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Abstract

In the recent decade, joint communication and sensing (JCAS) has become a thriving field

of research. Perceptive Mobile Networks (PMN) represents an innovative implementation of

the JCAS philosophy in cellular mobile networks, aiming to integrate radio sensing with the

current “communication-only” cellular mobile networks. This cutting-edge technology enables

enhanced functionalities for both purposes and mitigates mutual interference between them,

thus leading to extensive applications in the next-generation mobile communication industry.

One vital application of this technology is to track moving targets with the current wireless

infrastructure.

Uplink sensing offers feasible solutions with minimal adaptations of the existing mobile infras-

tructure. However, the uplink setup results in inherent clock asynchrony between transmitters

and receivers, causing ambiguity in Doppler parameter estimation. Therefore, it is essential

to develop new technologies that address asynchrony and provide practical solutions for the

instant localization of moving targets. This research contributes to developing an uplink sens-

ing demonstrator which enables real-time tracking of moving human targets with Long Term

Evolution-based (LTE-based) signals. This thesis focuses on two research questions.

• To design a robust detection and tracking scheme based on channel state information

(CSI). This scheme is expected to achieve sub-meter tracking accuracy with real-time

capability, utilizing the multiple-input-multiple-output (MIMO) setup and LTE-based

signal structure.

• To develop and implement a real-time demonstration test bed for human target localiza-

tion.

To address the second challenge, an uplink sensing demonstrator is developed using a National

Instrument Massive MIMO prototyping test bed and its supporting software, MIMO Framework
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Application (MFA). A reliable pilot-streaming interface is implemented within MFA, incorpo-

rating a pre-processing module to prepare pilot samples and a module to stream the pilot

samples via User Datagram Protocol (UDP) datagrams. In addition, a multi-thread Python

program is developed to concurrently receive CSI data samples, perform data processing, and

display the updated localization on the monitor.

The evaluations verify that the demonstration system enables real-time tracking of a single

human target with sub-meter accuracy in various scenarios.

iii



Dedication

This thesis is for my beloved family.

iv



Acknowledgements

The pursuit of a research degree is unique, thrilling and sometimes strenuous especially after I

have worked in the industry for so long. I had never expected the array of intellectual challenges

that I had met throughout my candidature. Now that I am approaching the finish line, I feel

deeply the momentum that has been driving me through all these difficulties towards a climax.

Numerous kind and honest people have helped me out during this process. Without their help,

it is unimaginable that I am able to persist.

My sincere gratitude first goes to my principal supervisor, Prof. Andrew Zhang. Without his

persistent encouragement, patience and inspiration, I could hardly have built up my confidence

or made continuous progress in my research. I also would like to extend my thanks to my

co-supervisor, Prof. Jay Guo, who offered me such a precious chance even though I was over

35 years old when applying for this program.

I feel deeply grateful for my beloved family members, especially my wife, Lina. Her strong

support and devotion to the family provide unparalleled encouragement for me that enables me

to focus on my research without any distractions. I also feel deeply thankful for my parents and

parents-in-law. Although they are in their 70s, they undertook family responsibilities when I

was studying overseas.

I also would like to acknowledge Dr.Zhongqin Wang, who patiently introduced his previous

work to me. Moreover, my thanks go to a couple of friends that I have made here in Sydney. I

appreciate their marvellous peer support.

In the end, I would like to express my sincere gratitude to my former supervisor, Prof. Zhong,

who supervised me 15 years ago. Without his support and earnest help, I would not have

dreamed of pursuing this degree overseas.

v



Kuangda Chen

January 2, 2024

Sydney, Australia

vi



List of Abbreviations

AE auto encoder

AGWN additive Gaussian white noise

AoA angle-of-arrival

AP access point

AUT antenna under test

BBU baseband units

BS base station

CACC cross-antenna-cross-correlation

CDF cumulative distribution function

CFO carrier frequency offset

CFR channel frequency response

CGAN convolutional generative adversarial networks

CNN Convolutional Neural Networks

COTS commodity-of-the-shelf

CSI Channel State Information

CSIR channel state information ratio

DBN Deep Belief Networks

DFE Doppler frequency estimation

DLAS downlink active sensing

DLPS downlink passive sensing

vii



FPM Fresnel Penetration Model

FSM finite state machine

FWA fixed wireless access point

GAN generative adversarial networks

ISAC Integrated Sensing and Communication

JCAS Joint Communication and Sensing

LoS line-of-sight

LSM least square method

LTE Long Term Evolution

MDI motion detection indicator

MFA MIMO Framework Application

MIMO multiple-input-multiple-output

MLE maximum likelihood estimation

MPSTD median phase standard deviation

MUSIC Multiple Signal Classification

NI National Instrument

NIC network interface cards

NLoS non-line-of-sight

OFDM orthogonal frequency division multiplexing

PCA Principal Component Analysis

PMN Perceptive Mobile Networks

RNN Recurrent Neural Networks

RP reference point

RRU Remote Radio Units

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

viii



RX receiver

SNR signal-to-noise

STFT short-time Fourier transformation

SVM Support Vector Machine

TDD time-division duplex

TDoA time-difference-of-arrival

TO timing offset

ToA time-of-arrival

TX transmitter

UDP User Datagram Protocol

UE user equipment

ULS uplink sensing

WARP Wireless Open Access Research Platform

ix



List of Publications

This thesis is based on the following publications:

• Kuangda Chen,J. Andrew Zhang, Zhongqin Wang, Y. Jay Guo. ”De-

velopment of an Uplink Sensing Demonstrator for Perceptive Mobile Net-

works”, accepted by ISCIT 2023

x



Contents

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Concept of Joint Communication and Sensing . . . . . . 2

1.1.2 Framework and Sensing Functionalities of the Perceptive

Mobile Networks . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 HumanMotion Detection and Localization Based onWire-

less Infrastructure . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Contents . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Research Methodology . . . . . . . . . . . . . . . . . . . 9

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Signal Metrics and Techniques for Indoor Human Localization . 12

2.2.1 Received Signal Strength Indicator . . . . . . . . . . . . 13

2.2.2 Channel State Information . . . . . . . . . . . . . . . . . 15

xi



2.2.3 Angle of Arrival . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Time of Arrival and Time Difference of Arrival . . . . . . 17

2.3 CSI-based Indoor Localization Approaches and Systems . . . . 18

2.3.1 CSI-based Indoor Human Localization via Model-based

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 CSI-based Indoor Localization via Pattern-based Methods 24

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Human Motion Detection and Tracking Scheme 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Motion Detection and Tracking Workflow . . . . . . . . . . . . . 28

3.2.1 CSI Calculation and Data Pre-processing . . . . . . . . . 29

3.2.2 System Anomaly Indication and Preliminary Motion De-

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Doppler Frequency Estimation . . . . . . . . . . . . . . 32

3.2.4 Separation of Static and Dynamic Components . . . . . 33

3.2.5 Human Motion Confirmation and Exception Handling . . 33

3.2.6 AoA and Delay Estimation . . . . . . . . . . . . . . . . . 34

3.2.7 Human Target Localization . . . . . . . . . . . . . . . . 34

3.3 Parameter Estimation Algorithms . . . . . . . . . . . . . . . . 34

3.3.1 Signal Model for Uplink Sensing . . . . . . . . . . . . . 35

3.3.2 Doppler Frequency Estimation . . . . . . . . . . . . . . . 37

3.3.3 CSI Self-correlation and Separation of Static and Dy-

namic Components . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 AoA and Propagation Delay Estimation . . . . . . . . . 40

3.3.5 Human Target Localization . . . . . . . . . . . . . . . . 44

3.4 Parameter Study Selection of Kwin and KJW . . . . . . . . . . . 44

xii



3.4.1 Impact of Sampling Window Size . . . . . . . . . . . . . 45

3.4.2 Impact of Joint Window Size . . . . . . . . . . . . . . . 49

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Design and Implementation of the Demonstration System 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 System Setup and Operational Procedures . . . . . . . . 53

4.2.2 Hardware Development Platform and Software Implemen-

tation Environment . . . . . . . . . . . . . . . . . . . . 53

4.3 Signal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Uplink Pilot Signal Structure . . . . . . . . . . . . . . . 57

4.3.2 Radio Frame Format . . . . . . . . . . . . . . . . . . . . 58

4.4 Design and Implementation of the Pilot-streaming Interface . . 59

4.4.1 Challenges in the Implementation of the Pilot-streaming

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Workflow of the Pilot-streaming Interface . . . . . . . . 61

4.4.3 Active Pilots Selecting and Re-ordering . . . . . . . . . 62

4.4.4 Pilot-streaming via UDP Transmission . . . . . . . . . . 64

4.5 Implementation of the Target-tracking Module . . . . . . . . . . 66

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Experimental Evaluations 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Overview of the Experimental Evaluations . . . . . . . . . . . . 69

5.2.1 Hardware Setup and Software Configuration . . . . . . . 70

5.2.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . 73

xiii



5.2.3 Data Processing and Visualization Methods . . . . . . . 74

5.3 Calibration of the Transceiver Channels . . . . . . . . . . . . . 74

5.4 Impact of UE Locations on the Tracking Accuracy . . . . . . . . 76

5.4.1 Impact of θs on Tracking Accuracy . . . . . . . . . . . . 77

5.4.2 Impact of Dist TR on Tracking Accuracy . . . . . . . . 77

5.5 Impact of Movement Velocity on the Tracking Accuracy . . . . . 81

5.6 Evaluations in Non-Light-of-Sight Scenarios . . . . . . . . . . . 85

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusions and Future Work 93

6.1 Summary of Outcomes . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Derivations 100

A.1 Linear Mapping for Variation Rate of CSI-ratio Angle . . . . . . 100

A.2 Derivation of Equation (3.14) . . . . . . . . . . . . . . . . . . . 101

A.3 Derivation of Equation (3.16) . . . . . . . . . . . . . . . . . . . 102

xiv



List of Figures

1.1 Framework of the Perceptive Mobile Networks [5] . . . . . . . . 4

2.1 Taxonomy of indoor localization techniques . . . . . . . . . . . . 13

2.2 Principle of trilateration [11] . . . . . . . . . . . . . . . . . . . . 14

2.3 Fresnel zone model [34] . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Workflow for the motion detection and tracking scheme . . . . . 28

3.2 Pre-processing for CSI-ratio samples . . . . . . . . . . . . . . . 30

3.3 Median phase standard deviation of CSI ratio samples . . . . . 33

3.4 Simplified uplink sensing setup . . . . . . . . . . . . . . . . . . . 35

3.5 Joint windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Human target localization . . . . . . . . . . . . . . . . . . . . . 44

3.7 Impact of Kwin on Doppler frequency, AoA and computation

time, (KJW = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Impact of Kwin on localization accuracy: KJW = 10 V-line tra-

jectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Impact ofKJW on Doppler frequency,AoA and running time,Kwin =

200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Impact of KJW on localization accuracy: Kwin = 200 V-line

trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xv



4.1 High-level diagram of the demonstration system . . . . . . . . . 54

4.2 Hardware setup for the BS and UE [45] . . . . . . . . . . . . . . 55

4.3 MIMO Framework Application interface for BS and UE [45] . . 56

4.4 LTE signal spectrum [14] . . . . . . . . . . . . . . . . . . . . . 57

4.5 Mapping of pilot sequence to subcarriers . . . . . . . . . . . . . 58

4.6 Frame structure employed in the demonstrator . . . . . . . . . . 59

4.7 Finite State Machine model for the pilot-streaming interface . . 62

4.8 Original subcarriers data format . . . . . . . . . . . . . . . . . 63

4.9 Active pilots selecting and re-ordering module . . . . . . . . . . 63

4.10 ‘UDP’ Write state . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Flowchart for the target-tracking module . . . . . . . . . . . . 66

4.12 Screenshot of the localization demonstration . . . . . . . . . . . 67

5.1 Evaluation scenario . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Experiment hardware setup . . . . . . . . . . . . . . . . . . . . 71

5.3 MAF software setup for BS and UE . . . . . . . . . . . . . . . . 72

5.4 Theoretical ground truths . . . . . . . . . . . . . . . . . . . . . 73

5.5 Phase calibration procedure . . . . . . . . . . . . . . . . . . . . 75

5.6 Phase difference between the antennas . . . . . . . . . . . . . . 76

5.7 Straight line: Dist TR = 200 (cm) . . . . . . . . . . . . . . . 78

5.8 V-line : Dist TR = 200(cm) . . . . . . . . . . . . . . . . . . . 79

5.9 Rectangle : Dist TR = 200(cm) . . . . . . . . . . . . . . . . . 80

5.10 Straight line : θs = −45◦ . . . . . . . . . . . . . . . . . . . . . 82

5.11 V-line : θs = −45◦ . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Rectangle : θs = −45◦ . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 V-line trajectory tracking with different walking speed . . . . . 86

5.14 Rectangle trajectory tracking with different walking speed . . . 87

xvi



5.15 NLoS scenario evaluations . . . . . . . . . . . . . . . . . . . . . 89

5.16 V-line trajectory tracking in NLoS scenarios . . . . . . . . . . . 90

5.17 Rectangle trajectory tracking in NLoS scenarios . . . . . . . . . 91

xvii



List of Tables

1.1 Classification of existing solutions to the clock asynchronism

problem [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Comparison between RSSI and CSI [21] . . . . . . . . . . . . . . 16

3.1 Impact of Kwin and KJW on the running time . . . . . . . . . . 45

3.2 Impact of Kwin and KJW on the localization errors . . . . . . . 48

5.1 Transmitted power and receive gain for the evaluations . . . . . 72

5.2 Localization deviation vs TR Dist . . . . . . . . . . . . . . . . 77

5.3 Localization deviation vs θs . . . . . . . . . . . . . . . . . . . . 81

5.4 Localization deviation vs different speeds . . . . . . . . . . . . 85

5.5 Localization deviation for NLoS scenarios . . . . . . . . . . . . 88

1



Chapter 1

Introduction

This chapter serves as an introductory overview of the thesis. Section 1.1 intro-

duces the background for Joint Communication and Sensing (JCAS), including

its conceptual evolution and technological significance. This section outlines

the framework of Perceptive Mobile Networks (PMN) and discusses the sens-

ing functionalities enabled by this architecture. Additionally, it offers a concise

introduction to some wireless technologies applied for localization. Section 1.2

presents an overview of the research contents, including the motivations and

objectives of this research. It also underlines the challenges in this research and

the research methodology to address them. Section 1.3 summarizes the major

contributions of this research. Section 1.4 offers the organizational structure of

the thesis.

1.1 Background

1.1.1 Concept of Joint Communication and Sensing

For decades, contemporary wireless communication and radar technology have

been developing “in parallel with limited intersections” [1]. However, the in-
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creasingly scarce spectrum becomes overwhelmingly congested due to the pro-

liferation of diverse wireless applications. Spectral congestion raises concerns

over electromagnetic compatibility in some scenarios. In the early periods, pro-

posed solutions evolved from RF isolation and co-existence to subsequent RF

cooperation [2]. Intriguingly, wireless communication and radar systems share

analogous hardware components and signal-processing units. Thus, it emerges

as a logical proposition to develop an integrated system with both communica-

tion and radar sensing functionalities by sharing a transmitting waveform and

a majority of hardware modules. This intuitive idea has evolved over the past

decade into what is now termed Joint Communication and Sensing (JCAS), or

Integrated Sensing and Communication (ISAC) [3], [4]. This promising archi-

tecture not only boosts spectrum efficiency by mitigating mutual interference

but also reduces energy consumption and implementation costs.

