
UNIVERSITY OF TECHNOLOGY SYDNEY
Faculty of Engineering and Information Technology

On the Use of Network Control Techniques in
Pursuit of Influence Spread in Complex Networks

by

Abida Sadaf

A Thesis Submitted
in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2024



ii

Certificate of Original Authorship

I, Abida Sadaf, declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney. This thesis is completely my

own work unless otherwise referenced or acknowledged. In addition, I certify that all

information sources and literature used are indicated in the thesis. This document

has not been submitted for qualifications at any other academic institution. This

research is supported by the Australian Government Research Training Program.

Signature: Abida Sadaf

Date: March, 2023

Production Note:

Signature removed prior to publication.



iii

Abstract

Influence and control of complex networks is a very challenging problem within net-

work science. One perspective suggests we can only fully understand a network if

we have the ability to influence or control it and predict the results of the employed

control mechanisms. A critical element in the process of control and influence spread

is the selection of the nodes from which influence and control spreads. In the context

of influence spread, those nodes are called seed nodes and the best seed nodes are

those that enable the quickest spread of influence. In the control space they are called

driver nodes and they enable control of the whole network. The central intuition of

this thesis is that the role driver nodes play in the context of network control is closely

related to the role of seed nodes in spreading influence and that approaches for one

task may be applicable to the other. Thus, the main aim of this thesis is to utilise

the concepts from the field of network control and apply those to improve the spread

of influence in a network by using seed selection methods based on driver nodes. To

be able to meet project aim and to develop more effective seed selection methods,

first we need to understand the relationship between different global and local net-

work structures and the number of driver nodes needed to control a given structure.

This reveals what structures are easier to control and the resources needed to control

them. The first component of the thesis highlights how differing structure in both real

and synthetic social networks affects the number of driver nodes needed for control.

We investigate a correlation between global structural measures and the number of

driver nodes. Experiments show that there is a strong relationship between density

and the number of driver nodes. Next, the thesis investigates how the number of

driver nodes identified at the level of individual communities relates to the densities

of those communities. This illustrates how local structures and their composition

influence the number of driver nodes. This second study, in concert with the first,
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reveals that the total number of driver nodes for a given network when detected in

communities individually tends to be smaller than when detected in the network as

a whole. The reason is that communities are close-knit, high-density groups within

the overall network. The identification of an optimal set of seed nodes that max-

imise influence spread is an important research area and a number of techniques for

identifying seed nodes that can enable an efficient spread of influence in the network

have been already proposed. Current research, however, shows limitations of these

techniques in terms of effectiveness and efficiency in achieving maximum influence

spread in the networks. The idea of utilising driver node selection methods from

control theory in the context of seed selection has not been yet explored to its full

extent, prompting the central work in this thesis. In alignment with the structural

examination of effective driver node selection in the initial part of the thesis, we

first use driver nodes identified at the global (i.e., whole network) level and exploit

these nodes as part of the seed selection methods. We find a minimum dominat-

ing set to develop an initial set of driver nodes. Using this base set, we propose

new methods based (i.e. Driver-Random, Driver-Degree, Driver-Closeness, Driver-

Betweenness, Driver-Degree-Closeness-Betweenness, Driver-Kempe, Driver-Ranked)

for selecting seeds. These methods make use of network centrality measures to rank

the driver nodes in terms of their potential as seed nodes. As a result we get a small

subset of driver nodes, that helps in improving influence spread. We compare the

proposed methods to existing approaches using the Linear Threshold model on both

real and synthetic networks. The experimental results show that the proposed meth-

ods consistently outperform the existing benchmarks. We conclude that using driver

nodes as seeds in the influence spread results in faster and thus more effective spread

than when applying traditional methods. Following from the demonstration that one

needs fewer driver nodes to control a network when they are detected community-by

community, rather in the network as a whole, the final study uses ‘divide and conquer’

approach to the time-consuming problem of driver node identification at the global
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level and instead identifies driver nodes within the communities, then using those

driver nodes in the influence spread process. In this thesis we demonstrate the effec-

tiveness of this approach in Random, Small-World and Scale-Free networks as well

as real-world social networks. The process begins with identification of communities

within the network, and then identification of driver nodes for each community sep-

arately. The driver nodes obtained are then ranked according to a range of common

centrality measures (using similar protocol as with the whole network approach). We

then compare the total number of nodes influenced as a result of utilising various

seed selection methods based upon globally elected and ranked driver nodes and lo-

cally selected and ranked driver nodes. This approach is not only novel in its basic

concept, but provides improved algorithmic outcomes alongside more effective influ-

ence spread. To summarize, in this thesis we bring together two fields – influence

spread and control in complex networks. We proposed and tested new family of seed

selection methods that utilize the concept of driver nodes from control field.
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Chapter 1

Introduction

In recent years, network science has emerged as a multidisciplinary domain that brings

together, among others, economics, finance, physics, sociology, biology and transport,

and is a focus of many researchers in these fields. Network science plays an important

role in understanding everyday problems and providing solutions to those in these

domains. Researchers are working on providing solutions to stop the spread of diseases

by studying the behaviours of human beings and their social infrastructure [210, 129,

126, 205, 40, 96, 139, 165, 222, 74]. This research domain works by studying complex

systems, their behaviours and effects if and when they do not work properly. It is

important to understand the phenomenon of complex systems to understand the role

of network science in our daily lives. There are many natural complex systems in our

lives, our universe being the biggest one of them all. The examples of such natural

complex systems include the human nervous system; infrastructure systems like power

grids, transportation systems, communication systems; biological systems; the global

climate and ecosystems vital to human life on this earth. Potential damage in such

systems may result in the spread of disease, epidemics, economic collapse, and social

unrest. Therefore, in recent times, current research urges us to understand, model,

predict and ultimately control or influence these complex systems.

Complex systems can be represented and modelled as complex networks, where

elements of the systems and interactions between them correspond to nodes and edges

respectively [153, 194]. Complex networks are of great importance for understanding

complex systems, e.g. the statistical mechanics of network topology and dynamics

enable us to understand the functioning of real systems [153, 194]. One current
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understanding of control in a complex network tells us that we do not know if and

how the network structure correlates with the number of driver nodes. As driver

nodes play a key role in achieving control of a complex network, identifying them

and studying their correlation with network structure measures can bring valuable

insights, such as what network structures are easier to control, and how we can alter

the structure in our favour to achieve the maximum control over the network [182].

This research work focuses on both global and local structural measures and their

relationship with number of driver nodes. We propose that communities (as a measure

for local structure) are one of the most important features of networks, and detecting

them enables us to analyse and explore further underlying structural features of the

synthetic as well as real networks [64]. The idea is to detect communities and driver

nodes within the communities to see how the number of communities influences the

number of driver nodes. We divide the experimental work in four major studies.

1. The first study starts by proving the hypothesis that some network structures

are easier to control. This study uncovers the underlying relationship between

number of driver nodes and different network structural measures. We prove

that, different network structural measures are in correlation with number of

driver nodes e.g. network density. Increasing network density implies that there

will be decreasing number of driver nodes and vice versa.

2. In the next study, we dig deeper into network structures by identifying com-

munities within those networks. We identify the local driver nodes within the

communities to analyse the relationship between number of driver nodes and

number of communities in synthetic and real networks. We conclude that the

number of driver nodes tends to decrease within locally structured communi-

ties in the networks because of increasing densities of the communities of the

networks. These results correspond to the conclusions of the first study.

3. In the third experimental study, we extend the experiment further to see how
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effective and efficient the driver based seed selection methods are in influencing

the overall network. We discover that such methods influence more number of

nodes in the network faster in terms of percentage of number of nodes influenced

in the network.

4. We further extend the previous study by applying the seed selection methods

based upon the driver nodes found in communities. We conclude that these

methods even outperform their counterpart methods from the third study. This

study concludes our research journey in a way that, now we know that, locally

identified driver based seed selection methods are able to reach influence faster

than the globally identified driver based seed selection methods and to a higher

percentage of nodes in a network.

1.1 Aims, Questions, Objectives and Significance

The aim of this thesis is to utilise the concepts from the field of network
control and apply those to improve the spread of influence in the
network by using seed selection methods based upon driver nodes.

Influence and control of complex networks is one of the most challenging open

problems within network science. One view says that we can only claim to fully

understand a network if we have the ability to influence or control it and predict

the results of the employed control mechanisms. Investigating and understanding

global network structures like network density, centrality measures, or shortest paths

and local structures like communities is an important space in many domains and

disciplines, including the spread of news on social networks. To be able to develop

more efficient seed selection methods, we need to understand the relationship between

different global and local network structures and the number of driver nodes needed

to control a given structure. This will allow understanding of which networks might

be easier to control and the resources needed to control them.
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Figure 1.1 : Driver Nodes in a Simple Directed Network

We believe that control can be seen in networks, in many forms. One such example

is influence spread in the network, where a set of nodes, commonly called as seed nodes

can influence the other nodes in the network.

Finding a small subset of influential nodes to maximise influence spread in a

complex network is an active area of research [40, 126, 40, 222, 73, 74]. We see that

influence is an effective and softer form of control in complex networks. If we are

able to influence a number of nodes in the network, we are controlling the network.

Different methods have been proposed in the past to identify a set of seed nodes

that can help achieve a faster spread of influence in the network. Understanding how

influence is seeded and spreads through social networks is an increasingly important

area of study. While there are many methods to identify seed nodes that are used to

initialise a spread of influence, the idea of using methods for selecting driver nodes

from control theory in the context of seed selection has not been yet explored. From

Figure 1.1, we can see the detection of driver nodes in a directed network. The

simple directed network in (a) can be converted into its bipartite network in (b),

where green nodes are the matched nodes. In (c), we map the bipartite network back

into the directed network, and the white nodes are the Minimum Dominating set
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or driver nodes. The notion that driver nodes play an important role in controlling

all or part of the network, enables us to explore the correlations between local and

global network structural measures and number of driver nodes. The correlations can

reveal the network structures that are easier to control. We believe that Influence

is a weaker form of control, so utilising the driver nodes to drive influence or spread

influence through the network, to maximize the influence. From previous research, we

see that, driver nodes are majorly used in different control methods to project control

in the network [236, 27, 239, 91], so these could be a viable solution in maximizing

influence in the network.

Therefore, we aim to propose seed selection methods based on driver node identi-

fication (locally and globally) from synthetic as well as real networks. Furthermore,

the scope of the thesis includes utilising the seed selection methods combined with

influence models to spread or maximise influence spread in the nodes of the network.

Based upon the aim of the study, five main research challenges has been devised and

presented in Figure 1.2. This diagram explains a relationship between research chal-

lenges, research questions, research objectives and the experiments that have been

conducted to fulfil the objectives.

Research challenge 1 i.e., RC1, states that, "Understanding the research space to

conduct a thorough research survey of Control and Influence in Complex Networks."

The research initiates by understanding the research space to conduct a thorough

research survey of the control and influence domain to find out potential gaps, which

give birth to further research challenges to advance this research. Uptake of chal-

lenge 2 i.e., RC2 (i.e., Correlation of network structure measures with the number

of driver nodes, to see the maximum control over a complex network.), includes a

preliminary study based upon numerous synthetic network profiles to find out the

relationship/correlation between network structure measures and number of driver

nodes. Based on the finding of the promising results after conducting the experiment

1 (Exp1), which is Development and evaluation of a relationship between number of
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driver nodes and network structure measures in studying various network profiles for

random, small-world, scale-free and real social networks. We find out that there exists

a correlation between number of driver nodes and network structural measures. After

that, we can put Research challenge 3 (RC3) in motion. While the premise of RC2

was global structure measures and their correlation with number of driver nodes, in

RC3 we investigate in more detail the local network structures – communities. We

detect communities in the networks with an aim of identifying the correlations be-

tween number of communities and number of driver nodes within those communities.

Exp 2 concluded that if there are more number of communities in the network, we

are likely to identify less driver nodes. In other words, number of driver nodes for

the network is lower if we detect them within communities as opposed to when we

detect them in the whole network. When it has been finally known that there indeed

exists a relationship, we advanced our idea to use the identified driver nodes for the

purpose of influence spread. The research advances to work on challenges 4 and 5 i.e.,

RC4 and RC5 respectively. RC4 and RC5 focus on exploring and proposing new seed

selection methods, that can be utilized to spread influence efficiently and effectively

throughout the networks. RC4 utilizes the driver based seed selection methods to

compare the percentage of influence spread in various synthetic and social networks.

RC5 extends this idea to include, locally identified driver nodes in communities to

see the difference between the percentage of nodes influenced with globally identified

driver-based methods verses locally identified driver-based seed selection methods.

Following are the research questions derived from the challenges.

1. Research Question 1 (RQ1):How are the global network structural measures

correlated with the number of driver nodes?

2. Research Question 2 (RQ2):How are the number of communities correlated with

the number of driver nodes?

3. Research Question 3 (RQ3):How efficient and effective are driver based seed
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Figure 1.2 : Challenges to Research Objectives to Research Questions to Experiments
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selection methods in comparison to traditional methods?

4. Research Question 4 (RQ4):How effective and efficient are seed selection meth-

ods when applied at the community level vs when applied at global network

level?

Figure 1.2 couples each research question with corresponding research objectives.

These research objectives provide the building blocks for achieving the aim of this

thesis. The research objectives are given below:-

• Research Objective 1 (RO1): To conduct comprehensive literature review, to

identify the potential research gaps in control and influence of the complex

networks.

• Research Objective 2 (RO2): To find out which network structures can result

in minimum number of driver nodes.

• Research Objective 3 (RO3): To find out correlations between local network

structural measures and number of driver nodes.

• Research Objective 4 (RO4): To develop and validate new seed selection meth-

ods that are utilised concepts from network control field.

• Research Objective 5 (RO5): To measure the efficiency and effectiveness of

global seed selection methods and local seed selection methods.

Below, in Section 1.2, the explanation of how the objectives and questions are

linked with the thesis chapters is given.

1.2 Methodology

To achieve the objectives defined above, research methodology presented in Figure 1.3

is proposed and used. Figure 1.3 provides a macro view of all the research elements
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and how these are linked to all the objectives and questions to achieve the overall

project’s aim.

Firstly, a comprehensive literature survey is conducted to study control and in-

fluence in complex networks. The main focus of this part, is to fulfil RO1 as well as

to find out the potential seed selection methods and ranking mechanisms for driver

nodes in order to best utilise these for the further research. Various comparisons

are included in the survey to understand the advantages and disadvantages of cer-

tain methods and approaches. This fulfils our first objective RO1, which was, "To

conduct comprehensive literature review, to identify the potential research gaps in

control and influence of the complex networks". The significance of this study is

such that, it allows us to understand the control and influence space in the context

of complex networks. This literature survey also enables us to find potential gaps

in these domains, which are the vital part of the research challenges defined for this

research work.

Based upon the thorough survey of methods and approaches in control and in-

fluence space the research gaps where identified and based on them the research

challenges were formulated. Next we conduct preliminary study about correlation

between number of driver nodes and global structural measures of different networks.

This study will allow us to understand any relation between network structural mea-

sures and number of driver nodes, the analysis will guide us towards uncovering the

network structures that are easier to control. We use randomly generated networks of

various kinds (random, scale–free, small–world networks) and then conduct the same

experiments on real social networks. This study concludes our second objective RO2.

We proceed, by further investigating into the local structures of the networks.

This is done by identifying communities in the already generated networks and social

networks. Within those communities, driver nodes are again identified to see if there

exists a correlation between the number of driver nodes and number of communities

in the networks. This helps in achieving RO3.
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Figure 1.3 : Research Methodology : A Macro View
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For RO4 and RO5, we begin by proposing new methods for seed selection that

utilise concept of driver nodes. Two sets of methods are developed: (i) global level

driver nodes-based methods and (ii) community level driver nodes-based methods.

The main aim of the experiments conducted in modules 5 and 6 (to address RC4 and

RC5) is to find out the effectiveness and efficiency of proposed in this project driver

based seed selection methods, both when driver nodes are identified locally at the

communities level and globally at the network level. So, we use the previous outcomes

from Exp1 and Exp2, and further introduce new experiments. These experiments,

tests the proposed seed selection methods with both locally and globally identified

driver nodes, hence achieve the research objectives 4 and 5.

The in depth methodologies for experimental studies conducted for Objectives 2,

3, 4 and 5 are given in Chapters 3, 4, 5 and 6 respectively.

1.3 Thesis Contributions

In this section, main contributions of this research work are highlighted as follows.

• Potential Gaps in Control and Influence of Complex Networks: A

detailed literature survey of control methods in complex networks, and seed

selection strategies used in propagating influence in the networks, is outlined.

Survey laid out the current challenges, in the context of efficient strategies, to

control or influence a complex network. For details, see Chapter 2.

• Network Structural Measures and Driver Nodes: An experimental study

is conducted, to find out the correlations between network structural mea-

sures and number of driver nodes in an attempt to identify the network struc-

tures/profiles that are easier to control. Potential correlations were determined

between global network structural measures (including number of nodes, num-

ber of edges, network density, closeness centrality, betweenness centrality, and

eigenvector centrality) and number of driver nodes. We essentially find out the
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network structures that are easier to control or influence by a driver nodes set.

For more details, see Chapter 3.

• Driver Nodes in Communities: Another key contribution from the study,

"Driver Nodes in Communities", highlights the correlations between local net-

work structural measures and number of driver nodes, see Chapter 4.

• Influence Models and Control Methods: Development and Validation of

newly manufactured seed selection methods that helped bring together control

and influence fields. The efficient and effective seed selection method(s) have

been identified, see Chapter 5.

• Influence Models, Communities and Driver Nodes A successful compar-

ison is provided for another set of newly developed seed selection approaches

(based upon driver nodes in communities) with the approaches suggested pre-

viously (based upon driver nodes in the networks). For further details, see

Chapter 6.

1.4 Thesis Organisation

This thesis is organised in the following chapters.

• Chapter 2 : This chapter presents a detailed literature review and relevant

research work in the field of control and influence in complex networks. The

literature revolves around the control, controllability and influence in complex

networks in particular.

• Chapter 3 : This chapter describes an experimental study to find out the corre-

lations between network structural measures and the number of driver nodes in

a complex network. The study encompasses synthetic as well as real networks.

This study has been published in ASONAM’21 [182].
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• Chapter 4 : Chapter 4 presents an in depth study of when driver nodes are

identified locally and globally. This research work incorporates identification of

communities in the complex networks and their impact on the identification of

number of driver nodes. The study presented in this chapter is in print as an

extended research work in a book chapter by EB-ASONAM’21.

• Chapter 5 : Chapter 5 discusses the impact of different seed selection methods

on networks, when using those in Linear Threshold Model to spread influence

across the nodes of the network. The research work is submitted in the Journal

of Applied Network Science for review [181].

• Chapter 6 : In this chapter, the final study of this extensive research work

is presented. The study carefully describes the impact of driver nodes when

identified locally and globally from different networks and then used as seed

nodes after utilising different ranking mechanisms to spread influence across the

various networks. This experimental study has been accepted and presented in

SimBig’22 and in part at the Sunbelt’22 Conference [180].

• Chapter 7 : The final chapter includes a summary of the research work done,

conclusions, research contributions, and potential future work.
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Chapter 2

Literature Review

In this chapter, the literature review of control and influence in complex networks is

provided. The chapter is subdivided into sections for control in complex networks and

influences in complex networks, as the whole thesis revolves around those two fields.

New seed selection methods proposed in this thesis are inspired by concepts coming

from control in networks, which is why the review includes sections on methods for

the selection driver nodes, ranking of driver nodes and seed selection methods.

2.1 Complex Networks Basics

A complex network is a representation of complex system. There are many systems

of interest to scientists that are composed of individual parts or components linked

together in some way. For example the Internet, World Wide Web [9], citation net-

works [63], or social networks [169] [145].

If we look into the connections between different components of any system, then

this can be represented in the form of a network. The components of the system will

be the network vertices (a.k.a. nodes) and the connections between them will be the

edges (a.k.a. relationships) [153]. In this sense, a complex network can be seen as a

representation of a complex system.

2.2 Network Types

Traditionally, with respect to the edges, complex networks can be modelled as di-

rected/undirected as well as weighted/unweighted graphs. Nodes and edges can

also be labelled. The label describes something about the relationship between the
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nodes [153]. It could name the relationship between people of the same family mem-

bers for example father, mother, sister, cousin etc. Similarly, for a node, labels can be

assigned based upon network topology and nodes characteristics [111], for example,

the names of people in real life.

Undirected networks are those for which the relationship is reciprocated or when

the direction is not significant from the perspective of analysis. On the other hand, in

a directed network, relationships do not have to be reciprocated. Let’s assume that

we have a situation where one person sends an email to another, but the second one

never replies. This can be modelled as an undirected relationship that is interpreted

as "there exists any communication between two people" or as a directed connection

where "a relationship exists from a person x to y if x sends an email to y" [153].

From the modelling perspective, relationships can also have assigned weights that

reflect some property of a connection. In social networks, weight is usually used to

express the strength of a relationship between two users. This can be expressed e.g. as

number of emails between two users. In order to understand the characteristics of the

networks and networked systems, we need to model them mathematically [153] [154].

When it comes to nodes, we usually talk about labels (or attributes) on nodes. Thus,

networks can be labelled or unlabelled with respect to nodes and edges. In labelled,

we can e.g. consider user’s gender or age as node’s labels. In a city map, street

numbers can be edge’s labels [228].

Figure 2.1 represents a multitude of possible types of networks and organises

the landscape of networks with respect to the three named above dimensions (edge

direction, edge weight and node label).

We can visualize a complex network by its graphical representation like in the

Figure 2.1.
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Figure 2.1 : Commonly considered types of complex networks with respect to edge

direction, edge weight and node label

2.2.1 Network Structural Measures

Over the years, various network measures have been developed to understand the

structure of the network and its functioning. The most commonly used is node degree

distribution. Other measures include number of nodes and edges, density, clustering

(both local and global), average path length, and different centrality measures (degree,

closeness, betweenness centralities among others). These measures are also known as

topological properties of a network, as they help quantify and interpret the structure

of the network.

A short description of the most commonly used of the network structural measures

is presented in Table 2.1.

Table 2.1 : Definitions of Network Structural Measures.

Structural Measures Definitions

No. of Nodes In a graph G(V,E),
∑n

i=1 vi denotes the sum of

total number of nodes vi in G [80].
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No. of Edges In a graph G(V,E),
∑n

i=1 ei denotes the sum of

total number of edges ei in G [80].

Node Degree In a graph G(V,E),
∑

v∈V deg(v) = 2|E|, where V

is the set of vertices and E is the set of edges of

the graph G [5].

Max Node Degree △G is the degree of node v with maximum number

of edges in a network [77].

Degree Distribution Pdeg(k) = fraction of nodes in the network with

degree k. [5].

Average Path Length lG = 1
n·(n−1)

∑
i ̸=j d(vi,vj)

[80].

Network Diameter Diameter, D, of a network having N nodes

is defined as the longest path, p, of the

shortest paths between any two nodes D =

1
4
max(minppijlength(p)) [211].

Network Density For undirected networks, η = 2|E||V |(|V |−1). For

directed networks, η = |E||V |(|V |−1). Where |V |

is the number of vertices, and |E| is the number of

edges in the network. [211].

Node Degree Central-

ity

CD(G) =
∑

v∈G
|deg(v∗)−deg(v)|

|H| , where v∗ is the ver-

tex with highest degree. Where, H = (|V | −

1)(|V | − 2). [211].

Betweenness Central-

ity

g(v) =
∑

s̸=v ̸=t
σstv
σst

, where σst is the total number

of shortest paths from node s to the node t and

σstv is the number of those paths that pass through

v [211].
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Closeness Centrality CC(i) = N−1∑
j d(i,j)

, where i ̸= j, di,j is the length of

the shortest path between nodes i and j, and N is

the number of nodes in the network. [211].

Eigenvector Central-

ity

x(v) = 1
λ

∑
t∈M(v) xt =

1
λ

∑
t∈G av,txt, where av,t is

the adjacency matrix, i.e., av,t = 1 if vertex v is

linked to vertex t, and av,t = 0, otherwise. M(v) is

a set of neighbours of v and λ is a constant. [211].

KATZ Centrality For each node i, KATZ Centrality xi =

α
∑

j Aijxj+β, where A is the adjacency matrix of

Graph G with eigenvalues λ. β controls the initial

centrality and α < 1
λmax

[211].

Page Rank PR(Pi) =
(d)
n
+(1−d)×

∑
lj,i∈E

PR(Pj)

Outdegree(Pj)
, where

d(DampingFactor) = 0.1 0.5, Pi is the Page Rank

of node i and n is total number of nodes. [195].

Group of vertices

(sub-networks)

A network G1 = (V1, E1) is called a sub-network

of a network G(V,E) if V1(G) is a subset of V (G)

and E1(G) is a subset of E(G) such that each edge

of G1 has same end vertices as in G. [47].

Clique A clique, C, in an undirected graph G = (V,E) is

a subset of the vertices, C ⊆ V , such that every

two distinct vertices are adjacent. [133].

k-plex Let G(V,E) be a graph. Then a subset S of V is a

k-plex in G if degG[S](y) is at least |S|−k for every

v in S, where V is the set of vertices, S is a subset

of vertices and k is the number of plexes. [14].
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k-core A k-core of a graph G is the maximal sub-graph

H ⊆ G, such that δ(H) ≥ k, where σ(H) is the

minimum degree of sub-graph H and k is any in-

teger number [188].

Global Clustering Co-

efficient,

C = (NumberofTriangles)×3
NumberofConnectedTripletsofNodes

, where C is

Global Clustering Coefficient, Triangle is a set of

3 nodes, Connected Triplet is a connected Trian-

gle [133].

Local Clustering Coef-

ficient

C(vi) = NumberofPairsofNeighboursofvithatareConnected
NumberofPairsofNeighboursofvi

,

where C(vi) is the Local Clustering Coefficient of

node vi [213].

Redundancy Coeffi-

cient

rc = |u,w⊆N(v),∃v ‘̸=v,(v ‘,u)∈Eand(v ‘,w)∈E|
|N(v)|(|N(v)|−1)

2

, where rc is

the Redundancy Coefficient of the node v, N(v) is

the set of neighbours of v in a graph G [153]

Reciprocity r = 1
m
Tr(A2), where r is Reciprocity of the graph,

and Tr(A2) =
∑n

i=1 Ai,i and m is the number of

edges in the network [155].

Similarity (Structural

Equivalence)

ni,j = |N [i] ∩N [j]| =
∑

k ai,kak,j = a2i,j, where ni,j

is the count of common neighbours of the nodes i

and j [60].

Similarity (Regular

Equivalence)

σi,j = α
∑

kl aikajlσkl, where σi,j is the product of

the counts of the common neighbours and their

neighbour’s common similarity σkl [79].

Cosine similarity cosα =
ni,j√

degi
√
degj

, where ni,j is the number of com-

mon neighbours of the nodes i and j [185].

Pearson Correlation

Coefficient,

ri,j =
cov(ai,aj)

var(ai)2
, where ri,j is the Pearson Correla-

tion Coefficient [18].
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Euclidean distance d(vi, vj) =
√
(vi − vj)

2, where vi are the number

of neighbours of vertex i and vj are the number of

neighbours of vertex j [3].

From Table 2.1, we see all the network structural measures that are in use for

the complex network analysis. In the context of this thesis, we use, many network

structural measures, including, number of nodes, number of edges, network density,

closeness centrality, degree centrality, betweenness centrality, eigenvector centrality,

number of communities and community density. We use these measures later on, to

rank driver nodes to form an optimal seed set, that can spread influence efficiently

and effectively.

2.2.2 Network Models

One way to gain a deeper understanding about the structure, properties, and phe-

nomena occurring in the real-world networks is to construct models of the underlying

structure of a network and run controlled experiments over networks generated using

those models. The models that can mimic the patterns existing in a real network

help us understand the implications of these patterns [153].

Basic and well-known examples of complex network models are random models

which include e.g. Erdős and Rényi model [45, 46], small world models [216], and

scale free models [1]. Although those models are not very realistic, they enable to

investigate some of the real-world phenomena, such as rich get richer (scale-free net-

works) or friend of a friend is my friend (small-world models). The network models

descrbied below are used in this thesis because these are well-researched models in

the network science community. Also, Erdős and Rényi model is used as the baseline.

• Erdős and Rényi model. It is a model in which some specific set of parameters

is given fixed values but the generated network is random in all other respects.
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One of the simplest examples of a random network is when the number of

vertices n and the number of edges m are fixed. It means that we randomly

place m edges among n vertices [46]. Alternatively, we can fix the number

of nodes n and probability p that indicates the probability that edge will be

created between any randomly chosen pair of nodes [62]. Random networks

feature small average path, low clustering coefficient and Poisson node degree

distribution for large n. There are two variations of the Erdős–Rényi random

network. First is G(n,M) model, where a graph is chosen uniformly at random

from the collection of all graphs which have n nodes and M edges. Second is

where G(n, p) model is used, where a graph model is constructed by connecting

labelled nodes randomly. After that each edge is included in the graph with a

probability p, independently from every other edge.

• Small World model. In a small-world network majority of nodes are not neigh-

bours of one another and the neighbours of any given node are likely to be

neighbours of each other. It results in a structure in which majority of nodes

can be reached from every other node by a small number of steps. A well-known

example of small world model is the Watts-Strogatz model [216]. Mathemati-

cally a small-world network is defined as a network where clustering coefficient

remains high when the average distance L between two randomly chosen nodes

grows proportionally to the logarithm of the total number of nodes N . Such

that L ∝ logN . The degree distribution is similar to this of random graph [216].

• Scale Free model. It is a network in which node degree distribution follows

a power law distribution. It means that a network will include many nodes

with small node degree and few nodes (a.k.a hubs) with very large number of

connections. One of the very well known ways to generate scale free network is

Barabási–Albert model [1]. Mathematically, a scale free network is the fraction

P (k) of nodes in the network that has k connections to other nodes which goes
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to the larger values of k such that P (k) k−γ [162].

There are many other network models that exist and the field is a very intensively

researched and we refer interested readers to the surveys [52, 66] and [212].

2.2.3 Tasks on Network

There are several reasons for which complex networks are a useful representation

of the underlying connected data. Various tasks on complex networks allow us to

understand the structure and dynamics of complex networks in greater detail. Some

of the most frequently explored tasks are explained below.

• Node Classification: it is related to the prediction of a class to which a node

belongs to. For example in the telecom churn prediction we may be interested

in assigning a customer to one of the classes: one class if a customer is predicted

to churn and another if not [153, 165].

• Link Prediction: to identify if two nodes are likely to be linked together or not,

for example friend recommendation on Facebook ∗ [153, 165]. Dynamic link

prediction is an extension of link prediction where various snapshots are used

to train, validate and test [189].

• Community Detection: It is defined as the structural similarity between pair of

nodes and pair of networks, for example to identify functional modules of the

neurons [153, 165].

• Resilience: It is defined in terms of measuring the failure and recovery of net-

works [125, 153].

• Control: The ability to influence a complex network, such that to alter its

output in a desirable outcome by driving the inputs [98].

∗www.facebook.com
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• Influence: Influence as a weaker form of control can be defined as the number

of nodes that are activated by a specific number of seed set nodes using an

influence reading model, such as Linear Threshold Model [103].

• Controllability: Controllability is the ability to control a given system to some

extent. Furthermore, a system is called a controllable system, if by selecting

suitable inputs of external signals we can drive the system from any initial state

to any desired final state in a finite period of time. [98]

• Spreading processes: Dynamical processes over complex networks cover a range

of applications from phase transitions and synchronisation in networks, through

walking and searching on networks, to epidemics spread and collective behaviour

enveloping social influence, rumour and information spread as well as opinion

formation [154, 6, 153, 21].

This thesis is about bringing together, control, controllability and influence in

complex networks. A background of control, controllability and influence of complex

networks is presented in next sections.

2.3 Background of Control, Controllability and Influence of

Complex Networks

Traditionally, control of complex systems has been done using control theory but

now due to the emergence of complex networks, there are Structural Controllability,

Exact Controllability, and Physical Controllability frameworks, and research in this

area has recently attracted a lot of attention [124, 239, 153, 1, 194, 234, 196, 74, 222,

40, 96, 126, 165]. These frameworks suggests controllability conditions which needs

to be satisfied for a complex network to be able to be controllable. Once a network is

controllable it can be controlled by using control inputs. This has been explained in

greater detail in the coming sections. The term “control” is frequently used in many
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disciplines and in various aspects. The kind of control we come across regarding

the complex networks has its roots in the control theory which is a highly developed

interdisciplinary branch of engineering and mathematics [8]. While the control is able

to change the behaviour of the system in some respect, controllability is the ability

of a system to be controllable to some extent. Some systems are partially while

other can be fully controllable [124]. A key notion in control theory is the feedback

process. The difference between the actual and desired output is applied as feedback

to the system’s input, forcing the system’s output to converge to the desired output.

Feedback control has deep roots in physics and engineering [137].

Previously, some models/methods have been proposed for the controllability and

control in the complex networks related to specific domains, like interbank net-

works [40], protein interaction networks [222], and biological networks [74, 222, 40,

96, 126, 165, 139, 205, 210, 129]. One of the pioneer models/frameworks is based

upon structural controllability [234, 126]. Other frameworks are based on exact con-

trollability [231] and physical controllability [209]. One of the tasks mentioned in the

previous section is network control and controllability. Control and controllability are

interrelated, as the system needs to be controllable in order to be controlled. This

section gives an introduction and background to the concepts of both the ability to

control and influence the complex networks.

2.3.1 Control in a Complex Network

Control theory is a mathematically highly developed branch of engineering with ap-

plications in electronic circuits [120] and generally in the field of physics and electron-

ics [137]. The term control is frequently used in various fields with diverse meanings,

but here, as the starting point, the control is defined in its mathematical sense in the

context of the control theory [82].

Control theory tells us how we can influence the behaviour of a dynamical system

with the suitable inputs so that the system’s output is able to follow a desired trajec-
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tory or reach final state in finite time. Thus, control is defined in terms of a state space

representation (time-domain approach), where a control system is described by a set

of inputs, outputs and state variables connected by a set of differential equations [98].

The state is defined as a mathematical entity that mediates between the inputs and

the outputs of a dynamical system, while emphasising the notions of causality and

internal structure[98]. Any state of a dynamical system can be represented as a vector

in the state space whose axes are the state variables.

For example, the centrifugal governor presented by Maxwell as shown in Figure

2.2, one of the first practical control devices, has been used to regulate the pres-

sure and distance between millstones in windmills since the 17th century and was

used by James Watt to maintain the steady velocity of a steam engine. The feed-

back mechanism relies on a system of balls rotating around an axis, with a velocity

proportional to the engine velocity. When the rotational velocity increases, the cen-

trifugal force pushes the balls afar from the axis. This results in opening valves so

that the vapour can get out. This lowers the pressure inside the boiler, slowing down

the engine. James Maxwell in 1868 has provided the first definitive mathematical

description of the centrifugal governor used in Watt’s steam engine. This is one of

the best known feedback control mechanisms in use today [137]. When the need to

design controlled engineered systems has emerged, the mathematical control theo-

retical tools were developed, which are today widely applied in the design of electric

circuits, manufacturing processes, communication systems, air-planes,spacecrafts and

robots [124].

