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ABSTRACT

This thesis addresses the pressing issue of image privacy protection in the era of
data sharing and artificial intelligence (AI) technology. The motivation behind this
research stems from the need to develop effective methods to counter the privacy

risks posed by AI. The thesis aims to develop a framework for image privacy protection
and evaluate the effectiveness of the proposed methods.

The research begins by highlighting the existing challenges in image privacy protec-
tion, including inadequate protection against AI adversaries, a lack of comprehensive
privacy definition and quantification, limited applicability of existing methods, and the
need to strike a better balance between privacy and utility. These challenges underscore
the need for innovative approaches to safeguard personal information from both human
and AI adversaries.

The thesis makes several contributions in different areas of image privacy protection.
Firstly, it addresses privacy concerns in social media platforms and proposes an image
privacy protection framework using adversarial perturbations. The framework defines
privacy information, identifies private objects, and applies imperceptible adversarial
perturbations to hide private information while preserving image utility.

Secondly, the thesis focuses on provable image privacy protection and introduces a
differentially private image (DP-Image) framework. This framework redefines differen-
tial privacy in the context of image data and perturbs image feature vectors in the latent
space to ensure privacy protection. The proposed mechanism maintains the utility of
images while protecting sensitive information against both human and AI adversaries.

Thirdly, the research explores user-centric privacy protection, empowering users
to have control over their privacy while benefiting from computer vision applications.
Novel privacy protection mechanisms tailored to individual preferences and customizable
privacy levels are proposed, demonstrating the feasibility and benefits of user-centric
approaches in safeguarding privacy.

Lastly, the thesis addresses the challenge of high-quality image de-identification by
developing techniques that remove or obfuscate identifying information while preserving
image quality. The utilization of the decoder and attribute optimization techniques
enhances the effectiveness and usability of anonymized datasets.

In conclusion, this thesis makes significant contributions to the field of image privacy
protection by addressing privacy concerns in social media platforms, provable privacy
protection, user-centric privacy protection, and high-quality image de-identification. The
proposed frameworks, mechanisms, and techniques advance the state-of-the-art in image
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privacy protection and provide valuable insights into preserving privacy in the era of
data sharing and AI technology.
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1
INTRODUCTION

The thesis aims to tackle the pressing issue of image privacy protection in the era of data

sharing and AI technology. This introduction provides an overview of the motivation

and objectives of the research, highlighting the need for effective methods to counter

the privacy risks posed by AI. It discusses the limitations of existing approaches and

outlines the two-fold objectives of the thesis: developing a framework for image privacy

protection and evaluating the effectiveness of the proposed methods.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation and Objective of the Thesis

In today’s era of data sharing, where people frequently upload and share personal photos

and videos on social platforms, the need to protect image privacy has become increasingly

critical. The vast amount of private information embedded in these images, such as

faces, license plates, locations, and email addresses, poses significant risks if exploited by

adversaries. Moreover, the emergence of artificial intelligence (AI) technology, powered by

deep learning methods, further amplifies these privacy risks. AI can automatically extract

and detect sensitive information from images, leading to potential privacy breaches and

misuse of personal data.

Traditional image privacy protection methods, which assume human adversaries,

have relied on techniques like blurring, pixelation, and mosaic. However, with the rise of

AI as an adversary, these methods prove insufficient in safeguarding privacy. To address

this pressing issue, the objective of this thesis is to conduct a comprehensive study on

image privacy protection in response to AI technology.

The main motivation behind this research is the urgent need to develop effective

image privacy protection methods that can counter the privacy risks posed by AI. The

existing approaches, such as adversarial perturbations and generative adversarial net-

works (GANs), have shown promise but still face limitations. The thesis aims to overcome

these limitations and make significant contributions to the field of image privacy protec-

tion.

The major objectives of this thesis are two-fold: (i) Develop a framework for image

privacy protection that can conceal private information from AI while remaining imper-

ceptible to human observers. This framework will address the challenge of defining and

quantifying image privacy, taking into account the multiple private objects often present

in social network images. (ii) Evaluate the effectiveness and performance of the proposed

image privacy protection methods using real-life image datasets. The evaluation will

demonstrate the capability of the methods in safeguarding individuals’ privacy against

both human and AI adversaries.

By achieving these objectives, this thesis aims to advance the field of image privacy

protection and provide practical solutions to address the privacy risks associated with

AI technology. The research outcomes will contribute to the development of robust and

efficient methods for protecting personal privacy in the context of image sharing and

usage.
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1.2. EXISTING CHALLENGES

1.2 Existing challenges

The field of image privacy protection have the following existing challenges:

• Inadequate protection against AI adversaries: With the emergence of deep

learning techniques, AI can automatically collect and detect private and sensitive

information from images. Traditional privacy protection methods designed for

human adversaries, such as blurring, pixelation, and mosaic, are not effective

against AI adversaries. The existing methods lack the ability to mislead AI models

without causing significant visual differences perceptible to human eyes.

• Lack of comprehensive privacy definition and quantification: Image privacy

is a complex concept that is yet to be clearly defined and quantitatively measured.

The existing research does not provide a comprehensive framework to define and

measure image privacy, which hinders the development of effective protection

mechanisms.

• Limited applicability and controllability of adversarial perturbation-
based methods: Adversarial perturbation-based methods have shown potential in

privacy protection, but they are often designed for specific models and applications.

These methods lack controllability over the visual appearance of the perturbed

images, making them ineffective against human adversaries. There is a need for

more general and controllable approaches.

• Lack of provable privacy measurements for GAN-based methods: Genera-

tive adversarial network (GAN)-based image manipulation techniques have been

proposed for privacy protection. However, these methods lack provable privacy

measurements, making it challenging to assess their effectiveness in safeguarding

privacy.

• Limited effectiveness of existing differential privacy (DP) methods for
images: Existing DP methods applied to images have limitations in capturing the

key features of images from a privacy perspective. The current approaches, such as

pixel-level differential privacy and DP noise layer in deep neural networks, do not

effectively address image privacy protection as their primary objective.

• Balancing privacy and utility: Privacy protection methods should aim to hide

private information while preserving the utility and meaningfulness of the images.
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The existing approaches need to strike a better balance between privacy preserva-

tion and maintaining the usefulness of the images for various applications, such as

demographics analysis and social media sharing.

• Insufficient image privacy protection in the context of high-quality con-
tent: In the domain of image privacy protection, the inadequacy of existing ad-

vanced methodologies, specifically those reliant on GAN-based inpainting, has

become apparent. These techniques are frequently impeded by the inherent lim-

itations of the GAN model’s generation capacity, rendering them ineffective in

addressing intricate real-world scenarios.

Addressing these challenges is crucial for the development of effective image privacy

protection methods that can safeguard personal information from both human and AI

adversaries.

1.3 Contributions of the thesis

The detailed contributions are summarized in the following subsections.

1.3.1 Privacy concerns in social media platforms

This part addresses the issue of privacy concerns in social media platforms and proposes

an image privacy protection framework using adversarial perturbations. The main

contributions of Chapter 3 are:

• Development of an image privacy protection framework: The chapter

presents a framework for protecting private information in images, specifically

targeting the risks posed by AI. The framework defines the privacy information

in images, identifies private objects, and applies adversarial perturbations to hide

private information while preserving the utility of the images.

• Proposing an adversarial perturbation-based image privacy protection
scheme: The chapter introduces a scheme that adds adversarial perturbations to

sensitive parts of images, effectively hiding multiple private objects while mini-

mizing the impact on non-private objects. This scheme provides an imperceptible

privacy protection method for images shared on social media platforms.
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1.3.2 Provable image privacy protection

This part focuses on provable image privacy protection and presents a differentially

private image (DP-Image) framework. The main contributions of Chapter 4 are:

• Definition of DP-Image framework: The chapter redefines differential privacy

concepts in the context of image data and proposes a DP-Image framework that

adds differential privacy noise to image feature vectors in the latent space. This

framework addresses the challenge of applying differential privacy to image data,

considering the unique characteristics and privacy risks associated with images.

• Design of DP-Image protection mechanism: The chapter develops a provable

and adjustable privacy protection mechanism within the DP-Image framework.

This mechanism perturbs the meaningful information carried by an image to

mislead adversaries while ensuring the reconstructed image maintains utility and

context consistency.

• Implementation and evaluation: The chapter implements the proposed DP-

Image protection mechanisms on a real-life image dataset and demonstrates their

effectiveness in safeguarding individuals’ privacy. The evaluation shows that DP-

Image protection maintains the usefulness of images for applications such as

demographics analysis while protecting sensitive information against both human

and AI adversaries.

1.3.3 User-centric privacy protection

This part focuses on user-centric privacy protection in the context of computer vision

technology. The main contributions of Chapter 5 are:

• User-centric privacy protection: The chapter is on empowering users to have

control over their privacy while still benefiting from computer vision applications.

• Novel privacy protection mechanisms: The chapter proposes novel privacy

protection mechanisms tailored to the needs and preferences of individual users.

These mechanisms provide customizable privacy levels and enable users to manage

their privacy in the context of visual data.

• Implementation and validation: The chapter implements the user-centric pri-

vacy protection mechanisms and evaluates their effectiveness in protecting privacy
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in computer vision applications. The results demonstrate the feasibility and bene-

fits of user-centric approaches in safeguarding privacy.

1.3.4 High-quality image de-identification

This part addresses the challenge of high-quality image de-identification. The main

contributions of Chapter 6 are:

• High-quality image de-identification: The chapter focuses on developing tech-

niques for de-identifying images while preserving their quality. By removing or

obfuscating identifying information from images, the framework enables the shar-

ing and analysis of images without compromising privacy.

• Face anonymization with novel model: The utilization of the DDIM decoder

and attribute optimization techniques enhances the effectiveness and usability of

the anonymized datasets, which enables the training of robust facial models for

various practical applications.

1.3.5 Summary

In summary, these four parts collectively contribute to the field of image privacy protec-

tion by addressing different aspects of the problem, including privacy concerns in social

media platforms, provable privacy protection, user-centric privacy protection, and high-

quality image de-identification. The proposed frameworks, mechanisms, and techniques

contribute to advancing the state-of-the-art in image privacy protection and provide

valuable insights into preserving privacy in the era of data sharing and deep learning.
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1.4 Overview of the thesis

Figure 1.1: Research Approaches Path Map.

The thesis is devoted to addressing the challenges discussed in previous sections,

progressing from Chapter 3 to Chapter 6 to continuously refine methods for protecting

privacy in the field of image privacy.

In Chapter 3, the gradient mechanism in pattern recognition networks introduces

adversarial noise, creating the first line of defence to hide privacy information within

images from neural networks. If the neural network breaches this initial defence, we

employ the mechanism of classification networks in Chapter 4 through Chapter 6 to

misclassify the privacy information, providing attackers with the wrong data. These

three chapters embody this approach, refining the effectiveness of this protective method

to varying degrees.

Chapter 4 specifically explores the effectiveness of using differential privacy as a

protective measure for image privacy. The goal is to find a credible protection method for

image privacy, enhancing the trustworthiness of the safeguard.

Chapter 5 and Chapter 6 share a similar objective of balancing privacy and usability.

However, the two chapters use different networks, with the method in Chapter 5 proving

more effective when dealing with low-resolution images and the approach in Chapter 6

being more effective for high-resolution images.
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In summary, these chapters contribute to addressing existing challenges in image

privacy. The specific details can be found in Fig. 1.1. This thesis is organized as follows:

• Chapter 1 introduces the motivation and contribution of the thesis.

• Chapter 2 reviews the related works for image privacy protection and the back-

ground knowledge for the related AI technics.

• Chapter 3-Chapter 6 give four approaches in targeting the thesis objectives. Fig. 1.1

shows the detail of the approaches path map.

• Chapter 7 summarize the whole thesis.
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2
PRELIMINARY AND RELATED WORK

In this chapter, we will present the privacy definition provided by GDPR [15] and discuss

various existing methods for protecting image privacy. These methods include traditional

methods, adversarial examples, GAN-based inpainting, differential privacy, and diffusion

models.
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CHAPTER 2. PRELIMINARY AND RELATED WORK

2.1 Privacy Definition Based on General Data
Protection Regulation (i.e. GDPR)

Recently, our human society has witnessed a rapid increase in the use of image data,

which poses high risks of privacy leakage, as images usually contain a large number of

sensitive data that might visually reveal personal information [16]. For example, heavy

concerns on the privacy risks were raised on uploading people’s face pictures to a popular

APP called FaceApp [17], which can edit a person’s face by changing his/her gender, age,

ethnicity, etc. In fact, the instinct to protect privacy in image data is not new in our

human society.

In this light, privacy issues have become hot topics in government debates and

legislation, as many countries have launched privacy acts and laws. For example, the

European General Data Protection Regulation (GDPR) [15] took effect on 25 May 2018.

It emphasizes the protection of “personal data”, interpreted as “any information relating

to an identified or identifiable natural person (‘data subject’); an identifiable natural

person is one who can be identified, directly or indirectly, in particular by reference to an

identifier such as a name, an identification number, location data, an online identifier or

to one or more factors specific to the physical, physiological, genetic, mental, economic,

cultural or social identity of that natural person”. According to this definition, images

contain a variety of personal identifiers, such as people’s faces, text, and license plates.

Therefore, effective privacy protection methods for image data are in urgent need.
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2.2 Preliminary

This section presents a concise introduction to Adversarial Examples, Generative Adver-

sarial Networks (GANs), and Diffusion Models. As these techniques will be employed for

privacy protection in our subsequent research, it is pertinent to include this background

knowledge within this chapter.

2.2.1 Adversarial examples

This section aims to provide an overview of a seminal technique in machine learning

called adversarial examples (AEs) [1]. The section is organized as follows: Sect. 2.2.1.1

offers a succinct introduction to the fundamental concept of adversarial examples.

Sect. 2.2.1.2 introduces the algorithm of one of the most acceptable methods used in

image privacy protection, Fast Gradient Sign Method (FGSM). Sect. 2.2.1.3 shows the

advanced protection scheme using AEs.

2.2.1.1 What is an adversarial example?

An adversarial example [1] refers to a specially crafted input data sample that has been

intentionally designed to deceive a machine learning model. It is created by making

slight modifications to the original input data in order to cause the model to misclassify

or produce an incorrect output. These modifications are often imperceptible to human

observers but can have a significant impact on the model’s behaviour.

The goal of generating adversarial examples is to exploit vulnerabilities or weak-

nesses in the machine learning model’s decision-making process. By introducing carefully

calculated perturbations, an adversary can manipulate the model’s predictions, poten-

tially leading to erroneous results or compromising the model’s performance.

Adversarial examples have garnered significant attention as they highlight the vul-

nerabilities of machine learning models and raise concerns regarding their robustness

and reliability. Understanding and mitigating the impact of adversarial examples is

crucial for improving the security and trustworthiness of machine learning systems

in various domains, including computer vision, natural language processing, and au-

tonomous systems. One typical example is shown in Fig. 2.1.
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Figure 2.1: An adversarial example. [1]

2.2.1.2 Fast Gradient Sign Method (FGSM)

The Fast Gradient Sign Method (FGSM) [1] is a popular algorithm used to generate

adversarial examples in the field of machine learning. It is a simple yet effective technique

for crafting adversarial perturbations.

The FGSM algorithm operates by taking advantage of the gradient information of

the loss function with respect to the input data. It perturbs the input data by adding

a small perturbation in the direction of the sign of the gradient. The magnitude of the

perturbation is determined by a hyperparameter called the epsilon value, denoted as ϵ.

The larger the value of ϵ, the more noticeable the perturbation becomes.

Mathematically, given an input sample x, a target class y, and a loss J, the FGSM

algorithm generates an adversarial example xadv by computing the perturbation as

follows:

xadv = x+ϵ∗sign(∇xJ(θ,x, y)), (2.1)

where J denotes the loss function, and ∇x represents the gradient of the loss function

with respect to the input x. The sign function sign(∇xJ(θ,x, y)) extracts the sign of the

gradient to determine the direction in which the perturbation should be added.

By leveraging the Fast Gradient Sign Method (FGSM), we can strategically generate

adversarial examples that exploit the decision boundaries of the model. This approach

allows us to induce potential misclassifications and generate privacy-preserving outputs.

2.2.1.3 Advanced protection scheme

In this subsection, based on the section 2.2.1.2 above, we will provide a detailed explana-

tion of the most accepted and advanced methodology employed for privacy protection

using adversarial examples.
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Algorithm 1: Iterative class obfuscation scheme (COS).
Data: x ∈Rh×w×c.
Result: xpr ∈Rh×w×c.
δx0 ← 0;
xpr

0 ← x;
n ← 0;
while n ≤ N do

δxn =−ϵsign(∇xpr
n
LCOS) ; /* Loss maximum */

xpr
n+1 = δxn +xpr

n ;
n+= 1;

end
xpr = xpr

n .

Algorithm 2: Iterative class replacement scheme (CRS).
Data: x ∈Rh×w×c, x̄ ∈Rh×w×c.
Result: xpr ∈Rh×w×c.
δx0 ← 0;
xpr

0 ← x;
n ← 0;
while n ≤ N do

δxn = ϵsign(∇xpr
n
LCRS) ; /* Loss minimum */

xpr
n+1 = δxn +xpr

n ;
n+= 1;

end
xpr = xpr

n .

Two distinct approaches are commonly employed in the context of utilizing adver-

sarial examples for privacy protection. The first approach aims to obfuscate the privacy

category that necessitates protection, effectively concealing its true nature as a privacy

category. Conversely, the second approach involves replacing the privacy category with an

alternative label, resulting in its misclassification as the desired category. For the sake of

brevity, we shall refer to the former approach as the class obfuscation scheme (COS) and

the latter approach as the class replacement scheme (CRS). Detailed descriptions of the

algorithms corresponding to each method can be found in Alg. 1 and Alg. 2, respectively.

The algorithmic flow for the iterative methods are presented in Alg. 1 and Alg. 2.

In these algorithms, the variable x ∈Rh×w×c denotes an image from the image dataset,

containing sensitive information that requires protection. xpr ∈Rh×w×c represents the

image with the sensitive information protected. The parameter n signifies the current
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iteration number, while N represents the maximum number of iterations allowed. The

magnitude of noise added in each iteration is denoted by ϵ. The sign function is utilized

to determine the sign of its argument and returns an integer value accordingly. The sign

function syntax is defined as sign(·), where · can be any valid numerical expression. The

return value of the sign function is 1 if the · is greater than 0, 0 if it equals 0, and −1 if it

is less than 0. The operator ∇ corresponds to the gradient operator. Additionally, the loss

functions for the two algorithms are denoted as LCOS and LCRS respectively, with their

mathematical expressions as follows:

LCOS = J(θ,xpr, yx);LCRS = J(θ,xpr, yx̄) (2.2)

Let θ denote the model parameters. The target class associated with x is represented as

yx, while yx̄ corresponds to the target class associated with x̄. Here, x̄ ∈Rh×w×c denotes

the image used for replacement in the CRS scheme. The loss function used in the neural

network is denoted as J(θ,xpr, y).

2.2.2 Generative Adversarial Networks (GANs)

This section aims to provide an overview of generative adversarial networks (GANs) and

their unique designs.

Generative adversarial networks (GANs) [18] is a type of deep learning model that

consists of two components: a generator and a discriminator. GANs are designed to

generate realistic data samples that are similar to a given training dataset.

The generator is responsible for generating new samples by transforming random

noise or input data into output samples that resemble the training data. It learns

to capture the underlying patterns and distributions of the training data in order to

generate realistic samples.

The discriminator, on the other hand, acts as a binary classifier that distinguishes

between the generated samples from the generator and the real samples from the

training dataset. It learns to differentiate between real and fake samples by optimizing

its classification accuracy.

During training, the generator and discriminator are pitted against each other in a

two-player minimax game. The generator aims to generate samples that can fool the

discriminator into classifying them as real, while the discriminator aims to classify the

real and generated samples accurately:

min
G

max
D

V (D,G)= Ex∼pdata(x)
[
logD(x)

]+Ez∼pz(z)
[
log(1−D(G(z)))

]
. (2.3)
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Where D and G represent the discriminator and generator, respectively. Through this

adversarial process, both the generator and discriminator improve their performance

iteratively.

The ultimate goal of GANs is to achieve a state where the generator can produce

high-quality samples that are indistinguishable from real data while the discriminator

struggles to differentiate between the generated and real samples. GANs have demon-

strated impressive capabilities in generating realistic images, audio, text, and other

types of data.

Besides generating realistic samples, GANs have also been used for various applica-

tions, such as data augmentation, image and video synthesis, style transfer, anomaly

detection, and privacy protection. GANs offer a powerful framework for capturing com-

plex data distributions and have the potential to revolutionize several fields that require

realistic data generation and manipulation.

2.2.2.1 Conditional Generative Adversarial Nets (cGANs)

Conditional generative adversarial networks (cGANs) [2] is an extension of the original

generative adversarial networks (GANs) [18] that incorporate additional conditioning

information during the training and generation process. The structure of a simple

conditional adversarial network is displayed in Fig. 2.2

In cGANs, both the generator and discriminator receive additional input in the form

of conditional information, typically in the form of extra data or labels. This conditioning

information guides the generation process, allowing the generator to generate samples

that correspond to specific conditions or classes.

The generator takes random noise as input along with the conditional information

and generates samples that match the given condition. For example, in image generation,

the conditional information could be a class label, and the generator can produce samples

representing different class objects.

The discriminator, which also receives conditional information, tries to differentiate

between the real and generated samples while considering the given condition. It learns

to classify the samples as real or fake, taking into account the conditioning information.

The training of cGANs involves a game between the generator and discriminator,

similar to traditional GANs. The generator aims to produce samples that not only fool

the discriminator but also adhere to the given condition, while the discriminator aims to
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Figure 2.2: The structure of a conditional adversarial network [2].

classify the real and generated samples accurately:

min
G

max
D

V (D,G)= Ex∼pdata(x)
[
logD(x | y)

]+Ez∼pz(z)
[
log(1−D(G(z | y)))

]
. (2.4)

The conditional nature of cGANs allows for more controlled and targeted generation. It

enables tasks such as image-to-image translation, where the generator takes an input

image from one domain and generates a corresponding output image in another domain

while maintaining the desired characteristics or conditions.

cGANs have been successfully applied in various domains, including image synthesis,

text-to-image generation, image inpainting, and style transfer. They provide a power-

ful framework for conditional data generation, allowing for fine-grained control and

manipulation of generated samples based on the provided conditions or constraints.

Building upon the cGAN framework, two notable methods, namely Conditional

Identity Anonymization Generative Adversarial Network (CIAGAN) [11] and DeepPri-

vacy [10], introduced the integration of autoencoder within the feature space of images.

CIAGAN demonstrated the ability to anonymize faces and bodies, generating high-

quality images and videos. On the other hand, DeepPrivacy took into account factors
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such as pose and background to generate images with improved realism and privacy

preservation.

