularly
enhancing finer image details within the high-frequency
band.

We then train the attack model using sharpness-aware
minimization (SAM). Due to the noise caused by domain
shifting (i.e., DV → DA), the inherent issue of mode col-
lapse during GAN training can be exacerbated, which leads
the model to overly specialize in certain patterns during
the generation process, resulting in an overfitting to par-
tial data (d’Ascoli, Sagun, and Biroli 2020). Recent stud-
ies have demonstrated that SAM (Foret et al. 2020) opti-
mizer has held the promise of seeking out flatter minima
by simultaneously minimizing loss value and loss sharpness.
However, to the best of our knowledge, there have been no
prior works reporting the process of training GANs using
SAM. We therefore introduce a GAN-specific SAM variant
towards a wide minimum and further improve the effective-
ness of MEA against the I2IT network.

Wavelet Regularization
To construct a wavelet regularization term, we first decom-
pose the output image using the DWT into four distinct sub-
bands: low frequency (LL), low-high frequency (LH), high-
low frequency (HL), and high-high frequency (HH). We
assume the image intended for DWT as c. This can be repre-
sented as Ψ(c) = {LL(c), LH(c), HL(c), HH(c)}.We de-
note ΨH

p (c) = {LH(c), HL(c), HH(c)} as high-frequency
terms, where p represents the times DWT applied. We then
use the L1 distance to construct the wavelet regularization
term as
Lpw = Ex∼pA(x)

∥∥(ΨH
p ◦ FA

)
(x)−

(
ΨH
p ◦ FV

)
(x)
∥∥
1
.

As a result, the overall loss function, denoted as L, becomes
L = Lo + αLpw, (3)

where Lo is the vanilla loss function of the model backbone
(e.g., Pix2Pix or CycleGAN) in I2IT tasks, and α is the co-
efficient used to balance between Lo and Lpw.

By incorporating Lpw into the training process, our objec-
tive is to minimize the disparity in high-frequency informa-
tion between the victim model’s output (FV ) and the attack
model’s output (FA). The regularization term can also penal-
ize the model during training, thereby reducing model com-
plexity and alleviating the overfitting to the noise.

Figure 4: Comparison of model loss landscape. Left and
right are losses trained with Adam and SAM, respectively.

SAM for GAN-based I2IT
Besides designing a new regularization term (i.e., Eq. 3), we
also investigate domain shift mitigation from the view of op-
timizers. Assume that the loss function of the model to be
optimized is L and the model parameters are w, loss sharp-
ness is defined as

max
‖ε‖2≤ρ

L(w + ε)− L(w),

where ρ (ρ ≥ 0) is the neighborhood size. SAM (Foret et al.
2020) optimizes both the loss function and the loss sharpness
by solving

min
w

(
max
‖ε‖2≤ρ

L(w + ε)− L(w)

)
+ L(w).

This can be further simplified as

min
w

max
‖ε‖2≤ρ

L(w + ε).

With the first-order Taylor expansion, the value ε that
solves the inner maximization is

ε(w) = ρ · ∇wL(w)

‖∇wL(w)‖2
.

Substitute ε(w) back, the minimization can be approxi-
mately solved as

wt+1 = wt − αt · ∇wL(w)|w+ε(w), (4)

where αt is the learning rate at time step t. Note that solving
Eq. 4 requires solving ε(w) first, and we use Adam twice in
our experiments.

Without loss of generality, consider the backbone model
used for I2IT consists of N generators G = {G1, ..., GN}
and M discriminators D = {D1, ..., DM}, with their re-
spective parameters being wG =

{
wG1 , . . . ,wGN

}
and

wD =
{
wD1 , . . . ,wDN

}
. Referring to Eq. 1, we alterna-

tively optimize G and D with SAM optimizer by
ε(wGi) = ρGi

· ∇wGiL(w)

‖∇wGiL(w)‖2
,

g(wGi) = ∇wGiL(wGi)|wGi+ε(wGi ),

wGi
t+1 = wGi

t − αt · g(wGi),
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Figure 5: Qualitative results of our attack against the style
transfer task. (a-b). horse2zebra, (c-d). photo2vangogh.

for each Gi ∈ G (i ∈ [1, N ]) and
ε(wDj ) = ρDj

·
∇wDjL(w)

‖∇wDjL(w)‖2
,

g(wDj ) = ∇wDjL(wDj )|wDj+ε(wDj ),

w
Dj

t+1 = w
Dj

t + αt · g(wDj ),

for each Dj ∈ D (j ∈ [1,M ]). Here, ρGi and ρDj are the
loss sharpness hyper-parameters of Gi and Dj , respectively.