Complex networks are dynamical systems so to control them, we need to apply

a set of inputs (control actions) to selected nodes and monitor how the network

behaviour changes in response to these inputs. The feedback from that observation

will allow us to check how far we are from the desired output and undertake corrective

action if necessary. In general, a typical control over a complex network requires three

steps.
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Figure 2.2 : Centrifugal Governor. Picture taken from: [137]

Step-1: Generate a model of a complex network (usually in a form of adjacency matrix

that can be visualised as a graph) which is a representation of a given complex

system.

Step-2: : Carry out a quantitative description of the dynamical laws that govern the

temporal behaviour of each component.

Step-3: : Acquire an ability to influence the state and temporal behaviour of a selected

subset of the components [124].

Some frameworks have been proposed to control complex networks related to specific

domains, like interbank networks [40], protein interaction networks [222], and biolog-

ical networks [74] [129]. However, it still becomes an open problem as to when and

how the networks can be controlled in the real world scenarios. Especially challenging

are social networks in which components are people and modelling their behaviour

and its dynamics are inherently hard problems. Here are a few real life examples as

how control can be applied in a real complex network.

1. Control from epidemic spread: Since the spread of coronavirus from the start

of the year 2019 and up until now. Many countries have adapted a set of mech-
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anisms to control its spread. This control is achieved after putting on a few

restrictions and rules [161] [95]. So, we can say, that the restrictions and quar-

antine time are the control signals that can limit the spread of a pandemic. To

control the spread of deadly viruses by imposing restrictions is not new. During

1918 Spanish flu spread with no vaccine to protect against influenza infection

and no antibiotics to treat bacterial infections. To control its spread worldwide,

some rules such as isolation, quarantine, good personal hygiene, use of disinfec-

tants and limitations of public gatherings were enforced [143]. So, these control

mechanisms were unwritten in some places as well as legally enforced in others,

to control a complex system of virus spread. These mechanisms were found

successful in those times and still relevant in recent pandemic incidents as well.

2. Influence people to change their behaviour: One of the important form of control

is influencing the people in changing their behaviour. It is not the hard control

but it has some proven effects. For example installations of speed cameras

on highways are a major influence for a driver to slow down, where they will

drive without concern for over-speed. Existing research consistently shows that

speed cameras are an effective intervention in reducing road traffic collisions

and related casualties [168].

3. Influencing people’s habits by effective marketing: Driving the masses towards

using a new product has always been a challenging task for organisations. One

of the effective and efficient way to change people’s opinions and habits in using

a certain product is through marketing or advertising. The use of billboards

on busy highways, TV commercials and push advertisements on social media

websites such as YouTube† are very commonly used mechanisms in this regard.

Nowadays, due to effective marketing and advertisement of the adverse effects

of the use of plastic based products on the environment, many companies are

†www.youtube.com

www.youtube.com
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attracting customers towards their organic products that produce zero to min-

imal carbon footprints. Changing people’s habits from plastics to organically

build materials could not have been possible without thorough marketing [28].

2.3.2 Controllability of Complex Networks

In this section, controllability of complex networks is described. We also learn that

if a complex system is controllable at all. In order to find out control mechanisms

for complex networks, we need to look into the structures of complex networks, if

those can be controlled or not. The knowledge gained from the literature worked

as a building block for further research on network structural measures and how

different network structures are easier to control or not. Controllability is the ability

to control a given system. For example, like a driver is assisting a car to move with

the desired speed and in the desired direction by manipulating the pedals and the

steering wheel [125].

Always, before applying control mechanisms, we analyse if it is at all possible to

control a system. It means that we need to quantify the ability to steer a dynamical

system to a desired final state in a finite time [137]. For example the act of balancing

of a stick on our hand. We know from our experience that this is possible, suggesting

that the system must be controllable [39].

Considering the controllability of complex systems there are two independent fac-

tors that contribute towards it. Both factors have a level of complication, which

limits the advances in this field. One is the system’s architecture, represented by the

network encapsulating how the components interact with each other; and second one

are the dynamical properties that depict the time-dependent interactions between the

components. Hence, the controllability can be achieved only in the systems where

both these perspectives are taken into account, for example, as it has been done in

the case of control in biological networks [222]. Recent advances towards quantify-

ing the topological characteristics of complex networks [194] [220] [154] have shed
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light on the role of system’s architecture in its controllability. Dynamical change of

links and nodes pose another challenge in understanding the control in complex net-

works [117] [88] [87] [113] [136] [202]. When the new components (nodes/edges) are

added or deleted, they can completely change the control paradigm. So, there is a

need to research in finding the efficient solutions to control the links/nodes dynam-

ics [118].

2.3.2.1 Quantifying Network Controllability

Network Controllability is quantified by using the traditional controllability conditions

of complex systems. However, the complex networks we encounter in real life are not

linear in nature. So, the controllability criteria defined for a complex linear system

does not apply completely on a real life complex network. Initially, the controllability

conditions defined for real life complex networks required them to be converted into

a Linear Time Invariant (LTI) Systems first. So this section discusses the network

controllability with respect to when a complex network is represented as an LTI

system.

Linear Systems A linear system satisfies the property of linearity. Linearity

is defined as differential equation of the relationship between input and output of

the system. These differential equations should be utilising only linear operators. A

system is linear if it satisfies the following two conditions.

• Additivity is represented by Equation 2.1

• Homogeneity is represented by Equation 2.2

If x1(t) −→ y1(t) and x2(t) −→ y2(t), then x1(t) + x2(t) −→ y1(t) + y2(t) (2.1)

If x1(t) −→ y1(t) , then a(x1(t)) −→ a(y1(t))

Where a is a constant
(2.2)
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The additivity and homogeneity can be combined to form the principle of super-

position, which implies as Equation 2.3. A system is linear if and only if it satisfies

the principle of superposition [99].

(a1(x1(t))) + (a2(x2(t))) −→ (a1(y1(t))) + (a2(y2(t)))

Where a1 and a2 are constants
(2.3)

Linear Time Invariant Systems (LTI) An LTI system satisfies two properties,

one is linearity and other one is time invariance. Linearity has been defined before

in Section 2.3.2.1. Time-invariant is defined as the property of a system where the

output does not depend on a specific time t when the input is applied [163]. For

example, irrespective of the time when the input is applied the output will remain

the same. That is, if the output due to input x(t) is y(t), then the output due to input

x(t− T ) should be y(t− T ), where t is the current time and T is the time difference

when the next input is applied. Such a system is time-invariant. Any system that

can be modelled as a linear differential equation with constant coefficients is an LTI

system. A very famous example of an LTI system is an electronic circuit constructed

of capacitors, resistors and inductors [163].

A significant body of work in control theory focuses on linear systems, and linear

time invariant (LTI) systems [97]. By looking into the dynamics of complex networks,

we are able to define and quantify their controllability.

Let’s look at the linear time-invariant control system (A,B):

ẋ(t) = fA(t)x(t) + B(t)u(t) (2.4)

where the vector x(t) = (x1(t), ..., xN(t))
T captures the state of a system of N nodes

at time t. For example, xi(t) can denote the amount of traffic that passes through

a node i in a communication network or transcription factor concentration in a gene

regulatory network. The (N × N) matrix A describes the interconnections between

the nodes, for example the traffic on individual communication links or the strength

of a regulatory interaction in genes. B is the (N ×M) input matrix that identifies
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Figure 2.3 : Kalman Rank Condition; Adapted from [76]

the nodes controlled by an outside controller. The system can be controlled using

the time-dependent input vector u(t) = (u1(t) , ... uM(t))T imposed by the controller

, where in general the same signal ui(t) can drive multiple nodes. If we wish to

control a system, we first need to identify the set of nodes that, if driven by different

signals, can offer full control over the network. These are called ‘driver nodes’. The

researchers have worked on finding the minimum set of driver nodes denoted by ND,

whose control is sufficient to fully control the system’s dynamics.

The system described by Equation 2.4 is said to be controllable if and only if the

matrix C Equation 2.5 has full rank Equation 2.6.

C = [B,AB,A2B, ..., AN−1B] (2.5)

rank(C) = N (2.6)

This represents the mathematical condition for controllability, and is called Kalman’s

controllability rank condition [98]. Below is an example of Kalman controllability

rank condition and how it is calculated.

2.3.2.2 Controllability Criteria: Kalman Rank Condition

A condition for structural controllability is the Kalman rank condition as traditionally

described [98] for linear time-invariant systems [97] represented by the Figure 2.3.

In order to calculate the Kalman Rank condition in the Figure 2.3. Matrix A

represents the adjacency matrix of the a complex network, while matrix B is the input
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vector (containing the nodes randomly chosen as to which the control signals would

be applied in order to control the network) that is the nodes controlled by an outside

controller. C is the controllability matrix whose form is given in Equation 2.5. We

calculated the dot product B ·A, and then reduce it to the echelon form by performing

row operations to calculate the rank of the final matrix C. Since the rank of the matrix

C is equal to the number of nodes N in the complex network as shown in Figure 2.6,

we infer that the network is controllable.

2.3.2.3 Structural Controllability

The Structural Controllability proposes that, if there are no cycles in the complex

network, a variable (or node) can control at most one of its neighbours in the struc-

tural interaction graph [126]. The effect or influence from an intervention on a node

disseminates along the main directed path(s), where the number of necessary paths

to cover the network dictates the minimum set of driver variables [126]. Cycles are

considered to be self-regulatory and do not require an external control signal. Differ-

ent algorithms have been proposed that can be used to identify the minimum driver

nodes set. The most commonly used algorithm is maximum matching algorithm [53].

Traditionally structural controllability required a controllability condition to as-

sess the controllability of a complex network, and that condition is known as Kalman

Rank Condition [120], which has been described earlier in the Section 2.3.2.2.

Figure 2.4 shows how initial structural controllability paradigm which is equiv-

alent to the Structural Controllability Framework (SCF) adapted for LTI systems.

The advent of structural controllability framework for LTI systems is ground break-

ing as it eliminates the need to calculate the Kalman rank condition. The workflow

within a general structural controllability framework for LTI systems is shown in

Figure 2.4. The figure also shows the research landscape of the methods employed

in different steps to define controllability and control over a complex network. To

select a minimum number of driver nodes there are ranking mechanisms that can
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Figure 2.4 : Structural Controllability of Complex Network

rank the nodes that have more potential to become driver nodes given that they

are connected to more nodes directly or indirectly. The details of the methods used

in identification and ranking of the driver nodes are described in the further sec-

tions. Structural Controllability for LTI systems defined by [126], tells that in order

to control the network we can find the minimum number of driver nodes, without

actually calculating the Kalman rank condition. So the condition of finding the set

of minimum number of driver nodes is actually equivalent to assessing a system’s

ability to be controlled previously done by using Kalman rank condition. It is hard

to numerically verify Kalman’s rank condition using fixed weights for a large net-

work. The rank(C) provides an idea of the controllable subspace of the system. The

system is not completely controllable if rank(C) < N , it means that system can be

decomposed into a controllable subsystem and an uncontrollable subsystem through

a linear transformation [90]. This means, we can actually control a part of system
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which is called partial structural control. This is only a necessary test to be able to

tell about structural controllability of a network but it is not a sufficient one because,

practically it is really hard to convert a very large complex network into an adjacency

matrix because we do not know all the weights of the edges in a network in case of

a real world complex network which can grow infinitely, this poses a limitation when

assessing the controllability of very large complex networks. Structural control, as

described by [126] offers a framework to systematically avoid this limitation that was

there in traditional structural control theory [120]. SCF leaves us with just finding a

minimum number of input driver nodes that are needed to maintain full control of the

network and is determined by the maximum matching in the network. Given a graph

G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no

two edges share a common vertex [53]. We gain full control of the directed network

if and only if we directly control each unmatched node and there are directed path

from the input signals to matched nodes [126].

In Figure 2.5 we present a graphical interpretation of the structural controllability

framework as proposed by [126]. The unmatched nodes in Figure 2.5 are the driver

nodes that are controlled by a control input signal. And these nodes in response can

control each directed path to the matched nodes.

Structural Controllability Observations Here are some important deductions

from the research work related to structural controllability framework.

1. A fundamental result from structural controllability states that the linear struc-

tured control system (A,B) is structurally controllable if and only if the control-

augmented graph G(A,B) is spanned by cacti. A cacti is a connected graph

where any two simple cycles in the graph have at most one node in common.

Finding these cacti is equivalent to confirming the irreducibility condition on

[AB], since the cacti is a minimal structure such that removing any edge will

render the system uncontrollable.



35

Figure 2.5 : Structural Controllability[126]
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Figure 2.6 : Network with Input Vector: adapted from [178]

2. A node is inaccessible if there is no directed path reaching the node from any

of the input nodes. Inaccessible nodes are nodes that are simply not reachable

from the input nodes, hence it is not possible to exert a controlling influence

over them.

3. A dilation exists in the graph G(A,B) if a subset of nodes in G(A), called S, can

be found such that the number of nodes in the inbound neighbourhood set of

S, given by |T (S)| is smaller than the number of nodes in S, given by |S|. The

inbound neighbourhood set of S is the set of nodes with directed edges into S.

Dilations imply an expansion in the network whereby there is not a sufficient

number of independent inputs to control all nodes in S. There are at most

|T (S)| independent controls leading into S and |T (S)| < |S|. The existence

of cacti that span the graph G(A,B) relies upon the control-augmented graph

having no inaccessible nodes and no dilations.

4. Thus, the system (A,B) is not fully structurally controllable if and only if it

has inaccessible nodes or dilations [178].

In order to achieve control over a complex system we need to represent it in a

form of a network which can be represented in a form of a graph to which we apply

the procedure presented above. Consider the Figure 2.6 for an example network.

The small network represented in 2.6 can be controlled by an input vector u,
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allowing us to move it from its initial state to some desired final state in the state

space.

2.3.3 Influence in Complex Networks

In this section, an overview of influence in complex networks and influence models is

presented. Dynamical processes over complex networks can be used to create various

events such as phase transitions and synchronization through walking and searching

on networks, epidemics spread and collective behaviour that expand beyond social

influence, rumour, information spread and opinion formation. Spread over a complex

network, including its structural measures and dynamics have always been a potential

area of research [21]. Social networks play a vital role in spreading ideas, behaviours

and information. For example, medical and agricultural innovations can spread across

the whole world [172], and information about new gadgets can spread via word of

mouth or viral marketing [103]. Studies have observed different human emotional

responses to real-life situations spreading across various social networks, such as hap-

piness [54] and hate [171]. These processes are known as information diffusion and

have traditionally been studied in the social sciences by [69] and [78]. In recent times,

on the basis of initial information diffusion processes, many researchers have explored

their applications in social network marketing [103] and recommender systems [160].

Spreading models are widely used to simulate the propagation of information, influ-

ence, opinion, content, and virus over a complex network to see how many nodes

can be affected, and how fast they can be affected when different approaches are

used [103]. Many models exist that implements the diffusion process to guide the

public health measures by using epidemic models [104], for opinion formation by im-

plementing voter models [35], and information diffusion by Independent Cascade [67],

and Linear Threshold Model (LTM) [69, 78]. The two vital parts of spread analysis

over a complex networks are the model of spread (diffusion model) and structure over

which the propagation will take place. A large number of models exists and have
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been widely studies for that reason. Some examples are susceptible-infected (SI)

susceptible-infected-susceptible (SIS), susceptible-infected-recovered (SIR) or thresh-

old based models [69, 67, 166]. Diffusion models have been studied for many decades

in epidemiology [104] and opinion dynamics [85]. The two most popular models for in-

formation diffusion in social networks are the Linear Threshold Model (LTM) [69, 78]

and Independent Cascade (IC) Model [67]. These models have been used in diffu-

sion prediction [191], influence maximisation [103], and estimating parameters for

Independent Cascade models [184, 17]. For this research, we use LTM for influence

spread in synthetic as well as real social networks. The same model is used across all

the experiments to enable comparison of results across the whole study. Spreading

process of LTM is similar to that of the infectious disease spread such as coronavirus.

There is also a close proximity of information spread on social networks and infectious

disease spread. For example active/inactive nodes in LTM model can be regarded as

infectious/susceptible persons in an infectious disease spread process [227]. Regard-

less of the spreading model, at the beginning we need to select at least one node as

a seed node which starts the spreading process. We can do it at random, like in the

case of epidemic models, or we can use some heuristics. Some of the most commonly

used methods, where top ranked influential nodes are selected, are Degree Centrality,

Betweenness Centrality, Closeness Centrality, PageRank, LeaderRank, ClusterRank,

K-Shell, Hill-climbing, HITS, ARL and Social Position [4, 146, 49] (see Section 2.5).

Below we discuss these two models in detail.

2.3.3.1 Independent Cascade Model (ICM)

The main idea behind ICM is a common phenomenon defined in the field of be-

havioural economics and network theory, which occurs when a number of people

make the same decision in a sequential order [67]. An information cascade model

works in two steps: (i) first step is that an individual must encounter a scenario with

a decision (yes or no) only then a cascade can begin; (ii) second step includes outside
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Figure 2.7 : An example illustrating the cascade diffusion process in the Independent

Cascade Model in a network of n activated nodes with independent cascade p1 = p2

factors, that can influence this decision [44]. In ICM, an active node u attempts to

influence all of its inactive neighbours but the success of the node u in activating

its inactive neighbour v depends on the activation probability (a.k.a. propagation

probability) of the edge from u to v (each edge can have its own value and the value

u → v can be different from v → u). Regardless of its success, the same node will

never get another chance to activate the same inactive neighbour. The process ends

when no further node gets activated.

Quantifying Independent Cascade Model In the Independent Cascade, each

recently activated node n will advance in activating each currently inactive neighbour

m with a fixed probability p, which is a global property of the system. p is equal

across all edges n→ m; when node n has more than one neighbours, the attempts at

activation are sequenced in a random order.

As an example, for the simple network in Figure 2.7, in which A0 = {n}, the

model has p1 = p2 = p and, at time t = 1, nodes m1 and m2 are equally probable to

become active. Given p = 0.5, the expected size of the set of active nodes at the end

of the cascade propagation process is 2; this count includes the seed node n itself.

Another cascade model, Weighted Cascade, is a variation of ICM, such that it assigns

non-uniform probabilities of activation to the edges: an edge n→ m has probability:

1

in− degree(m)
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of activating m when n is itself active. It simply means that, unlike for the Inde-

pendent Cascade model, the expected number of neighbours which will succeed in

activating any node equals 1 through weighted cascade [24].

2.3.3.2 Linear Threshold Model (LTM)

In LTM the idea is that a node becomes active if a sufficient part of its neighbourhood

is active. Each node u has a threshold t ∈ [0, 1]. The threshold represents the fraction

of neighbours of u that must be active in order for u to become active (e.g., how

many of our friends have to switch to iPhone to push us to switching as well). At

the beginning of the process a small percentage of nodes (seeds) is set as active in

order to start the process. In the next steps a node becomes active if the fraction of

its active neighbours is greater than its threshold [38] and the whole process stops

when no node is activated in the current step. According to LTM, nodes can only

become activated as activated neighbours increase. In practice, node thresholds are

implemented by considering random or uniform thresholds [197] even though the

propensity to be influenced can vary from individual to individual [201]. The linear

threshold model (LTM) postulates that the thresholds are constrained by a linear

relation to each other and therefore are completely defined by the first threshold t0

and the linear increase δ as the sequence progresses [103]:

ti + 1 = ti + δ.i. (2.7)

Quantifying Linear Threshold Model Let G = (V ;E) denote an attributed

social network, where V is the set of nodes and E is the set of edges between nodes.

If two nodes v, u ∈ V are connected by an edge, then (v, u) ∈ E, denotes an edge from

v to u. Define the set of neighbours of v to be N(v) = {u : u ∈ V ; (u; v) ∈ E}. Each

node v ∈ V has an observed m − dimensional vector of attributes, Xv, unobserved

characteristics, Uv, and an outcome of interest Yv ∈ {0, 1}, which is a binary indicator

of whether the node is activated (e.g., whether an individual has donated to animal
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Figure 2.8 : An example illustrating the information diffusion process of the Linear

Threshold Model, where node A and node B are activated.

charity). We define the set of activated nodes at time t to be Dt = {v : Yv = 1}.

According to the Linear Threshold Model (LTM), each node v has an activation

threshold θv. Given an initial set of activated nodes, D0 ⊆ V , diffusion occurs in

discrete steps, t = 1, 2, ...T . In each time step t, a node v ∈ V \Di is activated if the

activation influence, the weighted proportion of its activated neighbours, reaches the

node’s threshold θv: ∑
u∈N(v)

wuvY
t−1
u ≥ θv (2.8)

where wuv is the normalised influence weight of neighbour u on v. According to

LTM, nodes can only become activated as activated neighbours increase [197, 201].

For example, Figure 2.8 shows an illustration of a Linear Threshold Model, where

nodes represent friend of friends circle in a social network. Initially, node A and node

D are activated. Each node has their own threshold for example θA = 0.3 means

A’s threshold is 0.3). The initial set of activations are the friends who have donated

to an animal charity, which consists of two friends: D0 = {A,D}. Assuming equal

weights, A will donate to an animal charity in the first time stamp since one of its

three friends D has donated to the said charity. No one else will be able to donate to
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the charity in subsequent steps, since D’s threshold is 1 and C’s threshold is 0.6.

2.3.3.3 Variations of IC Model

Introduction of two cascades evolving simultaneously is another extension of basic IC

model. In [25], they introduced a multi-campaign IC model. They further studied

this idea of competing campaigns, in which the good campaign counteracts the effect

of a bad campaign in a social network [25]. Different variations of IC Model involve

time delay and time-critical constraints for influence diffusion. One such variation is

described in [31], which proposes an extension to an IC model with meeting events,

called IC-M model. IC-M model, works by assigning probabilities to the activated

node so that these nodes can meet the inactive node. Compared to the basic IC

model, the results from this model are more realistic and closer to actual situation, the

only downside is the high execution time [31]. Another such research work adopted

a novelty decay into the IC model [51]. Their findings suggest that the repeated

exposures have reduced influence on users, hence development of a propagation path-

based algorithm to assess the influence spread of seed nodes is a more feasible option.

In this algorithm, there are two values on each edge of a social network, one is influence

probability and other one is expected influence delay time [51]. In [140], researchers

have thought about important time and trust factors. They managed to propose a

trust-based latency-aware independent cascade (TLIC) model. In the TLIC model, a

node can change its state (active or inactive) with different probabilities for a trusted

neighbour node than for a distrusted neighbour [140].

2.3.3.4 Variations of LTM Model

A variation to LTM is the use of Structural Causal Model (SCM) [167] to estimate

individual thresholds in the LTM. In another research work competitive influence

diffusion has been analyzed in different models that are based on general LTM [16].

In [141], they proposed a delayed LTM. In delayed LTM, nodes are supposed to
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have three states (i.e., active, inactive and latent active). In order to change the

state from inactive to active, a node must be in a latent active state first. The

results of the diffusion process of delayed LTM are better than traditional LTM,

however the cost of accommodating a new node state is comparatively higher [141].

In [123], they considered the containment of competitive influence diffusion in social

networks. The proposed extension to LT model, is about constructing the diffusion-

containment (D-C) model, and traditional LT model is not applicable in case where

both the diffusion and the containment of the influence are the main concerns. In

this model, a node’s state is defined as the activation probability which means, each

node is only influenced by a neighbour with a higher probability, and the sum of

the probabilities of possible node states is not greater than 1 [123].One of the most

recent works has introduced methods for estimating heterogeneous treatment effects

in networks [72]. Another extension to LTM is about calculating heterogeneous peer

effect estimation and developing a structural causal model to identify and estimate

peer effects. The two algorithms, developed for individual threshold estimation, are

based on causal trees and causal meta-learners. The results on complex networks

show that our proposed models can better predict individual-level thresholds in the

Linear Threshold Model, these newly estimated thresholds help in predicting, which

nodes will get activated over time [201].

2.4 Methods for Selecting Driver Nodes

Any network can be fully controllable if we control every single node but this is a very

costly approach that in many cases is not feasible. Thus, the criteria of structural

controllability of a complex system have been defined by determining the minimum

number of driver nodes needed to control the whole system. To identify those nodes,

the maximum matching algorithm was proposed and developed [89]. We can use

different algorithms to find the maximum matching set of driver nodes in a bipartite

graph, such as the Hopcroft-Karp algorithm [89], the Ford-Fulkerson algorithm [53],
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Figure 2.9 : Maximum Matching Algorithm, Adapted from [89]

and Hungarian algorithm [109]. Below is a description of how to find a set of driver

nodes which are able to control the network. Although, if these nodes are physically

able to control the network is yet to be seen [209].

2.4.1 Maximum Matching: Hopcroft-Karp Algorithm

Hopcroft-Karp algorithm [89] assumes a system is represented as a bipartite graph [81].

Maximum matching set is a maximum number of edges, no two of which meet at a

common vertex [89]. A step by step process of finding a maximum matching set M

is given below:-

1. Initialize Maximal Matching M as empty.

2. While there exists an Augmenting Path p

3. Remove matching edges of p from M and add not-matching edges of p to M

4. This increases size of M by 1 as p starts and ends with a free vertex

5. Return M.
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The graph G(V,E) is bipartite, if the set of vertices V can be partitioned into two

sets, X and Y , such that each edge of G joins a vertex in X with a vertex in Y . An

element of X will be called a ’xi’, and an element of Y , a ’yi’. Given a matching M ,

a node that is not part of matching is called free node. Initially all vertices as free

nodes. In Figure 2.9, in second graph, x2 and y2 are free. In third graph, no vertex is

free. Given a matching M , in the first step of the Maximum Matching algorithm, a

maximal vertex-disjoint set of shortest augmenting paths relative to M is found. All

single edge paths that start and end with free vertices are augmenting paths. First

we assign directions to the edges of G in such a way that augmenting paths relative

to M become directed paths. This is done by directing each edge in E −M so that

it runs from a vi to a ui, and each edge in M so that it runs from a xi to a yi as we

can see in the second graph of the Figure 2.9. Let M be a matching in a bipartite

graph G. In the next step, we extract a sub-graph from the initial graph, with the

property that the directed paths of the sub-graph running from a free yi to a free xi

correspond one-to-one to the shortest augmenting paths in G relative to M . In the

initial graph all single edges are augmenting paths, and we can pick in any order. In

the middle stage, there is only one augmenting path. We remove matching edges of

this path from the matching set M and add non-matching edges. In final matching,

there are no augmenting paths, so the matching is maximum [89, 240].

Unmatched nodes after applying maximum matching algorithm are called the

’driver nodes’. It is believed that these driver nodes can structurally control a complex

network [126]. Maximum matching denotes the largest set of directed links without

common nodes. That means, this set contains only node-disjoint directed paths, and

directed cycles. In a maximum matching, a node is unmatched if no link in the

maximum matching points at it [239]. The nodes of the original network that are

connected directly to one of the input signals are called driven nodes, and the nodes of

the input signals are called driver nodes. It is important to emphasise the distinction

between driver and driven nodes because one driver node may drive more than one
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driven node [152].

2.4.2 Ford Fulkerson Algorithm

Ford Fulkerson algorithm [53] is described as follows: as long as there is a path from

the source (start node) to the sink (end node), with available capacity on all edges

in the path, we send flow along one of the paths. Then we find another path, and so

on. A path with available capacity is called an augmenting path [37]. For example

let G(V,E) be a graph/network, for each edge from U to v, let c(u, v) be the capacity

and (f(u, v) be the flow. Maximal flow from the source s to the sink t can by find out

by using Ford Fulkerson algoirthm. The input to the algorithm is the graph network

G(V,E) with flow capacity c, a source node s and a sink node t. The algorithm

computes a flow f from s to t of maximum value. In the first step, flow f(u, v)→ 0

for all edges (u, v). The second step repeats with the condition to find a path p from

s to t in Gf , such that cf (u, v) > 0 for all edges (u, v) ∈ p. Where Gf (V,Ef ) is a

residual network, it means its capacity is cf (u, v) = c(u, v) − f(u, v) with no flow.

Under this condition, algorithm keeps finding the minimum capacity cf (p) and keep

repeating the following two steps for each edge (u, v) ∈ p:

1. f(u, v)← f(u, v) + cf (p) To send flow along the path.

2. f(u, v)← f(u, v)− cf (p) Flow might be returned later.

In second step, if no more paths can be found, s will not be able to reach t in Gf .

If S is the set of nodes reachable by s in Gf , then the total capacity in the original

network of edges from S to the remaining nodes in V is equal to the total flow, found

from s to t. This represents an upper bound for all such flows. Which means that

the flow, found is maximal [53, 41].
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2.4.3 Hungarian Algorithm

The Hungarian method finds a perfect matching in a Bipartite graph and a potential

such that the matching cost equals the potential value [23]. The Hungarian algorithm

can also be executed by manipulating the weights of the bipartite graph in order to

find a stable, maximum (or minimum) weight matching. This can be done by finding

a feasible labelling of a graph that is perfectly matched, where a perfect matching

is denoted as every vertex having exactly one edge of the matching. For example, a

barpartite graph G = (S, T ;E) with n worker vertices (S), n job vertices (T ) and

the edges (E). Each edge has cost/weight associated with it i.e, c(i, j). Hungarian

algorithm helps in determining the perfect matching with a minimum total cost.

Mathematically, we can define it as follows:-

Afunctiony : (S∪T )→ R is a potential if y(i)+y(j) ≤ c(i, j) for each i ∈ S.j ∈ T.

The value of potentially is the sum of the potential overall vertices
∑

v∈S∪T

y(v)

The cost of each perfect matching is at least the value of each potential: the total

cost of the matching is the sum of the costs of all edges; the cost of each edge is at

least the sum of the potentials of its endpoints; since the matching is perfect, each

vertex is an endpoint of exactly one edge; hence the total cost is at least the total

potential. The Hungarian method finds a perfect matching and a potential such that

the matching cost equals the potential value [110].

2.4.4 Minimum Dominating Set

An equivalent to Structural Controllability is the optimisation procedure for undi-

rected networks which can determine the minimum dominating set of nodes, which

are required to control the network [147]. Minimum Dominating Set (MDS) starts

from the assumption that each node can influence all of its neighbours simultane-

ously, but this signal cannot propagate any further. In it, the driver variables are

identified by the minimal set such that every variable is separated by at most one
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Figure 2.10 : Minimum Dominating Set (MDS) Model [149]

interaction [147, 148]. It has been used to identify control variables in protein interac-

tion networks [222] and characterise how disease genes perturb the Human regulatory

network [206]. Structural controllability assumes that only driver nodes can be con-

trolled through external signals. MDS tells us that each driver node can control its

associated edges independently. MDS further states that each non driver node is con-

trollable if it is at least adjacent to a driver node. Also MDS based controllability is

able to control the undirected network, and each node can control all of its outgoing

edges separately. To understand MDS first we need to look at Dominating Set (DS)

from graph theory. DS in a graph G is a set of nodes S (filled) in a graph G is a

dominating set if every node in G is either an element of S or adjacent to an element

of S [149]. The MDS approach states that a network is made structurally controllable

by selecting an MDS (driver set) because each dominated node has its own control

signal [147, 148], see Figure 2.10. A comparison of Maximum Matching (MM) and

Minimum Dominating Set (MDS) reveals that, MM results in minimum number of

driver nodes in Random Networks while MDS is more suitable to provide less number

of driver nodes in scale-free networks where hubs are present [149].

In Figure 2.10, the network is structurally controllable by selecting a MDS because

each dominated node has its own control signal. A maximum matching approach
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needs three driver nodes v1, v2, and v4, assuming a matching link from v1 to v3.

In contrast, the MDS only requires one node i.e, v1. The labels , (u1)
1, (u1)

2 and

(u1)
3 indicate control. The MDS model has been widely applied to the control of

complex networks, such as mobile ad-hoc networks (MANET), transportation routing,

computer communication networks [193, 83, 2, 100]. MDS model has also been applied

for the investigation of social influence propagation [102].

A greedy algorithm has been used to compare several types of artificial scale-

free networks to look into the size of an MDS. It has been found out that a partial

MDS set that dominates a fraction of nodes, exhibits the same scaling behaviour as

MDS [142]. In another research work the applicability of the MDS approach proposed

in [147] is demonstrated to the controllability of protein interaction networks. The

results showed that the MDS of proteins were enriched with essential, cancer-related

and virus-targeted genes. It means that, MDS protein set (of nodes) had a higher

impact on network resilience than other hub proteins [222].

2.4.5 Control Profiles

Understanding the control properties of a complex system requires not just know-

ing how many controls are needed, but also characterising the functional origin of

each control, because degree distribution correlation does not provide this informa-

tion. For example, a finance system or a protein interaction system might require

the same number of controls, but the structures within these networks can be very

different. So, to practically implement a control method on a network depends on

the interconnections of the control points as well [178]. Therefore, [178] describes,

that we can examine the breakdown of the origin of controls in terms of amounts of

source nodes, external dilation points, and internal dilation points for different classes

of real-world networks, as well as for widely used generative network models [178].

They also discovered that knowing the full degree distribution is often unnecessary

since, on average, the number of controls is dominated by only two points in the
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degree distribution: sources and sinks (i.e., nodes with in-degree = 0 or out-degree =

0, respectively) [178]. According to [178], control profiles of a complex network can

be calculated by the minimum number of independent controls (Nc) required for full

control of a complex network which is, the sum of the number of source nodes Ns,

external dilation points Ne, and internal dilation points Ni, given by the equation

below:

Nc = Ns +Ne +Ni (2.9)

A dilation is formed where a path is branched into two or more paths in order to

reach all nodes. Internal dilation is when a path is branched into two or more paths

within a network. External dilation is when a path is branched towards sink nodes.

The set of nodes can also be identified by maximum matching algorithm, as explained

earlier in this section. Maximum matching algorithm provides us with accurate results

but with expensive running time on large networks [178]. By counting source and

sink nodes in linear time, we obtain a relatively good lower bound on the number

of controls. In terms of time complexity, this approach is an improvement over the

maximum matching algorithm [178].

2.4.6 Preferential Matching

In [238] authors proposed to use preferential matching to find driver nodes. For a

directed network G, V (G) is the node set and E(G) is the edge set, where N = |V |

and L = |E|. A set of edges in G is called a matching M if no two edges in M have

a node in common. A node vi is matched by M if there is an edge in M pointing to

vi, otherwise vi is unmatched. A path P is said to be M − alternating if the edges

of P are alternately in and not in M. An M − alternating path P that starts and

ends at the unmatched nodes is called an M augmenting path. A matching with the

maximum number of nodes is called a maximum matching M∗. A matching M is

called a perfect matching if all of the nodes of G are matched by M . The minimum

input theorem [190] says that if there is a perfect matching in a network, the number
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of driver nodes is one, otherwise the number of driver nodes is equal to the number of

unmatched nodes with respect to any maximum matchings. The size of the maximum

matching M∗ is denoted by |M∗|. According to [238], the minimum number of driver

nodes is defined by the following Equation 2.10:

nD = max(N − |M |∗, 1) (2.10)

2.4.7 Finding Driver Nodes: Analysis

Table 2.2 shows a comparison of different methods which have been used to iden-

tify/select the set of driver nodes under structural controllability paradigm. The

table defines the methods, their main concepts and whether they have been used

with Linear Time Invariant (LTI) or Non-LTI complex systems.