1.1.2 Framework and Sensing Functionalities of the Perceptive Mo-

bile Networks

Implementing the JCAS philosophy in large-scale cellular networks promises

to revolutionize the existing cellular mobile networks to the Perceptive Mobile

Networks (PMN) [1], [5]. Figure 1.1 in [5] envisages the framework of the PMN

and illustrates the general mechanisms of sensing. In a mobile network, numer-

ous base stations (BS), fixed wireless access points (FWA) and user equipment

(UE) work similarly to mono-static and bi-static radar setups. RF Remote Ra-

dio Units (RRU) are clock-synchronized through a time-allocation mechanism.

Signal processing and sensing modules are embedded in a central node that

includes Baseband Units (BBU), which have high calculation capacity. Under

these circumstances, the locations of all RRUs are fixed, and the positions of

3



FWAs and UE are also pre-determined.

Figure 1.1: Framework of the Perceptive Mobile Networks [5]

The PMN encompasses three categories of sensing mechanisms [1]. The first

category is downlink active sensing (DLAS), where an RRU works similarly to

a mono-static radar. It captures its own transmitted signals and senses distant

targets. DLAS entails in-band full-duplex operation to avoid RF leakage from

transmitters. However, this technique is currently immature in practical appli-

cations. The second type is downlink passive sensing (DLPS). Analogous to a bi-

static/multi-static setup, an RRU receives reflected signals transmitted by other

cooperative RRUs. Nevertheless, DLPS requires strict time-synchronization

among RRUs. The third category is uplink sensing (ULS), where an RRU

perceives the ambience with reflected signals from UE or FWAs. Notably, ULS

requires the fewest system architectural adaptations and thus attracts consider-

able research attention. However, in an uplink setup, clock asynchrony between

the transmitters (TXs) and receivers (RXs) incurs time-variant phase shifts and

results in estimation ambiguity [6]. The existing solutions to this issue include

the use of a “global reference clock, single-node-based and network-based solu-

tions” [7]. Table 1.1 summarizes the classification and technical issues related
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to these solutions [7]. In this work, CACC-based and CSIR-based schemes for a

single-node-based localization system will be highlighted and reviewed in detail

in Chapter 2.

Table 1.1: Classification of existing solutions to the clock asynchronism problem [7]

1.1.3 Human Motion Detection and Localization Based on Wireless

Infrastructure

The PMN technology will initiate a variety of emerging sensing applications,

such as high-accuracy localization and tracking, human activity recognition, en-

vironmental sensing, and sensing-assisted communication, just to name a few.

One of the applications is indoor human motion detection and localization via

ubiquitous wireless infrastructure. From a device perspective [8], wireless indoor

localization systems are classified into device-based and device-free. Device-

based localization is the case in which the targets carry user devices, such as

smartphones or tablets etc. Therefore, localization is realized through infor-

mation exchanges between user devices and anchor points. Signal processing,

in this scenario, is conducted by a central server. Generally speaking, device-

based localization is employed to track cooperative targets that deliberately

carry wireless devices to be positioned. Typical use cases include location-based
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customer service, indoor navigation, home care etc. By contrast, device-free lo-

calization, also known as passive localization, is the case in which targets do

not carry user devices. Therefore, localization is performed by utilizing the

targets’ impacts on wireless channels. In comparison, device-free systems and

technologies find broader applications, especially in scenarios including security

surveillance and emergency rescue where user devices may not be attached to

human targets.

Varieties of existing wireless technologies are employed in both device-based and

device-free applications. Considering the ubiquity of infrastructure, the most

widely implemented wireless indoor positioning systems rely on Wi-Fi, cellu-

lar networks, Bluetooth and LoRa technology. With ubiquitous infrastructure

and availability on personal smartphones, Wi-Fi-based localization is the most

extensively studied field. A large body of Wi-Fi-based systems utilize diverse

tracking techniques. Compared with early technologies, recent Wi-Fi localiza-

tion systems work in a MIMO setup. SpotFi [9] represents a typical device-based

localization solution employing 3 Wi-Fi links, achieving a median tracking ac-

curacy of 0.4 meters. On the other hand, Widar 2.0 [10], a device-free tracking

system utilizing a single Wi-Fi link, realizes a comparable median accuracy of

0.75 meters. Bluetooth, widely available on smartphones, has also been devel-

oped for short-range tracking [11]. For example, Apple’s iBeacon adopts an

inquiry-based positioning approach, leveraging Received Signal Strength (RSS)

measurements. However, Bluetooth’s inherent short-range coverage limits its

capability and is confined to proximity sensing. LoRa, an industrial IoT tech-

nology, utilizes a chirp spread spectrum modulation technique and is less suscep-

tible to indoor multi-path effects. Experiments [12] demonstrate that a LoRa

indoor localization system utilizing an RSSI-based fingerprint method achieves
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a mean error of 2.2 m in the 2.4 GHz band. However, the availability of LoRa

is still confined to specific scenarios, hindering it from ubiquitous deployment.

Compared with Wi-Fi-based systems, cellular networks provide seamless in-

tegration for indoor and outdoor scenarios, highlighting its potential in both

outdoor and indoor localization. In [13], passive localization with meter-level

precision is implemented through the channel estimation of LTE signals. More-

over, the dense deployment of small cells in office buildings will enable better

tracking performance with a networked sensing capability shortly.

1.2 Research Contents

1.2.1 Motivations

Currently, there has been extensive research on device-free human localization

techniques based on Wi-Fi technology, whereas there are relatively fewer re-

ports on localization algorithms and real-time systems using cellular mobile

networks. As the PMN promises a vision for broad applications in the next-

generation mobile networks, this thesis aims to develop a real-time localization

demonstrator using uplink LTE-based signals.

1.2.2 Objectives

• Objective 1

To design a human motion detection and tracking scheme employing the

MIMO setup and LTE-based signal structure

Clock asynchrony in ULS setup introduces unknown and slowly time-varying

phase shifts in CSI samples. By leveraging the MIMO setup and a related signal

model, this thesis aims to design a scheme to estimate Doppler frequency, angle-
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of-arrival (AoA) and propagation delay with real-time capability.

• Objective 2

To develop and implement a real-time human motion detection and local-

ization demonstrator for an LTE-based JCAS system.

By leveraging the National Instrument (NI) Massive MIMO prototyping system

as the development platform, this work aims to implement a real-time human lo-

calization demonstrator. It is enabled by designing a customized CSI-streaming

interface and implementing the tracking scheme specified in Objective 1.

1.2.3 Challenges

• Challenges 1

The LTE signal structure contains 100 subcarriers for a single spatial layer,

leading to more intensive computations than Wi-Fi-based implementa-

tions.

Compliant with the 3GPP LTE standard [14], an LTE pilot symbol is modulated

with 1200 valid subcarriers. In this demonstrator, only one single spatial layer

is activated for transmission. As a result, the test bed employs 100 active pilots,

more than triple the subcarriers in a Wi-Fi-based system. The increase in the

number of subcarriers leads to higher computational complexity and poses more

challenges to real-time implementation.

• Challenges 2

Unlike the availability of well-developed CSI-reading tools in Wi-Fi-based

applications, there are no existing software packages available to extract

CSI samples from the LTE-based commercial prototyping platform.

Extensive studies on Wi-Fi-based are performed utilising well-developed CSI-
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extracting tools to acquire CSI data from off-the-shelf network interface cards

(NIC) like Atheors 9580 and Intel 5300. On the contrary, to the best of my

knowledge, there are no existing software packages available to read CSI sam-

ples from the NI Massive MIMO prototyping system. Therefore, a customized

CSI-streaming interface compatible with the development platform needs to be

developed.

1.2.4 Research Methodology

Based on the literature review in Chapter 2, in the single-node-based scenario,

CACC-based and CSIR-based methods are potential candidates for the elimina-

tion of random phase shifts. A well-structured motion detection and localization

scheme will be designed that incorporates the advantages of these techniques

and best matches the LTE signal characteristics. Implemented on an existing

LTE-based software-defined radio platform, this work will design a customized

CSI-reading module tailored for real-time localization.

1.3 Research Contributions

• Contributions 1

This thesis proposes an effective tracking scheme that integrates a CSIR-

based Doppler frequency estimator with a maximum likelihood estimation-

based (MLE-based) estimator for AoA and delay estimation.

This thesis proposes a tracking scheme that combines a CSIR-based Doppler

frequency estimator and an MLE-based estimator for AoA and delay estima-

tion. The CSIR-based Doppler frequency estimator is based on a refined Mobius

transformation approach in [15], which enables estimating robust Doppler fre-
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quency with noisy signal samples and features less computational complexity

with increased subcarriers. Through CSI self-correlation, the random phase

shifts in received signals are eliminated. The MLE-based approach enables the

AoA and propagation delay to be estimated by aggregating CSI samples from

successive sampling windows. To ensure robust motion detection and handle

system anomalies, this scheme also incorporates a motion confirmation pro-

cess to mitigate false detection. Evaluations show that the proposed tracking

scheme achieves sub-meter tracking accuracy with uncompromising real-time

capability.

• Contributions 2

A real-time human motion detection and tracking demonstration test bed

using LTE signals has been successfully designed and implemented.

This work designs and implements a customized pilot-streaming interface, which

prepares and streams active pilot samples to the UDP port. In the meantime,

a target-tracking module is developed in Python, which simultaneously reads

pilots from a UDP port, performs target-tracking within a sampling window,

and displays updated positions on the monitor. By intricately synchronizing the

two modules, a real-time human motion detection and tracking demonstration

test bed has been successfully implemented and evaluated to achieve sub-meter

localization accuracy.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 presents the literature

review on human motion detection and tracking using wireless communication

technologies.
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Chapter 3 proposes the detection and tracking scheme. Section 3.2 presents

the workflow of this demonstrator. Section 3.3 introduces the CSI ratio-based

(CSIR-based) Doppler frequency estimator and the maximum likelihood-based

(MLE-based) AoA and delay estimators. Section 3.4 examines the selection of

parameters for signal processing.

Chapter 4 details the design and implementation of this motion detection and

tracking demonstration system. Section 4.2 presents the overview of this demon-

strator, including the system setup and its operational procedures. Section 4.3

introduces the signal structure employed in this demonstrator. Section 4.4 elab-

orates on the development of the pilot-streaming interface. Section 4.5 specifies

the software implementation of the target-tracking module.

Chapter 5 details the experimental evaluations of this demonstration test bed,

aiming to thoroughly assess the system’s tracking performance and validate

its suitability in real-world scenarios. Sec 5.2 provides an overview of the ex-

perimental implementation, testing methodology, as well as data processing

and visualization techniques. Sec 5.3 introduces the calibration procedure for

transceiver channels. Sec 5.4 presents the impact of UE locations on the lo-

calization performance and thereafter determines an optimized UE location for

the following evaluations. Sec 5.5 reveals the impact of walking speed on track-

ing. Sec 5.6 extends the application of the system to non-line-of-sight (NLoS)

scenarios.

Chapter 6 reviews the main contributions of the thesis and looks forward to

our future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides a comprehensive review of the existing techniques and

methodologies utilized for wireless human localization, with a specific focus on

localization within the uplink sensing (ULS) setup. Section 2.2 introduces the

signal metrics employed in indoor localization for both device-based and device-

free applications. Section 2.3 reviews the localization schemes and implemen-

tations based on Channel State Information. The model-based approaches are

highlighted while pattern-based methods are also briefly covered. Section 2.4

offers a concise summary of the chapter’s contents.

2.2 Signal Metrics and Techniques for Indoor Human

Localization

Depending on whether localization is device-based or device-free, various tech-

niques are available, each working on distinct signal metrics. Figure 2.1 illus-

trates the taxonomy of these techniques [8], [16]. The primary signal metrics
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include Received Signal Strength (RSS), Channel State Information (CSI), An-

gle of Arrival (AoA), Time of Arrival (ToA) and Time Difference of Arrival

(TDoA). These metrics can be utilized either independently or jointly for posi-

tioning.

Localization
Technique

 

Device-based Device-free

RSSI-based AoA CSI ToA/TDoA RSSI-based CSI

Figure 2.1: Taxonomy of indoor localization techniques

2.2.1 Received Signal Strength Indicator

Received Signal Strength (RSS) is the actual signal power strength measured

at a receiver. On the other hand, Received Signal Strength Indicator (RSSI), is

a normalized value of RSS, and is almost arbitrarily defined by any chip vendor

[11], [17]. This implies that identical RSS values collected by Wi-Fi network

interface cards (NIC) from different suppliers may be mapped to different RSSI

values. Nevertheless, variations in RSS or RSSI are of main interest for local-

ization. In a multi-path environment, the RSSI value is inversely proportional

to the distance between a transmitter (TX) and a receiver (RX), as represented

in Equation (2.1). In (2.1), d is the TX-to-RX distance, and RSSI0 is the RSSI

value at a reference point (RP). The path loss exponent, α, typically between 2

and 4 in an indoor environment [11], can be theoretically determined through

curve fitting based on RSSI measurements in a specific environment. In device-

13



based scenarios, the RSSI-based approach is employed to localize a user node

through trilateration or multilateration. Figure 2.2 illustrates the principles of

trilateration. In practice, multilateration is favoured for its improved accuracy,

as it exhibits greater tolerance to fluctuations in RSSI values.

RSSI = −n10logn (d) + RSSI0 (2.1)

Figure 2.2: Principle of trilateration [11]

However, traditional RSSI-based localization systems achieve a median accu-

racy range of 2 to 4 meters [9], and this relatively lower accuracy is attributed

to severe temporal fluctuations of RSSI. According to [18], the RSSI variations

at a stationary receiver may reach as large as 5 dB in one minute in laboratory

environments. Since RSSI represents the superimposition of multipath signals,

it fails to distinguish the multi-path effect on individual spectral components.

In this context, RSSI is considered a coarsely-grained metric for indoor position-

ing. To address this challenge, fingerprint-based solutions have been developed

to improve accuracy by making a complete radio map with finer granularity in

the areas of interest. Fingerprint-based schemes generally comprise an offline

stage and an online stage [17]. In the offline stage, a comprehensive radio map

is constructed to collect RSSI values at every RP within the area of interest. In
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the online stage, the algorithm compares the actual RSSI measurements with

the radio fingerprinting map to estimate positions accurately. Furthermore, the

state-of-art technology in this area integrates fingerprinting with deep-learning

methods. RSSI-based indoor localization via deep-learning methods necessi-

tates high-quality radio maps and specialized algorithms. A wide array of data

pre-processing approaches, such as data augmentation techniques and learning

models, have been proposed to improve the robustness and accuracy of finger-

printing [19].

2.2.2 Channel State Information

The channel frequency response (CFR) characterizes the signal propagation

behaviour between a TX and a RX in the frequency domain. Compared with

RSSI, CFR is a finer-grained metric that features subcarrier-level resolution to

distinguish the effect of frequency-selective fading on each subcarrier compo-

nent. In a typical MIMO-OFDM system, the CFRs characterizing each TX-RX

channel are collectively represented in a matrix form called Channel State In-

formation (CSI). The CSI matrix at any time instance is a 3D complex matrix,

with each entry represented in Equation (2.2) [20].