2.2.3 Style-Based Generative Adversarial Networks (StyleGAN)

Style-based generative adversarial networks (StyleGAN) is a type of generative adver-

sarial network (GAN) architecture that focuses on generating high-quality and realistic

images with enhanced control over the generated styles and details.

StyleGAN introduces a novel approach to disentangling the latent space representa-

tion of the generator. Unlike traditional GANs where the latent vector directly controls

the generated image, StyleGAN incorporates style vectors that control different aspects

of the image generation process, such as the global styles, object styles, and details.

The architecture of StyleGAN consists of two main components: the generator and the

discriminator. The generator starts with a random noise vector as input and transforms it

through several intermediate layers. In each intermediate layer, the generator combines

the learned styles from style vectors with the input noise vector to produce feature maps

that capture different levels of image details. Finally, the feature maps are transformed

into the final synthesized image.

The detailed structure of the generator is shown in Fig. 2.3. Instead of directly feeding

the latent code through the input layer, StyleGAN involves mapping the input to an

intermediate latent space W . This intermediate space controls the generator through

adaptive instance normalization (AdaIN) at each convolution layer.

AdaIN(xi,y)= ys,i
xi −µ(xi)

σ(xi)
+yb,i, (2.5)

where xi represents the feature maps and y represents the style to be transferred.

Additionally, StyleGAN incorporates Gaussian noise after each convolution and before

applying nonlinearity. The transformation of the input is performed using a learned

affine transform denoted as “A”, and per-channel scaling factors are applied to the noise

input denoted as “B”. The mapping network f consists of 8 layers, while the synthesis

network g consists of 18 layers, with two layers dedicated to each resolution (42−10242).

The output of the final layer is converted to RGB using a separate 1×1 convolution.

The discriminator, as in other GANs, tries to distinguish between real and generated

images. However, StyleGAN is designed to provide feedback at multiple resolutions,

allowing for better control over the generated details.

One notable feature of StyleGAN is its ability to generate images with varied styles

and qualities by manipulating the style vectors. By modifying the style vectors, users can
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Figure 2.3: The generator structure of a Style-based generative adversarial network [3].

control attributes like facial expressions, hairstyles, or lighting conditions in generated

images, giving them a high degree of control over the generated output.

StyleGAN has been widely used in various applications, including image synthesis,

face generation, and image editing. Its ability to generate high-quality images with

fine-grained control over styles and details has made it popular among researchers and

artists alike.

2.2.4 StyleGAN-based autoencoder

Expanding on the capabilities of StyleGAN, two recent studies [4, 19] have focused on

the development of an encoder specifically tailored for image manipulation within the

StyleGAN framework. These studies aim to enable precise control and manipulation

of images by designing an encoder that accurately captures the latent representations

associated with different visual attributes and styles present in the images.

The proposed encoders in both studies employ a combination of adversarial training

and perceptual loss for training. Adversarial training aligns the encoded latent codes
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with the distribution of latent codes generated by the pre-trained StyleGAN. Meanwhile,

the perceptual loss ensures that the encoded representations preserve the visual quality

and attributes of the original images. By successfully encoding real images into the

latent space of StyleGAN, the developed encoders facilitate various image manipulation

tasks. Users can manipulate specific attributes, such as age, expression, or hairstyle, by

modifying the corresponding latent codes. The modified latent codes are then fed into

the StyleGAN generator to generate the desired manipulated images.

Since the two studies share a similar basic framework, we will provide a brief

overview of the main contributions and foundational structure of one of them, known as

pixel2style2pixel (pSp) [4].

Figure 2.4: The structure of a StyleGAN-based autoencoder [4].

Fig. 2.4 illustrates the architecture of the pSp framework. The authors leverage

the representational power of the pre-trained StyleGAN generator and the W+ latent

space to achieve their objectives. To accomplish this, they adopt a Feature Pyramid

Network [20] as the underlying structure, generating three levels of feature maps that

capture different levels of detail: coarse, medium, and fine. These feature maps are then

processed by an intermediate network, referred to as map2style (depicted in Fig. 2.4),

to extract the corresponding styles. In line with the hierarchical representation, the

aligned styles are subsequently fed into the generator according to their respective

scales, effectively completing the transformation from input pixels to output pixels while

leveraging the intermediate style representation. This encoder facilitates the direct

reconstruction of real input images, enabling manipulations in the latent space without

requiring computationally intensive optimization. Therefore, GAN-based autoencoders

are a crucial branch that cannot be disregarded, particularly in the realm of privacy

protection. A recent paper [12] proposes a novel approach to de-identify individuals in

facial image datasets while preserving the facial attributes. Rather than training custom
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neural networks from scratch, they operate directly in the latent space of a pre-trained

StyleGAN.

2.2.5 Diffusion model

According to the research publication “Denoising Diffusion Probabilistic Models,” [5] the

diffusion models are defined as: “A diffusion model or probabilistic diffusion model is

a parameterized Markov chain trained using variational inference to produce samples

matching the data after finite time”

In diffusion models for images, the goal is to model the conditional distribution

of pixel values given the previous values in the image. This is typically achieved by

formulating the evolution of the pixel values as a diffusion process, where each pixel is

updated based on the neighbouring pixels and a noise term.

Figure 2.5: The graphical model of DDPMs [5].

Unlike other generative models such as GANs and most traditional-style VAEs that

encode input data into a low-dimensional space, diffusion models maintain a latent space

of the same size as the input. In the forward process, DDPMs progressively add noise to

the image until it is completely degraded into pure Gaussian noise. Assuming an ideal

forward process, where a real input image x0 undergoes T rounds of Gaussian noise

addition, resulting in a purely Gaussian noise image xT ∼N (0,I). Consequently, each

step of noise addition can be formally expressed as the following probability function:

q(xt|xt−1)∼N (xt;
√

1−βtxt−1,βtI), (2.6)

where βt is the coefficient associated with the noise.

As a result, the cumulative noise in the image x0 after t processing steps can be

represented as another Gaussian noise:

q(xt|x0)∼N (xt;
p

αtx0, (1−αt)I), (2.7)

where

αt =∏t
i=1(1−βi). (2.8)
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In the reverse process, i.e., learning the distribution p(xt−1|xt), the noise is gradually

removed to generate a realistic image. To train a DDPM network, Ho et al. [21] give

the distribution of pθ(xt−1|xt) ∼N (xt−1;µθ(xt, t),σt), and propose a learnable function

ϵθ(xt, t) to predict the noise added in each step. Despite requiring a large number of

noise injection and denoising steps to generate samples, DDPMs exhibit superior image

fidelity and diversity compared to other types of generative models.

The training of diffusion models involves maximizing the likelihood of observed

images. This is typically done by iteratively applying the diffusion process to a given

image and learning the parameters of the diffusion model through gradient-based

optimization. The training involves sampling from the diffusion process and applying

an inverse transform to map samples from the observed data space to a latent space.

This latent space is often modelled using an autoregressive neural network. The detailed

training algorithms are shown in Alg. 3 and Alg. 4.

Algorithm 3: DDPMs training
Data: x0 ∼ q(x0)
t ∼Uniform(

{
1, . . . ,T

}
)

ϵ∼N (0,I)
Take gradient descent step on

∇θ

∥∥∥ϵ−ϵθ(
p

ᾱtx0 +
p

1− ᾱtϵ, t)
∥∥∥2

until converged

Algorithm 4: DDPMs sampling
Data: xT ∼N (0,I)
for t = T, . . . ,1 do

z∼N (0,I) if t > 1, else z= 0
xt−1 = 1p

αt
(xt − 1−αtp

1−ᾱt
ϵθ(xt, t))+σtz

end
return x0

Figure 2.6: The graphical model of DDIM [6].

Diffusion models have a notable drawback: they rely on a lengthy sequence of dif-

fusion steps to produce desired outcomes, resulting in slow generation speed. However,

Denoising Diffusion Implicit Models (DDIMs) [6] address this limitation by relaxing the

requirement for the diffusion process to adhere to a Markov chain, distinguishing them

from DDPMs.

Let’s briefly explore the principles of DDIM. The derivation in DDPM is closely related

to DDIM, and it can be summarized as follows:

p(xt | xt−1)→ p(xt | x0)→ p(xt−1 | xt,x0)≈ p(xt−1 | xt). (2.9)
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This progression occurs step by step. However, the final result exhibits two key

characteristics:

• The loss function depends solely on p(xt | x0).

• The sampling process depends solely on p(xt−1 | xt).

One significant insight from this is that DDPM, as a latent variable model, allows

for various choices of inference distributions. As long as the inference distribution

satisfies the marginal distribution condition (representing the characteristics of the

diffusion process), these inference processes do not necessarily need to be Markov chains.

Consequently, DDIM eliminates p(xt | xt−1) from the entire derivation process. In the

DDIM paper, the inference distribution is defined as follows:

qσ(x1:T |x0)= qσ(xT |x0)
T∏

t=2
qσ(xt−1|xt,x0). (2.10)

It is necessary for qσ(xT |x0) to satisfy N (
p

αTx0, (1−αT)I), and for all t ≥ 2:

qσ(xt−1|xt,x0)=N (xt−1;
p

αt−1x0 +
√

1−αt−1 −σ2
t
xt −p

αtx0p
1−αt

,σ2
t I). (2.11)

In this case, the variance σ2
t ∈R. Additionally, the mean of the distribution qσ(xt−1|xt,x0)

is defined as a composite function depending on x0 and xt. Hence, it holds for all t:

qσ

(
xt|x0

)=N
(
xt;

p
αtx0,

(
1−αt

)
I
)
. (2.12)

Based on the derived inference distribution, DDIM can achieve the same optimization

objective as DDPM without requiring a forward process. Consequently, during the

generation phase, xt−1 can be obtained as follows:

xt−1 =p
αt−1

(xt −
p

1−αtϵθ(xt, t)p
αt

)
+

√
1−αt−1 −σ2

t ·ϵθ(xt, t)+σtϵt. (2.13)

The paper further defines σ2
t as:

σ2
t = η · β̃t = η ·

√
(1−αt−1)/(1−αt)

√
(1−αt/αt−1). (2.14)

If η= 1, then σ2
t = β̃t, resulting in the generation process being the same as DDPM.

Another case is when η= 0. In this situation, the generation process becomes determinis-

tic without any random noise. The paper refers to this type of model as DDIM. Once the

initial random noise xT is determined, the sample generation process in DDIM becomes

deterministic. Furthermore, DDIM does not explicitly define a forward process, which

means that DDIM can employ fewer sampling steps, effectively expediting the generation

process. This streamlined approach further accelerates the relatively computationally

demanding sampling procedure inherent to DDPMs.
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2.3 Related Work

In this section, we will provide an overview of the related work in image privacy protec-

tion. The discussion encompasses various approaches, including traditional methods for

image privacy protection, protection methods employing adversarial perturbations, GAN-

based protection methods, and the application of differential privacy. Additionally, we

will explore the utilization of diffusion models for image editing, which will be employed

to enhance image privacy protection.

2.3.1 Traditional protection methods

Traditionally, image privacy protection methods have focused on human adversaries

and employed techniques such as blurring, pixelation, and mosaic to obfuscate sensitive

information.

One prevalent technique is face blurring [22–27], which employs blurring algorithms

or filters to obscure the facial features of individuals in an image. By intentionally

degrading the details of the faces, it becomes challenging to identify specific individuals

while still retaining the overall structure of the image.

Addressing the contemporary privacy concerns arising from the widespread deploy-

ment of surveillance cameras, a recent paper [22] introduces a novel requirement for

protected images, emphasizing the need for them to retain useful information beyond

privacy considerations. The authors present an efficient privacy protection scheme tai-

lored for video surveillance systems. In response to the identified concerns, they propose

a privacy-sensitive region detection algorithm capable of identifying not only human

faces and bodies but also personal accessories that may potentially reveal identifiable

information.

To mitigate privacy risks, the authors further introduce a silhouette-blur-guided

privacy protection algorithm. This algorithm effectively obfuscates the silhouettes of sen-

sitive objects while concurrently reducing high spatial frequencies, ensuring anonymity

for the general public and preserving valuable behavioural information. The paper un-

derscores the significance of automatic methods in de-identifying individuals present in

surveillance videos, striking a balance between privacy preservation and the retention of

visual information necessary for human behaviour analysis.

Another approach is pixelation [28–32], where the facial region is replaced with

large pixels, concealing facial details. Recently, an intriguing article [33] has emerged,

showcasing an innovative method that integrates differential privacy (DP) [34] with
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pixelation to safeguard privacy. This article primarily centres on tackling privacy issues

associated with the sharing of image data. It introduces a pioneering approach that

combines pixelization with differential privacy to address these concerns effectively.

Nevertheless, these methods achieve privacy protection at the cost of compromising

facial attributes and image quality. Furthermore, recent studies [35, 36] have indicated

that the de-identification effects of blurring and pixelation, while perceptually effective to

human observers, can be circumvented by deep learning algorithms, thereby diminishing

their efficacy in preserving privacy.

The rapid advancement of technology has rendered conventional privacy protection

methods increasingly inadequate in the face of the capabilities exhibited by neural net-

works. This evolutionary shift has stimulated a heightened demand for the development

of efficient privacy preservation techniques, thereby presenting a formidable challenge

to researchers in this domain. Consequently, the imperative to devise innovative ap-

proaches that can effectively mitigate the emerging challenges posed by neural networks

underscores the profound significance of our research endeavours.

2.3.2 Adversarial examples

In recent years, the quest for privacy preservation in the context of deep neural networks

(DNNs) has led to the discovery of a technique known as adversarial samples. This section

explores the applications of adversarial examples (AEs) as a means to safeguard the

privacy of images. Extensive research [37–46] in this domain highlights the importance

of utilizing AEs in achieving image privacy protection objectives. The primary concept

revolves around generating an adversarial example that represents the image to be

shared, thereby preserving privacy.

These approaches propose unique frameworks and utilize AEs to counter Deep Neural

Network (DNN) models. For instance, Fawkes [37] demonstrate the effectiveness of AEs

in altering images’ feature space to provide high protection against user recognition. Oh et
al. [38] introduce a game theoretic framework for person obfuscation using adversarial

image perturbation. Rajabi et al. [39] propose two novel schemes, Universal Ensemble

Perturbation (UEP) and k-Randomized Transparent Image Overlays (k-RTIO), to protect

against automated face recognition. Xue et al. [40] develop a framework that adds

imperceptible perturbations to sensitive image areas to hide private information from

AI while remaining visible to humans. Hu et al. [41] propose the Adversarial Makeup

Transfer GAN (AMT-GAN) to generate natural-looking adversarial face images with

strong attack ability. Liu et al. [44] introduce the Stealth algorithm, which generates
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adversarial examples to protect privacy by rendering automatic detection systems unable

to identify objects in images. Additionally, Liu et al. [43, 45] propose an architecture

using AEs to safeguard image privacy against deep learning image classification tools. Li

et al. [46] propose the AnonymousNet framework, leveraging deep learning techniques

for facial semantic extraction, attribute selection, photo-realistic image generation,

and adversarial perturbation to enhance privacy protection in the context of image

obfuscation.

These methods can be broadly categorized as Noise-based Adversarial Examples

(NAE). They incorporate constraints on the range of noise added to images to minimize

any adverse effects on image usability. Consequently, these methods excel in effectively

reducing the chances of human perception, thereby preserving essential information

within the protected images. Furthermore, with an increasing number of noise iterations,

these methods possess an expansive search space, enabling them to effectively counter

deep neural networks, particularly in the context of white-box scenarios, where the

success rate of protection exceeds 90%. However, obtaining a white-box model in real-

world scenarios is often challenging, thereby imposing limitations on the practical

application of these methods. When confronted with black-box neural networks, some

approaches [37] resort to increasing the magnitude of noise to enhance the success rate

of protection. Nevertheless, even with compromised noise concealment, the success rate

of protection still falls short compared to other techniques like image inpainting.

Consequently, certain studies have discarded the limitations on the noise norm in

AEs and instead leveraged the underlying principles to explore the AE in the semantic

space of images. These approaches are commonly known as Unrestricted Adversarial

Examples (UAE). Initially, UAE, like other AEs, was predominantly employed to launch

attacks on classification neural networks [47–49], causing misclassifications. However,

researchers found the potential of the UAE in the realm of image privacy protection and

started utilizing them for anonymizing facial images.

A paper [50] introduces a protection method that utilizes UAE to add sunglasses to

faces in images. Similarly, another paper [51] employs the same approach to add hats to

faces in images. An improvement upon these methods is presented in another paper [52],

which uses UAE to add random patterns to protect image privacy. These three methods

focus on adding noise to specific regions in the images in a semantically reasonable

manner. However, such methods may affect the transferability of protection effectiveness

across different models. Moreover, these significant modifications also impact the user

experience to some extent.
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Subsequently, with the emergence of generative models [53, 54], more image protec-

tion methods have been proposed by combining UAE and generative models [55–58].

Among them, two papers [57, 58] introduce a novel approach where faces in images are

disguised with makeup to deceive deep neural networks used for facial recognition. This

protection method, which employs makeup as a noise, demonstrates the use of UAE to

search for adversarial examples in semantically understandable ways, aligning with

human cognition of facial privacy protection. This greatly enhances the user experience.

2.3.3 GAN-based inpainting

The concept of GAN-based inpainting was introduced as a means to generate content that

effectively conceals sensitive information or the identity of an image while preserving

the quality of the original image [59].

In recent years, the remarkable image generation capabilities of GANs [18] have

spurred their adoption as a novel tool for image editing [60–77]. Notably, numerous

methodologies [60, 66, 71, 73] have embraced autoencoder architectures, wherein the

GAN’s generator serves as the decoder component, enabling the production of high-

fidelity images. The process involves encoding the input image to extract semantic

features and decoding through the GAN to reconstruct the output image. Crucially, these

approaches integrate semantic continuity constraints during GAN training, facilitating

seamless manipulation of diverse image attributes within the GAN’s semantic space.

Two notable papers in the field of privacy preservation for facial images are DeepPri-

vacy [10] and CIAgan [11]. DeepPrivacy [10] introduces a novel generator architecture

based on conditional generative adversarial networks (cGAN) [2] specifically designed for

face anonymization. It considers the existing background and sparse pose annotations to

generate realistic anonymized faces while ensuring the removal of privacy-sensitive infor-

mation from the original face. The model is trained using a progressive growing training

technique that gradually increases the resolution from 8×8 to 128×128, resulting in

improved image quality and reduced training time.

On the other hand, CIAgan [11] proposes a model for anonymizing images and

videos by removing identification characteristics while preserving necessary features

for computer vision tasks such as detection, recognition, and tracking. The model also

leverages cGAN [2] to generate realistic anonymized images and videos. Notably, it

introduces an identity control discriminator to ensure controlled identity changes during

anonymization.
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Both approaches contribute to privacy preservation by offering methods that hide

individuals’ identities while producing visually convincing and realistic anonymized

images. The works address the challenges of privacy-sensitive information removal

and the generation of new identities in the context of face anonymization. Additionally,

they emphasize the importance of maintaining realism and temporal consistency in the

generated outputs for effective utilization in detection and recognition systems.

2.3.4 Differential privacy

Differential privacy [78, 79] is a concept and framework for ensuring the privacy of

individuals when analyzing or processing sensitive data. It provides a mathematical

definition and a set of techniques to quantify and control the privacy risk associated with

sharing or releasing data.

At its core, differential privacy aims to protect the privacy of individuals by introduc-

ing randomness into the data analysis process. The main idea is to add controlled noise

or perturbation to the data or the results of computations to prevent identifying specific

individuals or leaking sensitive information.

The concept of differential privacy guarantees that the presence or absence of any

individual’s data has a limited effect on the output or conclusions drawn from the data

analysis. In other words, even if an adversary has access to the output or aggregated

results, they cannot accurately determine whether a specific individual’s data was

included in the analysis.

Differential privacy provides a rigorous and quantifiable privacy guarantee by defin-

ing a privacy parameter, often denoted as ϵ (epsilon), representing the maximum allow-

able privacy loss. A smaller value of ϵ indicates a higher level of privacy protection. By

controlling the amount of noise added to the data or computations based on ϵ, the privacy

of individuals can be preserved while still providing meaningful and accurate analysis

results.

Several initial studies have applied differential privacy (DP) in images. Fan proposed

ϵ-differential private methods in the pixel level of the image [80], and in Singular

Value Decomposition (SVD) [81], respectively. Lecuyer et al. [82] proposed the PixelDP

framework, including a DP noise layer in the DNN.

A more detailed explanation of DP will be introduced in Chapter 4.
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2.3.5 Diffusion model

Diffusion models have gained attention due to their ability to generate high-quality and

diverse images, surpassing the limitations of traditional generative models. They have

been used to generate realistic images, create artistic visual effects, and explore the

latent space of image data.

In the realm of guided image generation tasks such as stroke painting, stroke-based

editing, and image composition, diffusion models have been employed by Meng et al. [83].

These tasks involve starting with a guided image where certain properties (e.g., shapes

and colours) are preserved while smoothing out deformations through the progressive

addition of noise (forward process of the diffusion model). Subsequently, the resulting

image is denoised (reverse process) to generate a realistic image based on the given

guidance. The authors utilize a generic diffusion model to synthesize images by solving

the reverse stochastic differential equation (SDE), eliminating the need for customized

datasets or training modifications. Nichol et al. [84] train a diffusion model conditioned

on text descriptions and explore the effectiveness of classifier-free and CLIP-based

guidance for image inpainting. They find that the former option yields better results

and additionally fine-tune the model specifically for image inpainting, enabling image

modifications based on text input. Avrahami et al. [85] employing latent diffusion models

for local image editing with text. An adaptive-to-time mask (representing the region to

edit) and the image are encoded using a variational autoencoder (VAE) into the latent

space, where the diffusion process occurs. Each sample is iteratively denoised while

guided by the text within the region of interest. Inspired by Blended Diffusion [86], the

image is combined with the masked region in the latent space, which is noised at the

current time step. Finally, the sample is decoded using the VAE to generate the new

image. This method demonstrates superior performance while maintaining comparable

speed. In an inpainting method presented by Lugmay et al. [87], the authors adopt an

agnostic approach to mask form. They utilize an unconditional diffusion model for this

task but modify its reverse process. The image at step t−1 is generated by sampling

the known region from the masked image, while the unknown region is obtained by

applying denoising to the image generated at step t. Through this procedure, the authors

observe that the unknown region possesses the correct structure but may be semantically

incorrect. To address this, they repeat the proposed step multiple times and, at each

iteration, replace the previous image from step t with a new sample generated from the

denoised version obtained at step t−1. The first approach for editing specific regions of

images based on natural language descriptions is introduced in [86]. Users can specify
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the regions to be modified using masks. This method uses CLIP guidance to generate an

image according to the input text. However, the authors observed that combining the

output with the original image at the end does not yield globally coherent images. To

address this, they modify the denoising process by applying the mask to the latent image

after each step while incorporating the noisy version of the original image.

