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Abstract

Near-term quantum devices are arguably able to perform computational tasks be-

yond classical capabilities. But a definitive claim of such a quantum computational

advantage relies on classical verification. On the other hand, on the road of pursuing

quantum advantage on practical tasks, classical techniques to boost the performance

of near-term quantum devices are also required. In this thesis, we explore the classical

verification and classical enhancement of near-term quantum devices.

In the first part of the thesis, we present results on the verification protocols based

on the instantaneous quantum polynomial-time (IQP) model, which is a promising

model for achieving verifiable quantum advantage on near-term quantum devices.

We first study the interplay between IQP circuits, stabilizer formalism and coding the-

ory, and give a characterization of the correlation functions from IQP circuits. Based

on this, we give a new IQP-based construction, called the stabilizer scheme, which

enriches the scope of IQP-based schemes while maintaining their simplicity and ver-

ifiability. To analyze the classical security, we introduce the Hidden Structured Code

(HSC) problem as a well-defined mathematical challenge that underlies the stabilizer

scheme. We explore a class of attack algorithms based on secret extraction and give

evidence of the security of the stabilizer scheme, assuming the hardness of the HSC

problem. Moreover, we show that the vulnerability observed in the original IQP ver-

ification protocol is primarily attributed to inappropriate parameter choices, which

can be naturally rectified with proper parameter settings.

In the second part of the thesis, we first present a machine learning approach to

quantum error mitigation. We propose the concept of neighborhood learning, and ex-

plore the choice of the neighbor circuits and the learning models. Based on our obser-

vations, we give an adaptive learning strategy to dynamically construct the neighbor

circuits, that achieves a better tradeoff between performance and required resources

compared to various quantum error mitigation techniques. Finally, we present the ex-

perimental results on simulating large linear cluster states (up to 33 qubits) with only



xv

4 superconducting qubits. Our experiment is based on the circuit-cutting technique,

and achieves a better fidelity on 12-qubit linear cluster state than simulating the state

directly on a 12-qubit quantum computer.
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Chapter 1

Introduction

Quantum computing represents a fundamental paradigm shift in computation, with

potential speedups on problems such as integer factorization [Sho94], database

search [Gro96] and quantum simulation [Fey82, Llo96]. However, these applications

typically require fault-tolerant quantum computers, which are beyond the reach of

our current noisy intermediate-scale quantum (NISQ) era [Pre18]. Nevertheless, ex-

perimental demonstrations have shown that we can perform random-circuit sam-

pling [BIS
+
18, AAB

+
19, ZCC

+
21, WBC

+
21] and boson sampling [AA11, ZWD

+
20] at

scales arguably beyond classical simulation. These efforts are known as the pursuit

of quantum computational advantage (supremacy) in the literature, which are usually

based on the quantum random sampling problems [HE23].

However, a definitive demonstration of quantum computational advantage re-

lies on classical verification. Although the quantum supremacy experiments can use

some benchmarking techniques such as cross-entropy benchmarking (XEB) [AAB
+
19]

to certify the quantum devices, they cannot be efficiently verified in an adversar-

ial setting without modification of the underlying computational task. In this re-

spect, IQP (Instantaneous Quantum Polynomial-time) sampling could be a promising

candidate, since it has been proposed to have beyond classical capabilities in some

settings [BJS11, BMS16, BMS17] and a verifiable scheme based on quadratic-residue
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codes [SB09]. However, this verifiable scheme relies on computational assumptions

that are not standard and have not been studied in depth. In fact, it was recently

broken by an attack proposed by Kahanamoku-Meyer [KM19].

On the other hand, it is not anticipated that quantum computers will fully re-

place classical computers, and a reasonable computational model should be hybrid

quantum-classical. There have already been quantum algorithms proposed that fit this

framework, like the variational quantum eigensolvers for quantum chemistry prob-

lems [PMS
+
14, YCM

+
14], which are designed to be suitable for near-term quantum

devices. It is important to explore classical techniques that can be used to enhance the

quantum capability, like quantum error mitigation [TBG17, LB17] and circuit-cutting

techniques [PHOW20].

In this context, this thesis will focus on these two important aspects of near-term

quantum devices, classical verification and classical enhancement. We first give the

necessary background for this thesis in Chapter 2. In Section 2.1, after introducing

the basic components of quantum computation in Section 2.1.1, we introduce some

technical ingredients, including the stabilizer formalism in Section 2.1.2, coding theory

in Section 2.1.3 and matrix factorization over F2 in Section 2.1.4. Then, we give a

review of quantum computational advantage in Section 2.2 and verifiable quantum

advantage in Section 2.3.

In the first part of the thesis, we revisit and revive the IQP-based verifiable

quantum advantage. Although the original scheme by Shepherd and Bremner has

been broken by [KM19], the IQP-based protocols still offer a promising avenue

for achieving verifiability beyond classical computing with fewer resources than

Shor’s algorithm or the verification protocols based on trapdoor claw-free func-

tions [BCM
+
18, BKVV20, KMCVY21].

Specifically, in Chapter 3, we give an overview of the IQP-based verification pro-

tocols with the language set in our previous work [YC20]. We discuss the general

framework, the correlation functions from the IQP circuits, the Shepherd-Bremner

construction and its loophole. In addition, we also present the heuristic construction
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in [YC20] and a new redundancy technique called column redundancy, which turns

out to fix the recent loophole of the Shepherd-Bremner scheme.

In Chapter 4, we first study the interplay between IQP circuits, stabilizer formalism

and coding theory, and give a characterization of the IQP circuit correlation functions

in Section 4.1. Based on this, in Section 4.2, we give a new IQP-based construction,

called the stabilizer scheme, which enriches the scope of IQP-based schemes while

maintaining their simplicity and verifiability. In Section 4.3, we give another con-

struction algorithm which arised in the early exploration of [BCJ23]. This construc-

tion algorithm is based on the matrix factorization over F2 and although it has been

superseded by the stabilizer scheme, it provides a different perspective on the IQP-

based verification protocols.

In Chapter 5, we analyze the classical security of the stabilizer scheme and discuss

a class of classical attacks based on extracting secrets. In Section 5.1, we give a simpli-

fied and generalized version of the attack algorithm in [KM19], named the Linearity

Attack. Then, we present analysis in Section 5.2, showing that the stabilizer scheme

is secure against the Linearity Attack. In Section 5.3, we show how to fix the loophole

of the Shepherd-Bremner construction by using a different set of parameters, which

is achieved by the column redundancy technique.

In the second part of the thesis, we discuss the classical enhancement of near-term

quantum devices. In Chapter 6, we propose a machine learning approach, called the

neighborhood learning, for quantum error mitigation. We extensively explore vari-

ous technical aspects of the neighborhood learning and devise an adaptive learning

strategy that effectively balances accuracy and computational cost.. In Chapter 7, we

report an experimental implementation of a tomography-like circuit-cutting scheme

to simulate large linear-cluster states [YCZ
+
23]. Finally, we conclude in Chapter 8.
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1.1 Contribution

All materials in this thesis are written by myself, with revisions made by my collabo-

rators. The following is a list of my contributions in each chapter.

• Chapter 2 is written from fresh, except for Section 2.3, which is adapted from

the background material in [BCJ23]. This is work done in collaboration with

Michael Bremner and Zhengfeng Ji. My contribution in [BCJ23] includes con-

ceiving the initial idea, contributing to all technical results, performing the nu-

merical simulations and writing the majority of the paper.

• Chapter 3 is written based on [YC20] and parts of [BCJ23]. [YC20] is work

done in collaboration with Man-Hong Yung, who proposed this project. My

contribution consists of the technical results, the numerical simulations and the

majority of writing.

• Chapter 4 and Chapter 5 are based on [BCJ23]. Specifically, Section 4.3 con-

tains an unpublished construction algorithm for IQP-based verification proto-

col, whichwas proposed and analyzed byme, with feedback fromMichael Brem-

ner and Zhengfeng Ji.

• Chapter 6 is based on [XCL
+
23], which is done in collaboration with Lei Xie,

Xiaodie Lin, Zhenyu Chen, Zhaohui Wei and Zhengfeng Ji. My contribution

in this work involves contributing ideas, performing numerical simulations and

most of the writing.

• Chapter 7 is based on joint work with Chong Ying, Youwei Zhao, He-Liang

Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin

Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man-Hong Yung, Xiaobo

Zhu, and Jian-Wei Pan [YCZ
+
23]. My contribution in this work includes (a)

designing the experimental protocol with feedback from collaborators, (b) ana-

lyzing the experimental data with Yu-Ning Zhang and (c) most of the writing.
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Chapter 2

Background

2.1 Preliminaries

2.1.1 Quantum Computation

In classical computation, information is represented by bits that can have a value of

either 0 or 1. However, a classical bit can also be probabilistic, with a value of 0 oc-

curring with probability 𝑝 and a value of 1 occurring with probability 1−𝑝 . Quantum

computation, on the other hand, uses quantum bits, or qubits, to represent informa-

tion. Unlike classical bits, qubits can be in a superposition of 0 and 1, and their state is

represented by a vector in a two-dimensional complex Hilbert space, denoted by C2
.

The basis of C2
can be chosen to be the computational basis states, which is given by,

|0⟩ =

1

0

 , |1⟩ =

0

1

 . (2.1)

The state of a qubit can then be represented as a linear combination of the basis states:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are complex numbers satisfying |𝛼 |2 + |𝛽 |2 = 1. The

probability of measuring a qubit to be in 𝑥 ∈ {0, 1} is given by | ⟨𝑥 |𝜓 ⟩ |2.

One can use tensor product to compose quantum states. The tensor product of

|𝜓 ⟩ and |𝜙⟩ is denoted as |𝜓 ⟩ ⊗ |𝜙⟩ or just |𝜓 ⟩ |𝜙⟩, when the context is clear. Then,

we can define the computational basis states for 𝑛 qubits using tensor product, which
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is denoted by |x⟩ := |𝑥1⟩ · · · |𝑥𝑛⟩ with 𝑥 𝑗 ∈ {0, 1}. We might commonly just write

|x⟩ = |𝑥1 · · · 𝑥𝑛⟩. The state of 𝑛 qubits can be represented as |𝜓 ⟩ = ∑
x∈{0,1}𝑛 𝑐x |x⟩,

where 𝑐x’s are complex numbers satisfying

∑
x |𝑐x |2 = 1. This representation is valid

for pure states; in general, a quantum state can be in a mixed state, which should be

represented by a density matrix 𝜌 . A density matrix is a positive semidefinite matrix

with trace 1, and it can be interpreted as a probabilistic mixture of pure states, i.e.,

𝜌 =
∑
𝑘 𝑝𝑘 |𝜓𝑘⟩⟨𝜓𝑘 |, where ⟨𝜓𝑘 | is the conjugate transpose of |𝜓𝑘⟩.

It is anticipated that quantum computers utilizing the exotic quantum features

such as quantum superposition and quantum entanglement can solve computational

problems more efficiently than their classical counterparts. Often, quantum computa-

tion is described in the quantum-circuit model, where a quantum circuit is the product

of a sequence of elementary quantum gates that are unitaries acting on one or two

qubits. Common gates include the Hadamard gate, the𝑇 gate and the controlled-NOT

(CNOT) gate, whose unitary matrices are given by,

𝐻 =
1

√
2

©«
1 1

1 −1
ª®¬ , 𝑇 =

©«
1 0

0 𝑒𝑖𝜋/4
ª®¬ , CNOT =

©«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®®®®®¬
. (2.2)

These gates are known to form a universal gate set, meaning that any 𝑛-qubit unitary

can be approximated using these gates [NC11]. Pauli gates are also commonly used,

whose matrix representations are given by,

𝐼 =
©«
1 0

0 1

ª®¬ , 𝑋 =
©«
0 1

1 0

ª®¬ , 𝑌 =
©«
0 −𝑖

𝑖 0

ª®¬ , 𝑍 =
©«
1 0

0 −1
ª®¬ . (2.3)

Note that in the gate set {𝐻,𝑇 ,CNOT}, if one replaces the𝑇 gatewith the 𝑆 gate, which

is given by
©«
1 0

0 𝑖

ª®¬, then one can only form the Clifford circuits. It is well-known that

Clifford circuits can be classically efficiently simulated using the Gottesman-Knill al-

gorithm [Got99]. The key insight behind the Gottesman-Knill algorithm is that the
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Clifford circuit maps Pauli operators to Pauli operators under conjugation, which en-

ables a more compact representation. This is part of the stabilizer formalism, which

is a powerful tool for quantum error correction and classical simulation of quantum

circuits.

2.1.2 Stabilizer Formalism

Here, we review the ingredients of stabilizer formalism that are necessary for this

thesis. For a detailed treatment, we refer to [NC11, Chapter 10] or [DDM03, AG04].

We first denote the four Pauli matrices as follows,

𝜎00 = 𝐼 𝜎10 = 𝑋 𝜎11 = 𝑌 𝜎01 = 𝑍 . (2.4)

In a compact form, 𝜎𝑣𝑤 = 𝑖𝑣𝑤𝑋 𝑣𝑍𝑤 . For v,w ∈ F𝑛
2
and a =

©«
v

w

ª®¬ ∈ F2𝑛
2
, we denote

𝜎a := 𝜎𝑣1𝑤1
⊗ · · · ⊗ 𝜎𝑣𝑛𝑤𝑛

. (2.5)

The 𝑛-qubit Pauli group, denoted as P𝑛 , consists of operators of the form 𝜎a,𝑟 ,ℎ :=

𝑖ℎ (−1)𝑟𝜎a with ℎ, 𝑟 ∈ F2; we use Pauli operators to refer to the elements of the Pauli

group. The Hermitian Pauli operators are those with ℎ = 0. The multiplication of two

Pauli operators is given by

𝜎a1,𝑟1,ℎ1𝜎a2,𝑟2,ℎ2 = 𝑖
ℎ1+ℎ2+a𝑇

1
Ja2 (−1)𝑟1+𝑟2+a𝑇1 Ja2+v1·w2𝜎a1+a2 (2.6)

= 𝑖ℎ1+ℎ2+a
𝑇
1
Ja2 (−1)𝑟1+𝑟2+a𝑇1 Ja2+a𝑇1Ka2𝜎a1+a2 , (2.7)

where J is the symplectic form,

J = ©«
0𝑛 I𝑛

I𝑛 0𝑛

ª®¬ , (2.8)

and

K =
©«
0𝑛 I𝑛

0𝑛 0𝑛

ª®¬ . (2.9)
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Two Pauli operators 𝜎a1,𝑟1,ℎ1 and 𝜎a2,𝑟2,ℎ2 commute if w1 · v2 + v1 ·w2 = 0, or a𝑇
1
Ja2 = 0.

We say that 𝑘 Pauli operators 𝜎a1,𝑟1,ℎ1, · · · , 𝜎a2,𝑟2,ℎ2 are independent if there does not

exist a set of coefficients 𝑐1, · · · 𝑐𝑘 ∈ F2 such that (𝜎a1,𝑟1,ℎ1)𝑐1 · · · (𝜎a2,𝑟2,ℎ2)𝑐𝑘 = 𝐼⊗𝑛 unless

𝑐1 = · · · = 𝑐𝑘 = 0. It is not hard to see that if a1, · · · , a𝑘 are linearly independent in

F2𝑛
2
, then the Pauli operators 𝜎a1,𝑟1,ℎ1, · · · , 𝜎a2,𝑟2,ℎ2 are independent.

A stabilizer state |𝜓 ⟩ is the simultaneous eigenstate of 𝑛 commutable and indepen-

dent Hermitian Pauli operators with eigenvalue 1. These 𝑛 Pauli operators generate

an Abelian group, called the stabilizer group, denoted as S𝑛 . Note that −𝐼⊗𝑛 cannot be

in the stabilizer group, as it has no eigenstate with eigenvalue 1. A Clifford operator

𝐶 preserves the Pauli group under conjugation, which means that if𝐶 is a Clifford op-

erator, then 𝐶𝜎a,𝑟 ,ℎ𝐶
† = 𝜎a′,𝑟 ′,ℎ′ . The set of Clifford operators forms the Clifford group

C𝑛 .

Tableau representation. Since elements in the stabilizer group are Hermitian, one

can represent them with 2𝑛 + 1 bits,

(𝑣1, . . . , 𝑣𝑛,𝑤1, . . . ,𝑤𝑛, 𝑟 ) . (2.10)

For example, the vector for −𝑋1𝑍2 is (1, 0, 0, 1, 1). Any stabilizer state can be specified

by 𝑛 stabilizer generators, which commute with each other. Therefore, the state is

associated with the following tableau,

S̄ =

©«
𝑣11 . . . 𝑣1𝑛 𝑤11 . . . 𝑤1𝑛 𝑟1
...

. . .
...

...
. . .

...
...

𝑣𝑛1 . . . 𝑣𝑛𝑛 𝑤𝑛1 . . . 𝑤𝑛𝑛 𝑟𝑛

ª®®®®¬
, (2.11)

or S̄ = (S𝑥 , S𝑧, r), whose rows define the stabilizer generators. Here, S𝑥 , S𝑧 ∈ F𝑛×𝑛
2

and r = F𝑛
2
. We call S𝑥 the 𝑋 part, S𝑧 the 𝑍 part, and r the phase column of the

stabilizer tableau. The fact that S𝑛 is an Abelian group yields S𝑥S𝑇𝑧 + S𝑧S𝑇𝑥 = 0𝑛 . Define

S = (S𝑥 , S𝑧), and then we have

SJS𝑇 = 0𝑛 . (2.12)
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As an example, the |0𝑛⟩ state is stabilized by ⟨𝑍1, · · · , 𝑍𝑛⟩, and its stabilizer tableau is

given by,

©«
0 . . . 0 1 . . . 0 0

...
. . .

...
...
. . .

...
...

0 . . . 0 0 . . . 1 0

ª®®®®¬
. (2.13)

We will call it the standard stabilizer tableau of |0𝑛⟩.

Change of basis. For a stabilizer state |𝜓 ⟩, one can use different stabilizer tableaus

S̄ = (S𝑥 , S𝑧, r) or S̄′ = (S′𝑥 , S′𝑧, r′) to represent it, which correspond to different sets

of stabilizer generators. We want to find a relation between these two tableaus. We

first look at the multiplication between two stabilizer operators. Let s𝑇𝑗 = (v𝑇𝑗 ,w𝑇
𝑗 )

be the 𝑗-th row of S. Since stabilizer operators are Hermitian, we can write them as

𝜎s𝑗 ,𝑟 𝑗 := (−1)𝑟 𝑗𝜎s𝑗 . Then,

𝜎s1,𝑟1𝜎s2,𝑟2 = (−1)𝑟1+𝑟2+s
𝑇
1
Ks2𝜎s1+s2 . (2.14)

One can see that the basis change from S̄ to S̄′ can be represented by an invertible

matrix R ∈ F𝑛×𝑛
2

, such that

S′ = RS . (2.15)

The change in r is more complicated, because we will have extra minus signs in the

phase part when we multiply two Paulis (e.g., s𝑇
1
Ks2). Following the procedure in

[DDM03], one can obtain

r′ = Rr + diag(R𝑇 𝑓upper(SKS𝑇 )R) , (2.16)

where 𝑓upper(A) returns the strict upper-triangular part of A.

Overlap of two stabilizer states. Given two stabilizer states |𝜓 ⟩ and |𝜙⟩, let

Stab( |𝜓 ⟩) and Stab( |𝜙⟩) be their stabilizer groups, respectively, which are subgroups

of the 𝑛-qubit Pauli group. Let {𝑃1, · · · , 𝑃𝑛} be a choice of generators of Stab( |𝜓 ⟩)
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and {𝑄1, · · · , 𝑄𝑛} be those of Stab( |𝜙⟩). Note that the set of generators is not unique.

Then, the overlap | ⟨𝜓 |𝜙⟩ | is determined by their stabilizer groups [AG04].

Proposition 2.1 ([AG04]). Let |𝜓 ⟩ and |𝜙⟩ be two stabilizer states. Then, ⟨𝜓 |𝜙⟩ = 0 if

their stabilizer groups contain the same Pauli operator of the opposite sign. Otherwise,

|⟨𝜓 |𝜙⟩| = 2
−𝑔/2, where 𝑔 is the minimum number of different generators over all possible

choices.

Proof. First, suppose Stab( |𝜓 ⟩) = ⟨𝑃1, · · · , 𝑃𝑛⟩ and Stab( |𝜙⟩) = ⟨𝑄1, · · · , 𝑄𝑛⟩. Then,

we can write the states as,

|𝜓 ⟩⟨𝜓 | =
(
𝐼 + 𝑃1
2

)
· · ·

(
𝐼 + 𝑃𝑛
2

)
(2.17)

|𝜙⟩⟨𝜙 | =
(
𝐼 +𝑄1

2

)
· · ·

(
𝐼 +𝑄𝑛

2

)
. (2.18)

The square of the overlap is then given by,

| ⟨𝜓 |𝜙⟩ |2 = Tr( |𝜓 ⟩⟨𝜓 | |𝜙⟩⟨𝜙 |) = Tr

(
𝐼 + 𝑃1
2

· · · 𝐼 + 𝑃𝑛
2

𝐼 +𝑄1

2

· · · 𝐼 +𝑄𝑛
2

)
. (2.19)

(1) Without loss of generality, suppose 𝑄1 = −𝑃𝑛 . Then, we have,

𝐼 + 𝑃𝑛
2

𝐼 − 𝑃𝑛
2

= 0 . (2.20)

Thus, ⟨𝜓 |𝜙⟩ = 0 in this case.

(2) Suppose that 𝑃𝑖 = 𝑄𝑖 for all 𝑖 > 𝑔 and that the group ⟨𝑃1, · · · , 𝑃𝑔⟩ is not equal to

⟨𝑄1, · · · , 𝑄𝑔⟩. By commutation, we can group the same generators, which gives,

𝐼 + 𝑃𝑖
2

𝐼 +𝑄𝑖
2

=
𝐼 + 𝑃𝑖
2

𝐼 + 𝑃𝑖
2

=
𝐼 + 𝑃𝑖
2

, (2.21)

for 𝑖 > 𝑔. This will eliminate the terms related to 𝑄𝑔+1, · · · , 𝑄𝑛 . Then,

| ⟨𝜓 |𝜙⟩ |2 = Tr

(
𝐼 + 𝑃1
2

· · · 𝐼 + 𝑃𝑛
2

𝐼 +𝑄1

2

· · ·
𝐼 +𝑄𝑔

2

)
(2.22)

=
1

2
𝑔
⟨𝜓 | (𝐼 +𝑄1) · · · (𝐼 +𝑄𝑔) |𝜓 ⟩ . (2.23)
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For every term 𝑄𝑖𝑄 𝑗 · · ·𝑄𝑘 ≠ 𝐼 in the expansion, there exists a Pauli operator

𝑃 ∈ Stab( |𝜓 ⟩) that anticommutes with it; otherwise, the term will be in the

stabilizer group of |𝜓 ⟩. For such an operator 𝑄 , we have ⟨𝜓 |𝑄 |𝜓 ⟩ = 0. Indeed,

notice that

⟨𝜓 |𝑄 |𝜓 ⟩ = ⟨𝜓 |𝑄𝑃 |𝜓 ⟩ = − ⟨𝜓 |𝑃𝑄 |𝜓 ⟩ = − ⟨𝜓 |𝑄 |𝜓 ⟩ , (2.24)

which implies ⟨𝜓 |𝑄 |𝜓 ⟩ = 0. Finally, we have,

| ⟨𝜓 |𝜙⟩ |2 = 1

2
𝑔
⟨𝜓 |𝐼 |𝜓 ⟩ = 1

2
𝑔
, (2.25)

and |⟨𝜓 |𝜙⟩| = 2
−𝑔/2

.

■

2.1.3 Coding Theory

Here, we give some necessary ingredients from coding theory used in this thesis and

refer to [MS77] for a detailed treatment. We only consider linear codes over F2. A

linear code, or simply a code C of length𝑚 is a linear subspace of F𝑚
2
. The element

of a code is called a codeword. One can use a generator matrix H to represent a code,

with its columns spanning the codespace C. The dual code is defined as C⊥ := {v ∈

F𝑚
2

: v · w = 0 for w ∈ C}, which is also a linear code. It is not hard to see that

C⊥ = ker(H𝑇 ), which implies dim(C) + dim(C⊥) =𝑚. A code C is weakly self-dual if

C ⊆ C⊥ and (strictly) self-dual if C = C⊥, in which case dim(C) =𝑚/2.

The (Hamming) weight of a vector v, denoted as |v|, is the number of ones in the

entries of v. A code C is an even code if all codewords have even Hammingweight and

a doubly-even code if all codewords have Hamming weight a multiple of 4. Moreover,

we have the following proposition.

Proposition 2.2. The all-ones vector is a codeword of C if and only if its dual code C⊥

is an even code.
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Proof. Suppose the all-ones vector is a codeword, i.e., 1 ∈ C. Then for every c ∈

C⊥, we have c · 1 = 0, which means that |c| is even and hence C⊥ is an even code.

Conversely, suppose C⊥ is an even code. Then, all codewords will be orthogonal to

the all-ones vector, and thus it is in C. ■

We define the notion of (un)biased even codes, which will be useful later.

Definition 2.3. A code C is called a biased even code if it is an even code where the

number of codewords with Hammingweight 0 modulo 4 and 2modulo 4 are not equal.

It is called an unbiased even code otherwise.

Let the (maximum) self-dual subspace of C be D := C⋂C⊥, which is itself a

weakly self-dual code. Note thatD must be an even code, since all codewords are or-

thogonal to themselves and hence have even Hammingweight. We have the following

lemma.

Lemma 2.4. A weakly self-dual even code is either a doubly-even code or an unbiased

even code. For the former case, all columns of its generator matrix have weight 0 modulo

4 and are orthogonal to each other. For the latter case, there is at least one column in the

generator matrix with weight 2 modulo 4.

The proof of this lemma relies on the following lemma.

Lemma 2.5. Let c3 = c1 + c2, where c1, c2 ∈ F𝑚
2
are of even parity and c1 · c2 = 0. Then,

|c3 | = 0 (mod 4) if |c1 | = |c2 | (mod 4) and |c3 | = 2 (mod 4) if |c1 | ≠ |c2 | (mod 4).

Proof. Let |c1 | = 𝑎 + 4𝑘1 and |c2 | = 𝑏 + 4𝑘2, where 𝑎, 𝑏 ∈ {0, 2}. Let the size of joint

support of c1 and c2 be 𝑘12. Then, c1 · c2 = 𝑘12 = 0 (mod 2), which means that 𝑘12 is

an even number. So,

|c3 | = 𝑎 + 𝑏 − 2𝑘12 + 4(𝑘1 + 𝑘2) = 𝑎 + 𝑏 (mod 4) . (2.26)

• If |c1 | = |c2 | (mod 4), we have 𝑎 = 𝑏 = 0 or 2. In either case, |c3 | = 0 (mod 4).
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• If |c1 | ≠ |c2 | (mod 4), we have 𝑎 = 0 and 𝑏 = 2 or 𝑎 = 2 and 𝑏 = 0. In either

case, |c3 | = 2 (mod 4).

■

One can adapt the proof of this lemma to show that a doubly-even code is a weakly

self-dual code.

Proposition 2.6. A doubly-even code is a weakly self-dual code.

Proof. Suppose C is a doubly-even code, and c1, c2 ∈ C. Then, we have |c1 | = 4𝑘1 and

|c2 | = 4𝑘2. Suppose c3 = c1 + c2, which gives |c3 | = 4(𝑘1 + 𝑘2) − 2𝑘12. Since c3 is also

a codeword of the doubly-even code C, we have |c3 | = 0 (mod 4), which implies that

𝑘12 is even and thus c1 · c2 = 0. ■

Now, we are ready to prove Lemma 2.4.

Proof. Let D be a weakly self-dual even code spanned by {c1, · · · , c𝑑}. Then, c𝑖 ’s are

all even-parity and orthogonal to each other. Any codeword of D can be written as

c = 𝑎1c1 + · · · + 𝑎𝑑c𝑑 . According to Lemma 2.5, in the linear combination of c, if there

is an odd number of c𝑖 ’s with weight 2 modulo 4, then c will have weight 2 mod 4,

and otherwise, c will have weight 0 mod 4. Therefore, if all c𝑖 ’s have weight 0 modulo

4, then D is doubly-even. If there exist c𝑖 ’s with weight 2 modulo 4, then D is an

unbiased even code. ■

One can apply a basis change to the generator matrix H, resulting inHQ, whereQ

is an invertible matrix. This will not change the code C. Define the Grammatrix of the

generator matrix by G := H𝑇H. A basis change on H transforms G into Q𝑇GQ, which

is a congruent transformation. The rank of Gram matrix is also an invariant under

basis change. That is, rank(Q𝑇GQ) = rank(G) for Q invertible. It may be tentative to

consider this as a direct consequence of Sylvester’s law of inertia, but this is not the

case since we are working in F2. Nevertheless, this can be proven as follows. First, the

column space of GQ is a subspace of G, which implies rank(GQ) ≤ rank(G). On the
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other hand, the column space of G is a subspace of GQ, because GQQ−1 = G, which

implies rank(G) ≤ rank(GQ). Therefore, we have rank(G) = rank(GQ). Applying

this reasoning again gives rank(G) = rank(GQ) = rank(Q𝑇GQ).

The rank of the GrammatrixG = H𝑇H can be related to the code C in the following

way.

Proposition 2.7. Given a generator matrix H, let its Gram matrix be G = H𝑇H and

the generated code be C. Let D = C⋂C⊥, where C⊥ is the dual code of C. Then,

rank(G) = dim(C) − dim(D).

Proof. Suppose H ∈ F𝑚×𝑛
2

and let 𝑔 = rank(G), where G = H𝑇H. Let 𝑟 = dim(C)

and 𝑑 = dim(D), where 𝑑 ≤ 𝑟 ≤ 𝑛. We first prove for the case 𝑟 = 𝑛. In this

case, every codeword c ∈ C can be expressed as c = Ha for a unique a ∈ F𝑛
2
and

the correspondence is one-to-one. Then, one can prove that Ha ∈ D is equivalent to

a ∈ ker(G) and thus 𝑑 is equal to the dimension of ker(G), which is 𝑑 = 𝑟 −𝑔. Indeed,

if Ha ∈ D, we have Ga = H𝑇Ha = 0, which means that a ∈ ker(G). Conversely,

if a ∈ ker(G), we have H𝑇Ha = 0, which means that Ha ∈ C⊥. Since Ha ∈ C, this

implies Ha ∈ D.

Now, we consider the case 𝑟 < 𝑛. In this case, there always exists an invertible

matrix Q such that HQ = (H′, 0𝑚×(𝑛−𝑟 )) and H′ ∈ F𝑚×𝑟2
is a generator matrix of C that

is of full column rank. Moreover,

rank(G) = rank(Q𝑇GQ) = rank(H′𝑇H′) . (2.27)

Then, applying the previous reasoning toH′ yields that𝑑 = 𝑟−rank(H′𝑇H′) = 𝑟−𝑔. ■

2.1.4 Matrix Factorization over F2

Here, we give a review of the matrix factorization over F2. Given a symmetric matrix

G, the goal is to find a matrix H, so that G = H𝑇H. The matrix H is called a factor of

G. Although the matrix factorization problem is well-studied over the real field, it is

less-studied over F2. Nevertheless, Lempel gave an algorithm for finding a factor of G
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over F2 [Lem75]. In fact, Lempel’s algorithm allows one to find a minimal factor of G,

which is a factor with the smallest number of rows.

To illustrate Lempel’s algorithm, we need the following lemma.

