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Abstract 

Technology has brought many changes to financial markets, including automation, 

substantially faster trading via algorithms, vast amounts of financial data in digital form, and 

sophisticated data analysis techniques able to learn complex non-linear relations. This thesis 

examines the implications and applications of technology in finance, specifically in the areas 

of fundamental valuation of stocks, market efficiency, and market manipulation. 

The first chapter discusses the application of machine learning in company valuation. 

Despite being a core topic in finance/accounting, company valuation receives surprisingly little 

attention from empiricists. Given the non-linearities between financial variables and company 

value, machine learning is particularly well-suited to empirically characterizing what drives 

company value. The chapter uses a tree-based model to not impose a functional form on the 

relationships while retaining the interpretability of the drivers of company value. The results 

demonstrate that treating financial variables in isolation and with a linear approach is not a 

sound valuation practice. Interactions among firm fundamentals play a large role in predicted 

value – more than 50% of out-of-sample predictability is attributed to variable interactions. 

Certain interactions, such as the interplay between growth and risk, dividend payout and 

growth, and reinvestment rate and growth are important in accurately valuing companies and 

have a sound conceptual basis. Our results also indicate the importance of profitability in 

company value, as it is the primary driver of price-to-book and enterprise-value-to-invested 

capital. We find that performance improves after accounting for peer dummies based on analyst 

coverage in the out-of-sample setting. 

The second chapter explores a new dimension of market efficiency. In Eugene Fama’s 

original Efficient Markets Hypothesis (EMH), the different degrees of efficiency are defined 

by different information sets (e.g., stock prices, public information, private information).  We 

propose an orthogonal dimension – for a given information set (e.g., all public information), 

how well do stock prices incorporate increasingly complex (e.g., non-linear vs linear) 

combinations of the information. We test this new concept by utilizing machine learning to 

generate stock return predictions using non-linear combinations of information and contrast the 

capability of predicting returns to the ability of linear models. The performance difference 

between these two is our new measure of “non-linear market efficiency”. The idea is that when 

the difference is large, markets are not doing a good job of reflecting the non-linear relations 
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between public information, whereas when the difference narrows, it suggests markets are 

becoming more efficient, not with respect to the type of information that they incorporate, but 

rather, in how they combine information. Our findings suggest that overall, using models that 

capture non-linearities between information substantially improves return predictability, 

supporting the need to augment the EMH with this second dimension of market efficiency. We 

show that the predictability difference decays over time. We attribute this increase in non-linear 

market efficiency to improvements in technology and growth in the numbers of quantitative 

mutual funds that are likely to be using machine learning models.  

The third chapter shows that as the market evolves, new types of market manipulation 

enabled by algorithms appear. One example is layering and spoofing, which refers to the use 

of non-bona-fide orders in a market to create a false impression of buying or selling interest, 

thereby pushing market prices and causing a better execution price on a bona-fide order from 

the same trader. Such manipulation is enabled by algorithmic trading because it usually 

requires many orders and cancellations in quick succession to be sufficiently profitable. It sees 

a rapid increase in the number of prosecution cases in recent years, showing increased 

prevalence or increased regulatory interest. Using a global sample of hand-collected data from 

prosecuted cases, we develop empirical metrics to detect layering and spoofing and test their 

accuracy using out-of-sample cross-validation. Our results suggest that the most important 

variables to predict intraday spoofing are order imbalance, high quoting activity, and trades 

occurring on the opposite side of the high quoting activity. Given the complex interactions 

between the various characteristics of spoofing strategies, we also employ a random forest and 

boosted tree classification model to predict spoofing at the one-second frequency. Machine 

learning proves to be a more effective method of prediction for spoofing, thanks to its capability 

to consider interactions between variables.  

Overall, this thesis contributes to the literature by using advances in data science 

techniques to shed new light on core topics in finance – revealing nonlinearity in company 

valuation, developing a new market efficiency dimension, and building a detection model for 

a new, algorithmic type of market manipulation.
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Chapter 1: Introduction 

Technology is disrupting finance like many other industries. In some instances, for the 

better, in others, with detrimental effects.  

Financial markets in the 17th century were unsophisticated and involved manual 

processes. Transactions were typically conducted in cash, with buyers exchanging coins or bills 

for paper certificates. There was little regulation and buyers had to rely on their judgment and 

experience to determine value. Trading was largely conducted in physical locations, such as 

trading floors. The trading floor was a chaotic environment, with traders shouting and gesturing 

to execute trades. The absence of electronic markets also meant that traders had to rely on 

physical market data, such as newspapers and market reports, to stay informed about market 

conditions. This information was often slow to arrive and could be unreliable.  

Over time, markets integrated many waves of technological innovations. Governments 

began to regulate markets, imposing rules on trading mechanisms and quality standards. 

Markets also began to specialize in what types of financial products they list and trade. The 

development of electronic markets made trading faster, more efficient, and more accessible to 

a wider range of participants. The more recent replacement of humans with algorithms for 

many investment decisions and trade execution has changed market dynamics. So too has the 

growing stream of real-time digital information and the data science methods available to 

analyze the data.  

In electronic markets, trading is conducted electronically, typically through computer 

networks, eliminating the need for a physical presence on a trading floor. These systems allow 

trades to execute in milliseconds. Electronic markets enable automation and algorithmic 

trading—traders program their strategies into computer systems that execute trades 

automatically based on predefined rules. Digitization of information has enabled markets to 

leverage advanced data science technologies like machine learning and artificial intelligence 

to improve investment and trading decisions. The AI algorithms can analyze data, predict 

market trends, and execute trades automatically, often without human intervention. While 

electronic markets were a significant step forward, the integration of advanced technologies 

like AI has taken the financial market to a new level. 

This thesis examines both implications and applications of technology in finance, 

particularly the valuation of companies, market efficiency, and market manipulation.  
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The main research contributions are discussed in Chapters 2 to 4. In Chapter 2, we 

deploy the foundation of machine learning techniques to uncover fresh insights about valuation 

of companies by capturing intricate and non-linear relationships within the data. Chapter 3 

explores the mechanism of machine learning on market efficiency and the nature of the 

information that is reflected in prices. In Chapter 4, the automation and scalability of market 

manipulation techniques, such as layering and spoofing, facilitated by technology applications 

in trading, are examined as an undesirable aspect. Additionally, the chapter explores methods 

for detecting and identifying such manipulative trading practices in financial markets. 

The remainder of this chapter provides general background and reviews the literature 

to which this thesis contributes. 

 

1.1. Company valuation  

Valuing a company is one of the core tasks performed by finance practitioners and 

therefore a central topic in the field of finance. Graham and Dodd (1940) offer one of the initial 

approaches to fundamental analysis, introducing the term "security analysis" to refer to the 

examination of available facts with the aim of making conclusions about a company's 

prospects. According to the neoclassical model of security valuation, the present value of future 

cash flows (also known as discounted cash flows, DCF) determines a company’s value by 

summing all the future cash flows, with adjustment for risk and the time. The key challenge is 

that this valuation model requires practitioners to make many assumptions regarding the cash 

flows, the timing, growth, and risk of the cash flows. These assumptions and the approaches to 

obtaining these parameters are what make valuation an “art” as well as a science and lead to 

divergence and inconsistency among practitioners.  

A key source of information about company fundamentals is financial statements. 

Numerous studies examine the extent to which financial statement components facilitate better 

investment decisions for investors (e.g., Foster, Olsen, and Shevlin, 1984; Ou and Penman, 

1989; Lev and Thiagarajan, 1993; Abarbanell and Bushee, 1998; Piotroski, 2000). However, 

the optimal way to combine the information in financial statements is still an open question 

that is not resolved in the literature. One strand of literature discusses cash flow discount 

models, including Ohlson (1995), Burgstahler and Dichev (1997), Penman (1998), Piotroski 

(2000), and Nissim and Penman (2001). According to Ou and Penman (1989), financial 

statement elements have the potential to predict forthcoming profits and establishing a lucrative 

trading plan. This involves making purchasing or selling decisions regarding stocks based on 

the direction of earnings expansion. Bartram and Grinblatt (2018) investigate a combination of 
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multiple financial statement variables in a linear fashion. Bartram and Grinblatt (2018) 

illustrate a profitable trading strategy using the mispricing between predicted equity value and 

actual equity value. They show the benefit of “kitchen-sink” linear regression in predicting 

company value. 

A body of literature focuses on relative valuation, which aims at finding a company’s 

peers (comparable companies) and then seeks to value one company using the observed value 

of the peer group. Mukhlynina and Nyborg (2020) review valuation practices and show that 

the most popular valuation method is “valuation by multiples”. Valuation using multiples can 

be easier to apply than discount cash flow (DCF) model and can avoid having to estimate tricky 

parameters such as the future growth rate or terminal value. Liu, Nissim, and Thomas (2002) 

suggest that valuation ratios are beneficial for forecasting company value. Bhojraj and Lee 

(2002) identify peer firms as those with the closest predicted values of multiples. Similarly, 

Knudsen, Kold, and Plenborg (2017) identify peers by using the absolute distance between the 

company fundamentals. Other studies use information in company reports or analyst coverage, 

such as Hoberg and Phillips (2016) and Kaustia and Rantala (2021). These studies indicate that 

the amount of information that drives company value can be countless. The challenge is to 

minimize the mispricing gap between the predicted value and fair value.  

Although in theory the key fundamentals that drive value (cash flows, risk, growth, 

timing) should have non-linear relations with value and interact in complex ways, relatively 

few empirical studies use models capable of capturing these non-linear functional forms. 

Exceptions include the following. Burgstahler and Dichev (1997) find that the earnings and 

book value of equity of a company both have an impact on its equity value, and this relationship 

exhibits a convex pattern. Additionally, earnings and book value of equity jointly determine 

the value of equity in a non-linear manner. Collins, Pincus, and Xie (1999) reveal the 

heterogeneity in the relationship between earnings and price across firms with positive and 

negative earnings. Including book value of equity, they can explain part of this discrepancy. 

Both papers use linear regression with interaction terms.  

If we include more financial statement variables as in Bartram and Grinblatt (2018), the 

linear model cannot capture the complicated variable interactions. In the second chapter of this 

thesis, a tree-based model is used to estimate the relationship between company value and 

financial statement variables. This approach offers the advantage of capturing more complex 

interactions among variables beyond simple pairwise relationships, as well as accommodating 

potential non-linearities. This task is only possible by using a machine learning model such as 

boosted regression tree. While non-linearities are important theoretically as implied by the DCF 
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model and are documented in earlier literature, they are not well studied due to the limitation 

of linear methods until recently. For example, except for the interactions between the book 

value of equity and earnings, there is no empirical evidence on other financial statement 

variables while they are also important in company valuation. We use some explainable 

machine learning techniques such as Shapley values and partial dependence plots to get more 

insights into the relationship between company value and value drivers. We decompose the 

unique contribution to R2 of each value driver. After considering unique variable contributions, 

the rest of the R2 is attributed to complex variables interactions. We find that the component of 

R2 attributed to variables interactions is large compared to the independent contribution of each 

value driver. Variable interactions are the second most important component in explaining 

equity multiple and the most important variables in explaining enterprise multiple. We 

document some key interactions such as the interaction between growth and risk, growth and 

dividend, and growth and reinvestment rate. These non-linearities are probably unknown to 

valuation practitioners.  

We also uncover the value of information that is not directly observed by 

econometricians. We add new variables, which are peer dummies (equal to one if the two firms 

are peers and zero otherwise). Peers are determined in Kaustia and Rantala (2021) as the firms 

covered by the same analysts. We find that integrating professionals’ views on the economic 

link between firms improves the prediction of company value.  

 

1.2. Evolution of market efficiency definitions 

The concept of market efficiency, developed by Fama (1970), posits that stock prices 

reflect all available information, making it impossible to consistently outperform the market 

through investment strategies that rely on that information. He classifies market efficiency into 

three forms that stock prices may impact upon: weak, semi-strong, and strong, based on the 

extent to which stock prices reflect stock market information, all public information, and all 

public and private information, respectively. In other words, Fama defines efficiency with 

respect to one dimension, being the breadth of the information set that is reflected in prices. A 

vast body of empirical asset pricing research tests the concept of market efficiency, although 

the debate is still somewhat unsettled, as illustrated by the 2013 Nobel Prize awarded for 

conflicting views on the issue of informational efficiency. Prior studies find many asset-pricing 

anomalies. For example, the number of anomalies detected in empirical studies grow to more 

than 300 return predictors (Hou, Xue, and Zhang, 2020; Chen and Zimmermann, 2021). But 

even the anomalies may not be evidence against efficiency as they could simply reflect 
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deficiencies in the underlying asset pricing models (known as the “joint hypothesis problem”) 

or be the result of data snooping and publication bias.  

Stambaugh and Yuan (2017), Green, Hand, and Zhang (2017), and Kozak, Nagel, and 

Santosh (2020) show that a (linear) combination of signals from a wide range of anomalies 

achieves less noisy measures for stock mispricing than using any separate return signal. Some 

other papers are directly connected to the work of return prediction based on asset-pricing 

anomalies, such as Granger (1992), Lo (2004, 2012), and Daniel and Titman (1999). Campbell 

and Yogo (2006) demonstrate that detecting predictability becomes more difficult without the 

diligent application of efficient statistical tests. Gu, Kelly, and Xiu (2020) find that machine 

learning generates significant profits using a combination of return prediction signals. 

Barbopoulos et al. (2021) show that increase in information access by cloud computing leads 

to improvements in market efficiency. 

Many papers show that anomalies disappear, possibly for two reasons: they reflect 

statistical artifacts, or they are arbitraged away. Some papers attribute disappearing anomalies 

to arbitragers (McLean and Pontiff, 2016; Jons and Pomorski, 2013; Falck, Rej, and Thesmar, 

2022, Martin and Nagel, 2022). Indeed, Hou et al. (2020) discover that many anomalies do not 

persist across various sample periods.  

The third chapter builds on this literature about market efficiency and return 

predictability. It introduces a second dimension to the EMH, being the complexity of the 

functional forms that link information and stock prices. We argue this new dimension is largely 

orthogonal to the original dimension of information sets. For a given information set, say for 

example all public information, the information could be separately and linearly reflected in 

prices, or non-linear transformations of the information and interactions between the different 

pieces of information could be reflected in prices. This additional dimension is important in 

capturing the impacts of advances in data science methods and their use in markets. In general, 

our findings demonstrate that non-linear machine learning models outperform linear regression 

models in terms of the Sharpe ratio. But more importantly, we show how the degree of “non-

linear market efficiency” (the performance difference between non-linear and linear return 

prediction models) increases through time with the implementation of machine learning in 

investment decision-making.  

This research also shares the same motivations as Karapandza and Mazin (2014) and 

Rösch, Subrahmanyam, and Van Dijk (2017), who discuss market efficiency as a relative and 

time-varying term. We have observed a decline in the superiority of non-linear models 

compared to linear models in predicting returns over time. This emphasizes how advanced data 
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modeling techniques are influencing the complication of information embedded in stock prices 

and the efficiency of the market. 

 

1.3.Layering and spoofing in markets 

Market manipulation evolves alongside innovations in financial markets. Putniņš 

(2020) reviews different types of market manipulation, from techniques that have a long history 

to the more recent type of manipulation. Certain tactics of market manipulation have been 

employed for an extended period to artificially impact the price of a security or commodity. 

Examples include cornering the market and engaging in market squeezes. Jarrow (1992) and 

Cherian and Jarrow (1995) explore trading strategies used by large traders with market power. 

Allen, Litov, and Mei (2006) examine corners and squeezes, while Merrick Jr, Naik, and Yadav 

(2005) model the differences in the settlement between the spot and futures market, leading to 

favorable conditions for squeezes.  

Additional forms of market manipulation encompass various techniques. These include 

trade-based methods like wash trading and closing price manipulation, information-based 

strategies such as pump-and-dump, and order-based tactics like quote stuffing and layering. 

The manipulators may be individuals or groups, sophisticated or unsophisticated backgrounds, 

in the same or across multiple markets, seeking to profit from their ability to influence the price 

of a particular security or commodity. Empirical studies on these types of market manipulation 

are limited. Comerton-Forde and Putniņš (2011, 2014) discuss the prevalence and measures of 

closing price manipulation. Washing trading is prominent in cryptocurrency exchanges due to 

limited regulation (Pennec, Fiedler, and Ante, 2021; Cong et al., 2022). Dhawan and Putniņš 

(2022) examine the impact of pervasive pump-and-dump manipulation schemes on trading 

volumes and prices within cryptocurrency markets. 

The rise of algorithmic trading enables new forms of manipulation and allows some 

existing forms of manipulation to be substantially scaled up. Those include layering and 

spoofing. In these tactics of manipulation, a trader executes one or multiple substantial orders 

on a particular side of the market with the intention of deceiving others into perceiving artificial 

demand or supply. These false orders are intended to influence other traders and push the 

market in a particular direction, resulting in the execution of an order at a favorable price. After 

that, the manipulator cancels the false orders and possibly repeats the pattern in the opposite 

direction. This tactic is easier to execute using algorithms that can place and cancel orders 

rapidly, allowing the profitable trade cycle to be repeated many times. Spoofing is examined 

theoretically by Cartea, Jaimungal, and Wang (2020) and Williams and Skrzypacz (2021), with 
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Cartea et al. (2020) demonstrating how a trader wanting to sell can achieve a better sale price 

by using spoofing orders on the buy side of the limit order book.  Empirical studies on spoofing, 

such as Lee, Eom, and Park (2013) and Brogaard, Li, and Yang (2022), examine this type of 

manipulation based on predefined sets of characteristics and examine the effects on market 

quality.  

The fourth chapter in this thesis extends the research on layering and spoofing by 

building a comprehensive set of empirical metrics that can be used to detect the presence of 

layering and spoofing in markets. The approach draws on hand-collected data from prosecuted 

manipulation cases from around the world. The chapter proposes a detection model for layering 

and spoofing to help with building surveillance systems and facilitate manipulation 

prosecution.  

 

1.4. Thesis outline 

The remainder of this thesis comprises three studies on the following topics: 

i. What does machine learning teach us about company valuation? (Chapter 2); 

ii. Non-linear market efficiency (Chapter 3); and 

iii. Detection of spoofing and layering in markets (Chapter 4). 

Chapter 5 summarizes the findings of the whole thesis and suggests avenues for future research. 
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 Chapter 2: What can machine learning teach us 

about company valuation? 

2.1. Introduction 

Company valuation is considered both a science and an art. It is a ‘science’ because 

valuation is based on normative theories, such as the dividend discount model or discounted 

cash flow model. It is an ‘art’ because it is subject to a lot of assumptions by valuation 

practitioners. Getting valuations ‘right’ is crucial for the efficient allocation of resources in an 

economy. It also has a major bearing on the returns of investment portfolios and 

risk/uncertainty in markets. 

While valuation theories such as discount cash flows are relatively well accepted, they 

suggest that drivers of value interact in complex ways—many factors jointly determine free 

cash flows, which in turn interact with growth and risk in non-linear ways. In contrast, there 

are relatively few empirical studies that validate valuation models and explore their 

shortcomings. This research aims to address this issue and extend knowledge about company 

valuation by using machine learning to estimate the relationship between company value and 

company fundamentals.  

Our data-driven approach is guided by valuation theories. We choose the relevant 

financial statement variables based on valuation theories, estimate the relationship between 

these variables and company value, and use the estimated model to predict value out-of-sample. 

First, we look at how relevant company fundamentals explain company value using linear 

regression—the baseline model used in practice. Then, we use the boosted tree, a machine 

learning model that has a tree-split structure. The tree-based model allows for complex variable 

interactions. A boosted tree model is built from many single trees; each tree improves from the 

previous tree in each step. Unlike linear regression with coefficients which demonstrate the 

linear relationship between independent and independent variables, boosted tree does not 

assume any pre-knowledge of the relationship between the value drivers and company value. 

We let the model tell us what relationships are supported by the data.  

We find that the boosted tree model performs significantly better than linear regression 

models in out-of-sample tests, which proves that the tree model is a preferable approach for 

valuing companies compared to linear regression. We identify the contribution of each variable 

to the predicted value by both linear regression and the boosted tree. We decompose the part 

of R2 that is explained by unique value driver vs the part that is explained by variable 
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interactions. We find that variable interactions are the most important component in explaining 

equity multiple and the third most important component in explaining enterprise multiple.  

To further explore which variable interactions the tree suggests, we use partial 

dependence plots, which show the average change in predicted value with respect to change in 

one value driver, at every level of the other value driver. These techniques allow us to look 

inside the ‘black box’ of machine learning techniques and gain economic insights about the 

drivers of company value. 

The most notable interactions between the drivers and the price-to-book ratio are 

between the growth rate and risk, and the growth rate and the dividend payout ratio. We find 

that the price-to-book ratio is positively related to the growth rate. However, at every level of 

growth rate, price-to-book decreases when the beta increases. We also find that the dividend 

payout is not always positively related to firm value; the positive effect only begins when the 

dividend payout is in the top quintile cross-sectionally. The price-to-book is highest when both 

dividend payout and long-term growth are at their highest level.  

We also find that long-term growth is valued more than short-term growth. The effects 

of growth are different for equity value and enterprise value. While the price-to-book ratio is 

negatively related to short-term growth only when the short-term growth is high, the price-to-

book ratio is positively related to long-term growth at all levels. For both short-term and long-

term growth, the relationship between growth rate and enterprise value-to-capital becomes 

negative when both type of growth rates are at their highest levels. As enterprise value also 

includes the value of debt, a negative relationship between growth rate and enterprise value 

ratio indicates that too high growth may destroy the enterprise value of a company. 

We also include peer group dummy variables in the boosted tree. The dummies are 

equal to one if the two firms are peers according to the definition in Kaustia and Rantala (2021), 

and zero otherwise. Kaustia and Rantala (2021) define peer groups based on analyst coverage. 

This information allows us to control for information that is not directly observed by 

econometricians. The performance of ordinary least squared diminishes when a large number 

of variables are incorporated into the model. Using boosted tree, we incorporate more variables, 

while allowing for the interactions between financial and other information in company 

valuation. We find that integrating analysts’ views on the economic link between firms 

improves the accuracy of the empirical valuation models. 

Our study mainly focuses on estimating a company’s price-to-book ratio and enterprise 

value-to-capital because estimating these ratios is a more challenging task, having removed 

scale. Financial ratios are used frequently by valuation practitioners. Mukhlynina and Nyborg 

(2020) review valuation practices and show that valuation by multiples is the most popular 
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valuation method. Valuation using multiples appears to be a more straightforward approach 

because it avoids assumptions about growth rate, discount rate, or terminal value. However, 

the apparent simplicity of relative valuation masks the fact that multiples are affected in 

complex ways by a range of company fundamentals.  

Many studies examine the value of financial statement variables in helping investors 

make better investment decisions (Foster, Olsen, and Shevlin, 1984; Ou and Penman, 1989; 

Lev and Thiagarajan, 1993; Abarbanell and Bushee, 1998; Piotroski, 2000). Careful analysis 

of past financial statements helps uncover information that is not yet reflected in the price. 

Extensive studies conducted in the field of fundamental analysis reveal that publicly accessible 

accounting information is not adequately reflected in security prices (Ball and Brown, 1968; 

Bernard and Thomas, 1989; Sloan, 1996). Ou and Penman (1989) find that future earnings are 

predicted by financial statements, which can be used to implement a profitable trading strategy 

by buying or selling stocks based on predictions of a logistic model about the direction of 

changes in earnings.  

Although equity prices tend to display a higher level of volatility compared to 

underlying fundamentals, the equity market appears to be efficient at the micro level. Kritzman 

and Page (2003) suggest that valuation ratios are beneficial forecasting metrics. A large body 

of literature reports the importance of company information, such as earnings, in determining 

security values (Ohlson, 1995; Ohlson and Juettner-Nauroth, 2005). Accurate earnings 

forecasts allow investors to make more informed investment decisions and facilitate efficient 

capital allocation (Loh and Mian, 2006).  

While the key factors that determine value, such as cash flows, risk, growth, and timing, 

have non-linear relationships theoretically and interact with each other in intricate ways, there 

are only a limited number of empirical studies that employ models capable of capturing these 

non-linear functional forms. Some exceptions use linear regression with interaction terms. 

Burgstahler and Dichev (1997) find that the equity value of a company is influenced by both 

its earnings and book value of equity and the relationship is complex in nature. Moreover, the 

equity value is also affected by the ratio of earnings to the book value of equity. Collins, Pincus, 

and Xie (1999) show that the relationship between earnings and price is not consistent across 

firms with positive and negative earnings. The inclusion of the book value of equity can help 

to explain this discrepancy to some extent. Skinner and Sloan (2002) find that value and growth 

stocks respond asymmetrically to negative and positive earnings. Bartram and Grinblatt (2018) 

highlight the advantages of using a comprehensive linear regression model, often referred to as 

a ‘kitchen-sink’ model, for predicting a company's worth. 
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While non-linearities are important theoretically as implied by the discount cash flow 

(DCF) model and are documented in earlier literature, they are not well studied due to the 

predominant use of linear methods until recently. Linear regression is not suitable for the task 

of integrating all possible interactions among relevant financial statement variables. We show 

that non-linearities, which are the interaction of financial statement variables, deserve careful 

consideration in valuation practice.  

Our second contribution to the growing literature involves the application of machine 

learning in finance and accounting research domains. Recent papers use machine learning in 

asset pricing studies, such as Tobek and Hronec (2021), Gu, Kelly, and Xiu (2020), 

Bryzgalova, Pelger, and Zhu (2021) and Dong et al. (2022), and in financial statement analysis 

to forecast earnings or the magnitude of abnormal stock return, such as Cao and You (2021). 

We contribute to the literature that uses machine learning in finance by answering one of the 

most critical questions in finance: how is financial information best combined to value a 

company? We document the benefits of applying a tree-based model in this setting.  

 

2.2. Overview of valuation theory  

In this section, we outline classic approaches to company valuation, as normative theory 

provides guidance on which variables should be included in our model. We choose our inputs 

based on normative theory models, such as the dividend discount model and the free cash flow 

discount model.  

According to the dividend discount model: 

𝑀𝐸𝑄𝑖,𝑡 = ∑
𝐷𝑖,𝑡(1 + 𝑔𝑖,𝑡)

(1 + 𝑘𝑖,𝑡
𝑒 )𝑡

∞

𝑡=1

 
(1) 

 

in which, 𝑀𝐸𝑄𝑖,𝑡 is the market value of equity of the company 𝑖 at time 𝑡. 

𝐷𝑖,𝑡 is the dividend payment of the company 𝑖 at time 𝑡. 

𝑘𝑖,𝑡
𝑒  is the cost of equity of the company 𝑖 at time 𝑡. 

𝑔𝑖,𝑡 is growth rate of the company 𝑖 at time 𝑡. 

Ohlson (1995) proposes clean surplus relation, which implies that the market value is 

equal to the book value plus the present value of future expected abnormal earnings. Abnormal 

earnings are driven by net income, book value, and dividends. The relationship in (2) 

demonstrates that the increase in book value is equal to net income minus the dividend. The 

relationship in (3) implies that abnormal earnings are total earnings minus ‘normal’ earnings, 

which is the product of the cost of equity and the previous book value: 

𝐵𝐸𝑄𝑖,𝑡−1 = 𝐵𝐸𝑄𝑖,𝑡 + 𝐷𝑖,𝑡 − 𝑁𝐼𝑖,𝑡 (2) 
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𝑁𝐼𝑖,𝑡
𝑎 = 𝑁𝐼𝑖,𝑡 − 𝑘𝑖,𝑡

𝑒 𝐵𝐸𝑄𝑖,𝑡−1 (3) 

in which, 𝑁𝐼𝑖,𝑡
𝑎  is the abnormal earnings of the company 𝑖 at time 𝑡. 

𝑁𝐼𝑖,𝑡 is the earnings of the company 𝑖 at time 𝑡. 

𝐵𝐸𝑄𝑖,𝑡−1 is the previous book value of equity of company 𝑖 at time 𝑡 − 1. 

𝑘𝑖,𝑡
𝑒  is the cost of equity of the company 𝑖 at time 𝑡. 

Other information may not be reflected in the financial statements at time 𝑡 but is 

relevant to equity market value: 

𝑁𝐼𝑖,𝑡+1
𝑎 = 𝑤𝑁𝐼𝑖,𝑡

𝑎 + 𝑣𝑖,𝑡 + 𝜀𝑖,𝑡+1 (4) 

 

in which, 𝑁𝐼𝑖,𝑡+1
𝑎  is the abnormal earnings of the company 𝑖 at time 𝑡 + 1. 

𝑁𝐼𝑖,𝑡
𝑎  is the abnormal earnings of the company 𝑖 at time 𝑡. 

𝑣𝑖,𝑡 is the soft information not reflected in the financial statements of the company 

𝑖 at time 𝑡. 

𝑤 is the multiplier of 𝑁𝐼𝑖,𝑡
𝑎 . 

𝜀𝑖,𝑡+1 is the unpredictable shock of company 𝑖 at time 𝑡. 

From equations (2) and (3), we can determine the dividend in terms of abnormal 

earnings and the book value of equity. The market value of equity is equal to: 

𝑀𝐸𝑄𝑖,𝑡 = 𝐵𝐸𝑄𝑖,𝑡 + ∑
𝑁𝐼𝑖,𝑡

𝑎 (1 + 𝑔𝑖,𝑡)

(1 + 𝑘𝑖,𝑡
𝑒 )𝑡

∞

𝑡=1

 
(5) 

 

in which, 𝑀𝐸𝑄𝑖,𝑡 is the market value of equity of the company 𝑖 at time 𝑡. 

𝑘𝑖,𝑡
𝑒  is the cost of equity of the company 𝑖 at time 𝑡. 

𝑁𝐼𝑖,𝑡
𝑎  is the abnormal earnings of the company 𝑖 at time 𝑡. 

𝐵𝐸𝑄𝑖,𝑡 is the previous book value of the equity of the company 𝑖 at time 𝑡. 

𝑔𝑖,𝑡 is growth rate of the company 𝑖 at time 𝑡. 

From (3), (4), and (5), we can express 𝑀𝐸𝑄𝑖,𝑡 in terms of the book value of equity, 

earnings, dividend, cost of equity, and growth rate:  

𝑀𝐸𝑄𝑖,𝑡 = 𝐵𝐸𝑄𝑖,𝑡 + ∑
(1 + 𝑔𝑖,𝑡)(𝑁𝐼𝑖,𝑡 − 𝑘𝑖,𝑡

𝑒 (𝐵𝐸𝑄𝑖,𝑡 + 𝐷𝑖𝑣𝑖,𝑡 − 𝑁𝐼𝑖,𝑡))

(1 + 𝑘𝑖,𝑡
𝑒 )𝑡

𝑛

𝑡=1

 
(6) 

 

The variables’ definition for equation (6) is the same as in equations (3), (4), and (5). 

From equation (6), the drivers of the market value of equity of company 𝑖 at time 𝑡 are: 

1) Earnings of company 𝑖 at time 𝑡. 

2) Cost of equity of company 𝑖 at time 𝑡. 

3) Book value of equity of company 𝑖 at time 𝑡. 
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4) Dividend of company 𝑖 at time 𝑡. 

5) The growth rate of company 𝑖 at time 𝑡. 

6) Other information of company 𝑖 at time 𝑡 that is not reflected in the financial statements. 

If we divide both sides by book value, we can identify the drivers of the price-to-book 

ratio (𝑃/𝐵): 

𝑃/𝐵𝑖,𝑡 = 1 + ∑
(1 + 𝑔

𝑖,𝑡
)(𝑟𝑜𝑒𝑖,𝑡 − 𝑘𝑖,𝑡

𝑒 (1 + 𝑑𝑝𝑖,𝑡𝑟𝑜𝑒𝑖,𝑡 − 𝑟𝑜𝑒𝑖,𝑡))

(1 + 𝑘𝑖,𝑡
𝑒 )

𝑡

∞

𝑡=1

 
(7) 

in which, 𝑃/𝐵𝑖,𝑡 is the price-to-book ratio of the company 𝑖 at time 𝑡. 

𝑟𝑜𝑒𝑖,𝑡 is the return on equity of the company 𝑖 at time 𝑡. 

𝑑𝑝𝑖,𝑡 is the dividend payout of the company 𝑖 at time 𝑡. 

𝑔𝑖,𝑡 is growth rate of the company 𝑖 at time 𝑡. 

The drivers of the equity multiple are: 

1) Cost of equity of company 𝑖 at time 𝑡. 

2) Return on equity of company 𝑖 at time 𝑡. 

3) Dividend payout of company 𝑖 at time 𝑡. 

4) The growth rate of company 𝑖 at time 𝑡. 

5) Other information of company 𝑖 at time 𝑡 that is not reflected in the financial statements. 

We also investigate the drivers of a total company valuation. Enterprise value is the 

total firm value netting cash out: 

𝐸𝑉𝑖,𝑡 = 𝑀𝐸𝑄𝑖,𝑡 + 𝑇𝐷𝑖,𝑡 − 𝐶𝑖,𝑡 (8) 

in which, 𝐸𝑉𝑖,𝑡 is the market firm value of firm 𝑖 at time 𝑡. 

𝑀𝐸𝑄𝑖,𝑡 is the market firm value of equity of company 𝑖 at time 𝑡. 

𝑇𝐷𝑖,𝑡 is the total debt of the company 𝑖 at time 𝑡. 

𝐶𝑖,𝑡 is the total cash of the company 𝑖 at time 𝑡. 

From equations (6) and (8), we can write enterprise value in terms of the book value of 

equity, earnings, dividend, cost of equity, and growth rate: 

𝐸𝑉𝑖,𝑡 = 𝐵𝐸𝑄𝑖,𝑡 + ∑
(1 + 𝑔𝑖,𝑡)(𝑁𝐼𝑖,𝑡 − 𝑘𝑖,𝑡

𝑒 (𝐵𝐸𝑄𝑖,𝑡 + 𝐷𝑖𝑣𝑖,𝑡 − 𝑁𝐼𝑖,𝑡))

(1 + 𝑘𝑖,𝑡
𝑒 )𝑡

∞

𝑡=1

 
(9) 

Net income, dividend, and the book value of equity change at the rate 𝑔𝑖,𝑡, which is the 

growth rate of the company 𝑖 at time 𝑡. From equation (9), the drivers of the market enterprise 

value of company 𝑖 at time 𝑡 are: 

1) Earnings of company 𝑖 at time 𝑡. 

2) Cost of equity of company 𝑖 at time 𝑡. 
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3) Book value of equity of company 𝑖 at time 𝑡. 

4) Dividend of company 𝑖 at time 𝑡. 

5) The growth rate of company 𝑖 at time 𝑡. 

6) Total debt and cash of company 𝑖 at time 𝑡. 

7) Other information of company 𝑖 at time 𝑡 that is not reflected in the financial statements. 

If we divide both sides by invested capital, we can identify the drivers of multiple 

𝐸𝑉/𝐼𝐶:  

𝐸𝑉/𝐼𝐶𝑖,𝑡 =
𝑟𝑜𝑖𝑐𝑖,𝑡

𝑟𝑜𝑒𝑖,𝑡

+ ∑

(1 + 𝑔𝑖,𝑡) (𝑟𝑜𝑖𝑐𝑖,𝑡 − 𝑘𝑖,𝑡
𝑒 (

𝑟𝑜𝑖𝑐𝑖,𝑡

𝑟𝑜𝑒𝑖,𝑡
+ 𝑑𝑝𝑖,𝑡𝑟𝑜𝑖𝑐𝑖,𝑡 − 𝑟𝑜𝑖𝑐𝑖,𝑡))

(1 + 𝑘𝑖,𝑡
𝑒 )𝑡

∞

𝑡=1

+ 𝑑𝑡𝑐𝑖,𝑡 − 𝑐𝑡𝑐𝑖,𝑡 

(10) 

in which, 𝑃/𝐵𝑖,𝑡 is the price-to-book of company 𝑖 at time 𝑡. 