A recent study by Konpat et al. [88] introduced a novel approach called the Diffusion

Autoencoders. The authors’ main objective is to utilise a trainable encoder to uncover

intricate semantics, complemented by the adoption of DPM as a decoder to encapsu-

late the residual stochastic variations. The proposed methodology demonstrates the

remarkable capability to encode diverse images into a latent code, consisting of two

distinctive components: the first component, characterized by its semantic significance,

exhibits a linear structure, while the second component proficiently captures fortuitous

intricacies, thereby facilitating an exceptionally precise reconstruction. Consequently,

this proficiency endows the system with the capacity to effectively address challenging

applications, such as attribute manipulation in real images, a task that has proven to be

elusive for conventional GAN-based approaches.

The intersection of image privacy and diffusion models presents a promising area for

exploration as a novel model. There are still many aspects that need to be explored. For

example, a recent article by Xiao et al. [89] discussed training a diffusion model for use

as a facial privacy model. However, the model is constrained by the extensive training

requirements of the diffusion model, leading to various limitations.

Moreover, the novel approach presented in this study provides a valuable tool for

image privacy protection. By utilizing the Diffusion Autoencoders, sensitive information

within images can be encoded and subsequently reconstructed with high fidelity, allowing

for improved safeguarding of private visual content.
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CHAPTER 3. HIDING PRIVATE INFORMATION IN IMAGES FROM AI

3.1 Preface

In this chapter, we explore the prevalent privacy concerns that pervade popular social

media platforms, leaving individuals susceptible to privacy breaches. Our main focus

is to address the specific privacy issues that arise from the uploading of images on

prominent social networking sites like Facebook or Google Earth street view. Diverging

from traditional protective measures, we recognize the convolutional neural network

(CNN) as the primary threat in this context. As a result, we have developed a protective

framework that relies on adversarial noise as the central safeguarding mechanism. This

innovative approach ensures that the minimal noise introduced to the images remains

undetectable by human observers, enhancing their overall usefulness while preserving

the joy of sharing pictures. Through meticulous testing conducted on standard street

view images, we have successfully validated the effectiveness of our approach, which

exhibits exceptional capabilities surpassing those of conventional methods.

3.2 Introduction

3.2.1 Motivation

In such an era of data sharing, many people would like to share their life photos and

videos on social software with friends or strangers. For example, Every 60 seconds on

Facebook, 136,000 photos are uploaded [90]. However, people may not have noticed that

these images and videos contain a large amount of private information [91–93] such

as the faces, vehicle license plates, locations, email addresses, etc. If such information

is used by adversaries, it may have a detrimental effect on the users [92]. Meanwhile,

the newly emerging deep learning techniques further increase the privacy risks for

online photo sharing. Artificial intelligence (AI) aided by deep learning methods can

automatically collect and detect private and sensitive information from social networks.

For example, DNNs can automatically search meaningful information in images and

exploit an outcome to perform targeted advertisements [94]. DNNs can even extract

user’s private information, such as fingerprints [95], addresses, family members [96, 97],

etc. This brings more risks to personal privacy, while the traditional privacy-preserving

method seems powerless when facing large-scale deep learning tools. Therefore, the

development of image privacy protection methods is in urgent need, especially when

considering AI as the adversary.

Privacy protection for unstructured data such as images is much more complicated
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compared with that for structured data. Traditional image privacy protection research

assumes humans as an adversary. “Blurring”, “pixelation” and “mosaic” are the most

commonly used methods. For example, Viola et al. [98] used a sliding window detector to

identify and blur the license plates in Google Street View images. Researchers start to

consider the case where AI acts as an adversary very recently. The fundamental idea is

to generate a small but intentional worst-case disturbance to an original image, which

misleads deep neural networks (DNNs) without causing a significant difference percepti-

ble to human eyes. The perturbed image is called an “adversarial example” [99], and the

specially generated noise is named adversarial perturbations (AP). A few papers have

discussed the potential of AP in privacy protection in different applications, including

image classification [100] and face recognition [101]. In [102], the authors proposed a

novel stealth algorithm that makes all the objects invisible to DNNs in an image. These

works cannot solve our problem thoroughly for several reasons: First, there are generally

multiple private objects in the images, especially for social network images. Second, the

revision of the images should be as small as possible and limited to private information

to preserve the utility of the images.

3.2.2 Contributions

To overcome the above-mentioned problems, we proposed a framework for image private

information protection in this chapter. It consists of three major steps: i) defining the

privacy information in images, ii) identifying the private objects and their positions in

images, and iii) image privacy protection using adversarial noise. Specifically, for image

privacy protection, we propose to add adversarial perturbations to the sensitive parts

of the images so that the private information can be hidden while the rest parts of the

images are still visible to AI.

In summary, the contributions of this work are as follows:

• Developing an image privacy protection framework to hide private information

from AI while the applied privacy protection is imperceptible to human eyes.

• Proposing an adversarial perturbation-based image privacy protection scheme such

that it can hide multiple private objects in the image while having a minor impact

on the non-private objects.
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3.2.3 Overview of the work

The rest of the chapter is organized as follows. Section 3.3 discusses the system model and

formulates the research problem. In Section 3.4, an AP-based image privacy protection

scheme is proposed. Section 3.5 shows our experimental results. Finally, the results are

concluded in Section 3.6.
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3.3 System Model and Problem Formulation

In this section, we present the system model used in this work and formulate the research

problem.

3.3.1 System Model

As shown in Fig. 3.1, our proposed image privacy protection framework consists of three

major parts: object detection, image privacy definition, and image privacy protection.

Figure 3.1: Image privacy protection framework.

3.3.1.1 Object Detection

the input image X will first pass the object detection module.

There are many existing frameworks for object detection, among which Faster R-

CNN [103] is a widely used framework that has been cited frequently in this research

area. Therefore, we adopt Faster R-CNN as our object detection module. As shown in

Fig. 3.2, the Faster R-CNN detects the region containing objects by three submodules.

• Feature Extractor: a traditional convolutional neural network to perform the

feature extraction.
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Figure 3.2: The Faster R-CNN framework.

• Region Proposal Network (RPN): RPN finds the object regions by scanning the

image using different size anchors (The area RPN scans) in a slide window fashion.

The outputs of RPN include a series of anchors Aa, as well as pre-classifier result

Pa, i.e.:

Arpn = (Aa|Pa)=


x1 y1 w1 h1

x2 y2 w2 h2
...

...
...

...

xα yα wα hα

∣∣∣∣∣∣∣∣∣∣∣∣

p1

p2
...

pα,

 (3.1)

where xi, yi, wi, hi represent the up left corner x-coordinate, y-coordinate and

width, and height of anchors, respectively. i is the index of the anchor (i = 1,2, . . . ,α).

Pa = (p1, p2, . . . , pα)T denotes the probabilities of anchors being positive.

• Regions of Interest (ROI) Classifier: ROI classifier output contains the location and

size of each proposed region and the probability of anchors being a class (e.g. cat,

dog, face):

Aroi =


xa1 ya1 wa1 ha1

xa2 ya2 wa2 ha2
...

...
...

...

xan yan wan han

∣∣∣∣∣∣∣∣∣∣∣∣

p11 . . . p1m

p21 . . . p2m
... . . . ...

pn1 . . . pnm

 , (3.2)

where n is the number of anchors that ROI proposed (n ≤α). xa j, ya j, wa j, ha j are

the coordinate and size information of ROI proposed anchors. p11, . . . , pnm (noted

as PROI) are the probability of n anchors belonging to m class respectively.
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Finally, the output of the object detection module is represented as:

C(X)=


xa1 ya1 wa1 ha1

xa2 ya2 wa2 ha2
...

...
...

...

xan yan wan han

∣∣∣∣∣∣∣∣∣∣∣∣

c1

c2
...

cn

 , (3.3)

where

∀ j ∈ (1,n) : c j =
argmaxi pni, 1≤ i ≤ m

cbg, ∀pni ≤ threshold

It is worth noting that Faster-RCNN treats background as a class, i.e., cbg. threshold
is used to deal with the unrecognizable area that may appear. If the probability of all

classes is less than threshold, it is recognized as the background.

3.3.1.2 Image Privacy Definition

In this module, we first define what object in the image contains individuals’ private

information. According to the General Data Protection Regulation (GDPR) [15], anything

that can be used as a personal identifier should be treated as private information.

Therefore, we propose that private objects in images should include:

• Personal identity - license plate, phone number, address, etc.

• Biometrics - face, calendar data, fingerprints, retinal scans, photos, etc.

• Electronic records - cookies, IP locations, mobile device IDs, social network activity

records

According to this definition, all classes in the object detection output are divided into

two subsets: Cprivate is the set of private classes, and Cnon−private includes non-private

classes.

3.3.1.3 Image Privacy Protection

a small adversarial perturbation δX targeting on private objects is applied to generate

the privacy-free image Xpr, so that only non-private information can be detected when
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passing Xpr through an object detector, i.e.,

C(Xpr)=


xa1 ya1 wa1 ha1

xa2 ya2 wa2 ha2
...

...
...

...

xan yan wan han

∣∣∣∣∣∣∣∣∣∣∣∣

cpr
1

cpr
2
...

cpr
n

 , (3.4)

where ∀c j ∈Cprivate : cpr
j = cbg.

3.3.2 Problem Formulation

Based on the above-described framework, our target is to fool the network by changing

the class of the private objects to ‘bg’, while the non-private objects are recognized as

their original classes. Meanwhile, the added noise δX should be small so that it is

imperceptible for humans. Hence, the problem can be formulated as follows:

argmin
δX

∥∥δX
∥∥

2 (3.5)

s.t.: ∀c j ∈Cprivate : cpr
j = cbg (3.6)

∀c j ∈Cnon−private : cpr
j = c j (3.7)
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3.4 Adversarial Perturbation based Image Privacy
Protection Algorithm

Figure 3.3: Diagram of AP-based image privacy protection algorithm.

In order to solve the image privacy protection problem, we proposed an AP-based

image privacy protection algorithm in this section, along with the metrics that can be

used to evaluate the performance of the algorithm.

3.4.1 AP-based Image Privacy Protection

Fig. 3.3 gives the flow chart of our algorithm. The input image is sent to the object

detector along with the generated noise, and then the output objects are divided into

three categories (Background, Non-privacy objects, and Privacy objects). Initially, the

added noise is 0, and the object detector will find all objects in the image. Next, we replace

the label of the private objects with the background and then put it into the loss function

to calculate the gradient. Then the noise is updated according to the gradient. Finally, a

perturbed image is generated, in which all privacy objects are treated as background by

the object detector.

The key part of the algorithm is to trick the classification loss (Lcls) so as to mislead

the object detector recognizing the private objects to the background. We define our new

loss function as shown in Eq. (3.8) to mislead the classifier so that it will reckon all

private objects as background:

Lcls =
1
na

∑
i

En(pi, p∗
i )+λ

∥∥X−Xpr∥∥
2 , (3.8)

where pi = [pi1, . . . , pim] is the probability of the content of an anchor being recognized

as each class. p∗
i is one-hot encoded (p∗

i = [0,0, . . . ,1, . . . ,0,0]), in which 1 appears in the

position where we set the class as the correct class. p∗
i will be generated according to the
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ground truth label if the object is non-private, while it will be changed to the background

if the object is private. na is the number of anchors in the image so that the entropy will

be averaged over all anchors. Next, we can use Lcls to generate the perturbation using

the fast gradient sign method (FGSM) [99].

Using the targeted FGSM, the perturbation can be calculated in the direction of the

gradient:

δX=−ϵsign(∇XLcls)=−ϵsign(
Lcls

∂X
), (3.9)

where ϵ is the step parameter that scales the noise. Therefore, the generated image will

be:

Xpr =X+δX=X−ϵsign(
Lcls

∂X
) (3.10)

In practice, one-step FGSM is usually not enough, so we can use an iterative version

as shown in Alg. 5.

Algorithm 5: AP-based image privacy protection algorithm.
Parameters: Noise scalar ϵ.
Iteration number N.
Input: The original image X.
Output: The released privacy-preserving image Xpr.
Initialization: Overall noise δX= 0, Xpr

0 =X.
for 1≤ n ≤ N do

δXn−1 =−ϵsign(∇XLcls);
δX= δXn−1 +δX;
Xpr

n = δXn−1 +Xpr
n−1;

end
Xpr =Xpr

n .

3.4.2 Evaluation Metrics

In order to measure the performance of our proposed methods, we introduce the following

metrics from three different aspects:

3.4.2.1 Distortion metrics

Two distortion metrics are used to measure the amount of noise added to the original

image.
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• L2 computes the Euclidean distance between original and perturbed examples, i.e.,

L2 =
∥∥Xpr −X

∥∥
2 =

∥∥δX
∥∥

2

• Average Lp Distortion ALDp [104]: ALDp = ∥Xpr−X∥p

∥X∥p
.

We use ALD∞ to measure the maximum change in all dimensions of adversarial

perturbations in the simulation.

3.4.2.2 Structural Similarity (SSIM)

SSIM is a method used to measure the similarity between two digital images. Compared

with the traditional image quality measurement methods, such as peak signal-to-noise ra-

tio (PSNR) and mean squared error (MSE), SSIM can better match the human judgment

of image quality [105][106]. It can be used to quantify the extent that the perturbation is

invisible to human eyes.

3.4.2.3 Private Information Hiding Ratio

R = r̄p+λr̄a, where r̄p and r̄a are the average hiding ratio or keeping the ratio of privacy

objects and non-privacy objects, respectively, λ is set to 0.5 for better illustration. It is

used to measure whether our method can hide the proper objects in images.
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3.5 Experiment and Discussions

In this section, we show our experimental results.

3.5.1 Experiment Settings

In our experiment, we use the images from the data set provided by Tribhuvanesh et

al. [92]. The data set is originated from the VISPR data set. The authors selected images

containing private information and pixel-annotated using 24 privacy attributes. In our

experiment, we choose faces and license plates as privacy items. Hence, we filtered the

images with these two annotations from the data set. And filter some non-private data

from the original data set. Then, we added more street view images containing faces and

license plates into the training data set for better performance.

Here we use Faster R-CNN as the object detector. Faster R-CNN requires that the

input image shape is square (1024∗1024 is the suggested size). The original data set

contains a large number of large-size images (e.g. 7000x6000), so we make standardiza-

tion on our training data set before training for better training performance. The model

was trained on one GPU card, GeForce GTX 2080Ti.

3.5.2 The Experiment Results

Fig. 3.4 shows an example of our proposed algorithm. The left column shows the detection

result of the original image, the next two columns are the detection result after the

proposed privacy treatment and the added perturbation, respectively. As can be seen

in the figure, without privacy protection, all objects in the images can be detected by a

standard Faster R-CNN. After adding the adversarial noise, the detector cannot detect

the privacy objects, including faces and car plates, while the non-sensitive features

(e.g. traffic lights) can still be detected. The adversarial perturbation in the images are

generated in the range Rp (Rp ∈ (−2,2)). In order to display the noise in the image, we

normalize the Rp to RP (RP ∈ (0,255)). Observing the relative location of objects in the

original image, the noise dots concentrate on the regions containing objects. By adding

adversarial perturbation in such a small range (e.g.Rp), human eyes can hardly recognize

the difference. But the object detector has been successfully fooled.

Now we compare the performance of our proposed algorithm with Blur and Mosaic.

As shown in Fig. 3.5, the Blur and Mosaic’s “thickness” has been carefully adjusted to

just hide the sensitive information. But human eyes can easily notice those changes.
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Figure 3.4: Illustration of AP-based image privacy protect algorithm.

Figure 3.5: The detection results after privacy protection: (a) Image without Protection;
(b) Blur; (c) Mosaic; (d) AP-based.
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Our method, while deceiving the detector from the private objects, greatly preserves the

non-private information in the original image, so that naked eyes can hardly see the

difference.

Next, we measure the effectiveness of our approach using the metrics mentioned

in Section III.B. Table I shows the performance comparison measured by distortion

metrics (L2 and ALDp). The adversarial noise (AD Noise) is generated in the range

Rp (Rp ∈ (−2,2)). Blur and Mosaic noise thickness has been modified to barely hide the

sensitive information from Object Detector. Compared with Blur, our method is 73.5%

and 79.2% lower in the L2 and ALDp average scores, respectively. Also, our method is

superior to Mosaic in both L2 and ALDp, i.e., our algorithm is 81.4% lower in L2 and

85.2% lower in ALDp.

Table 3.1: L2 and ALDp score compared with classical methods

Original Blur Mosaic AD Noise

L2

1 0 4111 4153 765
2 0 2008 3730 776
3 0 3426 6168 778
4 0 1980 2386 731

Average 0 2881.2 4109.2 762.5

ALDp
(10−2)

1 0 5.55 6.27 0.97
2 0 2.29 4.82 0.68
3 0 4.59 6.67 0.69
4 0 2.19 2.81 0.70

Average 0 3.655 5.143 0.76

Table 3.2 presents the results measured by the SSIM metric. A higher score means a

smaller distortion of the image. The performance of our method has increased by 192.5%

compared to blur, which is an increase of 474.8% compared to Mosaic.

Table 3.2: The SSIM score compared with classical methods

Original Blur Mosaic AD Noise
1 1 0.548 0.286 0.998
2 1 0.536 0.243 0.995
3 1 0.442 0.121 0.997
4 1 0.472 0.191 0.998
5 1 0.634 0.182 0.998
6 1 0.478 0.235 0.996

Average 1 0.518 0.210 0.997
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Figure 3.6: The hide/keep ratio; (a) Fixed iteration number N = 1; (b) Fixed ϵ= 0.4; (c)
Fixed ϵ= 0.2

From the above results, we can see that our method gains performance improvement

in balancing privacy protection and information preservation compared with classical

methods. Finally, we measure the privacy protection efficiency by running the test data

set with different iteration numbers (N) and noise scalar (ϵ). The adversarial noise

thickness is related to the iteration numbers (N) and noise scalar (ϵ). The noise range Rp

is related to N ×ϵ. So, we use noise range as an index to measure our adversarial noise

thickness. As can be seen in Fig. 3.6, the private information hiding rate is proportional

to the noise thickness, while the non-sensitive objects keeping ratio slightly decreases

with the increase of thickness. Fig. 3.6.(a) gives the change in hiding ratio with an

increase of ϵ. It shows that a very small amount of noise thickness: Rp ∈ (−3,3) (out of

255) is enough to achieve an over 90% high hiding ratio. Fig. 3.6. (b) and Fig. 3.6. (c)

show that under the same thickness (Rp), a smaller ϵ achieves a relatively higher hiding

ratio, but it needs more iterations.

3.6 Conclusion and future works

The recent advancement of artificial intelligence exacerbates the privacy concern, es-

pecially for images that contain a variety of personal information. In order to solve

this problem, we proposed an image privacy protection framework against AI using an

AP-based privacy protection algorithm. Our results show that private objects in images

can be well protected while non-private information is preserved by adding a small

amount of noise. Therefore it can protect image privacy while preserving the image’s

utility. Moreover, the noise added can hardly be detected by the naked eye, which lens

more practical value of the proposed algorithm in real-life employment.

However, the field of image privacy protection has long suffered from a comprehensive
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definition for safeguarding privacy in images. This gap has restricted the quantification

of privacy protection effectiveness solely to visual observation, leaving it susceptible to

exploitation by AI attackers. Consequently, the importance of an approach that can be

proven, quantified, and controlled becomes paramount in ensuring robust protection. The

forthcoming chapter will thoroughly investigate this issue and introduce our proposed

solution: DP-Image.
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4.1 Preface

In this chapter, our exploration revolves around the development of provable strategies

for safeguarding image privacy. Our aim is to integrate the widely embraced techniques

of differential privacy, which offer controllable and verifiable protection of sensitive data.

However, the application of pixel-level differential privacy to non-structured data, such as

images, often leads to excessive distortion of crucial image information. To overcome this

challenge, we propose an innovative approach that introduces cyclic noise to the latent

space vectors of images, effectively ensuring robust image privacy protection. Within

this chapter, we unveil a protective framework that seamlessly combines differential

privacy with the power of autoencoders. Through meticulous experimentation on a

facial dataset, we thoroughly evaluate the framework’s effectiveness in preserving facial

identity. Notably, our approach outperforms alternative methods, showcasing exceptional

performance in achieving privacy preservation goals.

4.2 Introduction

4.2.1 Motivation

Recently, our human society witnesses a rapid increase in the use of image data, which

poses high risks of privacy leakage, as images usually contain a large number of sensitive

data that might visually reveal personal information [16]. For example, heavy concerns

on the privacy risks were raised on uploading people’s face pictures to a popular APP

called FaceApp [17], which can edit a person’s face by changing his/her gender, age,

ethnicity, etc. In fact, the instinct to protect privacy in image data is not new in our

human society.

So the question is: why the issue of image privacy becomes urgent now? This is

because the newly emerging deep learning techniques have exacerbated the privacy risks

for image sharing and usage. In more detail, artificial intelligence (AI) aided by deep

learning methods can automatically detect and collect people’s private and sensitive

information, thus impacting everyone’s daily life.

This brings risks of personal privacy to a whole new level, while the traditional

privacy-preserving methods seem powerless when facing the large-scale deep learning

tools [107].

Unfortunately, privacy protection for unstructured data, such as images, is much

more difficult compared with that for structured data. Structured data are usually well-
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documented in an organized and systematic manner. However, in unstructured data such

as images, data attributes are implicitly represented by sets of pixels covering irregular

shapes and sizes. Such implicit data attribute values cannot be processed by traditional

statistical methods, such as correlation, regression, etc. Hence, the underlying privacy

risks in unstructured data are much less clear than those in structured one.

Due to the unstructured nature of the image data, research on image privacy protec-

tion usually takes a different approach than that for structured data. First, traditional

research on image privacy protection often assumes human adversaries. In other words,

privacy risks are usually quantified by how effectively the information in images can be

picked up by human eyes and brains. As a result, “blurring”, “pixelation”, and “mosaic”

are the most used methods to protect privacy in images, e.g. in Google Earth street view.

However, we are now marching into a new age of AI, where the information contained in

images can be filtered out by AI functions/models. Those AI functions, such as DNNs,

seem to take a different approach to interpreting and understanding images, and they

are able to re-identify the obfuscated image with high accuracy [107]. Therefore, very

recently, researchers have started to consider a new scenario, where AI acts as an ad-

versary. For example, to throw off AI adversaries when analyzing images, the authors

of [99] proposed to generate a small but intentional worst-case disturbance to an original

image, which can mislead DNNs in machine-learning tasks such as image classification,

without causing a significant visual difference perceptible to human eyes. The perturbed

image is referred to as an “adversarial example”, and the specially generated noise

pattern is thus named adversarial perturbations (AP). A few papers have discussed

the potential of AP in privacy protection [7, 101, 102, 108–111]. Another recent trend

for image privacy protection is the use of the generative adversarial network (GAN).