Lemma 2.8. Let Z be a binary matrix with an even number of rows, and Z𝑇 · 1 = 0. Let

Z̃ = Z+ 1 · x𝑇 , where x is an arbitrary binary vector of the same length as the number of

columns of Z. Then, Z𝑇Z = Z̃𝑇 Z̃.

Proof. Observe that,

Z̃𝑇 Z̃ = Z𝑇Z + x · 1𝑇 · Z + Z𝑇 · 1 · x𝑇 + x · 1𝑇 · 1 · x𝑇 . (2.28)

The second and the third terms are zero since Z𝑇 · 1 = 0. The fourth term is zero

because there is an even number of rows in Z and thus 1𝑇 · 1 = 0. So, Z𝑇Z = Z̃𝑇 Z̃. ■

Lempel’s algorithm starts by constructing an elementary factorization of the sym-

metric matrix G. We define two sets based on G:

𝑁1 :=

{
𝑘 :

𝑛∑︁
𝑗=1

G𝑘 𝑗 = 1

}
𝑁2 :=

{
(𝑖, 𝑗) : G𝑖 𝑗 = 1 and 𝑖 < 𝑗

}
.

(2.29)

Then, we have the following lemma.

Lemma 2.9 ([Lem75]). Given an 𝑛 × 𝑛 binary symmetric matrix G, define 𝑁1 and

𝑁2 as in Eq. (2.29). Let E0 be a matrix with |𝑁1 | + |𝑁2 | rows and 𝑛 columns satisfying

the following conditions. Each row in the first |𝑁1 | rows of E0 has one only in the 𝑘-th

position for 𝑘 ∈ 𝑁1, and each row in the last |𝑁2 | rows has ones in the 𝑖-th and 𝑗-th

positions for (𝑖, 𝑗) ∈ 𝑁2, and zeros elsewhere. Then, G = E𝑇
0
E0.

Here, the factor E0 contains at most 𝑂 (𝑛2) rows. Although this already gives a

factor of G, the goal of Lempel’s algorithm is to find the minimal factor. After obtain-

ing E0, Lempel’s algorithm uses an iterative procedure to eliminate rows in the factor,

until certain stopping condition is satisfied, resulting in the following sequence

E0 → E1 → E2 → · · · → B . (2.30)
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Above, the number of rows in E𝑖 will be reduced at least by 1 compared to E𝑖−1. Strictly

speaking, the last factor B in this sequence corresponds to the minimal factor of G

only if G is non-singular. But for our later purpose in Section 4.3, we do not require a

minimal factor.

In the rest of this section, we give a detailed description of how this iterative proce-

dure works. For the elementary factor E0 ofG, if its rows are not linearly independent

(and we assume the number of rows in E0 is greater than 3), then one can always

partition E0 into two part; that is,

E0 =
©«
F

K

ª®¬ , (2.31)

up to a reordering of rows, where K contains at least two rows satisfying K𝑇 · 1 = 0.

Such a K can be found by identifying the independent rows in E0 and representing

other rows with these independent rows. For example, if p𝑇
1
and p𝑇

2
are independent,

while p𝑇
3
= p𝑇

1
+ p𝑇

2
, one may set K to be the first three rows and F to be the rest. This

ensures that K𝑇 · 1 = 0 since p3 + p1 + p2 = 0.

Now, there are two cases. If K consists of two identical rows, then K actually con-

tributes nothing to G. One removes K and denote the new factor E1, which contains

two rows less than E0. In the general case, define

Z :=


K if 𝑟 (K) is even,
K

0𝑇

 if 𝑟 (K) is odd.
(2.32)

Then, the number of rows in the matrix Z is even, Z𝑇1 = 0 and Z𝑇Z = K𝑇K, which

implies

E∗
0
:=

©«
F

Z

ª®¬ (2.33)

is also a factor of G. Let F(1) and Z(1) be the first row in F and Z, respectively. If F is

null (i.e., contains zero rows), set F(1) to be an all-zeros row. Let x𝑇 = F(1) + Z(1) , and
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define Z̃ = Z + 1 · x𝑇 . Then, according to Lemma 2.8, we have Z𝑇Z = Z̃𝑇 Z̃ and thus

Ẽ0 =
©«
F

Z̃

ª®¬ (2.34)

is a factor of G. But observe that the first row of Z̃ is actually F(1) , and their net

contribution to G is null. Therefore, we can eliminate both rows and obtain E1. If

𝑟 (K) is even, then 𝑟 (E1) = 𝑟 (E0) − 2; if 𝑟 (K) is odd, then 𝑟 (E1) = 𝑟 (E0) − 1. Here, 𝑟 (A)

denotes the number of rows in a matrix A. Overall, E1 contains at least one row less

than E0.

Repeat this procedure for E1 and so on until the number of rows in E 𝑗 is less than

or equal to 3, or until all rows in E 𝑗 are independent. If all rows in E 𝑗 are independent,

one cannot find a proper K and the iteration terminates. If the number of rows in E 𝑗 is

3 and not all rows are independent, then there will be two cases. The first case is that

E 𝑗 contains two same rows, which means that one can remove them and reduce the

number of rows to 1. We will denote this one-row matrix B. The second case is that

E 𝑗 contains two different rows and the third row is the sum of the other two. In this

case, Kwill be E 𝑗 itself, while F is null. But it is not hard to see that applying the above

procedure cannot reduce rows anymore and therefore the iteration should be termi-

nated. In any case, we denote the last factor in this sequence B, which corresponds to

the minimal factor of G if G is non-singular. This concludes the algorithm.

2.2 Quantum Computational Advantage

In recent years, an important research topic has been the pursuit of demonstrating

quantum computational advantage. To quantify the computational advantage pro-

vided by quantum computers, we need tools from computational complexity the-

ory. Computational complexity theory formally studies the computational resources

required to solve a given task; it classifies the computational problems into differ-

ent classes according to the resources, and studies the relation between different
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classes [AB09]. Computational resources include time, space, randomness and quan-

tum mechanics.

Basic complexity theory. One basic type of computational task is the decision

problem, which only requires 0/1 output. An elementary complexity class is P, which

is the class of decision problems that a deterministic Turing machine can solve effi-

ciently; here, ‘efficiently’ means using polynomial time steps. In this definition, Turing

machine is an abstract model of classical computers, and hence P captures the power

of deterministic classical algorithms running in polynomial time. Another important

classical complexity class is NP, which is the class of decision problems that a deter-

ministic Turing machine can efficiently verify. It is clear that P ⊆ NP, because if a

problem can be efficiently solved, then it can be efficiently verified.

If we replace the deterministic Turingmachine by a quantumTuringmachine, then

BQP [BB92, BV97] and QMA [Kni96, KSV02, Wat00, AN02] can be defined, which are

the quantum analogues of P and NP, respectively. The notion of quantum Turing

machine was first attempted by Deutsch [Deu85], and it was later defined as a de-

terministic Turing machine augmented with quantum coin flips in [BV97]. There are

other variants of quantum Turing machines, and Yao showed that these models are

(polynomially) equivalent to a model called quantum circuits [Yao93], which was also

introduced by Deutsch [Deu89]. Therefore, both quantum Turing machine and quan-

tum circuits can be used as models of quantum computers, and quantum circuits gain

more popularity after Yao’s equivalence proof.

BQP in theworld of classical complexity classes. The next question is how large

BQP is. It can be shown that quantum computers are at least as powerful as classical

computers, i.e., P ⊆ BQP, from the results of Bernstein and Vazirani [BV97]. More-

over, quantum computers can efficiently solve some problems that are considered hard

for classical computers, like factorization [Sho94], which is an instance of NP prob-

lems. But Bennett et al. [BBBV97] gave evidence that NP is unlikely contained in
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P

NP

PH

BQP

PSPACE

NP-
complete

Solvable with polynomial classical memory

Ef�iciently solvable on a quantum computer
Ef�iciently solvable ona classical computer

Ef�iciently veri�iable on a classical computer
Hardest problems in NP.Example: Max Cut, TSP , etc.

Generalization of NP
Factoring *

* Not known to be in Travelling salesman problem
Figure 2.1: BQP in the world of classical complexity classes. Here, PH stands for the

polynomial hierarchy and it is a generalization of NP [Sto76].

BQP, meaning that quantum computers might not be able to solve all problems in

NP. On the other hand, it was shown that BQP is contained in PSPACE [BV97], the

set of problems decidable in polynomial space with a deterministic Turing machine.

The relation of BQP with other complexity classes is shown in Fig. 2.1. Therefore, if

one proves that P is not equal to BQP, one also separates P from PSPACE, thereby

resolving a major open problem in complexity theory.

Notions of classical simulation. The interplay between quantum mechanics and

complexity theory suggests the outstanding difficulty in establishing quantum ad-

vantage formally. Indeed, it is notoriously challenging to prove separation between

complexity classes. A work by Terhal and DiVincenzo [TD02] shed light on es-

tablishing quantum advantage from another perspective. Specifically, they showed

that it is impossible to classically efficiently simulate constant-depth quantum cir-

cuits, which is a restricted model of quantum computation, unless polynomial hier-

archy (PH) collapses. Here, the non-collapse of polynomial hierarchy [Sto76] is a

consensus in complexity theory and it is a generalization of another common be-

lief that P ≠ NP. The importance of this result is that it reduces the intractability
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of simulating constant-depth quantum circuits to the conjecture that is not related

to quantum mechanics itself. It inspires later research in quantum computational

supremacy [Pre12, LBR17, HM17].

The notion of classical simulation used in [TD02] is called strong simulation in

[BJS11]. Formally, it is defined as classically computing the output probabilities of

any subset of qubits accurately. However, strong simulation of quantum circuits is

#P-hard [FGHP99], which means that it might be hard for quantum computers as

well. A more natural task would be weak simulation, which is a sampling problem

and requires an algorithm to output samples (i.e., bit strings) from the output distri-

bution of a quantum circuit. It can be shown that strong simulation without error

implies weak simulation without error [TD02]. In reality, quantum computers are

noisy and the output distribution will deviate from the ideal one. Therefore, we can

also allow some error in classical simulation. Two common notions of simulation er-

rors are multiplicative error and total variation distance, both defined in terms of the

distance between the sampled distribution and the ideal distribution. It is natural to

ask whether it is possible to prove the classical hardness of weak simulation, given

some widely-accepted conjectures in complexity theory. This is what quantum com-

putational supremacy concerns [Pre12].

Quantum computational supremacy. Here, we will discuss three propos-

als for quantum computational supremacy, namely, IQP (Instantaneous Quantum

Polynomial-time) sampling [BJS11], boson sampling [AA11], and random-circuit sam-

pling [BIS
+
18]. These three tasks require to sample from the output distributions of

IQP circuits, random linear optical networks, and certain family of random quantum

circuits, respectively. IQP sampling and boson sampling are the first two proposals

with rigorous complexity-theoretic foundations. Random-circuit sampling (RCS) was

first proposed because it fit well into the hardware of the Google team [BIS
+
18]. Its

theoretical foundations were subsequently laid down by community efforts detailed

later. Experimentally, Google [AAB
+
19] and USTC [ZCC

+
21, WBC

+
21] demonstrated
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RCS with 50-60 superconducting qubits, and USTC also implemented a variant of bo-

son sampling [ZWD
+
20]. The scale of these experiments are already considered to be

formidable for classical simulation.

Complexity-theoretic foundations. The IQPmodel was first proposed in the con-

text of cryptographic test of quantum computers [SB09]. Then, multiplicative-error

weak simulation of IQP circuits was proven to be intractable for classical computers,

given the conjecture that the polynomial hierarchy does not collapse [BJS11]. Similar

result was also proven for boson sampling [AA11]. However, multiplicative error is a

too stringent error notion, even for quantum computers. It would be more reasonable

to consider total variation distance.

For both models, classical weak simulation with total variation distance can also

be proven to be impossible, with extra conjectures apart from the non-collapse of

PH [AA11, BMS16]. Specifically, the hardness proofs are based on mapping the out-

put probability to certain well-studied quantities in counting problems, which is the

permanent for boson sampling and Ising-model partition function for IQP sampling.

Those extra conjectures are related to these quantities. For boson sampling, the two

extra conjectures are the anti-concentration property of permanents and the average-

case hardness of approximating permanents [AA11]. Both conjectures remain open

for boson sampling and have not been widely examined. However, for IQP sampling,

the anti-concentration property can be established [BMS16].

The classical hardness of RCS can be proven by similar techniques and based on

similar conjectures. But unlike IQP sampling and boson sampling, the output prob-

abilities of random quantum circuits do not correspond to well-studied quantities in

counting problems. Nevertheless, the anti-concentration property of RCS was proven

from the structure of random quantum circuits [HBVSE18, BCG21, DHJB20]. As for

the approximate average-case hardness for RCS, recently there are a series of work

towards proving this conjecture [BFNV19, Mov18, Mov19], but it still remains open.
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2.3 Verifiable Quantum Advantage

The achievability of quantum advantages depends not only on the delicate design

of quantum algorithms but also relies on the quality of the quantum hardware that

performs the algorithms. How to verify the output of physical quantum devices is

a long-standing question, which was first asked by Gottesman
1
. In the context of

verifying arbitrary quantum computation, there have been a plethora of important

results [BFK09, BFK10, ABOE08, ABOEM08, FK17, FHcvM18, RUV13, Mah18]. The

more relevant context to this thesis is called test of quantumness in the literature,

which is to verify quantum computational capability beyond classical computing. In

light of NISQ, the verification protocol shall be run in a setting that uses minimal

quantum and classical computing resources. A motivating example is given by Shor’s

algorithm for integer factorization [Sho94], which is appealing in that hard instances

can be easily generated and verified classically yet finding the solution is beyond the

capabilities of classical computers. However, this also has the drawback that the quan-

tum solution also seems to be beyond the capabilities of NISQ devices.

Recently, there have been tests of quantumness that combine the power of both in-

teractive proofs and cryptographic assumptions [BCM
+
18, BKVV20, KMCVY21]. This

class of cryptographic verification protocols uses a primitive called trapdoor claw-free

(TCF) functions, which has the following properties. First, it is a 2-to-1 function that is

hard to invert, meaning that given 𝑦 = 𝑓 (𝑥) = 𝑓 (𝑥′), it is hard for an efficient classical

computer to find the preimage pair (𝑥, 𝑥′). Second, given a trapdoor to the function

𝑓 (𝑥), the preimage pair can be efficiently found on a classical computer. We will re-

fer to this class of verification protocols as the TCF-based protocols. The TCF-based

protocols require the quantum prover to prepare the state of the form

∑
𝑥 |𝑥⟩ |𝑓 (𝑥)⟩.

Although a recent experiment implemented a small-scale TCF-based protocol on a

1https://www.scottaaronson.com/blog/?p=284. At first sight, this seems a sim-

ple question. One may ask the quantum cloud to run a classical intractable task which is feasible for a

quantum computer. This idea is not practical as it is equivalent to separating BQP (bounded-error quan-

tum polynomial time) and P (polynomial time), one of the most important open problem in quantum

complexity theory.

https://www.scottaaronson.com/blog/?p=284
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trapped-ion platform [ZKML
+
22], this class of protocols is still very challenging for

the current technology.

Another class of verification protocols is based on IQP circuits initiated by Shep-

herd and Bremner [SB09]. IQP (Instantaneous Quantum Polynomial-time) circuits are

a family of quantum circuits that employ only commuting gates, typically diagonal in

the Pauli-𝑋 basis. In IQP-based verification protocols, the verifier generates a pair

consisting of an IQP circuit 𝑈IQP and a secret key s ∈ {0, 1}𝑛 . After transmitting the

classical description of the IQP circuit to the prover, the verifier requests measurement

outcomes in the computational basis. Then, the verifier uses the secret to determine

whether the measurement outcomes are from a real quantum computer. Such a chal-

lenge seems hard for classical computers, as random IQP circuits are believed to be

computationally difficult to simulate classically with minimal physical resources, as-

suming some plausible complexity-theoretic assumptions such as the non-collapse of

polynomial hierarchy [BJS11, BMS16, BMS17].

But the use of random IQP circuits is not suitable for the verification protocol, due

to the anti-concentration property [YC20, BMS16]. In the Shepherd-Bremner scheme,

the verifier constructs the pair (𝑈IQP, s), according to an obfuscated quadratic-residue

code (QRC) [MS77]. While the Shepherd-Bremner scheme was experimentally attrac-

tive, a drawback was that in comparison with the TCF-based protocols, the crypto-

graphic assumptions were non-standard and have had comparatively unstudied. In

2019, a loophole was found in the Shepherd-Bremner scheme, which allows a classi-

cal prover to regularly find the secret efficiently [KM19]. Once the secret is found, a

classical prover can easily generate data to spoof the test. Since the IQP-based proto-

cols offer a promising avenue for achieving verifiability beyond classical computing

with fewer resources than Shor’s algorithm, it is imperative to investigate whether it

is possible to extend and fix the Shepherd-Bremner construction.
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Part I

Classical Verification of Quantum

Devices
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Chapter 3

IQP-based Verification Protocols

IQP stands for instantaneous quantum polynomial-time, and it is a family of quantum

circuits that consist of only commuting gates. In what follows, we focus on a specific

family of IQP circuits, the 𝑋 program [SB09], where all local gates are diagonal in

the Pauli-𝑋 basis. One can represent this family of IQP circuits by a time evolution

of the Hamiltonian 𝐻 , which consists of only products of Pauli 𝑋 ’s. For example, for

𝐻 = 𝑋1𝑋2𝑋4 + 𝑋3𝑋4 + 𝑋1𝑋3, the corresponding IQP circuit is given by 𝑈IQP = 𝑒𝑖𝜃𝐻 =

𝑒𝑖𝜃𝑋1𝑋2𝑋4𝑒𝑖𝜃𝑋3𝑋4𝑒𝑖𝜃𝑋1𝑋3
. In the general case, the evolution time for each term in 𝐻 can

be different, but we mainly consider the case where 𝜃 = 𝜋/8 for all terms. One can

also use an𝑚-by-𝑛 binary matrix to represent the IQP Hamiltonian, where𝑚 is the

number of local terms and𝑛 is the number of qubits. Each row of thematrix represents

one local term and the locations of 1’s indicate the qubits that it acts on. The matrix

representation for 𝐻 in the previous example is given by

H =

©«
1 1 0 1

0 0 1 1

1 0 1 0

ª®®®®¬
. (3.1)

Before proceeding, we first introduce some notations. Wemainly work on the field

F2. We use bold upper-case letters such as H to denote a matrix and bold lower-case

letters such as s to denote a vector. If not stated otherwise, a vector is referred to as
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a column vector, and a row vector will be added the transpose symbol, like p𝑇 . The

inner product between two vectors x and s is denoted as x · s; sometimes we will also

useH · s to denote the matrix multiplication. We use col(H) and row(H) to denote the

collections of columns and rows of a matrix H, respectively. We use 𝑐 (H) and 𝑟 (H)

to denote the number of columns and the number of rows of a matrix H, respectively.

The rank of a matrix H is denoted as rank(H). We use ker(H) to denote the kernel

space of H, i.e., the set of vector v such that Hv = 0. We call two square matrices A

and B congruent if there exists an invertible matrix Q satisfying A = Q𝑇BQ, denoted

as A ∼𝑐 B. We call such an transformation congruent transformation.

The all-ones vector will be denoted as 1, with its dimension inspected from the

context; the similar rule applies to the all-zeros vector (or matrix) 0. The 𝑛×𝑛 identity

matrix is denoted as I𝑛 . For a vector x, we define its support as supp(x) := { 𝑗 : 𝑥 𝑗 = 1}.

We define [𝑛] := {1, 2, · · · , 𝑛}. If not stated otherwise, a full-rank matrix is referred to

a matrix with full column rank.

We denote the linear subspace spanned by a set of vectors {c1, . . . , c𝑘} as

⟨c1, . . . , c𝑘⟩. Given linear subspaces 𝑉 = ⟨c1, . . . , c𝑙⟩ and 𝑈 = ⟨c1, . . . , c𝑘⟩ with 𝑘 < 𝑙 ,

we denote the complement subspace of𝑈 in𝑉 with respect to the basis {c, . . . , c𝑙 } by

(𝑉 /𝑈 )c1,...,c𝑙 ; namely, (𝑉 /𝑈 )c1,...,c𝑙 := ⟨c𝑘+1, . . . , c𝑙⟩. Usually, we are not interested in

a specific basis, so we use 𝑉 /𝑈 to denote a random complement subspace of 𝑈 in 𝑉 ,

i.e., 𝑉 /𝑈 ←R {⟨c𝑘+1, . . . , c𝑙⟩ : 𝑉 = ⟨c1, . . . , c𝑙⟩,𝑈 = ⟨c1, . . . , c𝑘⟩}, where←R denotes

a random instance from a set. We let 𝑉 \𝑈 := {v : v ∈ 𝑉 , v ∉ 𝑈 } be the ordinary

complement of two sets.

3.1 General Framework

The general framework for IQP-based verification protocol is shown in Fig. 3.1. Here,

the verifier first generates the pair of IQPHamiltonian𝐻 and the secret s. She will pre-

compute the correlation function ⟨Zs⟩ := ⟨0𝑛 |𝑈 †
IQP
Zs𝑈IQP |0𝑛⟩, which can be achieved

with the classical algorithms in [YC20]. Here,Zs := 𝑍
𝑠1
1
⊗· · ·⊗𝑍 𝑠𝑛𝑛 is a Pauli-Z product,
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Alice
verifier, classical

Bob
prover, (supposedly) quantum

1 Generate the pair and
calculate classically

Hamiltonian

evolution time
2 Prepare

3 Measure all qubits in the basis
and sample

4 Calculate the correlation function
from Bob’s samples

5 If is within an allowed
error of Alice’s precomputed
value , then accept.

Figure 3.1: Schematic for IQP-based verification protocol in the case � = �/8.

defined by the secret s. Then, the classical description of the Hamiltonian � is sent to

the prover, while the secret is kept on the verifier’s side; the verifier also instructs the

prover the evolution time for each term of the Hamiltonian. After that, the prover ap-

ply the time evolution ���� to |0�〉, and measure all qubits in the computational basis.

The prover repeats this process� times and obtain a set of samples x1, · · · , x� , which

will be sent back to the verifier. From the prover’s measurement samples, the verifier

estimates the correlation function with respect to s by

〈Z̃s〉 :=
1

�

�∑
�=1

(−1)x� ·s . (3.2)

If the value of 〈Z̃s〉 is within an allowed error of the ideal value 〈Zs〉, then the verifier

accepts the result and the prover passes the verification.

There are two important steps for the verifier in the IQP-based verification proto-

col. The first one is to evaluate the correlation function in advance, so that the verifier

can compare the value obtained from the prover’s measurement outcomes with the

precomputed value. The second one is to construct a suitable pair (�, s), so that the

correlation function 〈Zs〉 = 〈0� |�−���Zs�
��� |0�〉 is sufficiently away from zero. Oth-

erwise, the verifier may need to request a super-polynomial number of samples from

the prover to make the statistical error small enough, which makes the protocol inef-

ficient.
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3.2 IQP Circuit Correlation Functions

In this section, we will discuss the properties of the correlation functions ⟨Zs⟩ of IQP

circuits. To evaluate the correlation function, we first note that the Hamiltonian can

be divided into two part 𝐻 = 𝐻s + 𝑅s based on the secret s. Here, the part 𝐻s anti-

commutes with Zs, i.e., {Zs, 𝐻s} = 0, and the redundant part 𝑅s commutes with Zs,

i.e., [𝑅s,Zs] = 0. Correspondingly, the matrix representations satisfy Hs s = 1 and

Rs s = 0. Due to these commutation relations, the value of the correction function

only depends on the 𝐻s, i.e.,

⟨Zs⟩ = ⟨0𝑛 |𝑒𝑖2𝜃𝐻s |0𝑛⟩ . (3.3)

Then, one can observe an intriguing point from this expression. When 𝜃 = 𝜋/8, the

IQP circuit is non-Clifford and there is complexity-theoretic evidence that the IQP cir-

cuits in this setting is hard to simulate classically [BMS16]. However, 𝑒𝑖2𝜃𝐻s
becomes a

Clifford circuit and the correlation function can be computed efficiently [She10, YC20].

Indeed, ⟨Zs⟩ = ⟨0𝑛 |𝑒𝑖 (𝜋/4)𝐻s |0𝑛⟩ actually corresponds to an amplitude of the Clifford

circuit 𝑒𝑖 (𝜋/4)𝐻s
. In this way, the verifier can evaluate the correlation function effi-

ciently using the Gottesman-Knill algorithm [Got99] and the subsequent improve-

ment [AG04]. Specifically, the value of |⟨Zs⟩| is either 0 or 2−𝑔/2, where 0 ≤ 𝑔 ≤ 𝑛 is

an integer determined by the stabilizer groups of |0𝑛⟩ and 𝑒𝑖 (𝜋/4)𝐻s |0𝑛⟩, respectively.

We will discuss the connection between IQP circuits and the stabilizer formalism in

more details in Section 4.1.

For the general case, when the angle for each Hamiltonian term is arbitrary and

possibly different, the correlation function can still be estimated to within an additive

error 𝜖 using Monte Carlo sampling. We have the following theorem [YC20]:

Theorem 3.1. The correlation function of any Pauli-Z product, ⟨Zs⟩ :=

⟨0𝑛 |𝑈 †
IQP
Zs𝑈IQP |0𝑛⟩ of an IQP circuit𝑈IQP, can be classically estimated to within additive

error 𝜖 with probability 1 − 𝛿 by Monte-Carlo sampling in time O
(
1

𝜖2
log

2

𝛿

)
.
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Proof. With respect toZs, let the non-commuting part and the commuting part of the

IQP circuit be 𝑈𝑀 and 𝑈𝑅 , respectively. Since each gate in the IQP circuit commutes

with each other, we can write without loss of generality that 𝑈IQP = 𝑈𝑅𝑈𝑀 , which

gives ⟨Zs⟩ = ⟨0𝑛 |𝑈 †𝑀𝑈
†
𝑅
Zs𝑈𝑅𝑈𝑀 |0𝑛⟩. From the fact that 𝑈𝑅 commutes with Zs, we

have,

⟨Zs⟩ = ⟨0𝑛 |𝑈 †𝑀Zs𝑈𝑀 |0𝑛⟩ . (3.4)

Furthermore, since the Hamiltonian terms in 𝑈𝑀 anti-commute with Zs, we have

𝑈
†
𝑀
Zs𝑈𝑀 = Zs𝑈

2

𝑀
and

⟨Zs⟩ = ⟨0𝑛 |𝑈 2

𝑀 |0
𝑛⟩ . (3.5)

Then we apply Hadamard gates to change the basis,

⟨Zs⟩ =
1

2
𝑛

∑︁
x,y
⟨x| (𝑈 (𝑧)

𝑀
)2 |y⟩ (3.6)

=
1

2
𝑛

∑︁
x
⟨x| (𝑈 (𝑧)

𝑀
)2 |x⟩ , (3.7)

where 𝑈
(𝑧)
𝑀

is obtained from 𝑈𝑀 by replacing Pauli-𝑋 with Pauli-𝑍 and we have used

the fact that ⟨x| (𝑈 (𝑧)
𝑀
)2 |y⟩ = 0 if x ≠ y. Each term in the summation can be efficiently

calculated by tracking the phase and ⟨Zs⟩ is the uniform average of the terms in the

summation. Therefore, using the Chernoff bound, ⟨Zs⟩ can be approximated to 𝜖

precision with probability 1 − 𝛿 using O
(
1

𝜖2
log

2

𝛿

)
samples of x. ■

On the other hand, even though we have efficient classical algorithms for evalu-

ating the correlation function (either exactly or approximately), it does not directly

imply an effective solution to the verification problem. For a random instance of

(𝑈IQP, s), the value of the resulting correlation function could be too small from the

experimental point of view; this makes it difficult to be distinguished from the uni-

form distribution. For example, we have the following proposition for random 2-local

IQP circuits [YC20]:



CHAPTER 3. IQP-BASED VERIFICATION PROTOCOLS 30

Proposition 3.2. For random 2-local IQP circuits of the form, 𝑈IQP =

𝑒𝑖
𝜋
8
(∑𝑖< 𝑗 𝑤𝑖 𝑗𝑋𝑖⊗𝑋 𝑗+

∑
𝑖 𝑣𝑖𝑋𝑖) with 𝑤𝑖 𝑗 , 𝑣𝑖 ∈ {0, 1, · · · , 7}, one can show that the proba-

bility of finding a polynomial-size correlation function ⟨Zs⟩ is exponentially small,

i.e.,

Pr

𝑈IQP,s

(
⟨Zs⟩2 ≥

1

𝑓 (𝑛)

)
≤ 3𝑓 (𝑛)

2
𝑛

, (3.8)

where 𝑓 (𝑛) is a polynomial of 𝑛.

This is essentially due to the anti-concentration properties of IQP circuits [BMS16],

an important ingredient for proving the quantum computational supremacy of IQP

sampling.

Proof. First, for random 2-local IQP circuits of the form

𝑈IQP = 𝑒
𝑖 𝜋
8
(∑𝑖< 𝑗 𝑤𝑖 𝑗𝑋𝑖⊗𝑋 𝑗+

∑
𝑖 𝑣𝑖𝑋𝑖) , (3.9)

with 𝑤𝑖 𝑗 , 𝑣𝑖 ∈ {0, 1, · · · , 7}, the output probability is anti-concentrated. Specifically,

the anti-concentration theorem states that [BMS16]

E𝑈 [𝑝 (x)2] ≤
3

2
2𝑛

(3.10)

for all x, where E𝑈 denotes a uniform average over all IQP circuits of the form of (3.9),

that is over uniform choices of𝑤𝑖 𝑗 and 𝑣𝑖 . Then we have,

E𝑈

[∑︁
x
𝑝 (x)2

]
≤ 3

2
𝑛
. (3.11)

By definition, the correlation function can be written as,

⟨Zs⟩ =
∑︁
x
𝑝 (x) (−1)s·x , (3.12)

which actually holds for a general quantum circuit. This means that 𝑝 (x) is the Fourier

transform of ⟨Zs⟩, and that

𝑝 (x) = 1

2
𝑛

∑︁
s
⟨Zs⟩ (−1)s·x . (3.13)
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Then we can apply the Parseval’s identity [O’D14],∑︁
x
𝑝 (x)2 = 1

2
𝑛

∑︁
s
⟨Zs⟩2 , (3.14)

which gives,

E𝑈 ,s
[
⟨Zs⟩2

]
=

1

2
𝑛

∑︁
s
E𝑈

[
⟨Zs⟩2

]
(3.15)

= E

[∑︁
x
𝑝 (x)2

]
(3.16)

≤ 3

2
𝑛
. (3.17)

The Markov’s inequality gives the following bound,

Pr

𝑈 ,s
(⟨Zs⟩2 ≥ 𝑎) ≤

E𝑈 ,s
[
⟨Zs⟩2

]
𝑎

≤ 3

𝑎2𝑛
, (3.18)

for 𝑎 > 0. Setting 𝑎 = O(1/poly(𝑛)), we have,

Pr

𝑈 ,𝑠

(
⟨Zs⟩2 ≥

1

poly(𝑛)

)
≤ 3 poly(𝑛)

2
𝑛

. (3.19)

This means that for random 2-local IQP circuits, the probability that the correlation

functions are polynomially small is exponentially small. ■

To conclude, if Alice wants to use random IQP circuits for the verification, the cor-

relation function will generally be exponentially small. In this way, Alice will need to

require an exponential number of samples from Bob, and the verification process be-

comes inefficient. This poses a challenge, to balance the security given by randomized

constructions with the scale of the correlation function that enables easy verification.

Therefore, practically, Alice needs to carefully design the IQP circuit and the secret,

such that the associated correlation function is sufficiently away from zero.