𝑟𝑜𝑒𝑖,𝑡 is the return on equity of the company 𝑖 at time 𝑡. 

𝑑𝑝𝑖,𝑡 is the dividend payout of the company 𝑖 at time 𝑡. 

𝑟𝑜𝑖𝑐𝑖,𝑡 is the return on capital of the company 𝑖 at time 𝑡. 

𝑑𝑡𝑐𝑖,𝑡 is the debt-to-capital of the company 𝑖 at time 𝑡. 

𝑐𝑡𝑐𝑖,𝑡 is the cash-to-capital of the company 𝑖 at time 𝑡. 

𝑔𝑖,𝑡 is growth rate of the company 𝑖 at time 𝑡 

We also control for the reinvestment rate of company 𝑖 and time 𝑡 as it is a driver of 

fundamental growth. The drivers of the enterprise multiple are as follows: 

1) Cost of equity of company 𝑖 at time 𝑡. 

2) Return on equity of company 𝑖 at time 𝑡. 

3) Return on capital of company 𝑖 at time 𝑡. 

4) Dividend payout of company 𝑖 at time 𝑡. 

5) The growth rate of company 𝑖 at time 𝑡. 

6) Debt over the capital of company 𝑖 at time 𝑡. 

7) Cash over the capital of company 𝑖 at time 𝑡. 

8) Reinvestment rate of company 𝑖 at time 𝑡. 

9) Other information of company 𝑖 at time 𝑡 that is not reflected in the financial statements. 

 

2.3. Data and methods 

2.3.1. Data 

Our sample contains quarterly data from January 1990 to December 2020. The stocks 

are part of the Centre for Research in Securities Prices (CRSP) monthly stock file and have a 

positive number of common shares outstanding. We exclude stocks for companies with 
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negative total assets, prices smaller than $5, exchange codes not from 1 to 3, and financial 

stocks with the SIC codes from 6000 to 6999. Stocks have all non-missing accounting 

information required as inputs in the models. We extract financial statement information from 

Compustat Fundamentals Quarterly. A list of variables is provided in Table 2.1.  

We use a one-year change in revenue and earnings per share as a proxy for growth rate 

and the capital asset pricing model (CAPM) beta as a proxy for risk in our model. Beta is 

calculated using a 36-month rolling window. We cross-sectionally rank all variables 

(independent and dependent variables) period by period to the range [−1,1]. 

Our peer group data are based on analyst cross-coverage from 1986 to 2013. Each firm 

has 10 peers per year.  Data are provided by Kaustia and Rantala (2021). The raw data is in the 

form of firm–peer firm for every year. One firm can have multiple peers in one year. For each 

year, we create a dummy that is equal to one if the firm is a peer to that peer dummy and repeat 

this process for every firm and every year in the sample (this process is called one-hot encoding 

the raw categorical data into dummies). SARD is the sum of absolute rank differences between 

any two companies in terms of selected fundamental variables. If the potential peer has a low 

SARD value, this approach suggests that the potential peer and the target company share 

similarities with respect to the selected variables. The StarMine peers are created through 

Refinitiv's exclusive algorithm, which merges competitor lists mentioned in official filings, 

analyst coverage, business classification, and revenue similarity.
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Table 2.1 
List of variables 

This table provides general information about the variables that are constructed from the accounting items from the Compustat database. Variables of company 𝑖 at quarter 𝑡 is 
defined in column Constituents.  

Variable name Variable description Constituents Calculation 

𝐶𝐴 Current asset Cash and short-term investments plus other 

current assets 

𝑎𝑐𝑡𝑞𝑖,𝑡 

𝑁𝐶𝐴 Non-current asset Other assets and property, plant and 

equipment 

𝑎𝑡𝑞𝑖,𝑡 − 𝑎𝑐𝑡𝑞𝑖,𝑡 

𝐶𝐿 Current liability Other current liabilities and accounts 

payable 

𝑑𝑙𝑐𝑞𝑖,𝑡 

𝑁𝐶𝐿 Non-current liability Other liabilities and long-term debt 𝑙𝑡𝑞𝑖,𝑡 − 𝑑𝑙𝑡𝑞𝑖,𝑡 

𝐼𝑇 Income tax Income tax 𝑡𝑥𝑡𝑞𝑖,𝑡 

𝐷𝑒𝑝 Depreciation Depreciation expense 𝑑𝑝𝑞𝑖,𝑡 

𝐼𝐸 Interest expense Interest expense 𝑥𝑖𝑛𝑡𝑞𝑖,𝑡 

𝐷𝑖𝑣 Dividend Total amount of cash dividends paid for 

common/ordinary capital 

𝑑𝑣𝑞𝑖,𝑡 

𝑃𝑆 Preference stock Prefer stock 𝑝𝑠𝑡𝑘𝑞𝑖,𝑡 

𝑆 Total sale Total sale 𝑠𝑎𝑙𝑒𝑞𝑖,𝑡 

𝐸𝐷𝑂 Extra ordinary items and discontinued operations Extraordinary items and discontinued 

operations 

𝑥𝑖𝑑𝑜𝑞𝑖,𝑡 

𝑂𝐸 Operating expense Capital expenditure, general and 

administrative expense, depreciation 

expenses and cost of goods sold 

𝑐𝑎𝑝𝑥𝑞𝑖,𝑡 + 𝑥𝑠𝑔𝑎𝑞𝑖,𝑡 + 𝑑𝑝𝑞𝑖,𝑡 + 𝑐𝑜𝑔𝑠𝑞𝑖,𝑡 

𝑁𝑂𝐸 Non-operating expense Non-operating expense 𝑛𝑜𝑝𝑖𝑞𝑖,𝑡 
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𝐺1𝑆, 𝐺1𝐸 One-year change in revenue and net income One-year change in revenue and net income 𝐺1𝑆 = (𝑠𝑎𝑙𝑒𝑖,𝑡 − 𝑠𝑎𝑙𝑒𝑞𝑖,𝑡−4)/𝑠𝑎𝑙𝑒𝑞𝑖,𝑡−4 

𝐺1𝐸 = (𝑛𝑖𝑞𝑖,𝑡 − 𝑛𝑖𝑞𝑖,𝑡−4)/𝑛𝑖𝑞𝑖,𝑡−4 

 

𝐺5𝑆, 𝐺5𝐸 Five-year change in revenue and net income Five-year change in revenue and net income 𝐺5𝑆 = (𝑠𝑎𝑙𝑒𝑖,𝑡 − 𝑠𝑎𝑙𝑒𝑞𝑖,𝑡−20)/𝑠𝑎𝑙𝑒𝑞𝑖,𝑡−20 

𝐺5𝐸 = (𝑛𝑖𝑞𝑖,𝑡 − 𝑛𝑖𝑞𝑖,𝑡−20)/𝑛𝑖𝑞𝑖,𝑡−20 

 

𝑏𝑒𝑡𝑎 Market beta Market beta  

𝑟𝑜𝑒 Return on market  𝑛𝑖𝑞𝑖,𝑡/(𝑡𝑒𝑞𝑞 − 𝑝𝑠𝑡𝑘𝑞 + 𝑡𝑥𝑑𝑖𝑡𝑐𝑞)𝑖,𝑡−1 

Or 𝑛𝑖𝑞𝑖,𝑡/(𝑐𝑒𝑞𝑞 + 𝑝𝑠𝑡𝑘𝑞)𝑖,𝑡−1 

Or 𝑛𝑖𝑞𝑖,𝑡/(𝑎𝑡𝑞 − 𝑑𝑙𝑡𝑡𝑞 − 𝑑𝑙𝑐𝑞)𝑖,𝑡−1 

𝑟𝑜𝑖𝑐 Return on invested capital  (𝑝𝑖𝑞𝑖,𝑡 − 𝑛𝑜𝑝𝑖𝑞𝑖,𝑡) − 𝑡𝑥𝑡𝑞𝑖,𝑡/𝑖𝑐𝑎𝑝𝑡𝑞𝑖,𝑡−1 

𝑑𝑝 Dividend payout ratio  𝑑𝑣𝑞𝑖,𝑡/𝑛𝑖𝑞𝑖,𝑡 

𝑑𝑡𝑐 Debt to capital ratio  𝑙𝑡𝑞𝑖,𝑡/𝑖𝑐𝑎𝑝𝑡𝑞𝑖,𝑡 

𝑐𝑡𝑐 Cash to capital ratio  𝑐ℎ𝑒𝑞𝑖,𝑡/𝑖𝑐𝑎𝑝𝑡𝑞𝑖,𝑡 

𝐺1𝑟𝑜𝑒, 𝐺5𝑟𝑜𝑒 One-year change and five-year change in return on 

equity 

 𝐺1𝑟𝑜𝑒 = (𝑟𝑜𝑒𝑖,𝑡 − 𝑟𝑜𝑒𝑖,𝑡−4)/𝑟𝑜𝑒𝑖,𝑡−4 

𝐺5𝑟𝑜𝑒 = (𝑟𝑜𝑒𝑖,𝑡 − 𝑟𝑜𝑒𝑖,𝑡−20)/𝑟𝑜𝑒𝑖,𝑡−20 



 

18 
 

For proxy of risk, we use market beta over a 60-month window. We calculate historical 

growth for the one-year and five-year periods, which are proxies for short- and long-term 

growth, respectively. We control for growth based on earnings and revenue in regression of 

enterprise value and equity value on financial statement variables. We control for growth of 

return on equity in regression of valuation ratio on relevant value drivers. Growth of return on 

equity is: 

 

𝐺1𝑟𝑜𝑒𝑖,𝑡 =
𝑟𝑜𝑒𝑖,𝑡 − 𝑟𝑜𝑒𝑖,𝑡−1

𝑟𝑜𝑒𝑡−1
 (11) 

𝐺5𝑟𝑜𝑒𝑖,𝑡 =
𝑟𝑜𝑒𝑖,𝑡 − 𝑟𝑜𝑒𝑖,𝑡−5

𝑟𝑜𝑒𝑖,𝑡−5
 (12) 

in which, 

 
 
 
 

𝐺1𝑟𝑜𝑒𝑖,𝑡 and 𝐺15𝑟𝑜𝑒𝑖,𝑡  is the one-year and five-year growth rate of company 𝑖 at 

time 𝑡. 

𝑟𝑜𝑒𝑖,𝑡, 𝑟𝑜𝑒𝑖,𝑡−1, 𝑟𝑜𝑒𝑖,𝑡−5 is the return on equity of the company 𝑖 at time 𝑡, 𝑡 − 1, 

and 𝑡 − 5. 

 

2.3.2. Boosted tree model 

The boosted tree model originates from Friedman (2001) and focuses on a stepwise 

approach for 𝑚 from 1 to 𝑀 (𝑀 is the number of trees): 

𝐹(𝑋) = 𝐹𝑚−1(𝑋) + 𝐵𝑚ℎ(𝑋, 𝑎𝑚) (13) 

in which, ℎ(𝑋, 𝑎𝑚) is a small regression tree. 

𝑎𝑚 is the parameters of a regression tree. 

𝑋 is a vector of the input variables. 

𝐵𝑚 is the weight assigned to a tree. 

For parameter optimization, we minimize the mean squared error: 

{𝐵𝑚, 𝑎𝑚}1
𝑀 = min

{𝐵𝑚
′ ,𝑎𝑚

′ }1
𝑀

1

𝑁
∑(𝑦𝑖 − 𝐹(𝑋))2

𝑁

𝑖=1

 
(14) 

 

2.3.3. Parameter tuning and validation test 

We use a rolling window to estimate both linear and boosted tree valuation models. 

Specifically, we run a model on the previous 10 years’ data and use the estimated model to 

predict company value in the next two years. We use three-fold cross-validation for parameter 

tuning, which means for each window, we further divide training data into three folds and find 
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the best parameters based on a leave-one-out validation fold. We train the boosted tree based 

on the following set of parameters in Table 2.2: 
Table 2.2 

Boosted tree parameters 
This table provides the parameters that we consider in tuning the boosted tree model. 

 
Hyper parameters Values 
Learning rate 0.1, 0.01, 0.001 
Max depth 3, 4, 5, 6 
Number of estimators 100, 200, 300, 400, 500 

 

2.3.4. Partial dependence plot 

We use the partial dependence plot to visually investigate the relationship between the 

value drivers and the company value. A partial dependence plot illustrates the impact of 

variable 𝑥𝑠 on the predicted valuation of a company, showcasing the marginal effect it has in 

isolation: 

𝑦̂(𝑥𝑠) =
1

𝑛
∑ 𝑓(𝑥𝑠, 𝑥𝑐)

𝑛

𝑖=1

 

(15) 

 

in which, the 𝑥𝑠 are variable(s) of interest. 

𝑥𝑐 is the subset of all other variables in the model.  

For example, we want to examine the relationship between value driver 𝑥1 and 

predicted firm value 𝑦̂ if we also have {𝑥2, 𝑥3} ∈ 𝑥𝑐, so we permute 𝑥1 values with values of 

𝑥2, 𝑥3 in our dataset. For each 𝑥1 value, we calculate the set of predicted firm values and then 

average them. We rerun this step for every possible value of 𝑥1 in our dataset to obtain the final 

average as the predicted marginal relationship of 𝑥1 and firm value implied by our model. We 

then plot the values of 𝑥1 against the average predicted value of 𝑦̂. In linear regression, this 

relationship is a straight line. 

The same method is performed if we examine the relationship between two variables 

on the predicted firm value. For each combination of (𝑥1, 𝑥2) values, we calculate the set of 

predicted firm values and then average them. In this way, we can observe how the predicted 

value changes with the two variables. It also enables us to observe the interaction between the 

two variables.  

 

2.3.5. Shapley-based R2 decomposition  

We are also interested in how much each value driver contributes to the explained 

variations of the multiples. We calculate the Shapley values, a metric derived from game 

theory, to determine the unique contribution of each player in the game (out of the total 
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contribution generated by the coalition of all players in the game). The Shapley values are 

applied in machine learning models to explain the contribution of each input variable to the 

prediction outcome. The Shapley value of variable 𝑓 at observation 𝑖 is:  

𝜑𝑖
𝑓

= ∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑣𝑖(𝑆 ∪ {𝑓}) − 𝑣𝑖(𝑆)) 

(16) 

 

in which, 𝑁 is the total number of variables in the model including variable 𝑓 

𝑆 is the number of variables in a subset of 𝑁  

𝑣𝑖(𝑆) is the prediction at observation 𝑖 using variables in set 𝑆  

𝑣𝑖(𝑆 ∪ {𝑓}) is the prediction at observation 𝑖 using variables in set 𝑆 without 

variable 𝑓 

We translate the Shapley values into the decomposition of R2 by adopting the method 

suggested by Redell (2019). This technique is independent of the specific model used, allowing 

its application to both linear regressions and boosted trees. It serves as a means to evaluate the 

significance of each input variable in the model in terms of their respective R2 components. 

The R2 component associated with each variable sum to the overall model R2. Each feature has 

a single statistic, which shows its contribution to the total R2.  

The in-sample R2 may be inflated by hyperparameter tuning, overfitting, or simply by 

adding more variables to the model. Therefore, we use the out-of-sample R2 as Campbell and 

Thompson (2008) for both linear and nonlinear models: 

𝑅𝑂𝑂𝑆
2 = 1 −

1
𝑁

∑ (𝑟𝑡 − 𝑟̂𝑡)2𝑇
𝑡=1

1
𝑁

∑ (𝑟𝑡 − 𝑟̅𝑡)2𝑇
𝑡=1

 
(17) 

 

One of the more popular approaches involves partial R2, which is a type of sequential 

testing in which a feature is added to the model. Any incremental increase in R2 is a result of 

the variation explained by the new feature. A limitation of the partial R2 approach is that when 

features are correlated, the sequence in which they are included in the model can introduce bias 

in the assigned variance explained to each feature. The Shapley value decomposition of R2 is 

an order-unbiased approach. It assesses the alterations in model fit across every conceivable 

grouping of the model, considering all possible orders. Shapley values provide insight into how 

each variable influences a certain prediction. In other words, the prediction at each instance 𝑖 

is: 
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𝑦̂𝑖 = 𝜑0 + ∑ 𝜑𝑖
𝑓

𝐹

𝑓=1
 

(18) 

 

in which, 𝑦̂𝑖 is the prediction of a given instance 𝑖. 

𝜑0 is the average prediction across instances in a dataset.  

𝜑𝑖
𝑓 is the Shapley value of variable 𝑓 at observation 𝑖. 

Equation (18) shows the additive property of the Shapley value. For a given instance 𝑖, 

model prediction is the sum of the average prediction across instances in a dataset and the 

feature-level attributions. If a feature exhibits non-zero effects, removing that particular feature 

from the model results in a decrease in model accuracy and an escalation in the variability of 

the residuals. Features can be prioritized based on the degree to which their exclusion amplifies 

residual variance, with greater increases in residual variance indicating a higher level of 

significance for the feature 

We first need a Shapley-modified predicted value 𝑦̂𝑖 without feature 𝑓: 

𝑦̂𝑖(𝑓) = 𝑦̂𝑖 − 𝜑𝑖
(𝑓) (19) 

 

For each variable 𝑓, we can compute the contribution to the total R2  as follows: 

𝑅𝑖,𝑓
2 =

𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2 − min (

𝑣𝑎𝑟𝑟𝑒𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑣𝑎𝑟𝑟𝑒𝑠𝑠ℎ𝑎𝑝

, 1) × 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2

∑ 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2 − min (

𝑣𝑎𝑟𝑟𝑒𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑣𝑎𝑟𝑟𝑒𝑠𝑠ℎ𝑎𝑝

, 1)  × 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2𝐹

𝑓=1

× 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2  

(20) 

 

in which, 𝑣𝑎𝑟𝑟𝑒𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 is the residual variance based on the original model prediction.  

𝑣𝑎𝑟𝑟𝑒𝑠𝑠ℎ𝑎𝑝
 is the residual variances based on the Shapley-modified predictions. 

𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2  is the total R2 of the baseline model (the original model that includes all 

variables). 

𝐹 is all variables in the model. 

The ratio 
𝑣𝑎𝑟𝑟𝑒𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑣𝑎𝑟𝑟𝑒𝑠𝑠ℎ𝑎𝑝

 ranges from 0 to 1. When it is one, it means that removing a 

variable does not change the model’s residual variance. 𝑅𝑖,𝑓
2  of variable 𝑓, in this case, is zero. 
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We can express equation (20) as follows: 

𝑅𝑖,𝑓
2 = (1 −

1
𝑁

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁
𝑖=1

1
𝑁

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

) × (
∑ (𝑦𝑖 − 𝑦̂𝑖(𝑓))

2
− ∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1

𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̂𝑖(𝑓))
2𝑁

𝑖=1

) 
(21) 

 

                   
 

2.4. Linear regression results  

Our linear regression results are based on the Fama-MacBeth regression every quarter. 

We first examine the univariate regression of each value driver on the equity value or enterprise 

value, and then we run the ‘kitchen-sink’ Fama-MacBeth regression to control for all value 

drivers.  

Table 2.3 reports the results of the univariate and multivariate regression of the market 

value of equity on relevant accounting information. The relevant variables that drive the equity 

value of the company is provided in equation (6). Our multivariate regression results show that 

assets have a positive effect on equity value. While equation (6) suggests that liabilities should 

have a negative effect on the market value of equity, non-current liability has a positive effect 

on equity value. According to equation (6), dividends have a negative effect on the market 

value of equity, conditional on the risk level. Our result shows the opposite. Multivariate 

regression suggests that when controlling for other variables, dividends have a positive effect 

on the market value of equity. We break down net income into total revenue and other expenses. 

Total revenue is shown to positively affect the market value of equity. However, there are 

mixed results for different types of expenses. Increases in interest expense and operating 

expense are negatively related to equity value, while the increase in depreciation expense, tax 

expense, and non-operating expense increases equity value. We observe opposite signs of the 

coefficients between univariate results and multivariate results for growth variables, expense 

variables, and non-current liabilities. 
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Table 2.3 

Regression of the market value of equity on all variables 
This table shows the results of the Fama-MacBeth regression of the market value of equity on accounting items. 
Right-hand-side variables are current asset (𝐶𝐴), current liability (𝐶𝐿), non-current asset (𝑁𝐶𝐴), non-current 
liability (𝑁𝐶𝐿), depreciation expense (𝐷𝑒𝑝), dividend (𝐷𝑖𝑣), discontinue operation (𝐸𝐷𝑂), five-year change in 
net income (𝐺5𝐸) and revenue (𝐺5𝑆), one-year change in net income (𝐺1𝐸) and revenue (𝐺1𝑆), income tax (𝐼𝑇), 
interest expense (𝐼𝐸), non-operating expense (𝑁𝑂𝐸), operating expense (𝑂𝐸), total revenue (𝑆), and beta (𝑏𝑒𝑡𝑎). 
***, ** and * indicate statistical significance at the 1%, 5% and 10% levels, respectively. 
 
 

Variable Univariate result Multivariate result 

 Parameter estimate t-stat Parameter estimate t-stat 

Intercept   165.55 (37.87)*** 

𝐶𝐴 2.75 (107.17)*** 0.87 (47.51)*** 

𝐶𝐿 10.83 (103.81)*** 
−0.39 (−7.19)*** 

𝑁𝐶𝐴 0.74 (116.79)*** 
0.13 (27.25)*** 

𝑁𝐶𝐿 0.93 (111.46)*** 0.24 (51.94)*** 

𝐷𝑒𝑝 61.67 (84.32)*** 
4.44 (18.90)*** 

𝐷𝑖𝑣 166.62 (91.73)*** 
38.67 (35.16)*** 

𝐸𝐷𝑂 995.18 (13.73)*** 355.76 (16.54)*** 

𝐺5𝐸 0.10 (5.50)*** 
0.04 (2.91)*** 

𝐺5𝑆 0.13 (2.84)*** 
−0.09 (−4.15)*** 

𝐺1𝐸 0.54 (11.32)*** 
−0.07 (−2.09)** 

𝐺1𝑆 −0.13 (−8.28)*** 
−0.44 (−57.12)*** 

𝐼𝑇 141.99 (124.11)*** 
49.89 (53.50)*** 

𝐼𝐸 103.94 (80.71)*** 
−17.25 (−56.46)*** 

𝑁𝑂𝐸 239.64 (64.98)*** 
17.57 (18.02)*** 

𝑂𝐸 4.97 (102.67)*** 
−1.01 (−13.96)*** 

𝑆 4.15 (106.68)*** 1.13 (15.61)*** 

𝑏𝑒𝑡𝑎 −0.12 −0.48 0.55 (2.65)*** 

R2   68%  
 

 
We also examine how valuation ratios change with the relevant value drivers. Table 2.4 

presents regression results of price-to-book (𝑃/𝐵) on profitability (return on equity), 

investment (dividend payout ratio), growth of profitability, and risk. The drivers of 𝑃/𝐵 are 

suggested in equation (7). Our results show that all value drivers positively relate to 𝑃/𝐵, 

except for short-term growth for both univariate and multivariate regression. The linear 

regression results are consistent with other empirical valuation papers. Burgstahler and Dichev 

(1997) and Collins, Pincus, and Xia (1999) shows that book value of equity and both positive 

and negative earnings drive market value of equity. Hand and Landsman (2005) show that 

dividend is positively priced, especially for firms with low incentives to signal.  
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  Table 2.4 

Regression of 𝑷/𝑩 on value drivers 
This table shows the results of the Fama-MacBeth regression of 𝑃/𝐵 on value drivers according to valuation 
theory. Value drivers return on equity (𝑟𝑜𝑒), dividend payout ratio (𝑑𝑝), short-term and long-term growth rate 
(𝐺1𝑟𝑜𝑒 and 𝐺5𝑟𝑜𝑒), and beta (𝑏𝑒𝑡𝑎). T-statistics are reported in parentheses. ***, ** and * indicate statistical 
significance at the 1%, 5% and 10% levels, respectively. 
 

Variable Parameter estimate Parameter estimate 

 Univariate result Multivariate result 
Intercept  23.81 

  (100.14)*** 

𝑟𝑜𝑒 24.36 24.46 

 (28.93)*** (30.25)*** 

𝑑𝑝 0.22 0.03 

 (7.17)*** 1.53 

𝐺1𝑟𝑜𝑒 0.07 0.11 

 (9.81)*** (11.78)*** 

𝐺5𝑟𝑜𝑒 0.09 0.05 

 (14.00)*** (14.66)*** 

𝑏𝑒𝑡𝑎 0.11 0.14 

 (10.45)*** (4.62)*** 

R2  17% 
 

 

Table 2.5 reports the results of the regression of enterprise value on relevant accounting 

information. From equation (9), we break down the enterprise value into many variables. As 

enterprise value is the total value of assets in the company (except for cash), current assets and 

current liabilities, non-current assets, and non-current liabilities have a positive effect on 

enterprise value. From equation (9), dividends are expected to have a negative effect on 

enterprise value, conditional on the risk level. However, after controlling for other accounting 

variables, our linear regression indicates that dividends have a positive effect on enterprise 

value. Total revenue also significantly and positively affects enterprise value, which is 

consistent with equation (9). Expenses are expected to have a negative effect on enterprise 

value. However, our results show that depreciation, income tax, and non-operating expenses 

are positively related to enterprise value. The beta has a significant positive slope. Most 

historical growth variables have a negative impact on enterprise value, except for long-term 

growth in earnings. The direction of coefficients of univariate and multivariate regressions are 

the same for most variables, except for growth and expense variables. The results imply that 

controlling for other company fundamentals in the valuation model can affect the relationship 

between key variables such as growth and the company value.
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Table 2.5 

Regression of enterprise value on all variables 
This table shows the results of the Fama-MacBeth regression of enterprise value on accounting items. Right-hand-
side variables are current asset (𝐶𝐴), current liability (𝐶𝐿), non-current asset (𝑁𝐶𝐴), non-current liability (𝑁𝐶𝐿), 
depreciation expense (𝐷𝑒𝑝), dividend (𝐷𝑖𝑣), discontinue operation (𝐸𝐷𝑂), five-year change in net income (𝐺5𝐸) 
and revenue (𝐺5𝑆), one-year change in net income (𝐺1𝐸) and revenue (𝐺1𝑆), income tax (𝐼𝑇), interest expense 
(𝐼𝐸), non-operating expense (𝑁𝑂𝐸), operating expense (𝑂𝐸), total revenue (𝑆), beta (𝑏𝑒𝑡𝑎) and preference stock 
(𝑃𝑆). ***, ** and * indicate statistical significance at the 1%, 5% and 10% levels, respectively. 
 

Variable Univariate result Multivariate result 
  Parameter estimate t-stat Parameter estimate t-stat 

Intercept   191.05 (66.55)*** 

𝐶𝐴 4.67 (134.29)*** 0.57 (33.76)*** 

𝐶𝐿 20.64 (135.57)*** 0.38 (10.76)*** 

𝑁𝐶𝐴 1.38 (195.27)*** 0.17 (28.01)*** 

𝑁𝐶𝐿 1.82 (207.78)*** 1.06 (182.31)*** 

𝐷𝑒𝑝 112.99 (105.41)*** 10.03 (30.32)*** 

𝐷𝑖𝑣 282.77 (102.56)*** 41.75 (38.70)*** 

𝐸𝐷𝑂 863.76 (6.54)*** 141.76 (4.23)*** 

𝐺5𝐸 0.12 (4.43)*** 0.05 (3.63)*** 

𝐺5𝑆 0.28 (3.39)*** 
−0.06 (−2.68)*** 

𝐺1𝐸 0.78 (10.93)*** 
−0.10 (−2.93)*** 

𝐺1𝑆 0.12 (3.05)*** 
−0.45 (−51.88)*** 

𝐼𝑇 230.68 (117.89)*** 39.69 (57.22)*** 

𝐼𝐸 205.86 (100.05)*** 
−9.36 (−18.52)*** 

𝑁𝑂𝐸 387.98 (66.42)*** 6.44 (7.19)*** 

𝑂𝐸 8.73 (117.80)*** 
−0.69 (−9.37)*** 

𝑆 7.28 (126.26)*** 0.87 (11.97)*** 

𝑏𝑒𝑡𝑎 1.78 (4.98)*** 1.03 (66.50)*** 

𝑃𝑆 101.61 (53.07)*** 
−16.01 (−28.49)*** 

R2   81%  

 

Table 2.6 shows the univariate and multivariate regression results of enterprise value-

to-invested capital (𝐸𝑉/𝐼𝐶) on profitability (return on equity and return on capital), investment 

(dividend payout ratio and reinvestment rate), debt-to-capital, cash-to-capital, growth, and risk. 

The drivers of 𝐸𝑉/𝐼𝐶 are suggested in equation (10). We observe a positive relationship 

between most value drivers and enterprise value-to-invested capital, except for short-term 

growth, dividend payout, and return on capital.  We observe the opposite sign of the coefficient 

on the dividend payout ratio between univariate and multivariate regression. 
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Table 2.6 

Regression of 𝑬𝑽/𝑰𝑪 on value drivers 
This table shows the results of the Fama-MacBeth regression of 𝐸𝑉/𝐼𝐶 on value drivers according to valuation 
theory. Value drivers are return on capital (𝑟𝑜𝑐), reinvestment rate (𝑟𝑖), return on equity (𝑟𝑜𝑒), dividend payout 
ratio (𝑑𝑝), short-term and long-term growth rate (𝐺1𝑟𝑜𝑖𝑐 and 𝐺5𝑟𝑜𝑖𝑐), beta (𝑏𝑒𝑡𝑎), debt-to-capital (𝑏𝑡𝑐) and 
cash-to-capital (𝑐𝑡𝑐). T-statistics are reported in parentheses. ***, ** and * indicate statistical significance at the 
1%, 5% and 10% levels, respectively. 
 

 
Variable Parameter estimate Parameter estimate 
 Univariate result Multivariate result 
Intercept  2.50 
  (24.29)*** 

𝑟𝑜𝑒 0.03 0.11 
 1.05 (7.59)*** 

𝑑𝑝 −0.02 0.07 
 −1.18 (4.71)*** 

𝐺1𝑟𝑜𝑖𝑐 −0.01 −0.01 
 (−12.70)*** (−10.45)*** 

𝐺5𝑟𝑜𝑖𝑐 0.01 0.01 
 (18.54)*** (3.05)*** 
𝑏𝑒𝑡𝑎 0.01 0.01 
 (1.82)* (2.26)*** 

𝑟𝑜𝑖𝑐 −2.59 −0.72 
 (−5.36)*** (−4.96)*** 

𝑟𝑖 0.01 0.01 
 (47.06)*** (51.61)*** 

𝑑𝑡𝑐 1.06 0.99 
 (94.39)*** (70.55)*** 

𝑐𝑡𝑐 11.22 1.23 
 (27.88)*** (3.89)*** 

R2  77% 
 

 

2.5. Boosted tree results 

2.5.1. Improvements in out-of-sample predictions  

As we observe in equations (6), (7), (9), and (10), there are many complex interactions 

among value drivers when determining company value. Given its tree-split nature, the boosted 

tree model provides a better prediction of company value compared to linear regression. We 

run boosted tree models on the valuation multiples as valuation multiples are more popular in 

practice than the unscaled company value.  
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Table 2.7 
Predictive performance  

The table shows the out-of-sample predictive ability of linear regression, boosted tree on financial information,    
and boosted tree on both financial information and analyst-based information. Panel A provides out-of-sample 
performance for the sample period from 1990 to 2013 (as analyst information is only available until 2013). The 
panel provides out-of-sample performance for the whole sample period from 1990 to 2020. The rows are the mean 
and median squared error across all rolling windows and the out-of-sample R2.  

  
Variable 𝑃/𝐵 𝐸𝑉/𝐼𝐶 

 

Linear regression 
on financial 
information 

Boost tree 
on financial 
information 

Boost tree 
on financial 
information 
and analyst 
information 

Linear 
regression 

on financial 
information 

Boost tree 
on financial 
information 

Boost tree 
on financial 
information 
and analyst 
information 

Panel A: Until 2013 
Mean SE 29% 25% 21% 25% 22% 20% 
Median SE 17% 14% 11% 13% 12% 10% 
OOS R2  11% 28% 38% 27% 39% 49% 
Panel B: Whole sample 
Mean SE 32% 24%  27% 20%  
Median SE 23% 13%  16% 10%  
OOS R2  13% 23%  29% 34%  

 
Table 2.7 reports the results of the model's out-of-sample performance. As the analyst-

based information is only available until 2013, we run the models that combine the financial 

statement information and analyst information only until 2013. For the whole sample, the mean 

and median squared error for the whole period is smaller for the boosted tree, and out-of-sample 

R2 is higher for the boosted tree model. The difference in performance between the two models 

is more pronounced for the 𝑃/𝐵 than for 𝐸𝑉/𝐼𝐶. Controlling for implicit information from 

analysts, squared error further decreases for both valuation ratios, and out-of-sample R2 further 

increases for both valuation ratios. This result shows that implicit information from analysts 

can also improve the valuation process. The result indicates that machine learning is doing 

better than linear regression in explaining valuation multiples using financial and other relevant 

information, by incorporating the non-linearities and interactions among them.  

 

2.5.2. Variable interactions 

We find some interesting and important variable interactions from the boosted tree 

using partial dependence plots. Value is created when the short-term growth rate is moderate. 

For short-term growth, the value increases sharply when growth increase from the smallest 

level, then it does not change when growth keeps increasing. When the short-term growth rate 

is at the highest level, it starts destroying value. This is shown in Figure 2.1 Panel A. Unlike 

short-term growth, long-term growth is positively related to value at all levels, which is shown 

in Figure 2.1 Panel B. Figure 2.1 also shows the interaction between the one-year and five-year 

historical growth rate and beta. 
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Figure 2.1 

Joint partial dependence plot between growth and risk on 𝑷/𝑩 
This figure visualizes the effect of interaction between growth and risk (controlling for other variables) on 𝑃/𝐵. 

 
Panel A: Effect of one-year growth and beta on 𝑃/𝐵 

 

Panel B: Effect of five-year growth and beta on 𝑃/𝐵 
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Conditional on beta, a company with the lowest beta and median short-term growth in 

a cross-section has the highest value. Figure 2.1 Panel B illustrates the same relationship for 

long-term growth; however, the preferable long-term growth is around the top quintile. High 

long-term growth seems to be preferable to high short-term growth. Short-term growth 

strategies aim to achieve immediate gains and generate quick results. The purpose of these 

strategies is to increase revenue and profit shortly through actions such as launching new 

products, ramping up marketing efforts, expanding into new markets, or leveraging existing 

customer relationships for additional sales. Short-term growth strategies prioritize maximizing 

profits in the short term. On the other hand, long-term growth strategies require patience and a 

focus on building something that can last for years and create a lasting impact on a business’s 

financial performance. Such strategies often involve developing new products and services, 

investing in research and development, building infrastructure and personnel, forming strategic 

partnerships, and emphasizing customer experience. The goal of long-term growth strategies 

is to establish a sustainable competitive advantage that can help a business remain profitable 

and successful for years to come. Short-term growth strategies are generally perceived to be 

lower risk and require a less upfront investment. Therefore, long-term growth strategies may 

yield greater profits in the long run and help a business create a sustainable competitive 

advantage over its competitors. Both short-term and long-term growth create the most value 

when the beta is small. 

Figure 2.2 Panels A and B illustrate the interaction effect of growth rate and risk on 

𝐸𝑉/𝐼𝐶. For enterprise value, a company that is not too risky and has the median historical 

growth rate has the greatest enterprise value. There is no significant difference between short-

term growth and long-term growth effect on 𝐸𝑉/𝐼𝐶. Companies that experience too high levels 

of growth tend to possess a greater proportion of intangible assets than those with low growth 

rates. As a result, it can be challenging for debt holders to identify the heightened risks 

associated with high-growth firms. This may be the reason for high growth opportunities to be 

inversely correlated with debt value. 
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Figure 2.2 

Joint partial dependence plot between growth and risk on 𝑬𝑽/𝑰𝑪 
This figure visualizes the effect of the interaction between growth and risk (controlling for other variables) on 
𝐸𝑉/𝐼𝐶. 
 