Content generated by GAN can be used to replace or edit the original images so that the

identity-related information can be removed [112–116]. Finally, there have been several

initial studies that apply differential privacy (DP) in images. Fan proposed ϵ- differential

private methods in the pixel level of the image [80], and in Singular Value Decomposition

(SVD) [81], respectively. However, making image pixels or SVD modes indistinguishable

does not make much sense in practice, and the quality of the generated image is quite

low. Lecuyer et al. [82] proposed the PixelDP framework that includes a DP noise layer

in the DNN. The PixelDP scheme enforces that the output prediction function is DP

provided the input changes on a small number of pixels (when the input is an image).

However, the purpose of PixelDP is to increase the model’s robustness to adversarial

examples, other than image privacy.

49



CHAPTER 4. DP-IMAGE (DP-IMAGE: DIFFERENTIAL PRIVACY FOR IMAGE DATA
IN FEATURE SPACE)

Overall, the aforementioned works cannot solve the image privacy protection problem

thoroughly due to several reasons:

• First, image privacy is yet neither clearly defined, nor can it be quantitatively

measured.

• Second, the current AP-based method is only designed for specific models and

applications. It is not effective against human adversaries due to uncontrollable

visual appearance.

• Third, the GAN-based image manipulation lacks provable privacy measurements.

• Finally, the existing DP methods cannot effectively capture the key features of

images from the privacy perspective or were not designed for the purpose of image

privacy protection.

Motivated by these challenges, we propose a differentially private image (DP-Image)

framework and design DP-Image mechanisms in this work. This framework redefines

the traditional DP [78] and Rényi differential privacy (RDP) [117] notions, in the context

of the image data. It should be noted that the application of DP on the image data is

not a trivial extension, due to the vastly different application scenarios. In traditional

database applications, we assume that a data curator has a database D and an attacker

can either make a query on the database to obtain useful information to launch privacy

attacks (i.e., the interactive setup) or get access to a synthetic version of database D (i.e.,

the non-interactive setup).

The important thing is that the adversary does NOT have access to the original

database. Therefore, applying DP to the query answers or the synthetic data release will

be able to protect the original data.

However, the most common application of images is image publication and sharing. It

includes the case of personal image sharing on social network platforms and commercial

image applications such as Google Street View. In this scenario, the original image data

need to be exposed to some extent for meaningful applications. For example, it would

be weird to share a synthetic photo of a cartoon character in a person’s Facebook post,

saying he/she took a selfie on a sunny Saturday afternoon.

Hence, in the case of the image data, the adversary gains a considerable advantage

in stepping closer to the original data than the conventional scenarios, and thus, it

becomes less difficult for the adversary to re-identify and collect sensitive information

from published images. Therefore, the perturbation of privacy protection needs to be
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added directly onto the original image, so as to mislead the adversary when he analyzes

the image. To this end, we propose a DP-Image framework that adds DP noise to the

image feature vector in the latent space to alter the meaningful information carried

by the image, and then reconstructs the image from the perturbed vector to replace

the original image. In this way, the reconstructed one will not disrupt the intended

applications because it shares non-private information with the original one, which

keeps the application context meaningful and consistent.

((a)) Original ((b)) Blur ((c)) Mosaic ((d)) AP(pixel) ((e)) Our

Figure 4.1: A brief comparison of different image privacy protection methods. Our
approach not only protects the privacy of an image by generating a photo-realistic
alternative, but it also provides a controllable way for privacy preservation.

4.2.2 Contributions

To elaborate on this in a more concrete manner, we show a comparison of our method

with several traditional methods in Fig. 4.1. As can be seen from the figure, traditional

methods, such as blur and mosaic, considerably destroy the utility of face images. If such

images were used in, e.g., demographics analysis, the application would be most likely to

be unfruitful. Adding adversarial perturbation on the pixel domain cannot guarantee

privacy protection when facing humans as an adversary. Looking at the DP images

generated by our method,

while the identity of the faces has been changed, they are still useful for a possible

demographics analysis or a straightforward Facebook post. Besides, all sensitive infor-

mation, such as gender, race, age, etc., are generated randomly through the DP-Image

process, which greatly protects an individual’s privacy, against both human and AI

adversaries.
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The major contributions of this work are summarized as follows:

• We propose a DP-Image definition based on the notions of DP and RDP.

• We propose a DP-Image protection mechanism with provable and adjustable privacy

levels.

• We design a DP-Image framework that enables us to apply the DP-Image protection

mechanism at the image feature level, utilizing advanced deep learning and GAN

techniques.

• We implement the proposed DP-Image protection mechanisms on a real-life image

dataset and show its effectiveness in safeguarding people’s privacy.

4.2.3 Overview of the work

The structure of the remainder of the chapter is as follows. In Section 4.3, we discuss

the preliminary knowledge for our work, including DP, RDP, Privacy Amplification

and deep learning in image applications. In Section 4.4, we first define the adversary

model. Then, we proceed to formulate the notion of DP-Image and present our DP-Image

protection mechanisms. In Section 4.5, we conduct experiments to validate our proposed

scheme using a case study of face image privacy. We analyze the privacy guarantee of

our proposed framework and schemes in Section 4.6. Section 4.7 discusses the related

work, and Section 4.8 concludes our work.

4.3 Preliminaries

4.3.1 Differential Privacy

Informally, DP [78, 79] is a definition of privacy that guarantees that the likelihood of

seeing an output on a given original dataset is close to the likelihood of seeing the same

output on another dataset that differs from the original one in any single row. Here, an

output could be a synthetic dataset, a statistical summary table, or a simple answer to a

query, etc. Since this single row is arbitrary, this definition aims to make an adversary

unable to be certain about whether a particular individual is in the original dataset

or not. In other words, differential privacy provides any individual in the dataset with

plausible deniability - the ability to say, “I am not in that original dataset” - and hence

an individual can claim that he/she has nothing to do with the output. This is supported
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by mathematical proofs showing an employed method does provide the DP property.

Generally speaking, the basic idea of a DP mechanism is to introduce randomness

into the original dataset so that any individual’s information cannot be inferred by an

adversary looking at the released output.

A key property of DP is that we can add outputs of several DP algorithms, and the

result is still DP. However, this property incurs a loss in the privacy budget. The maxi-

mum impact is the sum of the privacy budgets for the involved outputs. By appropriately

setting the privacy budget of constituent algorithms, we can ensure that the overall

privacy budget of the data release algorithm is within the bound of a target privacy

budget.

Another property of DP is that if the dataset is divided into disjoint subsets, such

that the addition or removal of a row affects at most one subset, then we can assign each

dataset a privacy budget of ϵ, and still maintain an overall privacy budget of ϵ. These

two properties are referred to as the sequential and parallel composition of DP.

A final useful property of DP is that the output of a DP algorithm can be post-

processed without affecting privacy, provided it is done independently of the original

dataset. For example, averaging, rounding, or any change to the numbers will not impact

the privacy of the data. This means that an analyst can do any amount of data post-

processing on a released DP dataset and cannot reduce its privacy guarantee.

The DP treatment usually involves adding noise to give uncertainty to the impact

of any single individual. We need to add noise on a scale relative to how much any

individual could make a difference. For example, if we add noise to counts of individuals,

then any single individual only influences that count by a maximum value of 1. So, the

noise is on a scale relative to that 1.

Following the above brief discussion on DP, here we show the formal definition of DP.

Definition 4.3.1. (ϵ-Differential Privacy) [78, 79]: A randomized mechanism M
gives ϵ-differential privacy if for any neighboring datasets R and R′ differing on one

element, and all sets of output S:

Pr[M(R) ∈ S]≤ exp(ϵ) ·Pr[M(R′) ∈ S]. (4.1)

(ϵ,δ)-DP is a relaxation of ϵ-DP that allows a δ additive term in its definition.

Definition 4.3.2. ((ϵ,δ)-Differential Privacy) [78, 79]: A randomized mechanism M
gives ϵ-differential privacy if for any neighboring datasets R and R′ differing on one
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element, and all sets of output S:

Pr[M(R) ∈ S]≤ exp(ϵ) ·Pr[M(R′) ∈ S]+δ. (4.2)

4.3.2 Rényi Differential Privacy

Rényi differential privacy (RDP) [117] proposed by Ilya Mironov gives a convenient way

of tracking cumulative privacy loss when applying differentially private mechanisms.

RDP measures the Rényi divergence [118] between the output distribution on two

neighbouring datasets.

Definition 4.3.3. (Rényi Divergence) [117]: P and Q are probability distribution over

R, the Rényi divergence for α> 1 is defined as:

Dα(P ∥Q)≜
1

α−1
logEx∼Q

(
P(x)
Q(x)

)α

. (4.3)

All the logarithm is natural, P(x) is the density of P at x.

Definition 4.3.4. ((α,ϵ)-RDP) [117]: A randomized mechanism M gives (α,ϵ)-RDP if

for any neighboring datasets R and R′ holds that:

Dα(M(R) ∥M(R′))≤ ϵ. (4.4)

RDP can easily transfer to (ϵ,δ)-differential private.

Lemma 4.3.1. (RDP to (ϵ,δ)-DP) [117]: If a mechanism M satisfies (α,ϵ)-RDP, it also

satisfies (ϵ+ log1/δ
α−1 ,δ)-DP for any 0< δ< 1. Besides, M also satisfies pure ϵ-DP, for α=∞.

4.3.3 Privacy Amplification by Iteration

Privacy amplification by iteration has been proven to have its superiority for differentially

private optimization algorithms, such as DP-SGD (Differentially-Private Stochastic

Gradient Descent) [119]. The paper reveals the iterative privacy budget under natural

settings for DP mechanisms.

Lemma 4.3.2. [119]: Assuming X , X ′ ∈R, let M(X ) be obtained from X by iterating T
times:

X t+1
.= f t+1(X t)+mt+1 (4.5)
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where
{
f
}T

t=1 are contractive maps and {m}T
t=1 ∼N (0,σ2Id). Let M(X ′) be obtained from

X ′ under the same process. Then M satisfies:

Dα(M(X ) ∥M(X ′))≤ α
∥∥X − X ′∥∥2

2Tσ2 . (4.6)

4.3.4 Deep Learning in Image Applications

Deep learning has profoundly changed the landscape of computer vision and image

processing. The most advanced algorithms in this field are based on DNNs, usually

with a convolutional structure. Convolutional Neural Network (CNN) [120] consists of

neurons with learnable weights and biases. Each neuron receives some input, performs

a dot product, and optionally goes through its nonlinear activation function. The entire

network still implements a distinguishable score function: from the original image pixels

on one end to the class score on the other end.

There are several mostly used CNN architectures. AlexNet [121] was submitted

to the ImageNet ILSVRC Challenge in 2012, and its performance far exceeded the

second place [120]. It is this work that popularized CNN in computer vision. Szegedy

et al. Google proposed GoogLeNet [122] in 2014. It introduced an Inception module,

which significantly reduced the number of parameters in the network (4M, compared

to 60 million for AlexNet). GoogLeNet also has multiple subsequent versions, such as

Inception-v3 [123], Inception-v4 [124]. Karen Simonyan and Andrew Zisserman proposed

VGGnet [125], which shows that network depth is a key factor for superior performance.

ResNet [126] was developed by Kaiming He et al, which has a special skip connection

and extensive use of batch normalization functions. ResNets are currently widely used

in practice.

The image applications include two important categories: extracting information

from images, constructing images with semantic meanings. Deep learning has improved

the performances from both ends.

For information extraction, deep learning has been used for image classification [121,

124, 125], object detection [127], recognition [128], tracking [129], and semantic segmen-

tation [130], etc. And it outperforms traditional methods in all these tasks. Outputs of

DNNs in these applications contain rich information such as the type and position of

objects, identity and actions of people, thus making DNNs and privacy issues highly

relevant.

On the other hand, deep learning has also been used to generate synthetic images.

For example, GAN [131] invented by Ian Goodfellow and his colleagues in 2014, is able
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to learn to generate new data with the same statistics as the training set. Following

this initial work, some milestone works in GAN were developed, such as cGAN [132],

StyleGAN [133, 134], etc. While GAN could simply generate random new outputs that

are similar to the training data, Variational Autoencoders (VAEs) [135] can help to

explore variations on data you already have. Moreover, there have also been researched

to combine VAEs and GANs together, which can generate compelling results for complex

datasets such as images [136]. This VAEs architecture can be used to process an input

image, by converting it into a smaller, dense representation, which the decoder network

can use to convert it back to the original image.
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4.4 Our proposed DP-Image Framework
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Figure 4.2: Architecture of the DP-Image Framework. The Iterative DP-Image (IDPI)
theorem presented in Section 4.4.4 will demonstrate the concepts of the required privacy
level, denoted as ϵ, and sensitivity, represented by ∆ f .

In this section, we present the adversary model considered in this thesis and then

introduce our proposed DP-Image framework.

4.4.1 Adversary Model

As discussed in Section 4.2, we focus on the mainstream image application: image
publication and sharing scenario. This is a non-interactive setup, which includes the

case of personal image sharing on social network platforms and commercial image

applications such as Google Street View.

In this scenario, the adversary can either manually search or use a web crawler

and AI-based tools to automatically identify and collect sensitive information from

published images. Assisted with the advanced deep learning tools, the adversary can

obtain different types of information from images, for example:

• Class or identity of an image using classification or face recognition tools.

• Object contained in the image via object detection.

• Specific features in the image like numbers or text by natural language processing

(NLP) or other feature extractors.
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The adversary has two significant differences compared with the traditional database

adversary: 1) he has access to the image; 2) he extracts information from the image using

an advanced query method based on deep learning tools.

On the other hand, the users would like to publish or share their photos without per-

sonal information leakage. Moreover, the users would like information coverage satisfies

two key criteria: 1) the images should look realistic and natural after modification, so

“Blur” or “Mosaic” is not preferable; 2) the amount of noise should be controllable, so the

users can decide the trade-off between privacy and utility.

4.4.2 DP-Image Framework: Protecting Image Privacy in
Feature Space

As discussed in Section 4.2, in the GDPR, privacy information is defined as “personal

data that are related to an identified or identifiable natural person.” Here, the emphasis

on privacy is laid on personal identities. On the other hand, the long history of image

processing techniques has proved that the transform domain of an image can provide

more useful information than the original pixel domain. Also, the adversary can obtain

more detailed information by extracting a feature vector f (X ) from the image X . This

vector f (X ) represents certain features in images. In this case, a privacy protection

scheme that can blur the feature vector f (X ) will be more effective than a scheme that

works in the pixel domain.

Based on the above argument, we design an image privacy protection framework

in the feature space. The three main modules are feature extraction, noise generator,

and image reconstruction, as shown in Fig. 4.2. And our motivations for designing these

modules in Fig. 4.2 are explained as follows.

1. Feature extraction is crucial to feature-level privacy protection. The challenge

stems from the difficulty in directly extracting the features from pixel values in

the original image form, let alone identifying privacy-related features. In order to

solve this problem, we propose to use an advanced DNN as the encoder for feature

extraction. The output of this encoder will be a feature extraction network that can

map an image X to a vector Z in the latent (feature) space.

2. The noise generator is used to inject noise into the feature vector. And the amount

of noise can be controlled by parameters.
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3. The image reconstruction module will transform the perturbed feature vector back

to the image domain. This generator can be trained in the same way as GAN.

4.4.3 DP-Image Definition

In our image publication and sharing scenario, the attacker aims to find personal

information from the images they have access to. And image privacy protection aims

to ensure that the adversary cannot learn too much about each individual‚Äôs private

information even though he/she can see the image data. This is in stark contrast to

the conventional privacy protection methods that might provide an additional layer of

protection by not granting the adversary access to the original format of the raw data.

In this sense, starting with the DP and RDP notions the definition of image differen-

tial privacy can be written as:

Definition 4.4.1. ((α,ϵ)-RDP-Image): A randomized mechanism M gives (α,ϵ)-RDP-

Image if and only if for any two image data X , X ′, M satisfies:

Dα(M(X ) ∥M(X ′))≤ ϵ. (4.7)

The above definition is very similar to that of the traditional RDP, except that we

are enforcing DP for given different input samples, instead of requiring, there is only a

single item (pixel) difference in two images. Also, we expect the output images of M(X )

and M(X ′) to be indistinguishable from a privacy perspective other than in the pixel

domain.

Moreover, as we plan to add noise in the feature space, a generalized sensitivity in

RDP of the feature vector f (X ) is defined as follows:

Definition 4.4.2. (Sensitivity in Image Feature Space): For any two images in the

dataset, each consisting of n pixels: X = (x1, . . . , xn), X ′ = (x′1, . . . , x′n), if f is the function

that maps the image to its feature space, the sensitivity ∆ f is defined as the maximum

differences in f (X ) produced by two different images:

∆ f .= sup
X ,X ′

|| f (X )− f (X ′)||2. (4.8)

This indicates the largest difference between the feature vectors of the two images.

4.4.4 DP-Image Mechanism

Following Definition 4.4.1, to satisfy the DP-Image requirement, we implement the

DP-Image by adding DP noise on the feature space in an iterative manner.
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Algorithm 6: DP-Image Algorithm by Iteration.
Parameters: Noise coefficient σ, Iteration number T.
Input: The original image X .
Output: The released privacy-preserving image XT .
for 0≤ t < T do

zt = f (X t)
zt+1 = fc(zt)+N (0,σ2Id)
X t+1 = g(zt+1)

end
XT = X t+1.

Where f (·) is a function that maps image X to its feature space vector z ∈Rm. fc(·) is

the clipping function. g(·) is a function that maps the feature space vector back to the

image. N (0,σ2Id) are i.i.d random variables drawn from the Gaussian distribution.

It is worth noting that fc(·) is a contractive map, which is also said to be 1-Lipschitz.

Definition 4.4.3. (Contraction): For a Banach space (B,∥·∥), a function f : B→B is

said to be contractive (1-Lipschitz) if for all x, y ∈B:∥∥ f (x)− f (y)
∥∥≤ ∥∥x− y

∥∥ . (4.9)

Based on the iterative DP-Image mechanism above and privacy amplification by

iteration (see Lemma 4.3.2), we conclude the privacy budget of iterative DP-Image

(IDPI).

Theorem 4.4.1. (Iterative DP-Image (IDPI)): Assuming a start image X0 ∈R, and

its corresponding output image XT . f (·) is a map function that maps the image into its

feature space, fc(·) is 1-Lipschitz. Then, for every σ > 0,α > 1, IDPI(X0,σ,T) satisfies

(α, α∆ f 2

2Tσ2 )-RDP. By definition, it also satisfies (ϵ+ log(1/δ)
α−1 ,δ)-DP for any 0 < δ < 1, where

ϵ= α∆ f 2

2Tσ2 , and satisfies pure (α∆ f 2

2Tσ2 )-DP, for α=∞.

Proof. Here, we give the simplest version of the proof. First, according to the equation in

Lemma (4.3.2). M(X ) satisfies (α, α∆ f 2

2Tσ2 )-RDP:

Dα(M( f (X )) ∥M( f (X ′)))≤ α
∥∥ f (X )− f (X ′)

∥∥2

2Tσ2

≤ αsup || f (X )− f (X ′)||22
2Tσ2

= α∆ f 2

2Tσ2 (Definition 4.4.2)
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As claimed.

Then the rest of the proof follows from the post-processing property of DP. Hence, we

can conclude that if the feature vector is treated with IDPI, then the reconstructed image

XT generated by mechanism M satisfies the (α,ϵ)-RDP as defined in Definition 4.4.1.

■

4.5 Experiments

In this section, we conduct experiments to validate the effectiveness of the proposed DP-

Image scheme. As facial recognition is the most widely used privacy sensitive application

at present, we use face images that contain personal identity information as the dataset

in our experiments.

4.5.1 Experiment Setup

4.5.1.1 Dataset

In our experiment, we used the Flickr-Faces-HQ (FFHQ) dataset [137], which is a high-

quality image dataset of human faces. The dataset consists of 70K high-quality PNG

images with a resolution of 1024×1024, and contains considerable variation in terms of

age, ethnicity, and image background.

4.5.1.2 Evaluation metrics

We use two groups of metrics to evaluate the performance: 1) privacy metrics to measure

the privacy protection performance: including the Face Privacy Protection Success
Rate (FPPSR) and Identity Similarity Score (ISS); 2) utility metrics that can vali-

date the utility of the perturbed images: including l2-distance, Average lp Distortion
(ALD), Structural Similarity (SSIM), and Frechet Inception Distance (FID).

1. Face privacy protection success rate (FPPSR): the average ratio of successful face de-

identification. It is obtained via using face recognition systems, e.g., ArcFace [138]

and Microsoft Azure Face Recognition API [139] to check whether the perturbed

image is recognized as a different person from the original image. The mechanisms

of these two systems are quite similar. ArcFace can be treated as a white-box

setting as it is open-source, while Microsoft API represents a black-box setting.
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2. Identity Similarity Score (ISS): this is also obtained via using a face recognition

system. However, rather than using the binary outcome of “Yes” or “No”, the soft

value that shows the similarity between the perturbed image and the original

image is used to measure to what degree the privacy has been preserved.

3. Distortion metrics: two distortion metrics are used to measure the amount of noise

added to the original image.

• l2-distance computes the Euclidean distance between original and perturbed

examples, i.e., l2 =
∥∥Y−X

∥∥
2

• ALDp [104]: ALDp = ∥Y−X∥p

∥X∥p
.

We use ALD∞ to measure the maximum change in all dimensions of the

perturbed images.

4. SSIM: SSIM is a method used to measure the similarity between two digital images.

Compared with the traditional image quality measurement methods, such as peak

signal-to-noise ratio (PSNR) and mean squared error (MSE), SSIM can better

match the human judgment of image quality [105] [106]. It can be used to quantify

the extent that the perturbation is invisible to human eyes. A high score means

that two images are structurally similar.

5. FID [140]: FID captures the similarity between two images based on the deep

features calculated using the Google Inception v3 model. A lower score indicates

that the two images are more similar.

4.5.1.3 Generation of the latent space vector Z

For an image, its generated latent space vector Z needs to satisfy two important require-

ments: 1) Z is a good representation of the image features; 2) the original image can be

recovered by feeding Z to the generator network.

To achieve this target, we use the pSp framework proposed in [141]. It is an encoder

that directly generates a series of style (feature) vectors which can be fed into a pre-

trained StyleGAN generator.

As shown in Fig. 4.3, the dimension of Z generated by the pSp framework is (512,18),

consisting of 18 style vectors, each with a length of 512 elements. These styles are

extracted from the corresponding feature map generated from a ResNet backbone, where
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Figure 4.3: The framework of generating feature space vector using pSp encoder and
reconstructing image with StyleGAN generator.

style vectors (1−3) are generated from the small feature map, style vectors (4−7) from

the medium feature map, and style vectors (8−18) from the largest feature map.

The distribution of the generated latent space vector values is exhibited in Fig. 4.4.

It can be observed that the elements of the Z are in the range of [−20,20], with most

values near 0. In practice, the dimension is decided by the feature extraction network.
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Figure 4.4: Distribution of the values in latent space feature vector Z.

Generally speaking, the quality of the recovered image improves if we have a higher
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dimension of Z. However, it comes at the expense of more involved feature extraction of

images.

Figure 4.5: Generated faces with proposed DP-Image method.