Table 2.2 : Control Methods to Select Driver Nodes

Methods Definition and Main Concept LTI/Non-LTI

Maximum Matching

Algorithm

Maximum matching set is a maximum

number of edges, no two of which meet

at a common vertex. Set of unmatched

nodes in a bipartite graph are called

driver nodes. [89]

LTI Systems

Hopcroft-Karp Algo-

rithm

Identifying edges with the property

that no two edges share an endpoints.

Identification of the number of driver

nodes based on this algorithm is unde-

fined. [89]

Not used before
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Methods Definition and Main Concept LTI/Non-LTI

Ford Fulkerson Algo-

rithm

The maximum flow from the source

node to the sink node.Identification of

the number of driver nodes based on

this algorithm is undefined. [53]

Not used before

Hungarian Algorithm Hungarian method finds a perfect

matching of tight edges.Identification

of the number of driver nodes based on

this algorithm is undefined. [110]

Not used before

Control Profiles It is defined as the minimum number of

independent controls required for full

control of a complex network. Con-

trol profile is the sum of the number of

source nodes, external dilation points,

and internal dilation points. [178]

LTI Systems

Preferential Matching Identification of driver nodes by using

preferential matching. Before identify-

ing unmatched nodes, nodes sequence

is sorted by nodes degree in ascending

order. [238]

LTI Systems

Minimum Dominating

Set (MDS)

Each node can influence all the neigh-

bouring nodes simultaneously. Driver

variables are identified by the minimal

set such that every variable is separated

by at most one interaction. [149]

LTI Systems
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2.5 Methods for Selecting Seeds for Influence Spread

In this section, various methods for seed selection for influence spread in a network

are described. To initiate the influence process we need to select at least one node

as a seed node which will start the spreading process. We can do it at random,

like in case of some of the epidemic models [200], or we can use some heuristic to

select the most optimal seed set which meets our needs, e.g. the total number of

activated people will be the highest possible (advertisement campaign) or the total

number of activated people will reach some threshold within some period (presidential

campaign). Many different seed selection strategies have been developed to address

different challenges, constraints and requirements. A brief description of most often

used methods is included below.

2.5.1 Random Seed Selection (R)

In random seeds are selected Randomly from the node set of the network. Random

seed selection is the baseline method to be used in comparing other seed selection

methods.

2.5.2 Degree Seed Selection (D)

It starts by ranking the nodes according to degree centrality, and selecting a number of

nodes with the highest values of degree measure [130]. Degree Centrality is defined as,

the number of connections (degree) of a vertex in a network. An example can be, the

influencers on social network sites, such as on Instagram‡ who have many followers,

these people can influence other people because of a large number of social contacts

they contain. Mathematically, the node degree of node i is defined as, ki =
∑N

j ei,j,

where i is the focal node and j represents the neighbours of i. The node degree is a

fundamental indicator of a node’s importance in the study of complex networks [217].

‡www.instagram.com
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2.5.3 Closeness Centrality Seed Selection (C)

It dictates that a top percentage of number of nodes should be selected as seeds

based upon their higher closeness centrality values [130]. Closeness Centrality is

defined as the inverse sum of distances of a node to all other nodes in the network.

Closeness Centrality of a node or an individual person in case of social networks, can

be measured as, on average, how close or how far it lies from all other nodes in the

network. The nodes with lower Closeness Centralities are desirable candidates, that

are able to spread information because these nodes are closely connected to all other

nodes in the network [7].

C(u) =
n− 1∑n−1

v=1 d(v, u)
(2.11)

Mathematically, it is defined in the Equation 2.11. Which describes that the

Closeness Centrality of a node u is the reciprocal of the average shortest path distance

to u overall n−1 reachable nodes. Where d(v, u) is the shortest path distance between

v and u, and n− 1 is the number of nodes reachable from u [55].

2.5.4 Betweenness Centrality Seed Selection (B)

In this method a top percentage of number of nodes is selected as seeds based upon

their higher betweenness centrality values [130]. It is calculated by analysing that,

how often a node lies on the shortest path between any two pair of nodes in a network.

High betweenness centrality for nodes that have a high difference from other nodes’s

betweenness values suggests that the network has pockets of densely connected nodes

or communities. While, low betweenness centrality is an indication that the nodes of

the entire network are well connected to each other which could imply the absence of

well defined boundary structure for communities.

cB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

(2.12)

Equation 2.12, shows the betweenness centrality of the node v. Where V is the
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set of nodes σ(s, t) is the number of (s, t) shortest paths and σ(s, t|v) is the number

of those paths passing through some node v other than s, t [56].

Nodes with high betweenness centrality values are the ones that can form a con-

nection between different communities. These same nodes are able to influence nodes

from different communities increasing chances to influence more nodes in an overall

complex network [56].

2.5.5 Eigenvector Centrality Seed Selection

In this method, a top percentage of number of nodes is selected as seeds based upon

their higher eigenvector centrality values. Eigenvector centrality is a measure which

defines the importance of a node in a network. It is calculated iteratively on nodes

and where is assigned a relative score based on the idea that connections to high-

scoring nodes contribute more to the score of the node under observation than equal

connections to low-scoring vertices. A node is considered important if it is connected

to other important nodes implying that a node with high eigen-vector centrality

might not itself have high connections but relies on its neighbours to influence other

nodes. [11].

2.5.6 Kempe Seed Selection (K)

It is a generalisation of hill-climbing algorithm where the seed set is constructed in

the following way. For each node in the network, spreading process (or predefined

number of steps of the process)is run and each node is evaluated on the basis of its

potential to activate as many other nodes as possible. Then the best node is added

to the seed set. For the following nodes the same process is followed, but then each

node is evaluated on its potential in combination with all the nodes already in the

seed set i.e. for the second node we have to check every combination of the first node

in the seed set with all remaining nodes to find the best couple; for the third node

we check every combination of the first two nodes in the seed set with all remaining
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nodes to find the best trio, etc. We continue adding nodes until we consume our

seeding budget, i.e. reach the predefined size of the seed set. This approach on

average produce the solution which is (1− 1
e
) of maximum solution and outperforms

centrality based methods like D, C or B. The disadvantage is that since we need to

run the spreading process for Nk times (where k is the size of the seed set) it is very

time-consuming, costly in terms of resources and hardly applicable for any real world

solution [103]. The greedy algorithm by [103] is given below:

Kempe Greedy Algorithm: N is a set of nodes, and k is a positive integer such

that k ≤ |N |.

A← ϕ

for i = 1 to k do

Choose a node ni ∈ N\A maximizing

ρ(A ∪ ni)− ρA

Set A← A ∪ ni

end for

2.5.7 PageRank

In this method a top percentage of number of nodes as seeds based upon their higher

PageRank values [19, 164]. PageRank [164] have been widely known as a reputable

way to obtain the authority score of a node based on network connectivity. For exam-

ple, if G = (V,E,W ) be a directed network (general case), where V = {1, 2, ..., n} is

the node set and edge set E represents all connections between nodes. W = wi,jnn is

the PageRank matrix, wi,j represents the strength of the endorsement from node i to

node j. The general PageRank values x = {x1, x2, ..., xn} of the nodes in a network

can be represented as the following formula.

d = dWx+
(1− d)

n
e (2.13)

Where d ∈ (0, 1) is the damping factor, and e = [1, 1, ..., 1] [122].
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2.5.8 LeaderRank

In this method, a top percentage of number of nodes is selected as seeds based upon

their higher LeaderRank values. For example, if we consider a network of N nodes

and M directed links. Nodes correspond to users and links are established according

to the relations between leaders and fans. To rank the users a ground node is intro-

duced which may connect to every node in both directions. The resulting network

will become densely connected and will consists of N + 1 nodes and M + 2N links.

Mathematically, LeaderRank method is equivalent to random walk on the directed

network. It is described by a stochastic matrix P with elements Pi,j = ai.j/k
out
i which

represents the probabilitiy that a random walker at i goes to j in the subsequent

phase. ai,j = 1 if node i points to j and 0 otherwise, while kout
i represents the out-

degree which means number of leaders of i. This probability flow corresponds to the

vote from fan i to leader j. [131].

2.5.9 ClusterRank

In this method a top percentage of number of nodes is selected as seeds based upon

their higher ClusterRank values [29]. In a directed social network, a link from i to j

means is a follower of i, indicating that j receives information from i. Γi is the set of

followers of i and the density of interactions among i’s followers can be characterized

by the local clustering coefficient of i. Based on the original definition of clustering

coefficient [214], the clustering coefficient is given as in Equation 2.12:

c(i) =
|ej,k : j, k ∈ Γi|
kout
i (kout

i − 1)
(2.14)

where kout
i is the out-degree of i, that is, total number of followers of the node i.

|ej,k|j, k ∈ Γi| is the links connecting two of i’s followers. Based upon clustering

coefficient, ClusterRank si is defined as:

si = f(ci)
∑
j∈Γi

(kout
i + 1) (2.15)
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Where f(ci) is the effect i’s local clustering and +1 is in effect when j is added to

it [29].

2.5.10 K-Shell decomposition

This method starts by selecting a top percentage of number of nodes as seeds based

upon their higher K-Shell values [106, 217, 128]. In K-Shell decomposition, nodes

are assigned to K-shells according to their remaining degree, which is obtained by

successively removing the smaller degree nodes with degrees less than the ks value

of the current layer. The process initiates by pruning all nodes that have degree

k = 1. When that is done, some nodes may be left with one link. So, the process of

removing of the nodes keep going, iteratively until there is no node left with k = 1

in the network. The removed nodes, along with the corresponding links, are a part

of a K-shell with index ks = 1. Similarly, the next K-shell is iteratively removed for

ks = 2. The removal process continues to prune higher-k shells until all nodes are

removed. Finally, each node is associated with one ks index, and the network are

represented as the union of all K-shells [106].

2.5.11 TwitterRank

In TwitterRank, a top percentage of number of nodes is selected as seeds based upon

their higher TwitterRank values [219]. TwitterRank is an extension of PageRank

algorithm, designed to measure the importance of Twitter users taking into account

similarity between users and the links between them. For example, consider a directed

graph G(V,E). It is formed with the twitterers and the “following” relationships

among them. V is the vertex set, which contains all the twitterers. E is the edge

set. An edge exists between two twitterers if there is “following” relationship between

them, and the edge is directed from follower to friend. A random surfer model on

graph G computes the TwitterRank in the following steps [219]:-

1. A random surfer visits each twitterer with a probability by following the appro-
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priate edge in G.

2. The random surfer performs a topic-specific random walk, i.e. the transition

probability from one twitterer to another is topic-specific.

3. A topic specific relationship network is constructed among twitterers.

2.5.12 ShaPley value-based Influential Nodes (SPIN) algorithm

In ShaPley a top percentage of number of nodes is selected as seeds based upon

their higher ShaPley value [151]. In [151], authors describe the process to determine

SHaPley value by the use of the following example. A cooperative game with a

transferable utility is defined as the pair (N, v) where the set of players is defined as

a set of, N = {1, 2, ...., n}. Real mapping of v : 2N → R is with v(ϕ) = 0. 2N is the

set of all possible subsets of N . The mapping v is called the characteristic function.

Given that, any subset S of N , v(S) is called the value of coalition S and represents

the total transferable utility that can be achieved by the players in S, without any

help from players in N\S. The set of players N is called the grand coalition and

v(N) is called the value of the grand coalition. ShaPley decide that a payoff ϕi(N, v)

be allocated to a player i, which defines the relative importance of each player. The

formula to calculate ShaPley value ϕi(N, v) of a player i is given below:

ϕi(N, v) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
{v(C ∪ {i})− v(C)} (2.16)

2.5.13 Optimal Influencers

In this method, optimal seeds are identified using optimal percolation, i.e. by evaluat-

ing the size of the giant connected component after the removal of the seed nodes [144].

For example, consider a network composed of N nodes with M links having an arbi-

trary degree distribution P (k). If we remove a certain fraction q of the total number

of nodes. Percolation theory [20] describes that, if these nodes are chosen randomly,
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a giant connected component from the network can become disconnected, i.e., G = 0.

The optimal influence problem can be solved by determining the minimum fraction

qc of influencers to divide the network: qc = min{q ∈ [0, 1] : G(q) = 0}

The optimal set n∗ of influencers Nqc can be obtained when the minimum of the

largest eigenvalue reaches the critical threshold [144], given by the following equa-

tion:

λ(n∗; qc) = 1 (2.17)

2.5.14 ARL

In this approach, authors use Association Rule Learning (ARL). Thanks to the use of

association rules and the simple assumption that people who often start a discussion,

in which many other people then take part, are important for a given community,

authors developed a new ARL method. It can find key people on "raw" data with-

out the need to project users interaction towards objects (posts and comments) to

the social network of interactions between users, which we need to use "traditional"

methods to find key users such as node rank or PageRank. The evaluation showed

that there is no statistically significant difference between the results achieved by

ARL and PageRank, and by omitting the expensive network projection process, ARL

is on average 36 times faster than the node degree and 70 times faster than PageR-

ank (research was conducted on 108 different datasets coming from public Facebook

pages) [49, 48].

2.6 Conclusion

Studies reveal that structure-only methods fail to properly characterise control, be-

cause there can be many different variations of possible dynamics that may occur

in the networks [125, 239, 1, 194, 234, 196, 74, 222, 40, 96, 126, 165, 139, 205, 210,

129, 33, 61]. So, we not only need to consider/study the node behaviour, but also

need to incorporate other factors, like role of links [96] and control profiles [178] in
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the controllability of the complex networks. There is a substantial amount of work

that has been done regarding the structural controllability of complex networks. The

following points emphasize the challenges that are part of this research area.

1. Structural controllability methods find the driver nodes to control the network.

To find an optimal and energy efficient driver nodes still remains to be an area worth

exploring further [224]. With structural controllability, researchers are also exploring

MDS as the next model to control the complex networks. The general framework

provided by [232] can be a direction to apply/experiment controllability with any

multiplex network with an arbitrary architecture [232]. Network controllability helps

us to identify the minimum set of driver nodes, MDS, needed to control the whole

network. Practically, we might not have access to all of these driver nodes or only

want to control the part of a network (sub-network). There is a need to work out an

optimal solution to find a set of driver nodes that can be used to further propagate

control/influence in the network.

2. Then, the complexity of choosing a smaller set of driver nodes arises. It means,

given this number, the largest possible subset of the network can be controlled. If

we have to restrict to this smaller set, we should have a ranking of driver nodes that

allows us to pick those that have the largest impact on controlling the network. Ex-

isting measures for such a ranking, for example control capacity, and control range,

are not best suited because they only focus on one aspect of driver nodes, either their

probability to become a driver or the size of the sub-network they control. Control

contribution combines both of these two aspects [239].

3. In the literature, a categorisation of techniques according to the type/kind of net-

work they can control is still missing. To further elaborate this point, there is a need

to look into the network structural measures and their relationship with different

control measures. For example, a question that, “Which network structural measures

are in correlation with the control measures such as driver nodes?” is still needed to
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be explored.

4. From the literature survey, we find out that, an intersection of control methods and

influence models needs to be explored further. We know that there are various seed

selection methods i.e., traditional seed selection are already in use, when spreading

the influence in overall network. But, a large amount of work is needed to find out an

optimal seed set. We believe that by employing new ways, specifically driver nodes

identification methods to identify driver nodes, and then rank those driver nodes by

using seed selection methods and other criteria can be beneficial in maximizing the

influence spread process in the overall network.

5. Many studies focus on how to quantify the influence of nodes in a complex net-

work [71, 132] with the hope that if the most influential nodes are chosen to propagate

a given phenomenon, then the spread of this phenomenon will be optimal.
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Chapter 3

Network Structure and Driver Nodes

This chapter focuses on investigating how the network structure relates to the number

of driver nodes and in turn the ability and effort needed to control a given network.

The ultimate goal is, that we are able to determine which topologies are easier to

control and which require more effort. This will help assess whether a given network

can be easily or not controlled by simply looking at its characteristics and without

the expensive process of determining the set of driver nodes. The initial challenge

extracted from the literature survey begins by understanding the correlations between

network structural measures and number of driver nodes. From Figure 1.2, Research

Challenge RC2 states that, "Correlation of network structural measures and number

of driver nodes, to see the maximum control over a complex network". We further

explore and identify the Research Question RQ1 that will potentially help us in solving

RC2. From Figure 1.2, RQ1 states that, "How are the global network structural

measures related to number of driver nodes?". Answering RQ1 serves as the basis

for the further research questions and experimental studies conducted, hence is an

integral part of the thesis. We further devise an objective (RO2) to fulfill this question

which states that, "To find out which network structures can result in minimum

number of driver nodes". Figure 3.1 highlights the tasks that were accomplished in

order to resolve RQ1 and RO2 so that RC2 can be accomplished in the context of

whole thesis.

Our current understanding of control in a complex network is lacking the knowl-

edge about how the network structure is related to the number of driver nodes. As

driver nodes play a key role in achieving control of a complex network, identify-
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Figure 3.1 : Research Methodology : Chapter 3
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ing them and studying their correlation with network structure measures can bring

valuable insights, such as what network structures are easier to control, and how

we can alter the structure in our favour to achieve the maximum control over the

network. The motivation behind this study is to understand if there is a strong or

weak correlation between network structural measures and number of driver nodes.

This information is necessary to find out which ranking mechanisms could work when

choosing the best possible driver nodes as seed nodes. Since we see, influence as a

type of control in the network, gaining this understanding is important to identify the

influential nodes in the network, that can carry out the process of spreading influence

to other nodes in the network efficiently. This chapter includes the following sections:

Section 3.1 describes related work and the main research challenge that is the focus of

this study; Section 3.2, describes the research methodology and experimental design

in detail. Section 3.3, includes results and analysis of the experiments performed;

finally the conclusions drawn from the experiments are discussed in Section 3.4.

3.1 Background

In the real world, many complex systems can be represented as complex networks [166,

58, 57, 59, 134]. Understanding how to control these networks is a critical, but still

relatively unexplored research direction [121]. In order to take up this challenge, we

first need to understand how the structural measures of different types of network

influence their controllability and different control mechanisms. Identifying a set of

driver nodes in complex networks plays a very important role in controlling a complex

network. The full control of social networks is very hard to achieve due to their

dynamics and complex human behaviour that cannot be fully controlled. However,

we can still find out the potential relationships between the number of driver nodes

and underlying structure of the network.

In this chapter, we aim to explore these possible dependencies between number

of driver nodes, density of number of driver nodes and network structural measures.
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For that matter, we employ minimum dominating set(MDS) method to determine

number of driver nodes in generated and real networks.

3.2 Research Methodology

The research gap identified from prior work includes the identification of a network

structure that can be controlled with the minimum number of driver nodes. The

experimental objective is to find out the network structures that are easier to control.

The investigation is based on examining three commonly used network models:

random, small-world, and scale-free and twenty two real social networks. First, the

networks are generated with a varying number of nodes and edges, and then the

structural measures are calculated giving the network profiles. We have used the

minimum dominating set [147] method to calculate number of driver nodes. The

number of edges is increased progressively ( i.e., to increase network density) as de-

scribed below and for the generated networks we calculate the number of driver nodes

and density of driver nodes that may be needed to fully control the network using the

minimum dominating set approach, which is described in Chapter 2.6, Section 2.4,

Figure 2.10. In the Figure 2.10, the network is structurally controllable by selecting

an MDS because each dominated node has its own control signal. The maximum

matching approach needs three driver nodes a, b, and d, assuming a matching link

from a to c. In contrast, the MDS only requires one node i.e., a. Where a can assume

control of b, c and d. However, finding a minimum dominating set is an NP-Hard

problem in general, that means that it is not possible to calculate it in polynomial

time. However different algorithms have been proposed [142] that help ameliorate

this complexity barrier somewhat.

After the number of driver nodes is assessed for each network, the main goal is to

check if there is any and if so what relationship between the number of driver nodes

in a given network to the structure of this network. We express network structure as

a collection of network measures, e.g, number of nodes [154], number of edges [154],
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network density [154], betweenness centrality [56], closeness centrality [179] and

eigenvector centrality [12, 13].

We aim to compare different network structures (random (R) [46], small-world

(SW) [216], scale-free (SF) [1]) with the same number of nodes and edges and varying

other network parameters as described in detail later in this section. We also use

real networks as well. We investigate the patterns and relations between structural

measures and the number of driver nodes Nd in both artificial and real networks. We

also calculate the ratio of Nd to the total number of nodes N in a network, which

can be defined as Nd\N , and called number of driver nodes density or driver nodes

density. First, however, we turn to a detailed description of the dataset used in the

experiments. The sizes of generated networks (R, SW, SF ) have been kept the same

for all three network models to see if we are able to achieve minimum number of

driver nodes Nd. In [127], Liu et al. argued and predicted the number of driver

nodes based upon their degree distributions. However, when we analyse our networks

(R, SW, SF) further by taking into account their density as the main measure for

comparison, we see that as we increase the density of the network (i.e., by increasing

number of edges) we can minimise the number of driver nodes as much as equal to 1.

It proposes an idea that we can predict number of driver nodes Nd based upon the

density of the network.

Several statistical analysis tests, like t-test can be applied to measure the accuracy

of the prediction results. Regression Analysis is very commonly used analysis method

for the numerical prediction. In this regard, Pearson product-moment correlation

coefficient (r) [75], the coefficient of determination (r2) [75], the weighted r [108],

and mean squared error (MSE) [75] are the most widely used measures for assessing

predictive models for numerical data. These measures can be used to calculate the

accuracy of the prediction results [42]. Next section highlights the similarities and

differences between randomly generated networks and social networks.
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3.2.1 Description of Networks

The structure and formation of the randomly generated networks that have been

used in this experimental study is explained in the Section 2.2.2. However a social

network is a network of social interactions and personal relationships [169]. In a

social network, every actor i.e.,a person, a group, an organisation or a nation is

represented as a node. A relation is represented as a link between these nodes [135].

Social networks are somewhat behave in scale-free fashion [22].

3.2.2 Network Profiles Used

Network Profiles are instantiations of network models. These are composed of gener-

ated networks R, SW and SF with their corresponding structural measures calculated.

The idea is to increase number of nodes and number of edges to increase network den-

sity in order to achieve desired/ideal number of driver nodes in network models. Each

network with specific number of nodes and number of edges has been generated ten

times, to get ten different profiles for the same network. Then average of each of the

measures has been calculated to see the overall landscape. The network structure

measures were then combined to make a network profile of the respected network.

We have extended the experiments to include real social networks. The datasets

have been downloaded from Stanford∗. The network profiles of real networks include,

number of nodes, number of edges and network density. We further complete these

network profiles by calculating number of driver nodes Nd, and density of number of

driver nodes NdD = Nd\N .

3.2.3 Conducted Experiments

The following three experiments are conducted on to achieve the overall goal of iden-

tifying the networks that are easier to control.

∗https://snap.stanford.edu/data/
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1. The first experiment was the calculation of different centrality measures and

network density in generated and real networks.

2. The second experiment was the identification of number of driver nodes from

all the types of networks and their profiles by using MDS method.

3. The third experiment was to find the correlation between network density and

centrality measures with number of driver nodes in those networks.

3.3 Result and Analysis

This section covers the results obtained from all the experiments and their analysis.

Table 3.3 shows network profiles generated for R, SW and SF networks. Table 3.2

shows social networks and their structural characteristics. Following are the compar-

isons which have been carried out to answer the research question. The correlation

between different network structure measures and number of driver nodes using Power

law.

3.3.1 Results from Generated Networks

According to the results the denser the network, whether R, SW, and SF, the smaller

is the number of driver nodes needed. In a denser network we have more connections

and that is why smaller number of driver nodes is needed to reach the whole network.

We observe that number of driver nodes can be minimised as close to or equal to 1 by

increasing the density and number of edges in all the networks. Figure 3.2 shows the

correlation between density and average number of driver nodes for R, SW and SF

networks where the number of nodes are 100, 200, 300, 400 and 500. We can clearly

see from the trend-lines that for all three networks, the denser the network the smaller

the number of driver nodes. We have performed a statistical t-test analysis on these

networks, and found out that they are significantly similar to each other in terms of

density of number of driver nodes NdD. We can see equations of the above mentioned
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trend-analysis from Table 3.1. We can also see that there is not much difference

between the density of number of driver nodes NdD in the networks, as all networks

were able to minimise the number of driver nodes to 1 with increased edges and

density. We can see from Table 3.3 that as centrality values closeness centrality (CC),

betweenness centrality (BC) and eigenvector centrality (EV) are increased the number

of driver nodes Nd decreases. These centrality measures has been used because of their

extensive use in the literature in relation to the complex network analysis and influence

modelling over networks. These centrality measures, enables us to understand the

basic network structure without adding too much complexity of calculating the more

intricate structural measures of the network. It is possible to build seed selection

methods with other measures, but there is a basis to select these centrality measures

because of their calculation simplicity. Also the seed selection methods based upon the

centrality measures have been used effectively in the past research. If the underlying

task would be different not control or influence then, other structural measures might

be effective but not in the context of this study.

These results are very encouraging as they tell us the dependence of minimum

set of driver nodes on the structural measures of a network. Table 3.4 shows the

results of Student’s t-Test [221] to see how much variance is there in the density of

number of driver nodes in R, SW and SF networks. Table 3.4 shows that, R and SF

networks are significantly different from each other, still network density in both of

the networks plays an important part in determining the number of driver nodes.

3.3.2 Results from Social Networks

For a general outlook at the characteristics of social networks, we reported number

of nodes and edges in Table 3.2. Table 3.2 also shows the density of all of these

networks. Based upon this representation in Table 3.2, Diggs-Friends(D)† dataset

†https://www.isi.edu/ lerman/downloads/digg2009.html
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has lowest density of 2 · 10−6 and Youtube(Y)‡ dataset has second lowest density of

4 · 10−6 and third lowest density is of Twitter(T)§ dataset which is 0.0001. Highest

density is of Facebook(FB)¶ i.e.,0.0108 dataset after Zachary’s Karate club(Z)‖ which

is 0.139. If we look into NdD of these networks we have highest NdD is of Z (0.382),

followed by FB (0.123), D (0.086), T (0.04) and Y (0.032). We aim to replicate our

results by showing that, if the network is denser, it takes less number of driver nodes

to control as we have seen in generated networks earlier. If we look at Figure 3.4(a,b),

this confirms our hypothesis because Z has higher density of number of driver nodes

i.e., NdD than Y. That means Y requires more number of driver nodes than Z to

control it.

To examine the relationship between number of driver nodes and other network

structural measures of real social networks, we took into consideration twenty two on-

line social networks. To see how the structures of these networks effect the changes in

number of driver nodes, we compared online social networks and randomly generated

networks (i.e., R, SW, SF) (see Figure 3.3). The figure shows the network density

on (x− axis) against the number of driver nodes density i.e., NdD on (y − axis) in

different networks. From Figure 3.4(a,b) we can see that where NdD is highest (see

Z network) in Figure 3.4(a,b) and lowest (see D network) in Figure 3.4(a,b). This

is in line with the results of previous experiments with generated networks. We also

looked into degree distributions of social networks for further analysis. An interest-

ing outcome is presented in Figure 3.5. It shows degree distribution of FB and LF

networks. Power law degree distribution can give a glimpse into the structure of a

network and distinguish different types of networks. We can see the degree distribu-

tion in FB follows a skewed pattern which means that some nodes have very high

degree and there are obviously hubs present in the network (i.e., large degree nodes

‡https://snap.stanford.edu/data/com-Youtube.html
§https://snap.stanford.edu/data/ego-Twitter.html
¶https://snap.stanford.edu/data/ego-Facebook.html
‖http://networkrepository.com/soc-karate.php
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are referred to as hubs). While, the degree distribution captures only a small amount

of the network structure, as it ignores how the nodes are connected to each other

but, we can still see that if more number of nodes have high degree or not.Despite

the change in the distribution, they follow the results of generated networks where

when network density is higher, NdD are lower. FB networks has higher density and

NdD is 0.12 i.e. than LF i.e. 0.003, where NdD is 0.39. That means, density of

network does impact in determining number of driver nodes. In Figure 3.6 red blocks

mean minimum similarity, green blocks mean the maximum similarity and light green

blocks mean moderate similarity between the structures of the matrices in relation.

The point of emphasis is that even moderate similarity values are high. As we have

discussed earlier in this section that Z and FB datasets are quite similar structurally

with R, SW and SF networks but R, SW are not structurally similar to SF as evi-

dent from T-test shown in the Table 3.4. Table 3.4 helps in emphasising the point of

relationship between network density and number of driver nodes density. As most

similarity is in those cases where, network density and driver nodes density is highest

as compared to the other networks. We can see some other networks i.e., T, D, Y, G,

LF, DRO, MG, LA and FBA which are also quite similar structurally the generated

networks. While rest of the networks may not be ideally similar but they also lie

on the spectrum of being quite similar with similarities in the range of 0.82 to 0.93,

represented by red blocks in Figure 3.6.
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Table 3.1 : Trend-line Equations for R, SW, SF networks; Where X denotes number

of driver nodes and Y denotes the network structural measures

Nodes
Tredndlines

Random Small-world Scale-free

N = 100 y = 1.8725x-1.377 y = 1.8605x-1.362 y = 4.8481x-0.967

N = 200 y = 2.2748x-1.315 y = 2.0849x-1.379 y = 6.9247x-0.901

N = 300 y = 2.2748x-1.315 y = 2.4338x-1.251 y = 9.0069x-0.715

N = 400 y = 2.9337x-1.162 y = 2.7753x-1.213 y = 5.4731x-1.042

N = 500 y = 3.3727x-1.1 y = 3.3727x-1.1 y = 6.7544x-1.022



74

Table 3.2 : Online Social Networks Profiles

Social Networks Nodes Edges Density

Zachary’s Karate Club (Z) [233] 34 78 0.13903

Facebook (FB) [138] 4039 88234 0.01082

Twitter (T) [138] 23371 32832 0.00012

Diggs-Friends (D) [84] 1924000 3298475 2·10−6

Youtube (Y) [225] 1134891 2987625 4·10−6

Ego-gplus (EG) [138] 23629 39195 0.00014

Librec-ciaodvdnetwork (LC) [112] 4658 33116 0.00305

Librec-filmtrust-trust (LF) [70] 874 1309 0.00343

petster-frienships-hamster-uniq (P) [173] 1858 12534 0.00726

musae-facebook-edges [175] 22470 171002 0.00067

Deezer-HR-edges (DHE) [176] 54574 498202 0.00033

Deezer-RO-edges (DRE) [176] 41774 125826 0.00014

Deezer-HU-edges (DHE) [176] 47539 222887 0.00019

musae-git-edges (MG) [175] 37700 289003 0.00040

lastfm-asia-edges (LA) [177] 7624 27806 0.00095

fb-artist-edges (FBA) [176] 50516 819306 0.00064

fb-athletes-edges (FBAT) [176] 13867 86858 0.00090

fb-government-edges (FBG) [176] 7058 89455 0.00359

fb-new-sites-edges (FBN) [176] 27918 206259 0.00053

fb-politician-edges (FBP) [176] 5909 41729 0.00239

fb-public-figure-edges (FBPF) [176] 11566 67114 0.001003

fb-tvshow-edges (FBT) [176] 3893 17262 0.00228
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Table 3.3 : Random, Small-World, Scale-free Network Profiles Representing BC(Betweenness Centrality),

EV(Eigenvector Centrality), CC(Closeness Centrality), NdD(Driver Nodes Density), ND(Network Density)

Nodes Edges
Random Small-World Scale-Free

BC EV CC NdD ND BC EV CC NdD ND BC EV CC NdD ND

100

800 0 0.097 0.527 0.18 0.162 0 0.1 0.52 0.178 0.16 0.00979 0.088 0.514 0.22 0.149

1600 0.00031 0.099 0.597 0.09 0.323 0 0.1 0.6 0.095 0.32 0.00298 0.092 0.58 0.17 0.272

2400 0.00196 0.1 0.661 0.06 0.485 0 0.1 0.66 0.068 0.48 0.00379 0.095 0.617 0.12 0.368

3200 0.00361 0.1 0.74 0.05 0.646 0 0.1 0.74 0.045 0.65 0.00455 0.095 0.649 0.09 0.44

4000 0.00526 0.1 0.84 0.03 0.808 0.01 0.1 0.84 0.033 0.81 0.00572 0.093 0.675 0.07 0.56

4800 0.00691 0.1 0.971 0.02 0.97 0.01 0.1 0.97 0.019 0.97 0.00644 0.095 0.777 0.05 0.71

4950 0.00919 0.1 1 0.01 1 0.01 0.1 1 0.01 1 0.00751 0.098 0.877 0.03 0.877

200

2400 0.00468 0.07 0.52 0.133 0.12 0.00476 0.07 0.515 0.135 0.121 0.06136 0.509 1.974 0.145 0.113

4800 0 0.07 0.57 0.076 0.24 0 0.07 0.569 0.08 0.241 0.06428 0.561 1.789 0.14 0.212

7200 0.00018 0.07 0.61 0.054 0.36 0.00018 0.071 0.611 0.05 0.362 0.0654 0.617 1.633 0.125 0.367

9600 0.00079 0.071 0.66 0.04 0.48 0.00079 0.071 0.66 0.045 0.499 0.06632 0.66 1.537 0.095 0.463

12000 0.0014 0.071 0.72 0.028 0.6 0.0014 0.071 0.716 0.025 0.603 0.06654 0.67 1.518 0.075 0.482

14400 0.002 0.071 0.784 0.023 0.724 0.002 0.071 0.784 0.02 0.724 0.06693 0.621 1.638 0.06 0.567

16800 0.00261 0.071 0.866 0.017 0.844 0.00322 0.071 0.866 0.015 0.844 0.06743 0.654 1.543 0.04 0.654

19200 0.00322 0.071 0.966 0.012 0.965 0.00383 0.071 0.966 0.01 0.965 0.06755 0.729 1.433 0.025 0.787

19900 0.00383 0.07 1 0.005 1 0.02564 0.071 1 0.005 1 0.06763 0.777 1.343 0.02 0.898

300

12800 0.0024 0.058 0.583 0.047 0.285 0.00239 0.058 0.584 0.05 0.288 0.00223 0.054 0.605 0.09 0.337

19200 0 0.058 0.636 0.031 0.428 0 0.058 0.636 0.03 0.428 0.0012 0.055 0.617 0.083 0.366

22400 0.00024 0.058 0.667 0.027 0.499 0.00024 0.058 0.668 0.027 0.502 0.0015 0.055 0.628 0.063 0.392

25600 0.00048 0.058 0.7 0.023 0.571 0.00048 0.058 0.699 0.03 0.569 0.00168 0.055 0.65 0.053 0.441

28800 0.00072 0.058 0.737 0.02 0.642 0.00071 0.058 0.737 0.017 0.642 0.00176 0.057 0.584 0.05 0.456

32000 0.00096 0.058 0.778 0.013 0.713 0.00086 0.058 0.795 0.013 0.742 0.00179 0.056 0.636 0.047 0.428

35200 0.0012 0.058 0.823 0.013 0.785 0.0012 0.058 0.826 0.01 0.789 0.00187 0.057 0.668 0.037 0.502

38400 0.00144 0.058 0.875 0.012 0.856 0.00145 0.058 0.874 0.01 0.856 0.00192 0.058 0.699 0.027 0.569

41600 0.00168 0.058 0.933 0.01 0.928 0.00167 0.058 0.935 0.007 0.93 0.00204 0.058 0.737 0.023 0.642

44850 0.00192 0.06 1 0.003 1 0.00192 0.058 1 0.003 1 0.00213 0.058 0.748 0.017 0.742



76

Nodes Edges
Random Small-World Scale-Free

BC EV CC NdD ND BC EV CC NdD ND BC EV CC NdD ND

400

40000 0.00125 0.05 0.667 0.02 0.501 0.00125 0.05 0.667 0.023 0.501 0.00125 0.049 0.657 0.045 0.301

44000 0 0.05 0.691 0.015 0.551 0 0.05 0.69 0.018 0.551 0.00032 0.05 0.67 0.038 0.351

48000 0.00012 0.05 0.715 0.015 0.602 0.00012 0.05 0.715 0.015 0.602 0.00052 0.05 0.695 0.033 0.401

52000 0.00025 0.05 0.742 0.015 0.652 0.00025 0.05 0.742 0.015 0.652 0.00065 0.05 0.722 0.03 0.451

60000 0.00037 0.05 0.801 0.013 0.752 0.00037 0.05 0.801 0.013 0.752 0.00077 0.05 0.791 0.028 0.501

64000 0.0005 0.05 0.835 0.01 0.802 0.0005 0.05 0.835 0.01 0.802 0.0009 0.05 0.815 0.023 0.675

68000 0.00062 0.05 0.871 0.01 0.852 0.00062 0.05 0.871 0.008 0.852 0.00092 0.05 0.861 0.01 0.802

72000 0.00088 0.05 0.911 0.008 0.902 0.00088 0.05 0.911 0.005 0.902 0.00098 0.05 0.901 0.008 0.852

76000 0.001 0.05 0.955 0.005 0.952 0.001 0.05 0.955 0.005 0.952 0.001 0.05 0.935 0.005 0.902

798000 0.00113 0.05 1 0.003 1 0.00113 0.05 1 0.003 1 0.00113 0.05 0.948 0.005 0.952

500

72000 0.00085 0.045 0.703 0.018 0.577 0.00087 0.045 0.699 0.018 0.569 0.0012 0.043 0.633 0.024 0.404

76800 0 0.045 0.723 0.014 0.616 0 0.045 0.721 0.014 0.613 0 0.043 0.647 0.022 0.436

81600 0.00024 0.045 0.743 0.012 0.654 0.00024 0.045 0.743 0.012 0.653 0.00024 0.043 0.682 0.016 0.5

86400 0.00031 0.045 0.765 0.01 0.693 0.00032 0.045 0.765 0.01 0.693 0.00032 0.042 0.681 0.016 0.681

91200 0.00039 0.045 0.788 0.01 0.731 0.00039 0.045 0.787 0.01 0.729 0.00039 0.041 0.699 0.016 0.721

96000 0.00046 0.045 0.813 0.01 0.77 0.00049 0.045 0.802 0.01 0.754 0.001 0.04 0.71 0.018 0.771

100800 0.00054 0.045 0.839 0.008 0.808 0.00054 0.045 0.837 0.008 0.806 0.00104 0.045 0.765 0.014 0.816

105200 0.00062 0.045 0.865 0.006 0.843 0.00062 0.045 0.863 0.006 0.842 0.00113 0.045 0.799 0.012 0.842

110000 0.00069 0.045 0.894 0.006 0.882 0.0007 0.045 0.894 0.006 0.882 0.00116 0.045 0.813 0.01 0.882

124750 0.00077 0.045 1 0.002 1 0.00078 0.045 1 0.002 1 0.00136 0.045 0.857 0.01 0.898
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Table 3.4 : P-Value in Random, Small-world, Scale-free, P-Value denotes the proba-

bility measure of likely difference between all the groups of networks.

t-Test (P-Value) Random Small-world Scale-free

Random 0.966 0.001

Small-world 0.966 0.287

Scale-free 0.001 0.287

3.4 Discussion and Conclusion

The main goal of this study was to find out if there exists any correlation between net-

work structural measures and the number of driver nodes needed for network control.