(2.2)

where,

an : complex amplitude of the baseband received signal along the nth propaga-

tion path

di,j,n : path length from the ith transmit antenna to the jth receive antenna of

the nth path
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fk : kth subcarrier frequency

τi : the time delay from Cyclic Shift Diversity of the ith transmit antenna

ρ : the Sampling Time Offset

η : the Sampling Frequency Offset

qi,j, ζi,j : amplitude attenuation and phase shift of the (i, j) element beamform-

ing matrix

This equation accounts for both multi-path channel effects and the clock asyn-

chrony between the TX and the RX. Furthermore, the time sequence of CSI

matrices records the variations of the wireless propagation channel. A com-

parison between RSSI and CSI is listed in Table 2.1 [21], demonstrating that

CSI data feature more information and stability. Therefore, CSI provides fine-

grained solutions for more complicated sensing problems. Nevertheless, CSI is

not as readily available as RSSI. CSI is currently only accessible to some CSI

tools, accompanied by specific Wi-Fi NICs [21]. Given its significance in wire-

less indoor localization, CSI-based indoor localization will be closely studied in

detail in Section 2.3.

Table 2.1: Comparison between RSSI and CSI [21]

Metric RSSI CSI

Network layer MAC layer Physical layer

Time resolution Packet size Multipath signal cluster scale

Frequency resolution No Subcarrier scale

Temporal stability Low High

Measurement band RF band Base band

Granularity Coarse-grained (per packet) Fine-grained (per subcarrier)

Universality Almost all Wi-Fi devices Some Wi-Fi devices
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2.2.3 Angle of Arrival

In a MIMO configuration, an antenna array is utilized to estimate the incident

angle of received signals at the access point’s (AP) receivers. Once the AoAs at

two APs are determined, the user device can be readily located by a triangu-

lation method. However, the performance of AoA estimation is susceptible to

multi-path effects and non-line-of-sight (NLoS) conditions [11]. Multiple Signal

Classification (MUSIC) algorithms are commonly used to achieve a finer angle

resolution with an antenna array of limited antenna elements. ArrayTrack [22]

utilizes a 16-element array for each AP to obtain precise AoA estimates and

attains a median accuracy of 23 cm. It combines independent AoA estimates

from the antenna pairs and identifies the direct line-of-sight (LoS) component

whose phases appear stabler across consecutive samples. However, the use of

specialized hardware and collaborative measurements by multiple APs is infea-

sible with commodity-of-the-shelf (COTS) devices.

2.2.4 Time of Arrival and Time Difference of Arrival

Temporal parameters such as ToA or TDoA are exploited primarily in device-

based applications. ToA is the absolute signal propagation time from a TX

to a RX. Should the exact ToA be estimated, the distance would be simply

calculated by multiplying ToA and the light speed. However, this necessitates

strict clock synchronization between the TX and the RX, making it impractical

for most mobile communication infrastructures. For example, timing in Wi-Fi-

based systems is acquired by extracting time stamps in the received packages.

Wi-Fi signals compliant with 802.11n/ac standards span across 40 MHz, equiv-

alent to 25 nanoseconds per packet. During that time interval, signals travel

about 1.9 meters, thus leading to coarse range resolution [23]. Chronos emu-
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lates a wideband system by hopping between multiple Wi-Fi bands to obtain

sub-nanosecond ToA [24]. Moreover, it identifies the direct path with the min-

imum phase shifts. As a result, Chronos leverages one AP to achieve a median

localization accuracy of 65 cm in LoS scenarios and 98 cm in NLoS scenarios.

However, the techniques used by Chronos can not be generalized since it is not

built on community Wi-Fi devices.

On the other hand, some indoor localization systems leverage TDoA-based

approaches. These methods involve measuring the time difference it takes for

signals to travel from two anchor nodes to the user device. Consequently, a user

device is located along a hyperbola with the two anchor nodes as its foci. With

at least three anchor nodes, the user device can be located where the three

hyperbolas meet. One such system, Tonetrack is developed on the Wireless

Open Access Research Platform (WARP) [25]. It achieves a median accuracy of

0.9 meters with a 20 MHz bandwidth. Similar to Chronos, it aggregates multiple

frequency-hopping channels to simulate a broader bandwidth. Unfortunately,

this technique is not deployable with COTS devices either. Although neither

ToA nor TDoA can be precisely acquired from COTS devices, these coarse-

grained parameters serve as indicators for the direct path and can be exploited

for joint parameter estimation. [9], [10].

2.3 CSI-based Indoor Localization Approaches and Sys-

tems

Compared with RSSI and other signal metrics, CSI provides finer granularity

and thus holds more potential for localization and sensing applications. This

section reviews various CSI-based indoor localization approaches and systems.
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CSI-based sensing methods are roughly categorized into pattern-based methods

and model-based methods [26]. Pattern-based methods attempt to establish the

relationships between signal variation features and specific human activities. To

this end, pattern-based methods extract particular features from a large body of

preprocessed data and train a classifier for subsequent recognition. By contrast,

model-based methods necessitate purpose-specific models to be established, re-

vealing the quantitative relationships between the sensed parameters and CSI

measurements. In most cases, pattern-based methods entail a time-consuming

training process and depend on specific settings. Model-based methods, in

comparison, achieve better performance and are less dependent on the environ-

ment. Whatever methods are chosen, the clock asynchronism-induced phase

shifts should be first addressed in the preprocessing phase if the CSI phases are

involved in a model.

2.3.1 CSI-based Indoor Human Localization via Model-based Meth-

ods

Depending on diverse system setups and physical quantities to be exploited, a

couple of CSI models have been developed for human localization [27]. Among

these models, AoA models are the most widely utilized, owing to the preva-

lent deployment of MIMO systems [10], [22] [28]–[32]. In these schemes, the

MUSIC algorithm and its variations are utilized to enhance angle resolution.

It’s important to note that AoA models are applicable only when the receiver

antennas are situated within the far-field region of the transmitter antennas.

On the other hand, the Fresnel zone model [33], [34] is a recently proposed model

grounded in the physical principles of the Fresnel zone. This model correlates

signal variations with the target’s positions when the target traverses different
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Fresnel zones. Notably, both AoA and Fresnel models may incorporate other

signal metrics including ToA, TDoA and even RSSI, aiming at higher tracking

accuracy [9], [10], [35].

SpotFi [9] is deployed with 4 to 5 COTS APs in a room. The APs work

in monitor mode and capture Wi-Fi packets from a smartphone carried by a

target. A central server is responsible for collecting and processing the CSI

samples. To remove the random phase shifts caused by clock asynchronism,

SpotFi employs a linear fitting-based “sanitization” algorithm. This algorithm

assumes the presence of linear phase relationships among the random phase

shifts across the packets. Moreover, SpotFi significantly improves its multi-

path disentanglement capability by utilizing measurable phase differences across

subcarriers, effectively creating “virtual sensors”. Thirdly, assuming that the

direct path has the minimum ToA, SpotFi identifies the direct path with the

highest likelihood. After identifying a direct path, SpotFi maps the received

RSSI to the distance with a well-acknowledged RSSI model and localizes the

target. SpotFi attains a median positioning accuracy of 40 cm. However,

this scheme is computationally intensive, which hinders SpotFi from real-time

implementation.

Widar [36] introduces a mobility model that relies on 6 Wi-Fi links for passive

human tracking. This scheme achieves a localization accuracy of 25 cm with

an initial position and 38 cm without this knowledge. The mobility model

correlates geometrically the CSI data with a target’s location and velocity. It

extracts the variation rate of each signal propagation path length (termed PLCR

in the paper). and estimates both a user’s speed and position geometrically.

Specifically, PLCR is retrieved through two steps. First, Widar refines the raw

CSI data through Principal Component Analysis (PCA) and applies Short-time
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Fourier Transformation (STFT) to acquire the complete PLCR spectrogram.

Second, Widar decimates the spectrogram in the time domain by setting a

threshold on the maximum acceleration of a human walk. Consequently, the

optimal PLCR is acquired by solving a dynamic programming problem. Once

PLCR is extracted, the velocity is determined and successive positioning is

conducted by a simple motion equation. One limitation of Widar is its reliance

on a significant number of Wi-Fi links and the need for an initial position for

continuous tracking. Additionally, the paper does not claim real-time tracking

capabilities for this system.

MaTrack [28] employs the AoA model, and proposes a novel Dynamic-MUSIC

method which distinguishes dynamic signals from static signals. Subsequently,

MaTrack estimates the incident angle of dynamic signals at two receivers and

localizes the target by synchronizing the AoA estimates from all the available

receiver pairs. It is reported to achieve a median accuracy of 0.6 meters with

only two COTS APs, each assembled with 3 antennas. To refine the conven-

tional MUSIC algorithm and solve the multi-path problem, the scheme utilizes

the intuition that static signals are coherent with each other whereas dynamic

signals are not. Once the coherence is removed, the dynamic paths are de-

tected. In addition, the scheme also employs a linear fitting method to remove

the time-variant phase shifts and align all the associated ToAs across packets,

facilitating AoA and ToA estimation. The paper does not report the real-time

performance of Matrack.

The AoA model may result in erroneous results when a target obstructs the

LOS path, whereas the Fresnel zone model assumes that the targets transverse

different Fresnel zones between the transmitter and the receiver.
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LiFs [33] and MFDL [34] are localization systems that rely on the Fresnel zone

model. LiFs utilizes subcarriers that are not impacted by multi-path reflections

in noisy environments. This system achieves a positioning accuracy of 0.5 m in

the LoS environment and an accuracy of 1.1 m in the NLoS case. Operating on a

power-fading model, the algorithm excludes the subcarriers whose magnitudes

rise unexpectedly, contrary to the power-fading model. Localization is con-

ducted by “minimizing the mean absolute distance deviation between the CSI

samples and the calculated CSI data” by the physical principles of the Fresnel

zone model. By contrast, MFDL formulates a multi-carrier Fresnel penetration

model (FPM) to track a walking target with 2 orthogonal receivers. It achieves

a median accuracy of 45 cm outdoors and 55 cm indoors. MFDL quantifies the

space between a pair of Fresnel zones associated with two subcarriers by cal-

culating the phase difference between the two Fresnel ellipses. This approach

allows for the determination of the intersection area between two Fresnel el-

lipses, enabling the successful positioning of the target, as illustrated in Figure

2.3. The major drawback of the scheme is its reliance on a cumbersome cali-

bration procedure involving a perfect reflector. The paper does not report its

real-time performance.

As an updated version of Widar, Widar 2.0 [10] achieves device-free localization

with a single Wi-Fi link on COTS devices. Its unified model includes AoA, ToF,

and Doppler frequency, devising an efficient algorithm for joint parameter esti-

mation. With real-time capability at a data rate of 250 Hz, Widar 2.0 achieves

a median tracking accuracy of 0.75 meters in a tracking area of 6 m × 5 m. Its

algorithm manipulates the cross-antenna-cross-correlation (CACC) on CSI data

to eliminate the clock asynchrony-induced phase shifts. However, the CACC

operation inevitably results in an image Doppler frequency-related component
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Figure 2.3: Fresnel zone model [34]

and thus ambiguity in Doppler frequency estimation. The scheme follows the

same “add-and-minus” solution in [37]. For simultaneous and joint estimation of

multiple parameters, the authors build a unified model based on the maximum

likelihood estimation method. Furthermore, it devises a novel graph-based al-

gorithm to distinguish the target’s walking trajectories from chaotic multi-path

parameters.

WiDFS [38] proposes a lightweight single-target tracking scheme with a single

Wi-Fi link. Experimental evaluations demonstrate that WiDFS implements

instant positioning with a median positioning deviation of 72 cm in typical in-

door environments. To eliminate random phase shifts induced by CFO and TO,

CACC and self-correlation operation are utilized in WiDFS’s algorithm. Instead

of estimating Doppler frequency through the “add-and-minus” method, WiDFS

first retrieves the approximate static components by calculating the arithmetic

means of CACC results in a sampling window. Consequently, the dynamic

components are obtained by simply subtracting the static components from the

CACC results. Doppler frequency is deduced with the MUSIC algorithm in

every CSI sampling window. In addition, WiDFS utilizes the self-correlation of
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CSI to remove random phase shifts caused by clock asynchrony. Subsequently,

AoA and propagation delay are respectively estimated by formulating a maxi-

mum likelihood problem based on CSI data in a couple of successive sampling

windows. WiDFS is capable of real-time human motion tracking at the data

rate of 1 KHz, exceeding the performance of Widar 2.0.

Random phase shifts can also be eliminated through the CSI-ratio technique

due to the proximity of co-located antennas. Although CSI-ratio has been

employed in estimating Doppler frequency in [15], an intricate scheme in [39] is

developed to obtain Dopper frequency estimates and fulfil a joint estimation of

AoA and delay. Leveraging a truncated Taylor series, the nonlinear CSI ratio

representation is converted to a linear function, facilitating the formulation of

a MUSIC-type Doppler frequency estimator. The AoA and delay estimates

are also acquired with a MUSIC-type algorithm by elaborately assembling the

related samples in the spatial domain. The CSIR-based scheme outperforms

other benchmarks in scenarios without the existence of a LoS path. However,

numerical simulations show that the performance of this scheme degrades when

the number of antennas is limited. The paper does not claim its real-time

capability.

In summary, CSI-based indoor localization via model-based methods enables

sub-meter localization accuracy with good suitability. Some of the localization

schemes are promising candidates for real-time positioning implementation.

2.3.2 CSI-based Indoor Localization via Pattern-based Methods

CSI-based indoor localization via pattern-based methods relies on the collec-

tion of fingerprints. Currently, CSI amplitude is more widely employed as

fingerprints than CSI phase. Therefore, we review some of the pattern-based
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approaches using CSI amplitude. Before training, raw data must undergo a

pre-processing stage to improve the quality of fingerprints. Major preprocess-

ing steps include denoising, selection and classification of data samples, feature

refinement, feature retrieval and dimension compression [17]. During train-

ing, a few deep learning models are available. For Wi-Fi fingerprints, common

deep learning models include Deep Belief Networks (DBNs), Convolutional Neu-

ral Networks (CNNs), Generative Adversarial Networks (GANs), Autoencoder

(AE) and Recurrent Neural Networks (RNNs) [40].

DeepFi adopts fingerprints of CSI amplitude for indoor localization with a single

AP [41]. The scheme allocates a dedicated DBN for each reference point (RP)

and refines the parameters using a greedy learning algorithm and reconstruc-

tion loss. In the online phase, Bayes’ Law is employed to obtain the posterior

probability for each RP. The position is estimated by a weighted average of the

posterior probabilities at all RPs. Experimental assessments are conducted in

LoS and NLoS settings. The localization deviation is 0.94 m in the LoS setting

and 1.8 m in the NLoS setting. Notably, the probabilistic calculations result in

a large latency in the response time, rendering DeepFi unsuitable for real-time

positioning applications.

ConFi undertakes indoor positioning using CSI images and a single AP [42].