4.5.1.4 Image reconstruction using StyleGAN2

For the image reconstruction, we use the state-of-the-art StyleGAN2 [134] generator,

which is trained on the FFHQ dataset. The parameters of the generator are fixed after

the training process, and the output image is 1024×1024. It is worth noting that although
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Figure 4.6: The DP-image visual results with reference (ϵ,δ)-DP. The x axis and y axis
are the image iteration number and reference ϵ in logarithm. From left to right, they are
original image and corresponding generated images with different T and same σ= 0.2.
The sensitivity ∆ f = 3840. δ= 10−8 by the natural settings on deep learning.

Figure 4.7: The image visual results for IDPI with different iteration numbers. Above,
we give the possible visual results of face images under the σ= 0.2 setting. From left to
right, the first column is original face images, and all other face images are generated
with the different iteration numbers shown above.

StyleGAN2 can accept a simplified (512,1) vector as input, it will lose many fine details

in high-resolution images [141]. Therefore, we use the (512,18) vector generated by the

pSp framework in our experiments.
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Figure 4.8: The image visual results for IDPI images with different σ. Here we give
the possible visual results under T = 102 setting. From left to right, the first column
is original images, and all other face images are generated with the different σ shown
above.

Figure 4.9: The 20 image examples for the heat map in Fig. 4.10.

4.5.2 Performance of the DP-Image Mechanism

4.5.2.1 Sensitivity

The sensitivity is defined as the maximum element-wise difference between the feature

vectors produced by two different images, as shown in Eq. (4.8).

In this scenario, as the encoder framework is non-convex and does not have a closed-

form expression, Through observing the distribution of the feature space values (see

Fig. 4.4), we get an empirical sensitivity by clipping the feature vector into the range

[−20,20], which keeps more than 99% of the image features intact. In this case, according
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Figure 4.10: The confidence values of pair-wise image comparison for the 20 example
images. Microsoft Face API holds high accuracy on face recognition. Any two faces with
different identities will be given a lower score, e.g. confidence ≤ 50.

to Definition 4.4.2, the sensitivity ∆ f can be calculated:

∆ f .= sup
X ,X ′

|| f (X )− f (X ′)||2 (Definition 4.4.2) (4.10)

= ||20Id,−20Id||2 (4.11)

= 3840. (4.12)

Where Id is an all-ones vector with the same dimension of image feature vector (shape

(18,512) in this scheme).

∆ f scales the noise added to the image features. By IDPI definition, with a large

sensitivity, the image will need more iterations to achieve a smaller ϵ. However, from the

utility perspective, the image could be more real-looking if we adopt a smaller clipping

bound.
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Figure 4.11: We evaluate the DP-image performance with Microsoft Face API (a) and
the ArcFace (b). (a) The x axis and y axis are iteration number T and Microsoft face
API confidence score respectively. (b) The x axis and y axis are iteration number T and
ArcFace score respectively. We set σ= 0.2,σ= 0.4,σ= 0.6 to compare the confidence score
with different settings.

4.5.2.2 Privacy protection performance

To test the performance of our proposed algorithm, we randomly choose a few images

from the dataset and apply our DP-Image scheme on the faces of the image. As shown

in fig. 4.5, the original images are given on the top row, all the other four rows are the

possible released privacy-preserved face images. All faces are generated under a setting

of IDPI (X0,σ= 0.2,T = 104). In fact, for each column, there is only one image generated

from the original image above, i.e. the face identities of the second row are generated

from the first face, the third row are generated from the second face, and so on. From

the DP definition, all of the four proposed images have the probability of being the ‘real’

generated image. In other words, the adversary cannot distinguish the queried face by

the naked eye, even though he is able to access the whole dataset.

Fig. 4.6 gives the reference ϵ under different IDPI iteration numbers. Next, we show

a series of experiment results to display the visual influence of different IDPI settings.

Fig. 4.7 shows the images with different iteration numbers, i.e. IDPI(X0,σ = 0.2,T =
[100,101,102,103,104,105]). In this case, we fixed the σ value to observe how the image

changes as the iteration number T increases. With a larger iteration number, e.g. 105,

the faces do not get much distortion. Moreover, the IDPI provides good and stable utility

during the iteration.
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Figure 4.12: We evaluate the DP-image performance with Microsoft Face API (a) and the
ArcFace (b). (a) The x axis and y axis are iteration number T and FPPSR on Microsoft
face API respectively. (b) The x axis and y axis are iteration number T and FPPSR
on ArcFace respectively. We set σ = 0.2,σ = 0.4,σ = 0.6 to compare the FPPSR with a
different setting.

Then, we fix the IDPI parameter T and adjust the privacy budget for each step σ.

Fig. 4.8 shows the images with various σ values. The faces exhibit poorer utility with a

higher σ. Because a larger perturbation in one step will lose too much feature information

to maintain the utility of the semantic features. Thus, σ serves as a parameter to control

the utility of the whole image.

To quantify the performance of our proposed scheme, we test the IDPI on the advanced

DNN threat model. The face recognition models are used to measure the distance of

image features. As the DP perturbation is added to the image feature space, the distance

measurement on the feature space is an essential evaluation in our scheme. First, we

use a commercial face recognition system Microsoft Face API as an attacker to evaluate

our proposed algorithm. The Microsoft API can yield a confidence score for any pair of

faces being the same person. In order to better understand the score of the API, we first

generate the confidence score values of pair-wise image comparison for the 20 example

images (see Fig. 4.9) in Fig. 4.10.

After that, we make experiments for the ISS metric. In Fig. 4.11(a), we generate

DP-images on the FFHQ dataset under different settings and get the Microsoft API

confidence scores. The average Microsoft API confidence scores decrease to lower than 50

within the first 5 iteration for all σ. Basically, Microsoft API uses a confidence score of 50

as a threshold for image identity.
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Then we attack IDPI with one state-of-the-art face recognition system ArcFace.

ArcFace uses DNN (e.g. Resnet) to extract image features and then measure the distance

between different features by using Additive Angular Margin Loss. Nowadays, ArcFace is

one of the top face recognition models in the deep learning area and being implemented

in many applications. Our results (see Fig. 4.11(b))show that IDPI can reduce the average

ArcFace score to lower than 0.31, which is the empirical threshold in using ArcFace as

face identifier, within 5 iterations for all σ.

Besides, the average confidence scores and the ArcFace score are stable at around

18 and 0.09, respectively, in the following iterations, which indicates a way of choosing

better IDPI parameters in practice.

Next, we conducted a quantitative evaluation of the dataset using the FPPSR privacy

evaluation metric introduced in 4.5.1.2. We evaluate our method on both ArcFace and

Microsoft Azure Face Recognition APIs. We make the same settings with the ISS metric

and count the success rate by using the threshold introduced in previous experiments

(i.e. Microsoft Azure Face Recognition API: 50, ArcFace: 0.31). Fig. 4.12 shows that the

FPPSR was stable at over 99% for both models.

Table 4.1: Utility comparisons of the proposed privacy protection methods with traditional
privacy protection methods.

ISS(ArcFace 0.31) ISS(Microsoft API 50)
l2 ALD∞ SSIM FID l2 ALD∞ SSIM FID

Blur 71783 1.1502 0.5895 265.8 71533 1.1462 0.6029 220.9
Mosaic 70439 1.1386 0.5705 377.5 70439 1.1386 0.5705 377.5

Adversarial (pixel) 71657 1.1011 0.2014 391.1 71778 1.1029 0.2141 393.7
Ours 73383 1.2567 0.5050 155.7 73408 1.2531 0.5400 152.6

4.5.2.3 Utility

Table 4.1 compares the utilities of the proposed DP-Image with several traditional

perturbation methods when they have approximately the same ISS. As ArcFace and

Microsoft API perform a bit differently, we use both privacy metrics on these methods.

We try to keep the ISS of ArcFace (i.e. 0.31) and Microsoft API (i.e. 50) at a similar

level. It shows that the proposed DP-Image mechanism can well preserve the perceptual

visualization of the image (lowest FID). On the other hand, the DP-Image method yields

a similar performance in the sense of l2, ALD∞ and SSIM, as these metrics are evaluated

on the pixel domain.
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4.6 Discussions

4.6.1 Privacy Analysis

Our experiments in Section 4.5 show that it is feasible to achieve DP for images in feature

space. And we can control the amount of noise and the appearance of reconstructed

images by adjusting the IDPI parameters. Moreover, the noise added to the features can

not be reverted back so as to reveal the original image, thus providing the capability to

protect image privacy in a data-sharing scenario.

It is worth noting that although IDPI can theoretically achieve strong ϵ-DP (e.g.

ϵ≤ 10), the infinite iteration will cost vast of computing power, which naturally decreases

the effectiveness of the image. In our experiment, only a relatively small amount of

noise can cause the image identity to change. There are two major reasons for this

phenomenon: 1) although using i.i.d random variable vector N = (N1, ..., Nm) drawn from

the Gaussian distribution can guarantee DP [79], the bound is quite loose, especially

when the dimension m is high; 2) while the DP noise is added on the latent vector f (X ),

we do not need to make M(X ) completely indistinguishable from M(X ′) in practice. Our

target is to make the identities of reconstructed images from X and X ′ close to each

other, and hence a small variation on the feature vector is enough.

The ultimate purpose of image privacy protection is to prevent de-identification, i.e.,

removing personal identifiers in the image. To achieve this target, we need to consider

two different types of adversaries: human and AI. For a human adversary, the generated

image needs to satisfy two conditions: 1) the appearance of the image has changed; 2)

the new image needs to be realistic and natural, so that an adversary who has not seen

the original image does not know that the new image is a generated instance. In this

sense, our proposed DP-Image method that manipulates images in the feature space is

an appealing option. For the AI adversary, it does not look at the appearance, but the

features instead. In this case, the ISS and FPPSR are the primary performance metrics.

And our experiments show that the DP-Image scheme that adds random noises can

generate real-looking face images.

4.6.2 Disentangle Identity-related Features in Image

One interesting discussion is that can we add noises only to the identity-related features

in the feature space. To answer this question, the precondition is that we are able to

extract the identity-related features from images.
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In terms of the pSp framework that we use as the encoder, we found that the style

vectors (1−7) are more identity-related (representing the structure of the faces), while

the rest of the style vectors (8−18) are not highly related to identity (representing colour,

pose, etc.) Therefore, we investigate the case of adding noise only to identity-related

feature vectors of Z, which are layers (1−7).

As shown in Fig. 4.13, adding noise only to identity-related features in Z could greatly

reduce the amount of sensitivity (i.e. from 3840 to 2394 by definition). In the meantime,

the effectiveness of privacy persevering keeps the same level.

Figure 4.13: Generated faces with noises added to identity-related features of Z. We give
the possible visual results of adding noise on image identity features. From left to right,
they are original images, the faces protected by IDPI(X0,σ= 0.2,T = 10), IDPI(X0,σ=
0.2,T = 20), IDPI(X0,σ= 0.2,T = 30), IDPI(X0,σ= 0.2,T = 40), IDPI(X0,σ= 0.2,T = 50)

The pSp framework is not specifically designed for extracting identity-related features,

therefore the discussions in this subsection are preliminary. The extraction of identity-

related features is a topic of its own that attracts many recent research interests. If we

can combine the latest extraction technique with state-of-the-art image autoencoders in

the future, it will further enhance the performance of the proposed DP-Image mechanism.
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4.6.3 Image Privacy vs. Database Privacy

From the experiments, we can see that image privacy is quite different from conventional

data privacy.

1. The protection target of database privacy is the existence of a certain record in

the database or not; while image privacy protection targets the identity-related

information in the image.

2. It is easy to add random noise to the data record and generate a meaningful

DP perturbed record. However, for an image, adding random noise might lead to

distorted and unrealistic pictures.

3. The performance of DP-Image needs to be judged by both visual and numerical

metrics, as we may need to consider both humans and AI as adversaries.

4.7 Related Work

As much of the related work on differential privacy and deep learning has already been

discussed in Section 4.3, here we only focus on the works specifically on image privacy

protection.

The image privacy issue first attracted people’s attention, along with the booming

of social networks developing. The proliferation of social networks generated massive

photos flooding the internet that contains sensitive information. For example, Pesce et

al. [142] use photo tags to attack users and get their privacy. The image privacy issue

becomes more server with the widely spread of facial recognition systems, as people start

to worry that organizations might use their faces for profiling or social control.

The previous mainstream method to combat the image privacy attack is using access

control on sensitive content. For example, Vyas et al. [143] use annotation data to predict

the privacy preferences of users and control the shared content. Moreover, Squicciarini

et al. [144] proposed collaborative privacy management that can let users collaborative

control their photos. Similarly, to deal with the privacy issue in facial recognition systems,

the current countermeasure is simply banning [145]. The access control-based method

has several limitations. It only gives “Yes” or “No” options for the use of images, while we

need to use part of the information in applications such as Google Street View. And it

cannot automate privacy protection based on the privacy information of the image itself,

requiring human participation.
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Some more recent image privacy researches focus on changing the identity-related

information in images. The main techniques are obfuscation and inpainting. Simple

obfuscation has been proved to be ineffective against DNN-based recognizer [107, 146]. In

order to improve the robustness against deep learning aided attacks, adversarial example-

based methods have been proposed to mislead the neural networks [7, 101, 102, 109–111].

Also, there are some researchers who start to use GAN to generate content to replace the

sensitive information in the images [112–116]. For example, Sun et al. [112] proposed

GAN-based head inpainting to remove the original identity. Finally, there have recently

been a few attempts to combine the DP notion with image privacy. Fan [80] proposed an

ϵ- differential private method in the pixel level of the image. However, making image

pixels indistinguishable does not make much sense in practice, and the quality of the

generated image is quite low. In another work from the same author [81], metric privacy

is defined in the image transformation domain, but the quality of the obfuscated image

is still low. Lecuyer et al. [82] proposed the PixelDP framework that includes a DP noise

layer in the DNN. PixelDP scheme enforces that the output prediction function is DP

provided the input changes on a small number of pixels (when the input is an image).

However, the purpose of PixelDP is to increase robustness to adversarial examples, other

than image privacy.

4.8 Conclusion and Future Work

In this chapter, we have proposed a DP-Image framework IDPI that can protect sensitive

personal information in images. The major contributions are two-fold. First, we present

the novel notion of DP-Image. Second, we propose a method to perturb the image by

adding noise to its feature vector in the latent space. The effectiveness of the proposed

framework is validated by extensive experiments on the face image dataset FFHQ.

Image privacy and the broader topic of unstructured data privacy is an interesting

research direction with many open problems.

• A more comprehensive image feature extraction network that can be applied to

different types of images and even videos.

• Investigate how the image feature vector decides the various semantic attributes

of images and whether we can cleanly extract these attributes.

• Based on the above understanding, we may be able to concisely control some of the

attributes which we believe are crucial from the privacy perspective.
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• Investigate DP-Image mechanisms in more complicated images that contain multi-

ple sensitive objects.

In the upcoming chapter, we will focus on comprehending the specific manifestations

of various attributes within the semantic space of images, alongside precise control over

the “clean” protection efficacy linked to distinct features. Specifically, we will classify

the latent attributes inherent in images into privacy and non-privacy, thereby facilitat-

ing precise protection of the privacy aspects for users. Undeniably, this augmentation

significantly enhances both the images’ usability and the overall user experience.
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5.1 Preface

In this chapter, our exploration centres around a privacy protection framework that prior-

itizes usability. We address the limitations of existing strategies, which often overlook the

impact on image usability by indiscriminately distorting information. To mitigate this

issue, we propose a protective strategy that differentiates and preserves various types of

information within images. Our framework optimizes the protection of privacy-sensitive

information in the semantic space of images while striving to retain non-private infor-

mation to the fullest extent possible. To evaluate the effectiveness of our framework, we

leverage a facial dataset with a specific focus on individual identity as privacy-sensitive

information. Through rigorous experimentation on this dataset, we demonstrate the

efficacy of our framework and highlight its exceptional performance compared to other

state-of-the-art methods.

5.2 Introduction

5.2.1 Motivation

The rapid development of Computer Vision (CV) technology has recently made the

automatic processing of large-scale visual data prevalent. However, those visual data

contain a large amount of personal information, leading to inadvertent disclosure of an

individual’s privacy. While we enjoy the benefits of advanced CV technology, including

camera surveillance and video conferencing, we are reluctant to surrender our privacy

and in-dignify ourselves as manipulable data records. In addition, the information that

people share on the Internet is facing more powerful malicious attackers than ever before.

The traditional privacy-preserving methods are less effective against deep learning-based

attacking models. Therefore, new privacy preservation methods are urgently needed.

Various defence techniques and mechanisms have been proposed to enhance privacy

by de-identifying face images [147]. Traditional obfuscation-based methods usually

obfuscate sensitive information by blurring, pixelating, or masking an image, which

are illustrated in Fig. 5.1. However, the image processed by these traditional methods

can be easily and accurately detected by deep learning models. Therefore, new defence

techniques and mechanisms have been designed to protect image privacy from the

deep learning models, including face identity transformer, differential privacy (DP),

GAN-based inpainting, and adversarial examples (AEs), etc. [132, 134, 148–153]. The

face identity transformer was proposed in [148], which can perform automatic photo-
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realistic password-based anonymization and deanonymization of human faces. DP-based

methods can provide provable privacy guarantees but produce lower-quality images

by including DP noises to the original image or in the transformed domain of the

image [149]. GAN-based inpainting was proposed to generate content to cover the

sensitive information or identity of the image without degrading the quality of the

original image [150]. The conditional GAN (CGAN)-based method was designed by

adding labels to the generator and the discriminator for better network training [132].

Conditional Identity Anonymization Generative Adversarial Network (CIAGAN) [9] and

DeepPrivacy [8], both based on CGAN, proposed to add AE noises in the feature space

of the images. CIAGAN can de-identify faces and bodies while generating high-quality

images and videos. DeepPrivacy can generate an image with considerations of both pose

and background. Nevertheless, both CIAGAN [9] and DeepPrivacy [8] add the latent

noise in a vague direction, without considering the specific features of the image.

Considering deep learning-based privacy attacks, adversarial examples (AE)-based

protection methods have great potential. The earliest research on AE was proposed by

Szegedy et al. [154]. It was shown that a small perturbation could have a considerable

and negative impact on the accuracy of deep neural networks. In a recent paper [99], the

author designed an adversarial example attack against deep neural networks to mislead

the classifier. It was revealed that the deep neural network is different from humans

in the task of image classification, and AE is an efficient method to generate noise on

images that affects the deep neural networks. Many subsequent studies have focused on

adversarial noise in different settings, such as adversarial noise for the convolutional

neural network (CNN), deep neural network (DNN), recurrent neural network (RNN),

and more robust adversarial noise [155]. There is an arms race-like relationship between

attack and defence technologies in such circumstances. One of the major issues of AE

is its transferability, i.e., its effectiveness on alternative black-box or unknown models.

To improve AE noise’s transferability, some papers [156, 157] have transferred the

calculation of noise direction from the output layer to the intermediate layer of the

model. This can avoid the differences between models, thereby increasing transferability.

Pidhorskyi et al. [158] studied the potential of adding adversarial perturbations on the

feature level of images.

Most of the above existing work treated AE as a threat to system security. Only

very recently, researchers started to use adversarial examples (also called adversarial

perturbations) as a method to protect image privacy [7, 100, 101, 109–111]. However,

these methods either focus on the utility [7, 100, 101, 109, 110] or focus on the privacy
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protection [111], which is hard for users to choose a good trade-off.

5.2.2 Contributions

To overcome the problems mentioned above, we propose a novel face image de-identification

framework, where latent noise is generated based on the gradient directions concern-

ing the identity and the attributes of an individual face image, which can accurately

de-identify the image. Moreover, we use a pre-trained model as a decoder that can

map the perturbed feature vector back to an image (i.e., the generated AE). The main

contributions of our work are summarized as follows:

• We propose a novel face image de-identification framework based on feature space

adversarial perturbations referred to as the FSAP framework for short. This

framework can preserve face identity information against automated recognition

by DNNs while keeping a high utility of the image.

• We propose a feature space adversarial perturbation generation algorithm. By

alternative updating the perturbation according to the specially designed ID loss

and attribute loss items, we can successfully direct the noise to identity-related

information while ensuring the other attributes remain similar. In addition, feature

space manipulation can provide good transferability of the generated perturbation.

Furthermore, users can select a trade-off between privacy and utility according to

their own needs by adjusting the parameters.

• We implement the proposed image protection framework and methods on a real-life

image dataset and show its effectiveness in safeguarding people’s privacy.

5.2.3 Overview of the work

The structure of the remaining sections in this chapter is as follows. In Section 5.3, we

provide an overview of the related work in the field, covering image privacy protection

methods that utilize obfuscation, GAN-based inpainting, differential privacy (DP), and

adversarial examples (AEs). Moving on to Section 5.4, we formally define the problem and

subsequently present our proposed FSAP (Facial dataset anonymization with Semantic-

driven Adversarial Perturbation) protection mechanisms. In Section 5.5, we conduct a

series of experiments to assess the effectiveness of our proposed scheme. This includes

an ablation study as well as a comparison against other state-of-the-art methods. In
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Figure 5.1: Face deidentification results. From left to right, (a) Original image; (b) Blur
noise; (c) Pixelation noise; (d) Fawkes [7]; (e) DeepPrivacy [8]; (f) CIAGAN [9]; (g) feature
space adversarial perturbation (Ours).

the concluding part of Section 5.5, we discuss the limitations of GANs in addressing the

problem at hand and outline potential avenues for future work.
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5.3 Related Work

Recent image privacy researches [159–161] have focused on altering identity-related in-

formation in images via different methods, including obfuscation, GAN-based inpainting,

differential privacy (DP) and adversarial examples (AEs).

The main techniques under investigation are obfuscation and inpainting. Simple

obfuscation has been shown to be ineffective against DNN-based recognizers [107, 146].

Therefore, some researchers have started to use GAN and AE to generate content to

replace the sensitive information in the images [112–116, 162]. For example, Sun et al.
[112] proposed GAN-based head inpainting to remove the original identities. Hukkelås

et al. [8] proposed a CGAN-based architecture to anonymize faces without destroying the

data distribution of the original image. Deb [163] proposed a framework to generate face

masks based on GAN and AE techniques. Valeriia [164] proposed a method to optimize

the AE method in privacy protection. Zhang [165] proposed a face protection framework

against DNN by filtering the AE methods.

Furthermore, there have been some recent attempts to combine the DP with image

privacy [166]. Fan [80] proposed an ϵ-differential private method at the pixel level of

the image. However, making image pixels indistinguishable does not make much sense

in practice, and the generated images are of low quality. In another work from the

same author [81], metric privacy is defined in the image transformation domain, but

the obfuscated images are still of low quality. Lecuyer et al. [82] proposed the PixelDP

framework, which includes a DP noise layer in the DNN. The PixelDP scheme forces

the output prediction function to be DP, provided that the input changes on a small

number of pixels (when the input is an image). However, the purpose of PixelDP is to

increase robustness to adversarial examples rather than image privacy. Chen et al. [149]

proposed a variant of DP by considering a perceptual similarity of the facial images,

named perceptual indistinguishability (PI)-Net, which can achieve image obfuscation

while ensuring PI.