This study completes the Research Challenge RC2, Research Question RQ1 and Re-

search Objective RO2. RO2 states, "To find out which network structures can result

in minimum number of driver nodes". The experiments were carried out for various

network profiles i.e., random, small-world, scale-free and a wide range of numbers of

nodes and edges in a network. A number of structural measures were computed in

order to observe any correlation with the number of driver nodes. The relationship

between structural measures and density of number of driver nodes has not been

identified previously in relevant literature. Hence, we provide a novel understanding

of which network structures are easier to control.

The main finding of the work is that the network structural measures do indeed

correlate with the number of driver nodes. When the values of the investigated

structural measures increase or decrease, this directly triggers the increase or decrease

in the number of driver nodes. We found out that the denser the network, the

smaller the number of driver nodes (see Figure 3.2). When density is equal to 1 (fully

connected network), then the minimum number of driver nodes is reached. The same

inference can be made from Table 3.3, where the number of edges is correlated with
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Figure 3.2 : Density Vs Number of Driver Nodes. X-axis shows the network density

and y-axis shows the number of driver nodes.
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Figure 3.3 : Network Density Vs Driver Nodes Density of Random, Small-world, Scale-

free and Social Networks, x–axis shows Network Density and y–axis shows Driver

Nodes Density

Figure 3.4 : Social Networks Representing Driver Nodes Density, and Network Density
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Figure 3.5 : A degree distribution of social networks i.e. FB and LF

Figure 3.6 : Cosine Similarity Matrix of Generated and Social Networks
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the number of driver nodes. Since increasing the number of edges directly correlates

with the density of the networks we can see that the larger the number of edges the

needed number of driver nodes decreases.

Correlations between the number of driver nodes and various centrality measures

such as CC, EV, and BC show that the centrality measures are the indicators of how

capable a node is in carrying and passing information to other nodes. For example,

betweenness centrality quantifies the number of times a node acts as a bridge along

the shortest path between two other nodes and is usually interpreted as a power of

a node. It means that high values of centrality measures indicate that the nodes are

capable of passing along the information to other nodes which can translate into being

able to potentially influence and control their neighbourhood and in consequence the

whole network.

We conclude that if we want to achieve control over a network with a minimum

number of driver nodes then increasing the density of the network along with the

other centrality measures can help in changing the structure of the network. Denser

structure enables to achieve a smaller number of driver nodes. But, a natural next step

will be to test what is the cost and purpose of building new relationships in different

scenarios, e.g. social networks. We identified Nd and NdD in various social networks,

as can be seen in Figure 3.3. We can see from Figure 3.3 that social networks

show different behaviours as compared to generated networks because of their very

large sizes and low densities. Previously, researchers have suggested that a number of

driver nodes greatly depend on node degree distribution rather than other structural

measures [126]. However, we argue, based upon our experimental results, that it is

enough to look at the global structural measures i.e., network density as they play

an important role in determining if an underlying network is easy to control. Though

the experimental results are promising, it is important to note that other existing

methods for identifying driver nodes may yield different results.



82

Chapter 4

Driver Nodes in Communities

This chapter expands the goal of Chapter 3 by adding a new Research Challenge RC3,

which states that, "Inquiring about the relationship between local network structures

and the number of driver nodes in the networks." We begin by proposing research

question RQ2 which states that, "How is the number of communities correlated with

the number of driver nodes?". As we have seen in Chapter 2, the number of driver

nodes is correlated with the global structural measures such as network density. So,

it is plausible to consider the community structures of those networks in this regard.

Communities in the network have potentially higher densities as compared to overall

network density. So, finding that influential set of driver nodes from communities of

the networks, can help carry control or influence efficiently and effectively. For this

purpose, Research Objective RO3 has been defined as, "To find out correlations be-

tween local network structural measures and number of driver nodes.". In Figure 4.1

we can see the highlighted tasks that were carried out to fulfill RO3.

Due to the extensive use of online social networking sites, social networks are

studied at great length in network science. In social networks, finding communities is

a difficult task because of its structure that is complex, dynamically changing and the

communities themselves can be overlapping [187]. In case of community detection, the

methods to detect communities have been applied to identify terrorists organisations

[183], recommending products for users [119], anomaly detection [208, 105], finding

potential friends in social media [241] and analysing social opinions [207] to name a

few.

It is not known yet that if and how the network structure correlates with the
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Figure 4.1 : Research Methodology: Chapter 4
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number of driver nodes [182]. As driver nodes play a key role in achieving control

of a complex network, identifying them and studying their correlation with network

structure measures can bring valuable insights, such as what network structures are

easier to control, and how can we alter the structure to achieve the maximum con-

trol over the network. Our previous research work [182] determines the relationship

between some of the global network structure measures and number of driver nodes.

A systematic study presented in [182] builds an understanding of how global net-

work profiles of synthetic (random, small-world, scale-free) and real social networks

influence the number of driver nodes needed for control. In Chapter 3, we focused on

global structural measures such as network density and how it can play an important

role in determining how big or small the driver nodes set will be. Our results show

that as density increases in networks like random, small world and scale free, the

number of driver nodes tends to decrease.

This chapter focuses on both global and local structural measures and their re-

lationship with number of driver nodes. We propose that communities are found to

be one of the most important features of networks, and detecting them enables us

to analyse and explore further underlying structural features of the synthetic as well

as social networks. The idea is to detect communities and driver nodes within the

communities to see how the number of communities influences the number of driver

nodes. Based upon the review of the previous research work, we have formulated the

following research challenge. Identifying a set of driver nodes in complex networks

has always been very vital in control of a complex network and can start by detecting

the potential relationships between number of driver nodes and underlying structural

measures (global and local). This chapter contains the following sections: Section 4.1

describes related work and the main research challenge that is the focus of this study.

Sections 4.2 and 4.3 describe (i) the research methodology and experimental design in

detail and (ii) include results and analysis of the experiments performed respectively.

Finally, the conclusions drawn from the experiments, future work and limitations are
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discussed in Sections 4.4.

4.1 Background

In social networks, identification of a minimum set of driver nodes is a potential

research problem. This focuses on understanding how global and local network struc-

tures relate to the minimum number of driver nodes [40, 222, 126, 40, 73, 74, 236,

27, 239, 91]. In complex networks, small or large communities within the network are

organically present. There are many definitions of communities in the networks, but

in general they may be defined as a group of nodes which are densely connected with

the other nodes in the group and sparsely connected to the nodes outside that group

[64].

4.1.1 Community Detection

There are many community detection algorithms in use, for example GN [64], FN [64],

CNM [64], LPA [170], EM [156], SCAN [223], Louvain [10], LFM [114], Infomap

[174, 229] and NMF [237] to name a few.

We start by utilising the widely used and tested algorithm, The Girvan-Newman

algorithm (GN Algorithm). GN Algorithm is a benchmark in community detection

and has been previously used to successfully identify communities in several different

kinds of networks. The algorithm is simple and easy to implement. However it does

have a trade-off in high time complexity. A brief description of the algorithm is

given below, and an example of identified communities by using GN Algorithm from

Zachare Karate Club is presented in Figure 4.3. The Girvan–Newman algorithm

detects communities by progressively removing edges from the original graph. The

algorithm removes the edge with the highest betweenness centrality, at each step. As

the graph breaks down into pieces, community structures are exposed, and the result

can be represented as a dendrogram. Below is the step-by-step process of the GN

Algorithm.
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1. Create a network of N nodes and its edges.

2. Calculate the betweenness of all existing edges in the network.

3. Remove all the edges with the highest betweenness.

4. Recalculate the betweenness of all the edges that got affected by the removal of

edges.

5. Repeat steps 3 and 4 until no edges remain.

6. Connected components are communities. [64]

For example, For a given network, we calculate the betweenness centrality for

the edges. From Figure 4.2, highest betweenness centrality is between edges AandB,

BandC, DandE, and EandF . So, we remove these edges in the next step and are

left with three communities in the network.

4.1.2 Driver Nodes

Previously, some models/methods have been proposed for the identification of driver

nodes that can potentially control the complex networks, for example; interbank net-

works [40], protein interaction networks [222], biological networks [126, 40, 73, 74],

and real networks [236, 27, 239, 91]. Effects of local and global network structural

measures including degree distribution have been explored in [192]. Many meth-

ods/algorithms have been proposed to identify a set of number of driver nodes from

a network. These methods can be called control methods. The control methods

that have been previously used to identify a set of driver nodes are based upon the

algorithms, Maximum Matching Algorithm [89], Hopcroft-Karp Algorithm [89], Hun-

garian Algorithm [109] and Minimum Dominating Set [147]. Despite these algorithms,

a complexity of choosing a smaller set of driver nodes still exists. If we have to restrict

to this smaller set, we should have a ranking of driver nodes that allow us to pick

those that have the largest impact on controlling the network. Existing measures for
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Figure 4.2 : Example of Grivan-Newman Algorithm

Figure 4.3 : Representation of Zachary Karate Club Network and Detected Commu-

nities
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Figure 4.4 : Methodology

such a ranking, for example control capacity [96], and control range [205], are not

suited because they only focus on one aspect of driver nodes, either their probability

to become a driver or the size of the sub-network they control. Control contribution

combines both of these two aspects [239]. In [239], researchers have claimed that

control contribution will always be able to efficiently and effectively control the net-

work, however, this requires further evaluation. In this section we will use the same

MDS algorithm described in Chapter 2, Section 2.4, and Figure 2.10.

4.2 Research Methodology and Experiment Design

Figure 4.4 explains the methodology of the research work carried out to address RC3,

RQ2 and RO3. In challenge RC2, the work revolved around the correlation between

number of driver nodes and global network structure measures such as network den-

sity, as published in [182]. Below is the experiment design of this research work and

a series of new experiments that were conducted to achieve the research questions

mentioned in Section 4.1.

1. Detecting communities by using GN algorithm for all the generated and social

networks.
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2. A generalised framework has been developed which is suitable to detect com-

munities from all networks. Nodes in the communities represent different sets.

We mean to analyse the following results from the above experiments. Firstly, correla-

tion between community densities and number of driver nodes in those communities.

Secondly, number of communities and number of driver nodes within those communi-

ties is identified to see if the driver nodes set is bigger or smaller than the set achieved

by using Minimum Dominating Set method [147]. For the research questions identi-

fied in Section 4.1 and experiments proposed above, the following experimental setup

has been adopted to conduct the experiments.

1. The same set of instances for random, small-world and scale-free networks are

used as described in Chapter 3.

2. Calculate structural measures i.e., network densities (D) in generated as well as

real networks as presented in Tables 4.3 and 4.1.

3. Identification of number of driver nodes (NdN) in overall networks by using

MDS method in both generated and social networks. NdN densities for gener-

ated networks are given in Table 4.1 and NdN for social networks are presented

in Table 4.3.

4. Analyses the relationship between global structural measures, i.e., density with

NdN as presented in [182].

5. Identify communities in synthetically generated networks and in social networks,

the global structure measures of which are presented in Table 4.3. We utilised

NetworkX library of Python programming language to generate networks. GN

Algorithm has been used to detect communities in the network. A step-by-step

process is given in Section 4.1. The algorithm and setup has been implemented

in Python version 3.6. Also, the algorithm used a said threshold to stop, which

is defined as the square root of the number of nodes in the network.
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Figure 4.5 : Number of Driver Nodes in the Communities of Random, Small World

and Scale Free networks versus their Community Densities

6. Identify driver nodes in communities in synthetic and social networks. We

used Minimum Dominating Set Algorithm for identifying the driver nodes in

communities. A description of the algorithm is given in the Section 2.4.

7. Correlation between community densities and number of driver nodes is done by

obtaining densities of the communities and identifying number of driver nodes

in those communities by MDS method.

8. The difference (Diff.) between total number of driver nodes identified in overall

networks (NdN) as compared to the number of driver nodes found in commu-

nities of those networks (NdNC) is also obtained by obtaining results partially

from the previous study [182], and largely from the current one. The Diff.

tells us, the significance of identifying driver nodes within communities, like

following a divide and conquer approach.
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Table 4.1 : Global Network Structure Measures i.e., Number of Nodes, Number of

Edges and Network Density ND with their corresponding Number of Driver Nodes

Density i.e. NdD in random, small-world and scale-free networks.

Nodes
Random Small world Scale-free

Edges ND NdD Edges ND NdD Edges ND NdD

100

800 0.18 0.162 800 0.178 0.16 800 0.22 0.149

1600 0.09 0.323 1600 0.095 0.32 1600 0.17 0.272

2400 0.06 0.485 2400 0.068 0.48 2400 0.12 0.368

3200 0.05 0.646 3200 0.045 0.65 3200 0.09 0.44

4000 0.03 0.808 4000 0.033 0.81 4000 0.07 0.56

4800 0.02 0.97 4800 0.019 0.97 4800 0.05 0.71

4950 0.01 1 4950 0.01 1 4950 0.03 0.877

200

2400 0.133 0.12 2400 0.135 0.121 2400 0.145 0.113

4800 0.076 0.24 4800 0.08 0.241 4800 0.14 0.212

7200 0.054 0.36 7200 0.05 0.362 7200 0.125 0.367

9600 0.04 0.48 9600 0.045 0.499 9600 0.095 0.463

12000 0.028 0.6 12000 0.025 0.603 12000 0.075 0.482

14400 0.023 0.724 14400 0.02 0.724 14400 0.06 0.567

16800 0.017 0.844 16800 0.015 0.844 16800 0.04 0.654

19200 0.012 0.965 19200 0.01 0.965 19200 0.025 0.787

19900 0.005 1 19900 0.005 1 19900 0.02 0.898

300

12800 0.047 0.285 12800 0.05 0.288 12800 0.09 0.337

19200 0.031 0.428 19200 0.03 0.428 19200 0.083 0.366

22400 0.027 0.499 22400 0.027 0.502 22400 0.063 0.392

25600 0.023 0.571 25600 0.03 0.569 25600 0.053 0.441

28800 0.02 0.642 28800 0.017 0.642 28800 0.05 0.456

32000 0.013 0.713 32000 0.013 0.742 32000 0.047 0.428
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Nodes
Random Small world Scale-free

Edges ND NdD Edges ND NdD Edges ND NdD

35200 0.013 0.785 35200 0.01 0.789 35200 0.037 0.502

38400 0.012 0.856 38400 0.01 0.856 38400 0.027 0.569

41600 0.01 0.928 41600 0.007 0.93 41600 0.023 0.642

44850 0.003 1 44850 0.003 1 44850 0.017 0.742

400

40000 0.02 0.501 40000 0.023 0.501 40000 0.045 0.301

44000 0.015 0.551 44000 0.018 0.551 44000 0.038 0.351

48000 0.015 0.602 48000 0.015 0.602 48000 0.033 0.401

52000 0.015 0.652 52000 0.015 0.652 52000 0.03 0.451

60000 0.013 0.752 60000 0.013 0.752 60000 0.028 0.501

64000 0.01 0.802 64000 0.01 0.802 64000 0.023 0.675

68000 0.01 0.852 68000 0.008 0.852 68000 0.01 0.802

72000 0.008 0.902 72000 0.005 0.902 72000 0.008 0.852

76000 0.005 0.952 76000 0.005 0.952 76000 0.005 0.902

98000 0.003 1 98000 0.003 1 98000 0.005 0.952

500

72000 0.018 0.577 72000 0.018 0.569 72000 0.024 0.404

76800 0.014 0.616 76800 0.014 0.613 76800 0.022 0.436

81600 0.012 0.654 81600 0.012 0.653 81600 0.016 0.5

86400 0.01 0.693 86400 0.01 0.693 86400 0.016 0.681

91200 0.01 0.731 91200 0.01 0.729 91200 0.016 0.721

96000 0.01 0.77 96000 0.01 0.754 96000 0.018 0.771

100800 0.008 0.808 100800 0.008 0.806 100800 0.014 0.816

105200 0.006 0.843 105200 0.006 0.842 105200 0.012 0.842

110000 0.006 0.882 110000 0.006 0.882 110000 0.01 0.882

124750 0.002 1 124750 0.002 1 124750 0.01 0.898
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Figure 4.6 : Difference between Number of Driver Nodes in Overall Network Verses

Number of Driver Nodes in Communities found in (a) Random Networks, (b) Small

World Networks and (c) Scale Free Networks
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Figure 4.7 : Number of Communities in Random, Small World and Scale Free Net-

works

4.3 Results and Analysis

This section explains the results and analysis from the experiments that have been

carried out in this research and experimental study. From Figure 1.2, we can see that

Experiment Exp2 has been proposed to resolve the Research Objective RO4. This

section is divided in two subsection, i.e., results from synthetic networks and results

from real networks.

4.3.1 Results from Synthetic Networks

In this section, we analyse the results obtained from the conducted experiments.

Below are the comparisons, that have been carried out to answer the research question.

Some network structure measures related to network structure measures of random,

small world and scale free networks are given in Table 4.1 along with number of driver

nodes density (NdD). The table has been adapted from our previous work presented
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in [182]. Following are the important results and their analysis.

4.3.1.1 Community Density and Number of Driver Nodes in Communi-

ties in Random, Small World and Scale Free Networks

Figure 4.5, we correlated local structure measures such as community density with

number of driver nodes within those communities. It is evident that as community

densities start to approach 1, so are driver nodes. We can see that as community

densities are higher, the number of drive nodes are low and vice versa. This result

answers the first research question and also strengthens the results from previous re-

search, where we structurally correlated the global measures i.e., network density with

number of driver nodes [182]. It means that, networks that have denser communities

have naturally less number of driver nodes. Also, Figure 4.5 shows that communities

in the network may or may not have the different number of driver nodes.

4.3.1.2 Difference Between Number of Driver Nodes in Networks (NDN)

and Number of Driver Nodes in Communities (NDNC) in Ran-

dom, Small World and Scale Free Networks

Firstly, from Table 4.1 it is clear that we are able to minimise the number of driver

nodes (NDN) in the overall network, as we are able to increase the number of edges

in all three generated networks. By increasing the number of edges, we automatically

increase the density of the network. We can also see that there is not much difference

between the density of number of driver nodes NdD in the networks, as all networks

were able to minimise the number of driver nodes to 1 with increased edges and

density. More details of these results are provided in [182].From Figure 4.6(a), 4.6(b)

and 4.6(c), we can see the difference between NDN (number of driver nodes) and

NDNC (number of driver nodes detected in communities) in random, small world

and scale free networks. We can see a big difference between the plots of scale free

networks in comparison to random and small world networks. From the figure, the
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conclusions from [182] again strengthens that, as the density tend to increase i.e.,

number of edges increase in the same node size network, number of driver nodes tend

to decrease within the network as well as within the communities of those networks.

For example, in a scale free network of (nodes = 400 and edges = 79000), only 1

driver node is required within the communities of that network. It is because network

itself is really very dense, and communities are naturally denser than network itself

by definition. So, that means, less number of driver nodes are required to spread

influence in the overall network. Secondly, we know that, structurally random, small

world and scale free networks are quite different from each other. We applied the

correlation analysis on our generated network which indicates that, random, small

world and scale free networks are quite different from each other. They behaved

differently when identifying driver nodes from communities. This can be seen from

Figure 4.6. Thirdly, Table 4.2 a huge difference between the number of driver nodes

within the whole network as compared to within the communities of those networks.

The table shows a heatmap of the difference between NDN and NDNC (Diff.). We

can see from the map that the most difference is found in scale free networks, see

Figure 4.6(c) and least difference is found in small world networks, see Figure 4.6(b)

while in random networks the difference lines seems to be in the middle of what has

been presented in small world networks and scale free networks . Which means, that,

behaviour of random networks is changed from that of small world and scale free

networks. We figure that, most real world networks have scale free properties, that

is why difference is larger in the social networks as can be seen from Table 4.3. This

inference strengthens our observations from the experiments. Lastly, Table 4.7 shows

the number of communities in all generated networks. We can see that there is more

variation in number of communities in scale free networks as compared to random

and small world networks despite the same network sizes. As scale free networks are

analysed to be closer in structure to real networks, they can have more communities

in networks as compared to their small world and scale free counterparts.
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Figure 4.8 : Number of Driver Nodes in the Communities of LF, Z and FB networks

verses their Community Densities

Figure 4.9 : Difference between Total Number of Driver Nodes (NDN) and Number

of Driver Nodes in Communities (NDNC) in Social Networks
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There are many different indicators to evaluate the importance of a node within

a community. For example, node degree, betweenness centrality, closeness centrality

etc. However, these measures only tell us different topological features about the

node [92]. However, a driver node, when identified based upon these measures, be-

comes a node with the most number of connections and can be used to propagate

control/influence within a community. Also, it has been noted earlier that commu-

nities with higher densities have lesser number of driver nodes. That is because that

node(s) becomes the node with the most number of connections within that com-

munity. Therefore, our future research hypothesis in Chapter 6, suggests to spread

influence through the driver nodes within communities of the networks.

4.3.2 Results from Social Networks

In this section, results and analysis from social networks are discussed in detail.

4.3.2.1 Community Density and Number of Driver Nodes in Communi-

ties in Social Networks

From Figure 4.8 it is evident that communities, by definition, have high densities. This

confirms our results from previous study that the denser the network (or community,

as we have shown here), the smaller the number of driver nodes [182]. This is a

strong reassurance showing that network structure has a strong influence on number

of driver nodes. The same figures clearly show that, when the density approaches 1,

the number of driver nodes decrease.

4.3.2.2 Difference Between Number of Driver Nodes in Networks (NDN)

and Number of Driver Nodes in Communities (NDNC) in Social

Networks

We calculated the difference between total number of driver nodes in the whole net-

work (NDN) versus number of driver nodes in the communities of the networks
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(NDNC). The difference of both (Diff.) indicates that in all the social networks,

number of driver nodes decrease when they are identified within communities. It

strongly indicates that, the divide and conquer approach works for the networks.

Also, it is easier to apply the process of identifying driver nodes within a smaller size

community rather than a huge network with bigger size. By looking at Table 4.3,

we can clearly see that, in large size networks for example, Diggs (nodes=1,924,000,

edges=3,298,475) and Youtube (nodes=1,134,891, edges=2,987,625), NDN set re-

duces substantially in size. For Diggs, NDN drops from 481,000 to 198,967, and

for Youtube, NDN drops from 283,722 to68,235. Even for small networks like ZKC

(nodes=34, edges=78), LF (nodes=874, edges=1309) and PF (nodes=1858, edges=12534)

results remain consistent. That means, irrespective the size of the network, when we

detect communities and then identify driver nodes within those communities, the

driver nodes set reduces to a great extent. We observed that in communities, densi-

ties are relatively higher naturally, hence the number of driver nodes in communities

is less than the number of driver nodes in their corresponding overall networks.

We can see an overall picture for all the social networks from Figure 4.9, where

the plot shows difference between NDN and NDNC values. Since we do not have

overlapping communities due to the nature of the algorithm, we have at least one

driver node within each community.

4.4 Discussion and Conclusion

In this chapter, we focused on Research Challenge RC3, Research Question RQ2 and

Research Objective RO3. The main objective was to find out, the correlations be-

tween local network structural measures and number of driver nodes. One of the key

findings in [182], was that the global network structural measures (i.e., community

densities) do correlate with the number of driver nodes found in those communi-

ties. From our previous work, we found out that the denser the network, the smaller

the number of driver nodes, meaning and those network structures are easier to con-
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trol [182]. Through this study, we answer the research questions stated in Section 4.1.

Communities themselves have pretty large densities as compared to the overall net-

work. So, connecting from the previous results, it seems only plausible that, within

those communities, we will find a minimum number of driver nodes with more poten-

tial to control the community and by controlling those communities, ultimately the

overall network.

Our main contributions in this research work are given below:

1. The study of finding relationships between local structure measures of the net-

work and the number of driver nodes. This has not been explored before. From

this research, we contribute that local structure measures such as community

densities correlated with the decrease or increase in number of driver nodes. It

is easier to control the communities with higher densities because these com-

munities require less number of driver nodes.

2. By detecting driver nodes within communities, we potentially decrease the total

number of driver nodes. Hence, it is recommended to break the network down

in communities to conquer the problem of identifying a minimum set of driver

nodes. We can clearly see from Figures 4.6 and 4.9, that there is a difference

in number of driver nodes when identified within communities as compared to

when identified in overall networks. This result can help the researchers with

the problem of identifying an optimal set of driver nodes.

3. MDS method to detect driver nodes is a very expensive process in very large

networks, specially real social networks [147]. By dividing the networks into

communities, we make the process of identifying driver nodes comparatively

less time-consuming. By presenting this idea, we open another dimension to

minimise the driver nodes set, which can still remain effective in controlling the

overall network. Global as well as local structural measures of the networks can

play an important role to figure out an efficient way to determine the potential
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driver nodes set that can control a social network.

Furthermore, many more analyses can be done with different other kinds of net-

works with varying new structural measures to see the potential correlations.

A comparative analysis in [226], reveals that the GN algorithm might not be suit-

able for large networks because of its high computation time. But, it has never been

actually tested with large scale networks. However, the implementation simplicity

of the algorithm has an advantage over the more complex algorithms, hence can be

employed to detect communities, even in large scale networks.There is however high

computation costs attached in obtaining number of communities using GN algorithm.
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Table 4.2 : Difference between Number of Driver Nodes (NDN) in the Whole Network

and the Number of Driver Nodes within the Communities (NDNC) of the Networks,

i.e., random (R), small-world (SW) and scale-free (SF) (Diff.). Nodes and Edges of

the networks are also presented.

Diff.
Nodes Edges

R SW SF R SW SF
Edges Nodes

800 3 5 9 5 7 9 2400

1600 1 2 9 2 2 10 4800

2400 1 1 6 3 2 17 7200

3200 1 3 7 4 2 12 9600

4000 1 2 6 3 2 12 12000

4800 1 1 4 2 2 10 14400

100

4950 0 0 2 0 1 6 16800

12800 2 3 15 0 0 3 19200

19200 2 2 18 0 0 3 19900

200

22400 2 3 14 2 2 11 40000

25600 2 3 10 2 3 11 44000

28800 2 1 11 3 1 8 48000

32000 2 1 11 4 1 7 52000

35200 3 1 9 3 0 6 60000

38400 3 1 6 2 1 6 64000

41600 2 1 6 2 1 2 68000

300

44850 0 0 4 2 1 2 72000

72000 4 2 5 1 1 1 76000

76800 2 1 5 0 0 1 798000

400

81600 3 0 2 2 2 5 100800

86400 3 0 3 2 2 5 105200

91200 1 1 4 2 2 4 110000

500

96000 3 2 2 0 0 4 124750

500
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Table 4.3 : Social Networks and their Global and Local Structure Measures such

as Nodes (N), Edges (E), Density (D), Number of Driver Nodes (NDN), Number of

Communities (C), Number of Driver Nodes in Communities (NDNC) and Difference

between Number of Driver Nodes in Networks and Number of Driver Nodes in Com-

munities (Diff.)

Networks N E D C NDN NDNC Diff.

FB [138] 4039 88234 0.01 180 499 270 229

Z [233] 34 78 0.14 2 13 9 4

Twitter [138] 23371 32832 0.00012 350 939 489 450

Diggs [84] 1924000 3298475 0.000002 156432 398004 199037 198967

Youtube [225] 1134891 2987625 0.000004 54983 136520 68285 68235

Ego [138] 23629 39195 0.00014 75 132 96 36

LC [112] 4658 33116 0.003 517 1178 620 558

LF [70] 874 1309 0.0034 97 347 209 138

PF [173] 1858 12534 0.0073 206 745 398 347

MFb [175] 22470 171002 0.00067 2643 11955 6011 5944

DHR [176] 54574 498202 0.0003 6420 15678 7877 7801

DRO [176] 41774 125826 0.0001 4914 22680 11372 11308

DHU [176] 47539 222887 0.0002 5592 29479 14755 14724

MG [175] 37700 289003 0.0004 4435 15507 7775 7732

L [177] 7624 27806 0.0009 759 3518 1795 1723

FbAR [176] 50516 819306 0.0006 5943 28670 14372 14298

FbA [176] 13867 86858 0.0009 1383 6827 3449 3378

FbG [176] 7058 89455 0.0036 784 4245 2160 2085

FbN [176] 27918 206259 0.0005 3284 15558 7813 7745

FbP [176] 5909 41729 0.0024 562 2995 1530 1465

FbPF [176] 11566 67114 0.001 1051 5510 2792 2718

FbT [176] 3893 17262 0.0023 387 1966 1011 955
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Chapter 5

Influence Models and Driver Nodes

This chapter addresses Research Challenge RC4, which states that, "Drawing com-

parisons between different driver based seed selection methods with traditional seed

selection methods for generated and real social networks." In order to attain RC4, Re-

search Question, RQ3 has been devised which states that,"How efficient and effective

are driver-based seed selection methods in comparison to traditional methods?". Re-

search Objective RO4 was defined to execute the experiment 3 (Exp3). RO4 states

that, "To implement different traditional seed selection methods and driver-based

methods to generate influence in synthetic and real networks". In Figure 5.1 we can

see the highlighted tasks that were carried out to fulfil RO4 as part of the whole

thesis.

In this chapter, Section 5.1 describes the related work including influence and

control in complex networks. Section 5.2 describes the methodology and detailed

experiment setup of the experiments being conducted to answer the research ques-

tions. Section 5.3 describes the results and their comprehensive analysis. Lastly, the

conclusion and future work are discussed in Section 5.4.

5.1 Background

Since the beginning of social media, our online activities transformed the way we inter-

act with others and this in turn has changed our social networks. Social media allow

us to communicate and interact with others through sending direct messages, sharing

opinions and information, as well as commenting on others content. Interactions over

social media platforms may play an effective role in quick and worldwide proliferation
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Figure 5.1 : Research Methodology : Chapter 5



106

of news and can shape the opinions of users. Although social media proved to be

an effective way to influence the public opinion, we know that not all users play the

same role in this process. An example of that are ‘influencers’ who are seen as key

players in the propagation of the information quickly and effectively [235]. Spread

of influence, in particular, has gained a lot of attention in recent years as various

research groups and commercial companies try to understand how people’s opinions

and decisions can be influenced and potentially changed and to what extent we are

receptive of others opinions. How the influence spreads in networks? is a question.

This includes physics [26], ecology [50], biology [230] and network science [236].

Many studies focus on how to quantify the influence of nodes in a complex net-

work [71, 132] with the hope that if the most influential nodes are chosen to propagate

a given phenomenon, then the spread of this phenomenon will be optimal. One of

the avenues to explore, in the search for more effective ways to assess the influence

potential of a given node, is to look into the direction of control over complex net-

works.