To facilitate training via CNNs, CSI-amplitude data are converted into RGB

images, termed “CSI images”. Additionally, to enhance the efficiency of fin-

gerprint recording, data augmentation is applied to the training process. In

the online phase, the system determines the position by calculating a weighted

centroid based on the three top-ranking RPs. ConFi achieves a localization

accuracy of 1.36 meters, representing a considerable improvement upon DeepFi

in the same environment.

25



A cost-effective approach using GANs to streamline site surveying is proposed in

[43]. In the offline phase, A dataset of 5000 CSI amplitude samples is collected

at each RP for training, and 100 of them are randomly selected 10,000 times

to create amplitude plots across subcarriers. These plots served as input for

a GANs model to produce an additional 10,000 plots. The authors employ a

Support Vector Machine (SVM) classifier and improve the localization precision.

However, a drawback of this method is that a dedicated GAN should be trained

for each RP. To mitigate this complexity, they propose using a convolutional

GAN (CGAN) to generate fingerprints. This may streamline the process and

reduce computational overhead. Performance assessments show that deviations

range from 1 to 2 meters.

In summary, the most advanced pattern-based indoor localization systems using

CSI fingerprints achieve positioning accuracy ranging from 1 to 2 meters and

seem currently incapable of real-time tracking.

2.4 Conclusion

This chapter reviews various indoor localization schemes based on different

signal metrics and models. The CSI-based localization methods are reviewed

in detail. In the scope of CSI-based positioning schemes, model-based methods

outperform pattern-based methods in terms of universality and accuracy. By

comparing different device-free localization approaches, it is found that CACC-

based and CSIR-based methods are better candidates for both accuracy and

real-time performance.
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Chapter 3

Human Motion Detection and Tracking

Scheme

3.1 Introduction

A real-time human localization system necessitates a robust motion detection

workflow and an accurate localization scheme. A robust motion detection pro-

cedure is required to identify the system anomalies and mitigate false detection

due to signal fluctuations. Additionally, it is also essential to distinguish tem-

porary instances of missing detection from an absence of human movement.

Once human motion is confirmed, the system needs to estimate motion-related

parameters such as Doppler frequency, angle-of-arrival (AoA), and propagation

delay to promptly locate a moving person. This chapter focuses on the motion

detection and tracking scheme for the demonstrator, including the workflow,

the parameter estimation algorithms and the selection of parameters in the

scheme. Section 3.2 presents the workflow of this scheme. Section 3.3 intro-

duces the CSI ratio-based (CSIR-based) Doppler frequency estimator and the

maximum likelihood estimation-based (MLE-based) AoA and delay estimators.
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Section 3.4 examines the selection of parameters for signal processing. Section

3.5 concludes the work in this chapter.

3.2 Motion Detection and Tracking Workflow

In a real-world radio environment, system anomalies and signal fluctuations may

cause instability in a motion-tracking system utilizing a single wireless link.

Additionally, wireless signals propagate along complex paths in a multi-path

environment, potentially resulting in temporary missing or false detection for

certain snapshots. To overcome these challenges, a reliable and resilient work-

flow is elaborated on in this work, leveraging an iterative procedure to reduce

the chances of wrong detection and to handle system exceptions. Figure.3.1
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Figure 3.1: Workflow for the motion detection and tracking scheme

illustrates the workflow for the proposed scheme. The major modules include
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CSI calculation and data pre-processing, system anomaly indication and pre-

liminary motion detection, Doppler frequency estimation (DFE), separation of

static and dynamic components, human motion confirmation and exception

handling, AoA and delay estimation, as well as human target localization.

3.2.1 CSI Calculation and Data Pre-processing

This module is responsible for converting received pilots into CSI samples and

performing data pre-processing for CSI samples on a “sampling window” basis.

A “CSI sampling window” represents a continuous time series during which a

collection of CSI samples is processed as once. Typically, a CSI sampling win-

dow lasts several hundred milliseconds. The transmitted uplink pilot sequence

comprises 1200 randomly generated symbols and is mapped to 12 different

user equipment (UE) antennas via orthogonal frequency division multiplexing

(OFDM). These received pilots are used for channel estimation in the frequency

domain. We define the channel transfer function as Hp, the transmitted pilot

symbol at a given subcarrier as xp, the corresponding received pilot symbol as

yp, and additive Gaussian white noise (AGWN) noise as zp. As only one UE

with a single transmit antenna is employed in this demonstration system, the

channel transfer equation is represented in a scalar form as the following.

yp = Hpxp + zp (3.1)

Multiply (3.1) by x∗p on both sides and re-order it, and (3.2) follows. Herein, x∗p

is the conjugate of xp and xpx
∗
p = ∥xp∥2 = 1 for QPSK-modulated pilots.

Hp =
ypx

∗
p − zpx

∗
p∥∥xpx∗p∥∥

= ypx
∗
p − zpx

∗
p

(3.2)
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As channel estimations are conducted on a sampling window of received sym-

bols, zpx
∗
p can be omitted by being averaged. Then, the channel transfer func-

tion estimate, H̃p, is defined as in (3.3).

H̃p ≈ ypx
∗
p (3.3)

To ensure accurate detection and estimation, it is crucial to remove outliers and

noise in the raw data. Therefore, a combination of a Savitzky-Golay smoother

and a low-pass filter (LPF) is utilized to reject outliers and high-frequency noise.

Assumes that a person typically walks at a speed lower than 3.5 meters per

second indoors, the maximum Doppler frequency induced by human movement

at the centre frequency of 3.1 GHz, is estimated as

fD =
3.5

3× 108
× 3.1× 109 (Hz) ≈ 36.17 (Hz) (3.4)

Thus, a cutting frequency of 50 Hz is chosen for an LPF to filter high-frequency

components. Figure.3.2 demonstrates the pre-processing effect on raw CSI sam-

ples, and it is evident that the output signals smoothed largely.
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Figure 3.2: Pre-processing for CSI-ratio samples
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3.2.2 System Anomaly Indication and Preliminary Motion Detec-

tion

This module is responsible for identifying system anomalies and coarsely de-

tecting human motion. Temporary instability or interruptions may occur in

real-world communication links. Once this happens, pilot data may be cor-

rupted, potentially leading to unreliable human motion sensing. Hence, criteria

are essential to indicate system anomalies, human motion, and static scenar-

ios. Experimental results demonstrate that phases of CSI ratio samples can be

utilized as a metric for this purpose. Specifically, phases of CSI ratio samples

surge abruptly and irregularly when instability in communication links occurs,

whereas they display regular and periodical fluctuations due to human motion.

By contrast, this metric exhibits random small variations in static situations.

To elaborate this metric with OFDM signals and mitigate the effect of asyn-

chrony, this proposed scheme leverages the median phase standard deviation

(MPSTD) of CSI ratio samples across different subcarriers in a sampling win-

dow to discriminate system anomalies, human motion and static scenarios.

MPSTD is defined in (3.5). Firstly, the phase standard deviations of CSI ratio

samples in a sampling window are calculated for all the subcarriers. Secondly,

the median of this collection of phase standard deviations is obtained. Here,

σj is the phase standard deviation of CSI ratio samples for the jth subcarrier,

and φij is the phase of the ith CSI ratio sample in a sampling window for the

jth subcarrier, and φ̄j is the mean of φij in this sampling window.
σj =

√∑n
i=1 (φij − φ̄j)

2

n− 1

MPSTD = Median {σ1, σ2, ...σM}

(3.5)
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Figure 3.3 demonstrates the MPSTD variations in some typical circumstances.

Figure 3.3 (a) shows the variations of MPSTD in the cases of system anomaly

and human motion. As is illustrated, when a communication link becomes un-

stable, the MPSTD curve shows impulses, rising dramatically and irregularly.

By constant, although human motion induces fluctuations of the MPSTD curve,

the variation magnitude is substantially lower. In Figure 3.3 (b), MPSTD curves

for human motion and static scenarios are presented with a stable communica-

tion link. Specifically, the blue line representing human motion demonstrates

periodicity and much larger amplitude than other cases. The amplitude of MP-

STD ranges between nearly 0.03 and 0.2. In comparison, in static scenarios

where a person stands or sits before the receiver or when the room is vacant,

the MPSTD curves show much slighter variations with a magnitude lower than

0.03. As above, it is likely to choose a set of thresholds to classify different sce-

narios into system anomaly, human motion and static situations. The criteria

are summarized in (3.6). Moreover, in this demonstration test bed, if system

anomalies persist for specified times, the program will automatically terminate

and report an error.

MPSTD


MPSTD ≤ 0.03 absence of human motion

0.03 ≤ MPSTD ≤ 0.2 human motion detected

MPSTD ≥ 0.4 system anomaly detected

(3.6)

3.2.3 Doppler Frequency Estimation

Upon detecting human motion, a modified CSIR-based algorithm is employed

to estimate the Doppler frequency at this moment. A Mobius transformation-

based Doppler frequency estimator is adopted to obtain both the sign and

magnitude of Doppler frequency with less complexity [15]. Doppler frequency
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Figure 3.3: Median phase standard deviation of CSI ratio samples

in a given sampling window is used further for separating the static and dynamic

components in 3.2.4. Moreover, both MPSTD and Doppler frequency estimates

in a couple of consecutive sampling windows will be recorded to confirm genuine

motion in 3.2.5.

3.2.4 Separation of Static and Dynamic Components

This module is responsible for separating the LoS ”dynamic signals” reflected

off the human body from the static signals that are not motion-related. Self-

correlation of CSI samples is utilized to eliminate random phase shifts induced

by clock asynchrony and the resulting separated dynamic components are fur-

ther utilized for AoA and delay estimation.

3.2.5 Human Motion Confirmation and Exception Handling

Fluctuating signal-to-noise ratio (SNR) of a wireless link makes motion detec-

tion susceptible to noise. Hence, this module is designed to confirm genuine

human motion and further mitigate risks of false detection. On the one hand, if
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human motion is detected consistently for a given number of sampling windows,

the human localization process is initiated. On the other hand, if the system de-

tects inconsistent motion, it evaluates the median value of the recorded MPSTD

to determine whether to wait for more reliable data or restart the program.

3.2.6 AoA and Delay Estimation

This module works to estimate AoA and propagation delay by aggregating data

from successive sampling windows, denoted as a ”joint window” in this thesis,

after genuine human motion is confirmed. Consequently, the first localization

outcome is pending until the number of sampling windows reaches a joint win-

dow. The MLE-based estimators [38] are established for parameter estimation,

leveraging the separated dynamic components in the preceding module. Once

this step is completed, all the motion-related parameters are determined.

3.2.7 Human Target Localization

Given that the location of the UE is known to the BS, the position of a human

target is derived geometrically in a planar coordinate system, using AoA and

delay estimates. Upon this step, the scheme concludes the localization workflow

for a sampling window.

3.3 Parameter Estimation Algorithms

This section presents the details of parameter estimation algorithms for Doppler

frequency, AoA, and propagation delay. To tackle the clock asynchrony between

transmitters and receivers, this proposed tracking scheme integrates a CSIR-

based Doppler frequency estimator with maximum likelihood estimation-based
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estimators for AoA and delay estimation. To begin with, a signal model is

presented first.

3.3.1 Signal Model for Uplink Sensing

In a typical LTE mobile network, a base station (BS) communicates with multi-

ple user equipment (UE). UE here can be fixed broadband access points whose

locations are already known to the BS. In the uplink sensing setup, the UE

transmits radio frames with uplink pilot signals. The BS receives uplink sig-

nals for both communication and sensing. The above general uplink setup is

further simplified to a single wireless link with a BS and UE in the demonstra-

tion system, illustrated in 3.4. This signal model includes the following three

assumptions.

UE

BS

Figure 3.4: Simplified uplink sensing setup

• There is one LoS propagation path for the dynamic signal reflected off

the moving target. This LoS signal is much stronger than other non-LoS

dynamic signals in strength, so only this LoS path is considered for dynamic

signals.

• The static signals that do not reflect on the moving target are orders of

magnitude stronger than the LoS dynamic signals in a sampling window.

• The location and AoA of the UE are known to the BS.
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In a multi-path channel, signals received by a BS are represented as a superim-

position of static signals via Ls propagation paths and one dynamic signal. In a

typical MIMO-OFDM system, a baseband signal is modulated by N subcarriers

and received by MR antennas. Assuming that the interval between two consec-

utive UL pilot symbols is TA (defined as a snapshot in the sensing scenario),

the frequency domain signal received by the mth antenna at the kth snapshot

on subcarrier index nth is expressed in (3.7) [15], [35].

s (fn, kTA) = Hh
m exp {j2π [fo (kTA) kTA − fnτo (kTA)]}

×

{
Ls∑
l=1

blexp (−j2πfnτl)× a(m, θl) + bdexp [j2π (fDkTA − fnτd)]× a(m, θd)

}

+ z (kTA, n)

(3.7)

bl: complex amplitude of the static signal along the lth propagation path

bd: complex amplitude of the dynamic signal

k: kth snapshot

TA: the interval between two consecutive UL pilot symbols

Hh
m: complex amplitude of the mth antenna with its connected transceiver

channel

fn: the nth subcarrier frequency

fo (kTA): carrier frequency offset at kTA moment

τo (kTA): timing offset at kTA moment.

fD: Doppler frequency

τl, τd: propagation delay for static and dynamic paths respectively

a(m, θl): the steering vector of lth static path for the mthantenna

a(m, θd): the steering vector of dynamic path for the mthantenna

z(kTA): additive Gaussian white noise (AGWN) with zero mean and variance

of σ2
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3.3.2 Doppler Frequency Estimation

As shown in (3.7), time-variant phase shifts, exp {j2π [fo (kTA) kTA − fnτo (kTA)]} is

the same for all the receive antennas at the same symbol. Divide the received

signals between two neighbouring antennas, and the CSI ratio (CSIR) of these

two antennas is derived in (3.8).


R(t) = Hh

m,m+1

Hs
n,m (kTA) +Hd

n,m (kTA) z

Hs
n,m+1 (kTA) +Hd

n,m+1 (kTA) z

z = ej2πfDt

(3.8)

Hs
n,m(kTA):

∑Ls

l=1 blexp (−j2πfnτl)× a(m, θl), dynamic signal component

Hd
n,m(kTA): bdexp [j2π (fDkTA − fnτd)]× a(m, θd), static signal component

Hh
m,m+1: the complex amplitude ratio between mth and (m+ 1)th receiver chan-

nels

As both the static and dynamic signal components are considered approxi-

mately unchanged in hundreds of milliseconds, (3.8) maps a unit circle to an-

other of different radius. Since R (t) varies along a circle, a least square method

(LSM) is adopted to estimate C0, which is the coordinate of the circle center

on the complex plane. Then, the raw CSIR samples are translated to the origin

of the complex plane by subtracting C0, resulting in new CSI-ratio datasets.