3.3 Shepherd-Bremner Construction

The first explicit construction recipe of (H, s) for the case 𝜃 = 𝜋/8 is given by Shep-

herd and Bremner [SB09], which can be divided into two steps, (a) constructing the
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pair (Hs, s) and (b) adding redundancy and obfuscation. In the Shepherd-Bremner

construction, the non-orthogonal part Hs with respect to the secret s is constructed

from a specific error-correcting code, the quadratic-residue code (QRC) [MS77]. Un-

der this construction, the correlation function is always 1/
√
2, which is sufficiently

away from zero as desired.

Specifically, let HQRC

𝑛,𝑚,𝑞 = {(H, s)} be a family of pairs of an IQP matrix H ∈ F𝑚×𝑛
2

and a secret s so that Hs generates a QRC of length 𝑞 (up to row permutations) and

H is of full column rank. What the Shepherd-Bremner construction achieves is to

randomly sample instances fromHQRC

𝑛,𝑚,𝑞 , where 𝑛 = (𝑞 + 3)/2.

Note that in the Shepherd-Bremner construction [SB09], the measure of success is

given by the probability biasPs⊥ :=
∑

x·s=0 𝑝 (x), the probability of receiving bit strings

that are orthogonal to s, where 𝑝 (x) is the output probability of the IQP circuit. This

measure is equivalent to the correlation function, since Ps⊥ = 1

2
(⟨Zs⟩ + 1) [She10,

CCL
+
21].

3.3.1 Constructing the Anti-commuting Part

The quadratic residue code is a cyclic code. Its cyclic generator has 1 in the 𝑗-th

position if 𝑗 is a non-zero quadratic residue modulo 𝑞. The size parameter 𝑞 of the

quadratic-residue code is a prime number and 𝑞 + 1 is required to be a multiple of

eight [SB09]. For 𝑞 = 7, the cyclic generator reads (1, 1, 0, 1, 0, 0, 0)𝑇 , because 𝑗 = 1, 2, 4

are quadratic residues modulo 7. The basis for the codespace of QRC is obtained by
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rotating the cyclic generator, which is the last 4 columns of the following matrix,

HQRC

s =

©«

1 1 0 0 0

1 1 1 0 0

1 0 1 1 0

1 1 0 1 1

1 0 1 0 1

1 0 0 1 0

1 0 0 0 1

ª®®®®®®®®®®®®®®®®¬

. (3.20)

The first column is added so that the secret is easy to find, i.e., s = (1, 0, 0, 0, 0)𝑇 . But

note that the all-ones column does not need to be added explicitly, because it is in the

linear subspace of the quadratic-residue code. For the example in Eq. (3.20), it is not

hard to verified that adding the second, the fourth and the fifth columns up gives the

all-ones vector.

3.3.2 Redundancy and Obfuscation

After obtaining the initialHQRC

s , the verifier needs to hide the secret and make the IQP

circuit look random, while leaving the value of the correlation function unchanged.

In the Shepherd-Bremner construction, the verifier will first add redundant rows Rs,

which are rows that are orthogonal to s, to obtain the full IQP matrix

H =
©«
HQRC

s

Rs

ª®¬ . (3.21)

Its corresponding Hamiltonian 𝑅s commutes with Zs and hence will not affect the

correlation function, as can be seen from Eq. (3.3). After initializing H and s, the

verifier needs to apply obfuscation to hide the secret. The obfuscation is achieved by

randomly permuting rows inH and performing column operations toH and changing

s accordingly.
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Definition 3.3 (Obfuscation). Given an instance (H, s), the obfuscation is defined

as the transformation

H← PHQ s← Q−1s , (3.22)

where P is a random row-permutation matrix and Q is a random invertible matrix.

Note that in the obfuscation, the secret s is changed accordingly, to preserve the

inner-product relation with the rows in H.

Performing row permutations will not change the IQP unitary, because all gates

commute with each other. Therefore, the value of the correlation function is not

changed under row permutations. What is less obvious is that performing column op-

erations will also leave the correlation function relative to the new secret unchanged.

When all angles are the same, we have the following theorem:

Theorem 3.4 (Adapted from Theorem 1 of [SB09]). Given an IQP matrix H and a

vector s, denote the non-orthogonal part of H with respect to s by Hs. Denote Cs as the

linear subspace spanned by the columns ofHs. TransformingH into an IQP Hamiltonian

𝐻 , the correlation function ⟨Zs⟩ := ⟨0𝑛 |𝑒−𝑖𝜃𝐻Zs𝑒
𝑖𝜃𝐻 |0𝑛⟩ can be expressed as,

⟨Zs⟩ =
1

2
𝑑

∑︁
c∈Cs

cos[2𝜃 (𝑞 − 2|c|)] , (3.23)

where 𝑑 is the dimension of the linear subspace Cs and 𝑞 is the number of rows in Hs.

Theorem 3.4 states that the correlation function ⟨Zs⟩ depends only on the linear

subspace spanned by columns of Hs. Therefore, as long as we change the secret s

accordingly, so that the new secret corresponds to the same linear subspace, the cor-

relation function relative to the new secret will be the same. For the QRC construction,

this means that the correlation function relative to the new secret will also be 1/
√
2.

Proof. First, from Eq. (3.3), we have

⟨Zs⟩ =
1

2
𝑛

∑︁
y∈{0,1}𝑛

⟨y|𝑒𝑖2𝜃𝐻
(𝑧 )
s |y⟩ (3.24)
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=
1

2
𝑛

∑︁
y∈{0,1}𝑛

exp
©«𝑖2𝜃

∑︁
p𝑇 ∈row(Hs)

(−1)p·yª®¬ (3.25)

=
1

2
𝑛

∑︁
y∈{0,1}𝑛

cos
©«2𝜃

∑︁
p𝑇 ∈row(Hs)

(−1)p·yª®¬ . (3.26)

Here,𝐻
(𝑧)
s is obtained by replacing the Pauli-𝑋 operators in𝐻s with Pauli-𝑍 operators,

where 𝐻s is the corresponding IQP Hamiltonian of the non-orthogonal rows Hs. We

used the fact that ⟨Zs⟩ is real in the last line.

Define cy := Hs · y to be an encoding of y under Hs. Suppose that Hs contains 𝑞

rows, so we can write

cy =
©«
p𝑇
1

...

p𝑇𝑞

ª®®®®¬
· y =

©«
p1 · y
...

p𝑞 · y

ª®®®®¬
, (3.27)

which means that each entry in cy equals p · y for p𝑇 ∈ row(Hs). Then∑
p𝑇 ∈row(Hs) (−1)p·y equals the number of zeros in cy minus the number of ones (i.e.,

Hamming weight |cy |), which gives,∑︁
p𝑇 ∈row(Hs)

(−1)p·y = 𝑞 − 2|cy | . (3.28)

Plugging it into Eq. (3.26), we arrive at,

⟨Zs⟩ =
1

2
𝑛

∑︁
y∈{0,1}𝑛

cos[2𝜃 (𝑞 − 2|cy |)] . (3.29)

Now, in the column picture, we can write Hs = (c1, · · · , c𝑛), where c𝑖 ∈ col(Hs) is

a column vector of length 𝑞. Thus,

cy = Hs · y = 𝑦1c1 + · · · + 𝑦𝑛c𝑛 . (3.30)

Suppose the dimension of Cs is 𝑑 , and without loss of generality, assume that

{c1, · · · , c𝑑} forms a basis. Then,

c = 𝑦1c1 + · · · + 𝑦𝑑c𝑑 (3.31)
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for any c ∈ Cs. So the expression of ⟨Zs⟩ becomes,

⟨Zs⟩ =
1

2
𝑛−𝑑

∑︁
𝑦𝑑+1,··· ,𝑦𝑛

(
1

2
𝑑

∑︁
c∈C𝑀

cos[2𝜃 (𝑞 − 2|c|)]
)
. (3.32)

The first summation will give a factor of 2
𝑛−𝑑

, which cancels with
1

2
𝑛−𝑑 . So finally, it

ends up giving,

⟨Zs⟩ =
1

2
𝑑

∑︁
c∈C𝑀

cos[2𝜃 (𝑞 − 2|c|)] . (3.33)

Every term in the summation depends on the element c, and therefore ⟨Zs⟩ depends

only on the linear subspace Cs. ■

3.3.3 A Loophole in the Shepherd-Bremner Construction

There are two potential ways to hack the protocol, i.e., to pass the test with a classical

computer. One way is to simulate IQP circuits with classical computers. This is gener-

ally implausible, because general IQP circuits are hard to sample from classically effi-

ciently, assuming some reasonable complexity-theoretic conjectures [BJS11, BMS16].

Therefore, one can expect that this kind of attack will fail when the system size is

large enough.

Another way is to find the secret from the IQPmatrixH, which can then be used to

generate correctly correlated samples that can pass the test. This is less clear whether

this is possible or not. [SB09] conjectured that it is NP-hard to find the hidden HQRC

s

constructed from quadratic-residue code out of H. However, while this seems plausi-

ble, the parameter regime of the Shepherd-Bremner construction may not give hard

instances.

Recall that the Shepherd-Bremner construction recipe can only randomly sample

instances from HQRC

𝑛,𝑚,𝑞 with 𝑛 = (𝑞 + 3)/2. This actually leads to a loophole, with

which Kahanamoku-Meyer designed a classical attack targeting the QRC-based con-

struction of IQP circuits [KM19]. In Kahanamoku-Meyer’s attack, the classical prover

starts by constructing a matrix M from rows of the IQP matrix H. Then, the prover
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will iterate over vectors in the kernel of M, and perform a property check on each

vector, which checks whether the non-orthogonal part of H associated to that vector

generates a QRC. With probability 1/2, the real secret lies in the kernel of M, and

the numerical result shows that the kernel space will generally not be large for the

Shepherd-Bremner construction [KM19]. Therefore, the attacker can find the secret

efficiently. However, choosing a different encoding method other than QRC can easily

invalidate this attack, since no vector will pass the property check.

We conclude this section by remarking that [She10] subsequently studied IQP cir-

cuits from the perspective of binary matroids and Tutte polynomials. Specifically,

the amplitude of the IQP circuit ⟨0𝑛 |𝑒𝑖𝜃𝐻 |0𝑛⟩ is expressed in terms of the normalized

Tutte polynomial, and its computational complexity is studied in various cases. When

𝜃 = 𝜋/4, the related Tutte polynomial can be efficiently evaluated using Vertigan’s

algorithm [Ver98], which is similar to the Gottesman-Knill algorithm [Got99]. But

when 𝜃 = 𝜋/8 (and any other values except for the multiple of 𝜋/4), computing the

amplitude is #𝑃-hard in the worst case. Moreover, [She10] also derived similar rela-

tion to Eq. (3.3), in the language of the normalized Tutte polynomial. Therefore, it

was suggested that the correlation function is efficiently classical computable when

𝜃 = 𝜋/8, and could be used to perform hypothesis test, although no new construction

was proposed in [She10].

3.4 A Heuristic Generalized Construction

In [YC20], we provide a heuristic construction of IQP circuits for verification, which

goes beyond the Shepherd-Bremner construction. Our heuristic construction does not

rely on quadratic-residue code, and hence is intrinsically immune to Kahanamoku-

Meyer’s attack, as we explained before. Moreover, the angles of the each Hamiltonian

term can be different, and multiple secrets could be simultaneously encoded in the

IQP circuits.
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Obfusca�on

Redundant part Main part 

Obfusca�on

……
Obfusca�on 

Figure 3.2: The obfuscation process in the matrix representation. Here, Hs (the blue

block) initially acts only on first few qubits. After the first obfuscation process, the

third column of the matrix is added to the last column, and the last entry of s is added
to the third one, correspondingly. Similarly, after the second obfuscation process, the

first column of the matrix is added to the fifth one, and the fifth entry of s is added
to the first one. The resulting matrix after 200 times of obfuscations is shown in the

lower left corner, and the acting range of the main part extends to the whole circuit.

The construction exploits the feature that any IQP correlation function can be esti-

mated classically. Therefore, in principle, even if Alice, the verifier uses a random IQP

circuit, she can still know the ideal value of the correlation function, up to a polyno-

mial additive error. But the anti-concentration property of IQP circuit implies that for

random IQP circuits, the correlation function will be superpolynomially small with

high probability (see Eq. (3.8)). One way to circumvent this is to start from a small

random IQP circuit, and then extend the system size with the redundancy and obfus-

cation technique in the Shepherd-Bremner construction. The construction recipe is

as follows.

(1) Randomly sample a desired number of secret strings s1, · · · , s𝑙 ∈ {0, 1}𝑛
′
with a

small length 𝑛′.
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(2) Search for an 𝑛′-qubit IQP Hamiltonian 𝐻 ′ and a set of angles 𝜽 for each term,

so that |
〈
Zs𝑖

〉
| is larger than a threshold 𝜏 for all 𝑖 .

(3) Let H′ be the binary representation of 𝐻 ′. Append all-zeros columns to H′ to

extend the number of qubits to𝑛. Extend the length of secret strings accordingly

(not necessarily appending zeros to the secrets).

(4) Adding random redundant rows to H′ that are orthogonal to all secrets.

(5) Obfuscate the whole IQP matrix and all secrets together by performing column

operations and row permutations (as in Definition 3.3).

Fig. 3.2 gives a pictorial example, where there is only one secret, and the initial 𝐻 ′

anti-commutes with theZs (i.e., it gives the the non-orthogonal part Hs part relative

to that secret). Referring to Eq. (3.8), the initial system size should be 𝑛′ = O(log𝑛),

where𝑛 is the final system size. Otherwise, it may take a long time to search for a suit-

able 𝐻 ′ with sizable correlation functions. The threshold 𝜏 should be O(1/poly(𝑛)).

We remark that once the verifier searches for a good tuple (H′, 𝜽 , s1, · · · , s𝑙 ) such that

all

��〈Zs𝑖
〉��
are larger than the threshold 𝜏 , she can save it for future use. In fact, she

can first search for a large number of such tuples to construct a database, and then

randomly choose one for the verification.

After adding zero columns to H′ and appending redundant rows, the verifier uses

the obfuscation technique as previously introduced in [SB09], which is the transfor-

mation defined in Definition 3.3. In particular, the column operations not only hide

the secrets, but also extend the range of qubits that the IQP Hamiltonian 𝐻 acts on.

However, we need to make sure that the correlation functions relative to the new se-

crets are not changed. This is achieved by extending Theorem 3.4 to the case where

the angles can be different for different terms in the Hamiltonian [YC20].

Theorem 3.5. Given an IQP Hamiltonian 𝐻 and a vector s, denote the anti-commuting

part of 𝐻 with respect toZs as 𝐻s and its binary matrix representation as Hs. Then, the
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value of the correlation function ⟨Zs⟩ depends only on Cs, the linear subspace spanned

by the columns of Hs.

Proof. First, Eq. (3.7) gives,

⟨Zs⟩ =
1

2
𝑛

∑︁
y∈{0,1}𝑛

⟨y|
∏

p𝑇 ∈row(Hs)
𝑒𝑖2𝜃pZp |y⟩ , (3.34)

whereZp := 𝑍
𝑝1 ⊗ · · · ⊗ 𝑍𝑝𝑛 . Then,

⟨Zs⟩ =
1

2
𝑛

∑︁
y∈{0,1}𝑛

∏
p𝑇 ∈row(Hs)

exp

(
𝑖2𝜃p(−1)p·y

)
(3.35)

=
1

2
𝑛

∑︁
y∈{0,1}𝑛

exp
©«𝑖

∑︁
p∈row(Hs)

2𝜃p(−1)p·yª®¬ . (3.36)

Define Q as the matrix for column operations, which is an invertible matrix. Then,

after the column operations, we have H → HQ, Hs → HsQ and s → Q−1s, so that

the inner-product relation between rows in H and s is preserved. Moreover, we have

p · y = (Q−𝑇p) · (Qy), where Q−𝑇 denotes the transpose of Q−1. Then, denoting the

new secret string as s′ := Q−1s, the associated correlation function is given by,

⟨Zs′⟩ =
1

2
𝑛

∑︁
y∈{0,1}𝑛

exp
©«𝑖

∑︁
p′𝑇 ∈row(HsQ)

2𝜃 ′p′ (−1) (Q
−𝑇 p′)·(Qy)ª®¬ (3.37)

=
1

2
𝑛

∑︁
y∈{0,1}𝑛

exp
©«𝑖

∑︁
p𝑇 ∈row(Hs)

2𝜃p(−1)p·(Qy)ª®¬ (3.38)

=
1

2
𝑛

∑︁
y∈{0,1}𝑛

exp
©«𝑖

∑︁
p𝑇 ∈row(Hs)

2𝜃p(−1)p·yª®¬ (3.39)

= ⟨Zs⟩ , (3.40)

where in the first line, we let 𝜃 ′p′ = 𝜃p if p
′ = Q𝑇p, and in the third line, we perform a

relabelling y → Qy. This proves that the value of correlation function depends only

on the column space of Hs. ■

Although this construction is immune to Kahanamoku-Meyer’s attack, it is heuris-

tic in nature, which makes it difficult to analyze its efficiency and security.
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3.5 Column Redundancy

Apart from choosing a different encoding method, choosing a different parameter

regime in the QRC-based construction also offers a viable solution to fixing the loop-

hole. We give the procedure here, and defer the analysis to when we discuss the

classical security.

Recall that in the Shepherd-Bremner construction, the obfuscation of the IQP cir-

cuit and the hiding of the secret are achieved by adding redundant rows followed by

performing random row permutations and column operations. Let HQRC

𝑛,𝑚,𝑞 := {(H, s)}

be a family of pairs of an IQP matrix H ∈ F𝑚×𝑛
2

and a secret s so that Hs generates a

QRC of length𝑞 (up to row permutations) andH is of full column rank. What their con-

struction recipe does is to randomly sample instances fromHQRC

𝑛,𝑚,𝑞 , where 𝑛 = (𝑞+3)/2

and𝑚 ≥ 𝑞, leaving a loophole for the recent classical attack [KM19]. To see why the

parameter regime is as above, we first note that the length of QRC is 𝑞, implying that

the number of rows inHs is 𝑞 and hence𝑚 ≥ 𝑞. Moreover, the dimension of a length-𝑞

QRC is (𝑞+1)/2, which implies that the rank ofHs is (𝑞+1)/2. But an all-ones column

was added in the construction (see Eq. (3.20)), which is a codeword of QRC, leading to

𝑛 = (𝑞 + 3)/2.

Here, we show that the Shepherd-Bremner construction can be improved by

adding column redundancy to the IQP matrix, which can achieve random sampling

from familiesHQRC

𝑛,𝑚,𝑞 with any 𝑛 ≥ (𝑞 + 1)/2. As we will see in Section 5.3, adding col-

umn redundancy to the Shepherd-Bremner construction can make the recent classical

attack fail and hence fix the loophole. Furthermore, adding column redundancy is not

specific to the QRC-based construction, but applicable to any construction.

Essentially, adding column redundancy is to replace a full rank generator matrix

of a code with a “redundant” generator matrix. The procedure of adding column re-

dundancy is as follows:
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(1) Given a full-rank Hs, (e.g., the last 4 columns in Eq. (3.20)) and the secret, we

first append all-zeros columns to Hs and extend s accordingly,

Hs ← (Hs, 0) s← ©«
s

s′
ª®¬ . (3.41)

(2) Apply random column operations Q to obtain Hs ← HsQ and s← Q−1s.

Here, in the first step s′ is an arbitrary vector whose length is the same as the number

of all-zeros columns appended to Hs. Since the correlation function only depends on

the linear code generated by Hs [SB09, YC20] and adding column redundancy does

not change the linear code, the correlation function with respect to the new secret is

unchanged after the above two steps. We would like to remark that although there

are 2
𝑛2

choices for s′ of length 𝑛2, once we fix a choice, the only constraint to the

redundant rows is to be orthogonal to the specific new secret s. Moreover, since the

final IQP matrix H is of full column rank, only the real secret s will correspond to the

code generated by Hs.

Back to the case of QRC-based construction, if one chooses a redundant genera-

tor matrix of QRC by adding column redundancy, then 𝑛 can be any integer larger

than (𝑞 + 1)/2, the dimension of QRC. This hides the dimension information of the

hidden QRC. Combined with other obfuscation techniques in the Shepherd-Bremner

construction, this achieves random sampling from HQRC

𝑛,𝑚,𝑞 with any possible parame-

ters.

Note that such a technique was used in [YC20] to scramble a small random IQP

circuit into a large one, to maintain the value of the correlation function, although its

connection to the classical security was not explored. In Section 5.3, we show that

adding column redundancy with the procedure presented above can actually fix the

recent loophole in the Shepherd-Bremner construction. Moreover, a multi-secret ver-

sion was explored in [Sno20], which was shown to be more vulnerable to the classical

attack instead.
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Chapter 4

Stabilizer Scheme

In this chapter, we propose a new IQP-based protocol, which we refer to as the sta-

bilizer scheme. Our construction allows the verifier to efficiently generate an IQP

circuit, 𝑈IQP = 𝑒𝑖𝜋𝐻/8, and a secret, s, so that the correlation function relative to

the secret has a magnitude equal to 2
−𝑔/2

, where 𝑔 is a tunable integer. The sta-

bilizer scheme is based on the interplay between IQP circuits, stabilizer formalism

and coding theory, and it significantly strengthens previous constructions based on

quadratic-residue codes [SB09] or random small IQP circuits [YC20]. Our character-

ization on IQP circuits, discussed in Section 4.1, builds upon and integrates previous

results [She10, Man21], which tackle this problem from the perspective of binary ma-

troids and Tutte polynomials. The construction algorithm is based on sampling gen-

erator matrices of random codes satisfying certain conditions, which is presented in

Section 4.2. In addition, in Section 4.3, we give another construction algorithm based

on matrix factorization, which arises in an early exploration of our work [BCJ23]. Al-

together, this enriches the scope of IQP-based schemes while maintaining their sim-

plicity and verifiability, and also provides a viable avenue for constructing protocols

for verifiable quantum advantage.
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4.1 Stabilizer Characterization of IQP Circuits

In this section, we establish the connection between IQP circuits, stabilizer formalism

and coding theory, which turns out to be useful in constructing the IQP circuits for

the verification protocol. For 𝜃 = 𝜋/8, we show that the stabilizer tableau of the

Clifford operation 𝑒𝑖2𝜃𝐻s
has a nice structure that allows us to determine the value of

⟨Zs⟩ = ⟨0𝑛 |𝑒𝑖2𝜃𝐻s |0𝑛⟩ efficiently. As an application, we analyze the Shepherd-Bremner

construction with this framework.

4.1.1 IQP Stabilizer Tableau

We first give the form of the stabilizer tableau of 𝑒𝑖𝜋𝐻/4 |0𝑛⟩.

Theorem 4.1. Given a binary matrix H = (c1, · · · , c𝑛) and transforming it into an IQP

Hamiltonian 𝐻 , the stabilizer tableau of the state |𝜓 ⟩ = 𝑒𝑖𝜋𝐻/4 |0𝑛⟩ can be expressed as,

©«
c1 · c1 · · · c1 · c𝑛
...

. . .
...

c𝑛 · c1 · · · c𝑛 · c𝑛

1 · · · 0

...
. . .

...

0 · · · 1

𝑟1
...

𝑟𝑛

ª®®®®¬
. (4.1)

Here, if one uses 00, 01, 10, 11 to represent |c 𝑗 | = 0, 1, 2, 3 (mod 4), then 𝑟 𝑗 is equal to the

first bit.

We call Eq. (4.1) the IQP (stabilizer) tableau and it is of the form (G, I𝑛, r). We apply

the above theorem to Hs, in which case the 𝑋 part is Gs = H𝑇sHs.

This theorem can be proved by starting from the standard tableau of |0𝑛⟩, and

keeping track of the stabilizer tableau after applying each terms of 𝑒𝑖𝜋𝐻/4 (i.e., each

row of H). First, we start with the standard tableau of |0𝑛⟩, which is

©«
0 . . . 0 1 . . . 0 0

...
. . .

...
...
. . .

...
...

0 . . . 0 0 . . . 1 0

ª®®®®¬
, (4.2)
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corresponding to the stabilizer generators {𝑍1, · · · , 𝑍𝑛}; here, the𝑋 part of the tableau

is an all-zeros matrix. Then, we apply the local terms in 𝑒𝑖𝜋𝐻/4 one by one, and keep

track of the change of the stabilizer tableau. We have the following lemma which

gives the form of 𝑍 𝑗 conjugated by 𝑒𝑖𝜋𝐻/4.

Lemma 4.2 (Evolution of 𝒁𝒋). Let H = (c1, c2, · · · , c𝑛) be a binary matrix. Then,

translating H into the IQP Hamiltonian 𝐻 and after the conjugation of 𝑒𝑖𝜋𝐻/4, we have,

𝑒𝑖𝜋𝐻/4𝑍 𝑗𝑒
−𝑖𝜋𝐻/4 = 𝑖 |c𝑗 |

𝑛∏
𝑘=1

𝑋
c𝑗 ·c𝑘
𝑘

𝑍 𝑗 , (4.3)

where |c 𝑗 | is the Hamming weight of c 𝑗 .

For example, let

H =

©«
1 1 0 0

0 1 0 1

1 0 0 1

ª®®®®¬
. (4.4)

Then, after the conjugation of 𝑒𝑖𝜋𝐻/4, we have

𝑍1 → (−1) (𝑋1𝑋2) (𝑋1𝑋4)𝑍1 = −𝑍1𝑋2𝑋4 . (4.5)

Proof. First, note that 𝑒𝑖𝜋𝐻/4 =
∏

p𝑇 ∈row(H) 𝑒
𝑖𝜋Xp/4

, where Xp := 𝑋 𝑝1 ⊗ · · · ⊗ 𝑋 𝑝𝑛 . For

each row p𝑇 , if 𝑝 𝑗 = 1, then

𝑒𝑖𝜋Xp/4𝑍 𝑗𝑒
−𝑖𝜋Xp/4 = 𝑒𝑖𝜋Xp/2𝑍 𝑗 = 𝑖Xp𝑍 𝑗 ; (4.6)

and if 𝑝 𝑗 = 0, 𝑍 𝑗 will remain unchanged. We suppose 𝑝 𝑗 = 1 for later illustration.

Then, we apply the operator corresponding to another row p′𝑇 , which gives,

𝑖𝑒𝑖𝜋Xp′/4Xp𝑍 𝑗𝑒−𝑖𝜋Xp′/4 = 𝑖Xp𝑒𝑖𝜋Xp′/4𝑍 𝑗𝑒−𝑖𝜋Xp′/4 . (4.7)

If 𝑝′𝑗 = 1, we have that the post-evolution stabilizer is given by 𝑖2XpXp′𝑍 𝑗 . In general,

letH 𝑗 be the submatrix ofH that consists of all rows whose 𝑗-th entry is 1. Then, after

the conjugation of 𝑒𝑖𝜋𝐻/4, we have

𝑒𝑖𝜋𝐻/4𝑍 𝑗𝑒
−𝑖𝜋𝐻/4 = 𝑖 |c𝑗 |

∏
p𝑇 ∈row(H𝑗 )

Xp𝑍 𝑗 . (4.8)
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For the Pauli 𝑋 ’s in the above, whether there is the 𝑋𝑘 component depends on the

number of 1’s in both the 𝑗-th and 𝑘-th column of H. Indeed, the exponent of 𝑋𝑘 is

equal to c 𝑗 · c𝑘 . This completes the proof. ■

Next, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Since 𝑍 𝑗 is the 𝑗-th stabilizer generator fo |0𝑛⟩, Lemma 4.2 actu-

ally gives the 𝑗-th stabilizer generator of |𝜓 ⟩ = 𝑒𝑖𝜋𝐻/4 |0𝑛⟩. We can also write it in the

following form,

(−1)𝑟 𝑗
𝑛∏
𝑘=1

𝑖c𝑗 ·c𝑗𝑋
c𝑗 ·c𝑘
𝑘

𝑍 𝑗 , (4.9)

where 2𝑟 𝑗 + c 𝑗 · c 𝑗 = |c 𝑗 | (mod 4) (note that the inner product is taken over F2).

Therefore, if one uses 00, 01, 10, 11 to represent |c 𝑗 | = 0, 1, 2, 3 (mod 4), then 𝑟 𝑗 is

equal to the first bit. Finally, from this form of stabilizer generators, we can write

down the stabilizer tableau of |𝜓 ⟩ as

©«
c1 · c1 . . . c1 · c𝑛 1 . . . 0 𝑟1
...

. . .
...

...
. . .

...
...

c𝑛 · c1 . . . c𝑛 · c𝑛 0 . . . 1 𝑟𝑛

ª®®®®¬
. (4.10)

■

4.1.2 Correlation Functions

Next, we relate the correlation function to the code generated by Hs, denoted as Cs.

Note that Hss = 1 means that the all-ones vector is a codeword of Cs. From Propo-

sition 2.2, this means that the dual code C⊥s is an even code and the intersection

Ds := Cs
⋂C⊥s is a weakly self-dual even code. Then, Ds will be either a doubly-

even code or an unbiased even code, according to Lemma 2.4.

Theorem 4.3. Given an IQP matrix Hs and a vector s, so that Hs s = 1. Denote the code

generated by columns of Hs by Cs and its dual code by C⊥s . Let Ds := Cs
⋂C⊥s . Then,
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transforming Hs into an IQP Hamiltonian 𝐻s, the magnitude of the correlation function

⟨Zs⟩ = ⟨0𝑛 |𝑒𝑖𝜋𝐻s/4 |0𝑛⟩ is 2−𝑔/2 if Ds is a doubly-even code and 0 if Ds is an unbiased

even code. Here, 𝑔 := dim(Cs)−dim(Ds) is also the rank of the GrammatrixGs = H𝑇sHs.

Before presenting the proof, we first give some remarks. First, from a group-

theoretic perspective, the rank of the Gram matrix 𝑔 is also the minimum number

of different generators over all possible choices of the stabilizer groups between |0𝑛⟩

and 𝑒𝑖𝜋𝐻s/4 |0𝑛⟩ (Proposition 2.1). Furthermore, we note that Theorem 4.3 integrates

several results in [She10] concisely, with a particular focus on coding theory, so that

it aligns better with our objective of constructing IQP circuits for the verification pro-

tocol. [She10] studies the IQP circuits with 𝜃 = 𝜋/4 with a reworking of Vertigan’s

algorithm for evaluating the magnitude of the Tutte polynomial of a binary matroid

at the point (−𝑖, 𝑖) [Ver98]. There, the amplitude ⟨x|𝑒𝑖𝜃𝐻 |0𝑛⟩ is considered for 𝜃 = 𝜋/4

and any IQP Hamiltonian 𝐻 , where the all-ones vector may not be a codeword of the

code generated by the binary matrixH. Such an amplitude has been further studied in

[Man21], which gives the expression of the phase of the amplitude by applying results

of [Pen14]. In the language of binary matroids, the dual intersectionDs is the bicycle

space of the matroid represented by Hs and its dimension dim(Ds) is also known as

the bicycle dimension [Ver98, Man21]. Finally, we note that although computing the

magnitude suffices for our later construction, the sign of the correlation function can

also be computed efficiently, as shown in [Man21]. In addition, when 𝑔 = 𝑂 (log𝑛),

the correlation function has an inverse polynomial scaling. In this case, one can use

the random sampling algorithm in [YC20] to determine the sign efficiently.

Proof of Theorem 4.3. First, Hss = 1 implies that C⊥s is an even code and so is Ds.