To achieve a good trade-off between privacy and accessibility for face de-identification,

reversible privacy protection has been studied in the literature [167–169]. Pan et al. [167]

proposed a Multi-factor Modifier (MfM) based on conditional encoder and decoder frame-

work, which achieves multi-factor facial de/re-identification. Based on a deep generative

model, a personalized and reversible de-identification method was designed in [168]

to control the direction and degree of identity change by introducing a user-specific

password and an adjustable parameter. You et al. [169] proposed a reversible privacy
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protection framework with an encoder and decoder using U-Net architecture to generate

high-quality protected images without visible facial features. The original images are

encoded with embedded face information before uploading onto the cloud.

Video-related de-identification has also been investigated in [170–172]. Unlike the

face image de-identity, it requires to be modified seamlessly without causing any visual

distortions or artifacts. In [170], a multi-task extension of GAN was formulated to

eliminate privacy-sensitive information of a video and detect privacy-preserving actions.

In [171], a feed-forward encoder-decoder network architecture was proposed conditioned

on the high-level representation of a facial image. By coupling the latent space of the

auto-encoder with a trained classifier network, a rich latent space with embedded identity

and attribute information can be achieved.

Compared to the existing method for face image de-identification, to the best of our

knowledge, ours is the first method that generates feature space AE noise in an optimiza-

tion style. And compared to the state-of-the-art techniques, ours achieves compelling

results in privacy, utility, and transferability.
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5.4 Feature Space Adversarial Perturbation Based
Face Image De-identification Framework

In this section, we elaborate on the design of the proposed Feature Space Adversarial

Perturbation (FSAP) based image de-identification framework. Under this framework,

we further propose privacy protection methods against CNN face recognition.

5.4.1 Problem Formulation

Let x ∈Rh×w×c denote a face image with c channels, each having a size of height h and

width w. A CNN encoder fE(x) can generate a latent vector W of the face image x and a

decoder fD(W) can reconstruct the face feature W to the output face image x̂ ∈Rh×w×c. If

both the encoder and decoder are ideal, we should have x̂ = x, i.e., fD( fE(x))= x.

Our ultimate goal is to find a noise ∆W in the latent space that can perturb the

identity of the input face image such that the output face image x̂ has the following

characteristics:

• De-identification. The perturbed image x̂ is likely to be recognized as a differ-

ent face from the input image x by an arbitrary CNN face recognizer f I(·), i.e.,

LI(x, x̂; f I) > τ, where LI(·) indicates the identity loss. τ denotes the threshold of

the two face images being recognized as different identities.

• Maintaining the Utility. While targeting de-identifying the face identity, the

perturbed image x̂ should suffer from the minimum attribute loss to the input

image x, i.e., minLP(x, x̂), where LP(·) indicates the attribute loss. To the naked

eye, the perturbed image x̂ should have similar properties to the input image x,

so that it would be difficult for humans to distinguish which image is real or an

impostor.

To summarize this process into an optimization problem, we have

min LP (x, x̂)

s.t. LI(x, x̂; f I)> τ.
(5.1)

The optimization problem (5.1) tries to maximize the dissimilarity of the face image

identities, while minimizing the similarity of the face image attributes. To achieve

this goal, we design novel architecture, referred to as the Feature Space Adversarial

Perturbation Based Face Image De-identification Framework (FSAP Framework for

short).
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5.4.2 FSAP Framework

The framework for generating feature-level adversarial examples is shown in Fig. 5.2,

which consists of three stages: (1) Stage 1 - encodes the input image x into the latent

vector W by using a pre-trained CNN, i.e., fE. (2) Stage 2 - updates the image latent

vector W ′ by adding adversarial perturbation iteratively. (3) Stage 3 - the output image

x̂ is reconstructed from W ′ by a pretrained decoder, i.e., fD . The output image x̂ is an

image that does not contain the identity information of the original image.

W

∆W

W ′

Feature

extraction

Image

reconstruction

Identity Loss LI(x, x̂; fI)

Attribute Loss LP (x, x̂)

∆W

Alternative

update

Conventional

network

structure

Proposed

network

structure

LI ≤ τ

AP generation

Figure 5.2: Feature Space Adversarial Perturbation (FSAP) based privacy protection
framework.

5.4.2.1 Feature extraction.

In order to extract the face image features, we adopt the pixel2style2pixel (pSp) [141]

encoding framework, which can be used to solve various image-to-image translation

tasks and is compatible with StyleGAN2 architecture. We use the intermediate layer

between the encoder and the decoder as our latent code, denoted as W . Here, W contains

18 style vectors, with each vector of length 512. The encoder extracts the feature maps of

the input image in three levels (low, medium, high) through a typical CNN (e.g., ResNet).

These feature maps then were mapped to the latent vector. The process can be formulated
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as:

W =



z1

z2

z3
...

z6

z7
...

z18



=



s1(khigh(x))

s2(khigh(x))

s3(kmedium(x),khigh(x))
...

s6(kmedium(x),khigh(x))

s7(klow(x),kmedium(x),khigh(x))
...

s18(klow(x),kmedium(x),khigh(x))



= fE(x), (5.2)

where sn(k),n ∈ [1,2, . . . ,18] is a fully convolutional network to map the feature maps

k into the style vector zn. The feature maps k have three different dimensions, i.e.,

dim(khigh) < dim(kmedium) < dim(klow), and are built with a nested structure. zn ∈
R512,n ∈ [1,2, . . . ,18] are the style vectors corresponding to the 18 layers of the latent

vector W . The input image x is an RGB face image, and fE is the encoder.

5.4.2.2 Adversarial perturbation generation.

The latent vector W can be used to ideally reconstruct an output image x̂ that is close to

the original image x. We now start to train an AP to change the face identity, i.e., train

an AP (i.e., ∆W) that can generate a face ID loss above the threshold, while minimizing

the face attribute loss.

The two loss items are calculated as described below:

• ID Loss. The ID loss LI(x, x̂; f I) is to measure the identity similarity of the two

faces. This loss function maps the input image x and the output image x̂ into the

face feature space, also known as face embedding. We adopt the most widely used

method cosine similarity to compute the face embedding loss (i.e., ID loss), which

is defined as:

LI(x, x̂; f I)= 1− f I(x) · f I(x̂)∥∥ f I(x)
∥∥

2 ·
∥∥ f I(x̂)

∥∥
2

. (5.3)

• Attribute Loss. The attribute loss LP (x, x̂) measures the attribute similarity of the

two faces. The loss function is a combination of three typical losses, including MSE

(Lm), LPIPS [173] (Ll), and SSIM (Ls), and is defined as follows:

LP (x, x̂) := {λ1Lm(x, x̂),λ2Ll(x, x̂),λ3Ls(x, x̂)}. (5.4)
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MSE (Lm), Mean Square Error, takes the pixel loss of the input and output images,

which controls the amount of noise added to the image. LPIPS [173] (Ll), Learned

Perceptual Image Patch Similarity, takes the perceptual loss from the perceptual latent

distance of the input and output images and measures the perceptual similarity of the

images, which controls the visual quality of the image. SSIM (Ls), Structural Similarity

Index Measure, controls the structural similarity of two images. The combination of

these three losses can guarantee the utility of the image from different levels.

The details of the AP generation algorithm will be described in Subsection 5.4.3.

5.4.2.3 Image reconstruction.

We adopt the StyleGAN2 [134] synthesis network as the generator. Unlike a traditional

decoder, which uses the latent vector as the bottom layer of the network, StyleGAN2

generates the images from a constant vector. The latent vectors were fed to 18 layers of

the network to affect the identity of the face. In order to de-identify the face image, the

perturbed latent vector W ′ =W +∆W is thus fed to each layer of the synthesis network

as well. The process can be formulated as follows:

x̂ = fD(W ′), (5.5)

where fD is the reconstruction network that decodes the modified latent vector W ′ back

to the RGB face image.

5.4.3 Adversarial Perturbation Generation Process

Traditional adversarial perturbations can be grouped into two major categories: target

and non-target. Target attacks require that the model classifier misclassifies the AEs

to a specific class for malicious purposes. The non-target attacks only require AEs to be

misclassified with any wrong label to avoid detection. In the context of privacy protection,

non-target AP just pushes the image away from the current identity. Therefore, it is a

better option than target AP.

In addition, we want to minimize the AP so that the utility of the image can be

kept as much as possible. While this is often a non-convex optimization problem. Some

approximate methods have been developed. The fast gradient sign method (FGSM)

proposed by Goodfellow [99] is a widely adopted method of generating AE/AP. The AP

generated by FGSM and its variants is superior to other traditional methods when

facing the white-box model. However, traditional FGSM has less transferability when
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facing the black-box model. Some studies [156, 157] have found that adding noise to the

feature space can improve the transferability of AP. The argument was that the existing

recognition networks generally map the pictures to latent space vectors through the

CNN to recognize images. Therefore, the noise added to the latent space vector will have

better transferability. To sum up, our proposed method adds noise to the latent vector of

the input image x in a non-target manner.

Also, our method differs from the conventional GAN-Based methods that add the

latent noise in a vague direction. The conventional GAN-Based methods use a large

dataset to train the network and one network to process all the data. Even with a

large dataset and time-consuming training, the generalisation ability of the network is

inversely proportional to the accuracy. Whereas our method can accurately add latent

noise on the identity-related information of an individual image. The proposed latent

noise is generated based on the gradient direction with regard to the two losses described

before, i.e. LI and LP .

The perturbation ∆W takes the update from the following two losses alternately:

∆W1 =λIsign (
∂LI(x, x̂; f I)

∂W ′ ); (5.6)

∆W2 =−(λ1sign (
∂Lm(x, x̂)

∂W ′ )+λ2sign (
∂Ll(x, x̂)

∂W ′ )+λ3sign (
∂Ls(x, x̂)

∂W ′ )), (5.7)

where ∆W1 and ∆W2 are the latent noises regarding the identity and attributes of the

input image, respectively. The first loss function, LI(x, x̂; f I), measures the face identity

dissimilarity between the input image x and the output image x̂ with an arbitrary CNN

face recognizer f I . The second loss function, LP(x, x̂), computes the face attribute loss

between the input image x and the output image x̂. When updating, the gradient is

accumulated on the potential identity free face latent vector W ′ =W +∆W. It is worth

noting that to simplify the experiments, we use the same attribute update rate λP to

replace λ1, λ2, and λ3. ∆W2 can be rewritten to:

∆W2 =−λP (sign (
∂Lm(x, x̂)

∂W ′ )+sign (
∂Ll(x, x̂)

∂W ′ )+sign (
∂Ls(x, x̂)

∂W ′ )), (5.8)

The AP generation algorithm is shown in Algorithm 7.
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Algorithm 7: AP generation algorithm based on the FSAP framework.
Parameters: ID update rate: λI ; Attribute update rate: λP ; Maximum iteration
number: N; Adjustable iteration number: k; ID distance threshold: τ.

Input: The original image x.
Output: The released privacy-preserving image x̂.
Stage 1:
Obtain the latent vector W = fE(x).
Stage 2:
Initialization: latent noise ∆W = 0; Perturbed latent vector W ′

0 =W .
for 1≤ n ≤ N do

x̂n = fD(W ′
n);

W ′
n =W ′

n +∆W1;
for 1≤ i ≤ k do

x̂i = fD(W ′
n);

W ′
n =W ′

n +∆W2;
i = i+1;

end
if LI(x, x̂n; f I)> τ then

Break
end
n = n+1;
x̂ = x̂n.

end

5.5 Experiments

In this section, we carry out extensive experiments to verify the effectiveness of the pro-

posed method. We also compare our method with the state-of-the-art face de-identification

methods, i.e., GAN-based: CIAGAN [9], DeepPrivacy [8], and AP-based: Fawkes [7].

5.5.1 Experiment Setup

5.5.1.1 Dataset.

In this experiment, human faces are selected as the object of image privacy protection

because they contain a large amount of identifiable information and have been the main

concern in the field of image privacy protection. The face images for our experiments

come from two well-known public face image datasets, i.e., FFHQ [137] and CelebA [174].

• The FFHQ dataset contains 70,000 high-quality PNG images with a resolution

of 1024×1024 and considerable variation in terms of age, ethnicity, and image

89



CHAPTER 5. FACE IMAGE DE-IDENTIFICATION BY FEATURE SPACE
ADVERSARIAL PERTURBATION (FSAP)

background.

• The CelebA dataset contains 202,599 face images covering large pose variations

and background clutter.

5.5.1.2 Experimental settings.

In this work, we adopt a pSp encoder [141] pre-trained on the FFHQ dataset for feature

extraction. The ID Discriminator f I used is pre-trained on the state-of-the-art face

recognition network Resnet [175] with Arcface Loss [138] on the real-life dataset. The

synthesis network of StyleGAN2 [134] is pre-trained on the FFHQ dataset.

Parameter settings: N = 100, k = 6, τ= 0.8, λI = 0.02, λP = 0.008. τ is the threshold

of the ID distance.

5.5.1.3 Evaluation Metrics.

The following methods will be used to measure the proposed algorithm:

• De-identification:

Successful protection rate (SPR): We define successful protection as:

I(x, x̂)> δ, (5.9)

where I(x, x̂) is the identity distance calculated on the identifier I. δ is the threshold

that recognizes the face as a different identity. SPR is then formulated as:

SPR = 1
m

m∑
i=1

gP (xi), (5.10)

where

gP (x)=
1, if I(x, x̂)> δ,

0, otherwise,
(5.11)

with m being the number of tests.

• Utility:

1) Successful detection rate (SDR): We defined SDR as the de-identification rate of

face images that can be detected. It evaluates the utilities of computer vision tasks

and is formulated as:

SDR = 1
m

m∑
i=1

gD(xi). (5.12)
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If the face can be detected, then gD = 1. Otherwise, gD = 0.

2) Landmarks distance. chin/nose/eyes/mouth indicates the mean distance of

the key points corresponding to each facial area. It evaluates the utility of facial

analysis.

• Distortion metrics:

Mean square error (MSE) is used to measure the distortion between two images at

the pixel level.

5.5.2 Performance Evaluation

In this section, we display the results of our proposed method from three aspects. (i)

Ablation Study; (ii) Results compared to other methods; (iii) Analysis of the Parameters.

5.5.2.1 Ablation Study.

Figure 5.3: The visual results of the ablation study. The first row is the original image.
The second row and third row are the de-identity images generated by ID loss and Bi-loss
framework, respectively.

We conduct an ablation study on the framework to confirm the effectiveness of the

proposed ID loss and attribute loss as introduced in Section 5.4.2. In particular, we

consider the following cases: the framework is equipped with the ID loss module only.

It is worth noting that in order to protect the face identity with the ID loss mod-

ule only, the perturbation ∆W adds on the gradient ascent direction of LI , i.e., ∆W =
λIsign (∂LI (x,x̂; f I )

∂W ′ ), with sign (·) being a Sign function. In this case, the perturbation is

added to the ID information without attribute constraints. The Bi-loss mode images
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is generated based on Algorithm 7. Both the ID and attribute constraints are used to

generate the perturbation.

Fig. 5.3 gives the visual results of the proposed ablation study. The quantity result of

the privacy evaluation method (SPR) and the utility evaluation methods (SDR and MSE)

are reported in Table 5.1.

Table 5.1: Ablation Study. We use the same ID distance threshold, τ= 0.8, for all settings
in this table. The second column is the protection rate under Face Recognition Library.
The third column is the detection rate by using dlib [13]. The hyperparameters are set to
λI = 0.02,λP = 0.008, and the maximum iteration number N = 100.

SPR (↑) SDR (↑) MSE (↓)
ID loss solely 0.901 0.979 0.426
Bi-loss (ours) 0.905 1 0.112

We use the framework of Face Recognition Library for the SPR, and dlib for the SDR.

The ablation result shows that compared with the ID loss-only framework, the Bi-loss

framework achieves a 0.4% increase in privacy performance and a 2.1% increase in face

detection. Furthermore, the distortion of the Bi-loss framework has been reduced by

73.7%. In ablation experiments, the actual number of unsuccessfully protected samples is

almost the same. However, since the Face Recognition Library first uses a face detection

module to find faces in an image before figuring out the face ID for that image, the

images protected by the ID-loss only sometimes make the image invisible to the face

detection network, which lowers the protection rate.

5.5.2.2 Results compared to other de-identification methods.

This section compares our method with the state-of-the-art face de-identification methods.

Table 5.2 shows the privacy protection evaluation results with the widely used face

recognition networks. We use both the Face Recognition Library and the FaceNet [14]

network trained on VGGFace2 to evaluate the SPR. The results prove that our method

can better de-identify the face image under the most widely used face recognition

methods. Our method is better than CIAGAN, DeepPrivacy, and Fawkes by 4.9%, 2.8%,

and 26.3%, respectively, in terms of the SPR under Face Recognition Library. Under

FaceNet (VGGFace2) network, Ours (thick) improves the SPR by 1.7%, 14.4%, and 39.6%

compared to CIAGAN, DeepPrivacy, and Fawkes, respectively.

Table 5.3 summarizes the utility performance of our method compared with the

state-of-the-art methods. We evaluate our method with the SDR, MSE and the average
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Table 5.2: Privacy evaluation. The values in this table are the successful protection
rates (SPRs). The generation mode of Fawkes [7] is set to high, which is the highest
privacy level authors recommended. The threshold of Face Recognition is δ= 0.6 and the
threshold of FaceNet is δ= 1.1 according to [14].

Face Recognition (↑) FaceNet (VGGFace2) (↑)
CIAGAN [9] 0.918 0.943
DeepPrivacy [8] 0.939 0.816
Fawkes [7] 0.704 0.564
Ours 0.967 0.960

distance of the face feature landmarks on the pixel level. The result shows that our

approaches achieve the highest SDR. In other words, our de-identified faces lead to better

performance for face detection tasks. Moreover, compared with GAN-Based methods,

i.e., CIAGAN [9], DeepPrivacy [8], our methods strike a compelling score on minimizing

the distance of each facial feature. Our method lowers the average face feature dis-

tance of that on CIAGAN [9] and DeepPrivacy [8] by 77% and 71%, respectively. Both

our method and Fawkes [7] have the lower average face feature distance, but Fawkes

achieves the score at the expense of privacy-preserving effectiveness (lowest privacy

score). In addition, our method achieves the lowest pixel-level distortions. Compared

with CIAGAN, DeepPrivacy and Fawkes, our distortion is decreased by 14.5%, 67.4%

and 73.5% respectively.

Taking into account the above all, our method has better performance in protecting

the face ID while minimizing the impact on image utility. The images being protected by

our method can be used in multi-image tasks.

Table 5.3: Utility evaluation. The face detection network used in this table is dlib. The
Landmarks Distances are generated under the Face Recognition Library.

SDR (↑)
Landmarks Distance

MSE (↓)
chin (↓) nose (↓) eyes (↓) mouth (↓)

original 1 0 0 0 0 0
CIAGAN [9] 0.9939 2.635 2.130 2.422 2.622 0.131
DeepPrivacy [8] 0.9989 2.070 1.631 1.384 2.712 0.344
Fawkes [7] 0.9990 0.720 0.3921 0.389 0.492 0.422
Ours 1 0.704 0.6664 0.484 0.375 0.112
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5.5.2.3 Analysis on the Hyperparameters.

To evaluate the influence of the hyperparameters, we evaluate the perturbation perfor-

mance with different controllable noise coefficients, i.e., λI and λP . Fig. 5.4(a) shows a

trade-off between the SPR and the SDR under different values of λI and λP . We see

that the SDR first decreases slowly when λI = λP < 0.05, and then decreases rapidly

when λI = λP ≥ 0.05. In contrast, the SPR increases rapidly when λI = λP < 0.05, and

then flattens out at λI = λP = 0.08. In other words, with the growth of λI and λP , the

success rate of protection (privacy) increases while the success rate of detection (utility)

decreases.

Fig. 5.4(b) gives the mean feature distance under different hyperparameter settings.

The result shows that the distance of the feature will increase when the hyperparameter

increase. From the first point 0.01 to the last point 0.1, the average distance increases

135%.
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Figure 5.4: Parameters Analysis. The values of λI (or λP ) range from 0.01 to 0.1 with a
step size of 0.01. The maximum iteration number N = 30. The threshold τ= 0.8.

5.5.3 Discussions

5.5.3.1 Privacy protection against the commercial network.

In this section, we test our protected images on the two most widely used commercial

networks, Microsoft Face API [176] and Face Plus Plus API [177]. These two APIs are

built on large face recognition networks, which use the advanced deep neural network

and are trained on a large dataset. They provide several applications, including face

detection and analysis, identity verification and finding similar faces. In this experiment,
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we use the identity verification service to evaluate our method. In identity verification,

the APIs will take the original images and the protected images as the input and output

a score of confidence that indicates the probability that two faces belong to the same

person. The higher the confidence, the higher chance they belong to the same person. If

the input is the images without protection and the original image, the confidence score

equals 1.0.

The experiment results are shown in Fig. 5.5. Microsoft Face API and Face Plus

Plus use different confidence thresholds. While Microsoft Face API takes 0.5, Face Plus

Plus takes the value of around 0.69. The sample with a score below the threshold is

recognized as a different person in the API. The results show that our method lowers

the score of 82.9% samples under the threshold of 0.5 against Microsoft Face API, which

makes the network almost ineffective. And the score of 55.8% samples on Face Plus Plus

API is under the threshold of 0.69, which makes the network works in a random guess.

The experiment result proves that our method is transferable in different networks.

Because these commercial APIs networks do not open their source code and we did this

experiment in a black box mode.

Figure 5.5: The confidence of commercial API. The y-axis indicates the confidence score of
the MS API and the FACE++ API. The blue violin plot signifies the outcomes derived from
the Microsoft API, whereas the orange violin plot corresponds to the results obtained
from the Face++ API. The dashed line denotes the threshold applied to each API, wherein
facial images falling below this threshold are construed as emanating from disparate
identities. Notably, our methodology exhibits efficacy for both APIs.
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5.5.3.2 Limitations.

Although our proposed framework for face identity protection can achieve compelling

results in both privacy and utility, it has some room for further improvement. First,

the face latent code generated by the auto-encoder architecture comes with a cost - the

de-identity image quality is limited to the image-to-image translation ability of the

chosen auto-encoder. Thus, de-identifying the face image with complex attributes, e.g.

background, might be challenging if such examples were not synthesized well in the

auto-encoder. Fig. 5.6 presents a few examples of such images.

As can be seen in Fig. 5.6, the complex attributes, e.g. background and hands, which

are non-identity-related attributes, can not display correctly due to the reconstruction

failure.

Figure 5.6: Failure examples. Output 1 refers to the generated images without protection.
Output 2 shows the de-identity image with our method.