Panel A: Effect of one-year growth and beta on 𝐸𝑉/𝐼𝐶 

     

Panel B: Effect of five-year growth and beta on 𝐸𝑉/𝐼𝐶 

 

Other notable interactions are the effect of the interactions between the growth rate and 

dividend payout on 𝑃/𝐵 and the interaction between the growth rate and reinvestment rate on 

𝐸𝑉/𝐼𝐶. Figure 2.3 Panel A shows the effect of the interaction between growth rate and dividend 
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payout ratio on 𝑃/𝐵. We observe that the dividend payout ratio does not always have a positive 

relationship with 𝑃/𝐵. For companies with dividend payout ratios less than the cross-sectional 

median, the value does not change at every level of the growth rate. For companies with a 

dividend payout ratio in the top quintile, the relationship between dividend payout and 𝑃/𝐵 is 

highly positive, especially in the case of long-term growth. If mature companies with 

significant long-term growth pay small dividends, their value is the smallest in the cross-

section, as illustrated by Figure 2.3 Panel B. 
Figure 2.3 

Joint partial dependence plot between growth and dividend payout on 𝑷/𝑩 
This figure visualizes the effect of the interaction between growth and dividend payout (controlling for other 
variables) on 𝑃/𝐵. 

 
Panel A: Effect of one-year growth and dividend payout on 𝑃/𝐵 
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Figure 2.3 (continued) 
Joint partial dependence plot between growth and dividend payout on 𝑷/𝑩 

This figure visualizes the effect of the interaction between growth and dividend payout (controlling for other 
variables) on 𝑃/𝐵. 

 
Panel B: Effect of five-year growth and dividend payout on 𝑃/𝐵 

 

 
 

Figure 2.4 Panels A and B show the interaction effects between growth rate and 

reinvestment rate on 𝐸𝑉/𝐼𝐶. Companies with the greatest values are those with median cross-

sectional growth and median reinvestment rates. The reinvestment rate measures the amount 

of capital invested per unit of income.  
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Figure 2.4 

Joint partial dependence plot between growth and reinvestment rate on 𝑬𝑽/𝑰𝑪 
This figure visualizes the effect of the interaction between growth and reinvestment rate (controlling for other 

variables) on 𝐸𝑉/𝐼𝐶. 
 

Panel A: Effect of one-year growth and reinvestment rate on 𝐸𝑉/𝐼𝐶 

 
Panel B: Effect of five-year growth and reinvestment rate on 𝐸𝑉/𝐼𝐶 
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2.5.3. Out-of-sample R2 decomposition  

Table 2.8 shows the out-of-sample R2 decomposition for 𝑃/𝐵 prediction for three 

models: linear regression with financial information, linear regression with financial 

information and their pair-wise interactions, and a boosted tree with financial information and 

analyst-based peer group (more than two-way interactions are automatically considered in the 

boosted tree model).  
Table 2.8 

Out-of-sample R2 decomposition of 𝑷/𝑩  
The table shows the out-of-sample R2 decompositions based on the Shapley value. The predicted variable is the 
𝑃/𝐵 ratio. Panel A presents results for linear regression on financial statement information, Panel B shows the 
boosted tree on financial statement information and Panel C presents results for the boosted tree on financial 
statement information and analyst information. Variables are sorted by their level of R2 contribution from highest 
to lowest. 

 
Variable R2  contribution (level) R2 contribution (%) 

Panel A: Linear regression on financial information 

𝑟𝑜𝑒 9.65% 89.42% 

𝑑𝑝 0.46% 4.31% 

𝐺1𝑟𝑜𝑒 0.44% 4.05% 

𝐺5𝑟𝑜𝑒 0.15% 1.37% 

𝑏𝑒𝑡𝑎 0.09% 0.85% 

Total 10.80% 100% 

Panel B: Linear regression on financial information and interactions 

𝑟𝑜𝑒 6.20% 39.14% 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 6.12% 38.64% 

𝑑𝑝 2.77% 17.51% 

𝑏𝑒𝑡𝑎 0.30% 1.92% 

𝐺5𝑟𝑜𝑒 0.27% 1.69% 

𝐺1𝑟𝑜𝑒 0.17% 1.09% 

Total 15.84% 100% 

Panel C: Boost tree on financial information and analyst-based peer group 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 19.17% 51.13% 

𝑟𝑜𝑒 15.42% 41.10% 

𝑑𝑝 1.09% 2.89% 

𝑏𝑒𝑡𝑎 0.82% 2.20% 

𝐺1𝑟𝑜𝑒 0.53% 1.41% 

𝐺5𝑟𝑜𝑒 0.48% 1.28% 

Total 37.51% 100% 
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For the first two regressions, return on equity is the most dominant driver of 𝑃/𝐵. In 

the model with linear regression and pair-wise interactions among value drivers, interaction 

terms are the second-largest contribution to predictability. Comparing the results from Table 

2.8 Panels A and B, after controlling for interaction terms, the importance of return on equity 

decreases significantly. Other variables contribute smaller proportions to out-of-sample 

predictability. From Table 2.8 Panel C, the importance of interactions by boosted tree model 

(after unique variable contribution) and analyst information dominates out-of-sample 

predictability. Most notably, when controlling for analyst information, not only does total out-

of-sample R2 increase but the contribution of return on equity significantly also decreases. 

Interactions may occur between return on equity and other information. Therefore, the unique 

contribution of return on equity decreases from 89.42% in linear regression without interactions 

to 41.10% in the boosted tree model. Figure 2.5 shows the contribution of each value driver in 

percentage terms of total predictability (100%) for linear regression with interaction terms.
Figure 2.5

R2 decomposition of 𝑷/𝑩 value drivers—linear regression and pairwise interactions
This figure shows the relative contribution of each value driver to 𝑃/𝐵 prediction out-of-sample. The horizontal 
axis shows the relative contribution of each value driver to the total out-of-sample R2 (in percent). The sum of all 
variable contributions is 100%. 
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Figure 2.6 provides a visualization of the relative contribution of each value driver to 

𝑃/𝐵 in percentage terms of the total predictability (100%) using the boosted tree. 
Figure 2.6

R2 decomposition of 𝑷/𝑩 value drivers—boosted tree with analyst information
This figure shows the relative contribution of each value driver to 𝑃/𝐵 prediction out-of-sample. The horizontal 
axis shows the relative contribution of each value driver to the total out-of-sample R2 (in percent). The sum of all 
variable contributions is 100%. 

Table 2.9 Panels A and B show the linear regression results for 𝐸𝑉/𝐼𝐶. Before 

controlling for interaction terms, the return on invested capital plays the most important role in 

predicting 𝐸𝑉/𝐼𝐶. Although the contribution is not as high as the return on equity in the case 

of 𝑃/𝐵, the return on invested capital still dominates out-of-sample predictability. After 

controlling for pairwise interactions in linear regression, total R2 increases slightly from 

26.92% to 28.90%, but each of the components changes significantly. The contribution of 

return on capital decreases significantly and is replaced by the contribution of interaction terms, 

which means that most of the previous contributions by return on capital were interactions with 

other variables. Figure 2.7 shows the relative contribution of each value driver to 𝐸𝑉/𝐼𝐶 in 

percentage terms of total predictability for linear regression with interaction terms.
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Figure 2.7
R2 decomposition of 𝑬𝑽/𝑰𝑪 value drivers—linear regression and pairwise interactions

This figure shows the average contribution of each value driver to 𝐸𝑉/𝐼𝐶 prediction out-of-sample. The horizontal 
axis shows the relative contribution of each value driver to the total out-of-sample R2 (in percent). The sum of all 
variable contributions is 100%. 

Table 2.9 Panel C shows the boosted tree results. After controlling for analyst

information, the interactions account for approximately 23.42% of the total predictability and 

become the third-largest group. Total R2 increases by a significant margin, from 28.90% to 

49.31%. The unique contribution of return on equity becomes the largest contribution to 

predictability. The unique contribution of long-term growth is the second-largest contributor. 

Figure 2.8 shows the relative contribution of each value driver to 𝐸𝑉/𝐼𝐶 in percentage terms 

of total predictability for boosted tree with interaction terms.
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Figure 2.8
R2 decomposition of 𝑬𝑽/𝑰𝑪 value drivers—boosted tree with analyst information

This figure shows the relative contribution of each value driver to the 𝐸𝑉/𝐼𝐶 prediction out-of-sample. The 
horizontal axis shows the relative contribution of each value driver to the total out-of-sample R2 (percent). The 
sum of all variable contributions was 100%. 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

roe

5-year growth

Interactions and "soft"…

beta

1-year growth

dividendpayout

reinvestmentrate

roic

debttocapital

cashtocapital

Percentage of R2

V
ar

ia
bl

es



 

39 
 

Table 2.9 
Out-of-sample R2 decomposition of 𝑬𝑽/𝑰𝑪 

The table shows the out-of-sample R2 decompositions based on the Shapley value. The predicted variable is 
the 𝐸𝑉/𝐼𝐶 ratio. Panel A presents results for linear regression on financial statement information, Panel B shows 
the boosted tree on financial statement information and Panel C presents results for the boosted tree on financial 
statement information and analyst information. Variables are sorted by their level of R2 contribution from highest 
to lowest. 
 
 

Variable R2 contribution (level) R2 contribution (%) 
Panel A: Linear regression on financial information 
𝑟𝑜𝑖𝑐 11.37% 42.23% 
𝑑𝑡𝑐 7.41% 27.52% 
𝑐𝑡𝑐 6.06% 22.52% 
𝑏𝑒𝑡𝑎 0.97% 3.62% 
𝑟𝑜𝑒 0.94% 3.49% 
𝐺1𝑟𝑜𝑒 0.11% 0.41% 
𝑟𝑖 0.02% 0.09% 
𝐺5𝑟𝑜𝑒 0.02% 0.07% 
𝑑𝑝 0.01% 0.04% 
Total  26.92% 100% 
Panel B: Linear regression on financial information and interactions 
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 24.61% 85.14% 
𝑐𝑡𝑐 1.75% 6.05% 
𝑟𝑜𝑒 0.89% 3.08% 
𝑑𝑡𝑐 0.63% 2.16% 
𝑟𝑜𝑖𝑐 0.36% 1.26% 
𝑏𝑒𝑡𝑎 0.29% 1.00% 
𝑑𝑝 0.16% 0.56% 
𝑟𝑖 0.13% 0.46% 
𝐺1𝑟𝑜𝑒 0.04% 0.15% 
𝐺5𝑟𝑜𝑒 0.04% 0.14% 
Total 28.90% 100% 
Panel C: Boosted tree on financial information and analyst-based peer group 
𝑟𝑜𝑒 17.46% 35.42% 
𝐺5𝑟𝑜𝑒 14.53% 29.46% 
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠  11.55% 23.42% 
𝑏𝑒𝑡𝑎 3.01% 6.11% 
𝐺1𝑟𝑜𝑒 0.70% 1.42% 
𝑑𝑝 0.52% 1.05% 
𝑟𝑖 0.51% 1.04% 
𝑟𝑜𝑖𝑐 0.40% 0.81% 
𝑑𝑡𝑐 0.35% 0.72% 
𝑐𝑡𝑐 0.28% 0.57% 
Total 49.31% 100% 



 

40 
 

 

2.6. Comparison with other peer valuation methods 

We compare our results with other relative valuation methods, such as the sum of 

absolute rank difference (SARD-10) from Knudsen et al. (2017), the StarMine algorithm to 

define peer firms of Refinitiv1, analyst-based peer groups (Kaustia and Rantala, 2021) and 

product-based competitors (Hoberg and Phillips, 2016). Table 2.10 reports the results of 

performance between different relative valuation approaches. We restrict the sample period 

from 2013 to 2020 to compare all methods (as data for analyst-based peer firms is restricted to 

2013 only). We find that boosted trees especially boosted trees with a combination of financial 

information and analyst information, deliver the best out-of-sample prediction of both the 𝑃/𝐵 

and 𝐸𝑉/𝐼𝐶.  

 
Table 2.10 

Comparison of tree-based grouping and other types of peer groups 
The table shows the comparison of different methods for P/B and EV/IC prediction. The methods are linear 
regression, boosted tree, SARD-10 (Knudsen et al. 2017), StarMine algorithm by Refinitiv, analyst cross-coverage 
(Kaustia and Rantala, 2021), K-10 product-based competitors (Hoberg and Phillips, 2016) and our boosted tree 
model. 
 

Squared 
error 

Linear 
regression 

on financial 
information 

Boosted 
tree on 

financial 
information SARD-10 

StarMine 
Refinitiv 

Analyst 
cross-

coverage 
K10-based 
competitor 

Boosted 
tree on 

financial 
and analyst 
information 

P/B        
Mean 0.29 0.25 0.31 7.84 25.05 39.00 0.21 
Median 0.17 0.14 0.18 1.39 0.86 3.64 0.11 
EV/IC        
Mean 0.25 0.22 0.33 7.23 12.09 17.38 0.20 
Median 0.13 0.12 0.19 1.38 0.46 2.50 0.10 

 

 

 
1 The StarMine peers are created through Refinitiv's exclusive algorithm, which merges competitor lists mentioned in official 

filings, analyst coverage, business classification, and revenue similarity. 
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2.7. Conclusion 

Valuation practices vary greatly among practitioners, who rely on both the ‘science’ of 

valuation, such as the relative valuation of similar companies or cash flow discount models 

with numerous assumptions, and the ‘art’ of leveraging additional knowledge to make 

valuations more precise.  

We use a data-driven approach with machine learning methods to provide new 

empirical insights into valuation. Our results show that there are significant interactions among 

the fundamentals that influence company value. Treating each value driver in isolation and 

with a linear approach is not a sound valuation practice.  

We find that long-term growth is more valuable than short-term growth. Some 

noteworthy interactions are between the growth rate and risk, growth rate, and dividend payout, 

and growth rate and reinvestment rate.  Companies with a combination of high growth and low 

risk generate the highest value cross-sectionally. A high dividend payout creates the most value 

for companies with high long-term growth. Companies with the greatest value are those with 

median reinvestment and median growth. All interactions are observed when controlling for 

the analyst information, proving the usefulness of information not observed in financial 

statements. Machine learning can take on the task of including such information in the 

valuation process. The boosted tree model performs better than other relative valuation 

techniques and linear regression.  

Our results provide insights for managers regarding company management strategies and 

for investors regarding investment decisions. Better valuations of companies can improve 

market efficiency by reducing mispricing and improving resource allocation.  
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Chapter 3: Nonlinear market efficiency 

 

3.1. Introduction 

Machine learning is increasingly used in investment decision-making and trading in 

financial markets. Bloomberg projects that machine learning can involve in 90% of investment 

management by 2040. Compared to other less quantitative approaches or conventional 

statistics, machine learning is known for its ability to generate superior forecasts. Many mutual 

funds today use machine learning as part of their investment process, and many other funds 

start switching to state-of-the-art forecasting techniques. 

The increasing use of machine learning in investment decision-making indicates that 

there is complexity in how information combines asset prices. In this chapter, we introduce a 

second dimension to the efficient markets hypothesis (EMH), being the complexity of the 

functional forms that link information and stock prices. This new dimension is largely 

independent of the original dimension of the EMH, being the breadth of information sets. For 

example, consider a particular information set, such as all publicly available information. Prices 

may reflect this information in a linear manner, or non-linear transformations and interactions 

between different pieces of information may also be reflected in prices. This additional 

dimension is crucial in capturing the effects of advancements in data science techniques and 

their implementation in markets.  

We use neural networks to predict returns and compare the predictive ability with that 

of linear regression models.  Neural networks learn without being explicitly programmed with 

prior knowledge about the relationships between predictors and return, as opposed to other 

parametric models, such as linear regression. Neural networks are effective in combining large 

amounts of data and trading signals.2 We refer to the predictive ability difference between the 

two methods as “nonlinear market inefficiency”—the amount of predictability created by 

complex interactions and non-linearities among pieces of information.3 We measure non-linear 

inefficiency for three main information sets: past return information, accounting information, 

 
2 As it is most likely that machine learning was not used in the early 1970s (the starting point of our sample), we have to 

assume that if someone could have used the technology in the past, we want to measure how much predictability they could 

exploit.  
3 Return prediction signals and firm characteristics are documented in other empirical asset pricing papers compiled by Chen 
and Zimmermann (2021).  
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and anomalies. The past return information set includes 39 input variables, which are 

constructed from historical stock returns during the previous 252 days. The accounting 

information includes accounting variables from the company's financial statements. The final 

set includes factors and anomalies constructed based on many asset pricing papers and 

publications.  

On average, we find that the non-linear inefficiency in public information (accounting 

data and firm characteristics) is higher than that of past return information. This finding implies 

that most of the complexity reflected in asset price is in the public information set. Adding past 

return information to public information does not increase non-linear inefficiency significantly. 

Between the two types of public information (accounting information and anomalies), we 

observe higher predictability in accounting variables than in factors and anomalies for both 

linear and non-linear models. However, the predictability difference between linear and non-

linear models is greater for anomalies than accounting variables. 

The predictive power of linear regression worsens when using the largest set of 

variables—203 anomalies. Similarly, the forecasting ability of linear regression is worse than 

using only 30 accounting variables. On average, neural networks have the highest improvement 

over linear regression when using anomalies as input variables, which implies that the level of 

complex interactions in the anomalies set is higher than the other two sets of variables.  

We find that the increasing use of advanced data modeling reduces non-linear 

inefficiency. Using the growth of quantitative mutual funds and the quantity of machine 

learning publications as proxies of technology advances, we find that the technology race 

makes the market more efficient. There is also an interaction between the two forces. Indeed, 

there is significant return predictability in the 1960s and 1970s using machine learning, which 

shows that the market is highly non-linearly inefficient if we measure market inefficiency in 

the past using today’s knowledge and technology. We show that as technology becomes more 

widespread, non-linear inefficiency disappears.  

Fama (1965) emphasizes that the basic linear regression that forms the foundation of 

the serial correlation model is not sophisticated enough to identify the intricate patterns in stock 

prices. Jensen (1978) mentions scientific revolutions, which refer to better data and increased 

econometric sophistication, uncovering inconsistencies that old techniques missed in the past. 

Shiller (2003) repeats the skeptical view. The challenge for financial economists is not to 

maintain the EMH in its purest form but to provide a more accurate description of the actual 

market.  

In the past, many asset-pricing anomaly detections indirectly shake the ground of the 

EMH. Some other papers are directly connected to the work of return prediction based on asset-
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pricing anomalies, such as Granger (1992), Lo (2004, 2012), and Daniel and Titman (1999). 

The number of anomalies detected in empirical studies grow to more than 300 return predictors 

(Hou, Xue, and Zhang, 2020; Chen and Zimmermann, 2021). Campbell and Yogo (2006) show 

that it is more challenging to gain predictability without the prudent utilization of econometric 

models. Indeed, Hou et al. (2020) find that anomalies fail in different sample periods. 

Anomalies disappear for two reasons: they reflect statistical artifacts, or they are arbitraged 

away. Some papers attribute disappearing anomalies to arbitragers (McLean and Pontiff, 2016; 

Falck et al., 2022). Cochrane (2011) mentions the challenge facing us—how to account for 

enormous independent dimensions of expected returns.  

Assuming that some anomalies are subsumed by others, and some provide independent 

information (Green, Hand, and Zhang, 2017) with large amounts of return signals, how 

complex can the relationship among return signals be? How much profit we can exploit from 

the complexity of nonlinear relationships? In the machine learning era, we are empowered with 

tools to shed light on these questions. Stambaugh and Yuan (2017) and Kozak et al. (2020) 

show that a combination of signals accommodates a wide range of anomalies and achieves a 

less noisy measure for stock mispricing than the separate signal in the model. Barbopoulos et 

al. (2021) show that increase in information access by cloud computing leads to improvements 

in market efficiency. Analogously, Gu et al. (2020) find that machine learning generates 

significant profits using an average combination of return prediction signals. Our chapter is 

related to the empirical approach of Gu et al. (2020) study. However, our study is different 

from Gu et al. (2020) in that we propose a new dimension of market efficiency based on 

different modeling methods. We do not aim to show how different machine learning models 

predict return as in Gu et al. (2020).  

Our study complements the literature on efficient markets measured in relative terms. 

We share the same motivations as Karapandza and Mazin (2014) and Rösch, Subrahmanyam, 

and Van Dijk (2017), who discuss market efficiency in relative terms. Our chapter is different 

in that we propose an orthogonal dimension of market efficiency to the traditional dimension 

of market efficiency. The dimensions we propose are different modeling techniques (linear 

regression and machine learning) in return prediction. 

We also combine a significant and diverse number of return signals to view market 

efficiency from different perspectives. Since the introduction of EMH, anomaly discovery 

flourishes, making it hard to believe that the signals are pure statistical artifacts or data 

snooping. Our chapter provides empirical evidence on why technological developments should 

not be ignored in testing the EMH. Our chapter is one of the first to empirically study efficient 
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markets, conditional on the level of technology, to account for the growing utilization of big 

data and the sophistication of forecasting techniques.  

 

3.2. Conceptual framework 

In 1970, Fama introduces the idea of market efficiency, which suggests that stock prices 

incorporate all available information. Fama (1970) categorizes market efficiency into three 

categories: weak, semi-strong, and strong, depending on the degree to which stock prices 

reflect past, public, and all information, respectively.  

We explore another (orthogonal) dimension of market efficiency, which is the 

functional form of the model that investors use to predict returns based on a specific set of 

information. The two functional forms in our chapter are the linear model and a nonlinear 

machine learning model. The linear model, or ordinary least squared, is the conventional 

statistical model used in asset pricing studies. The nonlinear model is a neural network model, 

which incorporates nonlinearity and interactions among predictors.   

Figure 3.1 illustrates these orthogonal dimensions of market efficiency. 
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Figure 3.1 
Orthogonal dimensions of efficiency 

The figure shows the orthogonal dimensions of market efficiency. The y-axis shows the dimensions of the 
information set. The x-axis shows the dimension of market efficiency by model function form given an 
information set. 

 
 

The market can be more efficient with respect to the breadth of information 

incorporated into prices – from limited information in weak-form efficiency to all available 

information in strong-form efficiency.  But, for a given information set, it can also be more or 

less efficient in the functional form complexity of how that information gets reflected in prices. 
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Figure 3.2 illustrates this chapter’s core hypothesis, being that as the use of machine 

learning becomes more prevalent in markets and investment decisions, the difference in how 

much one can predict future returns using linear models versus using non-linear models is 

expected to shrink, reflecting increasing non-linear market efficiency. This shrinking gap is 

expected to be observed in addition to a general tendency for markets to become more efficient 

through time in the traditional EMH sense. 

  
Figure 3.2 

Inefficiency measure 
The figure shows the change in inefficiency measures over time with respect to the model's functional forms. 
The y-axis shows the level of inefficiency (return predictability) and the x-axis shows the time.  

 

 
 

3.3. Data and Methods 

3.3.1. Data 

Our sample period is from January 1965 to December 2019 to minimize the number of 

missing observations. The number of stocks in our study is almost 30,000, with a monthly 

average of approximately 6,000 stocks. We filter companies with share codes 10 or 11 

(ordinary equity). 

We use three sets of return prediction signals, based on predictors identified in other 

empirical studies. The first set of inputs is past returns, which we download from the Centre 

for Research in Security Prices (CRSP)’s daily and monthly stock files for all firms listed on 

New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and NASDAQ 

Stock Exchange (NASDAQ).  
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The second set is documented anomalies. We download anomalies from a shared 

dataset of 203 predictors provided by Chen and Zimmermann (2021).4 Data on anomalies are 

at the firm level and updated monthly. The anomalies from Chen and Zimmermann (2021) are 

collected from published studies since 1970. We fill in missing values in each stock month 

with the monthly averages of those values. We normalize all variables by transforming all 

variables for the whole sample period to the range [−1,1], as in Kelly, Pruitt, and Su (2019). 

We also include six macroeconomic variables downloaded from Goyal and Welch (2008). The 

anomalies are provided in Appendix 3.A. 

The third set of inputs are company fundamentals from quarterly 10-K and 10-Q filings 

obtained from CRSP-Compustat merged database. The accounting variables are listed in 

Appendix 3.B.  

 

3.3.2. Inverse proxies of market efficiency 

We report three measures of return predictability for different models. Return spread 

and risk-adjusted excess returns (alphas) are designed to evaluate asset pricing model 

performance. Cross-sectional R2 measures the return predictability by measuring the 

proportion of return variance that it can explain.  

First, we measure the return from a long-short trading strategy. We form deciles based 

on predicted returns in month 𝑡 + 1 . We form both equal-weighted portfolios and value-

weighted portfolios. We calculate the return spread by buying the top decile and selling the 

bottom decile each month.  

𝑅𝑒𝑡𝑢𝑟𝑛𝑆𝑝𝑟𝑒𝑎𝑑𝑡+1 = 𝑟𝑄10,𝑡+1 − 𝑟𝑄1,𝑡+1 (22) 

in which, 𝑟𝑄10,𝑡 , 𝑟𝑄1,𝑡 is the top and bottom decile portfolio. 

Second, we calculate the cross-sectional R2. We employ portfolio returns to calculate 

this measure. We use portfolio return instead of stock-level return as R2 built on portfolio return 

predictions is less noisy than based on stock return predictions. At the stock level, R2 can 

become highly negative due to poor prediction for certain stocks, while prediction at the 

portfolio level is more consistent and less noisy. Our measure of cross-sectional R2 is: 

 
4 Data from Chen and Zimmermann (2020) was downloaded from: https://www.openassetpricing.com/ 
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𝑅𝑡+1
2 = 1 − 

∑ (𝑟𝑝,𝑡+1 − 𝑟̂𝑝,𝑡+1)210
𝑝=1

∑ (𝑟𝑝,𝑡+1)
210

𝑝=1

 
(23) 

in which, 𝑟𝑝,𝑡+1 is the monthly return of portfolio 𝑝 at month 𝑡 + 1.  

𝑟̂𝑝,𝑡+1 is predicted return of portfolio 𝑝  at month 𝑡 + 1. 

Third, we calculate the risk-adjusted excess return, which is the intercept of equation 

(24). We estimate rolling monthly regressions using return data from the previous 24 months 

to obtain the alpha estimates: 

𝑟𝑄10,𝑡+1 − 𝑟𝑄1,𝑡 = 𝛼𝑐 + 𝛽𝑐
𝑚𝑘𝑡𝑀𝐾𝑇𝑅𝐹𝑡 + 𝛽𝑐

𝑠𝑚𝑏𝑆𝑀𝐵𝑡 + 𝛽𝑐
ℎ𝑚𝑙𝐻𝑀𝐿𝑡 + 𝛽𝑐

𝑢𝑚𝑑𝑈𝑀𝐷𝑡 + 𝜖𝑐,𝑡 

 

(24) 

in which, 𝑟𝑐,𝑄10,𝑡 − 𝑟𝑐,𝑞1,𝑡 is the long minus short portfolio. 

𝑀𝐾𝑇𝑅𝐹𝑡, 𝑆𝑀𝐵𝑡, 𝐻𝑀𝐿𝑡 𝑎𝑛𝑑 𝑈𝑀𝐷𝑡 are the corresponding Fama-French and 

momentum factors. 

Lastly, we quantify the shared variation among four market efficiency metrics by 

extracting their components using principal component. We use composite predictability—the 

first principal component—to provide an overall view of movements in market efficiency. 

We define nonlinear inefficiency as the performance differential between linear 

regression and machine learning: 

𝑁𝐿𝐼𝐸𝑡 = 𝑃𝐿𝑡 − 𝑃𝑀𝐿𝑡 (25) 

in which, 𝑁𝐿𝐼𝐸𝑡 is the nonlinear inefficiency at time 𝑡 

𝑃𝐿𝑡 is the composite return predictability by linear regression at time 𝑡 

𝑃𝑀𝐿𝑡 is the composite return predictability by machine learning model at time 𝑡 

 

3.3.3. Linear regression 

We estimate linear regression models using each of the information sets as the baseline 

models. Return predictability from linear regression is also used to compute the nonlinear 

inefficiency in equation (25). The linear regression is: 

𝑟𝑖,𝑡 = 𝛼 +  ∑ 𝛽𝑚𝑥𝑖,𝑡

𝑀

𝑚=1

 
(26) 

in which, 𝑟𝑖,𝑡 is the return of stock 𝑖 at time 𝑡 

𝑥𝑖,𝑡 is the return predictor of stock 𝑖 at time 𝑡 (in set 𝑀, which can be past returns, 

accounting information, or anomalies) 
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3.3.4. Feed-forward neural network 

The feed-forward neural network is the non-linear method we choose to predict return. 

It is arguably the most potent model in machine learning. Its flexibility comes from many layers 

of non-linear predictor interactions. 

The best way to describe why our feed-forward neural network brings nonlinearity and 

interactions to modelling is to start with the simplest single-neuron unit. The input values are 

multiplied by their weights and summed as follows: 

𝑣 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑚𝑥𝑚 = ∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖

 
(27) 

The output is function 𝑦 = 𝑓(𝑣) of the weighted sum in equation (27). This function is 

called the activation function in the neural network. There are numerous options available for 

selecting nonlinear activation functions (such as sigmoid, hyperbolic, and SoftMax). Our study 

uses rectified linear units (ReLU), which promotes sparsity in the active neuron count and 

enables rapid evaluation of derivatives. ReLU is a nonlinear activation function. In a multiple-

layer network, 𝑓(𝑣) can be the value of hidden units before the model calculates the prediction 

of 𝑟𝑖,𝑡.  

The cost function to find the vector of parameters that minimize squared error: 

𝐿(𝐴, 𝜃) =
1

𝑁𝑇
∑ ∑(𝑟𝑖,𝑡+1 − 𝑔(𝐶𝑖,𝑡))2

𝑇

𝑡=1

𝑁

𝑖=1

 
(28) 

in which, 𝑁, 𝑇 is the number of firms and monthly periods in our estimation.  

Function 𝑔(. ) is the nonlinear function of anomalies if our model is a neural network. 

Function 𝑔(. ) does not depend on 𝑖, 𝑡 because we estimate the model using the whole panel 

instead of rerunning it for every cross-section as a traditional Fama-MacBeth regression. The 

first layer has 128 neurons and the second has 64 neurons: 
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𝑦1,ℎ = 𝜑(𝐶𝑖,𝑡𝑤0,ℎ + 𝑏0,ℎ) 

𝑦2,ℎ = 𝜑(𝑦1,ℎ𝑤1,ℎ + 𝑏1,ℎ) 

𝐸(𝑟𝑖,𝑡+1) = 𝜑(𝑦2,ℎ𝑤2,ℎ + 𝑏2,ℎ) 

 

(29) 

(30) 

(31) 

in which, 𝑤0,ℎ, 𝑤1,ℎ, 𝑤2,ℎ, 𝑏0,ℎ, 𝑏1,ℎ, 𝑏2,ℎ are the parameters of the two hidden layers. 𝑤0,ℎ 

∈ ℝ211×128, 𝑤1,ℎ ∈ ℝ128×64, 𝑤2,ℎ ∈ ℝ64×1, 𝑏0,ℎ ∈ ℝ1×128, 𝑏1,ℎ ∈ ℝ1×64, 𝑏2,ℎ ∈ ℝ  

The cost function is: 

𝐿(𝑤0,ℎ, 𝑤1,ℎ, 𝑤2,ℎ, 𝑏0,ℎ, 𝑏1,ℎ, 𝑏2,ℎ) =
1

𝑁𝑇
∑ ∑(𝑟𝑖,𝑡+1 − 𝐸(𝑟𝑖,𝑡+1))2

𝑇

𝑡=1

𝑁

𝑖=1

 
(32) 

in which, 𝑁, 𝑇 is the number of firms and monthly periods in our estimation.  

 

We train the neural network by updating the weights. We initially set weights to random 

values, repeat inputs into the network and compute the output using the activation function 

until the cost function is minimized. To prevent overfitting (as the neural network has many 

parameters), we adopt early stopping and batch normalization as regularisation of the neural 

network. We use the same design and hyperparameters for all information for the sake of easy 

comparison. 

The dataset starts in January 1965 and ends in December 2019. Choosing a sample-

splitting scheme is essential in this study. We use rolling window estimation in our estimate. 

Our results are out-of-sample because in-sample predictions might overestimate the 

predictability of returns using a combination of signals—investors deciding in real time without 

the benefit of hindsight. Investors cannot capture the predictability that econometricians 

observe when we run the in-sample test. They face high-dimensional problems and make 

estimating errors, which econometricians observe when looking at historical data ex-post. Our 

approach mimics what can happen in real-time—using historical data to estimate the model, 

then use the estimated model to predict the next month’s return. We employ a rolling estimation 

scheme. In predicting returns for month 𝑡 + 1 using information available up to time 𝑡. For 

example, to predict return from January 1985 to December 1985, we estimate the model using 

data from January 1965 to December 1984. We choose hyperparameters by comparing 

estimated model performance over a validation set not used in the training set. We use the best 

model to make one-month-ahead return predictions from January 1985 to December 1985. We 

move the training and testing forward by one year. We repeat the whole process to predict 

returns for out-of-sample periods from January 1985 to December 2019. The model is retrained 
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every year with the newest data. Therefore, to be on the same footing as investors, we report 

only out-of-sample predictability.  

 

3.3.5. Information sets 

#1 Past returns at different horizons 

Similar to Takeuchi and Lee (2013), we compute return predictors for past returns over 

the horizon [𝑡 − 𝑘, 𝑡 − 1] where 𝑘 is the lookback horizon in days and 𝑘 =

[1, 2, … 21, 42, … 252], that is, 𝑘 progresses in one-day increments for the first month and one-

month increments for the rest of the year.  

Our past return variables include some popular signals, such as the 6-month momentum 

from Jegadeesh and Titman (1993), and the 12-month look back from Asness, Moskowitz, and 

Pederson (2013), skipping the most recent month. Jegadeesh and Titman (2001) show negative 

short-term momentum on horizons of up to a month.  

In total, we have 39 variables in the past return information set as we also include the 

idiosyncratic volatility, alphas, and betas by estimating the model in equation (33). The alphas 

and betas are the estimated value of the intercept and slope of the equation (33). We include 

them as part of the past information set. We also include idiosyncratic volatility (standard 

deviation of the error terms in equation (33)): 

𝑟𝑖, = 𝛼𝑖 + 𝛽𝑖𝑟𝑚,𝜏 + 𝜀𝑖,𝜏 (33) 

in which, 𝜏 ∈ [𝑡 − 𝑘, 𝑡 − 1] and 𝑘 = [164, 252] days. 

𝑟𝑖, is the return of stock 𝑖. 

𝑟𝑚,𝜏 is the market return in which we use the return on CRSP value-weighted 

index. 
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#2 Accounting variables 

We also examine how fundamental analysis and accounting information provide a 

trading signal that predicts returns. We combine accounting information in financial 

statements, which are measured at a quarterly frequency. Each month, we use data from 20 

prior fiscal quarters. We use the 30 most frequently observed numerical accounting variables 

at the firm level. These variables are extracted from the quarterly financial statements (provided 

in Appendix 3.B.). Many of the other uncommon variables in financial statements are 

redundant and are represented by other items. We use 16 items from the most recent balance 

sheets. For variables from income and cash flow statements, we sum the quarterly value from 

the most recent 10-K or 10-Q.5 This input set is the same as that of Bartram and Grinblatt 

(2018).  

Using the predicted market value, we determine the mispricing signal by computing the 

disparity between a stock's projected value and the actual market value: 

𝑀𝑖𝑠𝑝𝑟𝑖𝑐𝑖𝑛𝑔𝑖,𝑡 =
𝐸(𝑀𝑖,𝑡) − 𝑀𝑖,𝑡

𝑀𝑖,𝑡
 

(34) 

in which, 𝐸(𝑀𝑖,𝑡) is the expected market value at month 𝑡 of firm 𝑖. 