There are a few notable works in this regard such as very recently, a recommender

system to identify more influential nodes to increase the efficiency of spreading process

[203] is one such example. Previously, in another related work, authors proposed a

low-complexity heuristic algorithm to build a recommender system to achieve efficient

coverage of nodes [107]. We used the control approaches in influence models to achieve

the efficient coverage of nodes with a smaller set of influential seed nodes.

There are conceptual similarities between driver nodes in the network control space

and seed nodes in the spreading processes, and the goal of this study is to explore the

possibility of using driver nodes as seed nodes and proposing and developing new seed

selection strategies for spread of influence inspired by driver node concept. Control

can be seen as a "stronger" version of influence [215], so our hypothesis is that the

influence can spread effectively (affect a larger number of nodes) through driver nodes

than when using other, traditional seed selection strategies. We focus on maximising
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the number of nodes influenced in smaller number of iterations by utilising minimum

seed size.

5.2 Research Methodology and Experiment Design

We see little work done in the space where techniques for finding driver nodes are used

to support seed selection strategies; thus, we explore and address this research gap.

Figure 5.2 depicts the research process employed in this study and defines the steps

taken from defining research challenges by stating research questions and objectives

to describing proposed experiments.

The main focus of RQ3 is to find out if it is feasible to use concepts from the

field of network control in the context of influence spread and if so, how it can be

done. To answer RQ3, we propose new methods that utilise driver nodes as seeds in

influence spreading. First, we decide on the method that will be used to select driver

nodes. This can be any of the approaches described before: maximum matching [89],

minimum dominating set [147], control profiles [178] and preferential matching [238].

To keep the consistency across all the experiments, we use Minimum Dominating

Set approach. It is also considered a benchmark approach to identify driver nodes

across various kinds of networks, . The next decision point is to select a technique to

rank the identified driver nodes so an ordered list can be used in the seed selection

process. This can be done using various approaches, including methods presented in

the Chapter 2, Section 2.5, for both ranking the driver nodes or ranking seed nodes.

We have used centrality measures to rank driver nodes, please see Section 5.2 for

details. We also propose a new method based upon the centrality measures to rank

the driver nodes, with the top nodes from the ranking being used as seeds. The

answer to Research Question RQ3 and work that is done to answer it can be seen

as an initial step to develop a framework where we use network control concepts

(driver nodes selection and ranking) in the context of influence spread in networks.

To further answer RQ3, we need to measure the effectiveness of that approach. When
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we run experiments, we assess to what extent the methods identified in this study are

able to improve the influence spread over the traditional seed selection approaches.

The evaluation of seeding strategies on different networks is done on the basis of how

much influence the seed nodes are going to spread a.k.a coverage of influence, with

respect to the spreading time [93]. So, the seed selection method which results in

shorter spreading process time and/or has bigger coverage influence over the network

can be regarded as more effective than the others. "Control meets influence" is an

idea where we first identify driver nodes in a given network and apply them as seeds

in influence model to see the result of influence spread in the network. Figure 5.2

presents the main stages of the research setup i.e. inputs, process, and outputs. We

utilise traditional seed selection strategies such as random (R), degree centrality (D),

betweenness centrality (B) and Kempe seed selection (K). The major outputs will

include a comparison by network and a comparison by seed selection method. In

network comparison, we observe the percentage of nodes influenced in each network.

In method comparison, we compare the performance of seed selection strategies. The

performance is measured on the basis of total number of iterations it takes for each

method to obtain the highest influence in each network based upon a certain seed set

size. Detailed experiment set-up is presented in the next section.

To bring concepts from control field into influence field, we propose to use Min-

imum Dominating Set (MDS) to identify driver nodes and then rank those driver

nodes using the same ranking methods as in case of seed selection strategies. Addi-

tionally – Driver Degree Closeness Betweenness (DDCB) that first identifies MDS set

and then rank the driver nodes on the basis of their average degree, betweenness and

closeness centralities. A percentage of ranked driver nodes are then used as seeds.

Linear Threshold model is used to simulate the spread of influence over both ran-

domly generated networks (using random, small–world and scale–free models) and

real social networks. A description of both randomly generated and real networks is

included in the next subsection.
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Input
Traditional Seed Selection Output

Degree Centrality (D)
Random Selection (R)

Spreading Process

Linear Threshold Model

Random 
Small-World 
Scale-Free

Social Networks

Applied toDriver Based Seed Selection

Comparison by Networks

% Number of Influenced
Nodes Verses Total Number

of Nodes

Comparison by Methods

Percent Gain in Influence of  
Ranked-Driver Method

Seed Size Verses % Number of
Nodes Influenced

 Network Density Verses
% Number of Influenced

Nodes

Random Driver (DR)
Driver Degree(DD)

Closeness Centrality (C)
Betweenness Centrality (B)

Kempe Selection (K)

Driver Closeness (DC)
Driver Betweenness (DB)
Driver Degree, Closeness,

Betweenness (DDCB)
Driver Kempe (DK)

Degree, Closeness,
Betweenness (DCB)

Figure 5.2 : Control meets influence. The general concept for evaluating usefulness

of driver nodes selection methods in seed selection for influence spread problem.

5.2.1 Networks

This section includes the tables and figures describing the networks used during our

evaluation.

• Figure 5.3 shows the Random, Small-World and Scale-Free networks sizes (i.e.,

number of nodes) plotted against their densities. We generated ten network

profiles of each Random, Small-World and Scale-Free networks of size ranging

from number of nodes equal to 100, 200, 300, 400 and 500. We kept the con-

nections such that to make sure that networks are always connected. In total,

750 networks were generated. This includes the networks starting from smaller

densities such as (0.05) to the highest density (1). Density is increasing for ev-

ery network type when the nodes are from 100–500, due to increase in number

of edges. Sometimes it took ten iterations to generate networks with varying

sizes and densities, with the goal of achieving the highest density, i.e., 1.

• Table 3.2 includes information about twenty-two real social networks used dur-



110

Figure 5.3 : Size vs. density in Random, Small-World and Scale-Free networks

ing our experiment and their network structure measures, i.e., the number of

nodes, number of edges, and corresponding network density. The networks were

downloaded from Stanford Large Network Dataset Collection repository [116].

• Figure 3.4 shows the densities of social networks with their number of nodes in

a logarithmic scale chart.

5.2.2 Experiments

To be able to answer the research questions, we designed the following experiments.

1. Building Network Profiles: To enable systematic analysis of both traditional

and driver–based seed selection strategies, the experiments are conducted on

synthetic networks, including Random (R), Small-World (SW) and Scale-Free

(SF) network models as well as real social networks. For comparison purposes,

we generated all the networks with same number of nodes and edges. In order to
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achieve that, we used the method previously applied in [204]. We generated 750

networks with 100, 200, 300, 400 and 500 each for Random, Small-World and

Scale-Free. More details of the networks is also given in our previous work [182].

For social networks we used twenty two social networks available in SNAP

library [116].

2. Traditional Seed Selection: The methods that are being used in this section are,

random seed selection (R), degree seed selection (D), closeness centrality seed

selection (C), betweenness centrality seed selection (B), Kempe seed selection

(K) and additionally the degree, closeness and betweenness centrality seed se-

lection (DCB) where a top percentage of number of nodes is selected as seeds

based upon their average of higher degree, closeness and betweenness centrality

values. R, D, C, B and Kempe are most commonly used seed selection methods.

3. Driver Seed Selection: One of the contributions of this study are novel driver-

based seed selection strategies. It is a methodological advancement where net-

work control concepts are used in the influence modelling space. The driver

nodes are identified by using the Minimum Dominating Set (MDS) method.

MDS has been calculated to show the number of driver nodes in the network

using MDS method as described in [147]. Although MDS is a NP-hard prob-

lem, reduction rules are a great way to obtain a reduced minimum dominating

set, a.k.a Branch and Reduce Algorithm [218]. By applying this algorithm, we

get a reduced minimum dominating set a.k.a driver nodes. Ranking of driver

nodes has previously shown that influential nodes often have higher centrality

values [30]. We focus on ranking driver nodes using various centrality values.

Additionally we use Kempe approach to rank driver nodes and as a baseline we

use random approach. All proposed ranking strategies are outlined below. In

Driver–Random Seed Selection (DR), we select nodes at random from all the

driver nodes and they create seed set. In Driver–Degree Seed Selection (DD),
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we rank the driver nodes in by their degree values and the top ranked nodes be-

come seed nodes. In Driver–Closeness Seed Selection (DC), we rank the driver

nodes by their closeness centrality values and the top ranked nodes become seed

nodes. In Driver–Betweenness Seed Selection (DB), we rank the driver nodes

by their betweenness centrality values and the top ranked nodes become seed

nodes. In Driver–Degree–Closeness–Betweenness Seed Selection (DDCB), we

rank the driver nodes by averaging the sum of each node’s degree, closeness and

betweenness centrality values. In Driver–Kempe Seed Selection (DK), we rank

the driver nodes based upon their potential to influence the network. The node

which is able to spread influence to a larger number of nodes is ranked higher

and in each iteration every new node is evaluated together with those already

in the seed set. At the end, the nodes which are able to spread influence to

maximum number of nodes make it to the final seed set.

4. Simulating Influence Spread by using LTM: We use both traditional and driver-

based seed selection methods to obtain the seed sets and we use those sets

as the input to the LTM model to investigate how the spread progresses. In

LTM, each agent activates if the number of its active neighbours is bigger or

equal than its current activation threshold. We used Bootstrap Percolation to

determine the thresholds for LTM. Bootstrap percolation is a process of spread

of “activation” on a given network with a given number of initially active nodes.

At each step those vertices which have not been active but have at least ≥ 2

active neighbours become active as well [94].

5.3 Results and Analysis

Eleven seed selection methods (i.e. Random, Degree, Closeness, Betweenness, Degree–

Closeness–Betweenness, Kempe, Driver–Random, Driver–Degree, Driver–Closeness,

Driver–Betweenness, Driver–Kempe and Driver–Degree–Closeness–Betweenness) have
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been tested on synthetic and real world networks. LTM was used to ensure consis-

tency of the results across the board. The findings are discussed from the perspective

of (i) synthetic and (ii) real networks.

5.3.1 Results from Synthetic Networks

Results from synthetic networks include impact of network density on percentage

of nodes influenced and a comparison of all seed selection methods with respect to

number of nodes influenced within given time budget and time needed to achieve

100% coverage.
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Table 5.1 : The average percentage of influenced nodes in all generated networks,

with seed sizes up to 50% after 20 iterations. N - number of nodes, Net. - Network

model, D - network density, L - low and M - medium density.

Seed Size 1% 10% 20% 30% 40% 50%

N Net. D Percentage of influenced nodes

100

R
L 20.0 33.0 49.0 67.0 78.0 89.0

M 59.0 88.0 97.0 100.0 100.0 100.0

SW
L 30.0 49.0 58.0 64.0 82.0 93.0

M 57.0 92.0 99.0 100.0 100 100.0

SF
L 18.0 51.0 67.0 79.0 87.0 100.0

M 62.0 100.0 100.0 100.0 100.0 100.0

200

R
L 16.0 30.0 42.0 53.0 78.0 87.0

M 67.0 79.0 82.0 98.0 100.0 100.0

SW
L 16.5 40.0 54.0 67.0 78.0 89.0

M 67.0 91.0 100.0 100.0 100.0 100.0

SF
L 15.5 40.0 56.0 67.0 79.0 98.0

M 88.0 100.0 100.0 100.0 100.0 100.0

300

R
L 25.0 46.0 57.0 68.0 78.0 82.0

M 64.0 88.0 97.0 100.0 100.0 100.0

SW
L 26.0 46.0 67.0 73.0 84.0 92.0

M 60.0 84.0 98.0 100.0 100.0 100.0

SF
L 24.6 49.0 57.0 66.0 79.0 87.0

M 87.0 96.0 100.0 100.0 100.0 100.0

400

R
L 21.0 44.0 55.0 61.0 87.0 92.0

M 77.0 100.0 82.0 97.0 100.0 100.0

SW
L 22.0 45.0 56.0 68.0 72.0 88.0

M 71.0 82.0 98.0 100.0 100.0 100.0
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Seed Size 1% 10% 20% 30% 40% 50%

N Net. D Percentage of influenced nodes

SF
L 28.0 46.0 64.0 71.0 87.0 99.0

M 76.0 100.0 100.0 100.0 100.0 100.0

500

R
L 25.0 42.0 57.0 61.0 78.0 83.0

M 77.0 88.0 98.0 100.0 100.0 100.0

SW
L 26.0 35.0 65.0 76.0 78.0 87.0

M 60.0 72.0 78.0 89.0 92.0 100.0

SF
L 29.3 39.0 56.0 63.0 78.0 87.0

M 64.0 75.0 100.0 100.0 100.0 100.0
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Table 5.2 : Percentage of influenced nodes when the density is low and seed size is

1%. The highest percentage is bolded.

Nodes 100 200 300 400 500

Networks Methods Percentage of influenced nodes

R

R 20.0 16.0 25.0 21.7 14.6

D 23 17.5 25.7 22.2 15.2

C 25.0 17.5 23.7 22.7 15.8

B 27.0 18.5 24.7 23.2 16.2

DCB 27.0 18.5 25.67 23.25 16.2

K 28.0 19.0 26.0 23.5 16.4

DR 23 17.5 25.7 22.2 15.2

DD 29.0 20.5 25.7 34.75 37.8

DC 31.0 21.5 28.7 35.2 38.2

DB 32.0 22.0 29.0 35.5 38.4

DK 33 22.5 29.3 35.7 38.6

DDCB 37.0 24.5 30.7 36.7 39.4

SW

R 27.0 16.5 26.0 22.0 15.2

D 27.0 17.5 25.7 22.25 15.6

C 27.0 18.5 24.3 23.25 16.2

B 28.0 19.5 24.3 23.0 16.2

DCB 28.0 19.5 26.3 23.0 16.2

K 30.0 20.5 27.0 23.5 16.6

DR 30.0 18.5 24.7 23.0 16.2

DD 35.0 20.0 25.33 37.8 39.0

DC 41.0 21.0 28.0 24.2 17.2

DB 43.0 22.0 28.7 24.7 17.6

DK 42.0 21.5 28.3 24.5 17.4
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Nodes 100 200 300 400 500

Networks Methods Percentage of influenced nodes

DDCB 46.0 23.0 29.3 39.4 40.0

SF

R 18.0 15.5 24.7 28.0 13.6

D 20.0 16.5 25.3 28.7 14.2

C 21.0 17.0 23.3 21.75 14.6

B 22.0 17.5 23.7 22.2 15.4

DCB 22.0 17.0 25.7 21.0 14.0

K 23.0 18.0 26.3 22.5 15.6

DR 22.0 17.5 26.0 29.5 25.2

DD 30.0 21.5 26.3 24.2 17.0

DC 32.0 22.5 29.3 24.7 17.4

DB 33.0 23.0 29.7 25.0 17.6

DK 31.0 22.0 29.0 24.5 17.2

DDCB 37.0 25.0 31.0 33.25 28.2
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Table 5.3 : Percentage of influenced nodes when the density is medium and seed size

is 1%. The highest percentage is bolded.

Nodes 100 200 300 400 500

Networks Methods Percentage of influenced nodes

R

R 59.0 66.0 56.3 47.2 50.6

D 61.0 67.0 56.7 48.0 51.4

C 61.0 67.5 57.0 48.2 52.0

B 63.0 68.5 57.7 48.7 52.4

DCB 63.0 68.0 58.0 49.0 52.0

K 64.0 69.0 58.0 49.0 52.6

DR 62.0 68.0 57.7 48.5 52.2

DD 70.0 71.5 61.3 95.2 75.8

DC 72.0 72.5 62.0 95.7 76.2

DB 73.0 73.0 62.3 96.0 76.4

DK 74.0 73.5 62.7 96.2 76.6

DDCB 78.0 75.5 64.0 97.2 77.4

SW

R 57.0 65.5 56.3 47.2 52.0

D 62.0 67.0 56.7 48.0 52.4

C 63.0 68.5 57.7 48.7 52.4

B 64.0 69.0 57.7 48.5 53.0

DCB 64.0 69.0 58.0 48.0 53.0

K 66.0 70.0 58.3 49.0 53.4

DR 62.0 68.0 57.7 48.5 53.0

DD 65.0 69.5 58.7 49.2 59.0

DC 67.0 70.5 59.3 49.7 59.4

DB 69.0 71.5 60.0 50.2 59.8

DK 68.0 71.0 59.7 50.0 59.6
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Nodes 100 200 300 400 500

Networks Methods Percentage of influenced nodes

DDCB 71.0 72.5 60.7 50.7 60.2

SF

R 59.0 65.5 55.7 46.5 60.2

D 61.0 66.5 56.3 47.2 60.4

C 62.0 67.0 56.7 47.5 60.6

B 63.0 67.5 57.0 47.7 61.0

DCB 63.0 67.5 56.0 47.5 60.0

K 64.0 68.0 57.3 48.0 61.2

DR 63.0 67.5 57.0 47.7 61.0

DD 71.0 71.5 59.7 49.7 62.6

DC 73 72.5 60.3 50.2 63.0

DB 74.0 73.0 60.7 50.5 63.2

DK 72.0 72.0 60.0 50.0 62.8

DDCB 78.0 75.0 62.0 51.5 64.0

5.3.1.1 Impact of network density on number of nodes influenced

We analyzed the influence in networks through the lens of network density. Figure 5.3

shows size and density for all the generated networks. We can see that we have

networks from lowest to highest densities for each of the given sizes i.e.number of

nodes.Table 5.1 shows a comparison of the low and medium density networks with

nodes from 100-500 with seed sizes 1%, 10%, 20%, 30%, 40% and 50% in all Random,

Small-World and Scale-Free networks. The range of low densities is from 0.12 to 0.16,

and the range for medium densities is from 0.60 to 0.64. We considered 20 iterations

for LTM as a benchmark, because most of the networks reach 100% influence within

20 iterations for networks with medium densities. For complete graphs (density equal

to 1), it is observed that all networks reached the maximum influence in less than 20

iterations, regardless of the seed selection method.
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Table 5.2 shows the percentage of influenced nodes in Random, Small-World and

Scale-Free networks when the density is low. We can see that for the lowest tested

density, i.e., 0.1 the range of level of influence for different network sizes is between

15.5%− 25% when the seed size is 1%. For medium density networks it lies between

57% and 79% for all the methods when the seed size is 1% (Table 5.3) with N = 100.

That means, more iterations are required with 1% seed size to achieve a 100% influence

in all network types and sizes i.e. from 100 to 500 nodes.

Table 5.3 shows the percentage of nodes influenced for seed selection methods in

R, SW, and SF networks when density is medium and seed size is 1%. For complete

graphs all nodes in all networks are influenced. As we increase the seed set size we

can see that the percentage of nodes influenced are started to increase regardless of

density of the network. But for maximum seed size 50%, the 100% influence is reached

in medium as well as low densities networks within 20 iterations. A few observations

from the experiment suggest that firstly, it takes more iterations when the seed size

is smaller i.e. 1% of the total number of nodes. Secondly, to achieve more influence

when the densities are higher regardless of the network topology. Lastly, for complete

graphs we need less iterations regardless the type of network or seed selection method

used. From the above observations, we can say that density and seed set size play

an important role in determining the efficiency of influence spread in terms of the

percentage of influenced nodes. However, as we can see in the further results, seed

selection method also matters.

5.3.1.2 Percentage of nodes influenced

We present a comparison of seed selection methods in the form of the percentage of

gain in influence of DDCB over Random, Small-World and Scale-Free networks in

Table 5.4. The percentage of gain of influence (in percentage points) for the DDCB

method is calculated by subtracting from the percentage of nodes influenced by DDCB

the percentage of nodes influenced when using other methods (i.e. R, D, C, B, DCB,
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K, DR, DD, DC, DB, DK, DDCB). The overall gain for Random, Small-World and

Scale-Free networks for a particular number of nodes is calculated by taking the

average gain over all generated networks of one size (i.e N = 300). We compute the

gain using the level of influence after 20 iterations, as this is the earliest point that the

DDCB (and hence any) seed selection method reaches 100% influence. We noted that,

as expected, the percentage points gain of DDCB method is the highest over Random

seed selection method (i.e. 10.51%) in Random networks. However, Table 5.4 shows

that the DDCB method outperforms all evaluated seed selection methods.

Table 5.4 : Average percentage points gain of DDCB method over R, D, C, B, DCB,

K, DR, DD, DC, DB, and DK methods in Random (R), Small-World (SW) and Scale-

Free (SF) networks. Seed set size is expressed as % of the total number of nodes.

Each cell in the table shows the average and standard deviation of percentage gain

of DDCB over other methods.

Seed Size

N M 1% 10% 20% 30% 40% 50%

R 1.51±.11 8.2±.06 6.18±.03 4.87±.03 3.31±.03 1.49±.02

D 9.74±.11 7.56±.06 5.64±.03 4.41±.03 2.97±.03 1.26±.02

C 9.64±.10 7.74±.05 5.72±.03 4.49±.03 2.91±.02 1.21±.02

B 9.08±.05 7.46±.02 5.43±.01 4.02±.01 2.64±.01 1.02±.01

DCB 9.08±.01 7.74±.07 5.44±.04 4.49±.03 2.64±.06 1.21±.03

K 8.79±.55 7.18±.53 5.15±.21 3.79±.45 2.46±.03 .92±.02

DR 8.95±.11 7.00±.06 5.11±.03 3.95±.03 2.64±.03 1.02±.02

DD 2.26±.06 2.26±.06 2.05±.01 2.07±.01 1.07±.01 .77±.01

DC 1.69±.08 1.69±.09 1.54±.02 1.61±.04 .77±.05 .61±.51

DB 1.41±.03 1.41±.04 1.28±.05 1.38±.09 .61±.45 .54±.35

R

DK 1.12±.29 1.13±.45 1.02±.35 1.15±.85 .46±.65 .46±.07

R 5.33±.05 3.97±.02 4.02±.02 4.59±.04 2.21±.03 1.08±.02
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Seed Size

N M 1% 10% 20% 30% 40% 50%

D 4.7±.05 3.41±.02 3.49±.02 4.13±.04 1.9±.02 .95±.01

C 4.08±.02 3.92±.01 5.41±.01 4.82±.02 3.26±.03 .91±.01

B 3.95±.03 3.11±.01 3.33±.01 3.81±.03 1.15±.01 .71±.01

DCB 3.95±.03 3.41±.03 5.41±.01 3.8±.02 1.15±.05 .90±.04

SW K 3.4±.04 2.51±.01 2.8±.02 3.30±.03 .90±.05 .54±.06

DR 4.26±.05 2.85±.02 2.95±.02 3.80±.04 1.15±.02 .70±.01

DD 1.69±.06 1.71±.06 1.31±.01 2.05±.01 1.02±.01 0.54±.02

DC 1.12±.91 1.12±.34 1.02±.04 1.64±.36 0.82±.34 0.38±.57

DB .57±.21 0.57±.04 0.51±.11 1.23±.34 .61±.28 .23±.43

DK 0.85±.04 0.85±.38 0.77±.08 1.43±.91 0.72±.54 0.31±.59

R 6.97±.06 5.97±.03 5.13±.02 4.36±.03 3.43±.04 1.61±.02

D 6.36±.06 5.41±.03 4.56±.02 3.90±.03 3.15±.04 .14±.02

C 5.79±.04 5.13±.03 4.00±.02 3.44±.02 2.99±.03 1.38±.02

B 5.49±.06 4.85±.02 4.00±.01 3.46±.02 2.87±.03 1.15±.02

DCB 5.79±.91 5.13±.65 4.00±.37 3.46±.91 0.87±.11 .91±.31

K 5.21±.55 4.57±.87 3.72±.84 3.23±.04 2.72±.06 1.05±.13

DR 6.05±.06 4.85±.03 4.00±.02 3.46±.02 2.87±.03 1.15±.02

DD 2.15±.06 2.15±.06 2.26±.05 1.79±.04 .92±.01 .61±.01

DC 1.54±.04 1.54±.08 1.70±.93 1.30±.08 .72±.11 .50±.26

DB 1.22±.33 1.23±.54 1.41±.09 1.02±.06 .61±.73 .40±.34

SF

DK 1.85±.11 1.84±.03 1.97±.93 1.54±.05 .82±.17 .53±.66

Additionally, the results in Table 5.2 and Table 5.3 show that the traditional seed

selection methods do not perform as well as their ‘sibling’ driver based methods. By

‘sibling’ method, we denote a pair of methods where ranking is done using the same

approach, but one is a driver-based method (only driver nodes are ranked) and the
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other is not (all nodes are ranked). None of the ranking methods incorporates the fact

that even the high degree node can be clustered. As a cluster in a network is a set of

densely connected nodes that is sparsely connected to other clusters in the network,

so it is unnecessary to target all the highest degree nodes that may be in only one or

few clusters. The driver nodes are selected in a way to enable control over the whole

network and not only its parts, so they provide better coverage of the network. These

observations suggest that if we rank driver nodes based on centrality measures when

they are to be used as seeds, the influence spread process produces better results than

the benchmark methods such as randomly generated seeds or most commonly used

degree based methods. Table 5.4 shows the results when 1%, 10%, 20%, 30%, 40%

and 50% of driver nodes are selected as seeds. With the increase of the seed set size,

the difference in the percentage of nodes influenced by different methods becomes

negligible. Thus, the advantage of the DDCB method is more critical when we have

low budget for seed selection, and we can target only small number of nodes which,

arguably, is a case in most situations.

5.3.1.3 Critical Difference Diagram for Generated Networks

Figure 5.4 shows a comparison between all the methods used to generate influence

over all of the generated networks. The critical difference diagram shows whether

the results (expressed as % of nodes influenced) for various methods are significantly

different from each other. The confidence level used is α = 0.05. Critical difference

diagrams use the Wilcoxon-Holm method [86] to determine the statistical significance

of the results. The lower the rank (further to the right) the better performance of

a model under the particular masking rate compared to the others on average. Hor-

izontal line segments group together methods with ranks that are not significantly

different in terms of spreading influence. The percentage of number of nodes influ-

enced is calculated for each method for seed sizes 1%, 10%, 20%, 30%, 40% and

50%. The diagrams show that, in generated networks, driver based methods are
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Figure 5.4 : Critical difference diagram for generated networks.

critically different from traditional seed selection methods in terms of percentage

of influenced nodes. Moreover, the DDCB method consistently outperforms other

methods and ranks as no. 1 across the board. Other driver–based methods, with

exception of random approach (DR), although they outperform traditional methods,

are not statistically significantly different between each other. When looking at the

traditional methods there is more statistically significant difference between centrality

based methods, e.g., degree and closeness centrality ranking methods are worse than

betweenness centrality.

This indicates that the key to good seed selection method is rather the fact that

we first select driver nodes and rank those than the ranking method itself. Selecting

driver nodes enables to effectively reduce number of nodes to be ranked and in the

same time ensures that selected nodes are good influencers as they can control the

underlying structure.

5.3.2 Results from Real Social Networks

This section contains the results from real social networks.

5.3.2.1 Percentage of influence gain by DDCB method over other meth-

ods in the social networks

Table 5.5 shows the percentage of influence gained over all other methods by DDCB

method after 100 iterations. We can see that over Random method, percentage
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Figure 5.5 : The percentage of influenced nodes in each iteration (the trend-lines for

all simulation cases) for different seed selection methods and for Z, Youtube, Diggs,

and PF networks. Seed set size is 25%.

gain is the highest. It can be seen, that DDCB method gained more influence over

traditional methods as compared to driver based methods. This means that driver

based methods, regardless the applied ranking method, do increase the spread of

influence over a network. We observe an increase of number of influenced nodes as

the process progresses. This leads to the reduction of gain achieved by DDCB over

other methods and eventually, when 100% of influenced nodes is achieved, there is no

gain.

5.3.2.2 Percentage of nodes influenced

We can see from the results that driver–based methods of seed selection (DR, DD, DC,

DB, DK, DDCB) are able to achieve full influence i.e. when all nodes are activated
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Table 5.5 : Gain of DDCB over R, D, C, B, DCB, K, DR, DD, DC, DB and DK

in real social networks. Seed set size is 25% of the all nodes. Each cell in the table

shows the percentage gain of DDCB over other methods after 100 iterations.

Network R D C B DCB K DR DD DC DB DK

FB 24.68 23.03 23.94 24.94 24.15 23.59 20.59 20.59 21.19 21.28 20.14

ZKC 8.18 2.00 1.82 1.09 0.95 0.73 0.18 0.18 0.27 0.00 0.00

Twitter 33.81 25.83 25.8 25.78 19.16 25.77 22.81 22.8 22.74 22.06 20.22

Diggs 38.49 36.05 35.76 35.47 35.37 38.21 19.11 17.89 16.67 15.53 18.85

Youtube 39.00 33.02 32.12 31.79 31.59 32.92 2.51 1.71 0.91 0.11 2.45

Ego 20.83 13.34 13.33 13.33 16.15 20.81 8.64 8.62 8.14 8.05 7.89

LC 30.84 24.62 24.61 24.61 24.52 30.81 21.4 21.23 20.98 20.65 21.06

LF 15.29 8.62 8.56 8.34 8.25 8.33 7.38 7.35 7.20 6.86 8.11

PF 7.62 4.66 4.43 4.21 4.13 4.25 1.94 1.78 1.64 1.60 1.71

MFb 21.44 20.16 20.11 20.11 20.10 20.11 14.07 13.80 19.70 19.43 13.80

DHR 36.77 33.42 32.21 31.00 30.90 33.20 5.78 5.26 4.73 4.21 5.01

DRO 38.43 33.74 33.42 33.22 33.12 33.45 12.50 12.40 12.13 11.94 33.18

DHU 42.4 33.77 33.52 33.33 33.13 37.85 25.35 25.02 24.84 24.61 24.33

MG 27.54 25.43 25.07 25.25 25.07 25.34 15.14 14.49 14.05 9.35 13.86

L 24.55 23.25 23.04 22.82 22.79 22.81 17.34 17.11 16.75 16.71 16.70

FbAR 37.97 30.40 30.18 29.95 29.93 30.30 28.43 28.14 27.85 27.56 28.28

FbA 45.29 30.45 30.05 29.55 39.87 44.89 31.28 30.83 30.28 29.46 31.01

FbG 19.95 18.22 17.93 17.71 18.18 18.20 12.97 12.75 12.39 12.13 12.68

FbN 28.82 21.03 21.00 20.95 20.96 21.01 11.85 11.64 11.18 11.10 11.40

FbP 26.73 20.90 20.76 20.40 20.87 20.89 14.89 14.47 14.15 13.90 14.31

FbPF 34.61 30.21 29.85 29.57 29.39 29.48 25.30 25.12 24.85 24.21 25.21

FbT 23.93 20.84 23.70 23.29 16.73 16.77 18.37 17.46 12.71 12.36 16.63
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Figure 5.6 : The percentage of influenced nodes in each iteration (the trend-lines for

all simulation cases) for different seed selection methods and for LF, FB, FbT, LC,

FbP, FbG, L, FbPF, and FbA networks. Seed set size is 25%.
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Figure 5.7 : The percentage of influenced nodes in each iteration (the trend-lines for

all simulation cases) for different seed selection methods and for MFb, FbN, Ego,

Twitter, FbAR, DHU, DRO, DHR, and MG networks. Seed set size is 25%.
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in less iterations than traditional methods (R, D, C, B, K). With 25% nodes selected

as seed nodes for DDCB method, in all the networks, all nodes are activated in 100

or fewer iterations. For R and D methods, for Twitter, FbN, DRO, DHU, FbA,

DHR, YouTube and Diggs networks it took more than 100 iterations to achieve 100%

influence. Additionally, for R method and Twitter, DRO, FbA, DHU, DHR, YouTube,

and Diggs, it took more than 100 iterations to reach 100% influence. The networks are

distributed in three figures, which are divided on the basis of their network densities.

We can also notice in Figs. 5.6 and 5.7 that for such networks as YouTube, Diggs,

DRO, DHU, FbT and FbN the spreading dynamic (trend-lines) based on R and D

seed selection start slowly (below y = x line) but then pick up as the number of

iterations increases. This means that if we are looking for fast influence spread, in

less number of iterations and with low seed size, we cannot just rely on Random or

Degree based methods. Spreading dynamic for driver–based methods shows faster

influence spread as compared to traditional seed selection methods. That means,

driver nodes are influential and then ranking based on centrality measures enabled

to extract the most influential ones. It means that driver nodes that were originally

used as nodes that can control the network can also be used as seeds and provide

faster influence spread.

The DDCB method shows promising results, but this could also be due to the

network structural measures, e.g. density of the underlying social network. Thus, we

look into the densities of the selected networks. We can see in case of lower density

networks, such as Diggs (0.000002), YouTube (0.000004), Twitter (0.00012) and Ego

(0.00014), the trend-line for all the methods starts lower than for the networks with

high density such as FB (0.01) or ZKC (0.13). It is worth noting that for all networks,

for seed size 25%, DDCB method achieved 100% influence in less than 100 iterations,

which can be seen from the trendlines in Figures 5.5, 5.6 and 5.7. The point to

be highlighted here is: networks with higher densities and smaller size (e.g. ZKC)

show a trendline which depicts the quickest possible influence spread as compared
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Figure 5.8 : Number of iterations needed to reach 100% of influenced nodes using

different seed selection strategies: (a) Traditional Seed Selection, (b) Driver Seed

Selection, (c) DDCB Seed Selection. Seed set sizes are 5%, 15% and 25%.

to the rest of the networks. Figures 5.5, 5.6 and 5.7 show the percentage of nodes

influenced as a function of number of iterations of spreading process for different seed

selection methods and seed set size of 25%. The results show that DDCB obtained

momentum from the very start of influence spread in all the networks, despite their

size. That means, that if we aim to achieve faster influence, then DDCB is the right

choice. That will allow us to decrease our time (the number of iterations) needed to

spread influence in the network, and we can achieve faster influence by using smaller

seed set size. If we look at the shape of trend-lines from Figures 5.5, 5.6 and 5.7,

we see a lift-off in trendlines of DDCB method.

5.3.2.3 Number of iterations needed to influence the network

Fig. 5.8 shows different seed set sizes and the number of iterations each method

needs to achieve 100% influence. We sorted the networks in ascending order of their

densities to see clearly that the sparser networks needs more iterations to complete

the process, irrespective of the seed set size. We worked on achieving the maximum

influence by continuing the influence. Overall, the number of iterations reduce in all

networks when the seed set size increases from 5% to 15% and to 25%. We can see a

drop in the number of iterations as we increase the seed size and also as the density
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of a network increases. This means that some of the strategies to get 100% of nodes

activated are (i) to increase the seed size or (ii) to run the process longer. But this is

not always possible, for example due to resource limitation.