5.6 Conclusion

In this Chapter, we propose a novel face image de-identification framework. This frame-

work de-identifies the face by adding feature space adversarial perturbation (FSAP).

Moreover, we conduct intensive experiments to prove the effectiveness of the framework.

With the latent vector W trained on the elaborate loss, the perturbed faces are equipped

to reduce the risks of identity leakage under CNN face recognition technics while bal-

ancing the utility for computer vision tasks. The merits of the proposed framework are

two-folded. First, compared with the GAN-based face de-identification network, instead

of adding perturbations in a generalised direction, FSAP adds noise on the gradient,

which ensures accuracy. Second, compared with the AP-based face de-identification
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network, feature-space adversarial perturbations have better transferability among

different neural network models.

5.7 Future work

In light of the limitations highlighted in Section 5.5.3.2 regarding the utilization of

GAN as an image generator, our forthcoming research endeavours will be dedicated to

resolving this concern in order to elevate the standard of image privacy protection. Our

primary focus will centre on contemporary and pioneering generative models. Fusing

these novel large-scale models with image privacy protection will constitute a pivotal

facet of our future investigations. Subsequently, in the ensuing chapter, we will showcase

the technical merits introduced by the new model in our research.
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6.1 Preface

In this chapter, our focus lies in the domain of high-quality privacy protection within

image datasets. Specifically, we tackle the challenge of anonymizing facial datasets

while ensuring the anonymized dataset remains conducive to effective CNN network

training in downstream tasks, all the while preserving privacy. Existing approaches to

address this issue predominantly rely on GANs, which may restrict image quality when

handling intricate facial data. Consequently, we propose a framework that leverages

diffusion models as the foundation, complemented by advanced semantic optimization

techniques, to achieve high-quality anonymization of image datasets. Through rigorous

validation experiments conducted on facial datasets, our approach outperforms existing

state-of-the-art methods, showcasing its superior performance.

6.2 Introduction

6.2.1 Motivation

Anonymizing face image datasets plays a crucial role in preserving privacy and protecting

individuals’ personal information. These datasets often contain sensitive and personally

identifiable data that must be safeguarded. Anonymization involves the removal of

direct and indirect identifiers, ensuring that the data cannot be linked back to specific

individuals. This process mitigates the risk of privacy breaches and unauthorized use of

personal information. One significant benefit of anonymization is its impact on obtaining

informed consent. By removing identifiable features from face image datasets, the risk

of using these images without explicit consent is minimized. This practice aligns with

ethical guidelines and legal requirements, promoting responsible data handling and

respecting individuals’ autonomy over their personal information. Another important

consideration is the risk of re-identification when face image datasets are shared or

linked with other data sources. Anonymizing the datasets by eliminating personally

identifiable information significantly reduces the possibility of re-identifying individuals.

This step ensures that individuals’ privacy is maintained even when datasets are used

for legitimate purposes.

Anonymization also facilitates ethical data sharing and collaboration among re-

searchers, organizations, and institutions. Concerns regarding privacy violations and

unauthorized use of personal information are mitigated by removing personal identifiers

from face image datasets. Researchers can work with anonymized datasets, focusing
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on data analysis and deriving insights while upholding privacy rights and promot-

ing responsible data practices. Furthermore, compliance with privacy regulations and

laws is crucial to anonymization. For instance, the General Data Protection Regulation

(GDPR) [15] in the European Union mandates the protection of personal data, including

face images. Anonymizing face image datasets ensures compliance with these legal

obligations, reducing the risk of penalties or legal repercussions for organizations and

researchers.

Several methods are commonly used for anonymizing face images. One prevalent

technique is face blurring [22], which employs blurring algorithms or filters to obscure

the facial features of individuals in an image. By intentionally degrading the details

of the faces, it becomes challenging to identify specific individuals while still retaining

the overall structure of the image. Another approach is pixelation [28], where the facial

region is replaced with large pixels, concealing facial details. Face detection and masking

techniques [178, 179] leverage face detection algorithms to identify the locations of faces

within an image. Once the faces are detected, a solid color or a patterned mask is overlaid

on the facial region, effectively concealing the facial features and maintaining individ-

uals’ anonymity. Facial landmark removal [180] is a method that involves removing

or distorting facial landmarks, i.e., specific points on the face, such as eyes, nose, and

mouth. By altering these landmarks, the overall facial structure is modified, making it

challenging to recognize individuals while still preserving some contextual information.

Nevertheless, these methods achieve privacy protection at the cost of compromising facial

attributes and image quality. Furthermore, recent studies [35, 36] have indicated that

the de-identification effects of blurring and pixelation, while perceptually effective to

human observers, can be circumvented by deep learning algorithms, thereby diminishing

their efficacy in preserving privacy.

Another prominent category of approaches to tackle this issue is primarily based

on Generative Adversarial Networks (GANs) [131]. GANs offer a unique approach to

face image anonymization. The techniques based on GAN create synthetic faces that

preserve anonymity while maintaining the visual quality of faces. In particular, GAN-

based face manipulation [181] involves controlling the attributes, including identities,

of the original face in an image, which completely transforms the appearance of the

individual while retaining the overall structure of the image, providing a novel approach

to anonymity. The current landscape of GAN-based methodologies can be categorized into

three primary classes: image inpainting [10], latent optimization [182], and attribute ma-

nipulation [183]. These approaches exhibit varying degrees of effectiveness in addressing
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the challenges of face anonymization while introducing new and distinctive challenges.

Generating anonymous face images with exceptional quality and usability is a significant

challenge to overcome. One notable methodology, GAN-based Autoencoder [19], which

has been accepted as a module in face anonymization [12], leverages a StyleGAN2-based

encoder to extract latent codes from real-world face images. This encoder is trained

to map images into the latent space of a pre-trained StyleGAN2 generator, which has

demonstrated promising outcomes in the domain of image manipulation. However, re-

cent studies [4, 182] have highlighted the limitations of GAN-Based Autoencoders in

manipulating facial images. These limitations stem from the inherent reconstructive

capabilities of GANs, which fail to capture numerous intricate details.

Figure 6.1: Visual quality compared to DeepPrivacy [10], CIAGAN [11], FALCO [12].
Ours, along with the FALCO approach, exhibits the capability of concealing sensitive
information within the background. Notably, Ours also demonstrates the ability to retain
a richer set of attributes and intricate details.

6.2.2 Contributions

Motivated by the aforementioned advancements, this chapter presents an innovative

contribution: the pioneering application of a diffusion model [5] as the fundamental

framework for anonymizing face datasets. By embracing the diffusion model, we aim to

address the limitations encountered in previous GAN-based approaches. This, in turn,

facilitates the practical implementation of face dataset anonymization and effectively

safeguards the privacy of facial data. This choice stems not only from the innovative

nature of the diffusion model but also from its potential to overcome the aforementioned

constraints associated with existing methods. In particular, our proposed approach
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leverages the DDIM decoder as the primary generator for synthesizing synthetic images.

To preserve the various facial attributes present in the original dataset, we employ

attribute optimization techniques on these generated images. By ensuring the faithful

preservation of these comprehensive facial attributes, our approach enables the training

of diverse facial models suitable for a wide range of applications. The main contributions

of this chapter are summarized as follows:

• This chapter proposes a novel face dataset anonymization framework based on

a Diffusion model, which surpasses other state-of-the-art methods by offering

enhanced identity anonymization performance without compromising the preser-

vation of crucial facial attributes.

• We propose a novel loss function that combines identity loss and attribute loss.

This novel approach, in collaboration with a Denoising Diffusion Implicit Model

(DDIM) decoder and attribute optimization techniques, empowers the generation

of an anonymized dataset that exhibits enhanced effectiveness and usability.

• Through empirical evaluation and comparative analysis on datasets such as Celeba-

HQ and FFHQ, we demonstrate the superior efficacy of our approach in preserving

facial attributes compared to other state-of-the-art methods. Moreover, our ap-

proach stands out by enabling the training of robust facial models that maintain

the integrity of essential attributes crucial for a wide range of practical applications.

6.2.3 Overview of the work

The structure of the remaining sections in this chapter is as follows. Section 6.3 provides

an overview of the related work in the field. In Section 6.4, we present the necessary

preliminary knowledge for our work, specifically focusing on Conditional Denoising

Diffusion Implicit Models (DDIMs). Moving on to Section 6.5, we introduce our proposed

framework, outlining its key components and presenting our protection mechanisms.

In Section 6.6, we conduct a series of experiments to validate the effectiveness of our

proposed scheme. This includes a comprehensive comparison study against other state-

of-the-art methods, assessing quantitative and qualitative aspects of face image privacy.

Additionally, we discuss the optimization methods employed in our approach through an

ablation study.
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6.3 Related Work

In recent image privacy researches [159–161], considerable attention has been paid

to modifying identity-related information in images using various techniques, such

as obfuscation, GAN-based inpainting [184], differential privacy (DP) [166, 185], and

adversarial examples (AEs) [37, 40]. It has been demonstrated that basic obfuscation

techniques are ineffective when it comes to countering deep neural network (DNN)-based

recognition systems [107, 146].

GAN-based face inpainting The concept of GAN-based inpainting was introduced

to generate content that effectively conceals sensitive information or the identity of an

image while preserving the quality of the original image [59]. To enhance the training

process, a conditional GAN (CGAN)-based approach was developed by incorporating

labels into both the generator and discriminator networks [186]. Building upon the

CGAN framework, two notable methods, namely Conditional Identity Anonymization

Generative Adversarial Network (CIAGAN) [11] and DeepPrivacy [10], introduced the

integration of autoencoder within the feature space of images. CIAGAN demonstrated

the ability to anonymize faces and bodies, generating high-quality images and videos.

While DeepPrivacy took into account factors such as pose and background to generate

images with improved realism and privacy preservation.

Diffusion models Denoising diffusion probabilistic models (DDPMs) [5] are gen-

erative models that associate image generation with the sequential denoising process

of isotropic Gaussian noise. Unlike other generative models such as GANs and most

traditional-style VAEs that encode input data into a low-dimensional space, diffusion

models maintain a latent space of the same size as the input. In the forward pro-

cess, DDPMs progressively add noise to the image until it is completely degraded into

pure Gaussian noise. Assuming an ideal forward process, where a real input image

x0 undergoes T rounds of Gaussian noise addition, resulting in a purely Gaussian

noise image xT ∼ N (0,I). Consequently, each step of noise addition can be formally

expressed as the following probability function: q(xt | xt−1) ∼ N (xt;
√

1−βtxt−1,βtI),

where βt is the coefficient associated with the noise. As a result, the cumulative noise

in the image x0 after t processing steps can be represented as another Gaussian noise

q(xt | x0) ∼N (xt;
p

αtx0, (1−αt)I), where αt = ∏t
i=1(1−βi). In the reverse process, i.e.,

learning the distribution p(xt−1 | xt), the noise is gradually removed to generate a

realistic image. To train a DDPM network, Ho et al. [21] give the distribution of

pθ(xt−1 | xt) ∼N (xt−1;µθ(xt, t),σt), and propose a learnable function ϵθ(xt, t) to predict
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the noise added in each step. Despite requiring a large number of noise injection and

denoising steps to generate samples, DDPMs exhibit superior image fidelity and diversity

compared to other types of generative models.

A notable limitation of diffusion models lies in their reliance on an extended sequence

of diffusion steps to achieve desirable outcomes, resulting in sluggish generation speed.

In contrast, Denoising Diffusion Implicit Models (DDIMs) [6], in comparison to DDPMs,

overcome this constraint by relaxing the requirement for the diffusion process to conform

to a Markov chain. As a result, DDIMs can employ fewer sampling steps, effectively

expediting the generation process. Furthermore, DDIMs possess a distinctive charac-

teristic in that the generation of samples from random noise is deterministic, obviating

the need for intermittent random noise injections. This streamlined approach further

accelerates the relatively computationally demanding sampling procedure inherent to

DDPMs. By leveraging a deterministic forward-backward process, DDIMs demonstrate a

near-perfect reconstruction capability. In this study, we employ conditional DDIMs as

the generator to anonymize human facial images.

6.4 Preliminaries-Conditional DDIM

Coditional semantic encoder We use a conditional DDIM with an additional latent

code, denoted as z̄. In contrast to certain other conditional DPMs [187–189] that employ

spatial 2-D latent maps, the latent code we employ is a non-spatial code with a dimension

of 512. The primary objective of the Conditional Semantic Encoder is to encode all the

semantic information in an image into a high-level semantic space. Consequently, the

latent code z̄ ∈ R512 encompasses global semantics that is not specific to any spatial

regions within the image, facilitating smooth optimization.

Diffusion-based decoder The primary objective of the Diffusion-based Decoder

is to model the distribution of the target dataset by training a network in the reverse

process, denoted as p(xt−1|xt). A successfully trained network can generate a realistic

image with a Gaussian noise map. There are various methods to model this distribution,

and one of them is through the DDIM introduced by Song et al. [190]:

pθ(xt−1|xt)∼N (
p

αt−1x0 +
√

1−αt−1
xt −p

αtx0p
1−αt

,0)

≈ q(xt−1|xt,x0)
(6.1)

In this work, we employ a conditional DDIM [88] for generating images, where the

input is represented by a latent variable, z= (z̄,xT). This variable consists of two com-
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ponents: the high-level semantic latent code, z̄, generated by the conditional semantic

encoder, and the low-level semantic latent maps, xT , generated through the forward pro-

cess of conditional DDIM. During the image generation (reverse) process, the probability

function is then written as pθ(xt−1|xt, z̄).

Drawing from Equation 6.1, we define the generative process using the following

equations:

pθ(x0:T |z̄)= p(xT)
T∏

t=1
pθ(xt−1|xt, z̄) (6.2)

pθ(xt−1|xt, z̄)=

N (f(1)
θ

(x1, z̄),0) if t = 1

q(xt−1|xt,f(t)
θ

(xt, z̄)) otherwise
(6.3)

where

f(t)
θ

(xt, z̄)= 1p
αt

(xt −
√

1−αtϵθ(xt, t, z̄)) (6.4)

where ϵθ(xt, t, z̄) is a pre-trained UNet model in [88]. Like the DDIM proposed by Song et
al. [6], conditional DDIM follows a similar deterministic generative process:

xt−1 =p
αt−1(

xt −
p

1−αtϵθ(xt, t, z̄)p
αt

)

+
√

1−αt−1ϵθ(xt, t, z̄)
(6.5)

Diffusion-based encoder The diffusion-based encoder is the deterministic genera-

tive process of DDIM, which is used to encode an input image x0 into a lower semantic

subcode xT . The generative process can be represented by the following equation:

xt =p
αtfθ(xt−1, t−1, z̄)+

√
1−αtϵθ(xt−1, t−1, z̄) (6.6)

Due to the restricted semantic information it possesses, xT remains unchanged and does

not participate in the optimization process for anonymizing image identities.
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6.5 Methodology

Figure 6.2: Our proposed protection framework. Our protection framework optimizing the
trainable anonymized latent vector zi

a ∈R512 using two loss functions, Lid and Latt. This
optimization aims to obfuscate the identity of the synthetic image xi

A while maintaining
the facial attributes.

This work proposes a novel method for anonymizing faces in a given real-face dataset

based on the diffusion model to gain better image utility. The proposed method optimizes

the latent codes of images in the dataset within the latent space of a pre-trained condi-

tional diffusion model [88]. The method involves creating a fake dataset XF by randomly

generating a large set of fake images such that |XF | > |XR |, where XR is the real dataset.

To obtain meaningful initial values for the latent codes that will be optimized to create

the anonymized version of the real dataset XA, the real images from XR are paired with

the fake ones from XF in the feature space of the ViT-based FaRL [191] image attribute

encoder. The method then optimizes the successfully paired latent codes using two loss

functions: (1) the identity loss, denoted byLid, ensures that the fake images remain

a certain distance away from the real ones in terms of identity, and (2) the attribute

preservation loss, denoted by Latt, pulls the fake images closer to the real ones in the

feature space of the FaRL [191] image encoder. In this way, the anonymized images

inherit the attribute information of the real ones while possessing a different identity.

The rest of the section is organized as follows: Sec. 6.5.1 briefly introduces the modules

used in our framework, Sec. 6.5.2 shows the details of the fake dataset generation,

Sec. 6.5.3 discusses the pairing, and Sec. 6.5.4 presents the anonymization process and

the losses.
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6.5.1 Modules

6.5.1.1 Conditional DDIM

The conditional DDIM [88] image decoder takes a latent variable z = (z̄,xT) as input,

where z̄ represents the high-level “semantic” subcode and xT is the low-level “stochastic”

subcode inferred by reversing the generative process of DDIM. Here, we keep the low-

level stochastic subcode unchanged and optimize the image on the high-level semantic

subcode.

6.5.1.2 ArcFace

To measure the similarity between the identities of two face images, we employ Arc-

Face [138], a method that maps images to a 512-dimensional feature space related to

identity. Using the identity features, we optimize the semantic latent codes z̄ of the

conditional DDIM [88] to generate images that minimize the cosine similarity of the

image identity features between real and fake images.

6.5.1.3 FaRL

FaRL [191] is a facial representation network trained in a contrastive manner on 20

million face image-text pairs for representing images in a meaningful and rich semantic

feature space. The ViT image encoder of the FaRL framework is used to represent images

in a 512-dimensional feature space and to find meaningful initial values for the latent

codes that will be optimized to anonymize the real dataset. This approach provides a

solid foundation for the anonymization of real datasets by capturing the underlying

features of the input data and representing images in a high-dimensional feature space.

6.5.2 Fake dataset generation

Given a real face dataset XR , to generate a fake face dataset XF such that XF >XR , we

utilize the decoder of a conditional DDIM [88] as the generator. To sample z̄ from the

latent distribution and generate a synthetic dataset using diffusion autoencoders, we

employ a pre-trained latent DDIM to approximate the latent distribution of z̄. The latent

distribution modeled by the latent DDIM is initially normalized to have a mean of zero

and a variance of the unit. To perform unconditional sampling from a diffusion autoen-

coder, the process involves sampling from the latent DDIM and then unnormalizing it as

z̄. Next, xT is drawn from a normal distribution with a mean of zero and a covariance
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matrix of I, xT ∼N (0,I). Finally, the fake image synthesis process involves using the

decoder to decode z= (z̄,xT).

6.5.3 Pairing

To pair real images in dataset XR with fake images in dataset XF , we employ the pre-

trained FaRL [191] ViT-based encoder EF . All images from both datasets are represented

in a 512-dimensional feature space using the class token representation. This approach

yields a robust feature representation of both datasets, which we use to train a kNN

classifier. Using this classifier, we can identify the fake image in XF that is closest to

each real image in XR based on the Euclidean distance. After generating and pairing the

images, the real dataset XR and the fake dataset XF are paired, creating a set of pairs

consisting of images from the real dataset XR and images from the fake dataset XF .

6.5.4 Anonymization

To create an anonymized version XA of the real dataset XR, we utilize the pairs of

real-fake images obtained from the pairing section. These pairs consist of real and fake

images that are semantically similar based on the FaRL image representation features.

Specifically, for each pair, the real image xi
R and its corresponding anonymized image

xi
A, generated using the anonymized latent code z= (z̄i

A,xi
T), are used to calculate the

proposed losses.

The identity loss Lid(xi
A,xi

R) ensures that the identity of xi
A maintains a desired

distance from the identity of xi
R. The attribute preservation loss Latt(xi

A,xi
R) enforces

the preservation of facial attributes from the original image in the anonymized image.

For each pair consisting of a real image xi
R and its anonymized version xi

A, i ranges

from 1 to the total number of images in XR . The anonymization is achieved by optimizing

the following losses:

6.5.4.1 Identity loss

The identity loss is defined as

Lid =

∣∣∣∣∣∣∣
EA(xi

A) ·EA(xi
R)∥∥∥EA(xi

A)
∥∥∥

2
·
∥∥∥EA(xi

R)
∥∥∥

2

∣∣∣∣∣∣∣
=

∣∣∣cos(EA(xi
A),EA(xi

R))
∣∣∣ ,

(6.7)
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where EA is a pre-trained ArcFace [138] identity encoder used to extract identity features

from facial images. cos(·, ·) denotes the cosine similarity, which is a measure of similarity

that calculates the cosine of the angle between two vectors. The loss yields a value

ranging from 0 to 1. A value of 1 indicates that the vectors are identical, while a value of

0 signifies no similarity.

6.5.4.2 Attribute loss

The attribute loss is defined as

Latt(xi
A,xi

R)=
∥∥∥EI (xi

A)−EI (xi
R)

∥∥∥
1

, (6.8)

where EI refers to the patch-level features, specifically the 14×14 768-dimensional

features, obtained from the ViT-based image encoder introduced in the FaRL [191] paper.

These 14×14 768-dimensional features are subsequently flattened into 14 ·14 ·768-

dimensional vectors for the purpose of loss calculation.
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6.6 Experiments

In this section, we aim to investigate and evaluate four crucial dimensions of our frame-

work: face detection accuracy, identity anonymity, image quality, and facial attribute

preservation. Through a series of experiments, we will systematically analyze and assess

the performance of our framework in these specific areas. This section is structured

as follows: Sect. 6.6.1 provides an overview of the experimental preparation conducted.

Sect. 6.6.2 presents a comparative analysis of our method and other state-of-the-art

(SOTA) approaches using evaluation metrics. Lastly, Sec. 6.6.3 delves into an ablation

study to further investigate and analyze the individual components of our proposed

method.

6.6.1 Experiment settings

6.6.1.1 Datasets

Our anonymization process is conducted on the following two datasets: (i) CelebA-
HQ [192], which comprises 30,000 high-resolution (1024×1024) facial images of celebri-

ties sourced from the CelebA dataset. These images exhibit diverse demographic at-

tributes, including age, gender, and race. Additionally, each image is annotated with 40

attribute labels. (ii) FFHQ [137], is a curated collection of high-quality images depicting

human faces. This dataset comprises 70,000 PNG images with a resolution of 1024×1024

pixels. Notably, FFHQ exhibits significant diversity in terms of age, ethnicity, and back-

ground settings, providing a comprehensive range of facial characteristics. Moreover, the

dataset offers ample coverage of various accessories, including eyeglasses, sunglasses,

hats, and more.

6.6.1.2 State-of-the-art (SOTA)

We conduct a comparative evaluation of our anonymization framework against three

SOTA methods, namely FALCO [12], CIAGAN [11], and DeepPrivacy [10]. In particular,

we focus on the FALCO method, which employs latent code optimization techniques for

dataset anonymization, thereby sharing similar objectives with our task.

6.6.1.3 Evaluation metrics

We briefly introduce the evaluation metrics we used:
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(i) Face detection accuracy (Face Dete) refers to the degree to which a face

detection system or algorithm can accurately detect and locate faces within an image. The

detection of faces plays a pivotal role in training machine learning models, serving as a

fundamental component for various downstream applications, including face recognition,

emotion detection, facial expression analysis, and video surveillance. Consequently, it

is imperative for facial datasets to offer a strong foundational basis for face detection

tasks while simultaneously preserving their diversity and robustness. In this research

endeavor, we employed SOTA face detection models, namely MTCNN [193] and dlib [13],

to assess the efficacy of different datasets in terms of face detection performance. A

flawless anonymized dataset would exhibit an identical level of accuracy in face detection

as the original dataset, thereby implying that the anonymized dataset has the potential

to train face detection models that are comparable to those trained on the original

dataset.