𝑀𝑖,𝑡 is the actual market value at time 𝑡 of firm 𝑖. 

We use the mispricing signal at time 𝑡 to sort the return and form the trading signal at 

time 𝑡 + 1 as in Bartram and Grinblatt (2018). 

 

#3 Anomalies and factors 

The 203 trading signals include both predictors that are demonstrated to achieve 

statistical significance and likely predictors (not statistically in-sample in the relevant 

literature). The list of signals is provided in Appendix 3.A.  

 

 
5 The cashflow statement is cumulative. Quarterly value should be calculated by taking the difference between the adjacent 

fiscal quarters.  
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3.4. Portfolio forecasts and asset pricing tests 

Table 3.1 presents the results of the weak-form test, in which we use only historical 

return information.  
Table 3.1 

Performance of portfolios based on past returns 
This table reports the performance of prediction-sorted portfolios over the out-of-sample testing period for equal-
weighted and value-weighted portfolios based on past returns. All stocks are sorted into deciles based on their 
predicted returns at time 𝑡 + 1. Columns ‘Pred’, ‘Avg’, ‘SD’, and ‘SR’ provide predicted returns, average monthly 
return, standard deviation, and Sharpe ratio, respectively. 

  Linear regression Neural network 
Panel A: Equal-weighted portfolios   
  Pred Avg SD SR Pred Avg SD SR 
Low (L) −9.27 0.96 6.79 0.49 −1.10 −0.02 7.04 -0.01 
2 −4.22 1.09 5.77 0.65 −0.06 0.64 5.79 0.38 
3 −2.17 1.05 5.51 0.66 0.40 0.90 5.32 0.59 
4 −0.70 1.11 5.26 0.73 0.73 1.01 5.04 0.69 
5 0.55 1.13 5.21 0.75 1.01 1.18 4.98 0.82 
6 1.74 1.20 5.27 0.79 1.28 1.21 4.94 0.85 
7 2.97 1.14 5.24 0.75 1.55 1.24 5.06 0.85 
8 4.42 1.13 5.44 0.72 1.87 1.28 5.21 0.85 
9 6.43 1.01 5.80 0.60 2.30 1.41 5.83 0.84 
High (H) 11.40 1.09 6.68 0.57 3.50 2.06 8.73 0.82 
H−L 20.67 0.13 2.43 0.18 4.60 2.08 4.66 1.55 
Panel B: Value-weighted portfolios   
Low (L) −7.94 0.91 6.08 0.52 −0.89 0.49 6.38 0.27 
2 −4.13 0.99 5.06 0.68 −0.04 0.84 5.10 0.57 
3 −2.15 0.92 4.58 0.70 0.40 0.79 4.66 0.59 
4 −0.68 0.95 4.45 0.74 0.73 0.94 4.51 0.72 
5 0.56 1.03 4.32 0.83 1.01 0.96 4.42 0.76 
6 1.73 1.06 4.46 0.83 1.28 1.00 4.34 0.80 
7 2.96 1.05 4.57 0.79 1.55 1.09 4.60 0.82 
8 4.38 0.93 4.57 0.70 1.86 1.09 4.51 0.84 
9 6.33 0.97 5.08 0.66 2.28 1.19 5.06 0.81 
High (H) 10.07 0.92 6.15 0.52 3.03 1.20 6.68 0.62 
H−L 18.02 0.01 4.48 0.01 3.92 0.71 4.71 0.52 

 
 

The out-of-sample performance of the portfolio is consistent with the accuracy of 

machine learning forecast (Gu et al., 2020; Tobek and Hronec, 2021). Realized returns increase 

monotonically with the forecasted portfolio. The long-short spread return is greater for neural 

networks than for linear regression. The results hold for annualized Sharpe ratios, which jump 

from 0.01 to 0.52 for value-weighted portfolios formed by linear regression and machine 

learning predictions, respectively.  
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Table 3.2 shows the results of accounting variables. The best 10−1 strategy comes from 

equal-weighted neural network portfolios based on accounting variables when the return is 

equally weighted. The accounting-based portfolio has the greatest long-short spread and Sharpe 

ratio compared to the other two types of information sets. However, the difference between 

linear regression and neural networks is not as remarkable as firm characteristics and past 

returns.   

Table 3.2 
Performance of portfolios based on accounting variables 

This table reports the performance of prediction-sorted portfolios over the out-of-sample testing period for equal-
weighted and value-weighted portfolios based on accounting variables. All stocks are sorted into deciles based on 
their predicted returns at time 𝑡 + 1. Columns ‘Pred’, ‘Avg’, ‘SD’, and ‘SR’ provide predicted returns, average 
monthly return, standard deviation, and Sharpe ratio, respectively. 

  Linear regression Neural network 
Panel A: Equal-weighted portfolios 

 Pred Avg SD SR Pred Avg SD SR 
Low (L) −0.50 0.39 6.86 0.20 −0.27 0.10 6.47 0.06 
2 −0.25 0.59 5.80 0.35 −0.11 0.45 5.33 0.29 
3 −0.16 0.66 5.30 0.43 −0.07 0.65 5.00 0.45 
4 −0.09 0.80 5.24 0.53 −0.04 0.78 4.92 0.55 
5 −0.03 0.78 5.18 0.52 −0.02 0.88 5.09 0.60 
6 0.03 0.88 5.32 0.58 0.01 0.97 5.25 0.64 
7 0.09 0.98 5.49 0.62 0.04 1.17 5.52 0.73 
8 0.16 1.42 5.86 0.84 0.07 1.37 5.90 0.80 
9 0.25 2.07 6.21 1.16 0.12 1.93 6.61 1.01 
High (H) 0.49 2.32 7.37 1.09 0.26 2.61 8.11 1.12 
H−L 0.99 1.92 5.50 1.21 0.53 2.51 4.92 1.77 
Panel B: Value-weighted portfolios 
Low (L) −0.48 0.61 5.90 0.36 −0.24 0.64 5.53 0.40 
2 −0.25 0.88 4.94 0.62 −0.11 0.75 4.77 0.54 
3 −0.16 0.94 4.44 0.74 −0.07 0.94 4.46 0.73 
4 −0.09 1.00 4.45 0.78 −0.04 1.06 4.47 0.82 
5 −0.03 0.99 4.26 0.80 −0.02 1.13 4.67 0.84 
6 0.03 1.01 4.34 0.81 0.01 1.15 5.13 0.78 
7 0.09 1.13 4.73 0.82 0.04 1.14 5.65 0.70 
8 0.16 1.38 5.55 0.86 0.07 1.39 6.12 0.79 
9 0.24 1.28 5.77 0.77 0.12 1.52 6.65 0.79 
High (H) 0.45 1.66 6.47 0.89 0.24 1.71 7.34 0.81 
H−L 0.93 1.05 4.50 0.81 0.48 1.07 5.12 0.73 
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Table 3.3 reports predicted portfolio returns, actual portfolio returns, standard 

deviations, and Sharpe ratios for equal-weighted and value-weighted decile portfolios based on 

anomalies and factors. 
Table 3.3 

Performance of portfolios based on anomalies 
This table reports the performance of prediction-sorted portfolios over the out-of-sample testing period for equal-
weighted and value-weighted portfolios based on anomalies. All stocks are sorted into deciles based on their 
predicted returns at time 𝑡 + 1. Columns ‘Pred’, ‘Avg’, ‘SD’, and ‘SR’ provide predicted returns, average monthly 
return, standard deviation, and Sharpe ratio, respectively. 

  Linear regression                   Neural network 
  Pred Avg SD SR Pred Avg SD SR 
Panel A: Equal-weighted portfolios 
Low (L) −9.58 1.00 6.49 0.53 −1.05 0.13 7.56 0.06 
2 −4.66 0.96 5.82 0.57 −0.04 0.65 6.31 0.36 
3 −2.37 0.97 5.54 0.61 0.42 0.79 5.49 0.50 
4 −0.79 0.92 5.22 0.61 0.76 0.86 5.12 0.58 
5 0.47 0.95 5.00 0.66 1.04 0.94 4.83 0.67 
6 1.65 0.99 4.95 0.70 1.32 1.10 4.75 0.80 
7 2.95 0.94 5.03 0.65 1.62 1.12 4.85 0.80 
8 4.57 0.98 5.21 0.65 1.97 1.24 4.89 0.88 
9 6.84 1.10 5.34 0.72 2.44 1.34 5.14 0.91 
High (H) 11.71 1.08 5.75 0.65 3.48 1.71 6.09 0.98 
H−L 21.29 0.08 2.06 0.14 4.53 1.59 3.81 1.44 
Panel B: Value-weighted portfolios 
Low (L) −9.07 0.97 5.15 0.66 −0.93 0.58 6.64 0.30 
2 −4.64 0.96 4.80 0.69 −0.03 0.80 5.25 0.53 
3 −2.38 1.01 4.82 0.73 0.43 0.85 4.96 0.59 
4 −0.80 0.92 4.59 0.70 0.76 0.91 4.62 0.68 
5 0.46 0.94 4.61 0.70 1.04 1.00 4.68 0.74 
6 1.66 1.08 4.55 0.82 1.32 0.98 4.41 0.77 
7 2.96 0.93 4.51 0.72 1.62 1.04 4.40 0.82 
8 4.58 0.99 4.57 0.75 1.97 1.16 4.33 0.93 
9 6.83 0.94 4.56 0.71 2.43 1.16 4.54 0.89 
High (H) 11.19 1.03 4.70 0.76 3.25 1.24 4.96 0.87 
H−L 20.26 0.05 2.77 0.07 4.18 0.66 4.35 0.53 

 

 

For the anomalies, the Sharpe ratio on the value-weighted portfolio also increases from 

0.07 to 0.53. There is also a monotonic increase in portfolio returns from decile 1 to decile 10. 

This indicates that linear regression has limited predictive power, and machine learning can 

yield higher profit compared to linear regression. 
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Table 3.4 shows the portfolio performance when we use all information (past returns, 

anomalies, and accounting variables). The monthly return is 0.66%, resulting in a Sharpe ratio 

of 0.53. Long-short returns are almost the same as portfolios based on anomalies, but not 

superior to portfolios based on past returns and accounting variables.  

 
Table 3.4 

Performance of portfolios based on all variables 
This table reports the performance of prediction-sorted portfolios over the out-of-sample testing period for equal-
weighted and value-weighted portfolios based on all variables. All stocks are sorted into deciles based on their 
predicted returns at time 𝑡 + 1. Columns ‘Pred’, ‘Avg’, ‘SD’, and ‘SR’ provide predicted returns, average monthly 
return, standard deviation, and Sharpe ratio, respectively. 

  Linear regression Neural network 
Panel A: Equal-weighted portfolios 

 Pred Avg SD SR Pred Avg SD SR 
Low (L) −0.10 1.00 6.49 0.53 −0.01 0.13 7.56 0.06 
2 −0.05 0.96 5.82 0.57 0.00 0.65 6.31 0.36 
3 −0.02 0.97 5.54 0.61 0.00 0.79 5.49 0.50 
4 −0.01 0.91 5.22 0.61 0.01 0.86 5.12 0.58 
5 0.00 0.95 5.00 0.66 0.01 0.94 4.83 0.67 
6 0.02 0.99 4.95 0.70 0.01 1.10 4.75 0.80 
7 0.03 0.94 5.03 0.65 0.02 1.12 4.85 0.80 
8 0.05 0.98 5.21 0.65 0.02 1.24 4.89 0.88 
9 0.07 1.10 5.34 0.72 0.02 1.34 5.14 0.91 
High (H) 0.12 1.08 5.75 0.65 0.03 1.71 6.09 0.98 
H−L 0.21 0.09 2.05 0.14 0.05 1.59 3.81 1.44 
Panel B: Value-weighted portfolios 
Low (L) −0.09 0.97 5.15 0.66 −0.01 0.58 6.64 0.30 
2 −0.05 0.96 4.80 0.69 0.00 0.80 5.25 0.53 
3 −0.02 1.01 4.82 0.73 0.00 0.85 4.96 0.59 
4 −0.01 0.92 4.59 0.70 0.01 0.91 4.62 0.68 
5 0.00 0.94 4.61 0.71 0.01 1.00 4.68 0.74 
6 0.02 1.08 4.55 0.82 0.01 0.98 4.41 0.77 
7 0.03 0.93 4.51 0.71 0.02 1.04 4.40 0.82 
8 0.05 0.99 4.58 0.75 0.02 1.16 4.33 0.93 
9 0.07 0.94 4.56 0.72 0.02 1.11 4.54 0.85 
High (H) 0.11 1.03 4.71 0.76 0.03 1.24 4.96 0.87 
H−L 0.20 0.05 2.77 0.07 0.04 0.66 4.35 0.53 
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Table 3.5 

Excess return by decile portfolios 
The table reports the excess return (alphas) of the time-series regressions of returns on risk factors. The decile portfolios are across columns. The OLS row presents the 
alpha of the linear model and the NN row presents the alpha of the neural network model. The sample is from January 1985 to December 2020. T-statistics are reported in 
parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.  

  
Alpha  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10−P1 
Panel A: Past returns            
OLS 0.58*** 0.58*** 0.50*** 0.53*** 0.55*** 0.66*** 0.60*** 0.62*** 0.52*** 0.76*** 0.18* 

 (3.49) (4.87) (5.16) (5.43) (5.64) (5.84) (4.86) (4.62) (3.96) (4.50) (1.41) 
NN −0.30** 0.16* 0.36** 0.42*** 0.58*** 0.60*** 0.61*** 0.66*** 0.87*** 1.95*** 2.25*** 

 (−2.24) (1.68) (3.83) (5.32) (7.4) (6.59) (6.29) (5.98) (5.68) (5.13) (6.68) 
Panel B: Accounting variables            
OLS −0.09 −0.03 0.01 0.13* 0.15* 0.31*** 0.50*** 1.06*** 1.76*** 2.09*** 2.18*** 

 (−1.05) (−0.47) (0.25) (1.95) (1.95) (2.82) (3.42) (5.58) (7.57) (8.00) (8.42) 
NN −0.34*** −0.11* 0.05 0.14** 0.24*** 0.39*** 0.62*** 0.92*** 1.58*** 2.43*** 2.78*** 

 (−3.63) (−1.55) (0.73) (2.09) (3.04) (4.19) (5.28) (5.37) (6.66) (8.13) (9.61) 
 

           
Panel C: Anomalies            
OLS 0.49*** 0.44*** 0.45*** 0.38*** 0.44*** 0.45*** 0.37*** 0.39*** 0.49*** 0.48*** −0.01 

 (−3.45) (−3.89) (4.33) (3.6) (4.01) (4.73) (3.78) (3.67) (4.79) (3.91) (−0.09) 
NN −0.21** 0.20* 0.29** 0.27*** 0.35*** 0.51*** 0.50*** 0.61*** 0.73*** 1.12*** 1.33*** 

 (−2.11) (1.44) (2.37) (2.75) (3.74) (5.66) (6.17) (6.94) (7.19) (7.25) (7.26) 
Panel D: All variables            
OLS 0.49*** 0.44*** 0.45*** 0.38*** 0.44*** 0.45*** 0.37*** 0.39*** 0.49*** 0.48*** −0.01 

 (3.45) (3.89) (4.33) (3.59) (4.03) (4.71) (3.79) (3.66) (4.8) (3.9) (−0.07) 
NN −0.21* 0.20* 0.28** 0.27*** 0.35*** 0.51*** 0.50*** 0.61*** 0.73*** 1.12*** 1.33*** 

  (−1.11) (1.44) (2.37) (2.74) (3.72) (5.65) (6.16) (6.96) (7.19) (7.25) (7.26) 
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Our focus is not on introducing the most powerful forecasting tool but on observing the 

economic value of nonlinearity. The prediction power of neural networks brings significant 

economic value. The separate information set enables us to examine how to return prediction 

responses to different types of information. Predictions based on accounting variables carry the 

largest returns, which beat other information in predicting monthly returns. 

The established risk factors cannot explain the return spreads produced by machine 

learning. The regressors include the factors based on Fama and French (2016) and the 

momentum factor.6 Table 3.5 illustrates the excess returns on portfolios, which is sorted based 

on return prediction for both linear regression and neural networks. 

The information used in Table 3.5 Panel A is past returns. The risk-adjusted excess 

returns are positive and highly significant for neural networks, while the risk-adjusted excess 

return for linear regression is small and insignificant. The difference between linear regression 

and neural networks is the same for Table 3.5 Panels B, C, and D, in which we use accounting 

variables, anomalies, and all variables, respectively. Alphas are greatest for accounting 

variables, followed by past returns. Our results agree with those of Bartram and Grinblatt 

(2018), who also use accounting variables to generate mispricing signals. Overall, our results 

show that neural networks are better at predicting cross-sections of returns than linear 

regression. Risk-adjusted excess returns are the highest if using past returns and accounting 

variables.7 However, improvement in alphas are the smallest for accounting variables set, 

compared to other information set. 

 

3.5. Non-linear inefficiency  

Based on the three measures, we build a composite measure to examine the summary 

of predictability for each set of information. Table 3.6 shows the correlations of the 

predictability measures. 

 
6 The data are from Kenneth French’s website: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
7 Our results are robust if we only use past returns of stocks, without other variables constructed by market returns.  
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Table 3.6 

Correlation of predictability measures 
The table reports the correlation among predictability measures, which are portfolio return, cross-sectional R2, 
pricing error, and the composite measures of the three proxies. Panels A, B, C, and D report average predictability 
measures for past returns, anomalies, accounting variables, and all variables, respectively. Column ‘Linear 
regression’ indicates the measures of linear regression. Column ‘Neural network’ reports the measures of neural 
networks.  
 

 Linear regression Neural network 

  

Cross-
sectional 

R2 
Portfolio 

return 
Pricing 
error 

Cross-
sectional R2 

Portfolio 
return 

Pricing 
error 

Panel A: Past returns 
Cross-sectional R2 1.00   1.00   
Portfolio return 0.69 1.00  0.64 1.00  
Pricing error 0.52 0.36 1.00 0.50 0.88 1.00 
Composite measure 0.99 0.72 0.56 0.98 0.77 0.66 
Panel B: Anomalies 
Cross-sectional R2 1.00   1.00   
Portfolio return 0.87 1.00  0.74 1.00  
Pricing error 0.44 0.46 1.00 0.64 0.72 1.00 
Composite measure 0.99 0.89 0.47 0.99 0.79 0.69 
Panel C: Accounting variables 
Cross-sectional R2 1.00   1.00   
Portfolio return 0.73 1.00  0.68 1.00  
Pricing error 0.61 0.82 1.00 0.48 0.85 1.00 
Composite measure 0.99 0.80 0.68 0.99 0.78 0.60 
Panel D: All variables 
Cross-sectional R2 1.00   1.00   
Portfolio return 0.73 1.00  0.74 1.00  
Pricing error 0.61 0.82 1.00 0.64 0.72 1.00 
Composite measure 0.99 0.80 0.68 0.99 0.79 0.68 
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 Three measures are correlated, as shown in Table 3.6, which shows the consistency in 

statistical measures, such as R2, and economic measures, such as excess return and return 

spread.  

We report the significance of the average difference between neural networks and linear 

regression (or the non-linear inefficiency measured as defined in equation (25)) in Table 3.7. 

Although the return predictability captured by the non-linear models is not the same among the 

three input sets, we observe a highly significant and average positive difference between the 

neural network and linear regression prediction, which indicates a positive non-linear 

inefficiency on average. 

Table 3.7 provides the monthly average values of the three separate predictability 

measures and the composite predictability measure. The first and second columns show the 

average predictability of linear regression and neural networks, respectively. The last column 

provides the average difference between the two models. The non-linear inefficiency in the all-

variables combination is the greatest. On average, we find that the non-linear inefficiency in 

public information (accounting data and anomalies) is higher than that of past return 

information. This finding implies that most of the complexity reflected in asset price is in these 

information set. Between the two types of public information, we observe higher predictability 

in accounting variables than in factors and anomalies. However, the non-linear inefficiency is 

greater for anomalies than accounting variables. 
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Table 3.7 

Average predictability measures by group 
The table reports the results of the time-series average for three inverse proxies of market efficiency, which are 
portfolio return, cross-sectional R2, pricing error, and the composite measures of the three proxies. Panels A, B, 
C, and D report average predictability measures for past returns, accounting variables, anomalies, and all variables, 
respectively. Column OLS indicates the measures of linear regression. Column NN reports the measures of neural 
networks. Column t-stat is the Newey-West adjusted standard error of the mean difference. 
 

  OLS NN Difference t-stat 
 (1) (2) (2) − (1) (2) − (1) 
Panel A: Past returns   
Long-short return 0.00 0.02 0.02*** 9.64 
Cross-sectional R2 −0.01 0.20 0.22*** 12.34 
Excess return 0.00 0.02 0.02*** 9.63 
Composite measure −0.00 0.08 0.09*** 11.84 
Panel B: Accounting variables   
Long-short return 0.02 0.03 0.01*** 7.16 
Cross-sectional R2 0.23 0.28 0.05*** 4.76 
Excess return 0.02 0.03 0.01*** 6.39 
Composite measure 0.10 0.12 0.02*** 4.89 
Panel C: Anomalies   
Long-short return 0.00 0.02 0.02*** 14.74 
Cross-sectional R2 −0.02 0.23 0.25*** 14.99 
Excess return 0.00 0.01 0.01*** 13.79 
Composite measure −0.01 0.10 0.10*** 15.32 
Panel D: All variables   
Long-short return 0.00 0.02 0.02*** 14.76 
Cross-sectional R2 0.02 0.23 0.25*** 15.01 
Excess return 0.00 0.01 0.01*** 13.78 
Composite measure −0.01 0.10 0.10*** 15.35 

 

Figure 3.3 Panel A illustrates the change in return predictability using weak-form 

information, which includes only historical returns of stocks. Most notably, the decreasing 

trend is noticeable only for neural network predictions, while linear predictions fluctuate 

around zero for all measures of predictability. Neural networks contribute more to the wedge 

between nonlinear and linear models. Figure 3.3 Panel B shows the change in the nonlinear 

gap between the neural network and linear regression. From the linear trend, we can observe a 

decrease in nonlinear inefficiency. 
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Figure 3.3 
Return predictability using past return information 

Panel A shows the 12-month moving average of the composite return predictability measures for linear regression 
and feed-forward neural network. The models are estimated using past returns information. Panel B graph shows 
the change in non-linear inefficiency over time.  

(A) Return predictability 
 

 
 

(B) Non-linear inefficiency 
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The closing gap between the two lines over time means that progressively, increasingly 

complex relations between information are being reflected in prices—markets are becoming 

more efficient not just in the types of information they reflect but also in the functional forms 

they capture. The results provide empirical evidence for the concept of technological market 

efficiency that was initially proposed by Grabowski (2019). Rösch et al. (2017) show that the 

efficacy of arbitrage mechanisms, market-making and financial friction govern market 

efficiency and price convergence toward their linear benchmark. Technological progress is an 

essential and natural evolution of the financial market that facilitates these mechanisms. 

Therefore, consistent with Rösch et al. (2017), we show that market efficiency should be treated 

as a dynamic rather than a static concept. Additionally, there is mounting pressure for asset 

pricing research to adjust market efficiency by adding nonlinearity to its definition.  

    Figure 3.4 Panels A and B show the time series of predictability measures and non-

linear inefficiency of accounting variables. The improvement in the performance of neural 

networks is the smallest in this set of variables. For some periods, non-linearity is even zero.8 

Non-linear inefficiency is also the smallest using this information set. However, we can still 

observe a decreasing trend in non-linear inefficiency. 

 
8 When non-linear inefficiency is smaller than 0, we treat it as equal to 0. When linear model performs better, it 

means that there is no non-linear inefficiency.  
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Figure 3.4 

Return predictability using the accounting variables  
Panel A shows the 12-month moving average of the composite return predictability measures for linear regression 
and feed-forward neural network. The models are estimated using accounting information. Panel B graph shows 
the change in non-linear inefficiency over time.  
 

(A) Return predictability 
         

 
 

(B) Non-linear inefficiency 
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Figure 3.5 shows the time series of composite predictability measures using anomalies. 

Figure 3.5 Panel A illustrates the time-varying return predictability. The time-series behavior 

is the same as the weak-form information in Figure 3.3. However, the performance difference 

between the two models is higher for the anomalies set than the past returns set, as shown in 

Figure 3.5 Panel B. 
Figure 3.5 

Return predictability using anomalies 
Panel A shows the 12-month moving average of the composite return predictability measures using linear 
regression and a feed-forward neural network. The models are estimated using anomalies. Panel B shows the 
change in non-linear inefficiency over time.  
 

(A) Return predictability 
 

 
 
 

(B) Non-linear inefficiency 
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Finally, we combine all variables into our return prediction model. The return predictors 

used in this set are firm characteristics, accounting variables, and historical returns. Figure 3.6 

Panel A illustrates the time-varying return predictability. The time series for the combination 

of all information is very similar to the pattern using anomalies in Figure 3.5. Figure 3.6 Panel 

B shows the change in non-linear inefficiency over time. This means that most of the return 

predictability and non-linear inefficiency are driven by anomalies and adding past returns or 

accounting information to anomalies does not bring much value to return predictability. 
Figure 3.6 

Return predictability using all variables  
Panel A shows the 12-month moving average of the composite return predictability measures for linear regression 
and feed-forward neural network. The models are estimated using all information. Panel B graph shows the change 
in non-linear inefficiency over time.   
 

(A) Return predictability 
         

 
 

(B) Non-linear inefficiency 
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3.6. Drivers of the increase in non-linear efficiency 

The three forces that are likely to affect market efficiency are research in finance, 

research in machine learning, and the number of quantitative funds. Research in finance proxies 

for more knowledge related to asset pricing and stock returns, which motivates the demand for 

sophisticated techniques to process more variables. Research in machine learning proxies for 

the ability to capture mispricing with new nonlinear techniques. Finally, growth of quantitative 

funds proxies for the actual application of research in both fields to exploit mispricing.  

Following Abis (2020) and Beggs, Brogaard, and Hill-Kleespie (2021), we count the 

number of quantitative funds by extracting quantitative keywords from the mutual fund 

prospectus. Before 2016, we use prospectus on Morningstar Principia CDs (Kostovesky and 

Warner, 2020). After 2016, we use the Form 485s reported to the Securities Exchange 

Commission (SEC). Our sample is from 2000 to 2020. Prospectuses are published at least once 

every quarter. We only look for quantitative keywords, such as those in Appendix 3.C, which 

is recommended by Beggs et al. (2021) for the Principal Investment Strategies sections of the 

mutual fund prospectus after 2016. We exclude other sections in the prospectus, as suggested 

by Abis (2020). As there can be quantitative keywords in the risk and performance discussion 

of the prospectus, it is easy to over-identify the number of quantitative funds.  

To measure the growth in machine learning, we extract data from peer-reviewed 

machine learning publications every year from artificial intelligence (AI) index reports (2021).9 

The data is sourced from Elsevier and Scopus, which are subscription-access scientific 

literature databases. The AI index report (2021) is one of the most comprehensive reports on 

AI to date. It significantly expands the amount of data available in the report, which is drawn 

from a broad set of academic, private, and non-profit organizations for calibration. The growth 

in finance research is measured as the number of finance papers on SSRN as in Dai et al. 

(2023).  

We apply Hamilton's (2017) filter to de-trend the time series. This method is more 

reliable to control for time trends compared to other detrending approaches. Atanasov, Møller, 

and Priestley (2020) also use this method for time series regression. The procedure ensures that 

the component we use in our regression is stationary. We estimate regression with 3-month, 6-

month, and 12-month lags of the explanatory variables (quantitative funds, finance papers, and 

machine learning papers, as it is likely that these variables take time to affect return 

predictability. We include interaction terms between technology research growth and 

 
9 Data was downloaded from Stanford AI Index Reports: https://aiindex.stanford.edu/report/ 
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quantitative fund growth as advances in machine learning research enable the discovery of 

mispricing using new models, while the number of quantitative funds reflects the practical 

implementation of research to exploit these mispricing. The impact of growth of quantitative 

fund may be conditional on the growth of research in quantitative models. We estimate the 

following regression to examine the effect of the growth of finance and machine learning 

publications and quantitative funds on non-linear inefficiency:  

 

𝑁𝐿𝐼𝐸𝑡 = 𝛽0 + ∑ 𝛽1𝐹𝑃𝑡−𝑛

𝑛=3,6,12

+ ∑ 𝛽2𝑀𝑃𝑡−𝑛

𝑛=3,6,12

+ ∑ 3𝑄𝑃𝑡−𝑛

𝑛=3,6,12

+ ∑ 𝛽4𝐹𝑃𝑡−𝑛 × 𝑄𝐹𝑡−𝑛

𝑛=3,6,12

+ ∑ 𝛽5𝑀𝑃𝑡−𝑛 × 𝑄𝐹𝑡−𝑛

𝑛=3,6,12

+ 𝜀𝑡 

 

(35). 

in which, 𝑁𝐿𝐼𝐸𝑡is the non-linear inefficiency measure at month 𝑡 as defined in equation 

(25) 

𝐹𝑃𝑡−𝑛 is the vector of lagged 3-month, 6-month, and 12-month number of 

finance papers on the SSRN database at time 𝑡  

𝑀𝑃𝑡−𝑛 is the vector of lagged 3-month, 6-month, and 12-month number of 

machine learning publications at time 𝑡  

𝑄𝐹𝑡 is the vector of lagged 3-month, 6-month, and 12-month number of 

quantitative funds at time 𝑡  

 

Table 3.8 shows that the decay of non-linearity inefficiency (increase in efficiency) is 

driven by the technology race of mutual funds and the prevalence of machine learning research 

over time. The technology race of funds is proxied by quantitative funds over time. The 

prevalence of machine learning and finance research over time is measured by the number of 

machine learning and finance publications over time. The significant negative coefficients on 

the interaction between the application of technology in asset managment and the number of 

AI and finance research indicate the detrimental effects of technology on non-linear 

inefficiency, especially when combining research knowledge and applying technology 

advances into investment practices. 
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Table 3.8 

Drivers of non-linear inefficiency 
The table reports the coefficient estimates and t-statistics of the potential driver of non-linear market efficiency. 
The independent variables are 3-month, 6-month, and 12-month lags in the number of machine learning 
publications (𝑀𝑃𝑡−3, 𝑀𝑃𝑡−6 and 𝑀𝑃𝑡−12), finance publications (𝐹𝑃𝑡−3, 𝐹𝑃𝑡−6, 𝐹𝑃𝑡−12), and the number of 
quantitative mutual funds (𝑄𝐹𝑡−3, 𝑄𝐹𝑡−6, 𝑄𝐹𝑡−12). The dependent variable is 𝑁𝐿𝐼𝐸𝑡, which is non-linear 
inefficiency (the performance difference between linear and machine learning model). ***, ** and * indicate 
significant at 1%, 5% and 10% level, respectively. 
 

  𝑁𝐿𝐼𝐸𝑡  
  Parameter Estimate t-stat 

Intercept 0.09 (9.26)*** 
FPt−3  −2.50 (−1.93)** 
FPt−6  −1.18 (−0.86) 
FPt−12  0.42 (0.64) 
MPt−3  0.34 (1.57) 
MPt−6  −0.01 (−0.04) 
MPt−12  −0.48 (−2.42)** 
QFt−3  22.56 (1.16) 
QFt−6  33.35 (1.48) 
QFt−12  −14.36 (−1.03) 
FPt−3*QFt−3 0.11 (0.92) 
FPt−6*QFt−6 0.05 (1.89)* 
FPt−12*QFt−12 −0.07 (−0.57)** 
MPt−3*QFt−3 −0.06 (−1.94) 
MPt−6*QFt−6 −0.12 (−1.46) 
MPt−12*QFt−12 −0.07 (−3.69)** 
R2  39% 
Observations  179 
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3.7. Conclusion 

Participants in financial markets face an array of data sources and data modelling 

techniques. Most conventional asset pricing studies implicitly assume that investors use linear 

models for returns. But in reality, information can have complex non-linear relations with asset 

prices. How much of the non-linearities and interactions between information are reflected in 

asset prices is the core issue examined in this chapter. 

This chapter examines nonlinear market efficiency, measured by how well machine 

learning techniques, such as neural networks, can forecast out-of-sample stock returns relative 

to the performance of linear regression. We find that shallow networks, such as those in our 

study, have better results for simple information, such as past returns and accounting variables 

from financial statements, than published anomalies. The greatest performance gap (non-linear 

inefficiency) is in the combination of all information.  

We find that the difference in out-of-sample return predictability using linear regression 

and neural networks disappears over time, consistent with an increase in the non-linear 

efficiency of the market. Most of the decrease in the performance differential can be attributed 

to a diminishing ability of the machine learning models to predict out-of-sample returns, rather 

than changes in the performance of linear models, consistent with markets through time 

becoming better at reflecting non-linear combinations of information.  