In Fig. 5.8, we can see that DDCB method, outperforms both driver based and

traditional seed selection methods, and can be used when we want to see more nodes

influenced in less time (iterations). We can also see that even driver method, where

seeds are ranked in the highest degree, helps propagate influence faster than when

using traditional seed selection methods. From the same figure, we can see that Diggs

network is up to 300 iterations, when seed size is 5%, to achieve maximum influence

when we use traditional seed selection methods. When we increase the seed size to

15% or 25%, we see a sudden drop in number of iterations needed. But still the

number of iterations remain higher in Diggs than the rest of the networks. Since

Diggs is the lowest density (0.000002) network, we can say our results from simulated

networks are relevant here as well. Because, with dense networks, we achieve faster

influence spread. We can see a drop in number of iterations for the same network

from Fig. 5.8, where we compared different seed sizes for driver based seed selection

methods. This result indicates that, even in networks with varying structures, driver

based methods outperforms the traditional seed selection methods.

5.3.2.4 Critical Difference Diagram for Social Networks

We see similar results in Figrue 5.9, as we have seen for the generated networks.

We found out that all driver–based methods yield statistically better results as com-

pared to their traditional counterparts. The critical difference diagram in Figure 5.9

shows the mean ranks of each method. The lower the rank (further to the right) the

better performance of a method compared to the others on average. A line in each

diagram indicates that there is no significant difference in performance among the

models crossed by that particular line in terms of the Friedman test that compares

the ranks of multiple methods. For example, there is a line connecting DB and DC
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Figure 5.9 : Critical difference diagram for real networks

methods, DC and DR methods, R and K methods, D and C methods, and C and B.

Which means, that there is no critical difference between the two methods that are

connected in terms of their performances. The diagram also shows, a clear distinction

between DDCB method and rest of the methods. DDCB method ranks higher on the

right hand side, indicates that it is the most efficient method out of these all. The

similarity line connecting the methods, means that the use of these methods in the

context of the networks studied is indistinct. This means that, if we identify driver

nodes first before selecting them as seeds, it increases their potential to influence

more nodes in the network in less iterations as compared to traditional seed selection

methods. Not all traditional methods are significantly different from each other. We

can see high resemblance in the results of D, K and B methods. If we look at their

counterparts methods based on driver nodes DR, DK and DB respectively, the results

are significantly improved in them, due to the presence of driver nodes.

5.3.2.5 Time Complexity and Execution Times

From the results, we observe that driver based methods can influence more number

of nodes in the examined networks. However, there is time needed to calculate the

driver nodes and assemble the ranking. Since our main focus is on calculating the

percentage of the nodes influenced, that is why we focused so far on calculating the

number of iterations to reach the maximum influence. However, to provide complete

analysis, the execution time for all the seed selection methods in the biggest network,
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i.e., Youtube was recorded and compared.Table 5.6, shows the time it takes to execute

the algorithms for the methods.

Table 5.6 : Time Complexity of Calculating Different Measures

Centrality Complexity

Degree O2

Closeness O(N ∗ E ∗ d), where d is the diameter

Betweenness O(N ∗M +N ∗ 2 ∗ logN)

Driver Nodes O(N2.5)

The most important observation is that when comparing all the methods in Ta-

ble 5.8, DDCB method takes fewer iterations (i.e. 26, 20 and 16 at 5%, 15% and 25%

seed nodes) to complete the influence process, which is to influence all the nodes. Also,

all the driver based methods in comparison to traditional methods require almost half

the iterations to influence 100% of the nodes of the networks. All the comparisons are

done for 5%, 15% and 25% seed set sizes respectively. DR in comparison to R (77,

74 and 70) takes 37, 32 and 28 iterations to influence the nodes in the networks. DD

in comparison to D (75, 74 and 60) takes 35, 30 and 28 iterations. DC in comparison

to C (69, 63 and 62) takes 39, 35 and 30 iterations. DB in comparison to B (63, 59

and 55) takes 43, 40 and 32 iterations. DK in comparison to K (61, 57 and 49) takes

38, 32 and 25 iterations.

Table 5.7 shows the execution times of all seed selection methods for various sizes

of the seed sets i.e. 1%, 5%, 15%, and 25%, when the maximum influence is reached.

Driver based methods in comparison to the traditional methods, take less time in

overall influence spread process. The calculation of the ranking and driver nodes is

time consuming but, overall analysis tells us that, given that the driver based methods

reach maximum influence in fewer number of iterations, decreases execution times.

In Table 5.8, execution times in each of the social networks for the driver based
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Table 5.7 : Total Execution Times (in hours – Hrs.) of Influence Model using each of

the Seed Selection Methods in the Examined Social Networks when 100% Influence

is Reached.

Execution Time (Hrs.): Maximum Influence

Seed Size
Seed Selection Methods

1% 5% 15% 25%

R 166.95 125.67 112.45 98.32

D 156.39 120.54 109.32 108.63

C 150.88 119.52 109.45 95.43

B 144.75 120.75 107.64 94.32

K 129.36 98.73 86.21 80.41

DCB 134 82.12 76.34 73.32

DR 78.35 77.86 74.78 70.63

DD 72.52 70.64 64.13 60.52

DC 68.83 64.44 63.55 62.11

DB 66.22 60.21 59.96 55.63

DK 65.79 62.98 58.18 55.48

DDCB 58.15 55.65 51.15 49.71

methods such as DR, DD, DC, DB, DK, and DDCB are lower than their counterparts

methods R, D, C, B, K, and DCB. The green colour represents the lower execution

times and red shows the highest execution time.

Hence, comparing to all the methods, DDCB method is more efficient than any

other method in terms of number of iterations that it takes to influence the overall

network nodes. However, despite the fact that driver nodes identification methods

have higher theoretical time complexity, they are useful in the context of the influence

spread in complex networks because driver-based seed selection methods require fewer
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Table 5.8 : Total Execution Times (in hours – Hrs.) of All Seed Selection Methods

in Each Social Network with 1% Seed Size when 100% Influence is Reached.

Execution Times (Hrs.) : Maximum Influence at 1% Seed Size
Networks

R D C B K DCB DR DD DC DB DK DDCB

FB 1.53 1.25 1.25 1.22 1.06 1.35 1.50 1.50 1.75 1.50 1.35 0.75

ZKC 0.75 0.75 0.75 0.75 0.16 0.73 0.25 0.22 0.21 0.21 0.69 0.16

Twitter 3.02 2.51 2.45 2.45 2.35 2.25 1.95 1.95 1.75 1.95 1.95 1.95

Diggs 55.32 52.45 50.98 50.56 48.78 48.23 19.01 18.99 15.92 16.45 16.25 16.00

Youtube 53.31 51.43 50.26 50.23 48.54 48.13 18.99 18.79 18.76 16.45 15.21 14.00

Ego 4.00 4.00 4.00 3.19 1.43 3.00 3.02 2.51 2.45 2.45 2.39 2.25

LC 1.53 1.25 1.15 1.12 0.94 1.50 1.50 1.50 1.50 1.50 1.11 0.69

LF 1.33 1.13 1.33 1.13 0.26 1.03 0.31 0.28 0.28 0.28 0.95 0.26

PF 1.42 1.42 1.42 1.42 0.29 1.00 0.37 0.35 0.35 0.31 0.95 0.29

MFb 4.00 3.75 3.15 2.50 2.25 2.05 3.02 2.51 2.45 2.45 1.95 2.05

DHR 3.35 2.55 2.55 2.45 2.45 2.45 2.00 2.00 2.00 1.51 0.99 1.51

DRO 4.50 3.15 3.35 4.13 2.35 4.13 3.02 2.51 2.45 2.45 3.94 2.25

DHU 4.50 4.50 4.05 3.15 2.35 3.05 3.02 2.51 2.45 2.45 2.75 2.25

MG 4.75 3.75 3.13 3.13 2.45 3.03 3.35 2.55 2.55 2.45 2.83 2.45

L 2.75 2.75 2.75 2.15 1.05 0.75 1.53 1.25 1.25 1.22 1.85 0.72

FbAR 4.00 4.00 3.39 3.15 2.45 2.45 3.35 2.55 2.55 2.45 1.95 2.05

FbA 3.02 2.51 2.45 2.45 2.35 2.25 1.91 1.91 1.87 1.91 1.11 1.21

FbG 2.75 2.15 2.15 2.65 1.05 0.75 1.53 1.25 1.25 1.22 1.97 0.72

FbN 3.45 3.45 3.15 2.35 2.35 2.25 3.02 2.51 2.45 2.45 1.85 2.25

FbP 2.33 2.33 2.23 1.23 1.13 0.68 1.15 1.12 0.99 0.99 1.03 0.95

FbPF 2.97 2.97 2.57 1.97 1.97 2.25 3.02 2.51 2.45 2.45 1.57 2.45

FbT 2.37 2.34 2.37 1.37 1.35 0.69 1.53 1.25 1.15 1.12 1.15 0.94

iterations to influence all nodes.

5.4 Discussion and Conclusion

In this chapter, we focused on Research Challenge RC4, Research Question RQ3 and

Research Objective RO4. In this study, we used driver nodes selection methods as

seed selection strategies in the influence spreading process to evaluate how they affect

the spread time and the influence number of influenced nodes, both in generated

and real social networks. This is the first research that brings the fields of control
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and influence together and proposes new seed selection methods that are inspired

by concepts from control theory. This contribution addresses Research Objective

RO4, that stated, "To implement different traditional seed selection methods and

driver-based methods to generate influence in synthetic and real networks". We have

compared traditional seed selection methods (R, D, C, B, DCB and K) with driver

based seed selection methods as their sibling methods (DR, DD, DC, DB, DDCB and

DK). We can draw very clear key contributions based upon the obtained results.

First, based on Section 5.3 we can say that all driver based seed selection methods

outperforms the traditional seed selection methods in terms of percentage of influ-

enced nodes in generated networks as well as real social networks. We further conclude

that, if we have a better seed selection set at the beginning of the spreading process,

it is high chance that the more number of nodes could be influenced as compared to

when we just apply traditional seed selection methods. Moreover, even if we do ran-

dom seed selection from driver nodes, they perform better than any of the traditional

seed selection strategies. The main contribution here is the fact that, when applying

driver based seed selection methods, even if the seed size is small those methods are

able to achieve higher number of influenced nodes. Experiment results are similar

in both generated and real networks. Secondly, we learn that, for sparse networks

where density is very low, percentage of influenced nodes is higher in driver based

seed selection methods as compared to traditional methods. We see this phenomenon

for generated and real networks such as Youtube and Diggs, which are the lowest

density networks. We see that even in these networks with small seed sizes driver

based methods outperforms their sibling methods. If we complete graph, 100% influ-

ence can be achieved, regardless of the seed selection method the influence process

is quick. When density is 1, all seed methods work in the same way – they become

random. Important conclusion here is when we compared the percentage of influence

in lowest and medium density networks for random and as well as social networks.

From this comparison When we analysed the time complexity of seed selection meth-
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ods, we see that, identifying driver nodes is a very complex task, but we do not need

to calculate centrality measures for all nodes and the number of iterations required

to reach the 100% influence in a network reduces when we use driver based methods.

Thus, actually we are able to save time and resources. To conclude, 100% influence

can be achieved, regardless of the seed selection method the influence process is quick.

When density is 1, all seed selection methods work in the same way – they become

random. The important thing to note is if the network density is very low, like in

the case of Diggs network (0.000002), the driver based methods outperforms tradi-

tional methods in terms of number of iterations needed to achieve 100% coverage.

For synthetic networks, we see the maximum gain that DDCB method has achieved

over other techniques is 10.51% which is substantial average gain over Random seed

selection method when seed size is 1% as shown in Table 5.4. The fact that DDCB

method outperforms all others for small seed sizes, shows that it has great potential

in situations with limited budget where only small number of nodes can be initially

activated. This can be concluded based upon the percentage of influenced nodes in

all generated networks. Those results are also confirmed by the experiments on real

networks.

Our work identifies the relative performance of different seed selection methods in

terms of influence spread in a wide variety of network structures, however further work

can be done in identifying the characteristics of the individual nodes which lead to

them serving as highly effective seed nodes. A deeper understanding of the structural

contributions of individual nodes may lead to further improvements to seed selection

methods. Driver based methods show improvement over traditional seed selection

methods in both synthetic and real–world networks. Results for DDCB are very

promising, as this method consistently outperforms other seed selection methods in

both kinds of networks. The observed usefulness of our novel approaches addresses

the research question "How can the concepts from network control be used in the

spread of influence field?" of the research topic.
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Finally, we can conclude that in order to achieve maximum influence in fewer

iterations, not only density, but seed size and ranking of driver nodes is also important.
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Chapter 6

Influence Models, Communities and Driver Nodes

This chapter explores the possibility of using community structure in social networks

to reduce the cost of identifying driver nodes, and whether this remains a feasible ap-

proach for network control and influence spread methods. In Figure 6.1 we can see the

highlighted tasks that were carried out to fulfil RC5 (i.e., Using driver nodes identi-

fied in local network structures to maximize influence spread in social networks.) and

RO5 (i.e, To measure the efficiency and effectiveness of global seed selection methods

and local seed selection methods.) as part of the whole thesis. This chapter contains

the following sections: Section 6.1 describes related work and motivation behind this

experimental study. Sections 6.2 and 6.3 describe (i) the research methodology in

detail and (ii) include results and analysis of the experiments performed respectively.

Finally, the conclusions drawn from the experiments and future work are discussed

in Section 6.4.

6.1 Background

Due to the prevailing use of online social networking sites, social networks are very

much a hot topic in network science. Nowadays, we have a good understanding of

network structures and attention has shifted more towards their prediction, influ-

ence, and control. Full control of social networks is very hard to achieve due to their

varying structures, dynamics, and the complexities of human behaviour. This study

looks into how driver nodes, which enable complex network control, can be used in

the context of influence spread in the social network space. We use driver nodes

at both the global and community level to ‘divide and conquer’ the time-consuming
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Figure 6.1 : Research Methodology : Chapter 6
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problem of driver node identification. Until recently, we did not know if and how the

structure of social networks correlated with the number of driver nodes required to

control the network [182]. As driver nodes play a key role in achieving control of a

complex network, identifying them and studying their correlation with network struc-

ture measures can bring valuable insights, such as what network structures are easier

to control, and how we can alter the structure in our favour to achieve the maximum

control over the network. Our previous work [182] determines the relationship be-

tween some global network structure measures and the number of driver nodes. This

study builds an understanding of how global network profiles of synthetic (random,

small-world, scale-free) and real social networks influence the number of driver nodes

needed for control. It focuses on global structural measures such as network density

and how it can play an important role in determining the size of a suitable set of

driver nodes. Our results show that as density increases in networks with structures

exhibited by random, small world and scale free networks, the number of driver nodes

tends to decrease. In this work we explore the potential that exploiting local struc-

tures (in this study we focus on communities) can offer in developing control of, and

influencing, the network. Finding communities in a social network is itself a difficult

task due to both dynamic and combinatorial factors [187].

The Influence Maximisation problem aims at discovering an influential set of

nodes that can influence the highest number of nodes in social networks in the

shortest possible time. A set of these nodes can be used to propagate influence

in terms of social media news, advertising, etc. Several algorithms have been pro-

posed to solve the influence maximisation problem that identify a set of nodes that

is highly influential as compared to other nodes. For example Basic Greedy [103],

CELF [115], CELF++ [68], Static Greedy [34], Nguyen’s Method [159], Brog et al.’s

Method [15],SKIM [36], TIM+ [199], IMM [198], Stop and Stare [157], Zohu et al.’s

Method [241] and BCT [158] are some of those algorithms. Many algorithms have

high run times when identifying a set of nodes to diffuse the influence through a so-
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cial network, therefore there is a need to work on exploring different types of nodes if

those can work towards achieving the high influence [101]. The problem of influence

maximisation has high relevancy to the spreading of information on networks. The

two most common network-based models are Independent Cascade model [103] and

Threshold models [69]. In one of the previously proposed framework, the possible

seed set has been identified by analysing the properties of the community structures

in the networks. The CIM algorithm (i.e. Community-Based Influence Maximisa-

tion), utilises hierarchical clustering to detect communities from the networks and

then uses the information of community structures to identify the possible seed nodes

candidates, and at the end the final seed set is selected from the candidate seed

nodes [32]. From the previous work such as [32] and [101], we can see, that by de-

tecting communities and then selecting seed nodes from those communities can be an

effective strategy to maximise influence.

From Chapter 3, and [182], following main results were achieved, which are the

basis for further new experiments that helps us in achieving Research Challenge RC5.

• Correlation between network density and number of driver nodes: For this

purpose, network densities and number of driver nodes in those networks are

plotted against each other to see the increase/decrease in number of driver nodes

with the increase/decrease in the densities of the networks.

• Structural measures and density of driver nodes: In this step a comparison of

structural measures like (Betweenness Centrality, Closeness Centrality, Nodes,

Edges, Eigenvector Centrality and Clustering Coefficient) is presented with the

density of number of driver nodes. Density of number of driver nodes is defined

as total number of driver nodes divided by total number of nodes in the network.

In our proposed methods, we utilise driver nodes within the communities of networks

for the influence spread using Linear Threshold Model. To make the driver nodes

more influential, we propose different ranking mechanisms to see the number of nodes
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influenced after a certain time with a certain percentage of seed nodes in synthetic as

well as real networks. The detail of network datasets has been presented in the later

sections. We explain our method to select seed nodes from the communities in the

next section.

6.2 Research Methodology and Experimental Design

This work springs from the Research Question RQ4, the main focus is in finding out,

whether network control methods, in particular driver node selection, can be used to

improve seed selection in influence models.

This prompts two possible approaches: (i) using driver nodes selected from the

network as a whole, and (ii) using driver nodes selected at the community level as

seeds. For all experiments, we used the Linear Threshold Model to model influence

propagation. We used a set threshold of 0.5 for the network diffusion model. We

have previously observed that a threshold value of at least 0.4 accelerates influence

propagation [32]. The datasets description can be seen in Chapter 4 Section 4.2.

6.2.1 Influence spread using global driver nodes as seeds

The first experiment focuses on the seed selection process from the global perspec-

tive. Driver nodes are selected from the network as a whole, ranked, and finally

used as seeds in the influence process. The below described approach has been pro-

posed in [181]. As it outperforms other state-of-the art ranking methods, it serves in

this study as a benchmark to show a difference between global- and local-level seed

selection methods. The steps are as follows:

1. Minimum Dominating Set method [147] has been used to identify the number of

driver nodes from the networks. More detail of this process can be found in [182].

DMS has been found by using greedy algorithm. At start, the dominating set is

empty. Then in each iteration of the algorithm, a vertex is added to the set such
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that it covers the maximum number of previously uncovered vertices. Then, if

more than one vertex fulfils this criteria, the vertex is added randomly among

the set of nominated vertices [186].

2. We ranked the nodes using different ranking mechanisms. The goal was to

achieve an efficient set of nodes as seeds that can achieve maximum or full in-

fluence more quickly. The ranking mechanisms used are: Random, Degree Cen-

trality, Closeness Centrality, Betweenness Centrality, Kempe Ranking, Degree-

Closeness-Betweenness. We tested various seed set sizes: 1%, 10%, 20%, 30%,

40% and 50% of all detected driver nodes ranked these methods. In each of the

methods, the driver nodes are ranked based on the following measures:

• In Random (Driver Random – DR) we ranked the driver nodes randomly.

• In Degree seed selection (DD) we ranked the driver nodes based on their

degree in descending order.

• For Closeness Centrality based seed selection method (Driver Closeness

– DC), we ranked the nodes on the basis of their closeness centrality in

descending order.

• For Betweenness Centrality based seed selection method (Driver Between-

ness – DB), we ranked the nodes on the basis of their betweenness centrality

in descending order.

• For Degree-Closeness-Betweenness method (Driver Degree Closeness Be-

tweenness – DDCB), we ranked (in descending order) the driver nodes on

the basis of the average of degree, closeness and betweenness centralities

of each driver nodes.

• For Kempe ranking (Driver Kempe – DK), we start by spreading influence

through all the driver nodes as seed nodes. So we calculate the total

number of nodes influenced by each driver node already in the seed set, and
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then rank them in descending order. After ranking, we select a percentage

of nodes that are required for a seed set.

• Linear Threshold Model (LTM) has been implemented for influence spread

process. In LTM the idea is that a node becomes active if a sufficient part

of its neighbourhood is active. Each node u has a threshold t ∈ [0, 1]. The

threshold represents the fraction of neighbours of u that must be active

in order for u to become active. At the beginning of the process, a small

percentage of nodes (seeds) is set as active in order to start the process. In

the next steps a node becomes active if the fraction of its active neighbours

is greater than its threshold, and the whole process stops when no node is

activated in the current step [38].

6.2.2 Influence spread using local driver nodes as seeds

The second experiment employs a new strategy: first identify communities in the

network, and then identify driver nodes on a per-community basis.

Once driver nodes for each community are identified, they are then ranked using

the same ranking mechanisms as in the first experiment, with seed sets chosen to

cover all communities (detailed below). In detail, the approach is as follows:

1. Firstly, communities are identified in the network. This was done using Girvan-

Newman algorithm [64]. The Girvan–Newman algorithm detects communities

by progressively removing edges from the original graph in order of the highest

betweenness centrality.

2. Within each community, candidate driver nodes were identified using the Min-

imum Dominating Set [147] approach as used with the whole network. Cor-

relation between community densities and number of driver nodes is found by

obtaining densities of the communities and identifying number of driver nodes

in those communities by MDS method. Difference (Diff.) between total num-
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Figure 6.2 : An example showing the process for selecting seed nodes set from the

driver nodes identified in network communities

ber of driver nodes identified in overall networks (NDN) as compared to the

number of driver nodes found in communities of those networks (NDNC) is also

obtained. The Diff. tells us, the significance of identifying driver nodes within

communities, like following a divide and conquer approach.

3. To rank the nodes, we introduce a multi-round selection process. This process

effectively ranks driver nodes within each community according to the ranking

criterion, then selects one node per community per round, in the order given by

the ranking, until the total percentage to be chosen is reached. This is perhaps

better explained by the following example, illustrated in Figure 6.2. Consider a

network with 1,000 nodes and 6 communities. Select a ranking method, in this

case the node degree. Choose a target percentage of nodes to use as seed nodes,

1% in the example. Now, in order to choose 10 nodes from the driver nodes

detected in the communities, we select 6 nodes at first – the highest degree node
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from each community, marked in yellow in the figure. In the second round, we

can select at most 4 nodes to reach the target of 10 – from each community,

we take the node with the second-highest node degree and rank these nodes

according to their degrees and take the 4 nodes with the highest degree. We

choose the same ranking mechanism for all the community based driver nodes

seed selection methods i.e., the highest node degree, apart from the original

ranking that is different in each technique as explained previously.

4. Influence spread in the overall network using Driver Based Seed Selection Meth-

ods is done by following a series of steps. Starting from identification of driver

nodes from the networks, ranking of driver nodes based upon Random, Node

Degree, Closeness Centrality, Betweenness Centrality, Kempe Ranking, Degree-

Closeness-Betweenness Centralities combined. After ranking of driver nodes,

we selected our seed set on the basis of percentage of nodes from that set. We

run our LTM for different seed sets, namely for example 1%, 10%, 20%, 30%,

40% and 50%.

5. Influence spread through Driver Nodes in communities of Networks is done

by identifying driver nodes in communities. However, there was a challenge of

getting the ultimate seed set that has representation from all the communities of

the network. For this purpose, we devised our ranking approach that makes sure

that at least one driver node is selected from each community of the network to

make sure that the nodes in those communities can also be part of the influence

process. For each of the driver based seed selection methods, we used one unified

approach to further rank the nodes so that we are able to select at least one

node from each of the communities.
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Figure 6.3 : Number of Nodes Influenced in Random, Small-World and Scale-Free

Networks: when the number of nodes (N) is 100 and the number of edges (E) is 800

(Figures a, b and c); when N is 300 and E is 12800 (Figures d, e and f); when N is 500

and E is 72000 (Figures g, h and i). A Comparison of all methods for 20 iterations

when the seed size is 1% is presented.
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6.3 Results and Analysis

Six novel network level seed selection methods (i.e. Driver-Random (DR), Driver-

Degree (DD), Driver-Closeness (DC), Driver-Betweenness (DB), Driver-Kempe (DK)

and Driver-Degree-Closeness-Betweenness (DDCB)) have been proposed and tested

on synthetic and real world networks before in [181] and the results show that those

methods outperform their non-driver based counterparts. In this study, we use those

methods but instead of selecting driver nodes from the global network, we propose a

local approach where driver nodes are identified within the networks’ communities.

We name the new methods by adding C (for community) to the previously proposed

methods (i.e, DRC - Driver-Random-Community, DDC - Driver-Degree-Community,

DCC - Driver-Closeness-Community, DBC - Driver-Betweenness-Community, DKC

- Driver-Kempe-Community and DDCBC - Driver-Degree-Closeness-Betweenness-

Community). Below, we compare community based driver seed selection methods

to network based driver seed selection methods.

6.3.1 Results From Generated Networks

This section covers the results and analysis of the experiments performed on generated

networks.

6.3.1.1 What is the speed and reach of the influence spread?

First, we compare the percentage of nodes influenced for global-level driver based seed

selection methods and local-level (community) driver based seed selection methods.

We perform the analysis iteration by iteration to see which seed selection methods

enable to achieve the highest coverage the fastest.

In Figure 6.3, we can see trend-lines for all the seed selection methods (when seed

set size is 1% of all the driver nodes) for random, small-world and scale-free networks.

DDCBC method outperforms other methods in almost all the experimented cases. We
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Figure 6.4 : Average Number of Nodes in Communities of Random, Small-World and

Scale-Free Networks versus number of communities in those networks. The legend

shows the Number of Nodes in communities of generated networks i.e. Random (R),

Small-World (SW) and Scale-Free (SF).

can see a ‘head-start’ in the trend-line of DDCBC (represented in black colour) for

all the networks when number of nodes in the network is 100 and number of edges is

800. This means that in only few iterations, DDCBC enables to influence more nodes

than in the case of other seed selection methods.

Results in Figure 6.4 show that when the network is of small size, and density is

approximately equal to 0.6, the influence spreads faster when using driver-community

based seed selection methods than when the global-level driver based methods are

employed. If we look at Figure 6.4, the network of smaller densities (i.e. 0.4), where

number of nodes is 300 and number of edges is 2,800, the difference between the

global-level driver based methods and community-level driver based methods is not

so big. But we do see a gap between DDCBC method and other methods. Which

tells us that, so far, DDCBC ranking of driver nodes in communities is working better

than when we are using driver nodes of communities as seed nodes.

Although the comparison is done on a very small size of seed set (1% of all driver
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nodes), in DDCBC, we still achieve more influence earlier in the spreading process

when using community-level driver based methods. It also gives us another insight

regarding larger networks, their structures and densities, and how those are connected

to spreading influence. We see that the spread is faster when density is higher than

0.5 as in the case of networks presented in the Figure 6.3 (network with 500 nodes and

72,000 edges). We can see that in those cases, the driver-community based method

DRC, DDC, DBC, DKC and DDCBC outperforms their counterpart methods DR,

DD, DB, DK and DDCB.

Based upon these observations, we conclude it does not matter which type of

network it is, as long as its density is higher than 0.5 it will respond to the community-

based seed selection methods better and the spread will be faster. Also, regardless

of the network density, community-based method – DDCBC – outperforms all other

methods Figure 6.3(a-f). This holds true for all the other settings as well. As when

we have different edges for 100, 200, 300, 400 and 500 nodes networks.

6.3.1.2 How much advantage do community—level driver based seed se-

lection methods give?

Given a number of iterations n and a method X, let N infl
n (X) denote the number

of nodes influenced using the method X after n iterations. The Percentage Gain of

method A over method B after n iterations is then given by:

N infl
n (A)−N infl

n (B)

N
× 100 (6.1)

where N is the number of nodes in the network.

Table 6.1 shows the percentage gain of the DDCBC method over the global-level

driver based methods. We represent only driver based methods (i.e. DR, DB, DC,

DD, DK and DDCB), as the gain is higher over these methods as compared to other

driver-community based methods (i.e. DRC, DBC, DCC, DDC and DKC) as well as

they are our baseline for this study. Percentage gain is calculated by knowing the

maximum number of nodes influenced after 20 iterations when seed size is 1%.
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From Table 6.1 we can see the maximum gain in when the average density of the

communities of the network is greater than 0.5. When the density reaches 1 all the

methods perform very similar as spread in fully connected network behaves in a very

similar way regardless of applied seed selection method. This highlights our previous

point that density of network plays an important part in how effective a network

is going to respond to the influence spread process. We can see the highest gain for

DDCBC method in random networks, but DDCBC outperforms all global-level driver

based methods in all the networks, except for the networks with densities equal or

very close to 1.

From Figure 6.4, we can see the number of average nodes in communities versus

the total number of communities in Random, Small-World and Scale-Free networks.

The denser the network, the fewer communities we have, and those communities are

denser than the previous ones. Hence, due to increase in community density, we

see the higher percent gain in DDCBC method. The number of nodes influenced by

DDCBC method increases, when there are fewer communities. Because when number

of communities are less, they tend to be denser, hence the increase in number of nodes

influenced. We see the difference in number of nodes influenced in DDCBC method

which is bigger than compared to other methods.
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Table 6.1 : A percentage gain table shows the percentage gain of DDCBC method over other seed selection methods in

influencing the nodes in Random, Small-World and Scale-Free networks when the seed set size is 1% after 20 iterations.

N is number of nodes, E is number of edges, C is number of communities and CD is average community density.

CDensity Random Networks Small-World Networks Scale-Free Networks
N E C

Avg ± SD DR DB DC DD DK DDCB DR DB DC DD DK DDCB DR DB DC DD DK DDCB

800 6 0.16±0.01 2.10 2.50 2.21 2.15 2.12 1.12 3.42 2.11 3.27 3.11 3.34 2.51 4.05 2.19 2.33 3.91 3.02 2.01

1600 5 0.3±0.03 3.32 2.63 3.19 3.11 2.22 2.42 3.21 2.44 2.18 2.30 2.51 2.30 4.11 2.26 3.16 3.17 3.53 2.12

2400 4 0.44±0.06 3.11 2.21 2.24 3.30 2.05 2.71 3.45 2.15 3.55 3.00 2.01 2.09 4.00 2.00 2.00 3.02 3.61 2.33

3200 3 0.58±0.12 2.10 2.09 2.00 2.00 2.00 1.12 4.54 3.22 3.31 3.09 3.55 3.43 3.32 2.25 2.00 2.05 2.76 1.00

4000 2 0.73±0.14 4.76 2.63 3.33 3.00 2.07 2.15 3.27 2.12 2.22 2.00 2.00 2.61 4.05 3.31 3.17 3.03 3.55 2.00

4800 1 0.88±0.15 2.60 1.50 1.55 2.52 1.00 1.01 0.00 0.00 1.13 1.18 0.00 0.00 2.09 1.71 1.00 1.01 1.26 1.44

100

4950 1 0.96±0.07 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.04 0.15 0.00 0.01 0.09 0.71 0.00 0.00 0.00 0.00 0.00

2400 5 0.12±0.01 4.00 4.00 4.00 5.02 4.04 4.48 5.32 5.11 5.09 5.44 5.08 4.00 5.09 4.62 4.51 4.39 4.82 4.00

4800 4 0.23±0.02 3.00 20̇2 2.01 3.01 2.00 2.00 3.44 2.21 2.61 3.32 2.25 2.21 5.33 4.28 4.00 4.00 4.03 3.03

7200 4 0.36±0.01 8.16 7.33 7.21 7.11 7.09 6.00 8.01 7.94 7.37 7.07 7.00 7.34 9.19 8.00 8.02 8.00 8.00 8.22

9600 4 0.48±0.02 6.16 6.22 6.12 6.54 6.24 5.11 6.00 5.09 6.23 6.33 6.09 5.00 7.61 6.00 6.72 6.04 6.45 5.15

12000 3 0.56±0.07 6.00 5.15 5.12 5.11 5.11 4.45 7.00 7.11 7.09 7.03 7.33 6.00 7.15 6.16 6.16 6.05 6.09 6.00

14400 2 0.67±0.09 3.00 3.13 3.43 3.00 3.00 2.00 4.04 3.02 4.01 4.00 3.00 3.88 4.09 3.48 3.81 3.12 3.01 2.11

16800 1 0.78±0.11 2.99 1.37 1.71 1.00 1.00 0.00 2.47 1.73 2.27 2.48 2.81 1.71 3.68 1.90 1.40 2.21 1.00 1.00

19200 1 0.9±0.1 1.31 0.00 0.00 0.00 0.00 0.01 2.81 0.00 1.31 1.25 0.00 0.00 1.13 1.28 1.18 1.92 1.37 0.00

200

19900 1 0.97±0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12800 5 0.31±0.03 4.11 3.00 3.66 3.05 3.51 2.00 4.00 3.71 3.00 3.00 3.14 2.84 5.00 3.00 3.00 4.17 4.91 3.73

19200 5 0.41±0.03 4.00 3.00 3.62 3.22 2.94 2.27 3.13 2.34 3.12 3.33 3.91 2.20 4.83 3.01 3.00 3.82 3.63 3.49

22400 4 0.46±0.06 4.00 3.00 3.08 3.00 2.25 2.47 4.41 3.58 3.45 3.29 3.11 2.20 5.00 3.02 3.00 4.00 3.00 3.00

25600 4 0.53±0.08 4.14 2.27 2.09 3.65 2.37 2.18 3.99 2.02 3.73 3.00 3.00 2.00 4.07 3.16 3.72 3.81 3.00 2.91

28800 3 0.58±0.1 3.00 2.00 2.00 3.02 2.91 2.00 2.00 2.18 2.69 2.03 2.15 1.70 3.38 2.00 2.18 2.16 2.42 2.71

32000 2 0.63±0.17 6.00 4.00 4.00 4.00 4.02 3.05 4.11 3.62 3.51 3.02 3.00 3.95 5.47 4.45 4.15 4.13 4.00 3.11

35200 1 0.69±0.16 10.00 8.00 8.07 8.62 8.05 8.33 5.16 5.00 5.62 5.71 5.43 4.11 6.04 5.05 5.18 5.00 5.09 4.00

38400 1 0.76±0.17 13.04 6.16 7.43 7.12 7.63 7.55 10.00 3.37 3.28 3.63 3.00 2.00 13.41 4.16 4.09 4.01 4.00 4.00

41600 1 0.83±0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.03 2.04 2.00 2.23 2.84 1.71

300

44850 1 0.91±0.15 0.01 0.82 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00
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CDensity Random Networks Small-World Networks Scale-Free Networks
N E C

Avg ± SD DR DB DC DD DK DDCB DR DB DC DD DK DDCB DR DB DC DD DK DDCB

40000 4 0.43±0.12 23.02 21 21.28 22.00 21.56 21.38 5.00 4.05 4.15 4.15 4.00 4.22 5.00 4.18 4.04 4.05 4.00 3

44000 4 0.48±0.12 25.21 22.63 22.00 22.84 22.32 22.38 4.32 4.53 4.00 4.00 4.00 3.00 6.00 4.15 4.72 5.73 4.00 4.17