We summarize the process in algorithm in the supp.-c. It is
imperative to highlight that the scenario under consideration
resembles that of the CycleGAN model, where two gener-
ators and two discriminators are used and the generators it-
erate concurrently. However, if certain generator parameters
require individual iteration, they should have respective opti-
mization directions computed separately. As gradients need
to be computed twice, the SAM requires forward propaga-
tion to be performed twice in each iteration.

We conduct experiments in the style transfer task
horse2zebra, and visualize the loss landscape of the Pix2Pix
backbone by training models with different optimizers in
Fig. 4. After applying SAM, the loss landscape of the attack
model becomes flatter.

5 Experimental Analyses
Experimental Setup
Dataset and Models. We assess the performance of our at-
tack on typical I2IT tasks, i.e., style transfer tasks includ-
ing horse2zebra (converting horse images to zebras) and
photo2vangogh (converting photos to Van Gogh style), as
well as the super-resolution task (enhancing anime images
resolution).

To build the victim model, we use CycleGAN (Liu,
Breuel, and Kautz 2017) to train the style transfer tasks,
and we directly employ the pre-trained real-ESRGAN
model (Wang et al. 2021) for the super-resolution task.

Task Method Rcapability Rfidelity
FID↓ KID↓ FID↓ KID↓

h2z†
Victim 63.08 1.21±0.09 NA NA

Artist-Copy 115.09 5.59±0.39 75.65 1.93±0.25
Ours 82.63 2.55±0.24 57.87 0.32±0.09

p2v†
Victim 109.78 2.73±0.43 NA NA

Artist-Copy 112.31 3.01±0.41 59.83 1.70±0.27
Ours 110.00 2.66±0.37 59.09 1.45±0.25

‡ Since the consistency between the victim model’s output and itself is not required,
theRfidelity values are represented as NA. KID is reported as KID×100±std.×100, the
same hereinafter. † We use h2z and p2v to represent horse2zebra and photo2vangogh.

Table 2: Quantitative results of our attack against the style
transfer tasks‡.

The datasets employed to train the victim style transfer
models are horse2zebra and photo2vangogh in (Zhu and
et al. 2021). The datasets used for training the victim super-
resolution model are DIV2K (Agustsson and Timofte 2017),
Flickr2K (Timofte and et al. 2017), and OutdoorSceneTrain-
ing (Wang et al. 2018b). All of these are identical to the
original settings (Liu, Breuel, and Kautz 2017; Wang et al.
2021). All victim models have demonstrated compelling
performance in their respective tasks.

To train the model, we use Pix2Pix (Isola et al. 2017)
and CycleGAN (Liu, Breuel, and Kautz 2017) as attack
modeling backbone frameworks for style transfer and super-
resolution tasks, respectively.

Since attacker A is knowledgeable of the general service
domains, we construct A’s training dataset DX

A as follows.
For the horse2zebra task, we employ horse images from the
Animal10 dataset (Zhu et al. 2019). For the photo2vangogh
task, we utilize a subset of two thousand landscape images
from the Landscape dataset (Rougetet 2020). Regarding
the super-resolution task, we use the Anime dataset (Chen
2020), which comprises images sourced from anime films
created by Makoto Shinkai, Hayao Miyazaki and Kon
Satoshi.

We employ the test set of the victim model to evaluate the
performance on style transfer tasks. We select 200 images
from Anime dataset (Chen 2020) (ensuring they are disjoint
with the training dataset used for the attack) as the test set
for the super-resolution task. Further details about the setup
can be found in Supp.-D.
Evaluation Metrics. We assess the image quality of our at-
tack using widely adopted metrics: Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017) and Kernel Inception Dis-
tance (KID) (Bińkowski et al. 2018). Both FID and KID
measure the divergence between image distributions, with
lower scores implying higher similarity. Additionally, we
employ PSNR (Peak Signal-to-Noise Ratio) and LIPIPS
(Zhang et al. 2018) at both pixel and perceptual levels.
PSNR calculates pixel-wise differences between images,
with higher values denoting greater similarity. Whereas,
LPIPS incorporates perception-based features, with lower
values indicating increased similarity.
Baseline. We consider the Artist-Copy (Szyller et al. 2021)
as the baseline since it is currently the only known MEA in
GAN-based I2IT.
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Figure 6: Qualitative results of our attack against the super-
resolution task (4x upscaling).