Overall, our study provides empirical evidence of how the static market efficiency 

definition that is based on different information sets is challenged by the process of investor 

learning and the adoption of more sophisticated data science models. 
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Appendix 3.A: Firm characteristics 
Table 3.A1 

List of firm characteristics 
The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
ChInvIA Abarbanell and Bushee 1998 Change in capital inv (ind adj) AR 
ETR Abarbanell and Bushee 1998 Effective Tax Rate AR 
GrGMToGrSales Abarbanell and Bushee 1998 Gross margin growth to sales growth AR 
GrSaleToGrInv Abarbanell and Bushee 1998 Sales growth over inventory growth AR 
GrSaleToGrOverhead Abarbanell and Bushee 1998 Sales growth over overhead growth AR 
GrSaleToGrReceivables Abarbanell and Bushee 1998 Change in sales vs change in receiv AR 
LaborforceEfficiency Abarbanell and Bushee 1998 Laborforce efficiency AR 
pchgm_pchsale Abarbanell and Bushee 1998 Change in gross margin vs sales AR 
betaCC Acharya and Pedersen 2005 Illiquidity-illiquidity beta (beta2i) JFE 
betaCR Acharya and Pedersen 2005 Illiquidity-market return beta (beta4i) JFE 
betaNet Acharya and Pedersen 2005 Net liquidity beta (betanet,p) JFE 
betaRC Acharya and Pedersen 2005 Return-market illiquidity beta JFE 
betaRR Acharya and Pedersen 2005 Return-market return illiquidity beta JFE 
BetaBDLeverage Adrian, Etula and Muir 2014 Broker-Dealer Leverage Beta JF 
IdioVolAHT Ali, Hwang, and Trombley 2003 Idiosyncratic risk (AHT) JFE 
EarningsConsistency Alwathainani 2009 Earnings consistency BAR 
Illiquidity Amihud 2002 Amihud's illiquidity JFM 
BidAskSpread Amihud and Mendelsohn 1986 Bid-ask spread JFE 
grcapx Anderson and Garcia-Feijoo 2006 Change in capex (two years) JF 
grcapx1y Anderson and Garcia-Feijoo 2006 Investment growth (1 year) AR 
grcapx3y Anderson and Garcia-Feijoo 2006 Change in capex (three years) JF 
ForecastDispersionLT Anderson, Ghysels, and Juergens 2005 Long-term forecast dispersion RFS 
betaVIX Ang et al. 2006 Systematic volatility JF 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
IdioVol3F Ang et al. 2006 Idiosyncratic risk (3 factor) JF 
IdioVolCAPM Ang et al. 2006 Idiosyncratic risk (CAPM) JF 
IdioVolQF Ang et al. 2006 Idiosyncratic risk (q factor) JF 
CoskewACX Ang, Chen and Xing 2006 Coskewness using daily returns RFS 
DownsideBeta Ang, Chen and Xing 2006 Downside beta RFS 
IO_ShortInterest Asquith Pathak and Ritter 2005 Inst own among high short interest JFE 
Mom6mJunk Avramov et al 2007 Junk Stock Momentum JF 
OrderBacklogChg Baik and Ahn 2007 Change in order backlog Other 
ChangeRoA Balakrishnan, Bartov and Faurel 2010 Change in Return on assets NA 
ChangeRoE Balakrishnan, Bartov and Faurel 2010 Change in Return on equity NA 
roaq Balakrishnan, Bartov and Faurel 2010 Return on assets (qtrly) JAE 
MaxRet Bali, Cakici, and Whitelaw 2010 Maximum return over month JF 
ReturnSkew Bali, Engle and Murray 2015 Return skewness Book 
ReturnSkew3F Bali, Engle and Murray 2015 Idiosyncratic skewness (3F model) Book 
ReturnSkewCAPM Bali, Engle and Murray 2015 Idiosyncratic skewness (CAPM) Book 
ReturnSkewQF Bali, Engle and Murray 2015 Idiosyncratic skewness (Q model) Book 
CBOperProf Ball et al. 2016 Cash-based operating profitability JFE 
CBOperProfLagAT Ball et al. 2016 Cash-based oper prof lagged assets JFE 
CBOperProfLagAT_q Ball et al. 2016 Cash-based oper prof lagged assets qtrly JFE 
OperProfRD Ball et al. 2016 Operating profitability R&D adjusted JFE 
OperProfRDLagAT Ball et al. 2016 Oper prof R&D adj lagged assets JFE 
OperProfRDLagAT_q Ball et al. 2016 Oper prof R&D adj lagged assets (qtrly) JFE 
Size Banz 1981 Size JFE 
SP Barbee, Mukherji and Raines 1996 Sales-to-price FAJ 
SP_q Barbee, Mukherji and Raines 1996 Sales-to-price quarterly FAJ 
FirmAge Barry and Brown 1984 Firm age based on CRSP JFE 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
EP Basu 1977 Earnings-to-Price Ratio JF 
EPq Basu 1977 Earnings-to-Price Ratio JF 
hire Bazdresch, Belo and Lin 2014 Employment growth JPE 
InvGrowth Belo and Lin 2012 Inventory Growth RFS 
BrandCapital Belo, Lin and Vitorino 2014 Brand capital to assets RED 
BrandInvest Belo, Lin and Vitorino 2014 Brand capital investment RED 
Leverage Bhandari 1988 Market leverage JFE 
Leverage_q Bhandari 1988 Market leverage quarterly JFE 
ResidualMomentum Blitz, Huij and Martens 2011 Momentum based on FF3 residuals JEmpFin 
ResidualMomentum6m Blitz, Huij and Martens 2011 6 month residual momentum JEmpFin 
Price Blume and Husic 1972 Price JF 
NetPayoutYield Boudoukh et al. 2007 Net Payout Yield JF 
NetPayoutYield_q Boudoukh et al. 2007 Net Payout Yield quarterly JF 
PayoutYield Boudoukh et al. 2007 Payout Yield JF 
PayoutYield_q Boudoukh et al. 2007 Payout Yield quarterly JF 
NetDebtFinance Bradshaw, Richardson, Sloan 2006 Net debt financing JAE 
NetEquityFinance Bradshaw, Richardson, Sloan 2006 Net equity financing JAE 
XFIN Bradshaw, Richardson, Sloan 2006 Net external financing JAE 
DolVol Brennan, Chordia, Subra 1998 Past trading volume JFE 
roic Brown and Rowe 2007 Return on invested capital WP 
DelayAcct Callen, Khan and Lu 2013 Accounting component of price delay CAR 
DelayNonAcct Callen, Khan and Lu 2013 Non-accounting component of price delay CAR 
FailureProbability Campbell, Hilscher and Szilagyi 2008 Failure probability JF 
FailureProbabilityJune Campbell, Hilscher and Szilagyi 2008 Failure probability JF 
FEPS Cen, Wei, and Zhang 2006 Analyst earnings per share WP 
AnnouncementReturn Chan, Jegadeesh and Lakonishok 1996 Earnings announcement return JF 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
REV6 Chan, Jegadeesh and Lakonishok 1996 Earnings forecast revisions JF 
AdExp Chan, Lakonishok and Sougiannis 2001 Advertising Expense JF 
RD Chan, Lakonishok and Sougiannis 2001 R&D over market cap JF 
RD_q Chan, Lakonishok and Sougiannis 2001 R&D over market cap quarterly JF 
rd_sale Chan, Lakonishok and Sougiannis 2001 R&D to sales JF 
rd_sale_q Chan, Lakonishok and Sougiannis 2001 R&D to sales JF 
CashProd Chandrashekar and Rao 2009 Cash Productivity WP 
invest Chen and Zhang 2010 Capex and Inventory Change JF,retracted 
DelBreadth Chen, Hong and Stein 2002 Breadth of ownership JFE 
std_turn Chordia, Subra, Anshuman 2001 Share turnover volatility JFE 
VolSD Chordia, Subra, Anshuman 2001 Volume Variance JFE 
CustomerMomentum Cohen and Frazzini 2008 Customer momentum JF 
retConglomerate Cohen and Lou 2012 Conglomerate return JFE 
RDAbility Cohen, Diether and Malloy 2013 R&D ability RFS 
AssetGrowth Cooper, Gulen and Schill 2008 Asset growth JF 
AssetGrowth_q Cooper, Gulen and Schill 2008 Asset growth quarterly JF 
Activism1 Cremers and Nair 2005 Takeover vulnerability JF 
Activism2 Cremers and Nair 2005 Active shareholders JF 
EarningsForecastDisparity Da and Warachka 2011 Long-vs-short EPS forecasts JFE 
CompEquIss Daniel and Titman 2006 Composite equity issuance JF 
IntanBM Daniel and Titman 2006 Intangible return using BM JF 
IntanCFP Daniel and Titman 2006 Intangible return using CFtoP JF 
IntanEP Daniel and Titman 2006 Intangible return using EP JF 
IntanSP Daniel and Titman 2006 Intangible return using Sale2P JF 
ShareIss5Y Daniel and Titman 2006 Share issuance (5 year) JF 
LRreversal De Bondt and Thaler 1985 Long-run reversal JF 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
MRreversal De Bondt and Thaler 1985 Medium-run reversal JF 
ShortInterest Dechow et al. 2001 Short Interest JFE 
EquityDuration Dechow, Sloan and Soliman 2004 Equity Duration RAS 
cfp Desai, Rajgopal, Venkatachalam 2004 Operating Cash flows to price AR 
cfpq Desai, Rajgopal, Venkatachalam 2004 Operating Cash flows to price quarterly AR 
ZScore Dichev 1998 Altman Z-Score JFE 
ZScore_q Dichev 1998 Altman Z-Score quarterly JFE 
ForecastDispersion Diether, Malloy and Scherbina 2002 EPS Forecast Dispersion JF 
BetaDimson Dimson 1979 Dimson Beta JFE 
ExclExp Doyle, Lundholm and Soliman 2003 Excluded Expenses RAS 
ProbInformedTrading Easley, Hvidkjaer and O'Hara 2002 Probability of Informed Trading JF 
OrgCap Eisfeldt and Papanikolaou 2013 Organizational capital JF 
OrgCapNoAdj Eisfeldt and Papanikolaou 2013 Org cap w/o industry adjustment JF 
nanalyst Elgers, Lo and Pfeiffer 2001 Number of analysts AR 
sfe Elgers, Lo and Pfeiffer 2001 Earnings Forecast to price AR 
GrLTNOA Fairfield, Whisenant and Yohn 2003 Growth in long term operating assets AR 
AM Fama and French 1992 Total assets to market JF 
AMq Fama and French 1992 Total assets to market (quarterly) JF 
BMdec Fama and French 1992 Book to market using December ME JPM 
BookLeverage Fama and French 1992 Book leverage (annual) JF 
BookLeverageQuarterly Fama and French 1992 Book leverage (quarterly) JF 
OperProf Fama and French 2006 operating profits / book equity JFE 
OperProfLag Fama and French 2006 operating profits / book equity JFE 
OperProfLag_q Fama and French 2006 operating profits / book equity JFE 
Beta Fama and MacBeth 1973 CAPM beta JPE 
BetaSquared Fama and MacBeth 1973 CAPM beta squred JPE 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
EarningsSurprise Foster, Olsen and Shevlin 1984 Earnings Surprise AR 
AccrualQuality Francis, LaFond, Olsson, Schipper 2005 Accrual Quality JAE 
AccrualQualityJune Francis, LaFond, Olsson, Schipper 2005 Accrual Quality in June JAE 
EarningsConservatism Francis, LaFond, Olsson, Schipper 2004 Earnings conservatism AR 
EarningsPersistence Francis, LaFond, Olsson, Schipper 2004 Earnings persistence AR 
EarningsPredictability Francis, LaFond, Olsson, Schipper 2004 Earnings Predictability AR 
EarningsSmoothness Francis, LaFond, Olsson, Schipper 2004 Earnings Smoothness AR 
EarningsTimeliness Francis, LaFond, Olsson, Schipper 2004 Earnings timeliness AR 
EarningsValueRelevance Francis, LaFond, Olsson, Schipper 2004 Value relevance of earnings AR 
roavol Francis, LaFond, Olsson, Schipper 2004 RoA volatility AR 
AnalystValue Frankel and Lee 1998 Analyst Value JAE 
AOP Frankel and Lee 1998 Analyst Optimism JAE 
IntrinsicValue Frankel and Lee 1998 Intrinsic or historical value JAE 
PredictedFE Frankel and Lee 1998 Predicted Analyst forecast error JAE 
FR Franzoni and Marin 2006 Pension Funding Status JF 
FRbook Franzoni and Marin 2006 Pension Funding Status JF 
BetaFP Frazzini and Pedersen 2014 Frazzini-Pedersen Beta JFE 
High52 George and Hwang 2004 52 week high JF 
IndMom Grinblatt and Moskowitz 1999 Industry Momentum JFE 
AbnormalAccrualsPercent Hafzalla, Lundholm, Van Winkle 2011 Percent Abnormal Accruals AR 
PctAcc Hafzalla, Lundholm, Van Winkle 2011 Percent Operating Accruals AR 
PctTotAcc Hafzalla, Lundholm, Van Winkle 2011 Percent Total Accruals AR 
tang Hahn and Lee 2009 Tangibility JF 
tang_q Hahn and Lee 2009 Tangibility quarterly JF 
Coskewness Harvey and Siddique 2000 Coskewness JF 
CapTurnover Haugen and Baker 1996 Capital turnover JFE 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
CapTurnover_q Haugen and Baker 1996 Capital turnover (quarterly) JFE 
RoE Haugen and Baker 1996 net income / book equity JFE 
VarCF Haugen and Baker 1996 Cash-flow  to price variance JFE 
VolMkt Haugen and Baker 1996 Volume to market equity JFE 
VolumeTrend Haugen and Baker 1996 Volume Trend JFE 
AnalystRevision Hawkins, Chamberlin, Daniel 1984 EPS forecast revision FAJ 
Mom12mOffSeason Heston and Sadka 2008 Momentum without the seasonal part JFE 
MomOffSeason Heston and Sadka 2008 Off season long-term reversal JFE 
MomOffSeason06YrPlus Heston and Sadka 2008 Off season reversal years 6 to 10 JFE 
MomOffSeason11YrPlus Heston and Sadka 2008 Off season reversal years 11 to 15 JFE 
MomOffSeason16YrPlus Heston and Sadka 2008 Off season reversal years 16 to 20 JFE 
MomSeason Heston and Sadka 2008 Return seasonality years 2 to 5 JFE 
MomSeason06YrPlus Heston and Sadka 2008 Return seasonality years 6 to 10 JFE 
MomSeason11YrPlus Heston and Sadka 2008 Return seasonality years 11 to 15 JFE 
MomSeason16YrPlus Heston and Sadka 2008 Return seasonality years 16 to 20 JFE 
MomSeasonShort Heston and Sadka 2008 Return seasonality last year JFE 
NOA Hirshleifer et al. 2004 Net Operating Assets JAE 
dNoa Hirshleifer, Hou, Teoh, Zhang 2004 change in net operating assets JAE 
depr Holthausen and Larcker 1992 Depreciation to PPE JAE 
pchdepr Holthausen and Larcker 1992 Change in depreciation to PPE JAE 
EarnSupBig Hou 2007 Earnings surprise of big firms RFS 
IndRetBig Hou 2007 Industry return of big firms RFS 
BidAskTAQ Hou and Loh 2016 Bid-ask spread (TAQ) JFE 
PriceDelayRsq Hou and Moskowitz 2005 Price delay r square RFS 
PriceDelaySlope Hou and Moskowitz 2005 Price delay coeff RFS 
PriceDelayTstat Hou and Moskowitz 2005 Price delay SE adjusted RFS 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
Herf Hou and Robinson 2006 Industry concentration (sales) JF 
HerfAsset Hou and Robinson 2006 Industry concentration (assets) JF 
HerfBE Hou and Robinson 2006 Industry concentration (equity) JF 
STreversal Jegadeesh 1989 Short term reversal JF 
RevenueSurprise Jegadeesh and Livnat 2006 Revenue Surprise JFE 
Mom12m Jegadeesh and Titman 1993 Momentum (12 month) JF 
Mom6m Jegadeesh and Titman 1993 Momentum (6 month) JF 
ChangeInRecommendation Jegadeesh et al. 2004 Change in recommendation JF 
OptionVolume1 Johnson and So 2012 Option to stock volume JFE 
OptionVolume2 Johnson and So 2012 Option volume to average JFE 
BetaTailRisk Kelly and Jiang 2014 Tail risk beta RFS 
fgr5yrLag La Porta 1996 Long-term EPS forecast JF 
fgr5yrNoLag La Porta 1996 Long-term EPS forecast (Monthly) JF 
CF Lakonishok, Shleifer, Vishny 1994 Cash flow to market JF 
CFq Lakonishok, Shleifer, Vishny 1994 Cash flow to market quarterly JF 
MeanRankRevGrowth Lakonishok, Shleifer, Vishny 1994 Revenue Growth Rank JF 
sgr Lakonishok, Shleifer, Vishny 1994 Annual sales growth JF 
sgr_q Lakonishok, Shleifer, Vishny 1994 Annual sales growth quarterly JF 
KZ Lamont, Polk and Saa-Requejo 2001 Kaplan Zingales index RFS 
KZ_q Lamont, Polk and Saa-Requejo 2001 Kaplan Zingales index quarterly RFS 
RDS Landsman et al. 2011 Real dirty surplus AR 
Tax Lev and Nissim 2004 Taxable income to income AR 
Tax_q Lev and Nissim 2004 Taxable income to income (qtrly) AR 
RDcap Li 2011 R&D capital-to-assets RFS 
zerotrade Liu 2006 Days with zero trades JFE 
zerotradeAlt1 Liu 2006 Days with zero trades JFE 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
zerotradeAlt12 Liu  2006 Days with zero trades JFE 
ChEQ Lockwood and Prombutr 2010 Growth in book equity JFR 
EarningsStreak Loh and Warachka 2012 Earnings surprise streak  MS 
NumEarnIncrease Loh and Warachka 2012 Earnings streak length MS 
GrAdExp Lou 2014 Growth in advertising expenses RFS 
EntMult Loughran and Wellman 2011 Enterprise Multiple JFQA 
EntMult_q Loughran and Wellman 2011 Enterprise Multiple quarterly JFQA 
CompositeDebtIssuance Lyandres, Sun and Zhang 2008 Composite debt issuance RFS 
InvestPPEInv Lyandres, Sun and Zhang 2008 change in ppe and inv/assets RFS 
DivYield Naranjo, Nimalendran, Ryngaert 1998 Dividend yield for small stocks JF 
DivYieldAnn Naranjo, Nimalendran, Ryngaert 1998 Last year's dividends over price NA 
Frontier Nguyen and Swanson 2009 Efficient frontier index JFQA 
GP Novy-Marx 2013 gross profits / total assets JFE 
GPlag Novy-Marx 2013 gross profits / total assets JFE 
GPlag_q Novy-Marx 2013 gross profits / total assets JFE 
IntMom Novy-Marx 2012 Intermediate Momentum JFE 
OPLeverage Novy-Marx 2010 Operating leverage ROF 
OPLeverage_q Novy-Marx 2010 Operating leverage (qtrly) ROF 
AssetLiquidityBook Ortiz-Molina and Phillips 2014 Asset liquidity over book assets JFQA 
AssetLiquidityBookQuart Ortiz-Molina and Phillips 2014 Asset liquidity over book (qtrly) JFQA 
AssetLiquidityMarket Ortiz-Molina and Phillips 2014 Asset liquidity over market  JFQA 
AssetLiquidityMarketQuart Ortiz-Molina and Phillips 2014 Asset liquidity over market (qtrly) JFQA 
cashdebt Ou and Penman 1989 CF to debt JAR 
currat Ou and Penman 1989 Current Ratio JAR 
pchcurrat Ou and Penman 1989 Change in Current Ratio JAR 
pchquick Ou and Penman 1989 Change in quick ratio JAR 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
pchsaleinv Ou and Penman 1989 Change in sales to inventory JAR 
quick Ou and Penman 1989 Quick ratio JAR 
salecash Ou and Penman 1989 Sales to cash ratio JAR 
saleinv Ou and Penman 1989 Sales to inventory JAR 
salerec Ou and Penman 1989 Sales to receivables JAR 
Cash Palazzo 2012 Cash to assets JFE 
BetaLiquidityPS Pastor and Stambaugh 2003 Pastor-Stambaugh liquidity beta JPE 
BPEBM Penman, Richardson and Tuna 2007 Leverage component of BM JAR 
EBM Penman, Richardson and Tuna 2007 Enterprise component of BM JAR 
EBM_q Penman, Richardson and Tuna 2007 Enterprise component of BM JAR 
NetDebtPrice Penman, Richardson and Tuna 2007 Net debt to price JAR 
NetDebtPrice_q Penman, Richardson and Tuna 2007 Net debt to price JAR 
PS Piotroski 2000 Piotroski F-score AR 
PS_q Piotroski 2000 Piotroski F-score AR 
ShareIss1Y Pontiff and Woodgate 2008 Share issuance (1 year) JF 
DelDRC Prakash and Sinha 2012 Deferred Revenue CAR 
OrderBacklog Rajgopal, Shevlin, Venkatachalam 2003 Order backlog RAS 
DelCOA Richardson et al. 2005 Change in current operating assets JAE 
DelCOL Richardson et al. 2005 Change in current operating liabilities JAE 
DelEqu Richardson et al. 2005 Change in equity to assets JAE 
DelFINL Richardson et al. 2005 Change in financial liabilities JAE 
DelLTI Richardson et al. 2005 Change in long-term investment JAE 
DelNetFin Richardson et al. 2005 Change in net financial assets JAE 
DelSTI Richardson et al. 2005 Change in short-term investment JAE 
TotalAccruals Richardson et al. 2005 Total accruals JAE 
AgeIPO Ritter 1991 IPO and age JF 
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Table 3.A1 (continued) 
List of firm characteristics 

The table summarises the return predictors (firm characteristics) from asset pricing studies that are inputs of our models. 

Acronym Authors Year LongDescription Journal 
BM Rosenberg, Reid, and Lanstein 1985 Book to market using most recent ME JF 
BMq Rosenberg, Reid, and Lanstein 1985 Book to market (quarterly) JF 
Accruals Sloan 1996 Accruals AR 
AssetTurnover Soliman 2008 Asset Turnover AR 
AssetTurnover_q Soliman 2008 Asset Turnover AR 
ChAssetTurnover Soliman 2008 Change in Asset Turnover AR 
ChNCOA Soliman 2008 Change in Noncurrent Operating Assets AR 
ChNCOL Soliman 2008 Change in Noncurrent Operating Liab AR 
ChNNCOA Soliman 2008 Change in Net Noncurrent Op Assets AR 
ChNWC Soliman 2008 Change in Net Working Capital AR 
ChPM Soliman 2008 Change in Profit Margin AR 
PM Soliman 2008 Profit Margin AR 
PM_q Soliman 2008 Profit Margin AR 
RetNOA Soliman 2008 Return on Net Operating Assets AR 
RetNOA_q Soliman 2008 Return on Net Operating Assets AR 
ChInv Thomas and Zhang 2002 Inventory Growth RAS 
ChTax Thomas and Zhang 2011 Change in Taxes JAR 
Investment Titman, Wei and Xie 2004 Investment to revenue JFQA 
realestate Tuzel 2010 Real estate holdings RFS 
secured Valta 2016 Secured debt JFQA 
WW Whited and Wu 2006 Whited-Wu index RFS 
WW_Q Whited and Wu 2006 Whited-Wu index RFS 
AbnormalAccruals Xie 2001 Abnormal Accruals AR 
skew1 Xing, Zhang and Zhao 2010 Volatility smirk near the money JFQA 
SmileSlope Yan 2011 Put volatility minus call volatility JFE 
FirmAgeMom Zhang 2004 Firm Age - Momentum JF 
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Appendix 3.B: Accounting Variables 
Table 3.A2 

List of accounting variables 
The table summarises the accounting variables that are inputs to our models. 

Variable Definition 
ATQ Assets - Total - Quarterly 
DVPQ Dividends - Prefered/Preference - Quarterly 
SALEQ Sales/Turnover (Net) - Quarterly 
SEQQ Stockholders Equity - Total - Quarterly 
IBQ Income Before Extraordinary Items - Quarterly 
NIQ Net Income (Loss) - Quarterly 
XIDOQ Extraordinary Items and Discontinued Operations - Quarterly 
IBADJQ Income Before Extraordinary Items - Adjusted for Common Stock Equivalents - Quarterly 
IBCOMQ Income Before Extraordinary Items - Available for Common - Quarterly 
ICAPTQ Invested Capital - Total - Quarterly 
TEQQ Stockholders Equity - Total - Quarterly 
PSTKRQ Preferred/Preference Stock - Redeemable - Quarterly 
PPENTQ Property Plant and Equipment - Total (Net) - Quarterly 
CEQQ Common/Ordinary Equity - Total - Quarterly 
PSTKQ Preferred/Preference Stock (Capital) - Total - Quarterly 
DLTTQ Long-Term Debt - Total - Quarterly 
PIQ Pretax Income - Quarterly 
TXTQ Income Taxes - Total - Quarterly 
NOPIQ Nonoperating Income (Expense) - Quarterly 
AOQ Assets - Other - Total - Quarterly 
LTQ Liabilities - Total - Quarterly 
DOQ Discontinued Operations - Quarterly 
LOQ Liabilities - Other - Total - Quarterly 
CHEQ Cash and Short-Term Investments - Quarterly 
ACOQ Current Assets - Other - Total - Quarterly 
DVQ Cash Dividends (Cash Flow) - Quarterly 
LCOQ Current Liabilities - Other - Total - Quarterly 
APQ Accounts Payable - Quarterly 
DPQ Depreciation - Quarterly 
COGSQ Cost of Goods Sold - Quarterly 
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Appendix 3.C: Quantitative keywords 

quantitative investment, quantitative model, quantitative analysis, quantitative process, 

quantitative tools, quantitative formula, quantitative computer, statistically driven, statistical 

methods, quantitative methodology, quantitative management, quantitative method, 

quantitative models, quantitative analytics, quantitatively-driven, quantitatively-derived, 

quantitative approach, quantitative value, quantitative statistics, quantitatively investing, 

quantitative measures, quantitative techniques, quantitative research, quantitative methods, 

quantitative, factor-based, quantitative three factor, quantitative approaches, quantitative 

computer valuation, quantitative optimization, quantitatively driven, quantitative studies, 

quantitative computer valuation, quantitatively assess, quantitative assessment, quantitative 

research, quantitatively-oriented, multi-factor, multifactor, multi-factor.
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Appendix 3.D: Time-series tests of portfolios 
Table 3.A3 

Time-series tests of portfolios based on firm characteristics by linear regression 
The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses. *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 
Portfolio  Rm-Rf SMB HML RMW CMA Mom R2 

P1 0.49 0.97 0.75 −0.02 −0.34 0.02 −0.30 88% 
 (3.45)** (24.31)** (12.92)** (-0.30) (−5.00)** (0.22) (−5.20)**  

P2 0.44 0.91 0.67 0.05 −0.23 −0.04 −0.24 91% 
 (3.89)** (29.42)** (14.34)** (0.80) (−4.27)** (−0.53) (−5.46)**  

P3 0.45 0.88 0.66 0.06 −0.18 −0.03 −0.22 90% 
 (4.33)** (31.17)** (14.80)** (1.17) (−3.85)** (−0.41) (−5.72)**  

P4 0.38 0.85 0.60 0.06 −0.15 −0.02 −0.17 90% 
 (3.60)** (29.47)** (14.24)** (1.07) (−3.26)** (−0.32) (−4.15)**  

P5 0.44 0.82 0.56 0.04 −0.14 −0.05 −0.16 89% 
 (4.01)** (26.96)** (13.33)** (0.79) (−2.91)** (−0.62) (−3.59)**  

P6 0.45 0.82 0.59 0.02 −0.13 0.05 −0.15 90% 
 (4.73)** (30.82)** (15.14)** (0.34) (−2.61)* (0.62) (−4.74)**  

P7 0.37 0.83 0.63 0.06 −0.08 0.03 −0.15 89% 
 (3.78)** (30.08)** (16.91)** (0.85) (−1.73) (0.37) (−4.35)**  

P8 0.39 0.86 0.64 0.02 −0.09 0.08 −0.17 90% 
 (3.67)** (29.35)** (14.44)** (0.26) (−1.96) (1.05) (−4.00)**  

P9 0.49 0.88 0.66 0.02 −0.10 0.10 −0.16 89% 
 (4.79)** (32.03)** (14.13)** (0.25) (−1.94) (1.21) (−4.43)**  

P10 0.48 0.91 0.70 0.03 −0.19 0.13 −0.19 86% 
 (3.91)** (29.59)** (13.29)** (0.38) (−2.81)** (1.32) (−4.46)**  

P10−P1 −0.01 −0.06 −0.05 0.05 0.15 0.11 0.11 25% 
 (−0.09) (−2.11)** (−1.07) (1.02) (1.98)* (1.40) (2.56)**  
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Table 3.A4 
Time-series tests of portfolios based on firm characteristics by neural network 

The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses. *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 
Portfolio  Rm-Rf SMB HML RMW CMA Mom R2 

P1 −0.21 1.00 0.81 −0.15 −0.45 −0.25 −0.47 88% 
 (−1.11) (21.25)** (12.17)** (−2.17)** (−4.73)** (−2.36)** (−5.65)**  

P2 0.20 0.94 0.71 -0.03 −0.25 −0.16 −0.33 90% 
 (1.44) (23.83)** (15.01)** (-0.44) (−3.88)** (−1.75) (−5.39)**  

P3 0.29 0.87 0.64 0.00 −0.06 −0.11 −0.26 90% 
 (2.37)* (25.26)** (15.05)** (0.01) (−1.21) (−1.40) (−5.42)**  

P4 0.27 0.87 0.60 0.04 −0.02 −0.01 −0.18 91% 
 (2.75)** (29.95)** (14.74)** (0.75) (−0.41) (−0.20) (−5.18)**  

P5 0.35 0.83 0.56 0.05 −0.06 0.05 −0.13 91% 
 (3.74)** (29.47)** (13.87)** (0.82) (−1.37) (0.75) (−3.83)**  

P6 0.51 0.82 0.57 0.09 −0.05 0.03 −0.12 91% 
 (5.66)** (33.49)** (15.14)** (1.38) (−1.30) (0.49) (−3.64)**  

P7 0.50 0.85 0.59 0.11 −0.06 0.08 −0.10 91% 
 (6.17)** (34.95)** (14.63)** (2.09)* (−1.56) (1.27) (−3.93)**  

P8 0.61 0.84 0.62 0.08 −0.07 0.14 −0.10 90% 
 (6.94)** (33.28)** (15.43)** (1.35) (−1.57) (2.03)* (−3.69)**  

P9 0.73 0.85 0.63 0.14 −0.20 0.13 −0.08 88% 
 (7.19)** (30.21)** (13.50)** (2.02)* (−4.07)** (1.60) (−2.52)*  

P10 1.12 0.87 0.75 0.00 −0.40 0.37 −0.12 79% 
 (7.25)** (21.99)** (10.50)** (0.00) (−4.80)** (2.75)** (−2.56)*  

P10−P1 1.33 −0.13 −0.05 0.15 0.05 0.62 0.35 38% 
 (7.26)** (−2.55)* (−0.77) (1.56)* (0.42) (5.05)** (4.71)**  
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 Table 3.A5 
Time-series tests of portfolios based on past returns by linear regression 

The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses. *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 

Portfolio  Rm-Rf SMB HML RMW CMA Mom R2 

P1 0.58 0.95 0.86 −0.07 −0.43 0.11 −0.32 83% 
 (3.49)** (21.67)** (11.37)** (−0.68) (−4.94)** (0.75) (−4.98)**  

P2 0.58 0.92 0.79 0.02 −0.21 0.07 −0.21 88% 
 (4.87)** (27.02)** (14.60)** (0.31) (−3.29)** (0.65) (−4.65)**  

P3 0.50 0.94 0.72 0.06 −0.14 0.05 −0.19 91% 
 (5.16)** (33.51)** (15.35)** (0.97) (−2.51)* (0.66) (−4.76)**  

P4 0.53 0.92 0.70 0.05 −0.10 0.12 −0.17 93% 
 (5.43)** (35.80)** (18.92)** (1.03) (−2.05)* (1.75) (−4.36)**  

P5 0.55 0.92 0.69 0.07 −0.08 0.03 −0.16 93% 
 (5.64)** (36.43)** (19.18)** (1.39) (−1.80) (0.48) (−3.93)**  

P6 0.66 0.90 0.68 0.07 −0.09 −0.01 −0.19 91% 
 (5.84)** (32.95)** (14.41)** (1.35) (−1.83) (−0.12) (−3.87)**  

P7 0.60 0.90 0.68 0.07 −0.09 −0.02 −0.16 90% 
 (4.86)** (31.00)** (13.45)** (1.31) (−1.47) (−0.30) (−2.71)**  

P8 0.62 0.89 0.73 0.05 −0.13 −0.06 −0.17 89% 
 (4.62)** (27.39)** (12.91)** (0.80) (−1.70) (−0.81) (−2.57)*  

P9 0.52 0.92 0.75 0.02 −0.25 −0.03 −0.17 88% 
 (3.96)** (27.30)** (11.44)** (0.29) (−3.02)** (−0.42) (−3.08)**  

P10 0.76 0.91 0.84 0.07 −0.56 −0.14 −0.21 84% 
 (4.50)** (22.26)** (9.66)** (0.83) (−6.10)** (−1.18) (−3.04)**  

P10−P1 0.18 −0.04 −0.01 0.14 −0.13 −0.25 0.11 6% 
 (1.41) (−1.15) (−0.21) (2.00)* (−1.29)* (-2.28)* (1.40)  
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Table 3.A6 
Time-series tests of portfolios based on past returns by neural network 

The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses. *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 
Portfolio  Rm−Rf SMB HML RMW CMA Mom R2 

P1 −0.30 0.96 0.80 −0.17 −0.60 0.10 −0.39 88% 
 (−2.24)* (26.39)** (11.15)** (−2.04)* (−7.11)** (0.77) (−7.87)**  

P2 0.16 0.94 0.73 −0.01 −0.25 0.10 −0.25 92% 
 (1.68) (34.36)** (14.79)** (−0.12) (−4.54)** (1.11) (−7.13)**  

P3 0.36 0.90 0.68 0.09 −0.16 0.05 −0.17 91% 
 (3.83)** (35.70)** (13.05)** (1.64) (−3.29)** (0.71) (−6.12)**  

P4 0.42 0.89 0.69 0.12 −0.07 0.04 −0.12 92% 
 (5.32)* (39.52)** (17.59)** (2.25)** (−1.75) (0.61) (−4.54)**  

P5 0.58 0.88 0.70 0.13 −0.06 0.04 −0.11 92% 
 (7.40)** (41.75)** (14.30)** (2.95)** (−1.34) (0.71) (−4.64)**  

P6 0.60 0.88 0.67 0.12 −0.07 0.02 −0.07 91% 
 (6.59)** (35.16)** (13.87)** (2.47)* (−1.47) (0.32) (−2.28)*  

P7 0.60 0.91 0.70 0.11 −0.06 0.02 −0.04 91% 
 (6.29)** (41.39)** (14.85)** (2.50)* (−1.14) (0.30) (−1.21)  
P8 0.66 0.92 0.72 0.10 −0.07 −0.01 −0.08 90% 
 (5.98)** (34.75)** (15.55)** (1.68)* (−1.11) (−0.12) (−1.63)*  

P9 0.87 0.92 0.81 0.04 −0.17 −0.09 −0.12 86% 
 (5.68)** (24.43)** (14.44)** (0.51) (−2.15)* (−0.83) (−1.88)  
P10 1.95 0.94 0.94 −0.14 −0.57 −0.17 −0.59 69% 
 (5.13)** (10.62)** (8.44)** (−0.80) (−3.68)** (−0.67) (−3.51)**  

P10−P1 2.25 -0.03 0.14 0.03 0.03 −0.27 −0.20 5% 
 (6.68)** (-0.32) (1.31) (0.14) (0.22) (−1.07) (−1.31)  
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Table 3.A7 

Time-series tests of portfolios based on accounting variables by linear regression 
The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses.  *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 

Portfolio  Rm−Rf SMB HML RMW CMA Mom R2 

P1 −0.09 1.00 0.84 −0.22 −0.68 −0.15 0.09 91% 
 (−1.05) (44.43)** (20.44)** (−4.93)** (−13.91)** (−2.35)* (4.38)**  

P2 −0.03 1.01 0.72 −0.09 −0.23 −0.04 −0.02 95% 
 (−0.47) (62.00)** (17.97)** (−2.09)* (−5.34)** (−0.72) (−1.41)  
P3 0.01 0.98 0.67 0.00 −0.07 −0.02 −0.07 97% 
 (0.25) (59.83)** (19.22)** (0.09) (−1.65) (−0.48) (−3.85)**  

P4 0.13 0.98 0.66 0.06 −0.03 0.00 −0.10 96% 
 (1.95) (58.42)** (19.51)** (1.73) (−0.74) (0.07) (−3.97)**  

P5 0.15 0.96 0.64 0.08 −0.04 0.00 −0.13 95% 
 (1.95) (44.29)** (15.73)** (1.93) (−0.74) (−0.05) (−4.10)**  

P6 0.31 0.92 0.70 0.06 −0.05 0.03 −0.18 93% 
 (2.82)* (30.98)** (14.14)** (1.06) (−0.96) (0.35) (−3.92)**  

P7 0.50 0.86 0.76 0.05 −0.13 0.05 −0.23 89% 
 (3.42)** (21.84)** (12.91)** (0.69) (−1.86) (0.54) (−4.01)**  

P8 1.06 0.79 0.80 0.09 −0.22 0.03 −0.31 83% 
 (5.58)** (15.16)** (10.89)** (0.81) (−2.53)** (0.22) (−4.21)**  

P9 1.76 0.79 0.79 0.13 −0.28 0.11 −0.39 79% 
 (7.57)** (13.54)** (8.85)** (1.26) (−2.97)** (0.72) (−4.02)**  

P10 2.09 0.85 0.86 0.23 −0.37 0.09 −0.61 74% 
 (8.00)** (13.73)** (8.46)** (1.66) (−3.31)** (0.51) (−5.65)**  

P10−P1 2.18 −0.15 0.02 0.46 0.31 0.24 −0.69 57% 
 (8.42)** (−2.36)* (0.15) (3.10)** (2.40)* (1.38) (−6.54)**  
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Table 3.A8 
Time-series tests of portfolios based on accounting variables by neural network 

The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses.  *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 
Portfolio  Rm−Rf SMB HML RMW CMA Mom R2 

P1 −0.34 0.94 0.87 −0.17 −0.59 0.00 −0.02 92% 
 (−3.63)** (39.54)** (17.83)** (−3.15)** (−9.37)** (−0.04) (−0.58)  
P2 −0.11 0.94 0.63 −0.07 −0.23 0.02 −0.06 96% 
 (−1.55) (47.70)** (16.19)** (−1.59) (−4.61) (0.25) (−2.60)*  

P3 0.05 0.93 0.60 0.02 −0.09 0.00 −0.07 96% 
 (0.73) (57.59)** (18.39)** (0.68) (−2.85)** (0.06) (−3.81)**  

P4 0.14 0.93 0.63 0.06 −0.04 0.04 −0.07 96% 
 (2.09)* (53.26)** (19.52)** (1.57) (−1.17) (0.94) (−3.30)**  

P5 0.24 0.93 0.66 0.08 −0.01 0.03 −0.12 95% 
 (3.04)** (45.75)** (16.14)** 1.95 (−0.13) (0.56) (−4.18)**  

P6 0.39 0.91 0.71 0.16 −0.06 −0.05 −0.16 94% 
 (4.19)** (33.04)** (16.47)** (2.95)** (−1.15) (−0.69) (−4.46)**  

P7 0.62 0.91 0.78 0.12 −0.08 0.02 −0.21 91% 
 (5.28)** (28.71)** (15.67)** (2.01)* (−1.39) (0.29) (−4.52)**  

P8 0.92 0.88 0.79 0.10 −0.18 0.01 −0.28 87% 
 (5.37)** (19.62)** (11.70)** (1.00) (−2.29)* (0.09) (−3.82)**  

P9 1.58 0.86 0.83 0.05 −0.29 0.01 −0.37 81% 
 (6.66)** (15.20)** (8.76)** (0.44) (−2.62)** (0.07) (−3.68)**  

P10 2.43 0.91 0.96 0.03 −0.54 0.01 −0.57 74% 
 (8.13)** (12.96)** (7.88)** (0.20) (−3.86)** (0.06) (−4.43)**  

P10−P1 2.78 −0.03 0.09 0.20 0.05 0.01 −0.54 28% 
 (9.61)** (−0.38) (0.80) (1.25) (0.33) (0.07) (−4.16)**  

 

 

 



 

91 
 

Table 3.A9 
Time-series tests of portfolios based on all variables by linear regression 

The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses.  *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 
Portfolio  Rm−Rf SMB HML RMW CMA Mom R2 

P1 0.49 0.97 0.75 −0.02 −0.34 0.02 −0.30 88% 
 (3.45)** (24.33)** (12.93)** (−0.29) (−4.98)** (0.21) (−5.20)**  

P2 0.44 0.91 0.67 0.05 −0.23 −0.04 −0.24 91% 
 (3.89)** (29.37)** (14.32)** (0.80) (−4.27)** (−0.53) (−5.45)**  

P3 0.45 0.88 0.66 0.06 −0.18 −0.03 −0.22 90% 
 (4.33)** (31.22)** (14.79)* (1.16) (−3.84)** (−0.40) (−5.75)**  

P4 0.38 0.85 0.60 0.06 −0.15 −0.02 −0.17 90% 
 (3.59)** (29.41)** (14.24)** (1.06) (−3.27)** (−0.32) (−4.14)**  

P5 0.44 0.82 0.56 0.04 −0.14 −0.05 −0.16 89% 
 (4.03)** (27.09)** (13.36)** (0.79) (−2.91)** (−0.62) (−3.62)**  

P6 0.45 0.82 0.59 0.02 −0.13 0.05 −0.15 89% 
 (4.71)** (30.63)** (15.12)** (0.33) (−2.61)** (0.62) (−4.69)**  

P7 0.37 0.83 0.63 0.06 −0.08 0.03 −0.15 90% 
 (3.79)** (30.11)** (16.89)** (0.85) (−1.73) (0.37) (−4.36)**  

P8 0.39 0.86 0.64 0.02 −0.09 0.08 −0.17 90% 
 (3.66)** (29.28)** (14.44)** (0.26) (−1.96)* (1.05) (−3.99)**  

P9 0.49 0.88 0.66 0.02 −0.10 0.10 −0.16 89% 
 (4.80)** (32.08)** (14.13)** (0.25) (−1.94) (1.21) (−4.45)**  

P10 0.48 0.91 0.70 0.03 −0.19 0.13 −0.19 86% 
 (3.90)** (29.51)** (13.26)** (0.38) (−2.81)** (1.31) (−4.44)**  

P10−P1 −0.01 −0.06 −0.05 0.05 0.15 0.11 0.11 20% 
 (−0.07) (−2.11)* (-1.07) (1.01) (1.97)* (1.42) (2.56)*  
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 Table 3.A10 
Time-series tests of portfolios based on all variables by neural network 

The table reports the results of time-series regressions for excess returns on portfolios sorted by predictions of 
next month's return. The test portfolios are across rows and explanatory variables are across columns. The first 
column "" reports excess return in percent; the regressors include five Fama-French factors plus momentum. 
The last column reports adjusted R2. The sample is from Jan 1985 to December 2020. T-statistics are reported in 
parentheses.  *, ** and *** indicate significant at 10%, 5% and 1% level, respectively. 