When 𝜃 = 𝜋/8, we have

⟨Zs⟩ = ⟨0𝑛 |𝑒𝑖2𝜃𝐻s |0𝑛⟩ (4.11)

= ⟨0𝑛 |
∏

p𝑇 ∈row(Hs)
𝑒𝑖2𝜃Xp |0𝑛⟩ (4.12)
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= ⟨0𝑛 |
∏

p𝑇 ∈row(Hs)

1

√
2

(𝐼 + 𝑖Xp) |0𝑛⟩ (4.13)

=
1

√
2
𝑚

∑︁
a∈{0,1}𝑚

𝑖 |a| ⟨0𝑛 |Xa𝑇Hs |0
𝑛⟩ (4.14)

=
1

√
2
𝑚

∑︁
a:a𝑇Hs=0

𝑖 |a| (4.15)

=
1

√
2
𝑚

∑︁
a∈C⊥s

𝑖 |a| , (4.16)

where𝑚 is the number of rows in Hs. Since C⊥s is an even code, we can write,

⟨Zs⟩ =
1

√
2
𝑚

©«
∑︁
a∈C⊥s

|a|=0 mod 4

1 −
∑︁
a∈C⊥s

|a|=2 mod 4

1

ª®®®®¬
. (4.17)

Let 𝑑 = dim(Ds), 𝑟 = dim(Cs) and 𝑔 = 𝑟 − 𝑑 .

One can always find an invertible matrix Q, such that in HsQ, the first 𝑔 columns

are in Cs\Ds, the 𝑔-th to the 𝑟 -th columns form a basis of Ds and the remaining

columns are all-zeros. This transformation will not change the value of the corre-

lation function according to Eq. (4.17), because it preserves the code Cs and hence the

dual code C⊥s . Under this transformation, the stabilizer tableau related toHsQ is given

by (G′, I𝑛, r′). Here, only the top-left𝑔×𝑔 submatrix ofG′ can be nonzero, and all other

entries are zero. According to Proposition 2.7, the rank of G is also 𝑔, which means

that the 𝑔 × 𝑔 submatrix is full rank.

As for the phase column r′, if the basis of Ds have weight 0 modulo 4, then only

the first 𝑔 entries of r′ can be nonzero, and all other entries are zero, according to The-

orem 4.1. In this case,Ds is a doubly-even code. For this set of generators represented

by the transformed tableau, the number of non-𝑍 generators is 𝑔, corresponding to

the first 𝑔 rows of (G′, I𝑛, r′). This is the minimum number over all possible choices,

since the top-left submatrix of G′ is already full rank. Thus, the correlation function

is nonzero and has a magnitude 2
−𝑔/2

, according to Proposition 2.1.

On the other hand, if in HsQ, some basis of Ds have weight 2 modulo 4, then

the corresponding entries in r′ are 1, which gives 𝑍 -products with minus sign in the
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stabilizer group of |𝜓s⟩ := 𝑒𝑖𝜋𝐻s/4 |0𝑛⟩. This means that |𝜓s⟩ has zero overlap with |0𝑛⟩

and hence the correlation function is zero. In this case, it can be shown that Ds is an

unbiased even code using Lemma 2.4. ■

4.1.3 Applied to Shepherd-Bremner Construction

To show the usefulness of the stabilizer characterization, we apply these two theorems

to analyze the Shepherd-Bremner construction. Combinedwith the properties of QRC,

we have the following corollary.

Corollary 4.4. Let𝑞 be a prime such that 8 divides𝑞+1. LetHQRC

s be amatrix whose first

column is 1 (of length 𝑞), and whose remaining columns are the basis of the quadratic-

residue code of length 𝑞, formed by the cyclic generator (i.e., in the form of Eq. (3.20)).

Then, translating HQRC

s into an IQP Hamiltonian 𝐻s, the stabilizer tableau of |𝜓s⟩ =

𝑒𝑖𝜋𝐻s/4 |0𝑛⟩ can be expressed as the following form,

©«
1 · · · 1

...
. . .

...

1 · · · 1

1 · · · 0

...
. . .

...

1 · · · 1

1

...

1

ª®®®®¬
. (4.18)

As a result, the corresponding stabilizer group is given by,

⟨−𝑌1𝑋2 · · ·𝑋𝑛,−𝑋1𝑌2𝑋3 · · ·𝑋𝑛, · · · ,−𝑋1𝑋2 · · ·𝑋𝑛−1𝑌𝑛⟩ , (4.19)

where 𝑛 = (𝑞 + 3)/2. Moreover, the correlation function ⟨Zs⟩ = ⟨0𝑛 |𝜓s⟩ has a magnitude

1/
√
2.

Proof. The rank of QRC is (𝑞+1)/2, which means that there are 𝑛 = (𝑞+3)/2 columns

in HQRC

s . To prove this corollary, it suffices to prove the following,

|c 𝑗 | = 3 (mod 4) c 𝑗 · c𝑘 = 1 (mod 2) , (4.20)

according to Theorem 4.1.
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First, the number of non-zero quadratic residues modulo𝑞 is (𝑞−1)/2. Since𝑞+1 is

a multiple of 8, we have |c 𝑗 | = (𝑞 − 1)/2 = 3 (mod 4) for 𝑗 ≠ 1. For 𝑗 = 1, |c1 | = 𝑞 = 3

(mod 4).

As for the second formula, the cases (a) 𝑗 = 𝑘 , (b) 𝑗 = 1 but 𝑘 ≠ 1 and (c)

𝑗 ≠ 1 but 𝑘 = 1 follow the proof of the first formula. So, we focus on proving

it for 𝑗 ≠ 𝑘 ≠ 1. Define the extended QRC by appending an extra parity bit to

the codeword of QRC, which equals the Hamming weight of the codeword mod-

ulo 2. From classical coding theory, the extended QRC is self-dual [MS77]. That

is, every two codewords of the extended QRC is orthogonal to each other. For

c 𝑗 , the added parity bit is 1, since these columns are odd-parity. Then, the fact

that the extended codewords are orthogonal to each other implies that c 𝑗 · c𝑘 = 1

(mod 2). This proves the form of the stabilizer tableau, which represents the genera-

tors {−𝑌1𝑋2 · · ·𝑋𝑛,−𝑋1𝑌2𝑋3 · · ·𝑋𝑛, · · · ,−𝑋1𝑋2 · · ·𝑋𝑛−1𝑌𝑛}.

Multiplying the first generator to the remaining 𝑛 − 1 generators gives the same

stabilizer group with a different set of generators ⟨−𝑌1𝑋2 · · ·𝑋𝑛, 𝑍1𝑍2, 𝑍1𝑍3 · · · , 𝑍1𝑍𝑛⟩.

In this representation, the 𝑍 -type stabilizer generators have a positive phase and the

number of non-𝑍 generator is 𝑔 = 1. According to Proposition 2.1, the correlation

function has amagnitude 1/
√
2 (i.e. 0.854 in probability bias) with respect to the secret,

regardless of the size parameter 𝑞. ■

4.2 Construction Algorithm

In this section, we present the stabilizer construction, which is a systematic way to

construct IQP circuits with 𝜃 = 𝜋/8 for verification. In fact, the goal is to generate a

pair (H, s), such that they satisfy certain conditions, which stem from Theorem 4.3.

We first define the family of pairs that we would like to sample from.

Definition 4.5. LetH𝑛,𝑚,𝑔 = {(H, s)} be a family of pairs of an IQP matrix H ∈ F𝑚×𝑛
2

and a secret s ∈ F𝑛
2
satisfying the following conditions. (1) Ds = Cs

⋂C⊥s is a doubly-
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Parameters: n, m, g
Output: (H, s) ∈ H𝑛,𝑚,𝑔
1: Randomly sample𝑚1 and 𝑑 with certain constraints ⊲ Proposition 4.7

2: Sample D ∈ F𝑚1×𝑑
2

and F ∈ F𝑚1×𝑔
2

satisfying certain conditions ⊲ Section 4.2.2

3: Initialize Hs ← (F,D, 0𝑚1×(𝑛−𝑟 )), where 𝑟 = 𝑔 + 𝑑
4: Sample a secret s from the solutions of Hs s = 1

5: H←
(
Hs
Rs

)
, where Rs is a random matrix with𝑚 −𝑚1 rows satisfying Rss = 0

and rank(H) = 𝑛
6: Perform obfuscation as in Definition 3.3

Meta-Algorithm 1: Stabilizer construction

even code, where Cs is the code generated by columns of Hs and C⊥s is its dual code;

(2) rank(H𝑇sHs) = 𝑔; (3) rank(H) = 𝑛.

In this definition, the size of the IQP circuits are determined by 𝑛 and 𝑚, which

correspond to the number of qubits and gates, respectively. Additionally, condition

(1) is to guarantee that the correlation function ⟨Zs⟩ corresponding to instances of

H𝑛,𝑚,𝑔 is nonzero, and condition (2) states that its magnitude is given by 2
−𝑔/2

. There-

fore, the familyH𝑛,𝑚,𝑔 includes all instances of IQP circuits of a certain size that have

correlation function ±2−𝑔/2 with respect to some secret s. Note that the rank of the

Gram matrix H𝑇sHs should be 𝑔 = 𝑂 (log𝑛) for the protocol to be practical. The reason

for considering IQP matrices H with full column rank will be made clear when we

discuss the classical security of the IQP-based verification protocol (Section 5.1.2).

Moreover, we give an efficient classical sampling algorithm to sample instances

fromH𝑛,𝑚,𝑔, which is the stabilizer construction (Meta-Algorithm 1).

Theorem 4.6. There exists an efficient classical sampling algorithm that sample from

H𝑛,𝑚,𝑔, given the parameters 𝑛,𝑚 and 𝑔.

For the algorithmic purpose, we set two additional parameters, 𝑚1 and 𝑑 , which

are the number of rows inHs and the dimension ofDs, respectively. These are random

integers satisfying certain natural constraints. The rank ofHs is then equal to 𝑟 = 𝑔+𝑑 .
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Proposition 4.7 (Parameter constraints). Given (H, s) ∈ H𝑛,𝑚,𝑔, let Ds = Cs
⋂C⊥s ,

where Cs is the code generated by Hs and C⊥s is the dual code. Let𝑚1 be the number of

rows in Hs and 𝑑 = dim(Ds), which means dim(Cs) = 𝑔 + 𝑑 . Then, we have

• 𝑔 + 𝑑 ≤ 𝑛;

• 0 < 𝑚1 ≤ 𝑚;

• 𝑛 − 𝑔 − 𝑑 ≤ 𝑚 −𝑚1;

• 𝑔 + 2𝑑 ≤ 𝑚1;

• 𝑚1 = 𝑔 mod 2.

Proof. The first constraint is because rank(Hs) ≤ 𝑛. The second one is trivial. The

third one is due to the fact thatH is of full column rank, which means that the number

of redundant rows should be 𝑚 −𝑚1 ≥ 𝑛 − rank(Hs) = 𝑛 − 𝑔 − 𝑑 . The fourth one

is because dim(Cs) + dim(C⊥s ) = 𝑚1 and dim(Ds) ≤ dim(C⊥s ). The fifth one is from

Theorem 4.9. ■

The stabilizer construction works by sampling Hs and Rs in certain ‘standard

forms’, up to row permutations and column operations. Note that the ‘standard forms’

of Hs and Rs are not necessarily unique.

4.2.1 Standard Form

We first discuss Rs. To ensure that rank(H) = 𝑛, observe that in any H of full column

rank, the redundant rows Rs can always be transformed by row permutations into

a form, where the first 𝑛 − 𝑟 rows form a basis of F𝑛
2
together with the rows in Hs.

Therefore, up to row permutations, the first 𝑛−𝑟 rows of Rs are sampled to be random

independent rows that are orthogonal to s and lie outside the row space of Hs. The

remaining rows in Rs are random rows orthogonal to s.

Next, we discuss sampling (Hs, s), which is the core of the stabilizer construction.

Essentially, we want to randomly generate a (possibly redundant) generator matrix

Hs of a code Cs, so that its dimension is 𝑟 , its intersection Ds with the dual code is
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a doubly-even code with dimension 𝑑 = 𝑟 − 𝑔 and the all-ones vector is a codeword.

The last condition guarantees that a secret s can always be found. Note that, we allow

rank(Hs) < 𝑛. That is, we allowHs to be a “redundant” generator matrix of Cs, instead

of a full-rank one. This is called adding column redundancy to the full-rank generator

matrix of Cs, because after the obfuscation process, there will be redundant linear

combinations in the columns of Hs (see Section 3.5).

For such a generator matrix, there is an invertible matrix Q to perform a basis

change so that

HsQ = (F,D, 0𝑚1×(𝑛−𝑟 )) , (4.21)

whereD ∈ F𝑚1×𝑑
2

is a generatormatrix of the doubly-even codeDs, and columns in F ∈

F𝑚1×𝑔
2

span Cs/Ds. In addition, it can be shown that rank(F𝑇F) = rank(Q𝑇H𝑇sHsQ) =

rank(H𝑇sHs) = 𝑔. In more details, D and F shall satisfy the following conditions.

Proposition 4.8 (Conditions ofD and F). Given (H, s) ∈ H𝑛,𝑚,𝑔, letHs be the rows of

H that are not orthogonal to s. Then, there exists an invertible Q, so that HsQ = (F,D, 0)

and

• D consists of 𝑑 = 𝑟 − 𝑔 independent vectors with weight 0 modulo 4, which are

orthogonal to each other, with 𝑟 = rank(Hs).

• F consists of 𝑔 independent columns from ker(D𝑇 ) which lie outside the column

space of D.

• F𝑇F is a random 𝑔-by-𝑔 symmetric matrix with rank 𝑔.

• The all-ones vector 1 either explicitly appears as the first column of D or F, or it

can be written as the sum of the first two columns of F.

Proof. ThematrixD is taken as the generatormatrix of the dual intersectionDs, which

is a doubly-even code. The form of D follows from Proposition 2.4. The second condi-

tion is becauseDs ⊂ C⊥s , which implies D𝑇F = 0. So, columns of F lie in ker(D𝑇 ). The

third condition is because rank(F𝑇F) = rank(Q𝑇H𝑇sHsQ) = rank(H𝑇sHs) = 𝑔. As for

the last condition, if 1 ∈ Cs, one can always perform basis change so that 1 explicitly
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appears in the columns of Hs. More specifically, if 1 ∈ Ds, the column operation Q

can transform it as the first column of D. If not, it can be made as the first column of

F. The second part of this condition can be achieved by adding the second column of

F to the first. ■

Moreover, although there might be no unique standard form of Hs, the Gram ma-

trix has a unique standard form. First note that row permutations have no effect on

the Gram matrix, since P𝑇P = I for a permutation matrix P. So we focus on column

operations. As shown in [KS08], there exists an invertible matrix Q, so that

Q𝑇H𝑇sHsQ = diag

(
I𝑔, 0

)
or diag

(
𝑔/2⊕
𝑖=1

J, 0

)
, (4.22)

depending on whether at least one diagonal element of H𝑇sHs is 1 or not, where J :=©«
0 1

1 0

ª®¬. However, for the construction purpose, we need to ensure that the all-ones

vector is a codeword of Cs. Therefore, we give a slightly different standard form of

H𝑇sHs, which can be achieved by Hs in the form of (F,D, 0).

Theorem 4.9. Let (H, s) be a random instance fromH𝑛,𝑚,𝑔 and let Hs be the rows of H

satisfying Hs s = 1. Then, there exists an invertible matrix Q, so that HsQ is in the form

of (F,D, 0) with D and F satisfying the conditions in Proposition 4.8 and

Q𝑇H𝑇sHsQ =

©«

I

J
. . .

J

0(𝑛−𝑔)×(𝑛−𝑔)

ª®®®®®®®®®®¬
or

©«

J
. . .

J

0(𝑛−𝑔)×(𝑛−𝑔)

ª®®®®®®®¬
, (4.23)

where I is either 1 or I2 and J :=
©«
0 1

1 0

ª®¬. In addition, 𝑚1 = 𝑔 mod 2, where 𝑚1 is the

number of rows in Hs.

Proof. First, according to Proposition 4.8, up to the column operations,H𝑇sHs ∼𝑐 F𝑇F⊕

D𝑇D ⊕ 0. For the D matrix, we have D𝑇D = 0𝑑×𝑑 , which already matches standard
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form, where 𝑑 = rank(Hs) − 𝑔. So, we focus on G′ := F𝑇F. The matrix F satisfies

D𝑇F = 0 and rank(F𝑇F) = 𝑔, where 𝑔 is the number of columns in F. We want to find

an invertible matrix Q′, which leaves the D matrix unchanged and only changes the

F matrix, so that G′ is equal to the top-left 𝑔 × 𝑔 submatrix in the standard form. We

first discuss the congruent standard form of general full-rank symmetric matrix.

(1) First, suppose that not all diagonal elements of G′ are zero. In this case, we can

assume G′
11

= 1, because otherwise, we can always apply a permutation matrix

to F, so that the nonzero diagonal element of G′ is moved to the (1, 1)-location.

Then, up to congruent transformations,

G′ = ©«
1 g𝑇

g G1

ª®¬ . (4.24)

Let,

Q1 =
©«
1 g𝑇

0 I

ª®¬ . (4.25)

We have,

Q𝑇
1
G′Q1 =

©«
1 0𝑇

0 gg𝑇 + G1

ª®¬ . (4.26)

(2) IfG′𝑗 𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑔, then without loss of generality, we can assumeG′
12

= 1;

otherwise, we can apply a permutation matrix to swap the the non-zero entry

to the (1, 2) and (2, 1) positions. In this case, up to congruent transformations,

G′ = ©«
J G2

G𝑇
2

G3

ª®¬ , (4.27)

where J = ©«
0 1

1 0

ª®¬. Let
Q1 =

©«
I2 JG2

0 I𝑔−2

ª®¬ . (4.28)
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Then,

Q𝑇
1
G′Q1 =

©«
J 0𝑇

0 G𝑇
2
JG2 + G3

ª®¬ . (4.29)

Therefore, in the congruent standard form, F𝑇F is a block-diagonal matrix of the form

(I⊕)J ⊕ · · · ⊕ J . (4.30)

• If 𝑚1 is odd, then 1 must be in Cs\Ds. In this case, 1 is the first column of F,

according to Proposition 4.8. Then, G′
11

= 1 and applying the transformation

of Eq. (4.25) leads to a matrix in the form of Eq. (4.26). This implies that all

other columns in the new F are orthogonal to 1 and hence have even parity.

Therefore, we have G′𝑗 𝑗 = 0 for 𝑗 > 1 and the congruent standard form is G′ ∼𝑐

1 ⊕
(
(𝑔−1)/2⊕
𝑖=1

J

)
.

• If 𝑚1 is even and 1 ∉ Ds, then 1 is also the first column of F, according to

Proposition 4.8. Then, we can assume thatG′
12

= 1, aswhatwe did in proving the

general congruent standard form. This implies that the second column of Fmust

be odd-parity, and so G′
22

= 1. As as result, up to congruent transformations,

G′ = ©«
J1 G2

G𝑇
2

G3

ª®¬ , (4.31)

where J1 =
©«
0 1

1 1

ª®¬. Let
Q1 =

©«
I2 J3G2

0 I𝑔−2

ª®¬ , (4.32)

where J3 =
©«
1 1

1 0

ª®¬. Then,
Q𝑇
1
G′Q1 =

©«
J1 0𝑇

0 G𝑇
2
J3G2 + G3

ª®¬ . (4.33)
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From the second row (column) of Q𝑇
1
G′Q1, one can see that only the second

column of the new F is odd-parity and all other columns are even parity, which

means that the diagonal elements of G𝑇
2
J3G2 + G3 are zero. Then, Eq. (4.28) is

repeatedly applied, so that G′ = J1 ⊕ J ⊕ · · · ⊕ J. Finally, let Q2 be an invertible

matrix that adds the second column to the first. We haveQ𝑇
2
G′Q2 = I2⊕J⊕· · ·⊕J.

• If 𝑚1 is even and 1 ∈ Ds, then 𝑚1 must be a multiple of 4 and 1 is the first

column of D, according to Proposition 4.8. In this case, D𝑇F = 0 implies that

all columns of F will be even-parity, which means that the diagonal elements

of G′ will be zero. Moreover, the diagonal elements will remain zero if the con-

gruent transformation only acts nontrivially on G′. Therefore, in the congruent

standard form, F𝑇F ∼𝑐
𝑔/2⊕
𝑖=1

J.

Above, the all-ones vector appears as the first column of D or F except for the

third case, where 1 = c1 + c2 can be obtained by adding up the first two columns of F.

Finally, in all of the above cases,𝑚1 = 𝑔 mod 2. ■

According to this theorem, sampling (Hs, s) is reduced to generating an Hs =

(F,D, 0) so that the Gram matrix H𝑇sHs is in the form of Eq. (4.23). Then, a secret

s is sampled from the solutions of Hs s = 1. Sampling such an Hs is further reduced to

sampling D and F, so that D is a generator matrix for a random doubly-even code and

F is a random matrix satisfying D𝑇F = 0, rank(F𝑇F) = 𝑔 and that 1 is in the column

space of (F,D).

4.2.2 Sampling D and F

We now discuss the sampling of D and F, which can be implemented efficiently.

Sampling D. Here, the goal is to sample a D = (c1, · · · , c𝑑) with 𝑑 ≤ (𝑚1 − 𝑔)/2,

where𝑚1 = 𝑔 mod 2. Columns in D are orthogonal to each other and have weight a

multiple of 4, according to Proposition 4.8. The algorithm is shown in Algorithm 1,

which works as follows. First, c1 can be a random vector with weight 0 modulo 4; D is
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Parameters:𝑚1 and 𝑑

Require: 𝑑 ≤ 𝑚1/2
1: c1 ← a random vector with weight 0 modulo 4

2: D← (c1)
3: for 𝑡 = 1, · · · , 𝑑 − 1 do
4: c𝑡+1 ← a random vector from ker(D𝑇 )/⟨c1, · · · , c𝑡 ⟩ with weight 0 modulo

4

5: if c𝑡+1 does not exist then
6: break

7: end if
8: D← (D, c𝑡+1)
9: end for
10: if 1 lies in the column space of D then
11: Apply column operations so that 1 is the first column of D
12: end if
13: return D

Algorithm 1: Algorithm to sample a D = (c1, c2, · · · , c𝑑) so that c𝑖 · c 𝑗 = 0 and |c𝑖 | =
0 mod 4.

initialized asD = (c1). Then, the second column c2 is sampled with the constraint that

c1 · c2 = 0 and |c2 | = 0 mod 4; D is updated to be D = (c1, c2). Next, the third column

c3 is sampled so that it is orthogonal the first two columns and |c3 | = 0 mod 4. This

process is iterated until all 𝑑 columns are sampled, or until no vector satisfying the

condition can be sampled, in which case a matrix with 𝑑 −1 columns will be returned.

In the 𝑡-th iteration, the vector c𝑡 is sampled from ker(D𝑇 )/⟨c1, · · · , c𝑡−1⟩ with

D = (c1, · · · , c𝑡−1). That is, we want c𝑡 to be orthogonal to the first 𝑡 − 1 columns

and outside the linear subspace that they span. This can be achieved as follows. We

first solve for a basis of ker(D𝑇 ), and then the first 𝑡 − 1 of the basis vectors are set

as {c1, · · · , c𝑡−1}, with the remaining basis vectors changed accordingly. The vector

c𝑡 is sampled to be the random linear combination of the remaining basis vectors. In

this way, the orthogonality and independence of c𝑡 with respect to c1, · · · , c𝑡−1 are

guaranteed.
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In addition, to ensure that |c𝑡 | = 0 mod 4, we can first sample an even-parity vector

from ker(D𝑇 )/⟨c1, · · · , c𝑡−1⟩. It is well-known that for a linear subspace over F2, either

all vectors are even-parity or half the vectors are even-parity. Therefore, the sampling

of even-parity vector can be efficiently done and we denote resulted vector as a1. The

weight of a1 will be either 0 or 2 modulo 4. If |a1 | = 0 mod 4, then it is set to be c𝑡 .

Otherwise, we sample a vector a2 from ker(D𝑇 )/⟨c1, · · · , c𝑡−1, a1⟩ that is orthogonal

to a1; that is, a2 is a random vector from ker(D𝑇 ) that is orthogonal to and outside

⟨c1, · · · , c𝑡−1, a1⟩. Then, if |a2 | = 0 mod 4, it is set to be c𝑡 and if not, it follows from

Lemma 2.5 that a1 + a2 must have a weight that is a multiple of 4, and thus we assign

it as c𝑡 . With this approach, a c𝑡 with weight a multiple of 4 can be guaranteed to be

sampled except for the final iteration of two extremal cases.

We now turn to discuss the cases 𝑑 = 𝑚1/2 and 𝑑 = (𝑚1 − 1)/2, where in the

last iteration, the column c𝑑 may not exist. In such a case, only a matrix D with

𝑑 − 1 columns will be returned. However, we would like to emphasize that it is the 𝑔

parameter that affects the value of the correlation function. For the subspace Ds, we

only require it to be doubly-even, and its dimension does not matter. Therefore, we

do not require the sampling algorithm succeed every time when applied to these two

extremal cases.

When 𝑑 = 𝑚1/2 with 𝑚1 even, the resulting Ds forms a doubly-even self-dual

code, which implies 𝑔 = 0. In this scenario, 1 is included in Ds because 1 will be

orthogonal to all vectors in Ds and itself. This implies that𝑚1 must be a multiple of

4. An example of this case is the extended QRC [MS77]. On the other hand, when

𝑑 = (𝑚1 − 1)/2 with𝑚1 odd, we have 𝑔 = 1 along with Ds = C⊥s . In this situation, the

F matrix must be 1. The QRC serves as an example of this particular case.

The reason why the last iteration of Algorithm 1 may break on these two cases is

as follows. We only discuss 𝑑 =𝑚1/2, but the reasoning for 𝑑 = (𝑚1 − 1)/2 is similar.

When 𝑡 = 𝑑 − 1, D = (c1, · · · , c𝑑−1). If 1 is not in ⟨c1, · · · , c𝑑−1⟩, then the algorithm

will assign it as c𝑑 , and this iteration ends normally. However, if 1 ∈ ⟨c1, · · · , c𝑑−1⟩,

the dimension of ker(D𝑇 ) is 𝑚1 − (𝑑 − 1) = 𝑚1/2 + 1. So, the subspace that a1 is
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Input:𝑚1, 𝑔 and D
Require: 𝑔 ≤ 𝑚1 − 2𝑑 with 𝑑 the number of columns in D; 𝑔 =𝑚1 mod 2

1: D ← column space of D
2: if 𝑚1 is odd then ⊲ G′ = diag(1, J, · · · , J) and 𝑔 is odd
3: c1 ← 1𝑚1

4: F← (c1)
5: else if 𝑚1 is even and 1𝑚1

∉ D then ⊲ G′ = diag(I2, J, · · · , J)
6: c2 ← a random odd-parity vector in ker(D𝑇 )/D
7: c1 ← 1𝑚1

+ c2
8: F← (c1, c2)
9: else ⊲ G′ = diag(J, · · · , J)
10: c1 ← a random vector in ker(D𝑇 )/D
11: c2 ← a random vector in ker(D𝑇 )/D that satisfies c1 · c2 = 1

12: F← (c1, c2)
13: end if
14: while number of columns in F < 𝑔 do
15: C ← D⊕ column space of F
16: a← a random vector in C⊥/D
17: b← a random vector in C⊥/D that satisfies a · b = 1

18: F← (F, a, b)
19: end while
20: return F

Algorithm 2: Algorithm to sample F = (c1, · · · , c𝑔) so thatD𝑇F = 0 and rank(F𝑇F) = 𝑔.

sampled from has dimension𝑚1/2 + 1 − 𝑡 = 2. If this subspace has a nonzero vector

with weight 0 modulo 4, then this vector will be assigned as c𝑑 and the iteration will

also end normally. However, if all vectors in this subspace have weight 2 modulo 4,

except for the all-zeros vector, then c𝑑 could not be found. In this case, the iteration

breaks.

Sampling F. Next, we give the algorithm to sample F = (c1, · · · , c𝑔) (Algorithm 2).

The algorithm takes 𝑚1, 𝑔 and D as inputs, and outputs a matrix F so that F𝑇F is a

rank-𝑔 symmetric matrix in the standard form as in Eq. (4.23), D𝑇F = 0, and 1 lies in

the span of columns in D and F. This implies that all columns of F should be sampled

from ker(D𝑇 )/Ds, with the additional orthogonality constraints imposed by F𝑇F.
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There are three cases for F𝑇F. First, if𝑚1 is odd, then 1 cannot lie inDs. According

to Proposition 4.8 and Theorem 4.9, 1 can be set as the first column of F and F𝑇F =

diag(1, J, · · · , J). Second, if𝑚1 is even but 1 is not in Ds, then F𝑇F = diag(I2, J, · · · , J),

according to Theorem 4.9. In this case, c1 and c2 are odd-parity vectors, and c1 + c2 =

1. Third, if 𝑚1 is even and 1 lies in Ds, then F𝑇F = diag(J, · · · , J). In this case, c1

is a random vector from ker(D𝑇 )/Ds and c2 is a random vector from ker(D𝑇 )/Ds

satisfying c2 · c1 = 1. Note that c1 and c2 are automatically even-parity, since they

are orthogonal to 1. Moreover, c2 must lie outside the space Ds ⊕ ⟨c1⟩, due to the

constraint c2 · c1 = 1.

After the initialization of c1 (and c2), the algorithm proceeds to sample other

columns of F, if 𝑔 > 1 (or 𝑔 > 2). We only illustrate the case when 𝑚1 is odd be-

low, but the sampling process for an even𝑚1 follows a similar pattern. For𝑚1 odd,

F𝑇F = diag(1, J, · · · , J). We first initialize Cs ← Ds ⊕ ⟨c1⟩, which is the subspace C in

Algorithm 2. The block diagonal form of F𝑇F implies that c2 and c3 are vectors from

ker(D𝑇 )/Ds that are orthogonal to c1 = 1, i.e., c2, c3 ∈ C⊥s /Ds. For c2, it is sampled

as a random vector from C⊥s /Ds, which is the vector a in Algorithm 2. For c3, it is

sampled as a random vector from C⊥s /Ds satisfying c2 ·c3 = 1, which is the vector b in

Algorithm 2. This finishes the sampling of columns corresponding to the first J block.

Then, the subspace Cs is updated to include c2 and c3 into its basis, with its dimension

increased by 2. This process is repeated for other columns, until all 𝑔 columns are

sampled. Finally, F = (c1, · · · , c𝑔) and it can be verified that F𝑇F is indeed equal to the

standard form diag(1, J, · · · , J).

4.3 Construction Based on Matrix Factorization

Here, we present another construction of IQP circuits for verification. This construc-

tion was derived in an early exploration of the stabilizer construction, and it is based

on the matrix factorization problem instead of the sampling of random generator ma-

trices. In fact, the codes do not explicitly appear in the construction. Although this
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construction algorithm has been superseded by the sampling-based construction as in

Section 4.2, it is still interesting in its own right, and it provides a different perspective

on the construction of IQP circuits for verification.

Recall that the goal of the construction is to sample the pair (H, s), so that the cor-

relation function ⟨Zs⟩ = ⟨0𝑛 |𝑒−𝑖𝜋𝐻/8Zs𝑒
𝑖𝜋𝐻/8 |0𝑛⟩ has a magnitude equal to a desired

value 2
−𝑔/2

, where 𝑔 is an integer. Similar to the Shepherd-Bremner construction and

the stabilizer construction in Meta-Algorithm 1, the matrix-factorization construction

also consists of two steps, namely, (i) sampling (Hs, s) and (ii) adding redundancy and

obfuscation. The second step is the same as in the stabilizer construction, and we will

not repeat it here.

As for the first step, in Section 4.1, we show how to transform Hs (or equivalently,

𝑒𝑖𝜋𝐻s/4
) into a stabilizer tableau and analyze the correlation function. Here, we reverse

this process, and show that starting from a random stabilizer tableau of the form (4.1)

and a desired value of the correlation function, one can efficiently find the correspond-

ing Hs (and s).