Attack Performance
Style Transfer. Compared to the baseline, our method
demonstrates significant performance improvement in all
comparative experiments.

As shown in Table 2, in the horse2zebra task, the FID/KID
scores of our attack reach 82.63/2.55 for Rcapability and
57.87/0.32 for Rfidelity, significantly surpassing the Artist-
Copy method which achieves 115.09/5.59 and 75.65/1.93
FID/KID scores for Rcapability and Rfidelity, respectively. In
the photo2vangogh task, our attack achieves 110.00/2.66
and 59.09/1.45 FID/KID scores for Rcapability and Rfidelity. In
contrast, the Artist-Copy method only attains FID/KID val-
ues of 112.31/3.01 for Rcapability and 59.83/1.70 for Rfidelity.

It is worth mentioning that in the horse2zebra task, the at-
tack model shows the highest improvement, with a decrease
of 32.46 in Rcapability FID. Moreover, in the photo2vangogh
task, our model achieves performance on Rcapability that is
almost as good as the victim model.

Fig. 5 demonstrates the effect of our attack in style trans-
fer tasks. As shown in Fig. 5 (a-b), our attack successfully
extracts the functionality of the victim model, enabling the
transformation of horses into zebras while the Artist-Copy
method struggles to properly add zebra patterns to the horses
in the horse2zebra task. Fig. 5 (c-d) illustrates the attack per-
formance against the photo2vangogh task with zoomed-in
views of the outputs in order to demonstrate our attack’s
capacity in generating fine details of the images. We can
observe that our attack has achieved closer outputs to the
victim model and it handles the details better due to its abil-
ity in generating higher-quality high-frequency information.
However, the Artist-Copy method shows significant abnor-
mal noise and artifacts in the output due to overfitting on
noisy data induced by domain shift problems. Additional re-
sults can be found in Supp.-E.

Notably, our attack necessitates a significantly smaller
number of queries compared to the baseline. For example,
the performance of our attack using half the number of
queries (2-3k queries) surpasses that of the baseline using
4-5k queries (Results can be found in Supp.-E).These find-
ings highlight the impact of the domain shift issue, a fac-

Method Model Rcapability Rfidelity
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

Victim Real-ESRGAN 34.56 0.067 NA NA
Artist-Copy CycleGAN 27.67 0.177 27.89 0.156

Ours CycleGAN 29.73 0.145 29.73 0.141

Table 3: Quantitative results of our attack against the super-
resolution task (4x upscaling).

tor that significantly limits the effectiveness of traditional
MEAs which rely on increasing query counts to enhance at-
tack capabilities. In contrast, our MEA, incorporating meth-
ods that address the domain shift problem, achieves favor-
able performance with a substantially reduced number of
queries.

Super-resolution. Our method also achieves better attack
performance in the super-resolution task (4x upscaling). In
Table 3, we present the experimental results. The metrics in
the table are computed as the averages of the test set images.

Compared to the Artist-Copy, our method shows a 2.06
increase in PSNR for Rcapability and a decrease of 0.032 in
LIPIS. Moreover, our method exhibits a 2.16 increase in
PSNR for Rfidelity and a decrease of 0.015 in LIPIS.

In Fig. 6, we compare the performance of bicubic interpo-
lation (i.e., a common method for image upscaling), victim,
Artist-Copy, and our method in the super-resolution task.
We can observe that our method’s output shows a signif-
icant improvement in image clarity compared to the bicu-
bic method, demonstrating the success of the attack. Fur-
thermore, through an analysis of the performance on the de-
tailed parts of Fig. 6, it can be noted that our method’s out-
put presents texture details with greater clarity compared to
the Artist-Copy. For example, in the second row of Fig. 6,
it becomes evident that our method’s output exhibits sig-
nificantly sharper edges on the hat and more distinct lines
around the mouth. This observation further implies that our
approach consistently aligns with the performance of the
victim model, particularly in capturing high-frequency el-
ements within the frequency domain.

Ablation Study

We now evaluate the effectiveness of the wavlet regular-
ization and SAM, respectively, in model extraction attacks
against the horse2zebra task. Table 4 shows that both the
FID and KID scores of Rcapability and Rfidelity undergo a sig-
nificant increase when either the SAM or the wavelet regu-
larization term is removed, which demonstrates the necessity
and effectiveness of each component in our method.