Portfolio  Rm−Rf SMB HML RMW CMA Mom R2 

P1 −0.21 1.00 0.81 −0.15 -0.45 −0.25 −0.47 87% 
 (−1.11) (21.27)** (12.17)** (−2.16)* (-4.73)** (−2.36)* (−5.66)**  

P2 0.20 0.94 0.71 −0.03 −0.25 −0.16 −0.33 90% 
 (1.44) (23.76)** (15.00)** (−0.44) (−3.88)** (−1.76) (−5.39)**  

P3 0.28 0.87 0.64 0.00 −0.06 −0.11 −0.26 90% 
 (2.37)** (25.34)** (15.07)** (0.01) (−1.22) (−1.40) (−5.43)**  

P4 0.27 0.87 0.60 0.04 −0.02 -0.01 −0.18 91% 
 (2.74)** (29.90)** (14.75)** (0.75) (−0.41) (-0.20) (−5.17)**  

P5 0.35 0.83 0.56 0.05 −0.06 0.05 −0.13 91% 
 (3.72)** (29.38)** (13.81)** (0.82) (−1.37) (0.74) (−3.80)**  

P6 0.51 0.82 0.56 0.09 −0.05 0.03 −0.12 91% 
 (5.65)** (33.38)** (15.15)** (1.37) (−1.30) (0.48) (−3.63)**  

P7 0.50 0.85 0.59 0.11 −0.06 0.08 −0.10 91% 
 (6.16)** (34.96)** (14.66)** (2.10)* (−1.56) (1.28) (−3.93)**  

P8 0.61 0.84 0.62 0.08 −0.07 0.14 −0.10 90% 
 (6.96)** (33.27)** (15.41)** (1.35) (−1.57) (2.03)* (−3.70)**  

P9 0.73 0.85 0.63 0.14 −0.20 0.13 −0.08 88% 
 (7.19)** (30.22)** (13.51)** (2.02)* (−4.07)** (1.60) (−2.53)*  

P10 1.12 0.87 0.75 0.00 −0.40 0.37 −0.12 78% 
 (7.25)** (21.98)** (10.48)** (0.01) (−4.81)** (2.75)** (−2.56)**  

P10−P1 1.33 −0.13 −0.05 0.15 0.05 0.62 0.35 40% 
 (7.26)** (−2.55)* (−0.77) (1.56) (0.41) (5.05)** (4.71)**  
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Chapter 4: Detecting layering and spoofing in markets 

“Markets today are almost entirely electronic, and algorithms aren’t as savvy as their 

flesh-and-blood counterparts” – Bloomberg (2015) 

 

4.1. Introduction  

Throughout the course of financial market history, market manipulation has created 

vibrant patterns, ranging from traditional tactics like corners and squeezes, to more 

contemporary methods such as pump-and-dump, benchmark manipulation, and quote stuffing 

in recent years. New types of market manipulation have evolved and become prevalent with 

the development of algorithmic and low-latency trading, including spoofing and layering, 

which are the focus of this chapter. Although there has been a sharp spike in the number of 

prosecution cases of layering and spoofing in recent years, these forms of manipulation have 

received relatively little research, particularly the issues of how to detect this form of 

manipulation and distinguish it from legitimate trading. 

Spoofing entails the use of orders with no genuine intention to execute them (“non-

bona-fide orders”) to influence financial market prices. For example, a trader may place large 

non-bona-fide buy orders into a market to create a false impression of buying interest, thereby 

pushing market prices up and causing a better execution price for their sell order. Layering 

refers to the use of several spoofing orders placed as “layers” in the limit order book to create 

the impression that several traders have interest in buying or selling. However, some regulators 

use the two terms interchangeably as both refer to the use of non-bona-fide orders to deceive 

other traders about supply and demand. 

Prosecutions of layering and spoofing have increased substantially in recent years. 

According to the Financial Times (2018), the number of spoofing cases increased by a factor 

of five in 2018, including both criminal and civil enforcement actions, compared to 2017. In 

2020, JP Morgan was instructed to make a historic settlement payment of $920.2 million due 

to their involvement in spoofing activities in the metals and Treasury futures markets.  

The individuals involved in the prosecuted spoofing cases vary widely, ranging from 

an individual day-trader conducting trades from their bedroom to some of the biggest 

institutions on Wall Street. The techniques also range from manual entry of orders to fully 

automated algorithmic strategies. This variation across real cases prompts the questions: (i) 
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what are the empirical characteristics of layering and spoofing that are found across cases, i.e., 

what is the empirical “fingerprint” left in the data by this form of market manipulation, and (ii) 

how accurately can empirical measures of those characteristics detect layering/spoofing and 

distinguish it from legitimate trading? We address both questions in this chapter.  

We start by hand collecting the most comprehensive database of layering/spoofing. We 

do so by systematically identifying prosecution cases from markets all around the world during 

a 10-year period (2010−2020). We extract case information from regulatory and court 

documents, and where insufficient information is provided, we obtain further details via 

Freedom of Information (FOI) requests. Using these sources, we compile records of known 

instances of layering and spoofing with varying degrees of granularity, but in many cases down 

to the level of individual trades and orders. 

We first use the database of layering/spoofing to provide a descriptive anatomy of each 

case, focusing on the circumstances and motivation, the trading strategy, and any peculiarities 

or aspects that differ from other cases. A “typical” case of spoofing involves the manipulator 

placing a relatively minor order at or close to the best available quote on one side of the market 

(the bona-fide order), followed by the placement of a large order or multiple orders on the 

opposite side of the market (the illegitimate order(s)). This tactic aims to generate an order 

imbalance and exert influence over the market. The bona-fide order will then execute if the 

non-bona-fide orders have a sufficient influence on the market. Finally, the manipulator will 

typically cancel the non-bona-fide orders following the execution of the bona-fide order. This 

pattern can be repeated multiple times, alternating between spoofing the buy and sell sides of 

the market, as each occurrence may only result in a modest profit. However, it is also possible 

for layering/spoofing to be used in a one-off manipulation to improve a trade execution price. 

In analyzing the cases, we find substantial variation in how layering and spoofing is 

implemented by different traders in different markets. Some use computer algorithms, others 

place orders manually. Some use multiple layering orders, others prefer to use a single large 

spoofing order. Some place spoofing orders at the best quotes, others stay back from the best 

quotes to reduce the chance of the non-bona-fide orders executing. Some repeat the 

layering/spoofing cycles rapidly switching between the buy and sell sides of the market, while 

others undertake isolated instances or repeat cycles less frequently.   

Despite these differences, we also identify important commonalities across the cases. 

Non-genuine spoofing orders are typically cancelled before they execute, leading to high 
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cancellation or order amendment rates. Manipulators create substantial order imbalances in the 

limit order book. Manipulators tend to execute trades on the opposite side of the limit order 

book to the non-bona-fide orders and often manipulators repeat the layering/spoofing activities 

in cyclical patterns, switching between spoofing the buy and sell sides of the market.     

Next, we construct daily and intraday empirical metrics to capture the common 

characteristics of spoofing. We apply logistic regression to test which of the empirical metrics 

can detect spoofing instances at daily and intraday horizons. In these tests, we use out-of-

sample cross-validation to test the accuracy of the metrics. We also estimate machine learning 

(random forest) prediction models to capture non-linearities between the empirical metrics. 

We find that the proposed empirical metrics are able to detect spoofing at both daily 

and intraday horizons but are more accurate when drawing on intraday data. Of the daily 

metrics, order book imbalance and the frequency of the imbalance switching sides (from a buy-

side imbalance to a sell-side imbalance, and vice versa) are the most effective in predicting 

spoofing. At intraday horizons, the metrics that are effective in detecting spoofing are order 

imbalance, abnormal cancellation rates, trades that are on the opposite side to high quoting 

activity, and cancels that are on the opposite side to a trade.  

Spoofing can be regarded as a form of bluffing in markets. It has therefore likely existed 

for decades if not centuries. However, recent evolution of markets towards increased 

automation of trading has made spoofing and layering more widespread. These developments 

have prompted legislative reforms that clarify that the practice is considered illegal, such as the 

Dodd-Frank Wall Street Reform and Consumer Protection Act.10 They also explain the rapid 

rise in the number of prosecution cases, as noted earlier.  

The reasons why automation in markets has driven an increase in spoofing are twofold. 

First, order execution algorithms are often programmed to consider the order book depth 

(volume of orders in the limit order book) on both sides of the market when deciding whether 

to place their next order as a passive limit order or to “cross the spread” with a market order 

and demand liquidity.11 This programmed behavior of execution algorithms creates a 

 
10 The Dodd Frank Act (for short) amended the Commodity Exchange Act and adopted an explicit prohibition 

against spoofing, which it defined as “bidding or offering with the intent to cancel the bid or offer before 

execution.” 
11 Typically, an execution algorithm that is trying to buy a security will be more passive (e.g., use limit orders) 

when there are more sell orders in the limit order book compared to the volume of buy orders, and more aggressive 
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predictable response to limit order book conditions that can be profitably exploited through 

spoofing. Effectively, the success of spoofing algorithms in today’s markets is in part due to 

the presence of other algorithmic traders that can be exploited. 

Second, a single instance of spoofing may yield only a small profit. For example, with 

a bid of $10.00 and ask of $10.20, a spoofing cycle that manages to buy 500 shares at the ask 

and sell them at the bid earns a profit of 500 × $0.20 = $100, less fees. Yet if that small profit 

can be earned hundreds or thousands of times in a day, then the strategy can become highly 

profitable. Automation enables spoofing strategies to be repeated many times in an efficient 

manner and has therefore increased the potential profits from spoofing.   

This chapter contributes to a broader literature on market manipulation.12 Most 

theoretical studies of market manipulation focus on when and how market manipulation is 

possible and how it affects market quality. For example, Jarrow (1992) and Cherian and Jarrow 

(1995), investigate the possibility of market manipulation by large traders with market power. 

Cooper and Glen (1998) and Allen, Litov, and Mei (2006) study traditional market 

manipulation techniques such as corners and squeezes in which manipulators control prices by 

obtaining a significant fraction of the supply. Merrick Jr, Naik, and Yadav (2005) model the 

differences in settlement between the spot and futures markets, creating favorable conditions 

for squeezes. Eren and Ozsoylev (2006) explore the economic circumstances under which 

hype-and-dump manipulation is possible. Hanson and Oprea (2009) examine the impacts of 

manipulators on price accuracy. Similarly, Allen and Gale (1992) use the Glosten and Milgrom 

(1985) framework to show that trade-based manipulation is possible even without taking 

actions to alter a firm’s value or releasing false information.  

Spoofing is examined theoretically by Cartea, Jaimungal, and Wang (2020) and 

Williams and Skrzypacz (2021). Cartea et al. (2020) show in a model how a trader wanting to 

sell can achieve a better sale price by using spoofing orders on the buy side of the limit order 

book to influence the market. They also analyze how fines imposed by regulators affect 

spoofing revenues, concluding there is a deterrence effect. Williams and Skrzypacz (2021) 

show that spoofing exists in equilibrium, slows price discovery, raises bid-ask spreads, and 

raises return volatility, supporting regulatory concerns about this type of trading. They 

 
(e.g., use market orders) when there are more buy orders in the limit order book compared to the volume of sell 

orders, and vice versa when trying to sell.  
12 For a survey of the literature, see Putniņš (2020). 
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conclude that spoofing is likely to be most prevalent in markets with a medium level of 

liquidity.  

Using an agent-based simulation model, Wang et al. (2021) find that simple spoofing 

strategies can mislead traders, distort prices, and reduce welfare. They propose two approaches 

to mitigating spoofing: (i) mechanism design to disincentivize manipulation; and (ii) changes 

to trading strategies to improve the robustness of learning from market information. 

There is limited empirical research on spoofing or layering. One exception is Lee, Eom, 

and Park (2013) who examine spoofing in the Korean Stock Exchange (KRX). The spoofing 

they identify exploits a very specific feature of the KRX, where orders in the limit order book 

placed well outside of the best quotes with very low execution probability would still get 

reported in the aggregate limit order book depth. Wang (2019) finds that in the Taiwan Index 

Futures Market spoofing tends to increase volatility, volume, and influences prices in the 

direction of the spoofing orders. Debie et al. (2023) examine the JP Morgan spoofing case, 

proposing that an alternative motivation for the spoofing orders may have been to attract 

liquidity rather than to influence the price. While their paper provides a useful case study, they 

only discuss one spoofing case and focus on visual methodology. Our chapter contributes to 

these empirical studies of spoofing by analyzing a comprehensive global database of spoofing 

cases and developing/validating metrics to detect spoofing.  

Our chapter also contributes to empirical studies of other modern abusive trading 

techniques. Bernhardt and Davies (2009) demonstrate that mutual fund managers have 

incentives to influence closing prices at the end of reporting periods. Comerton-Forde and 

Putniņš (2011, 2014) characterize the effects of closing price manipulation on the US and 

Canadian stock exchanges and develop a measure of the probability of closing price 

manipulation. Friederich and Payne (2015), Egginton, Ness, and Ness (2016), and Khomyn 

and Putniņš (2021) investigate the puzzling high order-to-trade ratios and cancelation rates in 

markets and whether they may be explained by spoofing or other legitimate trading strategies. 

Zhai, Cao and Ding (2018) use data mining methods to detect an abnormal pattern in quoting 

and trading activities of rogue traders. Dhawan and Putniņš (2022) examine pump-and-dump 

manipulation in cryptocurrency markets.  

The findings of this chapter have practical applications in market surveillance and 

regulation. In enforcing anti-spoofing provisions, proving illegal spoofing has occurred is 

challenging, and leads to a long time from investigation and prosecution to a final conviction. 
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The spoofing characteristics that we identify may complement the current statutory and 

regulatory guidelines for how to identify spoofing.  

This chapter proceeds as follows – the next section defines layering and spoofing based 

on legislation and existing literature. Following that, we characterize the common features of 

spoofing strategies based on the hand-collected sample of prosecution cases and discuss unique 

features of the cases to gauge the variability between cases. The next section defines and tests 

the empirical metrics used to detect spoofing, after which we summarize the conclusions.  

    

4.2. What are layering and spoofing? 

For clarity on what it is that we seek to empirically characterize, we first describe the 

legal definitions of layering and spoofing as well as the way this form of market manipulation 

is defined in prior literature. 

Spoofing is specified as a criminal and civil offence in several jurisdictions. For 

example, in the US regulatory framework, provisions in the Dodd-Frank Act 2010 (Section 

747), Commodity Exchange Act (Section 4c(a)(5)(C)), Securities Exchange Act (Section 10(b) 

and 9(a)(2)), Security Act 1993 (Section 17(a)), SEC Rule 10b-5, and the FINRA Rule 2020 

may be used to enforce spoofing-like behavior.  

Section 747 of the Dodd-Frank Wall Street Reform and Consumer Protection Act 

contains an explicit anti-spoofing provision that prohibits individuals from engaging in any 

trading, practice, or conduct that is commonly known as “spoofing”. It provides a short 

definition of “spoofing” as “bidding or offering with the intent to cancel the bid or offer before 

cancellation”.  

Section 9(a)(2) Prohibition Against Manipulation of Security Prices of the Securities 

Exchange Act 1934 does not directly provide a definition of spoofing. However, it states that 

“it is unlawful for any person, directly or indirectly, by the use of the mails or any means or 

instrumentality of interstate commerce, or of any facility of any national securities exchange, 

or for any member of a national securities exchange, to effect, alone or with one or more other 

persons, a series of transactions in any security creating apparent active trading in such security, 

or raising or depressing the price of such security, to induce the purchase or sale of such security 

by others”.  
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In 2010, the CFTC publishes a guideline that clarifies some definitions and 

particularities of spoofing, inviting public comments. In 2011, the CFTC publishes a Proposed 

Interpretive Order regarding the Dodd-Frank Act to specify the intent requirement of spoofing 

conduct. According to the proposed guidance, a violator must act with some degree of requisite 

intent or scienter in that they intended to cancel the bid or ask before execution. Reckless 

trading or conduct is insufficient. Additionally, cancellation of orders as part of a “legitimate, 

good faith attempt to consummate trade” is inadequate to meet the requirement of spoofing.  

The 2013 CFTC final interpretive guidance adds four specific (non-exclusive) 

examples of conduct that constitute spoofing: submitting or cancelling bids or offers to 

overload the quotation system, delaying another person’s execution of trades, creating the 

appearance of false market depth, and making artificial price movements upwards or 

downwards.  

Many other jurisdictions prohibit spoofing through general market manipulation 

provisions but do not provide an explicit definition of spoofing in legislation. For example, the 

European legal framework does not explicitly define spoofing apart from more general 

prohibited manipulative conduct. Spoofing can contravene civil or regulatory provisions in the 

EU Market Abuse Regulation (596/2014) and can be a criminal offence under the Financial 

Services Act 2012 and the Fraud Act 2006. In a relevant part of the provisions, Article 12 of 

the EU Market Abuse Regulation (596/2014) defines a type of market manipulation as behavior 

that “gives, or is likely to give, false or misleading signals as to the supply of, demand for, or 

price of, a financial instrument, or a related spot commodity contract.” Ultimately, spoofing 

falls within this description of prohibited conduct. 

In a taxonomy of market manipulation types, spoofing is one of the order-based 

manipulation techniques (Putniņš, 2020). It involves submitting orders to a market to cancel 

them before they execute (Putniņš, 2020). Orders play a central role in this manipulation, 

although trades accompany them as part of the strategy. Although spoofing can be conducted 

manually, this manipulation is often implemented by computer algorithms that submit and 

cancel orders.  

Layering is one type of spoofing strategy that involves submitting multiple orders 

designed to be cancelled (Putniņš, 2020). Orders are placed in layers across several price levels 

or on top of one another at a given price step, and cancellations happen on one side of order 

book.  
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In placing the spoofing orders, manipulators face a tradeoff – if they are submitted far 

away from the best prices, they may have limited influences on the market, yet if they are 

placed at the best quotes, they may inadvertently be executed, contrary to the manipulator’s 

intention. Therefore, in balancing these two considerations, spoofing orders are typically 

placed close to or at the best price but behind other orders at that price and then dynamically 

amended or cancelled as the market moves and as the spoofing orders become more likely to 

be executed.  

It is well established in the market microstructure literature that the order book 

information, such as the limit orders sitting in the book, affects the trading decisions of market 

participants. For example, many studies find that when there is more depth on the bid (buy) 

side, buyers respond by increasing the aggressiveness of their orders: placing buy orders at 

higher prices and/or using market orders to execute their trades immediately rather than being 

patient and using limit orders.13 Conversely, when there is more depth on the sell side, sellers 

respond by increasing the aggressiveness of their orders: placing sell orders at lower prices 

and/or using market orders to execute their trades immediately rather than being patient and 

using limit orders. Therefore, layering the bid side is likely to cause other traders to place buy 

orders with a more assertive approach at higher prices, and vice versa, layering the ask side is 

likely to cause other participants in the market to submit more aggressive sell orders at lower 

prices. 

 

4.3. Characteristics of layering and spoofing in prosecution cases 

This section analyses a comprehensive set of prosecution cases from around the world. 

We manually collect spoofing and layering cases prosecuted by market regulators from January 

2010 to January 2020. We identify the instances via systematic searches of 

regulatory/enforcement releases, court filings of prosecutors, news databases (Factiva), and 

legal databases (LexisNexis). Once a case is identified, we extract as much information as 

possible from publicly available documents, then supplement that with documents obtained 

through court repositories, including using the court document service, PACER (Public Access 

to Court Electronic Records).  

 
13 For examples see Parlour (1998), Biais, Hillion, and Spatt (1995), Cao, Hansch, and Wang (2008), Griffiths et 
al. (2000), and Ranaldo (2004). 
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In cases where information is still missing, we file requests for information with the 

relevant authority or authorities via Freedom of Information (FOI) requests. Most cases are 

prosecuted in the US (e.g., by the Financial Industry Regulatory Authority (FINRA), Securities 

and Exchange Commission (SEC), Commodity Futures Trading Commission (CFTC)) and the 

UK (e.g., by the Financial Conduct Authority (FCA)). 

 

4.3.1. Overview of the prosecution cases 

Table 4.1 below provides a summary of the prosecuted layering and spoofing cases, the 

manipulation period, the market, and the type of enforcement action. It shows that the cases 

are prosecuted under both civil and criminal processes. They involve a range of markets, 

including both equities and futures.
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Table 4.1 
Summary of Prosecution Cases 

This table provides a summary of the spoofing prosecution cases, including the market regulator, accused/prosecuted party, year of manipulation, market, market, and exchange. 
The cases are from market regulators in the US such as the Financial Industry Regulatory Authority (FINRA), Securities and Exchange Commission (SEC), Commodity Futures 
Trading Commission (CFTC), in the UK such as the Financial Conduct Authority (FCA), in Canada such as the Ontario Securities Commission (OSC), and Japan such as the 
Securities and Exchange Surveillance Commission (SESC). The cases are from January 2010 to January 2020. Manipulated stock exchanges and futures exchanges include the 
New York Stock Exchange (NYSE), Nasdaq Stock Exchange (NASDAQ), New York Stock Exchange Arca (NYSE Arca), London Stock Exchange (LSE), Tokyo Stock 
Exchange (TYO), Intercontinental Exchange (ICE), Index and Options Market (IOM), Commodity Exchange (COMEX), New York Mercantile Exchange (NYMEX), Chicago 
Mercantile Exchange (CME), Chicago Board Options Exchange (CBOE), and Chicago Board of Trade (CBOT). 

Number Regulator Case 
period 

Accused/prosecuted party Period of manipulation   Market type Exchange Action 

1 FINRA 2010−2010 Trillium Brokerage Services 1/11/2006−31/1/2007 Equities market NASDAQ, NYSE Civil 

2 FSA 2011−2014 Swift Trade & Peter Beck 1/1/2007−4/1/2008 Equities market LSE Civil 

3 SEC 2012−2012 Hold Brothers 1/2009−9/2010 Equities market NASDAQ, NYSE Civil 

4 SEC 2012−2012 Biremis Corporation 1/2007−6/2010 Equities market NYSE Civil 

5 SESC 2014−2014 Select Vantage 12/4/2012−24/4/2012 Equities market TYO Civil 

6 SEC 2014−2014 Visionary Trading LLC 5/2008−11/2011 Equities market NASDAQ Civil 

7 SEC, FCA 2014−2017 Michael Coscia 8/2011−7/2012 Equities market ICE Criminal 

8 FCA 2015−2015 Da Vinci Invest 2010−2011 Equities market CME, CBOT Civil 

9 OSC 2015−2015 Oasis World Trading 9/2013−10/2014 Equities market Many Canadian equity 
markets 

Civil 

10 CFTC 2015−2016 Igor B. Oystacher  12/2011−1/2014 Futures market COMEX, NYMEX, CME, 
CBOE 

Civil 

11 CFTC 2015−2016 Navinder Singh Sarao 6/2009−7/2015 Futures market CME  Criminal 

12 CFTC 2015−2017 Heet Khara and Nasim Salim 2/2015−4/2015 Futures market COMEX Civil 
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Table 4.1 (continued) 
Summary of Prosecution Cases  

This table provides a summary of the spoofing prosecution cases, including the market regulator, accused/prosecuted party, year of manipulation, market, and exchange. 
The cases are from market regulators in the US such as the Financial Industry Regulatory Authority (FINRA), Securities and Exchange Commission (SEC), Commodity 
Futures Trading Commission (CFTC), in the UK such as the Financial Conduct Authority (FCA), in Canada such as the Ontario Securities Commission (OSC), and 
Japan such as the Securities and Exchange Surveillance Commission (SESC). The cases are from January 2010 to January 2020. Manipulated stock exchanges and 
futures exchanges include the New York Stock Exchange (NYSE), Nasdaq Stock Exchange (NASDAQ), New York Stock Exchange Arca (NYSE Arca), London Stock 
Exchange (LSE), Tokyo Stock Exchange (TYO), Intercontinental Exchange (ICE), Index and Options Market (IOM), Commodity Exchange (COMEX), New York 
Mercantile Exchange (NYMEX), Chicago Mercantile Exchange (CME), Chicago Board Options Exchange (CBOE), and Chicago Board of Trade (CBOT). 

Number Regulator Case 
period 

Accused/prosecuted party Period of manipulation Market type Exchange Action 

13 SEC 2015−2022 Aleksandr Milrud 1/2013−1/2015 Equities market NYSE Criminal 

14 SEC 2016−2021 Joseph Taub and Elazar Shmalo 1/2014−12/2015 Equities market NASDAQ, NYSE Criminal 

15 SEC 2017−2022 Lek Securities 12/2010−9/2016 Equities market NASDAQ, NYSE Civil 

16 CFTC 2017−2017 Arab Global Commodities 3/2016−8/2016 Futures market COMEX Civil 

17 CFTC 2017−2017 David Liew 2009−2/2012 Futures market COMEX Criminal 

18 CFTC 2017−2017 Simon Posen 12/2011−3/2015 Futures market NYMEX, COMEX Civil 

19 CFTC 2017−2017 Bank of Tokyo-Mitsubishi UFJ 2010−2011 Futures market CFE, CME Civil 

20 CFTC 2018−2018 HSBC Securities (USA) Inc 7/2011−8/2014 Futures market COMEX Civil 

21 CFTC 2018−2018 Mizuho Bank, Ltd 5/2016−5/2017 Futures market CFE, CME Civil 

22 CFTC 2018−2018 Michael D. Franko 5/2013−7/2014 Futures market COMEX, NYMEX Civil 

23 CFTC 2018−2019 Krishna Mohan 9/2012−03/2014 Futures market CME, CFE Criminal 

24 CFTC 2018−2019 Jitesh Thakkar  30/1/2013−30/10/2013 Futures market CME Acquit 

25 CFTC 2018−2023 John Edmonds 2009−2015 Futures market NYMEX, COMEX Criminal 
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4.3.2. Key features of the prosecution cases 

 

1) Michael Coscia 

The Michael Coscia spoofing case is important as it was one of the first cases in which 

an individual was successfully prosecuted for spoofing in accordance with the Dodd-Frank 

Wall Street Reform Act of 2010, thereby setting a legal precedent. His convictions sent a strong 

message that regulators will pursue criminal charges against those who engage in spoofing.  

Michael Coscia was an experienced trader with more than 20 years of trading 

experience at the time. He was the principal of Panther Energy Trading, a firm specializing in 

high-frequency trading. His spoofing strategy was facilitated by algorithms and targeted other 

high-frequency and algorithmic traders by triggering predictable behaviors of other algorithms.  

According to court documents, Coscia engaged in spoofing on at least 36 different 

occasions between August 2011 and July 2012. He was eventually sentenced to three years in 

prison. In addition to his prison sentence, Coscia was also ordered to pay a $2.8 million fine 

and to forfeit $3.9 million in ill-gotten gains.  

 

2) Navinder Singh Sarao  

Navinder Singh Sarao is a notable case because he was accused of contributing (through 

his spoofing strategy) to the 2010 “flash crash” that occurred in the United States stock market. 

The flash crash, which took place on May 6th, 2010, was characterized by a sudden and sharp 

drop in stock prices that wiped $1 trillion off the market for a few minutes before prices began 

to recover. Sarao was indicted on criminal charges in the United States for his alleged role in 

the flash crash, including fraud and spoofing. 

Sarao was a self-taught trader. He traded from his parents’ house in a suburb of England. 

He devised his own trading program after realizing that every time an order was placed, high-

frequency traders would make trades milliseconds before these orders were executed and be 

the first to make money from market changes.  

Sarao was arrested in the UK in 2015 and extradited to the United States in 2016 to face 

trial. In 2017, he admitted guilt for a single charge of spoofing and a separate charge of wire 

fraud. Consequently, he received a prison sentence of four years and was also mandated to pay 

a fine amounting to $12.9 million. 
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3) Swift Trade 

In 2013, Swift Trade, a Canadian trading firm, was accused of spoofing. In this case, 

Swift Trade was accused of placing more than 100,000 spoofing orders over a period of three 

years, resulting in more than $5 million in profits. Swift Trade operated a network with about 

150 trading locations worldwide with hundreds of traders. What is unusual about this case is 

that the spoofing was not conducted by a single individual or algorithm, but rather, through the 

network of hundreds of traders in 30 countries. Individual price movements were small but 

profits were magnified by repeating the pattern many times a day, in many shares across market 

sectors, and many trading locations. The court imposed a fine of £8 million on Swift Trade in 

May 2011. 

 

4) Da Vinci Invest 

In 2015, Da Vinci Invest, an English company, is accused of engaging in spoofing with 

three traders from Hungary to manipulate stocks on LSE in 2010. This instance signifies the 

first occasion in which the Financial Services Authority (FSA, the predecessor of the FCA) 

employs legal actions to secure permanent restraining orders and monetary sanctions against 

an individual involved in market manipulation. 

It is noteworthy that Da Vinci Invest executes spoofing cycles at high speed. The whole 

process from submitting orders, canceling orders, and switching sides often takes place within 

a minute. Da Vinci's algorithm directs the spoofing orders that made “saw-tooth” patterns of 

trading many times during the day. 

 

5) Joseph Taub and Elazar Shmalo 

The Joseph Taub and Elazar Shmalo case involves two individuals who were charged 

with engaging in layering/spoofing the futures market. What is interesting about this case is 

that the layering used different trading accounts to submit layered orders and genuine orders to 

obscure what is otherwise a highly suspicious pattern of trading. Many of the accounts were 

opened in the names of individuals who neither controlled nor traded the securities held in the 

accounts.  
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At least one account was primarily used to place multiple small orders to create upward 

or downward pressure on the stock price (referred to as a “helper” account). At least one other 

account (referred to as a “winner” account) was primarily used to buy and sell more substantial 

quantities of stocks at prices affected by the manipulative orders placed by the helper account. 

The market manipulation scheme used 36 accounts with at least nine independent brokerage 

firms. There were no algorithms involved. 

 

6)  Alexsandr Milrud 

While most strategies in other cases involved computers, Canadian resident Milrud 

orchestrated spoofing manually. Milrud supposedly engaged in spoofing by having many 

people, not programs and machines. He led and managed several groups of traders, based 

primarily in South Korea and China, involved in layering in US securities markets.  

To facilitate the spoofing, he worked with a gaming company to develop algorithms 

with hotkeys for quickly submitting, amending, or cancelling orders. Milrud was eventually 

convicted of the charges against him and was sentenced to prison for his role in the spoofing 

scheme.  

 

7)  Igor B.Oystacher and 3 Red Trading 

Oystacher was accused of engaging in spoofing on numerous occasions between 2010 

and 2013 and was eventually charged with six counts of commodities fraud and six counts of 

spoofing. The most notable characteristic of the Oystacher layering strategies is that he took 

advantage of a commonly used function of the exchange platform (function called “avoid 

orders that cross”) to facilitate his scheme instead of using a purposefully designed computer 

program. The traders took advantage of this feature by submitting orders that would 

automatically cancel the submitted orders on the opposing side, effectively avoiding any 

potential matches with the new orders. This process occurred swiftly and nearly 

simultaneously. 