4.3.1 Problem Formulation and Overview

Recall that the IQP tableau of 𝑒𝑖𝜋𝐻s/4
is of the form (G, I𝑛, r), where𝐺 𝑗𝑘 = c 𝑗 · c𝑘 is the

inner product between columns of Hs. The inverse statement of Theorem 4.1 is that,

given (G, I𝑛, r), find Hs so that 𝑒𝑖𝜋𝐻s/4
can be represented by this stabilizer tableau.

According to Theorem 4.1, 𝑟 𝑗 and 𝐺 𝑗 𝑗 jointly determine the Hamming weight of the

𝑗-th column of Hs modulo 4, which is 2𝑟 𝑗 + 𝐺 𝑗 𝑗 explicitly. This imposes the weight

constraint on Hs. Furthermore, Hs needs to satisfy Hs · s = 1 for some nonzero s,

which is called the codeword constraint, because it means that the all-ones vector

1 needs to be a codeword in the codespace generated by Hs. Altogether, the problem

of sampling (Hs, s) is formulated as follows.
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Parameters: 𝑛,𝑔
Output: (Hs, s)
1: Set G in the form of Eq. (4.23)

2: r← (𝑟1, · · · , 𝑟𝑔, 0, · · · , 0)𝑇 , where 𝑟 𝑗 is random bit

3: Sample s from the solutions of Gs = (𝐺11, · · · ,𝐺𝑛𝑛)𝑇
4: Random Hrand satisfying Hrands = 1 ⊲ Randomization procedure

5: Transform (G, I𝑛, r) into (G′, I𝑛, r′) according to Hrand ⊲ Eq. (4.36)

6: Construct the Lempel sequence (4.39) for G′ ⊲ Begin AdaptedLempel

7: H0 ← a random factor from the Lempel sequence ⊲ Initial factorization

8: Obtain H1 from H0 to satisfy the weight constraint ⊲ Eq. (4.40)

9: if H1 s = 1 then
10: H′s ← H1

11: else
12: Obtain H2 from H1 to satisfy the codeword constraint ⊲ Eq. (4.46)

13: Obtain H3 from H2 as in Eq. (4.47). Set H′s ← H3

14: end if
15: Hs ←

(
Hrand

H′s

)
16: return (Hs, s)

Meta-Algorithm 2: Matrix-factorization construction: sampling (Hs, s).

Problem 4.10. Given a symmetric matrixG ∈ F𝑛×𝑛
2

, a vector r ∈ F𝑛
2
and a vector s ∈ F𝑛

2
,

sample Hs = (c1, · · · , c𝑛), such that (a) G = H𝑇sHs, (b) |c 𝑗 | ≡ 2𝑟 𝑗 + 𝐺 𝑗 𝑗 mod 4 for all

𝑗 ∈ [𝑛] and (c) Hs · s = 1.

This is a constrainedmatrix factorization problem, andHs is a factor ofG satisfying

the two constraints. Note that different from the stabilizer construction, where the

secret s is obtained by solving the linear system Hs · s = 1, here s is randomly sampled

and given as part of the input.

This constrained matrix factorization problem can be efficiently solved if G and s

satisfy certain relation (Meta-Algorithm 2).

Theorem 4.11. Consider a stabilizer tableau (G, I𝑛, r) for 𝑛 qubits with G symmetric,

and let s ∈ F𝑛
2
satisfy Gs = (𝐺11, · · · ,𝐺𝑛𝑛)𝑇 . Under these conditions, Meta-Algorithm 2

efficiently generates a random solution to the constrained matrix factorization problem
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described in Problem 4.10, which is a random factor Hs of G while satisfying both weight

and codeword constraints.

The relation betweenG and s is called the self-consistent equation, which is a nec-

essary condition for G to have at least one factor satisfying the codeword constraint.

To see this, suppose E = (c1, · · · , c𝑛) is any factor of G satisfying E · s = 1. Then,

Gs = E𝑇E · s ≡ (|c𝑖 |, · · · , |c𝑛 |)𝑇 mod 2, which is just the diagonal element of G.

Below, we first give an overview ofMeta-Algorithm 2, and present the details in the

following sections. First, the algorithm sample a random stabilizer tableau (G, I𝑛, r),

so that the underlying stabilizer state has overlap 2
−𝑔/2

with |0𝑛⟩. Then, a secret s is

sampled from the solutions of Gs = (𝐺11, · · · ,𝐺𝑛𝑛)𝑇 . The stabilizer tableau defines a

constrainedmatrix factorization problem, which can be solved by an adapted Lempel’s

algorithm in Section 4.3.4. But given the number of rows in Hs, the output of the

adapted Lempel’s algorithm is not random enough, which is only comprised of a small

subset of all possible solutions. In order to add randomness to the final factor Hs

so that every possible instances of H𝑛,𝑚,𝑔 can be reached, the algorithm performs a

randomization procedure in Section 4.3.3 before the adapted Lempel’s algorithm. This

randomization procedure transforms (G, I𝑛, r) into (G′, I𝑛, r′) and outputsHrand, which

is a random matrix satisfying Hrands = 1. The new stabilizer tableau (G′, I𝑛, r′) defines

a newmatrix factorization problem, whichwill then be solved by the adapted Lempel’s

algorithm. Denoting the factor for G′ by H′s, the final factor associated with (G, I𝑛, r)

will be given by Hs =
©«
Hrand

H′s

ª®¬.
Wewould like to remark that the number of rows inHs can be controlled by setting

the number of rows in Hrand and H0 in Meta-Algorithm 2. However, the number of

rows inH′s may not appear to be the same asH0. Indeed, as we will see in Section 4.3.4,

they may differ by at most 4 rows, which stems from the additional blocks added

for satisfying the weight constraint. Therefore, it is not convenient to control the

number of rows inHs as precisely as in the stabilizer construction algorithm. This is a
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drawback of the matrix-factorization construction, although its impact is minor when

𝑛 and𝑚 are large enough.

4.3.2 Sampling Secret and Stabilizer tableau

Meta-Algorithm 2 starts by setting the Gram matrix G in the standard form [KS08].

In principle, G can be a random symmetric matrix of rank 𝑔. But due to the effect of

obfuscation (see Eq. (3.22)), we can just consider the standard form. When𝑔 is odd, the

standard form of G is diag

(
I𝑔, 0

)
. When 𝑔 is even, the standard form of G is randomly

chosen to be diag

(
I𝑔, 0

)
or diag

(
𝑔/2⊕
𝑖=1

J, 0

)
. After generating the Gram matrix G, the

secret can be sampled from the solutions of the self-consistent equation,

Gs =
©«
𝐺11

...

𝐺𝑛𝑛

ª®®®®¬
. (4.34)

Then, the phase column is sampled so that the stabilizer state represented by (G, I𝑛, r)

has nonzero overlap with |0𝑛⟩. Note that for the Gram matrix G in the standard form,

only the top-left 𝑔 × 𝑔 submatrix is nonzero and all other entries are zeros. So, for

the overlap to be nonzero, r should be set as r = (𝑟1, · · · , 𝑟𝑔, 0, · · · , 0)𝑇 , where 𝑟 𝑗 ’s are

random bits, according to Proposition 2.1.

4.3.3 Randomization

For a given stabilizer tableau (G, I𝑛, r), there are actually many factors Hs satisfy-

ing the constraints in Problem 4.10. However, as we will see later, the output of the

adapted Lempel’s algorithm can only ‘hit’ a small subset of all possible solutions. To

add randomness to the final factor Hs, we perform a randomization procedure before

the adapted Lempel’s algorithm. The randomization procedure is as follows.

(1) Given s, randomly sample Hrand satisfying Hrand s = 1;
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(2) If Hrand is already a solution, return it. Otherwise, proceed with the following

steps;

(3) Use Hrand to transform (G, I𝑛, r) into (G′, I𝑛, r′);

(4) Solve the constrained matrix factorization problem defined by (G′, I𝑛, r′) and s.

Denote the resulting solution as H′s;

(5) Return

Hs :=
©«
Hrand

H′s

ª®¬ . (4.35)

It is clear that this randomization procedure allows Meta-Algorithm 2 to ‘hit’ all

possible solutions of the constrained matrix factorization problem, due to Hrand.

Now, we explain this procedure in more details. Given the tableau (G, I𝑛, r), we

denote the underlying stabilizer state by |𝜓s⟩. We sample a random matrix Hrand sat-

isfying the constraint Hrand s = 1, and transform it into an IQP Hamiltonian 𝐻rand.

Then, we apply the inverse evolution 𝑒−𝑖𝜋𝐻rand/4
to |𝜓s⟩, resulting in a new state

��𝜓 ′s〉:��𝜓 ′s〉 := 𝑒−𝑖 𝜋4𝐻rand |𝜓s⟩ , (4.36)

represented by a new tableau (G′, I𝑛, r′). The new tableau can be obtained by applying

Lemma 4.2. Note that after the randomization process,G′ in the new stabilizer tableau

is not necessarily low-rank.

Then, we solve Problem 4.10 defined by the new stabilizer tableau (G′, I𝑛, r′) and

the original secret s, using the adapted Lempel’s algorithm described in Section 4.3.4;

we denote the resultingmatrix beH′s. In the language of quantum circuit and quantum

state, we have

𝑒𝑖
𝜋
4
𝐻 ′s |0𝑛⟩ = 𝑒−𝑖 𝜋4𝐻rand |𝜓s⟩ . (4.37)

If we define 𝐻s := 𝐻rand + 𝐻 ′s, then |𝜓s⟩ = 𝑒𝑖
𝜋
4
𝐻s |0𝑛⟩, which is exactly the state rep-

resented by the tableau (G, I𝑛, r). In terms of binary matrix, let Grand := H𝑇
rand

Hrand,
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and

Hs :=
©«
Hrand

H′s

ª®¬ . (4.38)

Then G = G′ +Grand and Hs is the solution of Problem 4.10 defined by (G, I𝑛, r) and s.

4.3.4 Adapted Lempel’s Algorithm

In this section, we will present the adapted Lempel’s algorithm. Recall that given a

stabilizer tableau (G, I𝑛, r) and a secret s, our goal is to solve Problem 4.10 for a factor

Hs ofG, satisfying theweight and codeword constraints. Note thatG is not necessarily

low-rank, due to the randomization procedure.

Without the constraints, matrix factorization over F2 has been studied by Lempel

in 1975 [Lem75], who gave an efficient algorithm to find a minimal factorization for

any symmetric matrix G, i.e., a factor B with minimal rows so that G = B𝑇B (see also

Section 2.1.4). Lempel’s algorithm has been used several times in the context of the

stabilizer formalism [CH17a, CH17b, HC18, FRCB22]. We will use Lempel’s result as

a starting point, and show how to adapt it to satisfy the two constraints with extra

subroutines.

Initial factorization

We first give a brief review of Lempel’s algorithm; see Section 2.1.4 for more details.

First, as shown in Lemma 2.9, any symmetric matrixG has an elementary factorization

E0 that contains at most𝑂 (𝑛2) rows [Lem75]. Then, one can use an iterative procedure

to eliminate rows in the factor, until certain stopping condition is satisfied, resulting

in the following sequence

E0 → E1 → E2 → · · · → B , (4.39)

which we will call the Lempel sequence. Above, the number of rows in E𝑖 will be

reduced at least by 1 compared to E𝑖−1.
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Strictly speaking, the last factor B in this sequence corresponds to the minimal

factor ofG only ifG is non-singular. But our purpose is not to find the minimal factor,

and we can choose any factor in this sequence as the starting point for the construc-

tion, which we denote as H0. To conclude, the initial factorization is as follows.

(1) Find an elementary factorization E0 of G;

(2) Perform the iterative procedure to obtain the Lempel sequence (4.39);

(3) Sample a factor from the Lempel sequence as the initial factor H0.

Below, we will show how to tweak H0 to satisfy the two constraints imposed by the

stabilizer tableau (G, I𝑛, r).

Satisfying the weight constraint

First, given G = H𝑇
0
H0, we would like to obtain a new factor H1 that satisfies the

weight constraint. Recall from Theorem 4.1 that the weight constraint (modulo 4) is

imposed by r and the diagonal element of G. We would like to append a block H𝑎 to

H0, so that

H1 :=
©«
H0

H𝑎

ª®¬ (4.40)

is a factor of G satisfying the weight constraint. Note that the appended block must

satisfy H𝑇𝑎H𝑎 = 0 since H𝑇
1
H1 = H𝑇

0
H0 + H𝑇𝑎H𝑎 = G. Below is an explicit construction

of H𝑎 .

Suppose that the weight constraint is given by w = (𝑤1, · · · ,𝑤𝑛) with 𝑤 𝑗 = 2𝑟 𝑗 +

𝐺 𝑗 𝑗 . Given the matrix H0, we can also transform it into a stabilizer tableau (G, I𝑛, r′),

which represents the Clifford operator 𝑒𝑖𝜋𝐻0/4
. Then, the weights of columns in H0

modulo 4 is w′ = (𝑤 ′
1
, · · · ,𝑤 ′𝑛), with 𝑤 ′𝑗 = 2𝑟 ′𝑗 + 𝐺 𝑗 𝑗 . It is not hard to see that either

𝑟 ′𝑗 = 𝑟 𝑗 or 𝑟
′
𝑗 + 𝑟 𝑗 = 1; equivalently, 𝑤 ′𝑗 will be either equal to 𝑤 𝑗 , or equal to 𝑤 𝑗 ± 2.

Let a ∈ F𝑛
2
be an indicator vector such that 𝑎 𝑗 = 1 if 𝑤 𝑗 ≠ 𝑤 ′𝑗 and 𝑎 𝑗 = 0 otherwise.
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Let H𝑎 := (a, a)𝑇 and one can verify that H𝑇𝑎H𝑎 = 0 since it contains two identical

rows. Using the language of stabilizers, H𝑎 represents the gates 𝑖𝑋
𝑎1
1
⊗ · · · ⊗𝑋𝑎𝑛𝑛 when

𝜃 = 𝜋/4, which will only flip the phase part 𝑟 ′𝑗 where 𝑟 𝑗 ≠ 𝑟
′
𝑗 . In this way, columns in

H1 will have the same Hamming weights modulo 4 as w, and thus satisfy the weight

constraint.

Satisfying the codeword constraint

Here, we present the subroutine to make any factor of G satisfy the codeword con-

straint. First, we give a relation that holds for any factor of G. Recall that G satisfies

the self-consistent equation (4.34), which can also be written as,

Gs ≡
©«
|c1 |
...

|c𝑛 |

ª®®®®¬
mod 2 . (4.41)

In a slight abuse of notations, we use (c1, · · · , c𝑛) to denote any factor of G. Then, in

the component form, the self-consistent equation reads,

c𝑖 ·
(∑︁

𝑗

𝑠 𝑗c 𝑗

)
= c𝑖 · c𝑖 , (4.42)

even if

∑
𝑗 𝑠 𝑗c 𝑗 ≠ 1.

Now, for the factor H1 obtained in the last step, if it already satisfies H1 · s = 1,

then we can just skip this step. If not, without loss of generality, assume

H1 · s =
∑︁
𝑗

𝑠 𝑗c 𝑗 =

©«

1

...

1

0

...

0

ª®®®®®®®®®®®®®¬
, (4.43)

where the first 𝑘 entries of the right-hand side is 1 and the remaining𝑚′ − 𝑘 entries

is 0 (let𝑚′ be the number of rows in Hinit). We can always do such row permutation,
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because the row order does not affect the inner product between columns and the row

permutation can be absorbed into the row permutations in the obfuscation (Eq. (3.22)).

Then, we partition H1 into two parts H1 =
©«
F

Z1

ª®¬ according to Eq. (4.43), where F

consists of the first 𝑘 rows of H1, and Z1 consists of the last𝑚
′ − 𝑘 rows. We have,

Fs = 1 Z1s = 0 . (4.44)

Next, since H1s has ones only on the first 𝑘 entries, the self-consistent equa-

tion (4.42) implies that the first 𝑘 entries of any column in H1 have the same parity

of the whole column itself. Thus, the remaining entries must have even parity, which

gives Z𝑇
1
· 1 = 0. We can always assume that Z1 has an even number of rows, because

otherwise, we can append an all-zeros row to Z1 without affecting Z𝑇
1
Z1 and H𝑇

1
H1.

We would like to apply Lemma 2.8 to ‘inject’ the vector 1 into the column space

of Z1. Specifically, let Z2 := Z1 + 1 · x𝑇 , where x satisfies x · s = 1 and |x| = 1. Then,

Z2 · s = (Z1 + 1 · x𝑇 ) · s = 1 , (4.45)

and Z𝑇
2
Z2 = Z𝑇

1
Z1 according to Lemma 2.8. Note that Z2 is derived from Z1 by flipping

all entries in the 𝑗-th column, where 𝑗 is the index such that 𝑥 𝑗 = 1. Other columns

are left unchanged, since |x| = 1. Therefore, define

H2 :=
©«
F

Z̃

ª®¬ , (4.46)

and although we have G = H𝑇
2
H2 and H2 s = 1, the 𝑗-th column of H2 may not satisfy

the weight constraint.

To resolve this issue, define

H3 :=


H2 if H2 satisfies the weight constraint;

(H𝑇
2
, x, x)𝑇 otherwise.

(4.47)

We claim that G = H𝑇
3
H3, H3 s = 1 and H3 satisfies the weight constraint. That is, H3

is a valid solution to Problem 4.10. Indeed, it can be verified that H𝑇
3
H3 = H𝑇

2
H2 since
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the two additional rows, if added, will not affect the inner products between columns.

Moreover, H3 s = 1 since H2 s = 1 and x · s = 1. Finally, if H2 does not satisfy the

weight constraint, then H3 is obtained by modifying H2 in a similar way to Eq. (4.40).

According to our discussion there, H3 will satisfy the weight constraint.

Putting everything together

To wrap up, the adapted Lempel’s algorithm is as follows.

(1) Find an elementary factorization E0 of G;

(2) Construct the Lempel sequence (4.39);

(3) Sample a random factor H0 from the Lempel sequence;

(4) Obtain H1 from H0, so that H1 satisfies the weight constraint and G = H𝑇
1
H1;

(5) Obtain H2 from H1, so that H2 satisfies the codeword constraint and G = H𝑇
2
H2;

(6) Obtain H3 from H2, so that H3 satisfies the weight constraint and the codeword

constraint simultaneously and G = H𝑇
3
H3.



72

Chapter 5

Classical Attacks and Security

In this chapter, we examine the classical security of our protocol, i.e., the possibility

that an efficient classical prover can pass the test. A straightforward classical attack

is to simulate the IQP circuit sent by the verifier. We do not expect this to be efficient,

since there is generally no structure to be exploited by a classical simulation algorithm.

For example, due to the obfuscation as in Eq. (3.22), the geometry of the IQP circuit can

be arbitrary, which implies that the treewidth in a tensor network algorithm cannot

be easily reduced [MS08].

Here, we focus on another class of classical attacks based on extracting secrets.

Given an IQP matrix H, once the hidden secret s is found, a classical prover can

first calculate the correlation function ⟨Zs⟩ efficiently. Then, he generates a sam-

ple x which is orthogonal to s with probability (1 + ⟨Zs⟩)/2 and not orthogonal to s

with probability (1−⟨Zs⟩)/2. The generated samples will have the correct correlation

with the secret s and hence pass the test. Kahanamoku-Meyer’s attack algorithm for

the Shepherd-Bremner construction is an instance of this class [KM19].

But generally, this attack may not be efficient. From a code perspective, the stabi-

lizer construction is to sample a random code satisfying certain constraints, and hide

it by adding redundancy and performing obfuscation. Finding the secret allows one
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to find the hidden subcode, which should be a hard problem in general. In particular,

we formulate the following conjecture.

Conjecture 5.1 (Hidden Structured Code (HSC) Problem). For certain appropriate

choices of 𝑛,𝑚,𝑔, there exists an efficiently samplable distribution over instances (H, s)

from the familyH𝑛,𝑚,𝑔, so that no polynomial-time classical algorithm can find the secret

s given 𝑛,𝑚 and H as input, with high probability over the distribution onH𝑛,𝑚,𝑔.

Naturally, sampling instances with uniform distribution from H𝑛,𝑚,𝑔 is more fa-

vorable, since it does not put any bias on specific instances. For the underlying dis-

tribution induced by the stabilizer construction (Meta-Algorithm 1), it seems that it is

uniform or close to uniform, as the output instances are random instances satisfying

certain natural constraints imposed by the structure of the familyH𝑛,𝑚,𝑔. Though, we

do not have a rigorous proof for this claim. Moreover, a similar conjecture was given

in [SB09] for the family HQRC

𝑛,𝑚,𝑞 , where the problem is to decide whether a given H is

from the familyHQRC

𝑛,𝑚,𝑞 or not. They conjectured that such a problem is NP-complete.

Here, to better align with the classical attack, we consider the problem of finding the

secret s instead.

To support Conjecture 5.1, we first generalize Kahanamoku-Meyer’s attack algo-

rithm to target any IQP-based verification protocols with 𝜃 = 𝜋/8. We show that

this generalized attack, named the Linearity Attack, fails to break our construction.

Furthermore, our analysis reveals that the loophole of the original Shepherd-Bremner

construction stems from an improper choice of parameters. The Shepherd-Bremner

construction can be improved by the column redundancy technique, which enables

random sampling from the family HQRC

𝑛,𝑚,𝑞 with any possible parameters and thereby

fixes the loophole.
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5.1 Linearity Attack

Classical attacks based on secret extraction aim to mimic the quantum behavior on

certain candidate set 𝑆 . Observe that given an IQP circuit represented by the binary

matrixH, a quantum prover can output a sample x, which has the correlation function

⟨Zs⟩ in the direction of s for every s, even if it is not the secret of the verifier. If

a classical prover can also generate samples that have the correct correlation with

every s, then he has the power to classically sample from an IQP circuit, which is

implausible [BJS11, BMS16]. However, he has the knowledge that the verifier will

only check one secret. Therefore, a general attack strategy for him is to first reduce

the set of candidate secrets from {0, 1}𝑛 to a (polynomial-sized) subset 𝑆 , and then

generate samples that have the correct correlation with every vector in the candidate

set.

Here, we discuss Linearity Attack, which is an instance of classical attacks based

on secret extraction and generalizes the attack algorithm in [KM19] It consists of two

steps. First, it uses linear algebraic techniques to construct a candidate set 𝑆 . Then, the

prover calculates the correlation function for every vector in 𝑆 , and outputs samples

that have the correct correlation with those vectors.

5.1.1 Secret Extraction

Overview of the algorithm

The secret extraction procedure in the Linearity Attack is presented in Meta-

Algorithm 3, which is a generalized version of the procedure described in [KM19].

The algorithm begins by randomly selecting a vector d and eliminating rows in H

that are orthogonal to d, resulting in Hd. Subsequently, the algorithm searches for

vectors that satisfy certain property check in ker(Gd), where Gd = H𝑇dHd represents

the Grammatrix associated with d. In what follows, we discuss some technical details

and defer the analysis to Section 5.2.
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1: procedure ExtractSecret(H)
2: Initialize 𝑆 ← ∅. ⊲ candidate set

3: repeat
4: Uniformly randomly pick d ∈ F𝑛

2
.

5: Construct Hd and Gd = H𝑇dHd
6: for each vector s𝑖 ∈ ker(Gd) do
7: if s𝑖 passes certain property check then ⊲ To be specified

8: Add s𝑖 to 𝑆 .
9: end if
10: end for
11: until some stopping criterion is met.

12: return 𝑆
13: end procedure

Meta-Algorithm 3: The ExtractSecret(H) procedure of Linearity Attack.

Secret extraction in Kahanamoku-Meyer’s attack

Meta-Algorithm 3 differs slightly from the approach described in [KM19]. In the orig-

inal algorithm, the classical prover begins by constructing a matrixM ∈ F𝑙×𝑛
2

through

linear combinations of rows in H. Specifically, after sampling the vector d, the classi-

cal prover proceeds to sample 𝑙 random vectors e1, · · · , e𝑙 . Then, the 𝑗-th row of M is

defined by,

m𝑇
𝑗 :=

∑︁
p𝑇 ∈row(H)
p·d=p·e𝑗=1

p𝑇 . (5.1)

After that, the original algorithm searches for the vectors that can pass certain prop-

erty check in ker(M) instead. The secret extraction procedure of [KM19] is presented

in Meta-Algorithm 4.

Our secret extraction algorithm is a generalization and simplification to the origi-

nal approach. It can be shown that rows inM belong to the row space ofGd. Therefore,

to minimize the size of ker(M), one can simply set M = Gd, eliminating the need to

sample the vectors e1, · · · , e𝑙 .
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Parameter: number of linear equations 𝑙

1: procedure ExtractSecret(H)
2: Uniformly randomly pick d ∈ F𝑛

2
.

3: for 𝑗 = 1, 2, · · · , 𝑙 do ⊲ construct the linear-system matrix M
4: Uniformly randomly pick e 𝑗 ∈ F𝑛

2
.

5: m𝑇
𝑗 ← RowSum(Hd,e𝑗 ).

6: end for
7: M← (m1, · · · ,m𝑙 )𝑇 .
8: for each vector s𝑖 ∈ ker(M) do
9: if s𝑖 passes the QRC check then ⊲ discussed in the main text

10: return s𝑖
11: end if
12: end for
13: end procedure

Meta-Algorithm 4: The ExtractSecret(H) subroutine in [KM19]. Here, given H and

two vectors d and e𝑡 , we define Hd,e𝑗 to be a submatrix from H by deleting rows or-

thogonal to either d or e 𝑗 .

Proposition 5.2. The matrixM obtained from Meta-Algorithm 4 consists of rows from

the row space of Gd = H𝑇dHd.

From this proposition, it is clear that to minimize the size of ker(M), one can

choose M = Gd. In this way, the sampling of e 𝑗 ’s can be removed.

Proof. Recall that the 𝑗-th row of M is obtained in the following way. First, we elimi-

nate rows in H that are orthogonal to d, which gives Hd. Then, we eliminate rows in

Hd that are orthogonal to e 𝑗 , which gives Hd,e𝑗 . Finally, we sum up the rows in Hd,e𝑗 ,

which gives m𝑇
𝑗 . Equivalently, we have

m𝑇
𝑗 = (Hd e)𝑇Hd = e𝑇Gd . (5.2)

To see this, first observe that Hd e has ones in the positions where the corresponding

rows are not orthogonal to e 𝑗 . Then, (Hd e)𝑇Hd selects and sums up the rows in Hd,e𝑗 .

According to Eq. (5.2), the rows of M are linear combinations of rows of Gd and

thus are in the row space of Gd. ■
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Property check

Next, we discuss the property checks designed to determine whether a vector in

ker(Gd) can serve as a potential secret or not. In the context of the Shepherd-Bremner

construction targeted in [KM19], the property check is to check whether s𝑖 in ker(M)

corresponds to a quadratic-residue code or not. To accomplish this, the prover con-

structs Hs𝑖 for the vector s𝑖 and performs what we refer to as the QRC check, which

examines whether Hs𝑖 generates a quadratic-residue code (with possible row reorder-

ing). However, determining whether a generator matrix generates a quadratic-residue

code is a nontrivial task. Consequently, the algorithm in [KM19] attempts to achieve

this by assessing the weight of the codewords in the code generated by Hs𝑖 . In a

quadratic-residue code, the weight of the codewords will be either 0 or 3 (mod 4). But

still, there will be exponentially many codewords, and checking the weights of the

basis vectors is not sufficient to ensure that all codewords have weight either 0 or 3

(mod 4). So in practice, the prover can only check a small number of the codewords.

For instances derived from the stabilizer construction, the prover will have less

information about the code Cs; he only has the knowledge that this code has a large

doubly-even subcode, as quantified by the rank of Gs. Therefore, the property check

for Meta-Algorithm 3 involves checking whether the rank ofH𝑇s𝑖Hs𝑖 falls below certain

threshold and whether self-dual intersectionDs𝑖 is doubly-even. However, determin-

ing an appropriate threshold presents a challenge for the classical prover, who can

generally only make educated guesses. If the chosen threshold is smaller that the

rank of Gs, then the secret extraction algorithm will miss the real secret, even if it lies

within ker(Gd).

Stopping criteria

Lastly, various stopping criteria can be employed in the secret extraction procedure.

One approach is to halt the procedure once a vector successfully passes the prop-

erty check, as adopted in [KM19]. Alternatively, the procedure can be stopped after a
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specific number of repetitions or checks. In our implementation, we utilize a combi-

nation of these two criteria. If no vectors are able to pass the property check before

the stopping criterion is reached, an empty candidate set 𝑆 is returned, indicating a

failed attack. Conversely, if the candidate set 𝑆 is non-empty, the attack proceeds to

the classical sampling step to generate classical samples.

5.1.2 Classical Sampling

Classical sampling based on multiple candidate secrets is nontrivial. Mathematically,

the problem is formulated as follows.

Problem 5.3. Given an IQP circuit 𝐶 and a candidate set 𝑆 = {s1, · · · , s𝑡 }, outputs a

sample x so that

E [(−1)x·s𝑖 ] =
〈
Zs𝑖

〉
, (5.3)

for 𝑖 = 1, · · · , 𝑡 , where E [·] is over the randomness of the algorithm.

Note that E [(−1)x·s𝑖 ] is the expectation value of Eq. (3.2). We may allow a

polynomially-bounded additive error in the problem formulation, considering the in-

evitable shot noise due to finite samples. The complexity of this problem depends on

various situations. To the best of our knowledge, we are not aware of an efficient

classical algorithm that solves this problem in general.

Single candidate secret

We first focus on the case |𝑆 | = 1, in which case the problem is easy to solve, yet

remains worth discussing.

Naive sampling algorithm. A naive sampling algorithm is as follows. To generate

samples with the correct correlation on s, one just needs to output samples that are

orthogonal to the candidate vector s′ with probability 𝛽s′ = (⟨Zs′⟩ + 1)/2 and oth-

erwise with probability 1 − 𝛽s′ . One can prove that if the candidate secret from the
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ExtractSecret procedure is the real secret s, then the generated samples using this

strategy will have the correlation function approximately ⟨Zs⟩ with the real secret.

Otherwise, the correlation function with the real secret will be zero. We have the

following lemma.

Lemma 5.4. Given a matrix H and two vectors s ≠ s′, let ⟨Zs⟩ and ⟨Zs′⟩ be their

corresponding correlation functions, as defined in Eq. (3.3). If a sample x is generated

to be a vector orthogonal to s′ with probability 𝛽s′ = (⟨Zs′⟩ + 1)/2 and otherwise with

probability 1 − 𝛽s′ , then E [(−1)x·s] = 0.

Before giving the proof, we first give some remarks. The above lemma holds even

if Hs = Hs′, in which case s and s′ are said to be equivalent secrets. Equivalent secrets

have the same non-orthogonal and redundant part, and the correlation functions ⟨Zs⟩

and ⟨Zs′⟩ are the same. It is clear that the number of equivalent secrets is given

by 2
𝑛−rank(H)

, which will be 1 if H is of full column rank. When there are multiple

equivalent secrets, it could be the case that the vector s′ is returned by the secret

extraction procedure, because it can also pass the property check, even if it is not the

real secret itself. In this case, our previous classical sampling algorithm can only give

samples with zero correlation function on the real secret s, according to Lemma 5.4.

Proof of Lemma 5.4. We first prove the following proposition.