(ii) Identity anonymity (ID Anon) refers to the degree to which the personal

identity of individuals is concealed or protected within a given system or framework. It

involves safeguarding sensitive information, such as personal identifiers, to prevent the

association of specific individuals with their respective data. The purpose of ensuring

identity anonymity is to maintain privacy and confidentiality, particularly in scenarios

where data sharing or analysis is conducted while protecting the identities of the individ-

uals involved. This work uses FaceNet [194] to measure Identity anonymity. An ideal

anonymized dataset would exhibit 100% anonymity in face identification, indicating that

each face could be effectively de-identified.

(iii) Image quality refers to the level of visual fidelity, clarity, and overall excellence

of an image. High image quality implies that the image accurately represents the original

scene or subject, with minimal distortion, artifacts, or loss of details. High-quality images

are visually appealing, enhance the overall user experience, and enable accurate analysis,

interpretation, and communication of visual information. In this research, we use the

Fréchet Inception Distance (FID) [195] to measure the image quality. The FID metric is

widely used in the field of generative adversarial networks (GANs) to assess the diversity

and quality of generated images by analyzing their statistical properties.

By examining the feature representations of the anonymized images, the FID metric

effectively captures their visual quality and diversity. This allows for a comprehen-

sive evaluation of the similarity between the anonymized and real images based on a

comparison of their respective feature representations.

The FID metric utilizes the Inceptionv3 DNN [123], a pre-trained convolutional
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neural network (CNN), to extract feature representations from two sets of images: the

real image dataset and each anonymized image dataset. These feature representations

are obtained from an intermediate layer of the network, typically positioned before the

final classification layer.

After extracting feature representations, we compute the mean and covariance values

separately for both sets of images. The mean represents the average feature vector,

while the covariance matrix captures the interrelationships among different features.

Then, we calculate the Fréchet distance, which measures the dissimilarity between two

multivariate Gaussian distributions. In this case, it quantifies the disparity between

the mean and covariance of the feature representations obtained from the real and

anonymized image datasets. An improved anonymized dataset would demonstrate a

lower FID (Fréchet Inception Distance) score, indicating that the faces in the image set

possess higher image quality.

Figure 6.3: Comparative analysis of visual effects: Our method vs. FALCO [12], Deep-
Privacy [10], and CIAGAN [11], in the context of original images undetectable by the
dlib [13] frontal face detector.

(iv) Facial attribute preservation refers to the ability of a system or algorithm

to retain and accurately represent the distinctive characteristics and attributes of a

face after undergoing processes such as anonymization. It ensures that important facial

features, such as gender, age, and facial expressions, are preserved and recognizable
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even after applying privacy protection techniques. By ensuring effective facial attribute

preservation, systems can balance privacy concerns with the need for accurate face

characterization. It allows for the responsible use of facial data while safeguarding

individual privacy and maintaining the utility of facial analysis applications. Evaluation

of facial attribute preservation can be performed through qualitative and quantitative

analysis. Qualitative assessment involves visually inspecting the anonymized faces to

ensure that essential attributes are still identifiable. In this research, a quantitative

metric, attribute classification accuracy, is used to measure the system’s ability to

preserve facial attributes accurately. Specifically, to ensure fair comparisons, our study

adheres to the experimental configuration described in [12], wherein we employ a pre-

trained MobileNetV2 model for attribute classification. This approach allows us to

maintain consistency and comparability across different experiments.

Face Dete ↑ ID Anon ↑ Image quality ↓ Attributes classification ↑
dlib(%) MTCNN(%) CASIA(%) VGG(%) FID Inner face(%) Outer face(%)

Original 98.55 99.91 0.00 0.00 0.00 85.64 85.21
CIAGAN [11] −3.14 −0.35 97.95 99.61 31.11 80.22 80.72
DeepPrivacy [10] +0.47 −0.13 97.29 98.12 28.32 80.29 79.55
FALCO [12] +1.45 +0.09 96.71 97.27 28.19 80.16 79.5
Ours −0.29 −0.08 97.55 98.21 23.42 82.73 82.5

Table 6.1: Anonymized image dataset evaluation results. Face Detection Accuracy (Face
Dete), Identity Anonymity (ID Anon), Image Quality, and Attributes Classification.

6.6.2 Comparison to state-of-the-art (SOTA)

In this section, we present a comparative analysis of our proposed method against

three SOTA techniques, namely CIAGAN [11], DeepPrivacy [10], and FALCO [12]. By

benchmarking our proposed method against the most advanced and widely recognized

approaches in the field, we aim to comprehensively evaluate its effectiveness and per-

formance. This comparison enables us to assess the advancements made by our method

and highlight its unique contributions in pushing the boundaries of the current SOTA.

6.6.2.1 Quantitative evaluation

In this section, a comprehensive quantitative analysis is conducted to compare the

effectiveness of our proposed method with other approaches. The specific numerical

comparison results are presented in Tabs. 6.1 and 6.2.
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Original Ours FALCO [12] Deep [10] CIAGAN [11]
Inner face region
5 o Clock Shadow 85.45 81.21 82.05 79.56 77.60
Arched Eyebrows 86.43 84.13 80.01 81.58 82.03
Bags Under Eyes 85.69 82.34 79.54 79.15 80.55
Big Lips 85.15 82.59 79.70 80.54 80.62
Big Nose 85.14 82.12 79.60 78.72 78.69
Bushy Eyebrows 84.87 80.98 81.18 78.72 81.85
Eyeglasses 83.74 81.71 79.77 79.98 80.10
Goatee 83.46 79.38 79.32 76.08 80.22
Heavy Makeup 87.51 85.33 80.91 83.03 80.32
High Cheekbones 86.13 83.22 78.75 80.16 84.03
Male 85.64 82.37 82.19 80.17 82.02
Mouth Slightly Open 86.21 83.03 79.21 80.72 79.50
Mustache 83.13 79.35 78.47 75.88 77.13
Narrow Eyes 83.81 80.82 77.89 78.41 77.08
No Beard 87.22 85.00 82.01 83.05 80.82
Pale Skin 86.07 84.49 82.72 83.27 77.93
Pointy Nose 85.81 83.26 80.36 81.40 79.93
Rosy Cheeks 86.59 83.28 77.07 79.88 81.75
Smiling 86.03 82.76 78.55 79.76 80.26
Wearing Lipstick 87.36 85.29 81.27 83.12 81.80
Young 86.96 84.55 82.72 82.84 80.35
Outer face region
Bald 83.03 80.38 77.20 75.57 79.06
Bangs 86.63 84.02 80.01 81.47 82.59
Black Hair 85.12 82.63 82.37 79.60 80.76
Blond Hair 88.35 85.93 81.47 84.99 82.35
Brown Hair 86.21 84.03 81.35 82.19 80.92
Chubby 82.61 79.91 76.60 75.18 79.32
Double Chin 83.32 79.81 75.25 74.88 79.29
Gray Hair 85.55 83.55 78.45 78.39 78.64
Oval Face 85.54 83.12 80.37 81.04 79.98
Receding Hairline 84.32 82.08 78.94 78.36 82.14
Sideburns 84.56 79.81 80.27 76.77 81.42
Straight Hair 85.94 83.14 81.87 81.01 80.50
Wavy Hair 86.4 83.98 80.27 82.88 81.39
Wearing Earrings 85.83 84.20 78.82 80.60 82.11
Wearing Hat 85.9 82.72 81.08 81.59 79.85
Wearing Necklace 85.17 82.86 78.24 80.47 79.32
Wearing Necktie 84.03 80.40 78.89 77.42 82.58

Table 6.2: Facial attribute preservation results
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Face detection accuracy (Face Dete) In this paragraph, we present a detailed

explanation of the face detection accuracy values. The specific numerical comparison

results for face detection accuracy, including our proposed method and other approaches,

are provided in the first two columns of Tab. 6.1. The first row of Tab. 6.1 represents the

percentage of accurately detected faces in the original dataset, as detected by the face

detectors dlib [13] and MTCNN [193]. The last row illustrates the percentage of faces

detected in our anonymized dataset by the same face detectors. The intermediate rows

present the detection ratios achieved by employing SOTA anonymization methods.

It is worth noting that the original dataset exhibits a few instances where certain

faces were not detected by the employed face detectors, resulting in a detection ratio

of 98.55% for dlib [13] and 99.91% for MTCNN [193]. This can be attributed to the

diverse range of facial poses in the original dataset, encompassing extreme angles and

substantial occlusions. However, these challenging examples contribute to enhancing the

robustness of face detectors when training them with such diverse data. We visualize

this phenomenon in Fig. 6.3 and provide a further elaborate in the Sec. 6.6.2.2.

Therefore, in the first two columns of Tab. 6.1, a detection rate closer to that of the

original dataset indicates that the employed anonymization method better preserves

the diversity of data. Remarkably, our proposed method outperforms other approaches,

yielding detection rates of 98.26% (0.29% lower than the original dataset) and 99.83%

(0.08% lower than the original dataset), respectively.

Identity anonymity (ID Anon) To evaluate the efficacy of identity anonymity, we

conducted facial identity verification using the FaceNet [194] network pre-trained on

two datasets, namely VGG [196] and CASIA [197]. The corresponding success rates for

concealing identity information are summarized in Tab. 6.1.

Our approach achieved the second-highest success rate among the SOTA techniques.

Notably, the CIAGAN method, which serves as a face inpainting technique, achieved the

highest score. However, this accomplishment was accompanied by compromised image

quality and a trade-off in preserving facial attributes.

Image quality The image quality results (FID [195]) of our approach in comparison to

others are documented in the fifth column of Tab. 6.1.

A lower FID distance, also known as the FID score, indicates higher quality and

diversity of the anonymized images. This implies that the distribution of the anonymized

images closely aligns with the distribution of real images.
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The image quality results are presented in Tab. 6.1. Our method demonstrated the

lowest FID score of 23.42, showcasing a significant improvement of approximately 17%

compared to the second lowest FALCO [12] method, which obtained a score of 28.19.

Facial attribute preservation To evaluate the metric of ‘facial attribute preserva-

tion’ in the anonymized datasets, we conducted training on a CNN network using the

anonymized datasets as the training set. Specifically, the pre-trained MobileNetV2 model

is utilized in this study. The original dataset served as the ground truth for training and

evaluation purposes and is split into training and testing sets. All models trained using

different datasets were evaluated on the testing set of the original dataset. To ensure

fairness, consistent strategies are applied across the different datasets, including data

size and training parameter settings.

The facial attribute categories are derived from the attribute labels in the CelebA

dataset [192]. To compare the effectiveness of facial attribute preservation with face

inpainting methods, such as DeepPrivacy [10] and CIAGAN [11], we categorize the 38

attribute labels (excluding ‘Attractive’ and ‘Blurry’) into two groups: inner face labels and

outer face labels, based on the corresponding facial regions represented by each attribute

category. The specific categorizations are presented in Tab. 6.2.

The quantitative results of facial attribute preservation are presented in Tabs. 6.1

and 6.2, where the values indicate the percentage of correct classifications, representing

the ratio of correctly predicted labels to the total number of predictions. The original

dataset is considered as the ground truth in the tables, serving as the baseline for

comparing the anonymized datasets. The higher classification accuracy indicates bet-

ter performance of the models trained on a particular dataset. This implies that the

anonymized dataset possesses a facial attribute distribution that is closer to the ground

truth, thereby enabling more effective support for various machine-learning tasks.

In Tab. 6.1, the last two columns illustrate the classification accuracies for inner face

and outer face attributes, respectively. Under this setting, the original dataset achieves

accuracies of 85.64% and 85.21% for inner face and outer face attributes, respectively. Our

dataset achieves accuracies of 82.73% and 82.5% under the same settings. Compared

with the second-best results, our dataset demonstrates an improvement of 2.44% in

accuracy for inner face attributes (compared to DeepPrivacy [10]) and an increase of

1.78% for outer face attributes (compared to CIAGAN [11]).

Tab. 6.2 presents the classification accuracies for different datasets across all labels. A

total of 38 label categories are utilized for evaluation. Our approach achieves the highest
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prediction accuracy for 31 label categories, while CIAGAN [11] achieves the highest

accuracy for 6 categories, and FALCO [12] attains the highest score for the ‘5 o’Clock

Shadow’ label. Through comparison, it is evident that our dataset exhibits superior facial

attribute preservation performance.

6.6.2.2 Qualitative evaluation

In this section, we conduct a comprehensive qualitative evaluation to compare the efficacy

of our proposed method with other approaches.

In the context of qualitative evaluation, visual quality serves as a crucial criterion

for comparing our approach with other SOTA methods and demonstrating the observed

effects. The primary visual performances utilized for presentation are displayed in

Fig. 6.3 and Fig. 6.4. Notably, Fig. 6.3 focuses specifically on showcasing unique instances

extracted from the original dataset, and we delve into its analysis in the subsequent

discussion.

Fig. 6.3 illustrates the results of face detection using dlib’s frontal face detector

(dlib [13]). The face detection boxes, delineated by black boxes, indicate successful detec-

tions, while images without the black boxes signify instances where the face detection

failed. It was noted that certain face images in the real dataset were not detected by the

dlib frontal face detector [13]. Consequently, we conducted a comprehensive investigation

of this particular subset of data, identifying two broad categories: faces turned at an

extreme angle and faces occluded by obstacles. It is pertinent to mention that although

these images constitute only a small fraction of the face dataset employed in our experi-

ments, they are frequently encountered in real-world scenarios. Therefore, it becomes

imperative for sophisticated machine learning models to effectively handle these unique

samples during the training phase by assigning appropriate weights, thereby optimizing

the overall performance.

Upon meticulous examination of these samples, an intriguing observation emerged:

our anonymized dataset exhibits detections that closely resemble those of the original

dataset. In contrast, when processing these images, both the FALCO [12] and the Deep-

Privacy models [10] tend to treat them as normal face images, erroneously introducing

facial regions that were not present in the original images. Moreover, the data prepro-

cessing of CIAGAN [11], which relies on facial key points information, proved to be

inefficient in handling these images. Thus, we demonstrate that our anonymized dataset

outperforms alternative approaches in preserving the intricate nature of facial poses.

Next, we present additional visual comparison images, as depicted in Fig. 6.4. Sub-
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Figure 6.4: Comparative analysis of visual effects: Our method vs. FALCO [12], DeepPri-
vacy [10], and CIAGAN [11].
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sequently, we explain the comparison results from three distinct perspectives. Firstly,

regarding image quality, our generated and FLACO images demonstrate a superior

level of realism compared to the images produced by others. This enhancement can be

attributed to the remarkable capabilities of the generation model in retaining intricate

details, such as the accurate handling of teeth processing. Secondly, concerning the

diversity of generated faces, our approach showcases a higher retention of attributes

from the original dataset, encompassing expressions, skin color, age, and other pertinent

features. This advantage can be attributed to the inherent strengths of the Diffusion

model in effectively handling complex attributes during the generation process. Lastly,

we prioritize privacy protection by effectively safeguarding potentially sensitive informa-

tion in the image backgrounds. This distinguishes our method from DeepPrivacy [10]

and CIAGAN [11], which may overlook such privacy concerns. Concurrently, we aim to

maintain the dataset’s diversity to the utmost extent possible, setting our approach apart

from FALCO [12], which may inadvertently compromise diversity during the generation

process.

6.6.3 Ablation study

This section presents an ablation study conducted to investigate optimization methods

and identify the most effective approach for generating anonymized datasets.

In the domain of image privacy protection utilizing optimization techniques, two

primary categories of optimization methods have emerged: the class replacement scheme

(CRS) and the class indistinguishable scheme (CIS). These methods differ in their

fundamental approach to handling the classes to be protected. The CRS adopts a new

label as the optimization target, aiming to induce the misclassification of the protected

class into the new class by the DNN. Conversely, the CIS seeks to maximize the class

loss function to achieve the incorrect classification.

For our specific task of safeguarding facial identity information, we explore the impact

of using different optimization methods on the dataset. To facilitate discussions, we refer

to these two approaches as the identity replacement scheme (IRS) and the identity

indistinguishable scheme (IIS). More specifically, the main difference between the IRS

and the IIS lies in their respective approaches to handling identity loss. In the case of

the IRS, we select a target face from the fake dataset and aim to minimize the identity

distance between the anonymized face and the specified target face. The identity loss of
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Figure 6.5: Visual quality of ablation study. Ours compared to FALCO [12], DeepPri-
vacy [10], CIAGAN [11].

the IRS is defined as follows:

LIRS = 1−

∣∣∣∣∣∣∣
EA(xi

A) ·EA(xi
F )∥∥∥EA(xi

A)
∥∥∥

2
·
∥∥∥EA(xi

F )
∥∥∥

2

∣∣∣∣∣∣∣
= 1−

∣∣∣cos(EA(xi
A),EA(xi

F ))
∣∣∣ ,

(6.9)

where EA is a pre-trained ArcFace [138] identity encoder. xi
A ∈XA and xi

F ∈XF are the

images from the anonymized dataset and the images from the fake dataset respectively.

cos(·, ·) denotes the cosine similarity. The loss yields a value ranging from 0 to 1, where 0

indicates that the vectors are identical, while 1 signifies no similarity.

In the IIS, our objective is to minimize the cosine similarity between the images from

the real and anonymized datasets. This is achieved by optimizing the identity loss, as
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depicted in (6.7).

Face Dete ↑ ID Anon ↑ Image quality ↓ Attributes ↑
dlib(%) CASIA(%) VGG(%) FID Average(%)

Ours IRS +0.13 95.33 96.10 21.17 83.12
Ours IIS −0.29 97.55 98.21 23.42 82.63

Table 6.3: Ablation study evaluation results. Face Detection Accuracy (Face Dete), Iden-
tity Anonymity (ID Anon), Image Quality, and Attributes Classification.

Based on the results presented in Tab. 6.3, each of the two optimization methods,

namely the IRS and the IIS, possesses its own advantages and limitations. Specifically,

IRS demonstrates certain improvements in image quality, whereas IIS outperforms IRS

in preserving facial identity.

The relatively lower privacy protection rate observed in the IRS can be attributed

to the possibility of selected facial features in the images being similar to those in the

original dataset. We will delve deeper into this aspect in a subsequent section for further

analysis. Moreover, Fig. 6.5 shows visual comparisons with SOTA methods, offering a

visual performance achieved by the different approaches.

6.7 Conclusions

In this chapter, we propose a novel framework for image anonymization that specifically

targets the optimization of latent space vectors within pre-trained diffusion models. Our

approach leverages an identity loss function and an attribute preserving loss function to

directly operate in the latent space of the pre-trained diffusion model, thereby eliminating

the necessity for training intricate networks. Through extensive experimentation, we

demonstrate the efficacy of our method in successfully anonymizing the identity of

images while better preserving facial attributes compared to existing state-of-the-art

techniques. Consequently, our approach contributes to advancing the field of image

privacy by improving both de-identification and facial attribute preservation.
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7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we have tackled the pressing issue of image privacy protection in the era of

data sharing and AI technology. The rapid growth of data sharing and the advancements

in AI have raised significant privacy concerns, as personal information embedded in

images can be easily extracted and misused by adversaries. Traditional privacy protection

methods designed for human adversaries are insufficient in safeguarding privacy against

AI adversaries. Therefore, our research focused on developing effective methods to

counter the privacy risks posed by AI.

In Chapter 1, We introduce the motivation of this thesis and identify several chal-

lenges in the field of image privacy protection, including inadequate protection against

AI adversaries, lack of comprehensive privacy definition and quantification, limited appli-

cability and controllability of existing methods, lack of provable privacy measurements,

limited effectiveness of existing differential privacy methods for images, and the need to

balance privacy and utility.

Chapter 2 provides a comprehensive overview of the related work in the field, includ-

ing image privacy definition, traditional protection methods, using adversarial examples

in image privacy, StyleGAN-based autoencoders for image manipulation, the application

of differential privacy in image analysis, and the use of diffusion models for image genera-

tion and manipulation tasks. The chapter highlights the capabilities of these approaches
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and their contributions to privacy protection and high-quality image synthesis. It sets

the stage for the novel approach presented in the thesis, the Diffusion Autoencoders,

which combines trainable encoders and DPM decoders for precise image reconstruction

and challenging image manipulation tasks.

To address these challenges, we made several contributions to this thesis. Firstly,

Chapter 3 proposed an image privacy protection framework that utilizes adversarial

perturbations to conceal private information from AI while remaining imperceptible to

human observers. This framework provides an effective method to protect privacy in

images shared on social media platforms.

In Chapter 4, we introduced a differentially private image (DP-Image) framework

that redefines differential privacy concepts in the context of image data. This framework

adds differential privacy noise to image feature vectors, ensuring provable privacy protec-

tion while maintaining utility and context consistency. We implemented and evaluated

the proposed DP-Image protection mechanisms, demonstrating their effectiveness in

safeguarding individuals’ privacy against human and AI adversaries.

In Chapter 5, we focused on user-centric privacy protection and developed mecha-

nisms that empower users to have control over their privacy in computer vision applica-

tions. These mechanisms offer customizable privacy levels and enable users to manage

their privacy preferences effectively.

Lastly, Chapter 6 addressed the challenge of high-quality image de-identification by

developing techniques that remove or obfuscate identifying information from images

while preserving their quality. This enables the sharing and analysis of images without

compromising privacy.

In conclusion, this thesis has made important contributions to the field of image pri-

vacy protection. We have addressed the challenges posed by AI adversaries, defined and

quantified image privacy, developed frameworks and mechanisms for privacy protection,

and evaluated their effectiveness using real-life image datasets.

7.2 Future work

In the future, we plan to incorporate more scenarios into the field of image privacy and

enhance the level of protection provided by existing methods. Now, despite employing

potent tools such as diffusion models as image generators to overcome the limitations of

GAN models in dealing with intricate scenes, it has been observed that diffusion models

impose substantial computational demands. Consequently, our objective is to enhance
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the practicality of the protection framework by streamlining algorithmic procedures or

investigating alternative models, such as stable diffusion.

Furthermore, it is essential to address privacy protection concerns in other multime-

dia formats, specifically videos. Video conferences have become increasingly prevalent

with the widespread adoption of remote work after the pandemic. This surge in video

usage has raised significant concerns regarding protecting sensitive information em-

bedded within the video content, surpassing the scope of image-based privacy concerns.

Consequently, safeguarding video privacy is a pivotal and urgent research area.

Finally, we direct our attention to a more expansive realm of privacy protection.

Various human biological traits can be quantified and represented as images, including

fingerprints, irises, and even sound, which can be converted into frequency and ampli-

tude images. By employing the DNN networks, we can apply image privacy protection

techniques to these biological features, thereby presenting a broader outlook for the field

of privacy protection.
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