Oystacher also used “iceberg” or hidden-quantity orders offered by specifically 

designated contract markets. The genuine orders were placed as a partially visible iceberg order 

to maximize the likelihood of execution.  
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Oystacher was sentenced to three years in jail and a $1.1 million fine. Oystacher also 

settled $5 million in civil fines to the US CFTC. 

 

8) Jim Zhao  

In the Jiongsheng Zhao spoofing case, Zhao was accused of engaging in a scheme to 

artificially influence prices of futures on the COMEX (Commodity Exchange) and NYMEX 

(New York Mercantile Exchange). Zhao used both computer programs and manual trading. 

Zhao placed orders from his home or offices in Sydney, Australia. Interestingly, the daytime 

trading session in these US markets corresponds with night-time in Australia; therefore, the 

Zhao focused on carrying out his scheme almost exclusively during the US overnight sessions. 

Zhao claimed he placed the spoof orders to liquidate the substantial positions prior to mid-day 

and conclude the trading day.  

Zhao was indicted on federal charges of wire fraud, commodities fraud, and spoofing 

in 2017. He pleaded guilty to the charges in 2018 and was given a sentence of 30 months in 

jail and ordered to pay a fine of $1.5 million. 

 

9) James Vorley and Cedric Chanu 

James Vorley and Cedric Chanu were convicted of spoofing in a US federal court in 

Chicago in 2018. Vorley and Chanu were employed as traders on the metals desk at Deutsche 

Bank. Vorley and Chanu joined a scheme with a general pattern of placing numerous spoofing 

orders for precious metals futures contracts. The manipulators manually placed layering orders. 

They used functions allowed by trading venues, such as “iceberg” orders, to facilitate their 

scheme. 

 

10) J.P. Morgan  

The J.P. Morgan case against the metals desk team including Michael Nowak, Gregg 

Smith, and Jeffrey Ruffo is the recent of DOJ’s legal actions against spoofing in our sample. 

The J.P. Morgan spoofing case involved the use of fraudulent trading techniques by ten 

individuals within the bank to manipulate markets for financial instruments. The alleged 

spoofing was so successful that it led to $300 million in loss to other traders in the market from 

March 2008 to August 2016.  
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The traders engaged in illicit trading practices and communicated about their activities 

using electronic means such as chat messages and emails. Most instances of their spoofing 

lasted less than one minute. The strategies were executed manually and deliberately designed 

to mislead other market participants who relied on automated trading systems or computer 

algorithms for their trades. The company settled $920 million in fines.  

 

4.3.3. Anatomy of a spoofing case 

This subsection zooms in and analyzes an example of a layering and spoofing case in 

detail. The example is from the Da Vinci case. The manipulated stock is Admiral Group. The 

manipulation period was from 14:35 to 15:08 (exchange time) on March 18, 2011.  

First, we describe the steps followed by the manipulator in this specific case through 

one full cycle of spoofing (including buy and sell activity). We define one cycle of spoofing as 

one buy phase (layer the ask (offer) side to buy at a lower price) and one sell phase (layer the 

bid side to sell at a higher price).  

The buying phase is shown in Figure 4.1. At 14:41:31, the manipulator submits a large 

(spoofing) sell order of size 14,520 at the best ask (sell) price of 1574. At that time, the total 

volume at the best ask was only 79. Three seconds later, the manipulator submits another large 

order (17,500) to sell the stock at 1574. While the two large sell orders remain at the 1574 price 

level, smaller sell orders are submitted by other market participants at 1573 to get execution 

priority over the spoofing orders. Therefore, the spoofing orders get pushed back in priority to 

ask level 2. At 14:41:47, other sell orders are submitted at prices of 1573 and 1572. Therefore, 

on the sell side at 14:41:47, there are layers of spoofing orders at several price steps behind the 

best prices.  

Between 14:41:31 and 14:41:47, while the spoofing sell orders are placed, the seller-

initiated trades and additional sell orders from other market participants that are likely to have 

been influenced by the spoofing orders drive down the mid-price. Figure 4.2 shows the 

decrease in mid-quote while the spoofing sell orders are in the market. 

Having depressed the market price, at 14:41:52, the manipulator’s genuine (intended to 

execute) buy order executes at a price of 1572. This price is lower than the price that the 

manipulator would have paid had they bought at 14:41:31 before entering the spoofing sell 
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orders. Soon after, the manipulator cancels one of the spoofing sell orders of size 12,500 at ask 

level 2.  

The imbalance in the limit order book (appearance of selling pressure) created by the 

spoofing sell orders is easily observable in Figure 4.3. 
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 Figure 4.1 
Example of order placement and cancellation during the buying phase of a layering case 

This figure demonstrates the buy phase of a layering case drawn from the prosecution case FCA v. Da Vinci Invest. The manipulated security is Admiral Group PLC on the 
LSE on March 18, 2011. The figure shows the change in the level 1 ask price, level 1 bid price, and the mid-price as a result of order entry, cancellation, and execution. The 
figure provides time on the horizontal axis and price on the vertical axis. “+” indicates entry of a spoofing order, “×” indicates cancellation of a spoofing order, and “” 
indicates a trade.  

 

 

Spoofed orders entered (on Ask 

level 1 and other lower levels) 

Spoofed 

orders 

cancelled Execution of 

genuine orders  
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Figure 4.2
Level 1 depth and midquote prices during the buying phase of a layering case

This figure illustrates the level 1 bid and ask depth and midquote prices during the buying phase (layering orders are on the sell (ask) side) of a layering case. The example is 
from the prosecution case FCA v. Da Vinci Invest. The manipulated security is Admiral Group PLC on the LSE on March 18, 2011. For illustrative purposes, we multiply bid 
volume by −1.
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Figure 4.3 
Order book imbalance during the buying phase of a layering case 

This figure illustrates the first 5 levels of the order book on the bid and ask sides showing the imbalance created by spoofing orders on the sell (ask) side of the market. The 
example is from the prosecution case FCA v. Da Vinci Invest. The manipulated security is Admiral Group PLC on the LSE on March 18, 2011. 
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For the next few seconds, the manipulator’s buy orders continue to execute at low prices 

against incoming sell orders. At 14:42:01 and 14:42:04, the manipulator executes another two 

buy orders on the bid side at a price of 1573.  

At 14:42:08, the manipulator submits another large spoofing order of size 12,500 at the 

price of 1573 to support the rest of the spoofing orders on level 2 of the ask side. As soon as 

this order is submitted, other sellers jump ahead of the spoofing order, bringing the ask price 

down to 1572. The manipulator takes advantage of the induced selling to buy at 1572. Five 

seconds later, at 14:42:15, the manipulator cancels the spoofing orders of size 12,500 at the 

price of 1573 and resubmits them at best ask price, keeps them in the order book for only 

around 10 seconds and then cancels all non bona-fide orders on the ask side at 14:42:48.  

That concludes the “buying phase” of this instance of spoofing.   

The manipulator then waits about 5 minutes and then repeats a similar pattern of 

trading, but on the bid side in what is the “selling phase” – using non-bona-fide orders on the 

buy side to push the market up and execute ask orders at relatively high prices.  That is how 

the manipulator offloads the inventory of stock accumulated during the buying phase. Figure 

4.4. illustrates the selling phase. 



 

114 
 

 Figure 4.4 
Example of order placement and cancellation during the selling phase of a layering case 

This figure demonstrates the sell phase of a layering case drawn from the prosecution case FCA v. Da Vinci Invest. The manipulated security is Admiral Group PLC on the 
LSE on March 18, 2011. The figure shows the change in the level 1 ask price, level 1 bid price, and the mid-price as a result of order entry, cancellation, and execution. The 
figure provides time on the horizontal axis and price on the vertical axis. “+” indicates entry of a spoofing order, “×” indicates cancellation of a spoofing order, and “” 
indicates a trade.  
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The manipulator follows the same strategy as before to layer the bid side, starting with 

a large spoofing buy order of size 12,500 at the best bid price of 1573 at 14:46:07. As soon as 

this order is entered, a small buy order from another market participant is submitted at a price 

of 1574 to “leapfrog” the spoofing order and compete with it for execution priority in the order 

book. Ten seconds later, the manipulator submits another large order of size 14,200 at 1574. 

As soon as the large spoofing order is entered, buy orders from other market participants are 

submitted at higher prices and push the spoofing orders back in limit order book priority to 

price steps behind the best quotes. At this point, both the mid-price and the best ask price have 

been increased by the spoofing. Figure 4.5 illustrates the change in mid-price and depth at the 

best quotes. 

The manipulator then keeps submitting larger orders at the best buy prices to support 

the upward pressure on prices. The spoofing buy orders keep attracting other market 

participants to buy until the best bid price at 14:47:13 is driven up to 1577. The large orders 

are pushed back to level 2 again due to new buy orders from other participants. The excess 

buying interest is illustrated in Figure 4.6. 

Having inflated the price, the manipulator executes sell orders on the ask side from 

14:47:15 to 14:47:39 at a price of 1576, which is higher than what they would have received 

had they sold at 14:46:07 before placing the spoofing orders. They cancel the spoofing orders 

between 14:47:46 and 14:48:38, completing the selling phase of the spoofing strategy. 
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Figure 4.5
Level 1 depth and midquote prices during the selling phase of a layering case

This figure illustrates the level 1 bid and ask depth and midquote prices during the selling phase (layering orders are on the buy (bid) side) of a layering case. The example is 
from the prosecution case FCA v. Da Vinci Invest. The manipulated security is Admiral Group PLC on the LSE on March 18, 2011. For illustrative purposes, we multiply bid 
volume by −1.
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 Figure 4.6 
Order book imbalance during the selling phase of a layering case 

This figure illustrates the first 5 levels of the order book on the bid and ask sides showing the imbalance created by spoofing orders on the buy (bid) side of the market. The 
example is from the prosecution case FCA v. Da Vinci Invest. The manipulated security is Admiral Group PLC on the LSE on March 18, 2011. 
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4.3.4. Layering and spoofing characteristics 

The anatomy of the spoofing case in the previous subsection suggests a pattern of 

trading that has some distinguishing characteristics. Based on that example as well as a broader 

review of the other cases in our sample, we develop a set of characteristics that are commonly 

seen during spoofing – effectively, the empirical “footprint” that is left behind in market data 

by spoofing strategies. Having defined the set of distinguishing characteristics, we then 

systematically review each prosecution case in our sample against these characteristics to 

identify how consistently they present themselves in the cross-section of spoofing cases. 

A successful layering and spoofing scheme typically involves placing large orders on a 

specific side (“spoofing side”) of the market in a manner that creates a highly unbalanced order 

book that conveys the impression of a lot of trading interest on the spoofing side. Orders on the 

spoofing side are mostly cancelled after obtaining a better execution price for the manipulator 

on the other side. The genuine interest of the manipulator is in trading on this side (“genuine 

side”).14 The genuine orders are typically smaller (individually or in aggregate) than the non-

bona-fide orders to enable the book imbalance that pushes the market to execute against the 

manipulator’s genuine orders. 

In some cases, orders on the genuine side are placed as hidden orders to further amplify 

the appearance of an imbalance in the visible orders. The manipulator attempts to avoid 

execution on the spoofing side, although sometimes inadvertently a spoofing order placed by 

the manipulator will execute. Typically, genuine-side orders are more frequently executed than 

spoofing side orders, consistent with the intentions of the manipulator. 

Cyclical layering is a form of layering in which the layering process is repeated many 

times in a day by switching from layering the bid side to layering the ask side.  Not all spoofing 

cases have this cyclical property, but when it is present it is a further indication of spoofing and 

can be used to improve detection accuracy. A typical layering cycle includes: (i) placing small 

order on the genuine side of the market, (ii) submitting a significant volume of orders on the 

 
14 While we refer to the orders that the manipulator intends to execute as the genuine orders and the genuine side, 

that is only intended to convey that the manipulator genuinely wants those orders to execute. From a legal 

perspective, however, given the trading is conducted for an impermissible purpose, all the manipulator’s orders 

and trades may be regarded as non-genuine. 



 

119 
 

other side of the market (spoofing side) to move the market towards the genuine order,15 (iii) 

parallel to or after the execution of a genuine order, the layering orders are cancelled,16 and (iv) 

these steps are then repeated on the opposing side. This series of order placements and 

cancellations creates a distinctive intraday cyclical pattern. The layering cycles are typically 

conducted in a short time, within a matter of seconds or minutes. However, the cycles can last 

for longer. When conducted at high-frequencies (e,g., sub-second layering cycles), they are 

typically implemented with the use of pre-programmed algorithms, making rapid submission 

and cancellation possible. When cyclical layering is conducted intraday, there can be hundreds 

or thousands of instances (cycles) in a day. 

Below are the key identifying characteristics of spoofing. No single characteristic is 

definitive proof of spoofing, but a collection of characteristics seen together can effectively 

distinguish between spoofing and legitimate trading as per the empirical tests in the next 

section.  

  

Characteristic 1. High Quoting Activity  

The limit orders of a layering strategy are likely to represent a substantial proportion of 
the depth (resting orders) on one bid or ask side (buying or selling) as the layering strategy is 
attempting to mislead the market.17  Using a large volume increases the probability that the 
layering orders have a substantial effect on the appearance of supply or demand and therefore 
the desired effect of influencing the price or trading decisions of other market participants. 
 

Characteristic 2. Unbalanced Quoting 

The resting (unexecuted) limit orders of a layering strategy at a specific moment are 

likely to be highly unbalanced (more buy volume than sell volume or vice versa). The 

 
15 The order of (i) and (ii) can be changed in some cases.  
16 In most cases, spoofing orders are cancelled right after execution of the genuine order(s). However, there are 

cases where spoofing orders are cancelled before execution. 
17 The resting orders could be large or small, what matters is their aggregate volume being a substantial proportion 

of the depth.  For example, in the alleged layering conducted by Joseph Taub and Elazar Shmalo (see United 

States of America v Joseph Taub and Elazar Shmalo, Mag. No. 16-8190) the layering orders are small in induvial 

volume but large in number, while in other cases the layering is conducted with fewer but larger orders (e.g., US 

CFTC v. Nav Sarao Futures Limited Plc and Navinder Singh Sarao, 2015). 
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imbalance is used to create a misleading perception regarding the presence of buying and 

selling interest in order to influence other participants and market prices. 

 

Characteristic 3. Abnormal Cancellation 

Layering strategies imply abnormally large cancellation rates (a high ratio of 

cancellations to trades).  This is because the layering orders are not intended to execute so they 

will typically end in a cancellation. Layering orders may also need to be cancelled and 

resubmitted as market conditions change (such as when the market moves towards the layering 

orders) to maintain a low execution probability. 

 

Characteristic 4. Low Execution Probability  

Layering orders are placed in the market to deliberately have a low execution 

probability, either at price steps behind the best quotes or at the back of a long queue of orders 

at a price level.18 To the extent that low execution probability is achieved by placing orders 

away from the best quotes, we see less aggressiveness of the spoofing orders (orders further 

from the best quotes) on the same side as order imbalance. Depending on the market or trading 

platform, there are different tactics to lower the probability of execution. 

 

Characteristic 5. Inventory Reversals 

Manipulators using intraday layering strategies are likely to accumulate long or short 

positions intraday, but typically they do not hold positions overnight. In such cases, buying 

 
18 Low execution probability can be obtained by setting low prices on buy orders (prices falling below the lowest 

bid price) or high prices on sell orders (prices surpassing the highest ask side).  Alternatively, in markets with a 

lot of depth at the best quotes, layering orders could be submitted at the best quotes relying on time priority to 

give the orders low execution priority (they would be at the back of a long queue).  In doing so, the orders would 

need to be cancelled and resubmitted or amended in such a way that they lose time priority as they approach the 

front of the queue. 
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volume during the day is equal to selling volume, demonstrating inventory reversal 

characteristics. 

 

Characteristic 6. Trades Oppose Quotes 

Manipulators engaging in layering will often have trades carry out on the other side to 

their resting order imbalance (e.g., if the trader has more buy orders than sell orders, they are 

likely to execute sells and vice versa).  Put differently, manipulators using layering often trade 

in a direction that is opposite to what their order imbalance would signal as their intended 

direction of trade because their order imbalance is not a true reflection of their intentions as 

many or all of those orders are not intended to execute. 

 

Characteristic 7. Cancels Oppose Trades 

Manipulators engaging in layering will often cancel orders on specific side after they 

execute an order on the opposite market side (e.g., after they buy, they cancel sell orders, and 

vice versa).  This occurs because layering orders are not intended to execute and once they 

have served their purpose of pushing the market towards the price of any bona fide orders 

resulting in executions, the layering orders can be cancelled. 

 

Characteristic 8. Dark Opposes Lit 

When manipulators use “dark” or hidden orders as part of their strategy (not all do so), 

their “lit” or displayed order imbalance (imbalance between the volume of displayed buy and 

sell orders) is likely to be opposite in direction to their dark/hidden order imbalance. For 

example, if a manipulator is trying to sell with dark/hidden orders and they use layering to 

assist in the execution of those sells, they are likely to have a buy imbalance (more buy volume 

than sell volume) to create the false impression of buying interest. The opposite imbalances in 

the lit and dark occur because dark/hidden orders are unlikely to be used to fabricate an 

inaccurate perception of the supply or demand for a given stock because these orders are not 

displayed to the market. Dark/hidden orders are therefore more likely to reflect the 

manipulator’s true trading intention at a given point in time. 
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Characteristic 9. Quoting Opposes Inventory Reversion 

Manipulators tend to layer the order book's bid side when they have a long position and 

vice versa – layer the ask side when they have a short position. Manipulator's order imbalance 

reflects inventory position. Consequently, the manipulator’s order imbalance in the limit order 

book will tend to mirror their inventory position: a buy-side imbalance (more resting buy orders 

than sell orders) when they have bought the stock (long position) and a sell-side imbalance 

(more resting sell orders than buy orders) when they have sold the stock (short position). 

 

Characteristic 10. Quoting Opposes Trading Intention 

Manipulators tend to place orders in the limit order book opposite to their trading 

intention: if they want to sell, they will typically have more buy orders and vice versa. The 

empirical relevance of this characteristic is that if it is possible to infer a trader’s trading 

intention (to buy or to sell, e.g., if they tend to close the day’s trading with zero inventory and 

happen to be long near the end of the day, then it is likely the manipulator  intends to sell), then 

orders submitted on the opposite side of the trading intention are likely spooking orders. 

 

Characteristic 11. Cyclical Pattern in Depth 

During cyclical layering events, large, layered orders create an imbalance of depth o a 

particular market side, which then switches to the other side, and back again as layering cycles 

are conducted. This pattern is repeated until the end of the layering instance.  

 

Characteristic 12. Cyclical Pattern in Cancellations 

Similarly, cyclical layering results in cycles of high cancellation rates on the bid side, 

then the sell side, then the buy side again, and so on. 

 

Characteristic 13. Cyclical Pattern in Inventory  

Cyclical manipulators layer bid side when they have a long position and layer ask side 

when they have a short position. Repetition of these cycles creates a cyclical pattern in the net 

position of the manipulator's inventory during the day.  
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Characteristic 14. Cyclical Pattern in the Mid-price 

Cyclical layering results in cycles of rising then falling mid-prices as the manipulator 

switches between spoofing both sides of the market. 

Table 4.2 illustrates which characteristics are present in each of the prosecution cases 

in our sample. In explaining the results, it is essential to recognize that only some of the 

prosecuted cases involve the cyclical form of layering and therefore characteristics 11−14 are 

not expected to be present in all cases. The results suggest a striking consistency with most of 

the relevant characteristics being present in most cases.   

Given that many of these characteristics are inconsistent with reputable approaches to 

conducting trades such as market making, arbitrage, and execution algorithms, the consistent 

presence of these characteristics suggests they should have the ability to empirically detect 

layering and spoofing and distinguish it from legitimate trading. We test this notion in the next 

section. 
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Table 4.2 
Characteristics displayed in prosecuted or alleged layering and spoofing cases 

This table illustrates which of the characteristics of layering are present in prosecuted or alleged layering cases. Given the limited details of some of the cases and reliance upon 
documents that are available in the public domain, courts, and via FOI requests, it is not possible to assess the presence of all characteristics in all cases. “N/A” is used to 
indicate instances where it has not been possible to determine whether a particular characteristic is present or not. “Y” and “N” indicate the characteristic is or is not present in 
the case, respectively. The characteristics correspond to those described earlier. 

 Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 Type General General General General General General General General General General Cyclical Cyclical Cyclical Cyclical 

Characteristics 
Unbalanced 

Quoting 

High 
Quoting 
Activity 

Abnormal 
Cancellatio

n 

Low 
Execution 
Probability 

Inventory 
Reversal 

Trades 
Oppose 
Quotes 

Cancels 
Oppose 
Trades 

Dark 
Opposes 

Lit 

Quoting 
Opposes 
Inventory 
Reversion 

Quoting 
Opposes 
Trading 
Intention 

Cyclical 
Pattern in 

Depth 

Cyclical 
Pattern in 

Cancellatio
ns 

Cyclical 
Pattern in 
Inventory  

Cyclical 
Pattern in 
Mid-price 

Da Vinci Invest Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 

Michael Coscia Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 
Peter Beck and Swift 
Trade Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 

Biremis Corporation Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 
Joseph Taub and Elazar 
Shmalo Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 

Aleksandr Milrud Y Y Y Y Y Y Y N/A Y Y N/A N/A N/A N/A 

Visionary Trading LLC Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Lek Secs Y Y Y N/A Y Y Y N/A Y Y Y Y Y Y 
 
Hold Brothers  Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 
Trillium Brokerage 
Services Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 
 
Zhen (Steven) Pang Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 

Igor B. Oystacher Y Y Y Y Y Y Y Y Y Y N/A N/A N/A N/A 

Navinder Singh Sarao Y Y Y Y Y Y Y N/A Y Y Y Y Y Y 

Jiong Sheng Zhao Y Y Y Y Y Y Y N/A Y Y N/A N/A N/A N/A 
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 Table 4.2 (continued) 
Characteristics displayed in prosecuted or alleged layering and spoofing cases 

This table illustrates which of the characteristics of layering are present in prosecuted or alleged layering cases. Given the limited details of some of the cases and reliance upon 
documents that are available in the public domain, courts, and via FOI requests, it is not possible to assess the presence of all characteristics in all cases. “N/A” is used to 
indicate instances where it has not been possible to determine whether a particular characteristic is present or not. “Y” and “N” indicate the characteristic is or is not present in 
the case, respectively. The characteristics correspond to those described earlier. 
 

 Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 Type General General General General General General General General General General Cyclical Cyclical Cyclical Cyclical 

Characteristics 
Unbalanced 

Quoting 

High 
Quoting 
Activity 

Abnormal 
Cancellatio

n 

Low 
Execution 
Probability 

Inventory 
Reversal 

Trades 
Oppose 
Quotes 

Cancels 
Oppose 
Trades 

Dark 
Opposes 

Lit 

Quoting 
Opposes 
Inventory 
Reversion 

Quoting 
Opposes 
Trading 
Intention 

Cyclical 
Pattern in 

Depth 

Cyclical 
Pattern in 

Cancellatio
ns 

Cyclical 
Pattern in 
Inventory  

Cyclical 
Pattern in 
Mid-price 

James Vorley and Cedric 
Chanu Y Y Y Y Y Y Y N/A Y Y N/A N/A N/A N/A 

Krishna Mohan  Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Jitesh Thakkar Y Y Y Y N/A Y Y N/A N/A Y N/A N/A N/A N/A 

Mizuho Bank, LTD Y Y Y N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Michael D. Franko Y Y Y Y Y Y Y Y Y Y N/A N/A N/A N/A 

Arab Global Commodities Y Y Y Y Y Y Y N/A Y Y N/A N/A N/A N/A 

Citigroup Global Markets Y Y Y Y Y Y Y N/A Y Y N/A N/A N/A N/A 

David Liew Y Y Y N/A Y Y Y N/A Y Y N/A N/A N/A N/A 

Simon Posen Y Y Y N/A Y Y Y Y Y Y Y Y Y Y 
The Bank of Tokyo-
Mitsubishi Y Y Y N/A Y Y Y N/A Y Y N/A N/A N/A N/A 
Heet Khara and Nasim 
Salim Y Y Y N/A Y Y Y N Y Y N/A N/A N/A N/A 
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4.4. Data and metrics definition  

4.4.1. Data 

We manually extract as many instances of spoofing/layering from the set of prosecution 

cases. Instances are recorded at two levels of granularity. One level of granularity is security-

days (a given security that is manipulated on a given day) and the other is intraday, security-

seconds (a given security that is manipulated in a given one-second interval). 

The daily sample of prosecuted instances of layering includes 151 manipulated 

security-days. The intraday sample consists of 1,282 manipulated security-seconds. We obtain 

detailed trade and quote data (every trade and every quote/order entry/update/cancellation) and 

limit order book depth data from Thomson Reuters to estimate the daily and intraday metrics. 

For testing the metrics, we supplement the instances of layering with a matched sample of 

security-days and security-seconds that have not been manipulated. 

 

4.4.2. Metrics  

The metrics are based on the characteristics identified in the previous section as the 

empirical footprint of spoofing. As we only use publicly available market data in this study, as 

opposed to regulatory or proprietary data, we can estimate eight of the characteristics: high 

quoting activity, unbalanced quoting, abnormal cancellations, low execution probability, trades 

oppose quotes, cancels oppose trades, and cyclical patterns in depth and cancellations19: 

 

 
19 In a forensic setting, with regulatory or proprietary data, it may be possible to estimate the other characteristics 

as well.  It also may be possible to modify the way these eight metrics are estimated so that they focus in on a 

particular market participant, rather than being estimated at the market level. 
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Metric 1. High Quoting Activity  

𝐻𝑄𝑖,𝑠(𝑑) = max
𝑡∈𝑠(𝑑)

(
|𝐸𝑛𝑡𝑟𝑦𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐸𝑛𝑡𝑟𝑦𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡|

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(36) 

   where 𝐸𝑛𝑡𝑟𝑦𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the increase in the aggregate volume of the orders resting on the 
top 5 ask levels of security 𝑖 at time 𝑡 (equal to 0 if there is no increase in the 
aggregate volume) 
𝐸𝑛𝑡𝑟𝑦𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the increase in the aggregate volume of the orders resting on the 
top 5 bid levels of security 𝑖 at time 𝑡 (equal to 0 if there is no increase in the 
aggregate volume) 
𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 indexes time (order book events) 
𝑠 is a 1-second interval and 𝑑 is 1-day interval (the metric is calculated for either of 
these frequencies). 

 

Metric 2. Unbalanced Quoting 

𝑈𝑄𝑖,𝑠(𝑑) = max
𝑡∈𝑠(𝑑)

(
|𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡|

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(37) 

   where 𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 indexes time (order book events) 
𝑠 is a 1-second interval and 𝑑 is 1-day interval (the metric is calculated for either of 
these frequencies). 

 

Metric 3. Abnormal Cancellations 

𝐴𝐶𝑖,𝑠(𝑑) = max
𝑡∈𝑠(𝑑)

(
|𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡|

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(38) 

   where 𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the decrease in the aggregate volume of the orders resting on 
the top 5 ask levels of security 𝑖 at time 𝑡 (equal to 0 if there is no decrease in the 
aggregate volume) 
𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the decrease in the aggregate volume of the orders resting on 
the top 5 bid levels of security 𝑖 at time 𝑡 (equal to 0 if there is no decrease in the 
aggregate volume) 
𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 indexes time (order book events) 
𝑠 is a 1-second interval and 𝑑 is 1-day interval (the metric is calculated for either of 
these frequencies). 
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Metric 4. Low Execution Probability  

𝐿𝐸𝑖,𝑠(𝑑) = max
𝑡∈𝑠(𝑑)

(
|𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝐿𝑒𝑣𝑒𝑙2𝑡𝑜5𝑖,𝑡 − 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝐿𝑒𝑣𝑒𝑙2𝑡𝑜5𝑖,𝑡|

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(39) 

   where 𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝐿𝑒𝑣𝑒𝑙2𝑡𝑜5𝑖,𝑡 is the cumulative depth on ask level 2 to 5 of security 𝑖 at time 
𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝐿𝑒𝑣𝑒𝑙2𝑡𝑜5𝑖,𝑡 is the cumulative depth on bid level 2 to 5 of security 𝑖 at time 
𝑡 
𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 indexes time (order book events) 
 
𝑠 is a 1-second interval and 𝑑 is 1-day interval. 

 

Metric 5. Trades Oppose Quotes 

For intraday intervals:  

𝑇𝑂𝑄𝑖,𝑠 = {

1       if       𝑂𝐼𝐵𝑖,𝑠−1
𝐴𝑠𝑘 > 10%       and     𝑇𝑟𝑎𝑑𝑒𝑖,𝑠

 𝐵𝑖𝑑 = 1       

1       if       𝑂𝐼𝐵𝑖,𝑠−1
𝐵𝑖𝑑 > 10% and     𝑇𝑟𝑎𝑑𝑒𝑖,𝑠

𝐴𝑠𝑘 = 1

0                   otherwise          

 
(40) 

   where 𝑇𝑟𝑎𝑑𝑒𝑖,𝑠
 𝐴𝑠𝑘 = 1 if there is a trade on the ask side during second 𝑠 

𝑇𝑟𝑎𝑑𝑒𝑖,𝑠
 𝐵𝑖𝑑 = 1 if there is a trade on the bid side during second 𝑠 

𝑠 is a 1-second interval  
The order imbalance variables, 𝑂𝐼𝐵𝑖,𝑠−1

𝐴𝑠𝑘  and 𝑂𝐼𝐵𝑖,𝑠−1
𝐵𝑖𝑑 , are defined as: 

 

𝑂𝐼𝐵𝑖,𝑠−1
𝐴𝑠𝑘 = max

𝑡∈𝑠−1
(

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(41) 

𝑂𝐼𝐵𝑖,𝑠−1
𝐵𝑖𝑑 = max

𝑡∈𝑠−1
(

𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(42) 

where 𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 indexes time (order book events) 
𝑠 is a 1-second interval. 

For the daily measure, we sum the number of instances of trades opposing abnormal quoting 

activity for the whole day: 
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𝑇𝑂𝑄𝑖,𝑑 = ∑ 𝑇𝑂𝑄𝑖,𝑠

 

𝑠∈𝑑

 
(43) 

 

Metric 6. Cancels Oppose Trades 

For intraday intervals:  

𝐶𝑂𝑇𝑖,𝑠 = {

1       if       𝐶𝐼𝐵𝑖,𝑠−1
𝐴𝑠𝑘 > 10%       and     𝑇𝑟𝑎𝑑𝑒𝑖,𝑠

 𝐵𝑖𝑑 = 1       

1       if       𝐶𝐼𝐵𝑖,𝑠−1
𝐵𝑖𝑑 > 10% and     𝑇𝑟𝑎𝑑𝑒𝑖,𝑠

𝐴𝑠𝑘 = 1

0                   otherwise          

 
(44) 

   where 𝑇𝑟𝑎𝑑𝑒𝑖,𝑠
 𝐴𝑠𝑘 = 1 if there is a trade on the ask side during second 𝑠 

𝑇𝑟𝑎𝑑𝑒𝑖,𝑠
 𝐵𝑖𝑑 = 1 if there is a trade on the bid side during second 𝑠 

𝑠 is a 1-second interval  
The cancel imbalance variables, 𝐶𝐼𝐵𝑖,𝑠−1

𝐴𝑠𝑘  and 𝐶𝐼𝐵𝑖,𝑠−1
𝐵𝑖𝑑 , are defined as: 

 

𝐶𝐼𝐵𝑖,𝑠−1
𝐴𝑠𝑘 = max

𝑡∈𝑠−1
(

𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(45) 

𝐶𝐼𝐵𝑖,𝑠−1
𝐵𝑖𝑑 = max

𝑡∈𝑠−1
(

𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
) 

(46) 

   where 𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the decrease in the aggregate volume of the orders resting on 
the top 5 ask levels of security 𝑖 at time 𝑡 (equal to 0 if there is no decrease in the 
aggregate volume) 
𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the decrease in the aggregate volume of the orders resting on 
the top 5 bid levels of security 𝑖 at time 𝑡 (equal to 0 if there is no decrease in the 
aggregate volume) 
𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 indexes time (order book events) 
𝑠 is a 1-second interval. 

For the daily measure, we sum the number of instances of cancels opposing trades for the 

whole day: 

𝐶𝑂𝑇𝑖,𝑑 = ∑ 𝐶𝑂𝑇𝑖,𝑠

 

𝑠∈𝑑

 
(47) 
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Metric 7. Cyclical Pattern in Depth 

The variable 𝐶𝑃𝐷𝑖,𝑠(𝑑) counts the number of times that unbalanced quoting, 𝑈𝑄𝑖,𝑡, switches 

sign from greater than 10% to less than −10% or vice versa (in such instances 𝕀{𝑈𝑄𝑖,𝑡} = 1) 

during interval 𝑠 (a 1-second interval) or interval 𝑑 (a 1-day interval):  

𝐶𝑃𝐷𝑖,𝑠(𝑑) = ∑ 𝕀{𝑈𝑄𝑖,𝑡}

 

𝑡∈𝑠(𝑑)

 

𝑈𝑄𝑖,𝑡 =
𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 − 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
 

(48) 

   where 𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 ask levels of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡. 
𝑡 indexes time (order book events) 
 

 

Metric 8. Cyclical Pattern in Cancellations 

The variable 𝐶𝑃𝐶𝑖,𝑑(𝑠)  counts the number of times that unbalanced cancellations, 𝑈𝐶𝑖,𝑡, 

switches sign from greater than 10% to less than −10% or vice versa (in such instances 

𝕀{𝑈𝐶𝑖,𝑡} = 1) during interval 𝑠 (a 1-second interval) or interval 𝑑 (a 1-day interval): 

𝐶𝑃𝐶𝑖,𝑠(𝑑) = ∑ 𝕀{𝑈𝐶𝑖,𝑡}

 

𝑡∈𝑠(𝑑)

 

𝑈𝐶𝑖,𝑡 =
𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 −  𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡

𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡
 

(49) 

   where 𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the decrease in the aggregate volume of the orders resting on 
the top 5 ask levels of security 𝑖 at time 𝑡 (equal to 0 if there is no decrease in the 
aggregate volume) 
𝐶𝑎𝑛𝑐𝑒𝑙𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the decrease in the aggregate volume of the orders resting on 
the top 5 bid levels of security 𝑖 at time 𝑡 (equal to 0 if there is no decrease in the 
aggregate volume) 
𝐴𝑠𝑘𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth (aggregate order quantity) on the top 5 ask levels 
of security 𝑖 at time 𝑡 
𝐵𝑖𝑑𝑆𝑖𝑧𝑒𝑖,𝑡 is the cumulative depth on the top 5 bid levels of security 𝑖 at time 𝑡 
𝑡 is every point in time 

 

Table 4.3 reports the statistical tests for difference in the daily metrics between security-

days that contain manipulation and the matched sample of security-days that do not contain 

any known manipulation. Most of the metrics show significantly positive differences between 
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the manipulation and non-manipulation samples. The most significant differences are for 

manipulation cases executed on the Intercontinental Exchange (ICE) and the New York 

Mercantile Exchange (NYMEX). NYMEX is the largest energy markets and have long been 

competitors in terms of liquidity. ICE is the first fully electronic energy market and attracts a 

high level of liquidity from energy traders.  

Table 4.4 shows the same statistics for the intraday granularity (security-seconds). 