Subsequently, weighted linear mapping is applied to find the time variation rate

β1 of the angle of R(t), and Doppler frequency can be expressed as

fD =
β1

2πTs
(3.9)

given the inherent noise in practical signals, the effectiveness of the LSM-based

approximation can be compromised in certain scenarios. Therefore, a modified
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Algorithm 1 Refined Mobius Transform-based Doppler Frequency Estimation

Input: A sequence of CSI-ratio samples R (tk) = {R (t1) , R (t2) , ...R (tN)} within a sampling

window

Output: The estimated Doppler frequency fD for a sampling window

1: Calculate the arithmetic mean, R0, for the R (tk) in a sampling window

2: Subtract R0 from R (tk)
N
k=1 , resulting in R̄ (tk)

N
k=1

3: Calculate the angles of R (tk)
N
k=1 , resulting in a sequence of θR (tk)

4: Estimate the value β1 = 2πTsfD , by using the linear mapping in Section A.1

5: fD = β1

2piTs

method based on the arithmetic mean of CSI-ratio samples is adopted instead.

Specifically, in a sampling window of hundreds of milliseconds, the circle center

can be approximated by calculating the arithmetic mean of the raw CSI-ratio

samples within that sampling window. The refined algorithm for Doppler fre-

quency is described in Algorithm 1.

3.3.3 CSI Self-correlation and Separation of Static and Dynamic

Components

Similar to the cross-antenna-cross-correlation (CACC) method, the self-correlation

operation of CSI also eliminates the time-variant phase shifts induced by CFO

and TO [38]. CSI self-correlation is defined as the product of CSI data and their

conjugates, or channel frequency response (CFR) power. To manifest this, we

re-define s(t) here, making it more concise and pertinent to AoA and delay.

38





s(t) = Hh
m × He

n(t)×
[
Hs

n,m(t) +Hd′

n,m(t)
]

He
n(t) = exp {j2π [fo(t)t− fnτo(t)]}

Hs
n,m(t) =

Ls∑
l=1

blexp (−j2πfnτl)× a (m, θl)

Hd′

n,m(t) = bdexp

{
−j2π

fn
c

[
dd + c

fD
fc

(k − 1)TA + dm,1sinθ
d

]}
(3.10)

where dd = cτ d is the propagation distance and dm,1 refers to the spacing

between the mth antenna element and the 1st antenna element. In particular,

the dynamic component, Hd′
n,m(t), is formulated so that it encompasses Doppler

frequency, propagation distance, and AoA of the dynamic LoS signal. Since

a sampling window typically lasts hundreds of milliseconds, we assume that a

person moves at a constant speed within a sampling window. Consequently, the

distance at kth snapshot is approximately dd(k) = dd + cfDfn (k− 1)∆t, while the

AoA is considered unchanged. These relationships lay a foundation for AoA

and distance estimation for each sampling window. Based on (3.10), the CSI

self-correlation is derived in (3.11), where the power of He
n equals 1. Hereafter,

the notation (t) is dropped for brevity.

∥s(t)∥2 =
(
He

nH
h
m

)(
Hs

n,m +Hd′
n,m

)(
H

e
nH

h
m

)(
H

s
n,m +H

d′

n,m

)
=

∥∥∥He
nH

h
mHs

n,m

∥∥∥2︸ ︷︷ ︸
staic component power

+
∥∥∥He

nH
h
m

∥∥∥2 [2 ∥∥∥Hs
n,mHd′

n,m

∥∥∥ cos∠(Hs
n,mHd′

n,m

)
+
∥∥∥Hd′

n,m

∥∥∥2]︸ ︷︷ ︸
dynamic component power

(3.11)

As shown in (3.11), the time-variant phase shifts are removed. Moreover, it is

clearly demonstrated that the CFR power is constituted by a static component

and a dynamic component. The dynamic component will be further processed

for the estimation of AoA and delay of the LoS dynamic signal. Based on the

first assumption that the LoS dynamic component is much stronger than its

NLoS counterpart, the term
∥∥Hd′

n,m

∥∥2 is omitted hereafter. Thus, the refined
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formulation is written below.
∥∥He

nH
h
mH

s
n,m

∥∥2 = un,m

2
∥∥He

nH
h
m

∥∥2 ∥∥∥Hs
n,mH

d′

n,m

∥∥∥ cos∠(Hs
n,mH

d′

n,m

)
≈ vn,m,k

(3.12)

In [44], a highpass filter is used to extract the dynamic component induced by

respiration since the static signals remain unchanged in a sampling window.

However, it is challenging to determine an appropriate cutoff frequency that

does not significantly affect the relatively weaker dynamic signals. Instead,

WiDFS [38] introduces a method similar to the coherent accumulation technique

used in radar signal processing. This method treats the static component in a

way analogous to coherent echo signals in consecutive snapshots. Specifically,

the static component, u(n,m), is approximated by the arithmetic mean of CFR

power in a sampling window. Consequently, the dynamic component, vn,m,k, is

retrieved by subtracting un,m from the total CFR for each CSI sample. This is

represented in (3.13), where Kwin refers to the length of a sampling window.The

subcript k is the index number of the snapshots in a sampling window.


un,m =

1

Np

Kwin∑
k=1

∥CSI n,m.k∥2

vn,m.k = ∥CSI n,m.k∥2 − un,m

. (3.13)

3.3.4 AoA and Propagation Delay Estimation

In this scheme, AoA and propagation delay of dynamic signals are estimated

only when persistent human movement is detected to avoid erroneous estimates.

To acquire AoA and delay estimates individually, the MLE-based method is

adopted by utilizing the static and dynamic components in (3.13). The detailed
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derivations are presented in Section A.2, and only some of the key results are

listed in this section. Divide vn,m,k by u(n,m), and the quotient results in (3.14).

vn,m,k

un,m
= xn,m cos

[
2πfD (k − 1)TA

]
+ yn,m sin

[
2πfD (k − 1)TA

]
xn,m = 2

∥∥∥∥∥Hd′

n,m,k

Hs
n,m

∥∥∥∥∥ cos
{
∠H

s
n,m − 2π

fn
c

[
dd + dm,1 sin θ

d
]}

yn,m = 2

∥∥∥∥∥Hd′

n,m,k

HS
n,m

∥∥∥∥∥ sin
{
∠H

s
n,m − 2π

fn
c

[
dd + dm,1 sin θ

d
]}

(3.14)

Since fD is already estimated, an equation set can be formulated for different

snapshots in a sampling window, and it is solved via a least square method.

Consequently, a pair of (xn,m, yn,m) results from the solution. In order to for-

mulate an MLE function pertinent to AoA and delay, we define Zs,d
n,m,k as a

weighted phase shift based on the quotient of
yn,m
xn,m

. The weight is relevant to

rn,m,k, the residual of the solution to (A.8). This is derived in (3.15).



Zs,d
n,m,k = wn,m,ke

jarctan2(yn,m,xn,m) = wn,m,ke
j{∠Hs

n,m−2π fn
c [dd+dm,1 sin θ

d]}

∠Hs
n,m = 2π

fn
c
(ds1 + dm,1 × sinθs)

wn,m,k =

{
2

π
×
[
π

2
− arctan

(
rn,m,k

Kwin

)]}3

(3.15)

where ∠Hs
n,mis the phase delay of a static LoS path between the transmit an-

tenna and the mth receive antenna. According to A.3, the term ∠Hs
n,m can also

be expressed in (3.16).

∠Hs
n,m = −2π

fn
c
ds1 +∆φh

1,m − ∠U1,m (3.16)

where ∠U1,m is the angle of the static components of the CSI cross-correlation

between the 1st antenna and themth antenna. Since the UE’s location is already
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known to the BS, ∠Hs
n,m is a known constant. Multiplying Zs,d

n,m,k by eJ∠H
s
n,m

results in Zd
n,m,k in (3.17). As is shown, the static component is completely

removed and Zd
n,m,k is merely associated with AoA and delay of the dynamic

signals. Therefore, we name it ’Refined Dynamic Component Phase’.

Zd
n,m,k = Zs,d

n,m,ke
J∠Hs

n,m = wn,m,ke
−j2π fn

c [dd+dm,1 sin θ
d] (3.17)

As practical wireless links are impacted by noise that threatens the localization

accuracy, Zd
n,m,k from adjacent sampling windows are aggregated to achieve reli-

able estimates of AoA and delay in this proposed scheme. Figure 3.5 illustrates

the way the data from these joint windows are aggregated. Via these joint win-

dows, MLE methods are applied respectively for AoA and delay estimations in

(3.18) and (3.19).

window 1

joint
window 2

window Nwindow
Kwin

joint
window 1

Figure 3.5: Joint windows

argmax
θd∈[θmin,θmax]

K∑
k=1

N∑
n=1

∥∥∥∥∥
M∑

m=1

Zd
n,m,ke

j2π fn
c dm,1 sin θ

d

∥∥∥∥∥ (3.18)

(3.18) aims to discover θd, the AoA within a range of angles that maximizes

the above function.
argmax

dd∈(dXmin,d
X
max]

K∑
k=1

M∑
m=1

∥∥∥∥∥
N∑
n=1

Zd
n,m,kZ

Dej2π
fn
c dd

∥∥∥∥∥
ZD = e

J2π
K∑
1

fD×c

fc
(l−1)∆t

(3.19)
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Likewise, (3.19) aims to search dd, the most probable delay within the range

of interest. Since a person moves a distance in each sampling window, this

displacement is compensated for by
K∑
l

fD
fc

× c(l − 1)∆t. Thus, the term ZD

accounts for phase delay due to human motion.

Algorithm 2 AoA and delay Estimation based on weighted residual quotient

Input:

• Doppler frequency sequence in the latest joint window {fD (Wk)} =

{fD (W1) , fD (W2) ...fD (WNr)}

• CSI samples in the latest joint window {CSI (Wk)}

• AoA search range and increment: [θmin, θmax] ,∆θd

• delay search range and increment:
[
ddmin, d

d
max

]
,∆dd

Output: AoA and probation delay for the latest sampling

1: if Human motion is detected then

2: Solve the equation in (A.8) and obtain xn,m,k, yn,m,k, rn,m,k

3: Calculate Zd
n,m,k using (3.17)

4: Follow motion confirmation procedure in Sec. 3.2.5

5: else if Human motion is undetected then

6: Follow motion confirmation procedure in Sec. 3.2.5

7: end if

8: if Human motion is confirmed then

9: Estimate AoA of LoS dynamic signals using (3.18)

10: Estimate delay of LoS dynamic signals using (3.19)

11: else if Absence of human motion is confirmed then

12: Display ’Absence of human motion’ and restart the program

13: end if

In summary, the algorithm for AoA and delay estimation is presented in Algo-

rithm 2.
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3.3.5 Human Target Localization

In a typical sensing scenario illustrated in Figure 3.6, the human target, the

transmitter, and the receiver form a triangle. In this planar representation, θs

and Dist TR are pre-defined constants and dd, θd are estimated. Locate 0th

antenna at the origin, the distance between a target and the origin is calculated

via the Cosine Rule. A moving target is then positioned by solving (3.20).

y

Dist_TR

Dist_PT

Dist_PR

x
012

Figure 3.6: Human target localization




Dist PR =

(
dd
)2 − (Dist TR)2

2 [dd −Dist TR× cos (θd − θs)]

Pos X = Dist PR× sinθd

Pos Y = Dist PR× cosθd

(3.20)

3.4 Parameter Study Selection of Kwin and KJW

Both the sampling window size, Kwin, and the joint window size, KJW are

critical parameters for localization performance. Hence, this section presents

a parametric study of these two parameters. This section examines the im-

pacts of both parameters on Doppler frequency, AoA, tracking accuracy and

computation time.
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3.4.1 Impact of Sampling Window Size

Based on the algorithms introduced in 3.3, the sampling window size, Kwin, di-

rectly impacts Doppler frequency estimates. Combined with joint window size,

KJW , it also affects AoA and delay estimation. On the one hand, the CSIR-

based Doppler frequency estimator prefers a larger Kwin for more accurate es-

timates. On the other hand, the computation time rises with the increase of

Kwin, consequently compromising the real-time performance. Therefore, there

is a trade-off between tracking accuracy and real-time performance when se-

lecting an appropriate value of Kwin. Besides, a prolonged sampling window

leads to large latency in positioning and also affects localization accuracy.

The impacts of Kwin on the estimation of Doppler frequency, AoA and compu-

tation time are illustrated in Figure 3.7. The CSI samples used in this study are

collected in a tracking test along a V-line trajectory. The data are processed

offline.

Table 3.1: Impact of Kwin and KJW on the running time

Kwin KJW

95% running time

(millisecond)

100 10 49.0

200 10 68.8

300 10 79.1

400 10 108.6

200 5 56.0

200 15 80.7

The impact on Doppler frequency estimation aligns with the theoretical predic-

tions that a larger sampling window results in more accurate estimates. As is

shown in Figure 3.7(a), where a window size of 100 leads to pronounced fluctu-

45



0 5 10 15 20 25 30 35 40 45 50
Time (s)

-30

-20

-10

0

10

20

30

D
op

pl
er

 F
re

qu
en

cy
 (H

z)

Doppler Frequency Estimate vs Sampling Window Length

window length = 100
window length = 200
window length = 300
window length = 400

(a) Doppler frequency estimation

0 5 10 15 20 25 30 35 40 45 50
Time (s)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

A
oA

 (d
eg

)

AoA Estimate vs Sampling Window Length

window length = 100
window length = 200
window length = 300
window length = 400

(b) AoA estimation

0 50 100 150 200 250 300 350 400 450
Iteration

20

40

60

80

100

120

140

160

A
oA

 (d
eg

)

Running time vs Sampling Window Length

window length = 100
window length = 200
window length = 300
window length = 400

(c) computation time

Figure 3.7: Impact of Kwin on Doppler frequency, AoA and computation time, (KJW = 10)
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Figure 3.8: Impact of Kwin on localization accuracy: KJW = 10
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ations and abrupt shifts in the Doppler frequency curve, potentially leading to

erroneous delay estimates. In comparison, the curve becomes much smoother

as Kwin exceeds 200. On the other hand, AoA estimation seems less insensi-

tive to the value of Kwin than Doppler frequency, as demonstrated by Figure

3.7(b). It is worth noting that Kwin also has a significant impact on the running

time of the program. Table 3.2 lists the 95% running time versus Kwin. The

results indicate that a larger sampling window inevitably jeopardizes real-time

performance. However, there is a limitation on the running time for real-time

implementation, depending on the data sampling rate and displaying latency.

As a design trade-off, a shorter sampling window is preferred on the condition

that it satisfies the requirement of localization accuracy.

Table 3.2: Impact of Kwin and KJW on the localization errors

window length

(msec)
joint window

x axis (cm) y axis (cm)

50% 80% 50% 80%

100 10 27 81 55 83

200 10 21 44 18 52

300 10 83 104 47 126

400 10 19 66 64 118

200 5 26 37 19 49

200 15 8 30 26 49

The influence of Kwin on the localization accuracy is shown in Figure 3.8. Ta-

ble 3.2 provides the 50% and 80% localization errors on both axes. According

to Figure 3.8 and the corresponding data in Table 3.2, the sampling window

size of 200 milliseconds results in the best localization performance, while the

localization errors increase with the sampling window size of 300 and 400 mil-

liseconds. The reason can be analyzed as the following. A prolonged window
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size results in higher latency in which a person moves a longer distance, thus

resulting in increased deviations from his true position. As a trade-off, the

sampling window size is optimized as 200 milliseconds.

3.4.2 Impact of Joint Window Size

The joint window size, KJW , exerts an impact on the estimation of AoA and

delay. Besides, it determines the latency for the first localization estimate.