The analysis reveals that the use of the wavelet regular-
ization term alone on top of the baseline gives a better per-
formance in terms of both Rfidelity and Rcapbility because it
promotes the consistency of the outputs of the victim model
and the attack model in the frequency domain. On top of it,
SAM can further improve the attack performance due to its
ability in finding a much flatter optimum.



Component Rcapability Rfidelity
Wavlet regularization SAM FID↓ KID↓ FID↓ KID↓

× × 115.09 5.59±0.39 75.65 1.93±0.25√
× 100.69 4.25±0.30 68.01 1.06±0.17

×
√

104.04 4.37±0.30 70.72 1.25±0.22√ √
82.63 2.55±0.24 57.87 0.32±0.09

Table 4: Ablation Experiment Results.
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Figure 7: The performance of our attack against commercial
I2IT services. (a). face2cartoon (3d), (b). landscape2cartoon.

Task Model Method FID↓ KID↓

f2c (2d)† CycleGAN Artist-Copy 63.20 1.79±0.27
Ours 59.61 1.36±0.2

f2c (3d)† CycleGAN Artist-Copy 60.89 1.43±0.18
Ours 51.67 0.61±0.13

l2c† Pix2Pix Artist-Copy 68.55 1.47±0.21
Ours 64.65 1.21±0.20

† We use f2c and l2c to represent face2cartoon and landscape2cartoon.

Table 5: The performance of our attack against commercial
I2IT services.

6 MEA Agaisnt I2IT in Real Life
In this section, we conduct MEA against real-world com-
mercial I2IT services to verify our attack’s ability. We select
two widely used I2IT service platforms as our target. The
outcomes of our attack substantiate its impressive efficacy
in successfully extracting victim models.

I2IT Services
The mainstream I2IT services can be divided into two cate-
gories: style transfer, which facilitate the conversion of input
image styles, and image enhancement services, which focus
on restoring and improving the quality of degraded images.

Typically, users can access the I2IT services through two
primary ways. The first involves utilizing a black-box API in
the cloud, following a pay-as-you-go model. The other is to
access the model features locally through buyout purchases,
allowing for an unlimited number of interactions. Nonethe-
less, the local model is typically encapsulated or encrypted
within a black box, which constrains users from accessing
its internal components, such as the model’s architecture,
parameters, and hyperparameters. In both scenarios, a MEA
can be performed by sending queries to the black-box target

model.

Attack Process
Attack Settings We select two popular third-party I2IT
service providers in the market: Imglarger (Imglarger 2022)
and Baidu AI Cloud (Baidu AI Cloud 2022). We conduct
MEAs against Imglarger’s human face cartoonization func-
tions, including face2cartoon (2d) and face2cartoon (3d), as
well as Baidu AI Cloud’s picture style cartoonization func-
tion (i.e., landscape2cartoon).

We randomly select 2,000 images from the face
dataset FFHQ (512×512) (Marinez 2020) and Landscape
dataset (Rougetet 2020) as the attack dataset, respectively.
The face dataset FFHQ is composed of 52,000 high-quality
PNG images with 512×512 resolution crawled from Flickr.
These images vary considerably in age, race, and image
background, and are automatically aligned and cropped us-
ing dlib. We use the images in this dataset as the attack
dataset for both face2cartoon (2d) and face2cartoon (3d)
tasks and choose CycleGAN as the attack model back-
bone. The Landscape dataset is the same we used in the
photo2vangog task, and Pix2Pix is used as the attack model
backbone for landscape2cartoon task. To evaluate the extrac-
tion performance, we take 200 and 150 images from the re-
maining parts of the FFHQ and landscape datasets, respec-
tively, as the test set.

Results Comparison
We now analyze the results in both quantitative and qualita-
tive ways. Since the DV cannot be obtained from the com-
mercial services, we cannot measure the distance from the
attack model output to the target domain (i.e., the Rcapability).
As a result, we only evaluate the attack model using the
Rfidelity metric in this section. Fig. 7 and Table 5 illustrate
the performance of our attack. The results show that our
approach successfully replicates the function of the victim
model, surpassing the performance of the baseline method.
Additional results can be found in Supp.-E.

7 Conclusion
In this paper, we have presented a novel MEA attack to ex-
tract GAN-based models in I2IT tasks. We identify that the
impact of the domain shift problem is a fundamental factor
affecting the performance of MEA. This is particularly no-
table for GAN-based I2IT tasks where the optimal selection
of queries is not apparent. Our approach addresses the issue
from a new angle by resorting to a flatter and smoother loss
landscape for the attack model. By incorporating wavelet
regularization and sharpness-aware minimization, our attack
exhibits significant performance improvement in all compar-
ative experiments. We also conduct our attack against real-
world commercial I2IT services. The outcomes of our attack
substantiate its impressive efficacy in successfully extracting
victim models.