Again, most of the metrics have higher means for the manipulation cases than the non-

manipulation observations. The most significant differences are for manipulation cases 

executed on the Chicago Board Options Exchange (CBOE) and the Index and Option Market 

(IOM).
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Table 4.3  
Difference in daily metrics for manipulation vs non-manipulation instances 

This table reports averages of the metrics for manipulated security-days compared to non-manipulated security-days. The first column shows the market where manipulation 
happens (Chicago Board Options Exchange (CBOE), Chicago Board of Trade (CBOT), Commodity Exchange (COMEX), Intercontinental Exchange (ICE), Index and Options 
Market (IOM), London Stock Exchange (LSE), New York Mercantile Exchange (NYMEX)). The second column (N) shows the number of observations in manipulated and 
non-manipulated group. In the third column, rows (1) show the mean values for manipulated security-days, rows (2) show the mean values for non-manipulated security-days. 
Difference (1−2) is the difference between rows (1) and rows (2). The metrics are defined in the text. 𝐻𝑄 is High Quoting Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal 
Cancellations, 𝐿𝐸 is Low Execution Probability, 𝑇𝑂𝑄 is Trades Oppose Quotes, 𝐶𝑂𝑇 is Cancels Opposes Trades, 𝐶𝑃𝐷 is Cyclical Pattern in Depth, 𝐶𝑃𝐶 is Cyclical Pattern 
in Cancellations. ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.  

Exchange N  𝐻𝑄 𝑈𝑄 𝐴𝐶 𝐿𝐸 𝑇𝑂𝑄 𝐶𝑂𝑇 𝐶𝑃𝐷 𝐶𝑃𝐶 
CBOE 15 Manipulated securities (1) 1.17 0.76 0.38 0.78 752.40 58.33 121.30 323.30 
 388 Non-manipulated securities (2) 0.83 0.57 0.61 0.65 90.26 5.14 18.39 35.34 
  Difference (1−2) 0.35 0.19*** −0.22 0.13*** 662.10*** 53.19*** 102.90*** 288*** 

CBOT 10 Manipulated securities (1) 1.41 0.88 1.08 0.89 2,678.10 523.20 932.90 1,238.70 
 4,167 Non-manipulated securities (2) 1.61 0.72 1.33 0.76 121.50 30.60 337.10 398.30 
  Difference (1−2) −0.20 0.15*** −0.24 0.13* 2,556.60*** 492.60*** 595.80 840.40 
COMEX 17 Manipulated securities (1) 2.96 0.73 1.83 0.91 4,718.90 832.90 2,576.70 6,728.60 
 1,581 Non-manipulated securities (2) 3.77 0.91 2.87 0.73 187 66.75 1,955.40 1,735.90 
  Difference (1−2) −0.82 0.17*** −1.04 0.18*** 4,531.80*** 766.20*** 621.30 4,992.70*** 

ICE 76 Manipulated securities (1) 4.77 0.92 4.67 0.93 832 134.80 4,639.80 14,511 
 5,802 Non-manipulated securities (2) 1.88 0.74 1.69 0.69 29.30 6.57 549.90 933.20 
  Difference (1−2) 2.88*** 0.18*** 2.98*** 0.23*** 802.70*** 128.20*** 4,089.90*** 13,578.20*** 

IOM 17 Manipulated securities (1) 0.96 0.81 0.76 0.91 7,194.40 933.70 976 5,087.10 
 587 Non-manipulated securities (2) 1.34 0.72 1.30 0.76 477.40 96.09 1,194 1,087.20 
  Difference (1−2) −0.38 0.09* −0.55 0.04 6,717*** 837.60*** −218.30 3,999.90*** 

LSE 23 Manipulated securities (1) 1.38 0.92 0.98 0.92 209 49.91 256.60 357.90 
 110,017 Non-manipulated securities (2) 2.27 0.60 1.57 0.63 14.62 3.68 53.80 59.10 
  Difference (1−2) 0.89 0.31*** −0.59 0.29*** 194.30*** 46.23*** 202.70 298.70*** 

NYMEX 9 Manipulated securities (1) 3.16 0.91 3.04 0.93 6,231.60 1,082.30 1,582.20 5,383.10 
 6,617 Non-manipulated securities (2) 2.19 0.71 1.47 0.74 105.20 44.50 758 788 
  Difference (1−2) 0.95 0.20** 1.57*** 0.19** 6,126.40*** 1,037.90*** 824.20 4,595.10*** 
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Table 4.4 

Difference in intraday metrics for manipulation vs non-manipulation instances 
This table reports averages of the metrics for manipulated security-seconds compared to non-manipulated security-seconds. The first column shows the market where 
manipulation happens (Chicago Board Options Exchange (CBOE), Commodity Exchange (COMEX), Index and Options Market (IOM), New York Mercantile Exchange 
(NYMEX)). The second column (N) shows the number of observations in manipulated and non-manipulated group. In the third column, rows (1) show the mean values for 
manipulated security-seconds, rows (2) show the mean values for non-manipulated security-seconds. Difference (1−2) is the difference between rows (1) and rows (2). The 
metrics are defined in the text. 𝐻𝑄 is High Quoting Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal Cancellations, 𝐿𝐸 is Low Execution Probability, 𝑇𝑂𝑄 is Trades 
Oppose Quotes, 𝐶𝑂𝑇 is Cancels Opposes Trades, 𝐶𝑃𝐷 is Cyclical Pattern in Depth, 𝐶𝑃𝐶 is Cyclical Pattern in Cancellations. ***, **, and * indicate statistical significance 
at 1%, 5%, and 10% levels, respectively.  
 

Exchange N  𝐻𝑄 𝑈𝑄 𝐴𝐶 𝐿𝐸 𝑇𝑂𝑄 𝐶𝑂𝑇 𝐶𝑃𝐷 𝐶𝑃𝐶 
CBOE 95 Manipulated Securities (1) 0.01 0.15 0.01 0.10 0.25 0.03 0.05 0.08 
 1,295,054 Non-manipulated securities (2) 0.22 0.08 0.04 0.06 0.01 0.00 0.00 0.00 
  Difference (1−2) 0.21*** 0.07*** 0.03*** 0.04*** 0.24*** 0.03*** 0.05*** 0.08*** 

COMEX 388 Manipulated Securities (1) 0.12 0.32 0.05 0.32 0.12 0.02 0.06 0.18 
 1,467,509 Non-manipulated securities (2) 0.11 0.31 0.04 0.32 0.05 0.01 0.03 0.08 
  Difference (1−2) 0.01 0.01 0.01** 0.00 0.07*** 0.01** 0.03*** 0.10*** 

IOM 683 Manipulated Securities (1) 0.17 0.17 0.05 0.14 0.33 0.12 0.20 0.29 
 949,068 Non-manipulated securities (2) 0.02 0.14 0.01 0.14 0.07 0.01 0.01 0.05 

  Difference (1−2) 0.15*** 0.03*** 0.04*** 0.00 0.26*** 0.11*** 0.19*** 0.23*** 

NYMEX 793 Manipulated Securities (1) 0.11 0.20 0.04 0.19 0.13 0.03 0.05 0.13 
 690,074 Non-manipulated securities (2) 0.09 0.20 0.03 0.19 0.07 0.01 0.02 0.06 
  Difference (1−2) 0.02*** 0.00* 0.01*** 0.00* 0.06*** 0.02*** 0.03*** 0.07*** 
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Table 4.5 shows the correlations among the intraday and daily spoofing metrics. All 

correlations are positive and range from small values up to 0.95.20   

 

Table 4.5 
Correlations of spoofing metrics  

This table reports the correlations among the spoofing metrics at intraday and daily frequencies. The metrics are 
defined in the text. 𝐻𝑄 is High Quoting Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal Cancellations, 𝐿𝐸 
is Low Execution Probability, 𝑇𝑂𝑄 is Trades Oppose Quotes, 𝐶𝑂𝑇 is Cancels Opposes Trades, 𝐶𝑃𝐷 is Cyclical 
Pattern in Depth, 𝐶𝑃𝐶 is Cyclical Pattern in Cancellations. 

 

Variables 𝐻𝑄 𝑈𝑄 𝐴𝐶 𝐿𝐸 𝑇𝑂𝑄 𝐶𝑂𝑇 𝐶𝑃𝐷 𝐶𝑃𝐶 

Panel A: Intraday metrics       

𝐻𝑄 1 0.36 0.28 0.33 0.14 0.08 0.09 0.40 
𝑈𝑄 0.36 1 0.22 0.94 0.15 0.04 0.01 0.05 
𝐴𝐶 0.28 0.22 1 0.21 0.17 0.33 0.22 0.40 
𝐿𝐸 0.33 0.94 0.21 1 0.12 0.03 0.01 0.05 
𝑇𝑂𝑄 0.14 0.14 0.17 0.12 1 0.22 0.12 0.09 
𝐶𝑂𝑇 0.08 0.04 0.33 0.03 0.22 1 0.16 0.32 
𝐶𝑃𝐷 0.09 0.01 0.22 0.01 0.12 0.16 1 0.19 

𝐶𝑃𝐶 0.11 0.05 0.40 0.05 0.09 0.32 0.19 1 
Panel B: Daily metrics       

𝐻𝑄 1 0.06 0.07 0.06 0.01 0.02 0.03 0.03 
𝑈𝑄 0.06 1 0.07 0.95 0.46 0.39 0.23 0.17 
𝐴𝐶 0.75 0.07 1 0.07 0.01 0.02 0.04 0.04 
𝐿𝐸 0.06 0.95 0.07 1 0.44 0.38 0.21 0.17 
𝑇𝑂𝑄 0.01 0.46 0.04 0.44 1 0.95 0.39 0.39 
𝐶𝑂𝑇 0.02 0.39 0.02 0.38 0.95 1 0.47 0.47 
𝐶𝑃𝐷 0.03 0.22 0.04 0.21 0.47 0.54 1 0.80 

𝐶𝑃𝐶 0.03 0.17 0.04 0.17 0.39 0.47 0.80 1 
 

 

 

4.4.3. Using the Intraday Metrics to Detect Spoofing  

To detect spoofing using the metrics together, we combine them into a probability index 

where each metric has an optimal weight. To do this, we estimate logit models that use the 

metrics to predict whether manipulation occurred in a given observation, similar to the 

approach in Comerton-Forde and Putniņš (2011). For the intraday metrics we estimate the 

 
20 There is a strong correlation between Low Execution Probability and Unbalanced Quoting (0.95). Therefore, 

we exclude variable 𝐿𝐸𝑖,𝑡  in our subsequent multivariate spoofing detection models to avoid issues of 

multicollinearity. 
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following model using the manipulated security-seconds and a non-manipulated sample by 

taking all non-manipulated security-seconds on the day when there is manipulation: 

𝑙𝑛 (
𝑃

1 − 𝑃
)

𝑖,𝑠
= 𝛼 + 𝛽1𝐻𝑄𝑖,𝑠−1 + 𝛽2𝑈𝑄𝑖,𝑠−1 + 𝛽3𝐴𝐶𝑖,𝑠 + 𝛽4𝐶𝑃𝐷𝑖,𝑠 + 𝛽5𝐶𝑃𝐶𝑖,𝑠 + 𝛽6𝑇𝑂𝑄𝑖,𝑠

+ 𝛽7𝐶𝑂𝑇𝑖,𝑠 + 𝜀𝑖,𝑑 

 
(50) 

   where 𝑙𝑛 (
𝑃

1−𝑃
)  is the log-odds of the manipulator trading in security 𝑖 during second 𝑠 

𝐻𝑄𝑖,𝑠−1, 𝑈𝑄𝑖,𝑠−1, 𝐴𝐶𝑖,𝑠, 𝐶𝑃𝐷𝑖,𝑠, 𝐶𝑃𝐶𝑖,𝑠, 𝑇𝑂𝑄𝑖,𝑠, 𝐶𝑂𝑇𝑖,𝑠  are the intraday metrics defined earlier 
 

We lag the High Quoting Activity and Order Imbalance metrics when using the intraday 

frequency because in most cases, the manipulator submits large spoofing orders and creates a 

significant limit order book imbalance before executing the genuine order(s). It can take 

seconds to minutes for other traders to respond to the manipulator’s spoofing orders. 

Cancellation of the spoofing orders typically happens soon after the manipulator has managed 

to trade so we use contemporaneous cancellation, but even so we may be understating the 

importance of the cancellation metric as some of the cancellations may occur in subsequent 

seconds.  

These considerations illustrate one of the challenges in measuring spoofing – the 

characteristics may be displayed sequentially rather than concurrently, and different cases 

operate at different frequencies. Therefore, our findings can be interpreted as establishing the 

minimum significance of these characteristics. Applied in a forensic setting to an individual 

case, one can “tune” the frequency to the particular case. Table 4.6 reports the results of the 

logit model. The results indicate that the majority of variables significantly predict spoofing at 

the intraday frequency. The positive signs associated with all variables suggest that an increase 

in High Quoting Activity, Unbalanced Quoting, Abnormal Cancellation, Trades Oppose 

Quotes, Cancels Oppose Trades, Cyclical Pattern in Depth, Cyclical Pattern in Cancellations, 

have ability to identify manipulation conducted during that second. The logistic regression 

suggests that among these variables, the three variables that makes the highest marginal 

contribution to identifying manipulation are High Quoting Activity, Unbalanced Quoting, and 

Trades Oppose Quotes.  

The AUC reported in Table 4.6 is the Area Under the ROC Curve (AUC), which is a 

measure of the accuracy of a categorical predictor. The higher the AUC, the better the 

performance of the model. AUC values above 0.50 indicate predictive accuracy beyond pure 
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chance. We estimate the AUC as an out-of-sample measure using leave-one-out cross-

validation. The AUC score for this model, 0.77, is statistically different from 0.50 at a high 

confidence level (p-value less than 0.001). 

  

Table 4.6 
Logistic regression predicting spoofing at the intraday frequency 

This table reports the results of logistic regression models where the dependent variable is log-odds of trades by 
the manipulator in known spoofing cases and the independent variables are empirical characteristics of spoofing 
estimated per security-second. 𝐻𝑄 is High Quoting Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal 
Cancellations, 𝐿𝐸 is Low Execution Probability, 𝑇𝑂𝑄 is Trades Oppose Quotes, 𝐶𝑂𝑇 is Cancels Opposes Trades, 
𝐶𝑃𝐷 is Cyclical Pattern in Depth, 𝐶𝑃𝐶 is Cyclical Pattern in Cancellations. The table reports coefficient estimates 
and z-statistics. ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively. 

Variables Coefficients z-statistic 
𝐻𝑄 1.33 8.45*** 

𝑈𝑄 1.23 9.36*** 

𝐴𝐶 0.85 5.40*** 

𝑇𝑂𝑄 0.99 12.06*** 

𝐶𝑂𝑇 0.69 4.69*** 

𝐶𝑃𝐷 0.03 2.20*** 

𝐶𝑃𝐶 0.10 3.34*** 

Intercept −8.52 −227.24*** 

Observations  4,403,391 
Out-of-sample AUC  0.77 
Out-of-sample AUC different 
from AUC=50%, p-value  <0.001 

 

 

4.4.4. Using Daily Metrics to Detect Spoofing  

At the daily frequency, there is a high correlation between the Cyclical Pattern in Depth 

and Cyclical Pattern in Cancellations as indicated in Table 4.5 Panel B. Therefore, we combine 

the Cyclical Pattern in Depth and Cyclical Pattern in Cancellations into a new variable 

Cyclical Pattern in Depth and Cancellations that captures the number of spoofing cycles in a 

day: 

𝐶𝑃𝐷𝐶𝑖,𝑑 = 𝐶𝑃𝐷𝑖,𝑑 + 𝐶𝑃𝐶𝑖,𝑑 (51) 

 Similarly, we add the Trades Oppose Quotes and Cancels Oppose Trades, as there is 

a high correlation between the Trades Oppose Quotes and Cancels Oppose Trades in Table 4.5 

Panel B. The variable Trades Oppose Cancels and Quotes is the sum of the two variables, 

which is defined as: 
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𝑇𝑂𝐶𝑄𝑖,𝑑 = 𝑇𝑂𝑄𝑖,𝑑 + 𝐶𝑂𝑇𝑖,𝑑 (52) 

Following the same approach as for the intraday metrics, we estimate the following 

logit model using the manipulated and non-manipulated security-days, where the non-

manipulated sample is obtained by taking all non-manipulated securities on the same exchange 

on the days of manipulation: 

𝑙𝑛 (
𝑃

1 − 𝑃
)

𝑖,𝑑
= 𝛼 + 𝛽1𝐻𝑄𝑖,𝑑 + 𝛽2𝑈𝑄𝑖,𝑑 + 𝛽3𝐴𝐶𝑖,𝑑 + 𝛽4𝐶𝑃𝐷𝐶𝑖,𝑑 + 𝛽5𝑇𝑂𝐶𝑄𝑖,𝑑 + 𝜀𝑖,𝑑  (53) 

   where 𝑙𝑛 (
𝑃

1−𝑃
)

𝑖,𝑑
 is the log-odds of the manipulator trading in security 𝑖 during day 𝑑, and 

 
𝐻𝑄𝑖,𝑑 , 𝑈𝑄𝑖,𝑑 , 𝐴𝐶𝑖,𝑑 , 𝐶𝑃𝐷𝐶𝑖,𝑑 , 𝑇𝑂𝐶𝑄𝑖,𝑑 , are the metrics at the daily frequency 

 

Table 4.7 reports the result. Among the daily metrics, three stand out as having a strong 

positive incremental ability to detect spoofing, controlling for other characteristics –

Unbalanced Quoting, Trades Oppose Cancels and Quotes, and Cyclical Pattern in Depth and 

Cancellations. However, High Quoting Activity does not contribute to predicting manipulation 

beyond what is already captured by the other characteristics. At daily level, High Quoting 

Activity may already be captured by the Unbalanced Quoting metric.  

Abnormal Cancellations also does not predict spoofing at daily level beyond what is 

captured by the other metrics. As Khomyn and Putniņš (2021) discuss, high-frequency traders 

can have a high order cancellation rate for legitimate reasons, which might explain why at a 

daily frequency the Abnormal Cancellations metric does not appear statistically significant. 

Additionally, given that the univariate results did show a positive relation between the 

Abnormal Cancellations and spoofing, it could be that other metrics such as Unbalanced 

Quoting, Trades Oppose Cancels and Quotes and the Cyclical Pattern in Depth and 

Cancellations measures capture the high cancellation rates.  

Interestingly, at the daily frequency, the model’s ability to distinguish between 

manipulation and non-manipulation is higher, with an AUC of 0.93 in Table 4.7. The increased 

classification accuracy may be as a result of facing less of a challenge in capturing lead/lag 

relations between the characteristics, which is an issue when working at the one-second 

frequency. It may also be due to less noise in the daily metrics, as one-second intervals are 

more prone to temporary extreme values.  
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Table 4.7 
Logistic regression predicting spoofing at the daily frequency. 

This table reports the results of logistic regression models where the dependent variable is log-odds of trades by 
the manipulator in known spoofing cases and the independent variables are empirical characteristics of spoofing 
estimated per security-day. 𝐻𝑄 is High Quoting Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal 
Cancellations, 𝐿𝐸 is Low Execution Probability, 𝑇𝑂𝐶𝑄 is Trades Oppose Cancels and Quotes, 𝐶𝑃𝐷𝐶 is Cyclical 
Pattern in Depth and Cancellations. The table reports coefficient estimates and z-statistics. ***, **, and * indicate 
statistical significance at 1%, 5%, and 10% levels, respectively. 

Variables Coefficients z-statistic 
𝐻𝑄 −0.02 −0.90 
𝑈𝑄 7.32 7.24*** 

𝐴𝐶 0.01 0.92 
𝑇𝑂𝐶𝑄 3.99 13.19*** 

𝐶𝑃𝐷𝐶 0.39 6.13*** 

Intercept −11.61 −12.97*** 

Observations  129,235 
Out-of-sample AUC  0.93 
Out-of-sample AUC different from 
AUC=50%, p-value  <0.001 

 

 

4.5. Machine learning models for detection and out-of-sample validation 

In this section, we examine whether the detection performance of the spoofing metrics 

can be increased by combining them in machine learning models that allow for interactions 

and non-linearities. Specifically, we estimate the probability of manipulation using random 

forest and boosted tree classification models.  

Random forest and boosted tree models are well-suited for this task, as they can 

combine variables into a tree model using split rules, which are particularly useful when there 

is a significant degree of interaction among independent variables. The spoofing metrics are 

likely to interact with one another and are closely connected, as shown before. A general 

spoofing order may involve a manipulator submits spoofing orders, trick other market 

participants into following the spoofing orders, and then cancel the substantial orders after 

trading on the genuine side of the market. If any of these steps is unsuccessful, the spoofing 

may not be easily identified and may be mistaken for other legitimate trading.  

We apply k-fold cross validation to assess the accuracy of the non-linear models, setting 

𝑘 = 3. We randomly divide the sample into three equal subsamples, estimate the model on two 

samples and test the estimated model on the other one. We then compare the result with logistic 

regression. To evaluate the precision of the model, we create a graphical representation called 

the ROC curve. This curve demonstrates the model's effectiveness without considering prior 

probabilities or classification thresholds. It shows the balance between correctly identified 

positives (sensitivity) and incorrectly identified negatives (one minus specificity). 
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Figure 4.7 shows that the detection validity (AUC) of the logit model using intraday 

metrics is 0.77 in the out-of-sample setting, as discussed previously. In comparison, the AUC 

of the tree-based and random forest models using the same intraday metrics is 0.81 and 0.82, 

respectively. The statistical analysis shows non-linear machine learning models outperform 

simple logistic regression in diagnosing spoofing given the same set of characteristics. 

Turning to the daily version of the metrics, Figure 4.8 shows that the out-of-sample 

detection accuracy (AUC) of the logit model using daily metrics is 0.93, as discussed 

previously. The random forest and boosted tree models both outperform logistic regression 

with AUC of 0.96 and 0.97, respectively. Therefore, at both intraday and daily frequencies 

random forest and boosted tree models outperform logistic regression. These results show that 

nonlinearity and variable interactions contribute to the ability to detect spoofing. 

These are extremely high classification accuracies considering the nature of the 

problem. For some context, Comerton-Forde and Putniņš (2011) design a model to detect 

closing price manipulation and obtain an out-of-sample AUC of 0.825 with a logit model. 

Acknowledge of the finding, our model is better at empirically detecting spoofing using daily 

metrics compared to previous model that detect closing price manipulation.
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Figure 4.7 
Out-of-sample classification accuracy of the spoofing detection models using intraday metrics 

The figure illustrates the discriminatory power of logistic regression, random forest, and boosted tree models 
estimated with intraday spoofing metrics. The plot shows the Receiver Operating Characteristics curve (ROC 
curve) from k-fold cross validation and measures the area under the curve (AUC). 
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Figure 4.8 
Out-of-sample classification accuracy of the spoofing detection models using daily metrics 

The figure illustrates the discriminatory power of logistic regression, random forest, and boosted tree models 
estimated with daily spoofing metrics. The plot shows the Receiver Operating Characteristics curve (ROC curve) 
from k-fold cross validation and measures the area under the curve (AUC). 
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While the machine learning models show higher detection accuracy, a potential 

downside is the ability to easily inspect what is occurring within the model. To obtain some 

insights about which metrics are deemed the most important by the model, we use mean 

decrease in prediction error to evaluate the importance of variable 𝑖 for predicting manipulation 

by adding up the weighted error decreases for all nodes where variable 𝑖 is used. Feature 

importance of a variable 𝑖 is normalized by the sum of all feature values present in the tree, 

then standardized by the number of trees 𝑇: 

 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑀𝑖) =
1

𝑇
×

∑ 𝑛𝑖,𝑗
 𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐 𝑖
𝑗

∑ 𝑛𝑖,𝑗
𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
𝑗

 
(54) 

where 𝑛𝑖,𝑗 is node 𝑗 importance of variable 𝑖 (measured as the decrease in error if 
including 𝑖 in that node) 

 

Figure 4.9 shows the results summarizing the importance of each intraday metric in the 

random forest model. The metrics that make the largest contribution are High Quoting Activity, 

Unbalanced Quoting, and Abnormal Cancellations. Cyclical Pattern in Depth and Cyclical 

Pattern in Cancellations are less important for intraday detection, which indicates that within 

a second, there might not be enough time for the manipulator to complete a spoofing cycle.  

Figure 4.10 presents the relative importance of the daily metrics. In contrast to the 

intraday measures, the Cyclical Pattern in Depth and Cancellations, as well as Trades Oppose 

Cancels and Quotes, are the most important metrics in detecting spoofing at daily level. The 

result is consistent with the logistic regressions. 
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Figure 4.9 
Importance of each intraday metric in the random forest model 

The figure illustrates the level of importance of each intraday spoofing metric in the random forest model. The 
vertical axis shows the variable importance metric. The horizontal axis shows variable names. 𝐻𝑄 is High Quoting 
Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal Cancellations, 𝐿𝐸 is Low Execution Probability, 𝑇𝑂𝑄 is 
Trades Oppose Quotes, 𝐶𝑂𝑇 is Cancels Opposes Trades, 𝐶𝑃𝐷 is Cyclical Pattern in Depth, 𝐶𝑃𝐶 is Cyclical 
Pattern in Cancellations. 
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Figure 4.10 
Importance of each daily metric in the random forest model 

The figure illustrates the level of importance of each daily spoofing metric in the random forest model. The vertical 
axis shows the variable importance metric. The horizontal axis shows variable names. 𝐻𝑄 is High Quoting 
Activity, 𝑈𝑄 is Unbalanced Quoting, 𝐴𝐶 is Abnormal Cancellations, 𝐿𝐸 is Low Execution Probability, 𝑇𝑂𝐶𝑄 is 
Trades Oppose Cancels and Quotes, 𝐶𝑃𝐷𝐶 is Cyclical Pattern in Depth and Cancellations. 
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In addition to utilizing k-fold cross-validation, a commonly used technique in machine 

learning literature, we also employ a second validation approach to assess the models' ability 

to detect spoofing in a specific case that has not been included in the model training process. 

For this we choose the case of Da Vinci Invest.21 We observe “saw-tooth” pattern in this case, 

which takes place over several minutes in a manipulated day, which is representative of 

layering. We estimate the models without this case included and then test whether the models 

can detect the spoofing in this case. 

Table 4.8 provides results at the classification threshold of 0.5, which means that if the 

model-implied probability of spoofing is greater than 0.5, we flag the instance as having 

predicted manipulation.  

 

Table 4.8 
Out-of-sample detection of spoofing  

This table illustrates the accuracy of the models in out-of-sample detection of spoofing at the intraday level using 
logistic regression, random forest models, and boosted tree models. The columns labeled “Predicted” provide the 
number of predicted Non-Manipulation and Manipulation instances using the classification threshold of 0.5. The 
next three columns provide Accuracy ((True Positives + True Negatives) / Total), Precision (True Positives / (True 
Positives + False Positives)), and Sensitivity (True Positives / (True Positives + False Negatives)) scores based 
on the confusion matrix.  

 

At threshold P>= 0.5   
Predicted: 

No 
Predicted: 

Yes Accuracy Precision Sensitivity 

Panel A: Logistic 
Regression 

Actual: No 12,545 3    
Actual: Yes 399 37 0.97 0.93 0.08 

Panel B: Random 
Forest 

Actual: No 12,547 1    
Actual: Yes 407 29 0.97 0.97 0.07 

Panel C: Boosted Tree 
Actual: No 12,540 8    
Actual: Yes 239 197 0.98 0.96 0.45 

 

All three models have a strong ability to distinguish spoofing from legitimate trading, 

as evidenced by their high levels of accuracy and precision. Sensitivity is low, resulting in a 

conservative classified more prone to false negatives than false positives, but can be increased 

by choosing a lower classification threshold. The boosted tree model is particularly effective 

in identifying spoofing in this validation test.  

Figure 4.11 shows the ROC curve for this validation exercise and reports the AUC for 

the three models in this test: 0.85, 0.92, and 0.92 for logistic regression, random forest, and 

 
21 In this case, we are only provided with the start and end times during which manipulation occurred on a specific day. We 

assume that all minutes in the manipulated period provided by regulators contain manipulation. This is a conservative 

assumption because any incorrect labelling of the data is likely to harm the measured classification accuracy.  
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boosted tree, respectively. The results show that all three models have strong ability to detect 

spoofing at daily and intraday horizons, using two types of out-of-sample validation tests. 

 

Figure 4.11 
Out-of-sample detection of spoofing – Da Vinci case 

The figure illustrates the discriminatory power of logistic regression, random forest, and boosted tree models 
estimated with intraday spoofing metrics. The plot shows the Receiver Operating Characteristics curve (ROC 
curve) from out-of-sample cross validation on the Da Vinci spoofing case. The plot also reports the area under the 
curve (AUC). 
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4.6. Conclusion 

In recent years, there has been a proliferation of spoofing and layering in markets, as 

evidenced by the sharp rise in the number of prosecuted cases. Identification of spoofing poses 

a significant challenge for market authorities, as it can appear similar to legitimate trading 

practices. The regulatory framework for spoofing is intentionally vague (to avoid easy 

loopholes), which can impede the public’s understanding of this manipulation category. Our 

study exhibits an empirical examination of spoofing, using data collected from prosecuted 

cases. 

We find that at the intraday level, metrics such as Unbalanced Quoting, High Quoting 

Activity, and Abnormal Cancellations are particularly useful in identifying spoofing. At the 

daily level, the Cyclical Pattern in Depth and Cancellations and Trades Oppose Cancels and 

Quotes have the highest ability to detect spoofing. 

Given the complex interactions between the various characteristics of spoofing, we also 

test random forest and boosted tree classification models to detect spoofing at the second-

interval level. We find that these machine learning techniques, with their ability to account for 

interactions between variables, have superior out-of-sample prediction capabilities for 

spoofing.  

Our results suggest that by using machine learning models on a set of spoofing metrics, 

regulators and market participants can more effectively distinguish between illegitimate and 

legitimate trading.    
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Chapter 5: Conclusion 

This chapter outlines the key questions and conclusions of this thesis. It also discusses 

avenues for future research.  

 

5.1. What can machine learning models teach about the drivers of company value? 

The boosted tree analysis provides us with new insights into the interactions between 

different drivers of company value. Specifically, we observe significant interactions between 

the historical growth rate and risk proxies, and between the historical growth rate and dividend 

payout ratio.  

Our findings also suggest that the growth rate is not the only factor that affects the price-

to-book ratio. While the price-to-book ratio generally increases with a higher growth rate, it 

decreases when the beta on the market increases at the same level of growth rate. Additionally, 

we find that the dividend payout ratio does not always have a positive relationship with firm 

value; rather, the positive effect only begins when the dividend payout ratio is in the top quintile 

cross-sectionally. The positive effect of dividend payout is highest when companies are in the 

top quintile of long-term growth. Furthermore, we observe that longer-term growth is valued 

more than short-term growth. 

The effects of growth on equity value and total company value differ. Higher growth, 

for both short-term and long-term, leads to lower enterprise value at all levels of risk, indicating 

that debt value may be lower for companies with higher growth. Furthermore, our research 

reveals a concave relationship between the reinvestment rate and the valuation of a company. 

These interactions are observed even after controlling for peer-analyst groups, which contain 

implicit information that is not reflected on financial statements. 

We use boosted trees because they can handle many input variables, including 

information from peer firms that are not explicitly part of the financial statements. Linear 

regression is not suitable for this task because there are too many variables and potential 

interactions to consider. Boosted trees are better at incorporating soft information and financial 

information, which results in better predictions of future value.  

Including information about a company’s peers significantly improves valuation. The 

peer firms in the dataset reflect similarities among firms that are not fully captured in financial 

statements. We discover the significance of unobserved information that econometricians may 
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not directly perceive. Our findings demonstrate that integrating expert opinions on the 

economic connection between firms leads to a better prediction of the value of a company. 

Compared to using hard information alone, our results show that boosted trees 

outperform linear regression regarding R2 and squared error for price-to-book and enterprise-

value-to-invested-capital. When we use the Shapley value rule to break down the R2 into 

variable-level components, our findings indicate that implicit information significantly 

contributes to explaining the variations in price-to-book and enterprise-value-to-invested-

capital ratios. 

 

5.2. How does machine learning impact market efficiency? 

Machine learning is better equipped to handle the multi-dimensional and interrelated 

nature of the information that affects asset prices compared to traditional linear statistics tools 

including linear regression. We consider that the notable disparity in return predictability 

between linear and non-linear models as "non-linear inefficiency". 

The gap shows that there are complex relations in how information is reflected in prices. 

We find that applied to past data, machine learning methods show the considerable ability to 

predict returns. This result holds when the methods are not yet in widespread use, but the 

predictability gradually declined as more complex models are incorporated into investment 

decisions. We use the growth of quantitative mutual funds and the success of machine learning 

publications as indicators of technological advancements and find that they are drivers of 

increases in non-linear market efficiency.  

 

5.3. How to detect layering and spoofing in markets? 

We identify and define 14 key empirical characteristics of spoofing. High quoting 

activity (entering and cancelling many limit orders on one market side) is a key feature of most 

of the layering strategies seen in prosecution cases. By employing substantial volumes of 

fictitious orders, the likelihood of exerting a remarkable influence on the perceived supply or 

demand increases, thereby influencing the trading decisions of other market participants. 

The quoting activities project significant imbalance, which indicate a concentration 

either on the buy or sell side at a particular point in time. This imbalance results in a false 

pressure in transaction activities.  

Layering orders are not intended to execute, so they are typically canceled and 

resubmitted as market conditions change to maintain low execution probability. As a result, 

there is a high order cancellation rate in layering/spoofing strategies. Also, to maintain the low 
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execution probability, layering orders are often placed in the market at price steps behind the 

best quotes or the back of a long queue of orders at a price level.  

Manipulators using intraday layering strategies are likely to accumulate long or short 

positions intraday, but typically they do not hold positions overnight. The trade direction of 

market manipulators using layering often opposes their quotes, e.g., a trader with many buy 

orders in the market will often actually execute sells, and vice versa. Manipulators rely on the 

act of order cancellation that is aligned with trade on the other side. The order cancellations is 

subsequent to execute an order on the opposing bid or ask. For instance, after making a 

purchase, they cancel the manipulative sell orders. 

Some manipulators use dark or hidden orders as part of their strategy while engaging 

in layering. Manipulators tend to layer the order book's bid side when they have a long position 

and vice versa and layer the ask side when they have a short position.  

The other characteristics are related to cyclical layering, where a manipulator repeats 

the layering cycle several times on alternating sides of the market. These include cyclical 

patterns in cancellations, inventory, and mid-prices.  

We construct eight empirical metrics that can detect spoofing at both the daily and 

intraday levels. At the intraday level, metrics such as High Quoting Activity, Unbalanced 

Quoting, and Abnormal Cancellations are particularly useful in identifying spoofing. 

Nevertheless, when analyzing spoofing frequency on a daily basis, we observe that Cyclical 

Pattern in Depth and Cancellations, as well as Trades Oppose Cancels and Quotes emerge as 

the most distinguishing characteristics of spoofing.  

Given the complex interactions between the various characteristics of spoofing 

strategies, we also employ random forest and boosted tree classification models to predict 

spoofing at the minute-interval level. Our findings demonstrate that machine learning models, 

with their capability to consider the interactions among variables, exhibit higher accuracy in 

identifying spoofing activities when compared to other approaches in out-of-sample testing. 

 

5.4. Future research direction 

Machine learning techniques that help to explain the reason behind the prediction of 

the machine learning model (as opposed to black-box models) are under-used in finance 

research. They can be useful in future research in asset pricing, specifically, due to the evidence 

in this thesis of a degree of inefficiency in how non-linear information and interactions are 

reflected in prices. Furthermore, given the abundance of alternative data and the availability of 

big data, future studies can leverage machine learning techniques to explore the predictive 
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value of these new data types in forecasting returns. For example, data from images, scripts, 

and audio are not studied widely due to the limitation of traditional approaches.  

Another fruitful area of further research is to explore the implications of generative AI 

such as ChatGPT and similar models. These have only recently become available to the general 

public and investors but already generated a high level of interest due to their interesting 

abilities to reason and see links between information. Will these models drive further 

informational efficiency gains, or will they add noise to investor decisions?  

Given the continued digitalization of finance, future research may examine the 

importance and consequence of new market designs such as decentralized markets and 

cryptocurrency markets. Due to its high level of transparency, the data on blockchains are more 

accessible compared to other traditional markets, making it a promising avenue of research in 

the future. 
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