Figure 3.9 presents the AoA estimation and running time versus KJW . As is

shown, Fluctuations appear evident in the AoA curve with the joint window

size of 5, which is insufficient to provide an accurate estimate. By contrast,

a larger window size above such as 10 or 15 ensures more stable and reliable

estimates. As is presented in Table 3.1, the running time slightly rises with

an increased KJW . Figure 3.10 illustrates the localized trajectories versus KJW

when the window size is 200 milliseconds. As expected by the algorithm, a larger

joint window size seems to monotonically result in stable estimates. However,

experimental results show that when KJW surpasses 8, the improvement in

localization precision is insignificant. On the other hand, a larger joint window

size induces a longer computation time.

Based on a comprehensive evaluation of the impacts of Kwin and KJW on the

tracking accuracy and computation time, an optimized combination of these

two parameters is selected as Kwin = 200 and KJW = 8.

3.5 Conclusion

This chapter introduces a robust and efficient human motion detection and

tracking scheme for the demonstrator. The proposed scheme is characterized

49



0 5 10 15 20 25 30 35 40 45 50
Time (s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

D
op

pl
er

 F
re

qu
en

cy
 (H

z)

Doppler Frequency Estimate vs Joint Window Length

window length = 5
window length = 10
window length = 15

(a) Doppler frequency estimation

0 5 10 15 20 25 30 35 40 45 50
Time (s)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

A
oA

 (d
eg

)

AoA Estimate vs Joint Window Length

window length = 5
window length = 10
window length = 15

(b) AoA

0 50 100 150 200 250
Iteration

30

40

50

60

70

80

90

100

110

120

ru
nn

in
g 

tim
e 

(m
se

c)

Running time vs Joint Window Length

window length = 5
window length = 10
window length = 15

(c) Running time

Figure 3.9: Impact of KJW on Doppler frequency,AoA and running time,Kwin = 200

50



by a well-structured workflow and lightweight parameter estimation algorithms

for Doppler frequency, AoA and propagation delay. By evaluating the impact of

Kwin andKJW on the localization accuracy and computation time, an optimized

parameter combination is determined for the implementation of this proposed

scheme. The offline tests manifest that the proposed scheme enables tracking

in real-time with 95% of running time less than 70 milliseconds.
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Chapter 4

Design and Implementation of the

Demonstration System

4.1 Introduction

This chapter details the implementation of this real-time human motion de-

tection and tracking demonstrator. This demonstrator is implemented on the

National Instrument (NI) Massive MIMO prototyping test bed. The implemen-

tation primarily focuses on two aspects. The first part is dedicated to developing

a customized pilot-streaming interface which prepares and streams active pilot

samples to a target-tracking module running on the same controller machine.

The second part focuses on the implementation of the target-tracking module.

Section 4.2 presents an overview of this demonstrator, including the system

setup and its operational procedures. Section 4.3 introduces the signal struc-

ture employed in this demonstrator. Section 4.4 elaborates on the development

of the pilot-streaming interface. Section 4.5 covers the software development of

the target-tracking module. Section 4.6 summarizes the work in this chapter.
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4.2 System Overview

4.2.1 System Setup and Operational Procedures

Figure 4.1 illustrates the high-level block diagram of this demonstration system.

It mainly comprises the Massive MIMO prototyping test bed as the BS and a

USRP device as the UE. The supporting MIMO Framework Application (MFA)

software packages running on both the BS and UE controllers are responsible

for the configuration of an LTE-based communication link. Through the con-

figuration of the MFA, an LTE link is set up with a customized LTE-based

signal structure. In this passive localization system, the BS has a linear array

of three receive antennas, each connected to its corresponding transceiver. The

UE has a single transmit antenna. The software implementation of the demon-

strator involves a pilot-streaming interface and a target-tracking module, both

operating on the BS controller. Once an LTE link is set up, the received LTE

pilot samples are streamed on demand to the target-tracking module via the

pilot-streaming interface. Simultaneously, the target-tracking module reads the

received pilots and undertakes target tracking. Once tracking is completed for

a sampling window, the updated localization result will be instantly displayed

on the monitor.

4.2.2 Hardware Development Platform and Software Implementa-

tion Environment

To seamlessly integrate this demonstrator with the framework of an LTE com-

munication link, the National Instrument (NI) Massive MIMO prototyping sys-

tem is leveraged as the development platform [45]. The BS test bed encompasses

16 transceivers in total, a test bed controller, and timing and clock synchro-
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nization modules. A timing and synchronization module (PXIe-6674T) and a

timing and clock distribution module (CDA-2990) enable all the BS transceivers

to be synchronized in clock and carrier frequency. In addition, the UE comprises

2 transceivers in total and a desktop computer as a controller. The hardware

setup diagrams for the BS and UE are illustrated in Figure 4.2.

The MAF software package implements an orthogonal frequency division mul-

tiplexing (OFDM) physical layer with LTE time-division duplex (TDD) spec-

ifications. The MAF enables a configurable LTE radio frame structure, and

modifiable modulation schemes ranging from QPSK to 256-QAM. By config-

uring the software, we can also specify the center frequency, receiver gain and

transmitter power supported by the USRP hardware. The spatial layers for

transmission can also be activated on demand. In addition, implemented in

LabVIEW Communications System Design Suite, the MAF provides an open,

(Target tracking
module)

active pilots
(via UDP

datagrams)

Massive MIMO
Framework
Application

Pilot-streaming
interface

raw data

Massive MIMO
Framework
Application

UE

Signal-processing
thread

Pilot-reading
thread

Display thread

Massive MIMO Prototyping Testbed

BS

USRP device

Figure 4.1: High-level diagram of the demonstration system
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(a) BS setup

(b) UE setup

Figure 4.2: Hardware setup for the BS and UE [45]
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modular, and modifiable software development environment so that additional

functional modules can be implemented in the MAF. Figure4.3 shows the soft-

ware control panels for the BS and UE respectively.

(a) BS control panel

(b) UE control panel

Figure 4.3: MIMO Framework Application interface for BS and UE [45]
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4.3 Signal Structure

4.3.1 Uplink Pilot Signal Structure

The uplink pilot signal, proposed as a waveform candidate for radio sensing

[5], is leveraged for CSI-based localization in this demonstration system. The

uplink pilot sequence is designed for uplink channel state estimation and equal-

ization. The uplink pilot signal used in this system is derived from a length-300

QPSK sequence, which is repeated four times and results in a length-1200 se-

quence, corresponding to the used 1200 subcarriers in a typical LTE system.

The spectrum of an uplink LTE signal is illustrated in Figure 4.4 [14]. The

channel bandwidth is 20 MHz and the subcarrier spacing is 15 KHz. The up-

link subcarrier frequency, fUL
sub , is represented by (4.2). Here, fc refers to the

center frequency and NUL
ind refers to the uplink subcarrier frequency index.

Figure 4.4: LTE signal spectrum [14]

fUL
sub = fc ± 7.5×NUL

ind , NUL
ind : 1, 2, ...600 (4.1)

The pilot sequences are mapped to 12 different spatial layers in an OFDM

scheme, as depicted in Figure 4.5. Consequently, pilots corresponding to 12
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spatial layers are alternatively mapped to 12 neighbouring subcarriers in a

resource block. Since only one spatial layer is activated for transmission at

the UE in this demonstrator, 100 out of 1200 subcarriers are modulated with

effective pilots while others are padded with nulls. Hence, the subcarrier spacing

is 180 KHz. Nevertheless, all of the 1200 subcarriers are transmitted, resulting

in voluminous data received at the BS.

p1 p2 ...... p11 p12 p13 p14 ...... p23 p241200 QPSK -modulated
 pilot sequence

c1 c2 ...... c11 c12 c1 c2 ...... c11 c12subcarriers

resource
block 1

resource
block 2

mapping

s1 s2 ...... s11 s12 s1 s2 ...... s11 s12spatial layers

Figure 4.5: Mapping of pilot sequence to subcarriers

4.3.2 Radio Frame Format

The MAF employs a standard 3GPP LTE radio frame in TDD mode as shown

in Figure 4.6. A radio frame endures 10 ms and comprises 10 subframes, while

each subframe comprises two slots of 0.5 ms in duration. A slot is further

broken down into 7 OFDM symbols. Specifically, this demonstration system

is configured to contain a single uplink pilot symbol in each slot. As a result,

the interval between two pilot signals is 0.5 ms, which corresponds to the data

sampling rate of 2 KHz.
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4.4 Design and Implementation of the Pilot-streaming

Interface

An efficient and effective pilot-streaming interface and a pilot-reading module

are the prerequisites for this CSI-based tracking demonstrator to achieve real-

time performance. Unlike the availability of mature CSI-reading tools in Wi-

Fi-based applications, there are no existing CSI-extracting tools for the NI

Massive MIMO prototyping test bed employed in this demonstrator. Therefore,

a concurrent pilot-streaming interface integrated with a pilot-reading module

has to be developed to this specified end.

4.4.1 Challenges in the Implementation of the Pilot-streaming In-

terface

The MAF streams all of the received pilots from 16 BS antennas to the BS

controller at the data sampling rate of 2 KHz. This refers to 200 pilot symbols

to be streamed to the controller’s memory once per 100 ms. Since each I/Q

symbol is represented by a U32 word (16 bits for each I and Q signal), the data

subframe (1ms)

1 2 ...... 9 10

#1 #2Slot (0.5 ms)

OFDM symbols
(66.67 us )

1 2 UL Pilot 7

LTE Frame (10 ms) 

Figure 4.6: Frame structure employed in the demonstrator
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size amounts to 15,360,000 Bytes per 100 ms. It is these massive data that

make the implementation of a pilot-streaming interface challenging. The major

problems and proposed solutions are clarified below.

The first challenge arises due to the massive number of “inactive” pilots. On

the one hand, although only one spatial layer is activated for transmission and

3 out of 16 antennas are utilized for this demonstrator, all of the 1200 pilots

throughout 12 spatial layers are received in the multiplexed scheme from 16

antenna ports. Consequently, a significant proportion of the received pilots are

zero-padded. Even though LabView Communications Suite offers a customized

User Datagram Protocol (UDP) block for external data exchange, it is highly

beyond the UDP block’s capability to promptly accommodate such intensive

data transmission. The transmission capability of UDP is constrained by the

maximum transmission unit (MTU), allowing only 1500 Bytes per datagram.

Alternatively, resorting to partitioning the datasets into numerous short data-

grams will induce unacceptable latency in data transfer, preventing the demon-

strator from running in real time. On the other hand, the complex arrangement

of original pilots hinders efficient CSI-based signal processing. Hence, it is essen-

tial to incorporate a pre-processing module to select and re-order the “active”

pilots to streamline pilot streaming and signal processing.

The second challenge results from a mismatch between the original data sam-

pling rate and the computation overheads of the tracking scheme. The transceivers

stream 200 pilot symbols, namely 200 CSI samples, to the controller’s memory

once every 100 ms. However, Section 3.4 shows that the computation overhead

ranges from 50 ms to 70 ms for processing these 200 CSI samples. Addition-

ally, extra time overheads must be considered for sending the active pilots to
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the UDP port and displaying. Consequently, the tracking module encounters a

very stringent temporal constraint to concurrently perform tracking and read

raw CSI samples within a 100-millisecond framework. This disparity in data

rate will lead to unpredictable data loss and threaten the reliability of tracking

results. To address this challenge, the data are down-sampled to 1 KHz by

discarding every other pilot symbol sample. Meanwhile, a buffer queue mech-

anism is devised to facilitate the down-sampling process and avoid data loss.

This measure has been proven to effectively mitigate the timing disparities.

4.4.2 Workflow of the Pilot-streaming Interface

The pilot-streaming interface is designed to meet the following requirements:

• Streaming the pilot data on demand with a configurable duration

• Down-sampling the data rate to 1 KHz

• Ensuring no data loss in transmission

To streamline the workflow and facilitate the experimental evaluations, this

pilot-streaming interface is modelled and implemented via a finite state machine

(FSM) that comprises 4 states, represented by “Idle”, “UDP open”, “Wait”,

“UDP write”, and “UDP close”. The transition among the states is illustrated

in Fig 4.7, delivering an overview of the workflow of this FSM model.

The “Idle” state refers to the state in which streaming is in progress. Each

time the system finishes streaming, it returns to this state. When streaming

is initiated by a user, the machine shifts to the “UDP open” state where it

initializes a specified UDP port. Following initialization, the system automat-

ically transitions to the “Wait” state. This state is designed to facilitate the

experiments. In the “Wait” state, the test bed waits for a user-defined period
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Idle

UDP Open

Wait

UDP Write

UDP Close

pilots streaming
uninitiated

initialize a
customized

UDP port

user-defined
waiting period

stream the
pilot symbols

iteratively

close the UDP
port and return

to 'Idle' 

Figure 4.7: Finite State Machine model for the pilot-streaming interface

until the user is prepared for the experiments. When the specified time elapses,

a signal is sent to a pilot-reading module within the MAF to start pilot stream-

ing. The system simultaneously shifts to the “UDP write” state. At this stage,

the module selects and re-orders active pilots from voluminous pilot samples,

and then streams the re-ordered active pilot samples to the UDP port. Stream-

ing is on-demand with a configurable duration. Once streaming finishes, the

machine enters the “UDP close” state where the interface dispatches a signal

via the UDP datagrams to prompt the tracking module to stop running. Sub-

sequently, the “UDP close” state terminates the UDP streaming and reverts to

the ’Idle’ state. The entire process operates in a closed-loop fashion and works

on demand.

4.4.3 Active Pilots Selecting and Re-ordering

The data size of raw pilot symbols is 153,600 Bytes per millisecond, and these

data encompass a complete set of 1200 subcarriers from 16 antenna ports. Nev-
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ertheless, if only one spatial layer is activated and 3 receive antennas are utilized

in this demonstrator, the data size of the active pilots can be significantly re-

duced as shown in (4.2)

1

12
× 3

16
× 153, 600 = 2400 Bytes per ms (4.2)

This data size can be further reduced by half to 1200 Bytes per ms if down-

sampling is implemented. This notable shrinkage in data size makes it realistic

for uninterrupted and efficient data transmission via UDP datagrams.

subcarrier 5

Antenna 1

subcarrier 8

I1 Q1 I2 Q2 I3 Q3 I4 Q4

subcarrier 5

Antenna 2

subcarrier 8

I1 Q1 I2 Q2 I3 Q3 I4 Q4

subcarrier 5

Antenna 16

subcarrier 8

I1 Q1 I2 Q2 I3 Q3 I4 Q4

subcarrier 1

Antenna 1

subcarrier 4

I1 Q1 I2 Q2 I3 Q3 I4 Q4

subcarrier 1

Antenna 2

subcarrier 4

I1 Q1 I2 Q2 I3 Q3 I4 Q4

subcarrier 1

Antenna 16

subcarrier 4

I1 Q1 I2 Q2 I3 Q3 I4 Q4

Figure 4.8: Original subcarriers data format

Input: 1D array for 1 pilot symbol 
(data format : U64) 
Initialize: antenna index I:K,K+1,K+2

For I: K~K+2
   For n: 1~100
   Do:   Extract the subcarrier data for
antenna index I at array index :
96*n+2*I
   End
End

Extract the higher 32bit
for subcarriers in spatial
layer 0  

Figure 4.9: Active pilots selecting and re-ordering module
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Furthermore, the subcarriers from different antennas are organized in an in-

terleaved arrangement as illustrated in Figure 4.8. Each set of four successive

subcarriers, associated with a specific antenna is grouped, whereas subcarrier

groups that are attributed to different antennas are sequentially interleaved.