Proposition 5.5. For a nonzero s ≠ 1, if we randomly sample a vector d of even parity,

then

Pr

|d| even
(s · d = 1) = Pr

|d| even
(s · d = 0) = 1

2

. (5.4)

Given H =
©«
Hs

Rs

ª®¬ and s, if s′ is equivalent to s, then they have the same inner-

product relations with rows in H. The following lemma shows that a random row

orthogonal to s′ will have probability 1/2 to have inner product 1 with s, even if Hs =

Hs′.
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Lemma 5.6. For s′ ≠ s, if we uniformly randomly sample a vector p orthogonal to s′,

then

Pr

p·s′=0
(p · s = 1) = 1

2

. (5.5)

Proof. Without loss of generality, assume s′ has ones in the first 𝑘 entries and zeros

elsewhere. We can split p =
©«
p1

p2

ª®¬ and s =
©«
s1

s2

ª®¬, where p1 is a random even-parity

string and p2 is uniformly random over F𝑛−𝑘
2

. Then, p · s = p1 · s1 + p2 · s2.

(1) If s2 = 0 and s1 ≠ 1,

Pr

p·s′=0
(p · s = 1) = Pr

p1 even
(p1 · s1 = 1) = 1

2

, (5.6)

according to Proposition 5.5.

(2) If s2 ≠ 0 and s1 = 1,

Pr

p·s′=0
(p · s = 1) = Pr

p2
(p2 · s2 = 1) = 1

2

, (5.7)

because p2 is uniformly random.

(3) If s2 ≠ 0 and s1 ≠ 1,

Pr

p·s′=0
(p · s = 1) = Pr

p1,p2
(p1 · s1 = 1, p2 · s2 = 0) + Pr

p1,p2
(p1 · s1 = 0, p2 · s2 = 1)

(5.8)

=
1

2

· 1
2

+ 1

2

· 1
2

=
1

2

, (5.9)

where we used the independence of p1 and p2.

■

Now, we are ready to prove Lemma 5.4.

Proof. With similar derivations to Lemma 5.6, one can show that

Pr

p·s′=0
(p · s = 0) = Pr

p·s′=1
(p · s = 0) = Pr

p·s′=1
(p · s = 1) = 1

2

. (5.10)
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That means, if one samples a random p to be orthogonal to s′ with probability 𝛽 , and

not orthogonal to s′ with probability 1 − 𝛽 , then

Pr

p
(p · s = 0) = 𝛽 Pr

p·s=0
(p · s = 0) + (1 − 𝛽) Pr

p·s=1
(p · s = 0) = 1

2

. (5.11)

That is, p is uncorrelated with s and the correlation function is

E [(−1)p·s] = Pr

p
(p · s = 0) − Pr

p
(p · s = 1) = 0 . (5.12)

Therefore, if the secret extraction procedure returns a vector s′ ≠ s and the classi-

cal prover uses the naive classical sampling algorithm to generate samples, then the

samples will produce zero correlation function on the real secret. ■

Sampling according to H. To address this issue, we propose a second classical

sampling algorithm. Observe that linear combination of rows in Rs gives vectors that

are orthogonal to s and summation of an odd number of rows in Hs gives vectors

that are not orthogonal to s. We denote the former set of vectors S0(s) and the latter

S1(s). The identification of these sets relies on determining the submatrices Hs and

Rs. To achieve this, it suffices to find a vector s′ that is equivalent to the real secret s.

Therefore, upon receiving the candidate secret s′ from the secret extraction procedure,

the classical prover proceeds by computing ⟨Zs′⟩ and 𝛽s′ , followed by identifying

S0(s′) and S1(s′). A sample x is drawn from S0(s′) with probability 𝛽s′ and from S1(s′)

with probability 1−𝛽s′ . If the vector s′ is equivalent to s, thenHs = Hs′ andRs = Rs′ . So,

this sampling algorithm will generate samples with the correct correlation function

with respect to the real secret s, as opposed to the naive sampling algorithm.

This also explains why we consider IQP matrices of full column rank in the stabi-

lizer construction. If the classical prover is given an IQP matrixH that is not full-rank,

he can always apply an invertible matrix Q so that HQ = (H′, 0), where H′ is of full

column rank. Then, he runs the secret extraction algorithm on H′. Once a candidate

secret is found, he can use it to identify the corresponding S0 and S1 from the original

matrix H, as well as computing the correlation function. Finally, if the identification
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matches that of the real secret, then using the second classical sampling algorithm

will allow him to pass the test.

Multiple candidate secrets

Here, we give two classical sampling algorithms that given an IQP circuit 𝐶 and a

candidate set 𝑆 = {s1, · · · , s𝑡 }with 𝑡 ≤ 𝑛 as input, output samples that have the correct

correlation function on all candidate secrets in the set. We first consider a simple case

here, where the Gram matrix Gs𝑖 = H𝑇s𝑖Hs𝑖 associated with each candidate secret s𝑖

has the same rank. Then, if the samples are from a quantum computer, the probability

bias relative to every candidate secret should be the same, denoted as 𝛽 . Given this

candidate set, a classical prover can use Algorithm 3 to mimic the quantum behavior.

Here, the matrix S is defined to be a 𝑡 × 𝑛 matrix whose 𝑖-th row is s𝑇𝑖 . The output

bit strings will have probability 𝛽 to be orthogonal to all vectors in the candidate set

𝑆 , and probability 1 − 𝛽 to have inner product 1 with them. Therefore, the generated

samples will have correct bias with every vector in the candidate set and hence the

correct correlation function. The condition for Algorithm 3 to work is that the all-

ones vector 1 needs to be in the column space of S. Otherwise, the specific solution

y′ cannot be found. A sufficient condition is that the candidate vectors are linearly

independent. Then, the matrix Swill have full row rank, and the all-ones vector 1will

be in the column space of S.

Next, we do not require the associated biases 𝛽1, · · · , 𝛽𝑡 to be the same. We present

a similar sampling algorithm to Algorithm 3 to output samples that mimic what a

quantum computer will output. For the sake of illustration, we assume that the asso-

ciated biases are all different, denoted as {𝛽1, 𝛽2, · · · , 𝛽𝑡 }, but the following discussion

can be easily generalized to the case where some 𝛽𝑖 ’s are the same. As before, the at-

tacker does not have extra information to judge which one is the correct secret, even

though the correct secret is in the candidate set. So he would have to generate samples

that have bias 𝛽1 with s1, 𝛽2 with s2, and so on. Below, the algorithm for generating
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Parameter: number of samples 𝑇 .

1: procedure ClassicalSampling(S, 𝛽)
2: Solve Sy = 1 for a specific solution y′.
3: Find the basis {y1, · · · , y𝑘} of ker(S) ⊲ 𝑘 is the dimension of ker(S).
4: for 𝑗 = 1, 2, · · · ,𝑇 do
5: Randomly sample (𝑐1, · · · , 𝑐𝑘) ∈ F𝑘 .
6: With probability 𝛽 , set x 𝑗 ←

∑𝑘
𝑖=1 𝑐𝑖y𝑖 .

7: With probability 1 − 𝛽 , set x 𝑗 ← y′ +∑𝑘
𝑖=1 𝑐𝑖y𝑖 .

8: end for
9: return x1, · · · , x𝑇
10: end procedure

Algorithm 3: The ClassicalSampling subroutine for the candidate set where all se-

crets are associated with the same bias.

such samples is shown in Algorithm 4. Again, we transform the set 𝑆 into a 𝑡 × 𝑛

matrix S.

The correctness of the sampling algorithm can be easily seen via a sanity check.

But one problem is whether the linear system Sy = b 𝑗 has solutions or not. If nonzero

solutions can be found for every linear systems, then b 𝑗 ’s are all in the column space

of S, which implies that the rank of S is 𝑡 . Since there are 𝑡 rows in S, a necessary and

sufficient condition for the sampling algorithm to work is that {s1, · · · , s𝑡 } are linearly

independent. This condition can be relaxed if some of the 𝛽 𝑗 ’s are the same.

5.2 Analysis

Here, we present analysis on the secret extraction of Linearity Attack.

Probability of sampling a good d. First, we have the following proposition.

Proposition 5.7. Given an IQP matrix H and two vectors d and s, we have Gsd = Gd s,

where Gs = H𝑇sHs and Gd = H𝑇dHd. Therefore, s lies in ker(Gd) if and only if Gsd = 0,
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Input: a binary matrix S ∈ F𝑡×𝑛; biases 𝛽1 > 𝛽2 > · · · > 𝛽𝑡 .

Parameter: number of samples 𝑇 .

Output: x1, · · · , x𝑇 ∈ F𝑛 .
1: Find the basis of ker(S), denoted as {y1, · · · , y𝑘}.
2: for 𝑗 = 1, 2, · · · , 𝑡 do
3: Define b 𝑗 to be a binary vector whose last 𝑗 entries are all zero.

4: Solve a specific solution y′𝑗 for Sy = b 𝑗 .
5: end for
6: for 𝑖 = 1, 2, · · · ,𝑇 do
7: Randomly sample (𝑐1, · · · , 𝑐𝑘) ∈ F𝑘 .
8: With probability 𝛽𝑡 , set x𝑖 ←

∑𝑘
𝑖=1 𝑐𝑖y𝑖 .

9: With probability 𝛽𝑡−1 − 𝛽𝑡 , set x𝑖 ← y′𝑡 +
∑𝑘
𝑖=1 𝑐𝑖y𝑖 .

10: With probability 𝛽𝑡−2 − 𝛽𝑡−1, set x𝑖 ← y′𝑡−1 +
∑𝑘
𝑖=1 𝑐𝑖y𝑖 .

11:

...

12: With probability 𝛽1 − 𝛽2, set x𝑖 ← y′
2
+∑𝑘

𝑖=1 𝑐𝑖y𝑖 .
13: With probability 1 − 𝛽1, set x𝑖 ← y′

1
+∑𝑘

𝑖=1 𝑐𝑖y𝑖 .
14: end for
15: return x1, · · · , x𝑇

Algorithm 4: The ClassicalSampling subroutine for the candidate set where all vec-

tors are associated with different biases.

which happens with probability 2−𝑔 over all choices of d, where 𝑔 = rank(Gs) is the rank

of Gs.

Proof. First, Gsd = H𝑇sHsd and Hsd is a vector, where the positions of ones gives the

indices of the rows in Hs that have inner product 1 with d. Therefore, the ones of Hsd

correspond to the rows in H that have inner product 1 with both s and d. Moreover, if

the vector Hsd is multiplied to H𝑇s on the right, then those rows are summed up, i.e.,

Gsd = H𝑇sHsd =
∑︁

p𝑇 ∈row(H)
p·d=p·s=1

p . (5.13)

Similarly, we have

Gds = H𝑇dHds =
∑︁

p𝑇 ∈row(H)
p·d=p·s=1

p . (5.14)
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Thus, Gsd = Gds. If we want s to lie in ker(Gd), then d needs to lie in ker(Gs), which

happens with probability

2
𝑛−𝑔

2
𝑛

= 2
−𝑔 , (5.15)

for a random d. ■

This proposition tells us that if the random d does not satisfy Gsd = 0, then the

verifier’s secret s will not lie in ker(Gd). In this case, Meta-Algorithm 3 will not be

able to find the correct secret from the kernel of Gd, and it has to be started over with

a new d.

For completeness, we also give the success probability that the real secret s lies in

ker(M) in Meta-Algorithm 4.

Proposition 5.8 (Theorem 3.1 in Ref. [KM19] restated). Given (H, s) ∈ HQRC

𝑛,𝑚,𝑞 ,

randomly sample a vector d ∈ {0, 1}𝑛 and let M be the binary matrix obtained from

Meta-Algorithm 4. If Gsd = 0, then we have Ms = 0, which happens with probability

1/2 over all choices of d.

Proof. First, note that for the 𝑖-th row of M,

m𝑖 · s =
∑︁

p𝑇 ∈row(H)
p·d=p·e𝑖=1

p · s =
∑︁

p∈row(H)
(p · s) (p · d) (p · e𝑖) , (5.16)

since each term equals 1 if and only if it has inner product 1 with d, e and s simulta-

neously. The above transformation is to take the conditions in the summation up to

the summand, and we can take the term p · s = 1 down to the summation. That is, we

can write

m𝑖 · s =
∑︁

p∈row(Hs)
(p · d) (p · e𝑖) , (5.17)

which can be seen to be a quantity only depending on Hs. Further observe that the

above is the inner product between Hsd and Hse𝑖 , i.e.,

m𝑖 · s = (Hse𝑖) · (Hsd) = e𝑇𝑖 Gsd . (5.18)
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Therefore, if Gsd = 0, then m𝑖 · s = 0 for every 𝑖 , which means Ms = 0. That is, the

verifier’s secret lies in the kernel of M if d lies in the kernel of Gs. If Hs generates

a QRC, then rank(Gs) = 1. Then, the probability that d lies in the kernel of Gs is

2
𝑛−1/2𝑛 = 1/2. ■

If the correlation function with respect to the real secret has inverse polynomial

scaling, i.e., 2
−𝑔/2 = Ω(1/poly(𝑛)), then the probability of sampling a good d is also

large, which is 2
−𝑔 = Ω(1/poly(𝑛)). This might appear advantageous for the attacker.

But note that a classical attack cannot determine whether the sampled d is good or

not before he can find the real secret. In fact, he even cannot definitively determine

whether a vector s𝑖 in ker(Gd) that passes the property check is the real secret or not.

Size of ker(Gd). The next question is, how large is the size of ker(Gd). This is

important because the steps before the property check takes𝑂 (𝑛3) time, which comes

from the Gaussian elimination used to solve the linear system to find the kernel of

Gd. However, for the property check, the prover will potentially need to check every

vectors in ker(Gd), which takes time proportional to its size. It is important to note

that checking the basis vectors of ker(Gd) is not sufficient to find the real secret s,

because the linearity structure is not preserved under taking the Gram matrix. Even

if s ∈ ker(Gd), the basis vectors of the kernel space can have high ranks for their

associated Gram matrices. Below, we give an expected lower bound for the size of

ker(Gd).

Theorem 5.9. Given (H, s) ∈ H𝑛,𝑚,𝑔, randomly sample a vector d. Then, the size of

ker(Gd) is greater than 2
𝑛−𝑚/2 in expectation over the choice of d.

Proof. First, observe that the rows in Gd are formed by linear combination of rows in

Hd, which means the rows space of Gd is no larger than that of Hd, and rank(Gd) ≤

rank(Hd). So, the dimension of ker(Gd) is

𝑛 − rank(Gd) ≥ 𝑛 − rank(Hd) . (5.19)
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(a) (b)

Figure 5.1: (a) The dimension of ker(Gd) for � = 1, 3, 5 and the number of rows

� = 200. The asterisks indicate the expected lower bound � −�/2. (b) The success
probability of the attack. Here, we set the threshold for the rank in the property check

to be the same as �.

In expectation, the number of rows � (Hd) in Hd is

Ed [� (Hd)] = Ed



∑

p� ∈row(H)
p · d


=

∑

p� ∈row(H)
Ed [p · d] = �

2

, (5.20)

since Ed [p · d] = 1/2 for every row p� . Since rank(Hd) ≤ � (Hd), the number of rows

in Hd, we have dim(ker(Gd)) ≥ � −�/2 in expectation. �

Therefore, the size of ker(Gd) is increased exponentially by increasing �. The

increase of � can be achieved by adding column redundancy, i.e., adding more all-

zeros columns in Eq. (4.21). But in the stabilizer construction, the column redundancy

cannot be arbitrarily large. Recall that tomake the IQPmatrixH full rank, one needs to

add at least �−� redundant rows, where � = rank(Hs). IfH is not full rank, then as we

discussed in Section 5.1.2, the classical prover can always perform column operations

to effectively reduce the number of columns �, and hence reduce the dimension of

ker(Gd).

Suggested parameter regime. Based on the above analysis, it is important to

choose a good parameter regime to invalidate the Linearity Attack. Suppose the ex-

pected security parameter is �, meaning that the expected time complexity of a clas-

sical prover is Ω(2�). Then, generally we require � − �/2 ≥ � for ker(Gd) to be
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sufficiently large, and the number of redundant rows 𝑚 − 𝑚1 ≥ 𝑛 − 𝑟 for H to be

full-rank, where𝑚1 is the number of rows in Hs. Specifically, for the stabilizer con-

struction, given 𝑛 and 𝑔, we randomly choose the parameter 𝑟 ≥ 𝑔. Then, we require

that the number of rows in Hs and H satisfies

𝑚1 ≤ 𝑛 − 2𝜆 + 𝑟 𝑚1 + 𝑛 − 𝑟 ≤ 𝑚 ≤ 2(𝑛 − 𝜆) , (5.21)

respectively. In addition, since 𝑚 is the number of gates in the IQP circuit, we will

require sufficiently large 𝑛 and𝑚 = Ω(𝑛) to invalidate classical simulation.

Numerical simulation. In Fig. 5.1 (a), we plot the dimension of ker(Gd) for 𝑔 =

1, 3, 5 and 𝑚 = 200. For each number of columns 𝑛, we sample 100 instances from

H𝑛,𝑚,𝑔 with the stabilizer construction (Meta-Algorithm 1). Then, a random d is sam-

pled and we calculate the dimension of ker(Gd). The asterisks are the expected lower

bound 𝑛 −𝑚/2, as shown in Theorem 5.9. The numerical experiment demonstrates

good agreement with the theoretical prediction. In Fig. 5.1 (b), we present the numer-

ical results for the success probability of the attack. Although to invalidate the attack,

the maximum number of property checks should be 2
50
or larger, we set it to be 2

15
for

a proof of principle in the numerical experiment. For each number of columns 𝑛, we

sample 100 random instances fromH𝑛,𝑚,𝑔, where𝑚 = 200. Then, the Linearity Attack

is applied to each instance and the success probability is defined as the fraction of

successfully attacked instances, which is the instance that the attacker can classically

generate samples to spoof the test. As one can see, the success probability decreases

to zero as 𝑛 exceeds𝑚/2 + 15 = 115, as expected.

Challenge. In addition, we have posted a challenge problem as well as the source

code for generation and verification on GitHub
1
, to motivate further study. The chal-

lenge problem is given by theHmatrix of a random instance fromH𝑛,𝑚,𝑔 with 𝑛 = 300

and𝑚 = 360; the 𝑔 parameter is hidden because in practice, the prover can only guess

1https://github.com/AlaricCheng/stabilizer_protocol_sim

https://github.com/AlaricCheng/stabilizer_protocol_sim
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a value. One needs to generate samples with the correct correlation function in the

direction of the hidden secret to win the challenge.

5.3 A Fix of the Shepherd-Bremner Construction

Finally, we would like to remark why the attack in [KM19] can break the Shepherd-

Bremner construction and how we can fix it by adding column redundancy. Let

HQRC

𝑛,𝑚,𝑞 = {(H, s)} be a family of pairs of an IQP matrix H ∈ F𝑚×𝑛
2

and a secret s so

that Hs generates a QRC of length 𝑞 (up to row permutations) and H is of full column

rank. What the construction recipe of [SB09] does is to randomly sample instances

fromHQRC

𝑛,𝑚,𝑞 , where 𝑛 = (𝑞 +3)/2 and𝑚 ≥ 𝑞, leaving a loophole for the recent classical

attack [KM19]. To see why the parameter regime is as above, we first note that the

length of QRC is 𝑞, implying that the number of rows in Hs is 𝑞 and hence 𝑚 ≥ 𝑞.

Moreover, the dimension of a length-𝑞 QRC is (𝑞 + 1)/2, which implies that the rank

ofHs is (𝑞+1)/2. But an all-ones columnwas added in the construction (see Eq. (3.20)),

which is a codeword of QRC, leading to 𝑛 = (𝑞 + 3)/2.

In the Shepherd-Bremner construction, the rank of Gram matrix Gs associated

with the real secret s is 1 according to Corollary 4.4. Therefore, the probability of

choosing a good d is 1/2 (as also shown in Theorem 3.1 of [KM19]). However, since

the number of columns and the number of rows in H is 𝑛 = (𝑞 + 3)/2 and𝑚 ≥ 𝑞, re-

spectively, the size of ker(Gd) is generally small. As a result, the prover can efficiently

explore the entire ker(Gd), and if no vector passes the property check, the prover can

simply regenerate d and repeat the secret extraction procedure. The numerical results

in [KM19] indicated that the size of ker(Gd) is indeed constant when applied to the

Shepherd-Bremner construction, which suggests that an efficient classical prover can

pass the test and hence break the original construction. Specifically, for the challenge

instance posted in [SB09], 𝑚 is taken to be 2𝑞. Then, according to Theorem 5.9, the

dimension of ker(Gd) is expected to be constant, making it susceptible to the attack.
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(a) (b)

Figure 5.2: (a) The dimension of ker(Gd) for � = 103, 127, 151, 167. Here, the number

of rows and columns are� = 2� and � = � + �, where � = (� + 1)/2 is the dimension

of QRC. (b) The success probability of the attack. The asterisks denote the points

(� + 15, 0).

To address this issue, the original Shepherd-Bremner construction can be en-

hanced by introducing additional column redundancy to extend the number of

columns �, which can achieve random sampling from families HQRC

�,�,� with any � ≥

(� + 1)/2 (Section 3.5). This hides the dimension information of the hidden QRC.

Combined with other obfuscation techniques in the Shepherd-Bremner construction,

this achieves random sampling fromHQRC

�,�,� with any possible parameters.

Below, we propose a parameter regime that can invalidate the attack in [KM19].

Given the length � of the QRC, we have � = (� + 1)/2 and�1 = � [MS77]. So, the first

formula in Eq. (5.21) gives � ≥ (� − 1)/2 + 2� and the second formula gives the range

of the number of redundant rows �− (�+1)/2 ≤ �2 ≤ 2�−2�−�. In this way, the size

of ker(Gd) will be larger than 2
�
in general, offering a viable solution to fortify the

Shepherd-Bremner construction against the attack. Note that the column redundancy

technique was used in [YC20] to scramble a small random IQP circuit into a large

one, to maintain the value of the correlation function, although its connection to the

classical security was not explored. Moreover, a multi-secret version was explored in

[Sno20], which was shown to be more vulnerable to the classical attack instead.

We performnumerical experiment to support our previous analysis. When� = 2�,

� can be as large as � + � and the expected kernel dimension of Gd is � . In Fig. 5.2 (a),
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we plot the kernel dimensions under the setting 𝑛 = 𝑟 + 𝑞 and 𝑚 = 2𝑞, with 𝑞 =

103, 127, 151 and 167. For each parameter set, 100 instances are sampled from HQRC

𝑛,𝑚,𝑞 ,

and then a random d is sampled for each instance and we evaluate the dimension

of ker(Gd). We also plot the expected lower bound 𝑛 − 𝑚/2 for a comparison. In

Fig. 5.2 (b), we plot the success probability versus the number of columns (qubits) 𝑛.

Here,𝑚 is set to be 2𝑞 and 𝑛 is increased from 𝑟 = (𝑞 + 1)/2 to 𝑟 + 𝑞. For each value

of 𝑛, 100 random instances fromHQRC

𝑛,𝑚,𝑞 are sampled, and the success probability is the

fraction of successful attacks among them. We set the security parameter to be 15 for a

proof of principle, meaning that the maximum number of QRC checks is set to be 2
15
.

The success probabilities drop down to zero when𝑛 > 𝑞+15, as expected. Our analysis

and numerical results demonstrate that Claim 3.1 in [KM19], which originally states

that the QRC-based construction can be broken efficiently by the KM attack, turns out

to be false under appropriate choices of parameters.
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Part II

Classical Enhancement of Quantum

Devices
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Chapter 6

A Machine Learning Approach to

Quantum Error Mitigation

6.1 Overview

Quantum error mitigation is typically concerned with the scenario of denoising quan-

tum expectation values, which is essential for quantum computing in the NISQ era.

The first two techniques for quantum error mitigation are zero-noise extrapolation

(ZNE) [TBG17, LB17] and probabilistic error cancellation (PEC) [TBG17]. Zero-noise

extrapolation involves artificially increasing the noise level of a quantum circuit and

then extrapolating the expectation value at the zero-noise point to estimate the expec-

tation value in the absence of noise. This technique has been implemented on super-

conducting devices [KTC
+
19, KWY

+
23]. Probabilistic error cancellation, on the other

hand, involves inverting well-characterized noise channels [TBG17]. Although the

inverse noise channel is generally not a physically realizable channel, it can be imple-

mented by writing the inverse channel as a quasiprobability decomposition of realiz-

able channels, followed by classical post-processing to perform the combination. Sub-

sequently, other quantum error mitigation techniques have been developed, including
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symmetry verification [BMSSO18, MYB19], purification methods [HMO
+
21, Koc21],

and learning-based methods [CACC21, SQC
+
21].

Probabilistic error cancellation is of particular interest, since it has been shown to

be optimal [Tak21, TEMG21]. However, implementing this technique presents sev-

eral practical challenges. One challenge is accurately characterizing the noise model,

which is still a difficult task even though techniques for noise characterization have

been developed for localized Markovian errors [EBL18] and sparse Pauli-Lindblad

noise models [BMKT22]. Additionally, it is desirable for the noise model to have

a convenient inversion that incurs minimal sampling overhead. To overcome these

challenges, [SQC
+
21] proposes to use a learning model to learn the quasiprobability

coefficients. The coefficients are learned in a training set consisting of Clifford cir-

cuits, for which expectation values can be efficiently computed classically using the

Gottesman-Knill algorithm [Got99, AG04]. However, there are an exponential number

of coefficients to be learned. To address this issue, [SQC
+
21] suggested either truncat-

ing the configuration space to only keep low-weight configurations or using efficient

representations.

In this chapter, we introduce the concept of neighborhood learning and demon-

strate its potential as a quantum error mitigation technique. The basic idea be-

hind neighborhood learning is to construct a list of the so-called “neighbor cir-

cuits” 𝐶1, . . . ,𝐶𝑘 derived from a given circuit 𝐶 and send neighbor circuits in-

stead of the original circuit 𝐶 to the quantum device. The average value for

circuit 𝐶 is then computed by combining the noisy average values of 𝐶 𝑗 for

𝑗 = 1, 2, . . . , 𝑘 using a map named combine. That is, we need ⟨0𝑛 |𝐶†𝑂𝐶 |0𝑛⟩ ≈

combine( ⟨0𝑛 |𝐶†
1
𝑂𝐶1 |0𝑛⟩ , . . . , ⟨0𝑛 |𝐶†𝑘𝑂𝐶𝑘 |0

𝑛⟩ ), where 𝑂 is the observable of interest.

There are freedom in choosing the neighbor circuits and constructing post-processing

map combine, which will be discussed in later sections.

As we will see, neighborhood learning is a very general framework and many ex-

isting quantum error mitigation schemes such as ZNE and PEC can be seen as special

cases of this framework. We develop methods to construct the map combine by lever-
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aging a training set consisting of circuits of the form 𝐶 = 𝑈𝑉 , where 𝑈 is a Clifford

circuit and 𝑉 is a low-depth general circuit. Such quantum circuits can be efficiently

simulated. In addition, we also investigate technical issues such as the construction of

the neighbor circuits and the choice of learning model. We also propose an adaptive

learning strategy to learn the neighbor circuits. Our numerical results demonstrate

that our proposed method achieves a better tradeoff between performance and re-

quired resources compared to various quantum error mitigation techniques.

6.2 Neighborhood Learning

Before delving into the discussion, we establish a convention that will be consistently

used throughout this chapter. Specifically, we represent quantum channels of unitary

circuits or gates using calligraphic font for the same letter representing the unitary

circuit. For example, if we have a circuit denoted as 𝐶 , the corresponding quantum

channel will be denoted as C with C(𝜌) = 𝐶𝜌𝐶†.

6.2.1 General Framework

In the context of error mitigation, the setup involves a quantum circuit 𝐶 , and the

goal is to determine the average value of an observable 𝑂 on the output state of the

circuit 𝐶 . For exmple, in various quantum algorithms such as QAOA [FGG14] and

VQE [PMS
+
14, YCM

+
14], we are interested in computing the expectation value of 𝑂

after the circuit is applied to a simple initial state 𝜌in. This expectation value of interest

is expressed as:

⟨C⟩ = Tr

(
𝑂 C(𝜌in)

)
. (6.1)

Here, we do not explicitly include the dependence on 𝜌in and 𝑂 in the notation ⟨C⟩.

In many cases, the initial state 𝜌in is chosen to be |0𝑛⟩⟨0𝑛 | and 𝑂 is some fixed Pauli

operator.
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Quantum computer

Original circuit Neighbor circuits Obtain noisy expecta�on values

Find s.t.

Figure 6.1: Schematic for neighborhood learning. The single-qubit gates in the orig-

inal circuit are represented by blue blocks, and the inserted gates are represented by

orange blocks. The noisy expectation values 〈C̃� 〉 are to be obtained on a real quan-

tum device. We use yellow circles to represent the noise channels.

Suppose that the original quantum circuit � consists of � local gates: � =

����−1 · · ·�1, where�� represents the �-th gate in the circuit� , acting on one or two

qubits. In a real experiment, however, the circuit is affected by noise. Consequently,

when we implement the quantum channel U� in the circuit, the actual implementa-

tion could be a noisy version denoted as Ũ� . As a result, the overall noisy version of

C implemented in the experiment is given by

C̃ = Ũ� ◦ Ũ�−1 ◦ · · · ◦ Ũ1, (6.2)

and what we can effectively compute with the quantum device is

〈C̃〉 := Tr

(
� C̃(in)

)
. (6.3)

A simple noise model is that for each gate �� the actual implementation is Ũ� =

Edep ◦ U� , where Edep is the depolarizing channel

Edep() = (1 − �) + ��

2

. (6.4)

But our discussion is not limited to such simple noise models and is designed to be

much more flexible.

From the preceding discussion, our objective is to compute 〈C〉, but due to experi-

mental noise, we obtain a noisy version denoted as 〈C̃〉 from the quantum computing

device. To address this, we propose the following approach: instead of sending a sin-

gle circuit� to the quantum device, we send a collection of circuits�1,�2, . . . ,�
 that



CHAPTER 6. A MACHINE LEARNING APPROACH TO QUANTUM ERROR
MITIGATION 97

are different but related to the circuit of interest 𝐶 . These circuits are specifically de-

signed with modifications to help collectively sense the noise. We call this collection

of circuits the neighbor circuits of 𝐶 . The quantum device provides us with a list of

numbers ⟨C̃1⟩, ⟨C̃2⟩, . . . , ⟨C̃𝑘 ⟩, the noisy average values for the circuit collection. Our

next step involves classical post-processing, where we combine these noisy measure-

ment outcomes to approximate ⟨C⟩ as

⟨C⟩ ≈ combine(⟨C̃1⟩, . . . , ⟨C̃𝑘 ⟩) .

The challenge now lies in designing the function combine, which will effectively

integrate the noisy outcomes obtained from the quantum device. Here, machine learn-

ing offers a promising solution. By providing amachine learning algorithmwith a sub-

stantial number of examples, it can learn to perform the function combine effectively.

To generate the required training dataset, we define a map neighbor that systemati-

cally generates neighbor circuits

neighbor(𝐶) = (𝐶1, . . . ,𝐶𝑘) .

This map takes the classical description of a circuit within a specific circuit architec-

ture and computes the corresponding neighbor circuits.

To form the training data set, we choose a list of circuits𝐶 (𝑖) for 𝑖 = 1, 2, . . . ,𝑇 and

compute the neighbor circuits for 𝐶 (𝑖) as

neighbor
(
𝐶 (𝑖)

)
=

(
𝐶
(𝑖)
1
, . . . ,𝐶

(𝑖)
𝑘

)
.