Future work will include further investigation on dedi-
cated defense mechanisms. We also see new research op-
portunities in extending the attack approach against diverse
GAN-based models.
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Bińkowski, M.; Sutherland, D. J.; Arbel, M.; and Gret-
ton, A. 2018. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401.
Chen, X. 2020. Hayao and Shinkai datasets. https://github.
com/TachibanaYoshino/AnimeGANv2/releases. Online; ac-
cessed 1 May 2023.
d’Ascoli, S.; Sagun, L.; and Biroli, G. 2020. Triple descent
and the two kinds of overfitting: Where & why do they ap-
pear? Advances in Neural Information Processing Systems,
33: 3058–3069.
Foret, P.; Kleiner, A.; Mobahi, H.; and Neyshabur, B.
2020. Sharpness-aware minimization for efficiently improv-
ing generalization. arXiv preprint arXiv:2010.01412.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Domain adap-
tation for large-scale sentiment classification: A deep learn-
ing approach. In Proceedings of the 28th International Con-
ference on Machine Learning, 513–520.
Google. 2023. Google Cloud. https://cloud.google.com/.
Online; accessed 13 May 2023.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs trained by a two time-scale up-
date rule converge to a local Nash equilibrium. Advances in
Neural Information Processing Systems, 30.
Hu, H.; and Pang, J. 2021. Stealing machine learning mod-
els: Attacks and countermeasures for generative adversarial
networks. In ACSAC, 1–16.
Imglarger. 2022. AI Image Enlarge. https://imglarger.com/.
Accessed 1 May 2023.

Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1125–1134.
Jagielski, M.; Carlini, N.; Berthelot, D.; Kurakin, A.; and
Papernot, N. 2020. High accuracy and high fidelity extrac-
tion of neural networks. In Proceedings of the 29th USENIX
Conference on Security Symposium, 1345–1362.
Kim, J.; Kim, M.; Kang, H.; and Lee, K. 2019. U-gat-it:
Unsupervised generative attentional networks with adaptive
layer-instance normalization for image-to-image translation.
arXiv preprint arXiv:1907.10830.
Krishna, K.; Tomar, G. S.; Parikh, A. P.; Papernot, N.; and
Iyyer, M. 2019. Thieves on sesame street! model extraction
of BERT-based APIs. arXiv preprint arXiv:1910.12366.
Liu, M.-Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised
image-to-image translation networks. Advances in neural
information processing systems, 30.
Ma, M.; Zhang, Y.; Arachchige, P. C. M.; Zhang, L. Y.;
Chhetri, M. B.; and Bai, G. 2023. LoDen: Making Every
Client in Federated Learning a Defender Against the Poi-
soning Membership Inference Attacks. In ACM AsiaCCS,
122–135.
Marinez, H. 2020. FFHQ datasets. https://www.kaggle.
com/datasets/arnaud58/flickrfaceshq-dataset-ffhq. Online;
accessed 1 May 2023.
Orekondy, T.; Schiele, B.; and Fritz, M. 2019. Knockoff
nets: Stealing functionality of black-box models. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 4954–4963.
Pal, S.; Gupta, Y.; Shukla, A.; Kanade, A.; Shevade, S.; and
Ganapathy, V. 2020. ACTIVETHIEF: Model extraction us-
ing active learning and unannotated public data. In AAAI
2020-34th AAAI Conference on Artificial Intelligence, 865–
872. AAAI press.
Pang, Y.; Lin, J.; Qin, T.; and Chen, Z. 2021. Image-to-
image translation: Methods and applications. IEEE Trans-
actions on Multimedia, 24: 3859–3881.
Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik,
Z. B.; and Swami, A. 2017. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Se-
curity, 506–519.
Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes,
M. P.; Shyu, M.-L.; Chen, S.-C.; and Iyengar, S. S. 2018. A
survey on deep learning: Algorithms, techniques, and appli-
cations. ACM Computing Surveys (CSUR), 51(5): 1–36.
Rougetet, A. 2020. Landscape datasets. https://www.kaggle.
com/datasets/arnaud58/landscape-pictures. Accessed 1 May
2023.
Shen, Y.; He, X.; Han, Y.; and Zhang, Y. 2022. Model steal-
ing attacks against inductive graph neural networks. In SP,
1175–1192. IEEE.
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