An active pilot selecting and re-ordering module (APSR module) is therefore

designed to streamline signal processing and reduce computation overheads. Its

workflow is presented in Figure 4.9. Consequently, all subcarriers corresponding

to the same antenna are re-organized to form a continuous sequence.

Streaming period finished?

'Wait' State

Any residual packages in the buffer
queue ?

Acquire the total
number of pilot

symbols in a single
package, Ns

Pilots
streaming
from the

transceivers
continues

'UDP Close'
 State

Pilots sreaming from the
transceivers stops

Ns iterations finished?

Calculate the
elapsed time based
on the number of

streamed symbols

Check the symbol
 index 

Discard the
symbol

ASPR
module

Transfer to
U8 format

Write the
data in the 
UDP port

Y

N

N

Y

Y
N

Even Odd

down-
sampling 

Figure 4.10: ‘UDP’ Write state

4.4.4 Pilot-streaming via UDP Transmission

This section presents the procedure and techniques applied to real-time pilot

streaming via UDP transmission, implemented in the “UDP write” state.
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The flowchart outlining the pilot streaming procedure is depicted in Figure

4.10. The pilot samples are streamed from the transceivers in packages, each

containing 200 pilots, into a local queue at a data sampling rate of 2 KHz. Once

receiving the pilot packages, the “UDP write” module parses each package to

individual pilot symbols and processes a single symbol per iteration. This pro-

cedure is followed by a down-sampling process to reduce the data sampling rate

by half. Subsequently, the down-sampled pilots are transmitted to the APSR

module responsible for filtering out the inactive pilot symbols. Eventually, the

active pilot symbols are retained and forwarded to a customized UDP port. To

implement the streaming control, a timing mechanism is devised, correlating

the elapsed time with the number of symbols streamed from the transceivers.

When the specific streaming period is reached, streaming from the transceivers

is terminated at once whereas transmission of the pilots persists until all the

residual pilots in the buffer queue are streamed to the UDP port. Only in this

way is data transmission ensured to be conducted without any loss.

Depending on the symbol index, pilot symbols with even indexes are chosen

to be transmitted whereas the pilot symbols with odd indexes are discarded.

This approach efficiently implements the down-sampling process. Notably, to

synchronize different control loops and avoid race conditions, the LabView plat-

form mandates a delay of one millisecond in the loop where each pilot symbol is

written to the UDP port. As a result, it takes approximately 100 milliseconds

to stream all of the 100 pilot symbols and the resulting data sampling rate is 1

KHz.

65



4.5 Implementation of the Target-tracking Module

The target-tracking module is supposed to concurrently perform three tasks:

reading pilots from a UDP port, tracking human motion, and displaying posi-

tioning results. To fulfil these requirements in a software program, the multi-

thread programming approach is adopted for a lightweight implementation.

Correspondingly, this module comprises three concurrent threads: a pilot-

reading thread, a signal-processing thread, and a displaying thread. To clearly

explain the operation of this module, a flowchart is illustrated in Figure 4.11.

Once the program is started, the three threads are initialized simultaneously

by the main process. The functionalities for every thread are introduced below.

The pilot-reading thread consistently reads pilot samples from the UDP port

Pilot -reading thread

Start

Report Error

Indicator = 0 ?

END

Display the
 latest 50 points in

the cache

Signal-processing thread Displaying thread

Start

UDP streaming terminates? Indicator =0

Indicator =1

Store received
pilots in a buffer

queue

Buffer queue size> Kwin? 

Wait for 1 ms

N

Y

Report Error

END

Start

Indicator = 0 ?

Buffer queue size> Kwin? 

Collect pilots of the
current sampling

window and flush the
buffer queue

Follow the
scheme in 3.2 

store the
localization
in the cache

System anomaly count
> Err_max? 

system anomaly ?

Report Error,
Indicator =0

END

N

Y
N

Y

Figure 4.11: Flowchart for the target-tracking module

and temporarily stores them in a buffer queue. Once the pilots’ sample size

reaches the size of a sampling window, the signal-processing thread imports

the pilots from the queue and the queue is flushed for the next sampling win-
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dow. Concurrently, the signal-processing thread performs target detection and

tracking based on the scheme presented in Chapter 3. Once a new positioning

estimation is completed, the displaying thread updates the positioning on the

monitor. The target-tracking module is developed via Python 3.8 and a screen-

shot of the localization demonstration is shown in Fig 4.12. It is also worth

Figure 4.12: Screenshot of the localization demonstration

noting that a communication mechanism among threads is also designed to

handle exceptions and streamline the entire procedure. On the one hand, once

the streaming from the UDP port ceases, whether it be a normal termination

of data transmission or a time-out, the pilot-reading thread will detect the oc-

currence and signal an indicator to terminate the entire program. On the other

hand, if the signal-processing thread identifies continuous system anomalies, it

will dispatch an indicator to terminate the program.

67



4.6 Conclusion

This chapter details the implementation of the real-time localization demonstra-

tor. Aligned with the LTE signal structure and comprising a single wireless link,

this demonstrator is composed of a customized real-time pilot streaming inter-

face and a concurrent target-tracking module that implements the localization

scheme proposed in Chapter 3. Tests have validated that the demonstrator

meets the requirement for pilot streaming and signal processing at the data

sampling rate of 1 KHz.
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Chapter 5

Experimental Evaluations

5.1 Introduction

This chapter presents detailed experimental evaluations of this real-time hu-

man motion detection and tracking system, aiming to thoroughly assess the

system’s localization performance and validate its suitability in diverse scenar-

ios. Section 5.2 provides an overview of the experimental assessment, covering

testing methodologies, data processing and visualization methods. Section 5.3

introduces the calibration procedure for the transceiver channels. Section 5.4

presents the impact of UE locations on the localization performance and then

determines an optimized UE location for subsequent evaluations. Section 5.5

reveals the impact of walking speed on tracking accuracy. Section 5.6 extends

the application of this system to non-line-of-sight (NLoS) scenarios. Section 5.7

concludes the results of the experimental evaluations.

5.2 Overview of the Experimental Evaluations

The experimental evaluations were performed in a lab environment shown in

Figure 5.1. This lab environment represents a typical indoor scenario with abun-
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dant multi-path signal propagation. Various strong reflectors, including glass

windows, wooden desks, concrete walls, and the ground floor etc. surround the

transmitter and the receivers. Landmarks are posted on the ground floor to

mark one-meter intervals on both axes. Throughout the evaluations, a partic-

ipant walked along three planned trajectories at various speeds to thoroughly

assess the system’s real-time tracking performance. Moreover, experiments in-

clude both LoS and NLoS scenarios for a comprehensive assessment. To better

validate the tracking performance of this system, the impact of the UE location

on the tracking accuracy is studied in advance to determine the optimized UE

location, defined by the parameter combination (Dist TR, θs), with the best

localization performance.

Figure 5.1: Evaluation scenario

5.2.1 Hardware Setup and Software Configuration

Figure 5.2 illustrates the experimental hardware setup. The BS employs three

receive antennas in a linear array, which is assembled on an antenna mount.

The antenna spacing is D01 = 40mm and D12 = 42mm respectively. On the

other hand, the UE utilizes a single transmit antenna at the same height as
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the BS antennas, located at a distance from the BS antennas. Based on the

tests in Section 5.4, the optimized UE location was found to be defined by

(Dist TR = 200 cm, θs = −45◦)

Base Station

BS antenna

UE antenna

User Equipment

Figure 5.2: Experiment hardware setup

An LTE link is configured with the MAF software on both the BS and the

UE controllers. To ensure a stable wireless connection, the transmit power and

receive gain for UL and DL links are specifically configured as listed in Table

5.1. The UL link utilizes only one spatial layer (Spatial layer 0) for transmission

and the binary symbols are QPSK-modulated. Screenshots for software config-

uration at the BS and the UE are shown in 5.3. The frame schedule employed

in the evaluations is described in Section 4.2 and the consequent data sampling

rate is 1KHz. The center frequency is 3.1 GHz and the subcarrier frequencies

are specified in (5.1).


fUL
sub = 3.1± 7.5× 10−6 ×NUL

ind (GHz)

NUL
ind : 1, 2, ...600

(5.1)
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(a) MAF software setup for BS

(b) MAF software setup for UE

Figure 5.3: MAF software setup for BS and UE

Table 5.1: Transmitted power and receive gain for the evaluations

Transmitted Power (dBm) Receive Gain (dB)

BS 15 30

UE 15 25
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5.2.2 Evaluation Methodology

The evaluations aim to comprehensively assess the localization performance

and suitability of this real-time tracking system. A participant walked along

three trajectories illustrated in Figure 5.4 in the assessments. The tracking

performance is assessed by deviations from the theoretical ground truths in

different scenarios.
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Figure 5.4: Theoretical ground truths

Firstly, the impact of the UE location on the tracking accuracy was thoroughly

investigated to obtain an optimized UE location for the subsequent tests. Ex-

perimental studies reveal that both transmitter-to-receiver (TR) distance and

AoA of static LoS signals significantly affect tracking performance.

Secondly, the study examined the impact of walking speed on tracking accuracy.

This was assessed by comparing the tracking accuracy for the V-line trajectory

and the rectangle trajectory when a participant walked at different velocities.

In addition, the application of the system was further extended to NLoS sce-

narios. Although the signal model assumes a LoS dynamic signal, the system
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showcases promising performance in NLoS scenarios. Two cases were tested

for the NLoS evaluations, In the first case, LoS propagation was obstructed

by cardboard boxes. In the second scenario, thick wooden boards were used

as barriers. The tracking accuracy in both cases was compared with the LoS

benchmark to assess the system’s performance in challenging environments.

5.2.3 Data Processing and Visualization Methods

In this thesis, tracking accuracy is assessed by localization deviations from

theoretical ground truths in different scenarios. When a participant walked,

timing was recorded by a timer application on the mobile phone. The partic-

ipant walked at an approximately constant speed in each evaluation and the

theoretical motion traces versus time are derived for different scenarios. More-

over, to quantitatively analyze the tracking errors, the cumulative distribution

function (CDF) is adopted to analyze the localization deviations. Additionally,

50th percentile and 80th percentile errors are presented to characterize tracking

errors.

5.3 Calibration of the Transceiver Channels

According to (3.16), it is necessary to determine ∠U1,m, phase difference of

CSI components between the 1st antenna and the mth antenna. As the RF

channels include the antennas, cables and transceiver channels, an over-the-air

calibration procedure is adopted to determine this phase difference between

the two antennas. Figure 5.5 illustrates the phase calibration schematic dia-

gram and its implementation setup. As is shown in Figure 5.5 (b), due to the

time-variant phase of the received signals, the relative phase difference between

the mth (m = 1, 2, 3) antenna under test (AUT) and a reference transceiver
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channel on the same MIMO Framework platform is first measured. Then, the

phase difference between 1st antenna and the mth antenna can be derived from

(5.2). To measure the phase difference between an antenna and the reference

transceiver channel, a power divider is used to split the input from the UE into

two outputs. One output is connected to the transmit antenna aligned with one

AUT, and the other output is connected to the reference transceiver port. The

phase difference between an AUT and the reference transceiver channel is then

calculated by (5.2) (a). Following the procedure, the variation of ∠U1,2 and

∠U1,3 versus frequency are plotted in Figure 5.6. The orange line represents

∠U1,2 versus frequency and blue line represents ∠U1,3. The phase differences

have a linear relationship with frequency because the phases are caused by RF

paths of different lengths.

(a) Phase calibration implementation

(b) Phase calibration schematics

Figure 5.5: Phase calibration procedure
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∠Um,ref = ∠CSIm,ref (a)

∠U1,m = ∠U1,ref − ∠Um,ref (b)
(5.2)

∠Um,ref : phase difference between the Antenna m and the reference transceiver

channel

∠CSIm,ref : cross-correlation of Antenna m and the reference transceiver

channel

Figure 5.6: Phase difference between the antennas

5.4 Impact of UE Locations on the Tracking Accuracy

The evaluations prove that both the TX-to-RX distance (Dist TR) and the

AoA of static LoS signals (θs) substantially affect the localization accuracy. To

determine an optimized UE position with the best tracking accuracy for the

performance assessments, various UE locations, defined by parameter combina-

tions of (Dist TR, θs), were examined. Firstly, the effect of AoA was studied

while the TX-to-RX distance was kept invariant with Dist TR = 200cm. Sec-

ondly, the effect of TX-to-RX distance was investigated after an optimized AoA

had been determined. Consequently, an optimized UE location was determined

through this iterative process. To adjust the TX-to-RX distance, the UE was
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moved throughout the experiments for convenience.

5.4.1 Impact of θs on Tracking Accuracy

Localization performance is assessed when Dist TR initially keeps 200 cm while

θs equals −30◦,−45◦,−60◦,−90◦. Figure 5.7 - Figure 5.9 illustrate the localized

trajectories and corresponding CDFs of tracking errors on both the x-axis and y-

axis. Table 5.3 lists the 50th and 80th percentile errors. The experimental results

manifest that θs affects localization deviations considerably. Regarding localiza-

tion deviations on both axes, UE position at (Dist TR = 200 cm, θs = −45◦)

achieves the best tracking performance in this assessment. Specifically, the 50th

and the 80th percentile tracking error along the x-axis are respectively less than

21 cm and 43.8 cm. However, the tracking accuracy degrades to 38 cm for the

50th error and 71 cm for the 80th percentile error in the y-axis direction.