These neighbor circuits are then sent to the quantum device to compute

〈
C̃ (𝑖)
𝑗

〉
for

𝑖 = 1, 2, . . . ,𝑇 and 𝑗 = 1, 2, . . . , 𝑘 . We can now define the training set as

(
𝑥 (𝑖), 𝑦 (𝑖)

)
for

𝑖 = 1, 2, . . . ,𝑇 where

𝑥 (𝑖) =
(〈
C̃ (𝑖)
𝑗

〉)𝑘
𝑗=1
, (6.5)

and

𝑦 (𝑖) = ⟨C (𝑖)⟩.
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For this approach of constructing the training data to be effective, it is essential to

efficiently compute the average value ⟨C (𝑖)⟩ for circuit 𝐶 (𝑖) . A common and effective

solution is to choose 𝐶 (𝑖) to be a Clifford circuit. Clifford circuits have the desirable

property that their classical simulation can be performed efficiently, meaning we can

efficiently compute the average value exactly [Got99, AG04].

We name the above general framework of error mitigation (illustrated in Fig. 6.1)

neighborhood learning as it chooses a collection of neighbor circuits. Indeed, the

neighborhood learning framework involves various technical details, including the

design of the neighborhood map neighbor and the algorithms used for learning the

function combine. These important discussions and analyses will be presented in Sec-

tion 6.3.

6.2.2 Relation to Other Methods

The framework of neighborhood learning incorporates various quantum error mit-

igation techniques as special cases. For example, in zero-noise extrapolation, one

deliberately increases the noise rate 𝜖 , obtains the noisy expectation values ⟨C̃⟩𝜖
for different 𝜖 , and then extrapolates the result to the noiseless limit, where 𝜖 = 0.

Therefore, 𝐶 𝑗 is the same as the original circuit 𝐶 , and its noisy version
˜C𝑘 will

have varying noise rates. The noise rates can be controlled by subcircuit repeti-

tions [DMH
+
18, HNDJB20, GTHL

+
20], i.e., replacing 𝑈 𝑗 with 𝑈 𝑗 (𝑈 𝑗𝑈 †𝑗 )

𝑙
. If the quan-

tum circuit is noiseless, then the inserted subcircuit is effectively the identity gate.

However, when the noise is present, the noise rate will be amplified by inserting such

subcircuits. The noisy expectation values from the neighbor circuits are a function

of the effective noise rate (or a function of 𝑙 ). Therefore, the map combine for ZNE

is an extrapolation function, which can be chosen to be the polynomial extrapola-

tion [TBG17] or exponential extrapolation [EBL18].

Probabilistic error cancellation can also be regarded as a special case. The concept

of PEC involves finding an inverse of the noise channel E, which can be mathemat-
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ically expressed as a linear combination of physically realizable quantum channels.

In fact, an arbitrary quantum channel can be expanded with a basis set of quantum

channels [EBL18, Tak21]. For depolarizing channels given in Eq. (6.4), [TBG17] gives

the decomposition as E−1
dep

= 𝜂0I + 𝜂1X + 𝜂2Y + 𝜂3Z, where 𝜂0 = 1 + 3Y/4(1 − Y)

and 𝜂𝑘 = −Y/4(1 − Y) for 𝑘 = 1, 2, 3. Here, I,X,Y and Z are the quantum channels

for the identity, Pauli-𝑋 , Pauli-𝑌 and Pauli-𝑍 gate, respectively, and

∑
𝑘 𝜂𝑘 = 1. Let

𝑗 = ( 𝑗1, . . . , 𝑗𝑚) and the neighbor circuit indexed by 𝑗 is defined as follows,

𝐶 𝑗 = (𝑃 𝑗𝑚𝑈𝑚) · · · (𝑃 𝑗1𝑈1).

Here, after the ℓ-th gate 𝑈ℓ a Pauli gate 𝑃 𝑗ℓ is inserted. 𝑃 𝑗ℓ either single-qubit or two-

qubit Pauli gate, depending on the index 𝑗ℓ . Specifically, 𝑗ℓ ∈ {0, 1, 2, 3} represents

{𝐼 , 𝑋,𝑌 , 𝑍 } if 𝑈ℓ is a single-qubit gate and 𝑗ℓ ∈ {0, 1, 2, 3}2 if 𝑈ℓ is a two-qubit gate.

Consequently, the length of the (unpacked) 𝑗 is given by𝑚′ = 𝑡 + 2(𝑚 − 𝑡), where 𝑡 is

the number of single-qubit gates in 𝐶 .

In PEC, the noisy expectation values ⟨C̃𝑗 ⟩ of neighbor circuits are estimated on a

real quantum computer. Suppose that E−1ℓ =
∑
𝑗ℓ
𝜂 𝑗ℓP𝑗ℓ is expanded with Pauli chan-

nels, which is always possible for a Pauli noise channel Eℓ . Then, we have

Eℓ ◦ E−1ℓ =
∑︁
𝑗ℓ

𝜂 𝑗ℓEℓ ◦ P𝑗ℓ = I,

and

∑
𝑗 𝜂 𝑗 C̃𝑗 = C, where 𝜂 𝑗 = 𝜂 𝑗𝑚 · · ·𝜂 𝑗1 . Therefore, the noise effect can be perfectly

cancelled out in principle, and the ideal expectation value ⟨𝐶⟩ can be obtained from

the noisy expectation values ⟨𝐶 𝑗 ⟩ as follows,∑︁
𝑗

𝜂 𝑗 ⟨C̃𝑗 ⟩ = Tr

(
𝑂

∑︁
𝑗

𝜂 𝑗 C̃𝑗 (𝜌in)
)
= ⟨𝐶⟩. (6.6)

In the language of neighborhood learning, the neighbor circuits are 𝐶 𝑗 and the func-

tion map combine is a linear function, with coefficients 𝜂 𝑗 .

To conclude, although the inverse E−1ℓ may not be physically realizable, one can

effectively apply E−1ℓ by classically combining the noisy expectation values ⟨C̃𝑗 ⟩ ac-

cording to Eq. (6.6) to obtain the ideal expectation value ⟨𝐶⟩. In this way, an effective
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inverse channel E−1ℓ is applied after the ℓ-th quantum gate. Note that unlike ZNE, in

PEC, the inserted gate 𝑃 𝑗ℓ is grouped into the original gate 𝑈ℓ , and they are imple-

mented together. An implicit assumption is made that the unitary channels Uℓ and

P𝑗ℓ ◦ Uℓ will undergo the same noise process Eℓ .

In practice, one can perform quasiprobability sampling instead of summing over

the exponentially many 𝑗 in Eq. (6.6). Define the negativity of the quasiprobability

decomposition in Eq. (6.6) as the ℓ1 norm of the coefficients Γ :=
∑
𝑗

��𝜂 𝑗 ��. Then, one
can rewrite Eq. (6.6) as,

⟨C⟩ = Γ
∑︁
𝑗

��𝜂 𝑗 �� sgn(𝜂 𝑗 )
Γ

⟨C̃𝑗 ⟩ = Γ E
𝑗

[
sgn(𝜂 𝑗 )⟨C̃𝑗 ⟩

]
, (6.7)

where the expectation is taken with respect to the underlying probability distribu-

tion given by {
��𝜂 𝑗 ��/Γ}. One can estimate the expectation above by sampling the

index 𝑗 with probability

��𝜂 𝑗 ��/Γ, and then compute the value of the random variable

sgn(𝜂 𝑗 )⟨C̃𝑗 ⟩ with a quantum computer. According to the Chernoff bound, to estimate

⟨𝐶⟩ to within additive error 𝜖 , one needs to sample 𝑂 (Γ2/𝜖2) times. Therefore, the

negativity Γ characterizes the cost of PEC, which however scales exponentially with

the number of local noise channels in general. For the local depolarizing noise model,

Γ = 𝛾𝑛𝑚
′
, where 𝛾 = (1+Y/2)/(1−Y) is the negativity for the single-qubit depolarizing

channel [TBG17] and𝑚′ is the number of depolarizing channels.

However, to implement PEC, one needs to learn the coefficients 𝜂 𝑗 ’s, which

amounts to characterizing the noise model and is very challenging in practice. To cir-

cumvent this challenge, a learning-based variant of PEC was proposed in [SQC
+
21],

which can also be described in our framework. They defined a significant error set

SigE, which is used to truncate the set of 𝑗 . One can choose SigE to be the set of 𝑗 so

that the inserted Pauli gates only act on a small number of qubits. Then, one chooses

a linear function combine with coefficients 𝛽 𝑗 so that the error between

⟨C⟩t-pec =
∑︁
𝑗∈SigE

𝛽 𝑗 ⟨C̃𝑗 ⟩ (6.8)
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and the ideal expectation value ⟨𝐶⟩ is minimized. The coefficients 𝛽 𝑗 ’s are the pa-

rameters to be learned, in order to minimize the error between ⟨C⟩ and ⟨C⟩t-pec over

a family of quantum circuits (training set). One can choose the mean squared error

(MSE) E𝑖
[
⟨C (𝑖)⟩ − ⟨C (𝑖)⟩t-pec

]
2

to measure the distance, where E𝑖 [ · ] denotes the ex-

pectation over the training set circuits 𝐶 (𝑖) . In order to efficiently evaluate the ideal

expectation values ⟨C (𝑖)⟩, the training set circuits 𝐶 (𝑖) are chosen to be Clifford cir-

cuits.

6.3 Technical Details

In this section, we discuss the details of a neighborhood learningmethodmissing from

Section 6.2.1.

6.3.1 Test Set

The test circuits are the set of circuits that we want to evaluate the expectation val-

ues and mitigate the noise effect. Usually, we are interested in a family of quan-

tum circuits with the same structure, instead of a single quantum circuit, which

is common for near-term quantum algorithms such as variation quantum algo-

rithms [PMS
+
14, FGG14]. In that case, one constructs an ansatz circuit 𝐶 (𝜽 ) =

𝑈𝑚 (𝜃𝑚) · · ·𝑈1(𝜃1) and varies the parameters 𝜽 to minimize the expectation value of

certain Hamiltonian 𝐻 . The circuit structure, such as the location of the gate 𝑈 𝑗 , is

fixed for the whole family. In the case of variational quantum circuits, the test circuits

can be circuits 𝐶 (𝜽 ) with randomly chosen parameters, or they can be generated on

the fly during the classical optimization process. Regardless of the method used, the

test circuit defines the circuit structure with respect to which the training circuits are

constructed.
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6.3.2 Training Set

From the discussion of the general framework, the construction of the training set

is largely determined by the choice of circuits 𝐶 (𝑖) . Given the choices 𝐶 (𝑖) , one can

generate the training set in the following way. First, we apply the neighborhood map

neighbor to each 𝐶 (𝑖) obtaining 𝐶 (𝑖)
𝑗

for each 𝑗 = 1, 2, . . . , 𝑘 . Second, we use the quan-

tum device to compute all the mean values

〈
C̃ (𝑖)
𝑗

〉
and form the feature vectors 𝑥 (𝑖)

given in Eq. (6.5). Next, we use a classical algorithm to compute ⟨C (𝑖)⟩ and set it as the

label 𝑦 (𝑖) . We call the circuits𝐶 (𝑖) the training circuits. We can see that in the process

of generating the training set, we used the quantum devices to compute the feature

𝑥 (𝑖) and classical simulation algorithm to compute the label 𝑦 (𝑖) .

A crucial requirement for a circuit to be a training circuit 𝐶 (𝑖) is that we need

an efficient classical algorithm to compute ⟨C (𝑖)⟩. Previous works on learning-

based quantum error mitigation usually employ purely Clifford circuits for this pur-

pose [CACC21, SQC
+
21]. Under this choice, the ideal expectation values for the train-

ing circuit 𝐶 (𝑖) can only take discrete values in {0,±1} if the observable 𝑂 is a Pauli

operator. However, the original quantum circuit 𝐶 can be general quantum circuits,

and the ideal expectation can take general continuous values. Moreover, under the

Pauli noise model, it can be proved that the noisy expectation value from the neigh-

bor circuit𝐶
(𝑖)
𝑗

is given by

〈
C̃ (𝑖)
𝑗

〉
= ±⟨C̃ (𝑖)⟩, if𝐶 (𝑖)

𝑗
is obtained by inserting Pauli gates

to 𝐶 (𝑖) , a popular choice used in the neighborhood map.

Indeed, for 𝐶 = 𝑈𝑚 · · ·𝑈1, the noisy version of 𝐶 𝑗 is given by,

C̃𝑗 = E𝑚 ◦ P𝑚 ◦ U𝑚 · · · E1 ◦ P1 ◦ U1,

where E 𝑗 is a Pauli noise channel, U𝑗 is a Clifford gate, and P𝑗 is a Pauli gate. First,

considering P𝑚 , we have E𝑚 ◦ P𝑚 = P𝑚 ◦ E𝑚 if E𝑚 is a Pauli noise channel. In this

way, P𝑚 is moved to the end of the circuit. Then, considerP𝑚−1, which commuteswith

E𝑚−1. After that, when it commutes throughU𝑚 , it becomes another Pauli operator,

since 𝑈𝑚 is a Clifford gate; that is, 𝑈𝑚𝑃𝑚−1𝜌𝑃𝑚−1𝑈
†
𝑚 = 𝑃 ′𝑚−1𝑈𝑚𝜌𝑈

†
𝑚𝑃
′
𝑚−1, where 𝑃

′
𝑚−1

is also a Pauli operator. Then, the quantum channel P′𝑚−1 commutes with E𝑚 and is
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moved to the end of the circuit, which is combined with P𝑚 to become another Pauli

operator. Repeating this process, we move all the inserted Pauli gates to the end of

the circuit, resulting in

C̃𝑗 = Q ◦ E𝑚 ◦ U𝑚 · · · E1 ◦ U1,

where Q is the resulting Pauli channel. For the noisy expectation value ⟨C̃𝑗 ⟩, we have,

⟨C̃𝑗 ⟩ = Tr

(
𝑂 C̃𝑗 (𝜌in)

)
= Tr(𝑂 Q ◦ E𝑚 ◦ U𝑚 · · · E1 ◦ U1(𝜌in))

= Tr

(
(𝑄†𝑂𝑄) E𝑚 ◦ U𝑚 · · · E1 ◦ U1(𝜌in)

)
= 𝜇 (𝑄,𝑂) Tr

(
𝑂 C̃(𝜌in)

)
= 𝜇 (𝑄,𝑂)⟨C̃⟩,

where 𝜇 (𝑄,𝑂) is 1 if 𝑄 and 𝑂 commute and −1 if they anti-commute.

Therefore, when the neighbor circuits are obtained by inserting Pauli gates and

when the noise is modelled by Pauli noise channels, the noisy expectation values from

the training circuit 𝐶 (𝑖) and the neighbor circuit 𝐶
(𝑖)
𝑗

are either the same or the oppo-

site. Consequently, all data points in the training set are of the form (𝑎,±𝑎,±𝑎, · · · )

with 𝑎 = 0,±1. This creates a significant discrepancy between the training set and the

test set and could potentially hinder the learning process.

A possible alternative method is to consider circuits of the form 𝐶 (𝑖) = 𝑈 (𝑖)𝑉 (𝑖) .

where𝑈 (𝑖) is a Clifford circuit and𝑉 (𝑖) can be a general low-depth quantum circuit. If

we further suppose that the observable𝑂 is a Pauli operator, or a sum of polynomially

many Pauli operators, then the expectation value ⟨C (𝑖)⟩ can be classically computed.

Indeed, suppose for simplicity that 𝑂 is a Pauli operator. Then, the ideal expectation

value is given by

⟨C (𝑖)⟩ = Tr

(
𝑂U (𝑖) ◦ V (𝑖)

(
𝜌in

) )
= Tr

(
𝑂′V (𝑖)

(
𝜌in

) )
,

where𝑂′ :=
(
𝑈 (𝑖)

)†
𝑂𝑈 (𝑖) is also a Pauli operator by the definition of Clifford circuits.

In this case, computing expectation values from the quantum circuit 𝐶 (𝑖) is reduced
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to computing that from a low-depth quantum circuit 𝑉 (𝑖) , and the expectation value

⟨C (𝑖)⟩ can be classically computed by tensor network methods [MS08]. To make the

tensor network simulation algorithm efficient, the depth of 𝑉 (𝑖) should be chosen to

be 𝑂 (log𝑛).

6.3.3 Neighborhood Map

Theway to construct the neighbor circuits is to perturb the original circuit by inserting

or replacing a set of gates in𝐶 with gates from certain gate set. Inserting a gate 𝑃 after

the 𝑗-th gate is to replace 𝑈 𝑗 with 𝑃𝑈 𝑗 , and leave the rest of the circuit unchanged,

while gate replacement is to simply replace 𝑈 𝑗 with 𝑃 .

We consider two different gate sets. One is the Pauli gate set, G0 := {X,Y,Z}.

We call the neighbor scheme constructed by inserting (or replacing) gates from G0

as Pauli insertion (or replacement) neighbor. The other is the reduced set of basis for

single-qubit CPTP (completely positive and trace-preserving) maps, denoted as G1. It

is comprised of the basis for the single-qubit CPTP maps, with the identity channel

and the 3 state-preparation channels removed [Tak21]. Specifically,

G1 :=
{
X,Y,Z,K†S†K,KS†K†,S†,KHK†,H ,K†HK

}
, (6.9)

whereS,H andK are the quantum channels for the 𝑆 gate, the𝐻 gate and the𝐾 := 𝑆𝐻

gate, respectively. We call the neighbor scheme constructed by inserting (or replacing)

gates from G1 as CPTP-basis insertion (or replacement) neighbor. Note that all gates

from G0 or G1 are single-qubit Clifford gates and G0 ⊆ G1.

Truncation. In the full PEC expansion (see Eq. (6.6)), the number of neighbor cir-

cuits is exponential in the number of noise positions. [SQC
+
21] proposed a truncation

strategy that only keeps the low-weight neighbor circuits. Aweight-ℓ neighbor circuit

is constructed by inserting ℓ gates in ℓ positions of the original circuit (one for each

position). For a quantum circuit 𝐶 with𝑚 possible inserted positions (or𝑚 positions

of noise), a weight-1 strategy gives a set of neighbor circuits of size 𝑂 (𝑚), while a
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weight-2 strategy gives a set of size 𝑂 (𝑚2). For an intermediate-sized quantum cir-

cuit, it is already impractical to run the full weight-2 neighbor circuits. For example,

for a quantum circuit with 50 qubits and 50 layers, the number of noise positions𝑚

is of the order 10
3
, which means the number of weight-2 neighbor circuits will be

the order of 10
6
. It would be favorable to construct the set neighbor circuits of size

sublinear in𝑚.

Using knowledge of the noise model. In addition, one can also use the knowl-

edge of the noise model to construct the neighborhood map neighbor. First, we obtain

a rough estimate of the noise model, which, for example, can be achieved by perform-

ing gate-set tomography or the learning protocol in [BMKT22]. Then, we work out

its inverse map and get the associated quasiprobabilities. Given the number of neigh-

bor circuits as a parameter, we perform quasiprobability sampling to generate the

neighbor circuits. Then, instead of setting the function map combine as in Eq. (6.7),

we choose the appropriate form of the function and learn the concrete map on the

training set.

This strategy could be advantageous. For example, suppose that on the inverse

map of the real noise channel, the neighbor circuits are of weight 3 on average. In

this case, choosing a weight-1 or weight-2 neighbor might not work well, but this

randomization strategy will output weight-3 neighbor circuits with high probability.

6.3.4 Learning Algorithms

An important design choice in neighborhood learning for errormitigation is themodel

and algorithm used for representing and learning the function combine. We consider

two choices here, including linear regression and neural networks.

Given a list of neighbor circuit 𝐶 𝑗 for 𝑗 = 1, 2, . . . , 𝑘 , the linear regression method

postulates that the function combine takes the following form

combine
(〈
C̃1

〉
, . . . ,

〈
C̃𝑘

〉)
=

𝑘∑︁
𝑗=1

𝑎 𝑗
〈
C̃𝑗

〉
+ 𝑏,
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As for the neural network, we consider two kinds of all-connected networks in the

numerical experiment, 𝐾 → 𝐾 → 1 and 𝐾 → 2𝐾 → 1. Here, 𝐾 → 𝐾 → 1 represents

a two-layer network, where the hidden layer has the same number of neurons as the

input layer, and the output layer has one neuron. The activation function is taken to

be tanh, and we do not add activation function to the output layer. The structure of

the other network is defined similarly.

6.3.5 Comparison of Different Settings

Here, we use QAOA circuits for Max Cut as our testbed. Given a graph 𝐺 = (𝑉 , 𝐸),

the Max Cut problem asks for a cut that partitions the vertices of the graph into two

disjoint subsets, such that the number of edges that cross the cut is maximized. For-

mally, one needs to find the maximum eigenvalue and the corresponding eigenstate

of the following Hamiltonian,

𝐻𝐶 =
1

2

∑︁
( 𝑗,𝑘)∈𝐸

(𝐼 − 𝑍 𝑗𝑍𝑘) . (6.10)

A 𝑝-level QAOA circuit is defined by,

𝐶 (𝜸 , 𝜷) =
𝑝∏
𝑗=1

𝑒−𝑖𝛽 𝑗𝐻𝐵𝑒−𝑖𝛾 𝑗𝐻𝐶 , (6.11)

where 𝐻𝐵 =
∑|𝑉 |
𝑘=1

𝑋𝑘 , 𝜸 := (𝛾1, . . . , 𝛾𝑝) and 𝜷 := (𝛽1, . . . , 𝛽𝑝). Each local gate is either

of the form 𝑒−𝑖𝛽𝑋 or 𝑒−𝑖𝛾𝑍 𝑗𝑍𝑘
, where the latter gate can be further decomposed into

two CNOT gates and one 𝑍 rotation gate. In our numerical experiments, the graph is

a random 3-regular graph with 4 nodes, and the QAOA circuit has 2 levels. The noise

model is set to be local depolarizing noise with strength Y = 0.01 for single-qubit gates

and Y = 0.1 for two-qubit gates.

Training circuits. We first compare the two choices of training circuits. The purely

Clifford training circuits are generated by replacing all the single-qubit gates in the test

circuits (which are either 𝑋 or 𝑍 rotations) with randomly selected Clifford gates. In
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Figure 6.2: Comparison of choices of training circuits, which are circuits of the form

� = �	 or purely Clifford circuits. The former is labelled as ‘mixed circuit’ while the

latter is labelled as ‘pure Clifford’.

contrast, the training circuits of the form� = �	 are constructed by initially assigning

random angles to the first few layers of gates. Subsequently, we replace the single-

qubit gates in the remaining layers with random Clifford gates.

The neighbor circuits are obtained by inserting up to 3 random Pauli operators

at random positions of the training circuit, forming the weight-(0, 1, 2, 3) neighbor

circuits. Here, all weight-0 and weight-1 neighbor circuits are included, while 200

weight-2 and weight-3 neighbor circuits are randomly sampled. The total number of

neighbor circuits (or features) under this construction is 
 = 554. The reason for re-

stricting the number of weight-(2, 3) neighbor circuits is because the full number of

weight-2 and weight-3 neighbor circuits for the system size in our numerical experi-

ment is already of order 10
3
and 10

4
, respectively. It would be too daunting to include

all of them in practice. Finally, the learning algorithm combine is chosen to be linear

regression.

As depicted in Fig. 6.2, a substantial reduction in test error is observed for the

training circuits structured as� = �	 compared to the purely Clifford circuits, when

the training set size remains modest. Here, the test error is the MSE between the

mitigated expectation value and the ideal expectation value on the test set. The size
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(a) Pauli insertion (b) Pauli replacement (c) Pauli insertion (weight-1)

(d) CPTP-basis insertion (e) CPTP-basis replacement (f) CPTP-basis insertion
(weight-1)

Figure 6.3: Performance for different neighborhood maps and learning algorithms.

of training set is varied from 
 to 3
 . As the size of training set � increases, the test

error associated with purely Clifford training circuits decreases quickly, although it

continues to remain larger than that observed in the case of � = �	 .

Neighbor circuits. Next, we compare the performance of the four neighborhood

maps. As before, the test circuits are taken to be QAOA circuits illustrated in Sec-

tion 6.3.1. The training circuits are of the form � = �	 , since it outperforms the

purely Clifford circuits. The neighbor circuits are also constructed to be the same

weight-(0, 1, 2, 3) neighbor circuits as in the numerical simulation of Fig. 6.2.

The results are shown in Fig. 6.3 (a)-(b) and (d)-(e). We observe that the insertion

neighbors outperform the replacement neighbors and the Pauli insertion neighbor

outperforms the CPTP-basis insertion neighbor, regardless of the learning algorithms.

This suggests that the Pauli insertion neighbor is a good choice for the neighborhood

map.
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(a) (b)

Figure 6.4: Performance of constructing the map neighborwith the knowledge of the
noise model

In Fig. 6.3 (c) and (f), we present similar result with only weight-0 and weight-1

neighbor circuits. We did not present the results from replacement neighbors, since

their performance is worse than the insertion neighbors. Here, the number of neigh-

bor circuits (features) is 154 for the Pauli insertion neighbor and 460 for the CPTP-basis

insertion neighbor. Consistent with previously observed, the Pauli insertion neighbor

still outperforms the CPTP-basis insertion neighbor in this case. Moreover, the Pauli

insertion neighbor with weight-(0, 1) neighbor circuits achieves a slightly worse per-

formance compared to the same neighbor scheme with weight-(0, 1, 2, 3) neighbor

circuits, despite using less features in the learning.

In addition, we also test the performance of constructing the map neighbor with

the knowledge of the noisemodel (Fig. 6.4 (a)). Here, the number of neighbor circuits is

set to be 
 = 1000. To model the imperfection in the noise characterization, we tweak

the noise rates in the learned noise model by a small Gaussian-distributed inaccuracy.

This choice of neighborhood map achieves test errors in the order of 10
−5

in terms of

MSE.

However, we also note that this result is actually similar to the result in Fig. 6.3 (a),

which uses about half the number of neighbor circuits. There, all weight-0 andweight-

1 neighbor circuits are used and then 200 weight-2 and weight-3 neighbor circuits are
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Input: Pool of neighbor schemes N0; training set T of Clifford circuits

Output: 𝑘 learned neighbor schemes

1: Initialization: Draw the first 𝑘 schemes from N0

2: repeat
3: Learn the coefficients for the 𝑘 schemes on the training set T
4: Inheritance: Retain the schemes with coefficients exceeding the critical

value 𝑐 .

5: Mutation: Replace remaining schemes by drawing new schemes from

the pool.

6: until Stopping conditions are met

Algorithm 5: Adaptive learning strategy for constructing neighbor schemes

randomly sampled, without using the knowledge of the noise model. In Fig. 6.3 (b), we

compare the performance of learning with and without the knowledge of the noise

model. We observe that the test error of learning with random weight-(0, 1, 2, 3)

neighbor circuits decreases more quickly with the number of neighbor circuits. This

may be due to the fact that under the system size and noise level in our numerical

experiment, weight-(0, 1) neighbor circuits are more important and MSE of order 10
−5

has already reached the limit of quantum error mitigation.

Learning algorithms. In Fig. 6.3, we also compare the performance of different

learning algorithms. The training set size 𝑇 is set to be 5𝑘 , where 𝑘 is the number of

features. For insertion neighbor schemes, neural networks slightly outperform linear

regression, although the difference is small. In terms of MSE, the test error associated

with neural networks is about 2/3 of that associated with linear regression.

6.4 Adaptive Learning Strategy

Based on the above observations, a natural question is find resource-efficient but ef-

fective neighbor schemes for error mitigation. One of the collaborators in our work

[XCL
+
23], Lei Xie proposed an adaptive learning strategy for constructing the neigh-
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bor schemes (Algorithm 5). The strategy operates on the principles of an evolutionary

algorithm. We first initialize a set of 𝑘 neighbor schemes. Then, at each iteration, we

retain pivotal neighbor schemes and replace the others based on certain criteria. The

outlined procedure is depicted in Algorithm 5.

Specifically, we begin by constructing a pool of neighbor schemes. Based on previ-

ous observations, this pool can be constructed from low-weight Pauli-insertion neigh-

bor schemes. Assuming that an output of 𝑘 neighbor schemes is targeted, we draw 𝑘

schemes from the pool and train the mapping function combine on the training data

set. We opt for a linear model for combine due to its resource efficiency while de-

livering performance on par with neural networks in neighborhood learning. In this

way, each neighbor scheme is associated with a coefficient in the linear combination.

Subsequently, for coefficients exceeding a certain threshold 𝑐 in absolute value, the

corresponding neighbor schemes are retained for the next round, a process termed

inheritance. Otherwise, we replace it with a new scheme from the pool, which is re-

ferred to as mutation. In this way, the number of neighbor schemes is kept to be 𝑘 .

This procedure is repeated until certain stopping conditions are met. The stopping

conditions can be one of the following: (1) when no schemes undergo replacement in

the iteration, (2) when the MAEmetric on the training set exhibits no further decrease

over a series of iterations, or (3) when the MAE metric falls below a predetermined

threshold, signifying the achievement of the desired error mitigation scheme perfor-

mance.

In addition, we decide whether to retain or discard a scheme according to the

absolute value of its associated coefficient in the learnedmap combine. In a linearmap,

the absolute coefficient value signifies the significance of the corresponding element.

Consequently, a more crucial scheme will exhibit a coefficient with a larger absolute

value. Moreover, instead of setting a fixed critical value 𝑐 , we dynamically set it to

be the MAE metric on the training set for the current iteration. This is due to the

following two reasons. Firstly, the MAE metric serves as a direct reflection of an error

mitigation scheme’s effectiveness. Secondly, in a linear map, the coefficient and the
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Figure 6.5: Comparison of performance and training cost between adaptive learning,

weight-(0,1) neighbors and ZNE.

MAE metric are of the same order of magnitude. Thus, the MAE metric serves as a

good choice of the critical value for evaluating a neighbor scheme’s merit.

In order for the neighborhood learning protocol to be resource-efficient, we want

to construct neighbor so that the number of the output neighbor circuits 
 is sublin-

ear in the number of weight-1 neighbor circuits, while achieving a comparable per-

formance. Here, we set the pool to consist of all weight-(0, 1, 2) neighbor schemes.

In Fig. 6.5 (a), we compare adaptive learning with using only weight-0 and weight-1

neighbors. The quantum circuits are 5-qubit QAOA circuits with 3 levels and the ex-

pectation values are obtained from 1000 shots. The result from the adaptive learning

strategy is shown as the blue line and that fromweight-(0, 1) neighbors is shown as the

orange line. The performance of ZNE is also shown as a reference. We observe that

neighbor learning significantly outperforms ZNE and that adaptive learning achieves

a better performance than using only weight-(0, 1) neighbors. Fig. 6.5 (b) shows the

number of shots consumed during the training phase. The cost of ZNE is not pre-

sented since it does not require training. It should be noted that the cost of neighbor-

hood learning is quite huge, which is an intrinsic drawback of learning-based error

mitigation.
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6.5 Discussion

In this chapter, we have presented a general framework for learning-based quantum

error mitigation, named neighborhood learning. We proposed a new construction of

training circuits, that is more advantageous than the purely Clifford circuits used in

previous works. To make this framework practical, we numerically compared dif-

ferent settings and found that the Pauli insertion neighbor is a good choice for the

neighborhood map. Surprisingly, while employing neural networks in our numerical

simulations, their advantages compared to linear models are somewhat constrained,

which could be attributed to the relatively small system size within our numerical set-

ting. Furthermore, we present an adaptive learning strategy for constructing neigh-

bor schemes, which achieves better performance than weight-(0, 1) neighbor circuits

and significantly outperforms the ZNE technique. This highlights the potential of the

adaptive learning strategy as a flexible and promising approach to achieving an opti-

mal balance between performance and resource utilization. However, as an intrinsic

limitation of learning-based error mitigation, the cost for training is large, since it re-

quires constructing a large training set and running quantum circuits for all training

data points. In the future, it is worth exploring whether efficient classical represen-

tation, such as classical shadow tomography [HKP20], can benefit the neighborhood

learning framework and lower the cost.
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Chapter 7

Experimental Circuit Cutting

7.1 Overview

Circuit-cutting aims at solving large problems with smaller quantum devices, with

a tradeoff of using more classical resources. A related technique is to decompose a

large problem into smaller subproblems, each of which is solved by a small quan-

tum computer. Examples include quantizing classical divide-and-conquer algorithms

to solve combinatorial optimization problems [DGC18, GD20], and Fujii 𝑒𝑡 𝑎𝑙 ’s deep

variational quantum eigensolver framework [FMU
+
22], which is suitable for simu-

lating physical systems when interactions between subsystems are weak. Partially

quantizing a tensor network may also fall into this category [LZWW19, YSL
+
21].