48000 4 0.53±0.12 25.00 21.91 21.36 21.00 21.00 21.37 9.03 8.05 8.00 8.32 8.26 7.16 10.11 8.31 8.00 9.04 8.14 8.48

52000 4 0.58±0.12 22.04 12.18 12.44 13.00 12.32 12.11 12.63 11.00 11.00 11.05 11.33 11.64 13.00 11.04 12.00 12.04 12.00 11.17

60000 3 0.67±0.14 18.09 12.45 12.52 12.11 12.23 12.45 10.00 9.54 9.75 10.63 10.12 9.18 12.00 10.32 10.46 11.10 11.47 10.82

64000 2 0.76±0.07 13.01 8.05 9.15 9.55 8.16 9.27 7.28 7.56 7.99 7.02 7.48 6.18 8.17 7.00 7.25 7.57 7.11 7.03

68000 1 0.83±0.03 8.69 6.00 6.03 6.05 6.16 6.37 5.16 4.82 4.93 4.91 4.00 4.04 7.88 5.00 6.00 6.00 6.00 5.00

72000 1 0.88±0.03 4.52 1.00 1.27 2.29 1.00 1.00 5.15 4.12 4.18 4.10 4.11 4.73 4.38 3.00 3.17 3.00 3.00 3.00

76000 1 0.93±0.03 1.00 0.00 0.02 0.00 0.04 0.03 1.19 1.00 1.00 1.00 1.00 0.00 1.00 2.00 2.00 3.00 2.00 2.00

400

98000 1 0.98±0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

72000 4 0.52±0.1 23.10 15.72 15.18 16.00 16.04 15.03 11.66 6.04 6.63 6.04 6.00 6.00 12.04 11.06 11.00 11.03 11.52 10.15

76800 3 0.56±0.1 21.45 16.28 16.91 16.09 16.04 16.00 11.00 6.94 7.64 7.32 6.67 6.00 7.01 6 6.64 6.00 6.00 6.00

81600 4 0.6±0.09 19.02 13.13 14.62 14.25 13.75 13.95 10.84 7.75 8.00 8.03 8.33 7.55 8.67 7.15 7.83 7.63 7.00 6.00

86400 3 0.69±0.01 19.01 13.04 13.56 13.73 13.00 13.00 10.17 2.00 2.00 2.00 2.00 1.18 9.04 8.64 8.72 8.81 8.09 7.60

91200 3 0.73±0.01 15.73 14.20 14.39 14.00 14.74 14.68 7.95 3.39 3.85 3.31 3.00 3.94 3.92 2.50 2.00 2.00 2.00 1.00

96000 3 0.76±0.01 12.00 10.00 10.00 10.05 10.71 10.00 7.00 2.23 2.19 2.30 2.15 1.00 5.00 3.00 3.58 4.72 4.29 3.05

100800 1 0.81±0.01 8.00 8.00 8.00 9.04 9.05 8.18 7.28 1.15 1.63 2.25 1.27 1.39 4.33 3.30 3.50 3.06 3.00 2.00

105200 1 0.84±0 3.01 4.63 5.30 5.00 5.00 5>00 3.07 0.09 1.19 1.00 0.00 0.00 2.70 1.16 1.00 1.00 1.00 0.00

110000 2 0.88±0 0.00 0.30 0.30 4.20 4.09 3.10 0.00 0.05 0.00 0.00 0.00 0.00 0.00 1.19 1.18 1.00 1.00 0.00

500

124750 2 0.97±0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 6.2 : A percentage gain table shows the percentage gain of DDCBC method over other seed selection methods in

influencing the nodes of the social networks. Average Community Densities of the networks are as follows: FB (0.06±0.02),

ZKC (0.32±0.4), Twitter (0.00029±0.05), Diggs (0.00008±0.007), Youtube (0.000012±0.04), Ego (0.00034±0.05), LC

(0.007±0.032), LF (0.0073±0.09), PF (0.015±0.54), MFb (0.001±0.43), DHR (0.00085±0.21), DRO (0.0005±0.4), DHU

(0.0004±0.63), MG (0.0011±0.03), L (0.0019±0.54), FbAR (0.0014±0.03), FbA (0.0015±0.09), FbG (0.0075±0.05), FbN

(0.0013±0.003), FbP (0.0049±0.003), FbPF (0.004±0.032) and Fbt (0.0051±0.05)

Seed Selection Methods (20% of all nodes)
N E C Networks

DR DD DC DB DDCB DK DRC DDC DCC DBC DKC

4039 88234 180 FB 28.68 25.03 24.94 25.94 25.15 24.59 21.59 21.59 22.19 22.28 21.14

34 78 2 ZKC 12.18 4.00 2.82 2.09 1.95 1.73 1.18 1.18 1.27 1.00 1

23371 32832 350 Twitter 37.81 27.83 26.80 26.78 20.16 26.77 23.81 23.80 23.74 23.06 21.22

1924000 3298475 156432 Diggs 42.49 39.05 36.76 36.47 38.37 39.21 20.11 18.89 17.67 16.53 19.85

1134891 2987625 54983 Youtube 42.00 38.02 35.12 32.79 32.59 33.92 3.51 2.71 1.91 1.11 6.45

23629 39195 75 Ego 24.83 15.34 14.33 14.33 17.15 21.81 9.64 10.62 11.14 9.05 8.89

4658 33116 517 LC 33.84 26.62 25.61 25.61 25.52 31.81 22.40 23.23 23.98 21.65 22.06

874 1309 97 LF 19.29 10.62 9.56 9.34 9.25 9.33 8.38 9.35 10.20 7.86 9.11

1858 12534 206 PF 10.62 6.66 5.43 5.21 5.13 5.25 2.94 3.78 4.64 2.60 2.71

22470 171002 2643 MFb 25.44 22.16 21.11 21.11 21.10 21.11 15.07 15.80 22.70 20.43 16.8

54574 498202 6420 DHR 39.77 35.42 33.21 32.00 31.90 34.2 6.78 7.26 7.73 5.21 6.01
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Seed Selection Methods (20% of all nodes)
N E C Networks

DR DD DC DB DDCB DK DRC DDC DCC DBC DKC

41774 125826 4914 DRO 42.43 35.74 36.42 34.22 34.12 34.45 13.50 13.40 13.13 12.94 34.18

47539 222887 5592 DHU 45.40 35.77 34.52 34.33 34.13 38.85 26.35 27.02 25.84 25.61 25.33

37700 289003 4435 MG 30.54 27.43 26.07 26.25 26.07 26.34 16.14 15.49 16.05 10.35 14.86

7624 27806 759 L 26.55 25.25 24.04 23.82 23.79 23.81 18.34 18.11 17.75 17.71 17.70

50516 819306 5943 FbAR 39.97 32.40 31.18 30.95 30.93 31.30 29.43 29.14 30.85 28.56 29.28

13867 86858 1383 FbA 47.29 32.45 31.05 30.55 40.87 45.89 32.28 31.83 33.28 30.46 32.01

7058 89455 784 FbG 21.95 20.22 18.93 18.71 19.18 19.20 13.97 13.75 15.39 13.13 13.68

27918 206259 3284 FbN 33.82 23.03 22.00 21.95 21.96 22.01 12.85 12.64 12.18 12.10 12.40

5909 41729 562 FbP 31.73 22.90 21.76 21.40 21.87 21.89 15.89 15.47 15.15 14.90 15.31

11566 67114 1051 FbPF 39.61 32.21 30.85 30.57 30.39 30.48 26.30 26.12 25.85 25.21 26.21

3893 17262 387 FbT 25.93 22.84 24.70 24.29 17.73 17.77 19.37 18.46 13.71 13.36 17.63
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6.3.2 Results From Social Networks

The observation that real-world social networks tend to contain dense communities

suggests that community based driver node selection would have a significant ad-

vantage over global selection. This relationship with density is also apparent in the

generated networks. To verify whether this intuition is correct, we conduct similar

analysis to this performed on generated networks. First, we analyze the percentage

of nodes influenced by each method over 100 iterations with a seed set size of 20% of

driver nodes. We have run the experiments for the seed set sizes from 1%, 10%, 20%,

30%, 40% and 50%. We show the comparison in case of 20% seed size, as it is the

lowest seed set level to reach maximum influence in at most 100 iterations. We note

however that there are also improvements at smaller seed set sizes.

6.3.2.1 What is the speed and reach of the influence spread?

Figures 6.5, 6.6 and 6.7 show a comparison between global-level driver based seed

selection methods and community-level driver based seed selection methods. We

grouped the networks on the basis of their sizes and densities to analyse the results

effectively. From Figure 6.5, we see a higher density of networks. The densities of

these networks are: FB (0.01), Z ( 0.13), LC (0.003), LF (0.003), PF (0.007), FbG

(0.003), FbP (0.002), FbPF (0.001) and FbT (0.002). Overall comparison tells us

that, in these networks, there is less difference between the percentage of number

of nodes influenced after 100 iterations. This indicates that when the network’s

densities are higher, then there is more chance that seed selection methods are able

to achieve influence faster. If we look at the Fb network in Figure 6.5, its network

density is 0.01 which is greater than the rest of the networks except the network Z

which has the highest density of 0.14. If we compare the plots, we see that DDCBC

method also works exceptionally better in most networks as compared to the rest

of the methods. From Figure 6.6, we see the networks with densities ranging from

0.0001 to 0.0009. Densities of these networks are: MFb (0.0006), DHR (0.0003), DRO
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Figure 6.5 : Percentage of Number of Nodes Influenced in FB, Z, LC, LF, PF, FbG,

FbP, FbPF and FbT Networks. A Comparison of all methods for 100 iterations.

(0.0001), DHU (0.0001), MG (0.0004), L (0.0009), FbAR (0.0006) and FbA (0.0009).

With the lower density networks, we can see that the gain in driver community based

methods is more prominent as compared to driver based methods. It means density

of the network does play an important role to determine the total number of nodes

influenced. From Figure 6.7, we see the networks with the lowest densities ranging

from 0.000002 to 0.0001. Densities of these networks are: Youtube (0.000004), Twitter

(0.00012), Diggs (0.000002) and Ego (0.00014). In these networks, we see a huge gap

between DDCBC method and the rest of the methods. Which means, even in the

lowest density networks, when we locally construct communities, the density tend to
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Figure 6.6 : Percentage of Number of Nodes Influenced in MFb, DHR, DRO, DHU,

MG, L, FbAR and FbA Networks. A Comparison of all methods for 100 iterations.

increase as we can see from Table 6.2. Average community density of Youtube was

calculated to be 0.000012±0.04, which means if we compare it to the overall network

density of 0.000004, it is notably denser. That is why, even in these networks, driver-

community based methods specially DDCBC method outperforms the driver based

methods. This analysis justifies the use of network density as the strongest measure

that is in direct relation with driver nodes, and communities in the network. However,

for further deeper understanding of how the interconnections between driver nodes

and nodes in the communities work, other useful measures like clustering coefficient,

degree distribution, and centrality measures can be considered in future.
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Figure 6.7 : Percentage of Number of Nodes Influenced in Youtube, Twitter, Diggs

and Ego Networks. A Comparison of all methods for 100 iterations.

6.3.2.2 Time Complexity and Execution Time

Table 6.3 shows the time complexity of calculating the structural measures that are

used in seed selection methods. Despite driver nodes having high complexity, there

is clear benefit of using driver nodes as seed selection methods based on them require

less number of iterations to achieve a 100% influence over a network.

Table 6.5 shows the execution times of all seed selection methods for various sizes of

seed set i.e. 1%, 5%, 15%, and 25%, when the maximum influence is reached. Driver

community based methods, in comparison to the driver based methods, take less

time in overall influence spread process. To identify communities in the network is a

costly process but, overall analysis shows that, given that the community driver based

methods i.e. DRC, DDC, DCC, DBC, DKC, and DDCBC reach 100% influence in

fewer number of iterations, which ultimately results in a decrease in overall execution

times.
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Table 6.3 : Time Complexity of Calculating Different Measures and Methods

Measures & Methods Complexity

Degree (D) O2

Closeness (C) O(N ∗ E ∗ d), where d is the diameter

Betweenness (B) O(N ∗M +N ∗ 2 ∗ logN)

Kempe (K) O(logN)

Driver Nodes O(V 1/2 ∗ E)

DCB O2 +O(N ∗ E ∗ d) +O(N ∗M +N ∗ 2 ∗ logN)

Community Detection O(m2n) with m edges and n nodes

In Table 6.4, execution times in each of the social networks for the community

driver based methods such as DRC, DDC, DCC, DBC, DKC, and DDCBC are lower

than their counterparts methods DR, DD, DC, DB, DK, and DDCB. The green colour

represents the lower execution times and red shows the highest execution time.

6.3.2.3 How much advantage do community-level driver based seed se-

lection methods give?

From Table 6.2, we see the percentage of gain that DDCBC has over other seed

selection methods in terms of number of nodes influenced after 100 iterations when

seed size is 20%. We can see from the table that DDCBC outperforms all methods, but

the gain is bigger in terms of global-level driver based methods than the community-

level driver based methods. We see this difference in gain mainly because of locally

selected and then ranked driver nodes. Also, community creation plays an important

role as, the communities are denser than the overall network. From Table 6.2 we can

see that the biggest gain is achieved by DDCBC method over DK method which is

45.89% in FbA network. And the lowest gain is achieved by DDCBC method over

DK method in ZKC network. The reason for lowest or lower gain is that ZKC has
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Table 6.4 : Execution Times (in hours – Hrs.) of All Seed Selection Methods in Each

Social Network with 1% Seed Size When 100% Influence is Reached.

Execution Times (Hrs.) : Maximum Influence at 1% Seed Size
Networks

DR DD DC DB DK DDCB DRC DDC DCC DBC DKC DDCBC

FB 1.50 1.50 1.75 1.50 1.35 0.75 0.72 0.67 0.46 0.45 0.35 0.33

ZKC 0.25 0.22 0.21 0.21 0.69 0.16 0.11 0.15 0.15 0.15 0.11 0.05

Twitter 1.95 1.95 1.75 1.95 1.95 1.95 1.43 1.21 1.16 1.13 1.12 1.12

Diggs 19.01 18.99 15.92 16.45 16.25 16.00 15.55 15 14.79 14.69 13.99 12.98

Youtube 18.99 18.79 18.76 16.45 15.21 14.00 14.00 12.00 12.00 11.91 10.98 10.91

Ego 3.02 2.51 2.45 2.45 2.39 2.25 1.35 1.22 1.18 1.17 1.15 1.15

LC 1.50 1.50 1.50 1.50 1.11 0.69 0.69 0.65 0.44 0.43 0.33 0.32

LF 0.31 0.28 0.28 0.28 0.95 0.26 0.25 0.25 0.25 0.19 0.19 0.15

PF 0.37 0.35 0.35 0.31 0.95 0.29 0.28 0.27 0.26 0.21 0.21 0.18

MFb 3.02 2.51 2.45 2.45 1.95 2.05 1.43 1.21 1.16 1.13 1.12 1.12

DHR 2.00 2.00 2.00 1.51 0.99 1.51 1.53 1.31 1.26 1.23 1.22 1.22

DRO 3.02 2.51 2.45 2.45 3.94 2.25 1.43 1.21 1.16 1.13 1.12 1.12

DHU 3.02 2.51 2.45 2.45 2.75 2.25 1.43 1.21 1.16 1.13 1.12 1.12

MG 3.35 2.55 2.55 2.45 2.83 2.45 1.53 1.31 1.26 1.23 1.22 1.22

L 1.53 1.25 1.25 1.22 1.85 0.72 0.75 0.67 0.46 0.45 0.35 0.34

FbAR 3.35 2.55 2.55 2.45 1.95 2.05 1.53 1.31 1.26 1.23 1.22 1.22

FbA 1.91 1.91 1.87 1.91 1.11 1.21 1.43 1.21 1.16 1.13 1.12 1.12

FbG 1.53 1.25 1.25 1.22 1.97 0.72 0.75 0.67 0.46 0.45 0.35 0.34

FbN 3.02 2.51 2.45 2.45 1.85 2.25 1.43 1.21 1.16 1.13 1.12 1.12

FbP 1.15 1.12 0.99 0.99 1.03 0.95 0.66 0.59 0.41 0.39 0.34 0.33

FbPF 3.02 2.51 2.45 2.45 1.57 2.45 1.43 1.21 1.16 1.13 1.12 1.12

FbT 1.53 1.25 1.15 1.12 1.15 0.94 0.69 0.65 0.44 0.43 0.33 0.32

the highest network density and smallest size. In denser networks, we tend to see the

less gain in DDCBC method. Which precisely can mean that, if we locally identify

communities, those have denser structures as compared to the overall network. That

is why community-driver based methods combined with ranking of DCB works better

than the rest of the methods.
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Table 6.5 : Total Execution Times (in hours – Hrs.) of All Seed Selection Methods

in all the Social Networks when 100% Influence is Reached

Execution Time (Hrs.): Maximum Influence

Seed Size
Seed Selection Methods

1% 5% 15% 25%

DR 78.35 77.86 74.78 70.63

DD 72.52 70.64 64.13 60.52

DC 68.83 64.44 63.55 62.11

DB 66.22 60.21 59.96 55.63

DK 65.79 62.98 58.18 55.48

DDCB 58.15 55.65 51.15 49.71

DRC 50.40 37.43 32.45 28.67

DDC 45.19 35.54 30.44 28.32

DCC 43.20 39.81 35.75 30.44

DBC 42.52 43.65 40.33 32.75

DKC 40.18 38.85 32.17 25.15

DDCBC 38.90 26.99 20.83 16.12
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6.4 Discussion and Conclusion

In this study we focused on achieving the Research Challenge RC5, which states that,

"Using driver nodes identified in local network structures to maximize influence spread

in social networks". An idea of bringing the methods from control and influence fields

together has been proposed in this research. In fact, we played with a research di-

mension that is at the intersection of both fields and fulfils the objectives of many

research questions from both domains. We proposed, implemented and compared a

list of new and novel seed selection methods with the traditional seed selection meth-

ods from influence domain and driver seed selection methods from influence meets

control field. In this work, we introduced new seed selection methods, by utilising

driver nodes in communities of the networks. The new methods outperformed the old

ones. This opens up an avenue in the already existing research of control methods in

complex networks. Our community-driver based methods show that, we can achieve

maximum influence in fewer number of iterations and with a comparatively lower

seed set size. Also, if we use ranking mechanisms based upon the centrality measures

combining degree, betweenness and closeness, the driver nodes selected as seed nodes

perform much better in that case as compared to when we rank them on the basis of

individual centrality measures.
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Chapter 7

Conclusion and Future Work

This section describes the major conclusions and potential future work.

7.1 Conclusion

The main aim of this thesis is to utilise the concepts from the field of network control

and apply those to effectively and efficiently spread influence in a network by using

seed selection methods based on the driver nodes set.

The research presented in this thesis started from an extensive literature survey

of the domains of control, controllability and influence in complex networks. This re-

view addresses the first challenge (RC1): "Conducting a thorough study based upon

the previous research to work as a foundation of the current research thesis". We

described and discussed current methods to identify and rank driver nodes, as well

as seed selection methods that are needed to identify a set of potential seed nodes

that can spread the influence through a network. The major findings of the literature

survey are that, firstly, control in complex networks is a continuously evolving area

of research, and there is much to explore when it comes to finding an influential set

of driver nodes. Secondly, driver node identification and ranking is a complex pro-

cess, requiring resource intensive computation. Thirdly, influence is a weaker form of

control. There is still a need to develop new methods, for finding an optimal set of

seed nodes that can spread influence in the network efficiently and effectively. The

literature review resulted in identifying the gaps in extant research, which we formu-

lated as Research Challenges (RC). The research conducted and results presented in

this thesis addressed all the Research Challenges described in Figure 1.2.



166

To address RC2, which focused on investigation of the correlation of global network

structural measures with the number of driver nodes with the aim of understanding

what network structures are easier to control, we examined several structural metrics,

such as network density, number of nodes, number of edges, betweenness centrality,

eigenvector centrality, closeness centrality, and their correlation with number of driver

nodes. One of the main conclusions from this experimental study was that networks

with high values for the global network structural measures number of edges, and

network density are easier to control than others - i.e. they inversely correlate with

the number of driver nodes. The correlations revealed helped us in understanding

that changes in global structural measures (e.g. network density) can impact the

number of driver nodes. So, we were able to identify network structures which require

a minimum number of driver nodes to establish control. The network structures

with dense connections and higher density, having larger number of edges in ratio to

number of nodes and less number of driver nodes are easier to control.

To deepen the understanding of the correlations between network structural mea-

sures and the number of driver nodes, we also performed analysis at the local network

level. The investigation focused on communities and structural measures within com-

munities. For example, we examined communities’ density and its impact on the

size of the set of driver nodes. We found out that local structural measures, such as

the number of communities and community densities, have definite correlations with

the number of driver nodes. When the density increases, it reduces the number of

driver nodes because we have smaller, more efficient set of driver nodes to control

the network. Local network structure measures such as number of communities and

community densities have an important role to play in determining the minimum

number of driver nodes. This study attained RC3, which stated, “Inquiring about the

relationship between local network structures with the number of driver nodes in the

networks.”

After the two initial studies, summarised above and described in detail in Chap-
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ters 3 and 4 respectively, we move on to the effectiveness of driver node based seed

selection methods in spreading influence in complex networks. This line of inquiry is

codified in RC4, i.e., drawing comparisons between different driver node based seed

selection methods and traditional seed selection methods for generated and real social

networks, and RC5, i.e., using driver nodes identified in local network structures to

maximise influence spread in social networks. To achieve that we proposed new seed

selection methods based on driver node sets ranked on the basis of various global and

local network structural measures. We validated and analysed these seed selection

methods through experiments that focused on influence spread over various synthetic

and real networks. We concluded that driver node based seed selection methods

outperform traditional seed selection methods in spreading influence in complex net-

works. We developed an environment where we can bring together traditional, driver

node based and community driver node based seed selection methods to identify the

most suitable seed selection method(s) for a certain network structure in the context

of influence spread in the complex networks (see Chapters 3, 4, 5, and 6).

To summarise, the main contributions of the thesis are as follows:

• We identified the main research gaps from the literature review conducted at

the intersection of driver node selection methods from the complex network

control space and seed selection methods from the complex network influence

space. This gives the foundation of the thesis in which the gap between these

two domains is bridged. (Attained RC1, and RO1)

• The main contribution of Chapter 3 is the identification of network structures

that engender easier control. Network structures that have higher density, a

greater number of edges, and a smaller number of driver nodes are generally

easier to control. (Fulfilled RC2, RQ1, and RO2)

• In Chapter 4 we examined the role that the structure of communities played in

the number of driver nodes needed and found correlations between local network
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structural measures and number of driver nodes. The findings show (Achieved

RC3, RQ2, and RO3)

• In Chapter 5, we developed and validated new seed selection methods (i.e, R,

DD, DB,DC, DK and DDCB) in an attempt to bridge the gap between control

and influence fields. The new methods in comparison with traditional seed

selection methods were more efficient and effective, comparing on the basis of

speed and reach of influence spread. (Completed RC4, RQ3, and RO4)

• The main contribution of Chapter 6 is the comparison of newly proposed and

developed seed selection approaches. The results indicate that driver nodes,

when identified within communities of the networks, are able to spread influ-

ence faster and to a greater number of nodes as compared to when selected from

the overall network, because of the changing network structural measures of the

network. Community density is denser than the overall network. So, the speed

and reach of seed selection methdos based upon driver nodes in communities

(DRC, DDC. DBC, DKC, and DDBCC) is higher than the seed selection meth-

ods that are based upon driver nodes identified in overall network. (Procured

RC5, RQ4, and RO5)

A discussion that considers a comparative analysis of local and global seed selection

methods based upon driver nodes, enables us to identify effective measures and meth-

ods that can be used to reach the maximum influence in the network faster than the

previously used methods. The existing body of knowledge does not take into account

the important role of driver nodes in reaching maximum influence in the network due

to the cost of the resources. But, given that, we have an optimal seed set, that can

reach influence faster than the other methods, kind of overcome the limitation posed

by the calculation time of the driver nodes based seed set.

Our initial research indicates that the structural measures such as network density

can play a huge role in identifying the networks that are easier to control. Given that,
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we can identify the networks that will be controlled or influenced fully even before

starting the process, which gives us an advantage to use the appropriate method(s)

based upon the structural measures of the networks. Our research strengthens the

already established premise that real networks are harder to influence or control. But,

if we select an optimal seed set before going through the process it cuts down the

execution time of the overall influence spread process. This gives us a strong indication

to focus on finding more influential nodes rather than building more complicated

spreading models.

By saying all that, we do not mean to eliminate the need to construct more efficient

methods to identify driver nodes. Because, if we can somehow cut down the cost of

identification methods, we can improve the overall process’s execution time.

7.2 Future Work

In this thesis, many pivotal research problems have been studied and thoroughly

examined. Although, many questions have been answered, the space is vast and

there are many new research avenues that can be explored in the future. Possible

future research directions are outlined as follows:

• Leveraging the obtained findings to estimate the number of driver nodes needed

to control a network only by estimating the main network characteristics.

• Influence Models and Control Methods are used to identify driver nodes within

communities of the network and target seed selection methods at the commu-

nity rather than at the whole network level, which brings out the favourable

outcomes, when it comes to speed or reach of influence spread process in the

overall network. In future work, more local network structural measures can

be analysed to explore relationships between number of driver nodes and those

measures.

• Work remains to be done in the context of ranking of driver nodes by using
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other algorithms than the ones used in the thesis, for example Page Rank [19],

Leader Rank [131], Cluster Rank [29] and K-Shell Decomposition [128].

• New methods such as Preferential Matching [238] can be used (instead of MDS)

to identify driver nodes to improve the efficiency of the seed selection process.

• Another avenue for exploration is the effects of differing influence models, such

as the Independent Cascade Model [43].

To summarise, the main achievements of this work include, but are not limited to,

proposing and evaluating new seed selection methods in order to spread influence in

different types of complex networks (i.e., synthetic and real). We study the correlation

between different network structural measures (global as well as local) and the number

of driver nodes, with the idea to control the overall network by using the minimum

set of driver nodes. Influence, being the soft form of control, can also benefit from

these nodes. The main experimental studies explained in Chapters 3, 4, 5, and 6

achieve effective and efficient influence spread in the complex networks by utilising

newly proposed and developed seed selection methods.

There are many measures used to describe network structure, network density is

a considerably basic and a very important indicator. Gnyawali and Madhavan [65]

suggest that the number of network connections can greatly affect the communication

and cooperation between individuals, so network density is an important factor af-

fecting individual behaviours and effects. More importantly, network density has an

important impact on the information diffusion process of the network. For example,

in [150], researchers focused on the epidemic spreading and vaccination strategies

in an urban environment, their results show that the network density plays a criti-

cal role on the information diffusion of both SIS and SIR epidemic processes. Also,

changing the number of edges has important influence on interconnection between

the components of the system.

Based upon this understanding this paper focused on analysing network density
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as a base measure for influence spread in the networks along with other centrality

measures. Although, it poses a limitation on the analysis that has been done, it also

provides an insight into the network structures that are easier to control given that

we are able to change the density and number of connections in the network. For

future, carrying out the influence spread analysis can also be correlated with slightly

more robust measure such as the clustering coefficient, because it focuses on density,

strength of relationships, as well as the correlation between nodes.



172

Bibliography

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-

works. Reviews of modern physics, 74(1):47, 2002.

[2] Khaled M Alzoubi, Peng-Jun Wan, and Ophir Frieder. New distributed algo-

rithm for connected dominating set in wireless ad hoc networks. In Proceedings

of the 35th Annual Hawaii International Conference on System Sciences, pages

3849–3855. IEEE, 2002.

[3] John Perry Ballantine and Arthur Rudolph Jerbert. Distance from a line, or

plane, to a poin. The American Mathematical Monthly, 59(4):242–243, 1952.

[4] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. A survey

on influence maximization in a social network. Knowledge and Information

Systems, 62(9):3417–3455, 2020.

[5] A Barabsi and Rka Albert. Emerge of scaling in random networks. Science,

286:509512, 1999.

[6] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical pro-

cesses on complex networks. Cambridge university press, 2008.

[7] Murray A Beauchamp. An improved index of centrality. Behavioral science,

10(2):161–163, 1965.

[8] Stuart Bennett. A history of control engineering, 1930-1955. IET, 1993.

[9] Tim Berners-Lee, Dimitri Dimitroyannis, A John Mallinckrodt, and Susan

McKay. World wide web. Computers in Physics, 8(3):298–299, 1994.



173

[10] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne

Lefebvre. Fast unfolding of communities in large networks. Journal of sta-

tistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[11] Phillip Bonacich. Factoring and weighting approaches to status scores and

clique identification. Journal of mathematical sociology, 2(1):113–120, 1972.

[12] Phillip Bonacich. Power and centrality: A family of measures. American journal

of sociology, 92(5):1170–1182, 1987.

[13] Phillip Bonacich and Paulette Lloyd. Eigenvector-like measures of centrality

for asymmetric relations. Social networks, 23(3):191–201, 2001.

[14] Ronald V Book et al. Michael r. garey and david s. johnson, computers and

intractability: A guide to the theory of np-completeness. Bulletin (New Series)

of the American Mathematical Society, 3(2):898–904, 1980.

[15] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Max-

imizing social influence in nearly optimal time. In Proceedings of the twenty-fifth

annual ACM-SIAM symposium on Discrete algorithms, pages 946–957. SIAM,

2014.

[16] Allan Borodin, Yuval Filmus, and Joel Oren. Threshold models for competitive

influence in social networks. In Internet and Network Economics: 6th Inter-

national Workshop, WINE 2010, Stanford, CA, USA, December 13-17, 2010.

Proceedings 6, pages 539–550. Springer, 2010.

[17] Simon Bourigault, Sylvain Lamprier, and Patrick Gallinari. Representation

learning for information diffusion through social networks: an embedded cas-

cade model. In Proceedings of the Ninth ACM international conference on Web

Search and Data Mining, pages 573–582, 2016.



174

[18] Auguste Bravais. Analyse mathématique sur les probabilités des erreurs de sit-

uation d’un point. Impr. Royale, 1844.

[19] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[20] Simon R Broadbent and John M Hammersley. Percolation processes: I. crystals

and mazes. In Mathematical proceedings of the Cambridge philosophical society,

volume 53, pages 629–641. Cambridge University Press, 1957.

[21] Piotr Bródka, Katarzyna Musial, and Jaroslaw Jankowski. Interacting spreading

processes in multilayer networks: a systematic review. IEEE Access, 8:10316–

10341, 2020.

[22] Anna D Broido and Aaron Clauset. Scale-free networks are rare. Nature com-

munications, 10(1):1–10, 2019.

[23] Derek Bruff. The assignment problem and the hungarian method. Notes for

Math, 20(29-47):5, 2005.

[24] Doina Bucur and Giovanni Iacca. Influence maximization in social networks

with genetic algorithms. In European conference on the applications of evolu-

tionary computation, pages 379–392. Springer, 2016.

[25] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the spread

of misinformation in social networks. In Proceedings of the 20th international

conference on World wide web, pages 665–674, 2011.

[26] Sergey V Buldyrev, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo

Havlin. Catastrophic cascade of failures in interdependent networks. Nature,

464(7291):1025–1028, 2010.



175

[27] Daniel A Burbano-L, Giovanni Russo, and Mario di Bernardo. Pinning control-

lability of complex stochastic networks. IFAC-PapersOnLine, 50(1):8327–8332,

2017.

[28] Dave Chaffey and Fiona Ellis-Chadwick. Digital marketing: strategy, imple-

mentation & practice. Pearson uk, 2019.

[29] Duan-Bing Chen, Hui Gao, Linyuan Lü, and Tao Zhou. Identifying influen-

tial nodes in large-scale directed networks: the role of clustering. PloS one,

8(10):e77455, 2013.

[30] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao

Zhou. Identifying influential nodes in complex networks. Physica a: Statistical

mechanics and its applications, 391(4):1777–1787, 2012.

[31] Wei Chen, Wei Lu, and Ning Zhang. Time-critical influence maximization in

social networks with time-delayed diffusion process. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 26, pages 591–598, 2012.

[32] Yi-Cheng Chen, Wen-Yuan Zhu, Wen-Chih Peng, Wang-Chien Lee, and Suh-

Yin Lee. Cim: community-based influence maximization in social networks.

ACM Transactions on Intelligent Systems and Technology (TIST), 5(2):1–31,

2014.

[33] Yu-Zhong Chen, Zi-Gang Huang, and Ying-Cheng Lai. Controlling extreme

events on complex networks. Scientific reports, 4:6121, 2014.

[34] Suqi Cheng, Huawei Shen, Junming Huang, Guoqing Zhang, and Xueqi Cheng.

Staticgreedy: solving the scalability-accuracy dilemma in influence maximiza-

tion. In Proceedings of the 22nd ACM international conference on Information

& Knowledge Management, pages 509–518, 2013.



176

[35] Peter Clifford and Aidan Sudbury. A model for spatial conflict. Biometrika,

60(3):581–588, 1973.

[36] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F Werneck. Sketch-

based influence maximization and computation: Scaling up with guarantees.

In Proceedings of the 23rd ACM International Conference on Conference on

Information and Knowledge Management, pages 629–638, 2014.

[37] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2009.

[38] Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Influence maximiza-

tion in the independent cascade model. In ICTCS, pages 269–274, 2016.

[39] G LUENBERGER David. Introduction to dynamic systems: Theory, models

and applications, 1979.

[40] Danilo Delpini, Stefano Battiston, Massimo Riccaboni, Giampaolo Gabbi, Fabio

Pammolli, and Guido Caldarelli. Evolution of controllability in interbank net-

works. Scientific reports, 3:1626, 2013.

[41] EA Dinic. Algorithm for solution of a problem of maximum flow in a network

with power estimation, soviet math. doll. 11 (5), 1277-1280,(1970). English

translation by RF. Rinehart, 1970.

[42] Norman R Draper and Harry Smith. Applied regression analysis . new york:

John willey & sons, 1966.

[43] Wenjing Duan, Bin Gu, and Andrew B Whinston. Informational cascades and

software adoption on the internet: an empirical investigation. MIS quarterly,

pages 23–48, 2009.

[44] GuB DuanW. Whinstonab. Informational Cascades and Software Adoption on

the Internet, 33(1):23, 2009.



177

[45] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[46] Paul Erdös, Alfréd Rényi, et al. On random graphs. Publicationes mathemati-

cae, 6(26):290–297, 1959.

[47] Paul Erdös and George Szekeres. A combinatorial problem in geometry. Com-

positio mathematica, 2:463–470, 1935.

[48] Fredrik Erlandsson, Piotr Bródka, and Anton Borg. Seed selection for informa-

tion cascade in multilayer networks. In International Conference on Complex

Networks and their Applications, pages 426–436. Springer, 2017.

[49] Fredrik Erlandsson, Piotr Bródka, Anton Borg, and Henric Johnson. Find-

ing influential users in social media using association rule learning. Entropy,

18(5):164, 2016.