Table 5.2: Localization deviation vs TR Dist

Straight line V line Rectangle

TR distance y axis (cm) x axis (cm) y axis (cm) x axis (cm) y axis (cm)

50% 80% 50% 80% 50% 80% 50% 80% 50% 80%

150 246 318 149 189 294 339 145 196 300 400

200 38 53 21 44 18 52 12 36 24 71

250 90 149 23 43 41 122 35 53 115 168

5.4.2 Impact of Dist TR on Tracking Accuracy

To determine the optimized Dist TR while θs is kept as −45◦, localization de-

viations are examined when Dist TR respectively equals 150 cm, 200 cm and

300 cm . Both the localized trajectories and corresponding CDFs for these UE

positions are depicted in Figure 5.10 - Figure 5.12. Table 5.2 lists the 50th
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Figure 5.7: Straight line: Dist TR = 200 (cm)

78



-400 -300 -200 -100 0 100 200 300 400
X (cm)

100

200

300

400

500

600

700

800

Y 
(c

m
)

V line

theoretical ground truth
localization

(a) θs = −30◦

-300 -200 -100 0 100 200 300
X (cm)

0

50

100

150

200

250

300

350

400

Y 
(c

m
)

V line

theoretical ground truth
localization

(b) θs = −45◦

-300 -200 -100 0 100 200 300
X (cm)

0

50

100

150

200

250

300

350

400

450

Y 
(c

m
)

V line

theoretical ground truth
localization

(c) θs = −60◦

-400 -300 -200 -100 0 100 200 300 400
X (cm)

100

200

300

400

500

600

700

Y 
(c

m
)

V line

theoretical ground truth
localization

(d) θs = −90◦

0 20 40 60 80 100 120 140 160 180 200
X axis deviation (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
til

e

X-axis Localization Error

s = -90°
s = -60°
s = -45°
s = -30°

(e) CDF for X-axis deviation

0 50 100 150 200 250 300 350 400 450 500
Y axis deviation (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
til

e

Y-axis Localization Error

s = -90°
s = -60°
s = -45°
s = -30°

(f) CDF for Y-axis deviation

Figure 5.8: V-line : Dist TR = 200(cm)

79



-100 0 100 200 300 400
X (cm)

250

300

350

400

450

500

550

600

650

700

Y 
(c

m
)

Rectangle

Theoretical ground truth
Localization

(a) θs = −30◦

-100 -50 0 50 100 150 200
X (cm)

100

150

200

250

300

350

400

450

Y 
(c

m
)

Rectangle

Theoretical ground truth
Localization

(b) θs = −45◦

-100 -50 0 50 100 150 200
X (cm)

50

100

150

200

250

300

350

400

Y 
(c

m
)

Rectangle

Theoretical ground truth
Localization

(c) θs = −60◦

-150 -100 -50 0 50 100 150 200 250 300 350 400
X (cm)

300

400

500

600

700

800

Y 
(c

m
)

Rectangle

Theoretical ground truth
Localization

(d) θs = −90◦

0 50 100 150 200 250 300
X axis deviation (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
til

e

X-axis Localization Error

s = -90°
s = -60°
s = -45°
s = -30°

(e) CDF for X-axis deviation

0 50 100 150 200 250 300 350 400 450
Y axis deviation (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
til

e

Y-axis Localization Error

s = -90°
s = -60°
s = -45°
s = -30°

(f) CDF for Y-axis deviation

Figure 5.9: Rectangle : Dist TR = 200(cm)
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percentile and 80th percentile errors. It is clearly shown that among the var-

ious UE locations under test, the best tracking performance is witnessed at

(Dist TR = 200 cm, θs = −45◦). Hence, this location is chosen as an opti-

mized UE position for the subsequent evaluations in this thesis. Besides, it is

also noted that localization deviations rise when the human target moves closer

to the receiver. This is attributed to a substantial amplification of the dynamic

signal’s intensity, which approaches that of the LoS static signal when the per-

son approaches the receiver. Consequently, the accuracy of the approximation

in (3.13) to separate dynamic from static components diminishes, compared to

the scenarios when a target moves farther away from the receiver.

Table 5.3: Localization deviation vs θs

Straight line V line Rectangle

θs(deg) y axis (cm) x axis (cm) y axis (cm) x axis (cm) y axis (cm)

50% 80% 50% 80% 50% 80% 50% 80% 50% 80%

-30 235 252 91 147.8 290 399 26 163 158 260

-45 38 53 21 43.8 18 52 12 36 24 71

-60 20 99 4 8.6 110 130 29 69 76 112

-90 438 468 57 172 314 365 148 180 328 408

5.5 Impact of Movement Velocity on the Tracking Ac-

curacy

The assessments show that walking speeds also affect tracking accuracy. The

evaluations were conducted three times each or the V-line trajectory and the

rectangle trajectory, when a participant walked at different velocities. The

walking velocities were approximately 0.7 m/s, 1 m/s and 1.2 m/s and are re-

spectively labelled as “slow”, “medium” and “fast”. Figure 5.13 illustrates the

81



-40 -30 -20 -10 0 10 20 30 40
X (cm)

200

300

400

500

600

700

Y 
(c

m
)

Straight line

theoretical ground truth
localization

(a) Dist TR = 150cm

-15 -10 -5 0 5 10 15
X (cm)

50

100

150

200

250

300

350

400

450

Y 
(c

m
)

Straight line

theoretical ground truth
localization

(b) Dist TR = 200cm

-15 -10 -5 0 5 10 15
X (cm)

100

150

200

250

300

350

400

Y 
(c

m
)

Straight line

theoretical ground truth
localization

(c) Dist TR = 250cm

0 50 100 150 200 250 300 350 400
Y axis deviation (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
til

e

Y-axis Localization Error

d = 150 cm
d = 200 cm
d = 250 cm

(d) CDF for Y-axis deviation

Figure 5.10: Straight line : θs = −45◦
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Figure 5.11: V-line : θs = −45◦
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Figure 5.12: Rectangle : θs = −45◦
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localized path and the CDFs for the V-line trajectory. The 50% and 80% errors

are listed in Table 5.4. It demonstrates that the test with the “medium” speed

achieves the minimum tracking errors for the V-line trajectory and the “fast”

speed results in similar deviations. By contrast, the deviations rise notably with

the “slow” speed. Likewise, Figure 5.14 depicts the corresponding results for

the rectangle trajectory tracking. The 50% and 80% deviations are presented

in Table 5.4. It is shown that the “medium” speed leads to the best tracking

performance, whereas the “slow” speed results in the poorest tracking perfor-

mance among the test results. By analyzing the above test results, it can be

concluded that if a person moves very slowly, statistical localization errors tend

to accumulate due to increased exposure to areas with low tracking accuracy.

Table 5.4: Localization deviation vs different speeds

speed

V line Rectangle

x axis (cm) y axis (cm) x axis (cm) y axis (cm)

50% 80% 50% 80% 50% 80% 50% 80%

fast 11 55 30 68 32 55 52 87

medium 21 44 18 52 12 36 24 71

slow 65 21 101 125 36 46 36 105

5.6 Evaluations in Non-Light-of-Sight Scenarios

The evaluations in non-light-of-sight (NLoS) scenarios were performed in two

cases, as shown in Figure 5.15. In the first case, empty cardboard boxes of 3

millimetres in thickness obstructed the signal’s LoS propagation between the

UE and the BS. In this situation, the S-band radio wave can penetrate the

boxes through refraction while the LoS signal slightly changes its propagation

direction. In the second case, thick wooden boards of 8 cm in thickness were
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Figure 5.13: V-line trajectory tracking with different walking speed
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Figure 5.14: Rectangle trajectory tracking with different walking speed
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placed between the UE and the BS. More multi-path propagation would occur

due to scattering when radio waves impinge upon the wooden boards. Localiza-

tion performance is evaluated for the V-line and rectangle trajectories in both

scenarios and was compared with the LoS benchmark.

Figure 5.16 and Figure 5.17 depict respectively the localized paths and CDFs

for the V-line trajectory and the rectangle trajectory. As expected, tracking

accuracy degrades in both NLoS cases, compared with the LoS case. Specifi-

cally, the wooden board case results in larger tracking errors than the cardboard

case. In the V-line trajectory assessment, the cardboard scenario results in an

80th percentile error of 86 cm and the wooden board scenario results in an 80th

percentile error of 118 cm. Similarly, in the rectangle trajectory assessment, the

cardboard scenario witnesses an 80th percentile error of 117 cm and the wooden

board scenario witnesses an 80th percentile error of 105 cm. More detailed

results are presented in Table 5.5.

Table 5.5: Localization deviation for NLoS scenarios

V line Rectangle

x axis (cm) y axis (cm) x axis (cm) y axis (cm)

50% 80% 50% 80% 50% 80% 50% 80%

LoS 21 44 18 52 12 36 24 71

cardboard 8 15 47 86 22 79 60 117

wooden board 26 34 36 118 24 60 35 105
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(a) Cardboard box case (b) Wooden board case

Figure 5.15: NLoS scenario evaluations
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Figure 5.16: V-line trajectory tracking in NLoS scenarios
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Figure 5.17: Rectangle trajectory tracking in NLoS scenarios

91



5.7 Conclusion

This chapter presents detailed evaluations of the localization performance

of this human motion tracking system. Experimental studies demonstrate

that when the UE is located at (Dist TR = 200 cm, θs = −45◦), this sys-

tem enables the best tracking accuracy with sub-meter precision. Further-

more, it is discovered that the target’s walking speed influences localization

deviations. Furthermore, the extension to NLoS scenarios is also evaluated

and the demonstrator shows the capability to track the target with slightly

larger positioning errors than in LoS scenarios.
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Chapter 6

Conclusions and Future Work

In this thesis, we have successfully designed and implemented a human motion

detection and localization demonstrator using LTE-based uplink pilots. It en-

ables real-time tracking of moving human targets. This chapter reviews the

main contributions of the thesis and looks forward to our future work.

6.1 Summary of Outcomes

In Chapter 3, a well-structured human motion detection and tracking scheme

is detailed. This scheme comprises a robust human motion detection mecha-

nism that relies on the median phase standard deviation (MPSTD) of CSI ratio

samples as a motion detection indicator (MDI). To confirm genuine human

motion and mitigate false detection, this mechanism follows an iterative proce-

dure, combining the MDI specifications and Doppler frequency estimates in a

joint window. The localization scheme incorporates a CSIR-based Doppler es-

timator and the maximum likelihood estimation-based (MLE-based) AoA and

delay estimators, enabling effective and accurate human localization with low

computational complexity. The experimental evaluations in Chapter 5 validate

that the proposed scheme enables sub-meter positioning accuracy with real-time

performance.

Chapter 4 details the design and implementation of this demonstration system.

Built on the NI Massive MIMO prototyping test bed, this system comprises a
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customized real-time pilot-streaming interface and a real-time target-tracking

module. The pilot-streaming interface is capable of handling massive LTE-

based pilots in a MIMO setup, while the real-time target-tracking module con-

currently performs three tasks: reading pilots, tracking human motion, as well

as displaying positioning results.

6.2 Future Work

This research work can be extended in the following two aspects.

First, experimental evaluations reveal that the localization precision deterio-

rates when the target approaches the receive antennas. In particular, when the

target walks within 2 meters of the receiver antennas, the positioning deviations

substantially rise. This phenomenon can be primarily attributed to the under-

lying model assumption that the static component significantly outweighs the

LoS dynamic component in a snapshot. Following this proposition, the static

component is approximated by the arithmetic means of the CFR power in a

sampling window. However, this approximation becomes less reliable as the

LoS dynamic component increases rapidly when the human target moves to-

ward the receiver antennas. Therefore, the method needs to be improved in

this specific situation.

Second, the demonstrator fails to undertake multi-target recognition and posi-

tioning, a crucial requirement in many applications. Given that the real-time

positioning of multi-targets via a single wireless link remains an open research

problem, there still exist various challenges. A potential solution is to discrim-

inate different echo sources by leveraging the signal features across multiple

signal domains based on the spatial sparsity of the targets. This specifies the

target of our future work.
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Appendix A

Derivations

A.1 Linear Mapping for Variation Rate of CSI-ratio An-

gle

According to [15], over hundreds of milliseconds, the variation rate of CSI-ratio

angle with respect to time approximates 2πfD∆t. Therefore, the angle of CSI-

ratio is a linear function of time, as shown in (A.1).

θR (tk) = β1tk + β2 (A.1)

where the coefficients, β1 and β2 can be obtained by a weighted linear fitting

method in (A.2).

argmin
β1,β2

N∑
k

wk [θR (tk)− (β1tk + β2)]
2 (A.2)

Consequently, the Doppler frequency is derived as follows.

fD =
β1

2πTs
(A.3)
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A.2 Derivation of Equation (3.14)

Based on (3.12), we divide vn,m,k by un,m and the quotient follows in Equation

(A.4).

vn,m,k

un,m
= 2

∥∥∥∥∥Hd′

n,m,k

Hs
n,m

∥∥∥∥∥ cos∠(Hs
n,mH

d′

n,m

)
(A.4)

where ∠
(
H

s
n,mH

d′
n,m

)
= ∠H

s
n,m + ∠Hd′

n,m.

According to (3.10), angleHd′
n,m is represented as follows.

∠Hd′

n,m = −2π
fn
c

[
dd + c

fD
fc

(k − 1)TA + dm,1sinθ
d

]
= −2π

fn
c

[
dd + dm,1sinθ

d
]
− fD (k − 1)TA

(A.5)

Therefore, ∠
(
H

s
n,mH

d′
n,m

)
is represented by .

∠
(
H

s
n,mH

d′

n,m

)
= ∠H

s
n,m − 2π

fn
c

[
dd + dm,1sinθ

d
]
− fD (k − 1)TA (A.6)

Then, Combine (A.6) with (A.4) , Equation (A.7) follows.

vn,m,k

un,m
= xn,m cos

[
2πfD (k − 1)TA

]
+ yn,m sin

[
2πfD (k − 1)TA

]
xn,m = 2

∥∥∥∥∥Hd′

n,m,k

Hs
n,m

∥∥∥∥∥ cos
{
∠H

s
n,m − 2π

fn
c

[
dd + dm,1 sin θ

d
]}

yn,m = 2

∥∥∥∥∥Hd′

n,m,k

HS
n,m

∥∥∥∥∥ sin
{
∠H

s
n,m − 2π

fn
c

[
dd + dm,1 sin θ

d
]}

(A.7)

Using the
vn,m,k

un,m
datasets at different snapshots in a sampling window, Equation

can be formulated and solved via a least mean square method.
1 0

cos (2πfDTA) sin (2πfDTA)

...
...

cos
[
2πfD (K − 1)TA

]
sin [2πfDleft(K − 1)TAright]


xn,m
yn,m

 =



v
′
n,m,1

un,m

v
′
n,m,2

un,m

...

v
′
n,m,k

un,m

 .

(A.8)
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The residual of the solution is defined as rn,m,k, and a normalization factor is

defined as follows. When the residual is not zero, the weight will be normalized

to a value less than 1.

wn,m,k =

{
2

π
×
[
π

2
− arctan

(
rn,m,k

Kwin

)]}3

(A.9)

A.3 Derivation of Equation (3.16)

Based on the signal model in (3.10), we define the cross-correlation of the

received signals of Antenna 1 and Antenna m as follows.

s1 (t) sm (t) = Hh
1H

e
1

(
Hs

n,1 +Hd′

n,1

)
×Hh

mH
e
m

(
Hs

n,m +H
d′

n,m

)
= Hh

1H
h
m ×He

1H
e
m ×

(
Hs

n,1H
s
n,m +Hs

n,1H
d′
n,m +Hd′

n,1H
s
n,m +Hd′

n,1H
d′
n,m

)
(A.10)

Here, Hh
1H

h
m × He

1H
e
m × Hs

n,1H
s
n,m is defined as the static component in the

self-correlation of CSI, and is denoted as U1,m. Similar to the self-correlation of

CSI in(3.13), it can be approximately extracted by computing the arithmetic

means of (A.10). Leverage the equation in (A.11), the angle of U1,m is derived in

(A.12), where ∆φh
1,m refers to the phase difference between the received signals

from Antenna 1 and Antenna m.
∠Hs

n,1 = −2π
fn
c
ds1

He
1H

e
m = 1

(A.11)

∠U1,m = ∠Hh
1 − ∠Hh

m + ∠Hs
n,1 − ∠Hs

n,m

= ∆φh
1,m − 2π

fn
c
ds1 − ∠Hs

n,m

(A.12)

Rearrange the above equation, (3.16) follows.
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