In contrast, the circuit-level schemes intend to decompose a large quantum circuit

into smaller pieces, implement each piece independently and finally use classical com-

puters to combine the results. For example, Bravyi 𝑒𝑡 𝑎𝑙 . [BSS16] discussed methods of

using classical postprocessing to add virtual qubits for sparse circuits and Pauli-based

computation. Mitarai and Fujii [MF21] proposed a method to add virtual two-qubit

gates, which means that a remote two-qubit gate can be simulated by a quasiproba-

bility decomposition of local single-qubit gates, thus cutting the large quantum cir-

cuit. Their work is for general quantum circuits and has been extended in a recent
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work [MF20] to allow decomposing non-local quantum channels into local ones. On

the other hand, using the language of tensor network, Peng 𝑒𝑡 𝑎𝑙 . [PHOW20] pro-

posed a tomography-like circuit-cutting scheme, which is endowed with a rigorous

analysis of the required quantum and classical resources to simulate general quan-

tum circuits. The circuit-cutting scheme is further analyzed and improved in later

works [PSSO21, ALRS
+
20, ARS

+
21, TTL

+
21].

In this chapter, we experimentally demonstrated a circuit-cutting method for sim-

ulating quantum circuits involving many logical qubits, using only a few physical

superconducting qubits. By exploiting the symmetry of linear-cluster states, we can

estimate the effectiveness of circuit-cutting for simulating up to 33-qubit linear-cluster

states, using at most 4 physical qubits for each subcircuit. Specifically, for the 12-qubit

linear-cluster state, we found that the experimental fidelity bound can reach as much

as 0.734, which is about 19% higher than a direct implementation on the same 12-

qubit superconducting processor. Our results indicate that circuit-cutting represents

a feasible approach of simulating quantum circuits using much fewer qubits, while

achieving a much higher circuit fidelity.

7.2 Cutting Large Quantum Circuits

The basic idea is to cut a qubit wire and then simulate the propagation of quantum

information by classical means. We illustrate this with a toy example in Fig. 7.1 (a).

First, observe that at the time slice of the cutting point (the red cross), the reduced

density matrix of the first two qubits can be decomposed as,

𝜌𝑎𝑏 =
1

2

3∑︁
𝑗=0

Tr𝑏 (𝜌𝑎𝑏𝜎𝑏𝑗 ) ⊗ 𝜎𝑏𝑗 . (7.1)

where we use superscripts to indicate the qubit labels and 𝜎 𝑗 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }. Each Pauli

operator can be further decomposed into its eigenstates, e.g., 𝑍 = |0⟩⟨0| − |1⟩⟨1|. Note

that the identity operator can be written as 𝐼 = |0⟩⟨0| + |1⟩⟨1|, which can be combined
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with 𝑍 [PSSO21]. Then, we have,

𝜌𝑎𝑏 =

6∑︁
𝑖=1

𝑐𝑖 Tr𝑏 (𝜌𝑎𝑏𝑂𝑏𝑖 ) ⊗ 𝜌𝑏𝑖 , (7.2)

where the 𝑐𝑖,𝑂𝑖 , and 𝜌𝑖 := |𝜓𝑖⟩⟨𝜓𝑖 | are listed in Fig. 7.1 (b). At this point, the physical

meaning of the above formula becomes clear. To simulate the original circuit, we first

cut it into two subcircuits. The partial trace operation in Eq. (7.2) can be interpreted

as measuring 𝑂𝑖 in the qubit 𝑏 of subcircuit 1, and then 𝜌𝑖 is prepared and passed as

input to subcircuit 2.

Suppose that we are interested in measuring the expectation of 𝑋 ⊗ 𝑍 ⊗ 𝑋 of the

3-qubit circuit, denoted as ⟨𝑋𝑍𝑋 ⟩. In subcircuit 1, one needs to collect the expecta-

tion values of 𝑋 ⊗ 𝑂𝑖 , defined by 𝐸
(1)
𝑖

= Tr

(
𝜌𝑎𝑏𝑋 ⊗ 𝑂𝑖

)
. In subcircuit 2, one needs to

collect the expectation values of 𝑍 ⊗ 𝑋 , denoted as 𝐸
(2)
𝑖

, from circuits with varying

initial state |𝜓𝑖⟩ in the first qubit (see Fig. 7.1 (a)). We denote the expectation val-

ues from subcircuit 2 as 𝐸
(2)
𝑖

. Then, according to Eq. (7.2), ⟨𝑋𝑍𝑋 ⟩ can be recovered

by [PHOW20]

⟨𝑋𝑍𝑋 ⟩ =
6∑︁
𝑖=1

𝑐𝑖𝐸
(1)
𝑖
𝐸
(2)
𝑖

. (7.3)

This circuit-cutting procedure works for any observable in the form𝐴⊗𝐵, where𝐴 is

an observable of the qubit 𝑎 and 𝐵 is an observable of the qubits 𝑏 and 𝑐 . We remark

that the combination of expectation values is achieved with a classical computer. In

this process, we do not create a 3-qubit entangled state; instead, the 3-qubit state is

simulated by a hybrid scheme of a 2-qubit quantum computer and a classical computer.

For more general and larger quantum circuits, one can apply this cutting scheme

iteratively to multiple cutting points, to partition the whole circuit into several discon-

nected pieces of subcircuits. By running the subcircuits independently, and classically

combining the subcircuit expectations with appropriate coefficients, one obtains ex-

pectations from the large quantum circuits. Moreover, those disconnected subcircuits

can be viewed as nodes in a tensor network [PHOW20]. For example, the correspond-
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(a) (b)
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Figure 7.1: (a) Example illustrating the circuit-cutting scheme. The quantum circuit

on the left is cut at the red cross, and partitioned into two subcircuits. The original

circuit can be simulated by combining the quantum measurement statistics of two

subcircuits in different basis and of different inputs. (b) The list of ��,�� and � for

Eq. (7.2). (c) The tensor network representing the summation of Eq. (7.3).

ing tensor network for Fig. 7.1 (a) is a line with two nodes, and the edge has bond di-

mension 6, corresponding to the 6 terms in Eq. (7.3). The coefficient �� can be absorbed

into the node representing �
(1)
�

or �
(2)
�

; in Fig. 7.1 (c), we absorb it into �
(1)
�

. Then, one

can use tensor-network contraction to perform the combination to obtain quantities

of the large circuit, with classical running time exponential in the treewidth of the

tensor network [PHOW20].

To summarize, the protocol is as follows. (a) Identify appropriate cutting points

to partition the large circuit into disconnected subcircuits. (b) Obtain the subcircuit

expectations by enumerating the possible choices of |��〉 and�� . (c) Construct a tensor

network from these subcircuit expectations and coefficients �� . (d) Contract the tensor

network to obtain the expectation value with respect to the large circuit.

7.3 Linear-Cluster States

Cluster states are a family of highly-entangled states, which can be used to achieve

measurement-based quantum computation [RB01, Nie06]. That is, universal quantum

computation can be performed by only making measurements on the cluster state.

Linear-cluster state is a specific example of cluster states, where all qubits are aligned
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Figure 7.2: Circuit-cutting scheme for the linear-cluster state. Left. A 12-qubit linear-

cluster state, which is cut into 4 pieces. Right. The 12-qubit linear-cluster state can

be simulated by combining measurement data from these two types of subcircuits.

Bottom. The tensor network representing the classical combination of subcircuits.

in one dimension. Explicitly, a linear-cluster state with � qubits can be expressed as,

|LC�〉 =
(
�−1∏
�=1

CZ
�,�+1

)
|+〉⊗� , (7.4)

where the superscripts in the CZ gates indicate the qubits that they act on.

In [YCZ
+
23], we experimentally simulate a 12-qubit linear-cluster state, with 4

qubits of a superconducting quantum processor, which is the same processor as in

[GCZ
+
19]. As in Fig. 7.2, there are 3 cutting points on the 12-qubit circuit, partitioning

it into 4 subcircuits. The first 3 subcircuits are all in the form of subcircuit 1, while

the last subcircuit is in the form of subcircuit 2. The reuse of measurement data (or

expectation values) from subcircuit 1 is due to the symmetry of linear-cluster states.

Note that the sequence of CZ gates on the left of Fig. 7.2 is chosen such that pieces

1-3 can be represented by the same subcircuit 1.

To compare the performance of the circuit cutting scheme with that of running the

12-qubit circuit directly, we need to estimate their fidelities. We follow the approach

in [GCZ
+
19], which uses techniques from entanglement detection in the stabilizer
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formalism [TG05, GT09]. Let 𝑠1 = 𝑋1𝑍2, 𝑠𝑛 = 𝑍𝑛−1𝑋𝑛 and 𝑠𝑖 = 𝑍𝑖−1𝑋𝑖𝑍𝑖+1 for 𝑖 ≠ 1 or 𝑛.

It can be shown that a linear-cluster state is a stabilizer state with a stabilizer group

spanned by {𝑠1, · · · , 𝑠𝑛}, i.e., 𝑠𝑖 |LC𝑛⟩ = |LC𝑛⟩ for 𝑖 = 1, · · · , 𝑛. Let

ODD𝑛 :=
∏
𝑖 odd

1 + 𝑠𝑖
2

EVEN𝑛 :=
∏
𝑖 even

1 + 𝑠𝑖
2

. (7.5)

For a linear-cluster state, one has |LC𝑛⟩⟨LC𝑛 | ≥ ODD𝑛+EVEN𝑛−𝐼 [TG05, Theorem 6].

Therefore, for an unknown quantum state 𝜌 , its fidelity relative to the linear-cluster

state is lower bounded by,

Tr(𝜌 |LC𝑛⟩⟨LC𝑛 |) ≥ Tr(𝜌ODD𝑛) + Tr(𝜌EVEN𝑛) − 1 , (7.6)

which can be estimated by measuring ODD𝑛 and EVEN𝑛 . Observe that every term

in the expansion of ODD𝑛 can be measured in the basis 𝑋𝑍𝑋𝑍 · · · , while every term

in the expansion of EVEN𝑛 can be measured in the basis 𝑍𝑋𝑍𝑋 · · · . Therefore, to

estimate the fidelity, one only needs to perform measurements in two bases. For sim-

plicity, we will refer to them as 𝑋𝑍 measurement and 𝑍𝑋 measurement, respectively.

Below, we illustrate how to simulate the 12-qubit linear-cluster state with

the circuit-cutting scheme. Suppose we want to obtain the expectation value

⟨𝑃 (1) ⊗ 𝑃 (2) ⊗ 𝑃 (3) ⊗ 𝑃 (4)⟩, where 𝑃 (𝑖) can be any 3-qubit observable of the 𝑖-th 3-qubit

group. We take 𝑃 (1) = 𝑋𝑍𝐼, 𝑃 (2) = 𝑍𝐼𝑍, 𝑃 (3) = 𝐼𝑍𝑋 and 𝑃 (4) = 𝑍𝑋𝑍 as an example,

whose expectation value can be obtained from the 𝑋𝑍 measurement in the 12-qubit

circuit. As shown in Fig. 7.2, the 12-qubit circuit is cut into 4 pieces, where pieces 1-3

can be represented by subcircuit 1, and the last piece can be represented by subcir-

cuit 2. In Fig. 7.2, we denote the final state of subcircuit 1 and 2 as

��Φ1,𝑖

〉
and

��Φ2,𝑖

〉
,

respectively, where the index 𝑖 indicates one of the 6 states |𝜓𝑖⟩ in the first qubit. Then,

define

𝐸
(1)
𝑗

:= ⟨Φ1,3 |𝑃 (1) ⊗ 𝑂 𝑗 |Φ1,3⟩ 𝐸
(2)
𝑗𝑘

:= ⟨Φ1, 𝑗 |𝑃 (2) ⊗ 𝑂𝑘 |Φ1, 𝑗 ⟩

𝐸
(3)
𝑘𝑙

:= ⟨Φ1,𝑘 |𝑃 (3) ⊗ 𝑂𝑙 |Φ1,𝑘⟩ 𝐸
(4)
𝑙

:= ⟨Φ2,𝑙 |𝑃 (4) |Φ2,𝑙⟩ (7.7)
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to be the subcircuit expectations from pieces 1-4. According to the circuit-cutting

scheme, we have,

⟨𝑃 (1) ⊗ 𝑃 (2) ⊗ 𝑃 (3) ⊗ 𝑃 (4)⟩ =
6∑︁

𝑗,𝑘,𝑙=1

𝑐 𝑗𝑐𝑘𝑐𝑙𝐸
(1)
𝑗
𝐸
(2)
𝑗𝑘
𝐸
(3)
𝑘𝑙
𝐸
(4)
𝑙
, (7.8)

where the coefficients 𝑐𝑖 ’s are shown in Fig. 7.1 (b). Again, this summation can be

viewed as tensor network contraction as in the bottom of Fig. 7.2.

To compute Tr(𝜌ODD) and Tr(𝜌EVEN), one needs to first expandODD and EVEN,

and then apply Eq. (7.8). In our experiment, we used the fidelity lower bound as a mea-

sure, which requires measuring the observables involved in the expansion of ODD12

and EVEN12. The experimental procedure for estimating the fidelity is as follows. (a)

Identify the observables in the expansion of ODD12 and EVEN12. (b) For each observ-

able, define 𝑃 (𝑖) for 𝑖 = 1, 2, 3, 4. Measure 𝐸
(1)
𝑗
, 𝐸
(2)
𝑗𝑘
, 𝐸
(3)
𝑘𝑙

and 𝐸
(4)
𝑙

, and use Eq. (7.8) to

obtain the expectation value of that observable. (c) Calculate the fidelity lower bound

according to Eq. (7.6). Note that this procedure can be easily generalize to larger linear-

cluster states. For example, to simulate a 15-qubit linear-cluster state, one only needs

to add one more cutting point on the 13-th qubit.

The expectation values in Eq. (7.8) can be obtained from subcircuits in Fig. 7.2. For

subcircuit 1, we need to prepare the circuits with 6 different |𝜓𝑖⟩. The measurement

bases for the first three qubits are 𝑋𝑍𝑋 and 𝑍𝑋𝑍 , and for the last qubit are 𝑋,𝑌

or 𝑍 ; the expectation value of |0⟩⟨0| or |1⟩⟨1| can be obtained from 𝑍 measurement.

Therefore, we need to implement 6 × 2 × 3 = 36 different circuits in the form of

subcircuit 1. As for subcircuit 2, similar argument shows that we need to implement

12 different circuits. Thus, a total of 48 subcircuits needs to be run.

7.4 Experiment

To verify the feasibility and evaluate the actual performance of the scheme in the ex-

periment, we run the subcircuits in Fig. 7.2 on a 12-qubit superconducting quantum

processor. As shown in Fig. 7.3 (a), the qubits are arranged in a one-dimensional chain.
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Figure 7.3: (a) Schematic of the 12-qubit superconducting processor, where we used

Q3 to Q6 for the circuit-cutting experiment. (b) Expectation from �� and �� mea-

surements of the 4-qubit and 3-qubit linear-cluster states. Ideal values are one. The

error bars are due to the repeated experiments.

Each qubit has two control lines to provide full control of the qubit: a microwave ��

control line to drive excitations between |0〉 and |1〉, and a magnetic flux bias line to

tune the qubit resonance frequency. As the near-neighbor qubits are capacitively cou-

pled, the fast adiabatic CZ gates [BKM
+
14, MG14] can be applied. The measurements

of qubit are done through dispersively coupling to a readout resonator. We choose

four adjacent qubits from a 12-qubit superconducting quantum processor to imple-

ment the experiments. The average performance of the chosen qubits are: �1 ≈ 36.1

�s, � ∗
2
≈ 4.3 �s, single-qubit gate fidelity ≈ 99.93% and CZ gate fidelity ≈ 98.5%. More

detailed data can be found in the Supplemental Material of [YCZ
+
23].

All the experimental results are processed using the transition matrix error mit-

igation (TMEM) method [BSK
+
21, Gel21], to suppress the readout noise. However,

negative entries may appear in the probability distributions of the subcircuits after

the TMEM. To make these distributions physical, we first transform those probability
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0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

𝑃𝑋𝑍
𝑡ℎ𝑒

0.25 0 0 0 0 0 0 0.25 0 0 0 0.25 0.25 0 0 0

𝑃𝑋𝑍𝑒𝑥𝑝 0.245 0 0 0 0 0 0 0.274 0.002 0 0 0.213 0.266 0 0 0.000

𝑃𝑍𝑋
𝑡ℎ𝑒

0.25 0 0 0.25 0 0 0 0 0 0 0 0 0 0.25 0.25 0

𝑃𝑍𝑋𝑒𝑥𝑝 0.226 0.000 0.000 0.248 0 0.004 0.009 0 0.024 0 0 0.003 0.005 0.245 0.235 0

Table 7.1: Theoretical and experimental distributions of 4-qubit linear-cluster state in

the 𝑋𝑍 measurement basis and 𝑍𝑋 measurement basis

000 001 010 011 100 101 110 111

𝑃𝑋𝑍
𝑡ℎ𝑒

0.5 0 0 0 0 0 0 0.5

𝑃𝑋𝑍𝑒𝑥𝑝 0.444 0.010 0 0.026 0.043 0 0.010 0.468

𝑃𝑍𝑋
𝑡ℎ𝑒

0.25 0 0 0.25 0 0.25 0.25 0

𝑃𝑍𝑋𝑒𝑥𝑝 0.247 0 0 0.291 0.003 0.217 0.241 0

Table 7.2: Theoretical and experimental distributions of 3-qubit linear-cluster state in

the 𝑋𝑍 measurement basis and 𝑍𝑋 measurement basis

distributions into diagonal operators, and then use themaximum likelihoodmethod to

find a density operator that is the closest to them [MZO20, JKMW05]. The final distri-

butions of the subcircuits are then extracted from these density operators. Before and

after the experiment of circuit cutting, additional quantum state tomography on the

final state of the circuit is performed to evaluate the performance of the experiments.

The average fidelity of the 36 subcircuits in the form of subcircuit 1 is 0.944, and the

average fidelity of the 12 subcircuits in the form of subcircuit 2 is 0.955, showing the

high quality of the experiments.

As a warm-up, we show how to estimate the fidelity lower bounds for the 4-qubit

and 3-qubit linear-cluster states. Note that if we take |𝜓𝑖⟩ = |+⟩ for the subcircuits,

then they correspond to a 4-qubit and 3-qubit linear-cluster state, respectively. The

concrete values for the average distributions of these two states in the 𝑋𝑍 and 𝑍𝑋

measurement bases are shown in Table 7.1 and Table 7.2 (the right-most bit is identi-

fied as the first bit). The probability distributions are also visualized in Fig. 7.4 (a) and

(b). Here, each cell represents one bit string (after the basis transformation) and the

number gives the corresponding output probability. In the 4-qubit case, the bit strings

for the first row are 0000, 0001, 0010, 0011, and for the second row are 0100, 0101,
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(a) (b)

Figure 7.4: (a) The output distributions from 𝑋𝑍 measurement of the 4-qubit and

3-qubit linear-cluster states. (b) The output distributions from 𝑍𝑋 measurement of

the 4-qubit and 3-qubit linear cluster states. See Supplemental Material of [YCZ
+
23]

for the labelling of each cell.

0110, 0111, and so on. But note that, the bit strings are the measurement outcomes af-

ter the basis transformation. That means, for example, in the 𝑍𝑋 measurement, 0011

will correspond to the output state |1⟩
1
⊗ |−⟩

2
⊗ |0⟩

3
⊗ |+⟩

4
(recall that in the bit-string

representation, the right-most bit is identified as the first bit).

From these distributions, one can obtain the expectations of terms in the ODD

and EVEN operators of the 4-qubit and 3-qubit LC states, as shown in Fig. 7.3 (b). For

the 4-qubit LC state, its stabilizer group are spanned by {𝑋1𝑍2, 𝑍1𝑋2𝑍3, 𝑍2𝑋3𝑍4, 𝑍3𝑋4},

and its ODD and EVEN operators are given by,

ODD4 =

(
𝐼 + 𝑋1𝑍2

2

) (
𝐼 + 𝑍2𝑋3𝑍4

2

)
=
𝐼 + 𝑋1𝑍2 + 𝑍2𝑋3𝑍4 + 𝑋1𝑋3𝑍4

4

(7.9)

EVEN4 =

(
𝐼 + 𝑍1𝑋2𝑍3

2

) (
𝐼 + 𝑍3𝑋4

2

)
=
𝐼 + 𝑍1𝑋2𝑍3 + 𝑍3𝑋4 + 𝑍1𝑋2𝑋4

4

. (7.10)

The nontrivial terms of ODD4 are shown in the first 3 bars in the left of Fig. 7.3 (b),

and those of EVEN4 are shown in the last 3 bars. The expectation value of 𝐼 is just a

normalization condition, which will be always satisfied by a probability distribution.

The expectation values of the non-trivial terms (the height of the bars) can be obtained

from the distributions shown in Table 7.2. For example, ⟨𝑋1𝑍2⟩ can be obtained from

𝑃𝑋𝑍𝑒𝑥𝑝 , and the observable is 1 if the parity of the first two bits are even, and −1 if the
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(a)

(b)

(c)

Figure 7.5: (a) Comparison of the expectations with �� measurement obtained from

the 12-qubit circuit [GCZ
+
19] (orange) and from the circuit-cutting scheme (blue).

Each bar corresponds to one specific observable in ODD and there are 64 expecta-

tions for each group. The ideal values of all these expectations are one. (b) Similar

data for the �� measurement. (c) Fidelity bound (blue) and processing time (red) for

simulating larger linear-cluster state using the same experimental data. The error bars

are due to repeated experiments.

parity of the first two bits are odd. Therefore, we have,

〈�1�2〉 = 0.245 + 0.274 + 0.002 + 0.213 + 0.266 = 1 . (7.11)

The value of other bars (observables), including those from 3-qubit linear-cluster state,

can be calculated with similar procedure. The fidelity lower bound then follows from

these expectations according to Eq. (7.6), which is 0.952 and 0.909 for the 4-qubit and 3-

qubit LC states, respectively. These boundsmatch the average fidelity (of all 36 circuits

for subcircuit 1 and 12 circuits for subcircuit 2) from quantum state tomography.
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We now turn our discussion to simulating large linear-cluster state with the

circuit-cutting scheme. With the measurement data from the subcircuits, one can

simulate larger linear-cluster states, and the fidelity bounds can be derived with sim-

ilar procedures. Fig. 7.5 (a) and (b) present the expectations of terms in ODD12 and

EVEN12 for the 12-qubit state obtained by the circuit-cutting scheme and a direct im-

plementation, which is an analogue of Fig. 7.3 (c). Those expectations are from the

𝑋𝑍 and 𝑍𝑋 measurement, respectively, and there are 2
6
expectations in total for each

subfigure. The blue bars are reconstructed from the circuit-cutting scheme, while the

orange bars are from the experimental data in [GCZ
+
19]. Each bar corresponds to

one specific terms in the expansion ofODD12 (and EVEN12) and the ideal value is one.

The labelling is obtained in the following way. First, as in the previous discussion, we

expand

EVEN12 =

(
𝐼 + 𝑍1𝑋2𝑍3

2

) (
𝐼 + 𝑍3𝑋4𝑍5

2

)
· · ·

(
𝐼 + 𝑍11𝑋12

2

)
(7.12)

into 2
6 = 64 terms. Each term can be represented by a binary vector (called the mask

vector), with the 1’s indicating the qubits that are acted nontrivially on. For exam-

ple, in the 4-qubit case, 𝑍1𝑋2𝑋4 is represented by (1, 1, 0, 1) and 𝐼 is represented by

(0, 0, 0, 0). Now, go back to the 12-qubit case and label every term in the expansion of

EVEN12 by a binary vector of length 12. Each bar in Fig. 7.5 (b) is associated with one

term, and hence one binary vector. From right to left, the binary vector is in a lexico-

graphic order, which means that the 64-th bar is for (0, 0, · · · , 0) (or 𝐼 ), the 63-th bar

is for (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) (or 𝑍11𝑋12), and so on. We wrote a computer program

to automate such labelling and its ordering [CYZZ23].

We remark that the distributions from the 12-qubit experiment are also processed

with the same procedure (the fidelity bound after processing is 0.615), i.e., TMEM

followed by a maximum likelihood method, for a fair comparison. From these expec-

tations, we can similarly use Eq. (7.6) to estimate the fidelity. The estimated fidelity

bound from the circuit-cutting scheme is 0.734, about 19% higher than that from the

experiment of [GCZ
+
19]. Note that the experiment of [GCZ

+
19] implemented CZ
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gates in parallel, which will incur more severe crosstalk errors compared to our cur-

rent implementation, where CZ gates are applied individually (one for each layer;

see the right of Fig. 7.2). Moreover, smaller circuits are easier to calibrate and con-

trol. Therefore, the circuit-cutting experiment achieves a better fidelity bound than

[GCZ
+
19].

As for the tradeoff, the circuit-cutting scheme saves qubits and allows for better

control of the quantum system, at the cost of increasing the both the quantum and clas-

sical running time. Both running times depend on the number of the cutting points,

and the quantum running time is more expensive. In the 12-qubit experiment, 25000

shots are used for each basis, and thus a total of 50000 shots are consumed; there is no

repetition in the 12-qubit experiment. In contrast, in the circuit-cutting experiment,

there are 48 subcircuits to run, and 40000 shots are used for each subcircuits (1920000

shots in total); we perform 25 repeated experiments for the circuit-cutting scheme.

Although in a single experiment (repetition), the circuit-cutting scheme can consume

far more shots than the direct implementation, it is nevertheless a valuable technique

for pushing the limits of near-term quantum devices.

Moreover, the symmetry in linear-cluster states allows us to reuse the measure-

ment data from subcircuit 1 to simulate larger linear-cluster states, at a cost of increas-

ing overhead in classical postprocessing. Specifically, we need to add more internal

nodes to the tensor network in Fig. 7.2, to represent larger circuits (5 nodes for 15

qubits, 6 nodes for 18 qubits and so on). This allows us to simulate linear-cluster

states of size 6 + 3𝑘 , where 𝑘 is a positive integer. We need to contract a longer chain

to obtain one expectations of the large circuit, and there will be more expectations to

be computed in order to obtain the fidelity lower bound. The obtained fidelity bound

is expected to decay as the number of qubits increases, since the error accumulates

in the classical postprocessing. The fidelity decay and classical postprocessing time

are shown in Fig. 7.5 (b). Here, the classical postprocessing is done on a conventional

laptop, and the processing time shows the running time of the program for calculating

the fidelity lower bound of larger circuits [CYZZ23].
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7.5 Discussion

In this chapter, we experimentally demonstrate a circuit-cutting scheme and simulate

larger linear-cluster state with size scaling up to 33 qubits, using at most 4 qubits. In

the case of 12 qubits, we achieve a higher fidelity compared to that of a previous work

that prepared the 12-qubit state directly [GCZ
+
19], giving supportive evidence to the

applicability of the circuit-cutting scheme.

Simulating large quantum circuits with small quantum devices is a promising di-

rection in the NISQ era. Currently, there exist several circuit-cutting schemes [BSS16,

PHOW20, MF21, MF20]; it is necessary to further perform experimental benchmark-

ing on these schemes, in order to evaluate their applicability in practice. On the other

hand, although circuit-cutting schemes provide systematic methods to cutting quan-

tum circuits into smaller pieces, to the best of our knowledge, there is no general

method for determining the optimal cutting points. Therefore, we believe that the

potential of circuit-cutting has not yet been fully explored.
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Chapter 8

Discussion and Conclusion

In this thesis, we studied the classical verification and classical enhancement of near-

term quantum devices. In the first part of the thesis, we presented results on the veri-

fication protocols based on the instantaneous quantum polynomial-time (IQP) model,

which is a promising model for achieving verifiable quantum advantage on near-term

quantum devices. Specifically, we review the basic concepts of the IQP-based verifica-

tion protocols in Chapter 3, including the Shepherd-Bremner construction and the its

recent loophole. We then study the interplay between IQP circuits, stabilizer formal-

ism and coding theory, and give a characterization of the correlation functions from

IQP circuits in Chapter 4.

Based on this, we give a new IQP-based construction, called the stabilizer scheme,

which enriches the scope of IQP-based schemeswhilemaintaining their simplicity and

verifiability. The construction in the stabilizer scheme is achieved by sampling gener-

ator matrices of random codes satisfying certain conditions. We also present another

construction algorithm based on solving constrained matrix factorization problems,

which is an early version of the stabilizer scheme and may provide insight from a

different perspective.

In Chapter 5, we explore the classical security of the stabilizer scheme. We for-

mulate the Hidden Structured Code conjecture, which states that no polynomial-time
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classical algorithm can generate samples that can pass the test, when the instances are

randomly generated with the stabilizer scheme. To support this conjecture, we study

a class of attack algorithms based on secret extraction and give evidence that the sta-

bilizer scheme is secure against such attacks. We also provide a fix to the Shepherd-

Bremner construction using the column redundancy technique, which invalidates the

recent classical attack by Kahanamoku-Meyer. Our work paves the way for crypto-

graphic verification of quantum computation advantage in the NISQ era.

There are several open problems for future research on classical verification of

near-term quantum devices. The most important one is to rigorously prove the secu-

rity of the IQP-based verification protocols. In Conjecture 5.1, we state that classical

attacks based on secret extraction is on average hard. It would be favorable to prove

the random self-reducibility of the problem, so that the hardness conjecture can be

relaxed to the worst-case scenario. For example, recently a worst-to-average-case re-

duction was found for computing the probabilities of IQP circuits and it would be

interesting to see if the techniques of [Mov23] could be leveraged to gain insight into

the validity of Conjecture 5.1. Before one can rigorously prove the hardness of clas-

sical attacks, one might gain intuition by considering other possible classical attacks.

In terms of implementing the protocol in practice, generating instances according to

a given architecture and noise analysis are also important open problems. We believe

that the mathematical structure of the stabilizer scheme provides a promising avenue

for the use of certain cryptographic techniques to improve the security of IQP-based

protocols, and to construct instances that can be readily implemented with current

technology.

In the second part of the thesis, we presented results on classical enhancement

of near-term quantum devices, with a focus on quantum error mitigation and cir-

cuit cutting. In Chapter 6, we propose a framework called neighborhood learning for

quantum error mitigation, which incorporates several existing quantum error miti-

gation methods as special cases. We explore the performance of the neighborhood

learning framework under different settings. Based on these investigations, we give
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an adaptive learning strategy that offers a good trade-off between the accuracy and

the computational cost. In Chapter 7, we present the experimental results on a circuit-

cutting scheme. Specifically, we simulate larger linear-cluster states with size up to 33

qubits, using only 4 superconducting qubits, and in the case of 12 qubits, we achieve

a higher fidelity compared to preparing the state directly. Classical techniques to en-

hance the capability of near-term quantum devices are important and more research

is needed in this direction to achieve quantum computational advantage on practical

problems with the near-term quantum devices.
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