[50] Brian D Fath, Ursula M Scharler, Robert E Ulanowicz, and Bruce Hannon. Eco-

logical network analysis: network construction. Ecological modelling, 208(1):49–

55, 2007.

[51] Shanshan Feng, Xuefeng Chen, Gao Cong, Yifeng Zeng, Yeow Meng Chee, and

Yanping Xiang. Influence maximization with novelty decay in social networks.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,

2014.

[52] Stephen E Fienberg. A brief history of statistical models for network analy-

sis and open challenges. Journal of Computational and Graphical Statistics,

21(4):825–839, 2012.

[53] LR Ford and DR Fulkerson. Maximal flow through a network. Canadian Journal

of Mathematics, 1956.



178

[54] James H Fowler and Nicholas A Christakis. Dynamic spread of happiness in

a large social network: longitudinal analysis over 20 years in the framingham

heart study. Bmj, 337, 2008.

[55] LC Freeman. Centrality in affiliation networks. Social Networks, 1:215–39,

1979.

[56] Linton C Freeman. A set of measures of centrality based on betweenness. So-

ciometry, pages 35–41, 1977.

[57] Zhong-Ke Gao, Peng-Cheng Fang, Mei-Shuang Ding, and Ning-De Jin. Multi-

variate weighted complex network analysis for characterizing nonlinear dynamic

behavior in two-phase flow. Experimental Thermal and Fluid Science, 60:157–

164, 2015.

[58] Zhong-Ke Gao and Ning-De Jin. A directed weighted complex network for

characterizing chaotic dynamics from time series. Nonlinear Analysis: Real

World Applications, 13(2):947–952, 2012.

[59] Zhong-Ke Gao, Yu-Xuan Yang, Peng-Cheng Fang, Ning-De Jin, Cheng-Yi Xia,

and Li-Dan Hu. Multi-frequency complex network from time series for uncov-

ering oil-water flow structure. Scientific reports, 5(1):1–7, 2015.

[60] Diego Garlaschelli and Maria I Loffredo. Patterns of link reciprocity in directed

networks. Physical review letters, 93(26):268701, 2004.

[61] Alexander J Gates and Luis M Rocha. Control of complex networks requires

both structure and dynamics. Scientific reports, 6:24456, 2016.

[62] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics,

30(4):1141–1144, 1959.

[63] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic

citation indexing system. In ACM DL, pages 89–98, 1998.



179

[64] Michelle Girvan and Mark EJ Newman. Community structure in social and bio-

logical networks. Proceedings of the national academy of sciences, 99(12):7821–

7826, 2002.

[65] Devi R Gnyawali and Ravindranath Madhavan. Cooperative networks and

competitive dynamics: A structural embeddedness perspective. Academy of

Management review, 26(3):431–445, 2001.

[66] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi.

A survey of statistical network models. Now Publishers Inc, 2010.

[67] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A

complex systems look at the underlying process of word-of-mouth. Marketing

letters, 12(3):211–223, 2001.

[68] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Celf++ optimizing the greedy

algorithm for influence maximization in social networks. In Proceedings of the

20th international conference companion on World wide web, pages 47–48, 2011.

[69] Mark Granovetter. Threshold models of collective behavior. American journal

of sociology, 83(6):1420–1443, 1978.

[70] Guibing Guo, Jie Zhang, Daniel Thalmann, and Neil Yorke-Smith. Etaf: An

extended trust antecedents framework for trust prediction. In 2014 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM 2014), pages 540–547. IEEE, 2014.

[71] Quantong Guo, Yanjun Lei, Xin Jiang, Yifang Ma, Guanying Huo, and Zhim-

ing Zheng. Epidemic spreading with activity-driven awareness diffusion on

multiplex network. Chaos: An Interdisciplinary Journal of Nonlinear Science,

26(4):043110, 2016.



180

[72] Ruocheng Guo, Jundong Li, and Huan Liu. Learning individual causal effects

from networked observational data. In Proceedings of the 13th International

Conference on Web Search and Data Mining, pages 232–240, 2020.

[73] Wei-Feng Guo, Shao-Wu Zhang, Ze-Gang Wei, Tao Zeng, Fei Liu, Jingsong

Zhang, Fang-Xiang Wu, and Luonan Chen. Constrained target controllability

of complex networks. Journal of Statistical Mechanics: Theory and Experiment,

2017(6):063402, 2017.

[74] Wei-Feng Guo, Shao-Wu Zhang, Tao Zeng, Yan Li, Jianxi Gao, and Luonan

Chen. A novel structure-based control method for analyzing nonlinear dynamics

in biological networks. bioRxiv, page 503565, 2018.

[75] Hoshin V Gupta, Harald Kling, Koray K Yilmaz, and Guillermo F Martinez.

Decomposition of the mean squared error and nse performance criteria: Im-

plications for improving hydrological modelling. Journal of hydrology, 377(1-

2):80–91, 2009.

[76] Reza Haghighi and HamidReza Namazi. Algorithm for identifying minimum

driver nodes based on structural controllability. Mathematical Problems in En-

gineering, 2015, 2015.

[77] SL HAKIMI. Onrealizability ofa set ofintegers as degrees ofthe vertices ofa

lineargraph–landii. J. Soc. Indust. Appl. Math, 10:496–506, 1962.

[78] Henry Hamburger. Individuals and aggregates: Micromotives and macrobehav-

ior. thomas c. schelling. norton, new york, 1978. 252 pp. cloth, 12.9s;,paper,

3.95. fels lectures on public policy analysis. Science, 205(4401):37–38, 1979.

[79] Robert A Hanneman and Mark Riddle. Introduction to social network methods,

2005.



181

[80] Frank Harary. Graph theory. Technical report, MICHIGAN UNIV ANN AR-

BOR DEPT OF MATHEMATICS, 1969.

[81] Frank Harary. Recent results on generalized ramsey theory for graphs. In Graph

Theory and Applications, pages 125–138. Springer, 1972.

[82] Malo LJ Hautus. Controllability and observability conditions of linear au-

tonomous systems. In Indagationes Mathematicae (Proceedings), pages 443–448,

1969.

[83] Teresa W Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of

domination in graphs. CRC press, 1998.

[84] Tad Hogg and Kristina Lerman. Social dynamics of digg. EPJ Data Science,

1(1):1–26, 2012.

[85] Richard A Holley and Thomas M Liggett. Ergodic theorems for weakly inter-

acting infinite systems and the voter model. The annals of probability, pages

643–663, 1975.

[86] Sture Holm. A simple sequentially rejective multiple test procedure. Scandina-

vian journal of statistics, pages 65–70, 1979.

[87] Petter Holme. Modern temporal network theory: a colloquium. The European

Physical Journal B, 88(9):234, 2015.

[88] Petter Holme and Jari Saramäki. Temporal networks. Physics reports,

519(3):97–125, 2012.

[89] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum

matchings in bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[90] Shigeyuki Hosoe. Determination of generic dimensions of controllable subspaces

and its application. Research Reports of Automatic Control Laboratory, Faculty

of Engineering, Nagoya University,(28): p78, 83, 1981.



182

[91] Wenpin Hou, Peiying Ruan, Wai-Ki Ching, and Tatsuya Akutsu. On the num-

ber of driver nodes for controlling a boolean network when the targets are

restricted to attractors. Journal of theoretical biology, 463:1–11, 2019.

[92] Shaobin Huang, Tianyang Lv, Xizhe Zhang, Yange Yang, Weimin Zheng, and

Chao Wen. Identifying node role in social network based on multiple indicators.

PloS one, 9(8):e103733, 2014.

[93] Jarosław Jankowski, Marcin Waniek, Aamena Alshamsi, Piotr Bródka, and

Radosław Michalski. Strategic distribution of seeds to support diffusion in

complex networks. PloS one, 13(10):e0205130, 2018.

[94] Svante Janson, Tomasz Łuczak, Tatyana Turova, and Thomas Vallier. Boot-

strap percolation on the random graph gn,p. The Annals of Applied Probability,

22(5):1989–2047, 2012.

[95] Christopher I Jarvis, Amy Gimma, Kevin van Zandvoort, Kerry LM Wong, and

W John Edmunds. The impact of local and national restrictions in response

to covid-19 on social contacts in england: a longitudinal natural experiment.

BMC medicine, 19(1):1–12, 2021.

[96] Tao Jia and Albert-László Barabási. Control capacity and a random sampling

method in exploring controllability of complex networks. Scientific reports,

3:2354, 2013.

[97] Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs,

NJ, 1980.

[98] Rudolf Emil Kalman. Mathematical description of linear dynamical systems.

Journal of the Society for Industrial and Applied Mathematics, Series A: Con-

trol, 1(2):152–192, 1963.



183

[99] Wilfred Kaplan. Operational methods for linear systems, volume 4. Addison-

Wesley Reading, Mass., 1962.

[100] Amir Hassani Karbasi and Reza Ebrahimi Atani. Application of dominating

sets in wireless sensor networks. International Journal of Security and Its Ap-

plications, 7(4):185–202, 2013.

[101] Farzaneh Kazemzadeh, Ali Asghar Safaei, and Mitra Mirzarezaee. Influence

maximization in social networks using effective community detection. Physica

A: Statistical Mechanics and its Applications, 598:127314, 2022.

[102] Laura L Kelleher and Margaret B Cozzens. Dominating sets in social network

graphs. Mathematical Social Sciences, 16(3):267–279, 1988.

[103] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in-

fluence through a social network. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 137–

146, 2003.

[104] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the

mathematical theory of epidemics. Proceedings of the royal society of lon-

don. Series A, Containing papers of a mathematical and physical character,

115(772):700–721, 1927.

[105] Mohammad Reza Keyvanpour, Mehrnoush Barani Shirzad, and Maryam

Ghaderi. Ad-c: a new node anomaly detection based on community detection

in social networks. International Journal of Electronic Business, 15(3):199–222,

2020.

[106] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Much-

nik, H Eugene Stanley, and Hernán A Makse. Identification of influential spread-

ers in complex networks. Nature physics, 6(11):888–893, 2010.



184

[107] Iordanis Koutsopoulos and Maria Halkidi. Efficient and fair item coverage in

recommender systems. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic

and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,

4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and

Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pages 912–918.

IEEE, 2018.

[108] Peter Krause, DP Boyle, and Frank Bäse. Comparison of different efficiency

criteria for hydrological model assessment. Advances in geosciences, 5:89–97,

2005.

[109] Harold W Kuhn. The hungarian method for the assignment problem. Naval

research logistics quarterly, 2(1-2):83–97, 1955.

[110] Harold W Kuhn. Variants of the hungarian method for assignment problems.

Naval research logistics quarterly, 3(4):253–258, 1956.

[111] Sanjay Kumar, Sanidhya Chaudhary, Saksham Kumar, and Raj Kumar Yadav.

Node classification in complex networks using network embedding techniques. In

2020 5th International Conference on Communication and Electronics Systems

(ICCES), pages 369–374. IEEE, 2020.

[112] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the

22nd international conference on world wide web, pages 1343–1350, 2013.

[113] Renaud Lambiotte and Naoki Masuda. A guide to temporal networks, volume 4.

World Scientific, 2016.

[114] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the over-

lapping and hierarchical community structure in complex networks. New journal

of physics, 11(3):033015, 2009.



185

[115] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: den-

sification laws, shrinking diameters and possible explanations. In Proceedings of

the eleventh ACM SIGKDD international conference on Knowledge discovery

in data mining, pages 177–187, 2005.

[116] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

[117] Aming Li, Sean P Cornelius, Y-Y Liu, Long Wang, and A-L Barabási. The

fundamental advantages of temporal networks. Science, 358(6366):1042–1046,

2017.

[118] Aming Li and Yang-Yu Liu. Controlling network dynamics. Advances in Com-

plex Systems, 22(07n08):1950021, 2019.

[119] Chaoyi Li and Yangsen Zhang. A personalized recommendation algorithm

based on large-scale real micro-blog data. Neural Computing and Applications,

32(15):11245–11252, 2020.

[120] Ching-Tai Lin. Structural controllability. IEEE Transactions on Automatic

Control, 19(3):201–208, 1974.

[121] Bo Liu, Tianguang Chu, Long Wang, and Guangming Xie. Controllability of a

leader–follower dynamic network with switching topology. IEEE Transactions

on Automatic Control, 53(4):1009–1013, 2008.

[122] Qi Liu, Biao Xiang, Nicholas Jing Yuan, Enhong Chen, Hui Xiong, Yi Zheng,

and Yu Yang. An influence propagation view of pagerank. ACM Transactions

on Knowledge Discovery from Data (TKDD), 11(3):1–30, 2017.

[123] Weiyi Liu, Kun Yue, Hong Wu, Jin Li, Donghua Liu, and Duanping Tang.

Containment of competitive influence spread in social networks. Knowledge-

Based Systems, 109:266–275, 2016.

http://snap.stanford.edu/data


186

[124] Yang-Yu Liu and Albert-Laszló Barabási. Control principles of complex net-

works. arXiv preprint arXiv:1508.05384, 2015.

[125] Yang-Yu Liu and Albert-László Barabási. Control principles of complex sys-

tems. Reviews of Modern Physics, 88(3):035006, 2016.

[126] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability

of complex networks. nature, 473(7346):167, 2011.

[127] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Control cen-

trality and hierarchical structure in complex networks. Plos one, 7(9):e44459,

2012.

[128] Ying Liu, Ming Tang, Tao Zhou, and Younghae Do. Improving the accuracy

of the k-shell method by removing redundant links: From a perspective of

spreading dynamics. Scientific reports, 5(1):1–11, 2015.

[129] Anna Lombardi and Michael Hörnquist. Controllability analysis of networks.

Physical Review E, 75(5):056110, 2007.

[130] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng

Zhang, and Tao Zhou. Vital nodes identification in complex networks. Physics

Reports, 650:1–63, 2016.

[131] Linyuan Lü, Yi-Cheng Zhang, Chi Ho Yeung, and Tao Zhou. Leaders in social

networks, the delicious case. PloS one, 6(6):e21202, 2011.

[132] Pengli Lu and Chen Dong. Ranking the spreading influence of nodes in complex

networks based on mixing degree centrality and local structure. International

Journal of Modern Physics B, 33(32):1950395, 2019.

[133] R Duncan Luce and Albert D Perry. A method of matrix analysis of group

structure. Psychometrika, 14(2):95–116, 1949.



187

[134] Jiawei Luo and Yi Qi. Identification of essential proteins based on a new

combination of local interaction density and protein complexes. PloS one,

10(6):e0131418, 2015.

[135] Francesco Martino and Andrea Spoto. Social network analysis: A brief theo-

retical review and further perspectives in the study of information technology.

PsychNology J., 4(1):53–86, 2006.

[136] Naoki Masuda and Petter Holme. Detecting sequences of system states in

temporal networks. Scientific reports, 9(1):1–11, 2019.

[137] J Clerk Maxwell. On governors. Proceedings of the Royal Society of London,

16:270–283, 1867.

[138] Julian J McAuley and Jure Leskovec. Learning to discover social circles in ego

networks. In NIPS, volume 2012, pages 548–56. Citeseer, 2012.

[139] Giulia Menichetti, Luca Dall’Asta, and Ginestra Bianconi. Network control-

lability is determined by the density of low in-degree and out-degree nodes.

Physical review letters, 113(7):078701, 2014.

[140] Rezvan Mohamadi-Baghmolaei, Niloofar Mozafari, and Ali Hamzeh. Trust

based latency aware influence maximization in social networks. Engineering

Applications of Artificial Intelligence, 41:195–206, 2015.

[141] Azadeh Mohammadi, Mohamad Saraee, and Abdolreza Mirzaei. Time-sensitive

influence maximization in social networks. Journal of Information Science,

41(6):765–778, 2015.

[142] F Molnár, Sameet Sreenivasan, Boleslaw K Szymanski, and Gyorgy Korniss.

Minimum dominating sets in scale-free network ensembles. Scientific reports,

3(1):1–10, 2013.



188

[143] David M Morens, Jefferey K Taubenberger, JK Taubenberger, et al. Influenza:

the mother of all pandemics. Emerging Infectious Diseases, 12(1):15–22, 1918.

[144] Flaviano Morone and Hernán A Makse. Influence maximization in complex

networks through optimal percolation. Nature, 524(7563):65–68, 2015.

[145] Katarzyna Musiał and Przemysław Kazienko. Social networks on the internet.

World Wide Web, 16(1):31–72, 2013.

[146] Katarzyna Musiał, Przemysław Kazienko, and Piotr Brodka. User position

measures in social networks. In Proc. of 3rd workshop on social network mining

and analysis, pages 1–9, 2009.

[147] Jose C Nacher and Tatsuya Akutsu. Dominating scale-free networks with vari-

able scaling exponent: heterogeneous networks are not difficult to control. New

Journal of Physics, 14(7):073005, 2012.

[148] Jose C Nacher and Tatsuya Akutsu. Structural controllability of unidirectional

bipartite networks. Scientific reports, 3:1647, 2013.

[149] Jose C Nacher and Tatsuya Akutsu. Structurally robust control of complex

networks. Physical Review E, 91(1):012826, 2015.

[150] Matthieu Nadini, Lorenzo Zino, Alessandro Rizzo, and Maurizio Porfiri. A

multi-agent model to study epidemic spreading and vaccination strategies in an

urban-like environment. Applied Network Science, 5(1):1–30, 2020.

[151] Ramasuri Narayanam and Yadati Narahari. A shapley value-based approach to

discover influential nodes in social networks. IEEE Transactions on Automation

Science and Engineering, 8(1):130–147, 2010.

[152] Tamás Nepusz and Tamás Vicsek. Controlling edge dynamics in complex net-

works. Nature Physics, 8(7):568, 2012.



189

[153] Mark Newman. Networks. Oxford university press, 2018.

[154] Mark Ed Newman, Albert-László Ed Barabási, and Duncan J Watts. The

structure and dynamics of networks. Princeton university press, 2006.

[155] Mark EJ Newman, Stephanie Forrest, and Justin Balthrop. Email networks

and the spread of computer viruses. Physical Review E, 66(3):035101, 2002.

[156] Mark EJ Newman and Elizabeth A Leicht. Mixture models and exploratory

analysis in networks. Proceedings of the National Academy of Sciences,

104(23):9564–9569, 2007.

[157] Hung T Nguyen, My T Thai, and Thang N Dinh. Stop-and-stare: Optimal

sampling algorithms for viral marketing in billion-scale networks. In Proceedings

of the 2016 international conference on management of data, pages 695–710,

2016.

[158] Hung T Nguyen, My T Thai, and Thang N Dinh. A billion-scale approximation

algorithm for maximizing benefit in viral marketing. IEEE/ACM Transactions

On Networking, 25(4):2419–2429, 2017.

[159] Huy Nguyen and Rong Zheng. On budgeted influence maximization in social

networks. IEEE Journal on Selected Areas in Communications, 31(6):1084–

1094, 2013.

[160] Athanasios N Nikolakopoulos, Dimitris Berberidis, George Karypis, and Geor-

gios B Giannakis. Personalized diffusions for top-n recommendation. In Pro-

ceedings of the 13th ACM Conference on Recommender Systems, pages 260–268,

2019.

[161] Australian Institute of Health and Welfare. The first year of COVID-19 in

Australia: direct and indirect health effects. Australian Institute of Health and

Welfare, 2021.



190

[162] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,

Kimmo Kaski, János Kertész, and A-L Barabási. Structure and tie strengths

in mobile communication networks. Proceedings of the national academy of

sciences, 104(18):7332–7336, 2007.

[163] Alan V Oppenheim. Alan s. willsky. Signals and Systems Second Edition Pren-

tice Hall, New Jersey, 7458, 1997.

[164] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-

ank citation ranking: Bringing order to the web. Technical report, Stanford

InfoLab, 1999.

[165] Fabio Pasqualetti, Sandro Zampieri, and Francesco Bullo. Controllability met-

rics, limitations and algorithms for complex networks. IEEE Transactions on

Control of Network Systems, 1(1):40–52, 2014.

[166] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in

scale-free networks. Physical review letters, 86(14):3200, 2001.

[167] Judea Pearl. Causality. Cambridge university press, 2009.

[168] Paul Pilkington and Sanjay Kinra. Effectiveness of speed cameras in pre-

venting road traffic collisions and related casualties: systematic review. Bmj,

330(7487):331–334, 2005.

[169] Alfred Reginald Radcliffe-Brown. On social structure. The Journal of the Royal

Anthropological Institute of Great Britain and Ireland, 70(1):1–12, 1940.

[170] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time

algorithm to detect community structures in large-scale networks. Physical

review E, 76(3):036106, 2007.



191

[171] Manoel Horta Ribeiro, Pedro H Calais, Yuri A Santos, Virgílio AF Almeida,

and Wagner Meira Jr. Characterizing and detecting hateful users on twitter.

In Twelfth international AAAI conference on web and social media, 2018.

[172] EM Rogers. Diffusion of innovations. hohenheim, 2010.

[173] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive

graph analytics and visualization. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 29, 2015.

[174] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex

networks reveal community structure. Proceedings of the national academy of

sciences, 105(4):1118–1123, 2008.

[175] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node

embedding. Journal of Complex Networks, 9(2):cnab014, 2021.

[176] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. Gemsec:

Graph embedding with self clustering. In Proceedings of the 2019 IEEE/ACM

international conference on advances in social networks analysis and mining,

pages 65–72, 2019.

[177] Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs:

Birds of a feather, from statistical descriptors to parametric models. In Proceed-

ings of the 29th ACM International Conference on Information & Knowledge

Management, pages 1325–1334, 2020.

[178] Justin Ruths and Derek Ruths. Control profiles of complex networks. Science,

343(6177):1373–1376, 2014.

[179] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,

1966.



192

[180] Abida Sadaf, Luke Mathieson, Piotr Bródka, and Katarzyna Musial. Maximis-

ing influence spread in complex networks by utilising community-based driver

nodes as seeds. arXiv preprint arXiv:2212.11611, 2022.

[181] Abida Sadaf, Luke Mathieson, Piotr Bródka, and Katarzyna Musial. A bridge

between influence models and control methods[manuscript submitted for pub-

lication]. Applied Network Science, 2023.

[182] Abida Sadaf, Luke Mathieson, and Katarzyna Musial. An insight into network

structure measures and number of driver nodes. In Proceedings of the 2021

IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining, pages 471–478, 2021.

[183] Firas Saidi, Zouheir Trabelsi, and Henda Ben Ghazela. A novel approach for

terrorist sub-communities detection based on constrained evidential clustering.

In 2018 12th International Conference on Research Challenges in Information

Science (RCIS), pages 1–8. IEEE, 2018.

[184] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of information

diffusion probabilities for independent cascade model. In International confer-

ence on knowledge-based and intelligent information and engineering systems,

pages 67–75. Springer, 2008.

[185] Gerard Salton. Automatic text processing: The transformation, analysis, and

retrieval of. Reading: Addison-Wesley, 169, 1989.

[186] Laura A Sanchis. Experimental analysis of heuristic algorithms for the domi-

nating set problem. Algorithmica, 33(1):3–18, 2002.

[187] K Sathiyakumari and MS Vijaya. Community detection based on girvan new-

man algorithm and link analysis of social media. In Annual Convention of the

Computer Society of India, pages 223–234. Springer, 2016.



193

[188] Stephen B Seidman. Network structure and minimum degree. Social networks,

5(3):269–287, 1983.

[189] Joakim Skarding, Matthew Hellmich, Bogdan Gabrys, and Katarzyna Musial.

A robust comparative analysis of graph neural networks on dynamic link pre-

diction. IEEE Access, 10:64146–64160, 2022.

[190] David A Smith and Douglas R White. Structure and dynamics of the global

economy: network analysis of international trade 1965–1980. Social forces,

70(4):857–893, 1992.

[191] Sandeep Soni, Shawn Ling Ramirez, and Jacob Joseph Eisenstein. Detecting

social influence in event cascades by comparing discriminative rankers. In The

2019 ACM SIGKDD Workshop on Causal Discovery, pages 78–99. PMLR, 2019.

[192] Francesco Sorrentino. Effects of the network structural properties on its

controllability. Chaos: An Interdisciplinary Journal of Nonlinear Science,

17(3):033101, 2007.

[193] Ivan Stojmenovic, Mahtab Seddigh, and Jovisa Zunic. Dominating sets and

neighbor elimination-based broadcasting algorithms in wireless networks. IEEE

Transactions on parallel and distributed systems, 13(1):14–25, 2002.

[194] Steven H Strogatz. Exploring complex networks. nature, 410(6825):268, 2001.

[195] Danny Sullivan. What is google pagerank? a guide for searchers & webmasters.

Search engine land, 2007.

[196] Peng Gang Sun and Xiaoke Ma. Understanding the controllability of complex

networks from the microcosmic to the macrocosmic. New Journal of Physics,

19(1):013022, 2017.

[197] Ashis Talukder, Md Golam Rabiul Alam, Nguyen H Tran, Dusit Niyato,

Gwan Hoon Park, and Choong Seon Hong. Threshold estimation models for



194

linear threshold-based influential user mining in social networks. IEEE Access,

7(1):105, 2019.

[198] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-

linear time: A martingale approach. In Proceedings of the 2015 ACM SIGMOD

international conference on management of data, pages 1539–1554, 2015.

[199] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-

optimal time complexity meets practical efficiency. In Proceedings of the 2014

ACM SIGMOD international conference on Management of data, pages 75–86,

2014.

[200] Juliana Tolles and ThaiBinh Luong. Modeling epidemics with compartmental

models. Jama, 323(24):2515–2516, 2020.

[201] Christopher Tran and Elena Zheleva. Heterogeneous peer effects in the linear

threshold model. arXiv preprint arXiv:2201.11242, 2022.

[202] Giacomo Vaccario, Luca Verginer, and Frank Schweitzer. The mobility net-

work of scientists: Analyzing temporal correlations in scientific careers. Applied

Network Science, 5(1):1–14, 2020.

[203] Margarita Vitoropoulou, Konstantinos Tsitseklis, Vasileios Karyotis, and

Symeon Papavassiliou. Cover: An information diffusion aware approach for

efficient recommendations under user coverage constraints. IEEE Transactions

on Computational Social Systems, 8(4):894–905, 2021.

[204] Akanda Wahid-Ul-Ashraf, Marcin Budka, and Katarzyna Musial. Netsim–the

framework for complex network generator. Procedia Computer Science, 126:547–

556, 2018.

[205] Bingbo Wang, Lin Gao, and Yong Gao. Control range: a controllability-based



195

index for node significance in directed networks. Journal of Statistical Mechan-

ics: Theory and Experiment, 2012(04):P04011, 2012.

[206] Bingbo Wang, Lin Gao, Qingfang Zhang, Aimin Li, Yue Deng, and Xingli Guo.

Diversified control paths: A significant way disease genes perturb the human

regulatory network. PloS one, 10(8):e0135491, 2015.

[207] Dong Wang, Jiexun Li, Kaiquan Xu, and Yizhen Wu. Sentiment community

detection: exploring sentiments and relationships in social networks. Electronic

Commerce Research, 17(1):103–132, 2017.

[208] Jing Wang and Ioannis Ch Paschalidis. Botnet detection based on anomaly

and community detection. IEEE Transactions on Control of Network Systems,

4(2):392–404, 2016.

[209] Le-Zhi Wang, Yu-Zhong Chen, Wen-Xu Wang, and Ying-Cheng Lai. Physical

controllability of complex networks. Scientific reports, 7:40198, 2017.

[210] Xiao Fan Wang and Guanrong Chen. Complex networks: small-world, scale-free

and beyond. IEEE circuits and systems magazine, 3(1):6–20, 2003.

[211] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Methods

and applications, volume 8. Cambridge university press, 1994.

[212] Stanley Wasserman, Garry Robins, and Douglas Steinley. Statistical models

for networks: A brief review of some recent research. In ICML Workshop on

Statistical Network Analysis, pages 45–56. Springer, 2006.

[213] D Watts and S Strogatz. An undirected, unweighted network representing the

topology of the western states power grid of the united states. Nature, 393:440–

442, 1998.

[214] Duncan Watts and Steven Strogatz. The small world problem. Collective Dy-

namics of Small-World Networks, 393:440–442, 1998.



196

[215] Duncan J Watts and Peter Sheridan Dodds. Influentials, networks, and public

opinion formation. Journal of consumer research, 34(4):441–458, 2007.

[216] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. Nature, 393(6684):440, 1998.

[217] Bo Wei, Jie Liu, Daijun Wei, Cai Gao, and Yong Deng. Weighted k-shell

decomposition for complex networks based on potential edge weights. Physica

A: Statistical Mechanics and its Applications, 420:277–283, 2015.

[218] Karsten Weihe. Covering trains by stations or the power of data reduction.

Proceedings of Algorithms and Experiments, ALEX, pages 1–8, 1998.

[219] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: finding topic-

sensitive influential twitterers. In Proceedings of the third ACM international

conference on Web search and data mining, pages 261–270, 2010.

[220] Andrew J Whalen, Sean N Brennan, Timothy D Sauer, and Steven J Schiff.

Observability and controllability of nonlinear networks: The role of symmetry.

Physical Review X, 5(1):011005, 2015.

[221] S William. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

[222] Stefan Wuchty. Controllability in protein interaction networks. Proceedings of

the National Academy of Sciences, 111(19):7156–7160, 2014.

[223] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. Scan: a

structural clustering algorithm for networks. In Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 824–833, 2007.

[224] Gang Yan, Jie Ren, Ying-Cheng Lai, Choy-Heng Lai, and Baowen Li. Control-

ling complex networks: How much energy is needed? Physical review letters,

108(21):218703, 2012.



197

[225] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities

based on ground-truth. Knowledge and Information Systems, 42(1):181–213,

2015.

[226] Zhao Yang, René Algesheimer, and Claudio J Tessone. A comparative analysis

of community detection algorithms on artificial networks. Scientific reports,

6(1):1–18, 2016.

[227] Shunyu Yao, Neng Fan, and Jie Hu. Modeling the spread of infectious diseases

through influence maximization. Optimization letters, 16(5):1563–1586, 2022.

[228] Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, and Christian Böhm.

Learning from labeled and unlabeled vertices in networks. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 1265–1274, 2017.

[229] Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, and Mikel Luján. Op-

timizing software runtime systems for speculative parallelization. ACM Trans-

actions on Architecture and Code Optimization (TACO), 9(4):1–27, 2013.

[230] Lingchong You, Apirak Hoonlor, and John Yin. Modeling biological systems

using dynetica—a simulator of dynamic networks. Bioinformatics, 19(3):435–

436, 2003.

[231] Zhengzhong Yuan, Chen Zhao, Zengru Di, Wen-Xu Wang, and Ying-Cheng

Lai. Exact controllability of complex networks. Nature communications, 4:2447,

2013.

[232] Zhengzhong Yuan, Chen Zhao, Wen-Xu Wang, Zengru Di, and Ying-Cheng

Lai. Exact controllability of multiplex networks. New Journal of Physics,

16(10):103036, 2014.



198

[233] Wayne W Zachary. An information flow model for conflict and fission in small

groups. Journal of anthropological research, 33(4):452–473, 1977.

[234] Jorge Gomez Tejeda Zañudo, Gang Yang, and Réka Albert. Structure-based

control of complex networks with nonlinear dynamics. Proceedings of the Na-

tional Academy of Sciences, 114(28):7234–7239, 2017.

[235] Ahmad Zareie and Rizos Sakellariou. Influence maximization in social networks:

A survey of behaviour-aware methods. arXiv preprint arXiv:2108.03438, 2021.

[236] Jian-Xiong Zhang, Duan-Bing Chen, Qiang Dong, and Zhi-Dan Zhao. Iden-

tifying a set of influential spreaders in complex networks. Scientific reports,

6:27823, 2016.

[237] Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Uncovering fuzzy com-

munity structure in complex networks. Physical Review E, 76(4):046103, 2007.

[238] Xizhe Zhang, Tianyang Lv, XueYing Yang, and Bin Zhang. Structural con-

trollability of complex networks based on preferential matching. PloS one,

9(11):e112039, 2014.

[239] Yan Zhang, Antonios Garas, and Frank Schweitzer. Control contribution iden-

tifies top driver nodes in complex networks. arXiv preprint arXiv:1906.04663,

2019.

[240] Haijun Zhou and Zhong-can Ou-Yang. Maximum matching on random graphs.

arXiv preprint cond-mat/0309348, 2003.

[241] Jiang Zhu, Bai Wang, Bin Wu, and Weiyu Zhang. Emotional community de-

tection in social network. IEICE Transactions on Information and Systems,

100(10):2515–2525, 2017.


	Certificate of Original Authorship
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Aims, Questions, Objectives and Significance
	Methodology
	Thesis Contributions
	Thesis Organisation

	Literature Review
	Complex Networks Basics
	Network Types
	Network Structural Measures
	Network Models
	Tasks on Network

	Background of Control, Controllability and Influence of Complex Networks
	Control in a Complex Network
	Controllability of Complex Networks
	Quantifying Network Controllability
	Controllability Criteria: Kalman Rank Condition
	Structural Controllability

	Influence in Complex Networks
	Independent Cascade Model (ICM)
	Linear Threshold Model (LTM)
	Variations of IC Model
	Variations of LTM Model


	Methods for Selecting Driver Nodes
	Maximum Matching: Hopcroft-Karp Algorithm
	Ford Fulkerson Algorithm
	Hungarian Algorithm
	Minimum Dominating Set
	Control Profiles
	Preferential Matching
	Finding Driver Nodes: Analysis

	Methods for Selecting Seeds for Influence Spread
	Random Seed Selection (R)
	Degree Seed Selection (D)
	Closeness Centrality Seed Selection (C)
	Betweenness Centrality Seed Selection (B)
	Eigenvector Centrality Seed Selection
	Kempe Seed Selection (K)
	PageRank
	LeaderRank
	ClusterRank
	K-Shell decomposition
	TwitterRank
	ShaPley value-based Influential Nodes (SPIN) algorithm
	Optimal Influencers
	ARL

	Conclusion

	Network Structure and Driver Nodes
	Background
	Research Methodology
	Description of Networks
	Network Profiles Used
	Conducted Experiments

	Result and Analysis
	Results from Generated Networks
	Results from Social Networks

	Discussion and Conclusion

	Driver Nodes in Communities
	Background
	Community Detection
	Driver Nodes

	Research Methodology and Experiment Design
	Results and Analysis
	Results from Synthetic Networks
	Community Density and Number of Driver Nodes in Communities in Random, Small World and Scale Free Networks
	Difference Between Number of Driver Nodes in Networks (NDN) and Number of Driver Nodes in Communities (NDNC) in Random, Small World and Scale Free Networks

	Results from Social Networks
	Community Density and Number of Driver Nodes in Communities in Social Networks
	Difference Between Number of Driver Nodes in Networks (NDN) and Number of Driver Nodes in Communities (NDNC) in Social Networks


	Discussion and Conclusion

	Influence Models and Driver Nodes
	Background
	Research Methodology and Experiment Design
	Networks
	Experiments

	Results and Analysis
	Results from Synthetic Networks
	Impact of network density on number of nodes influenced
	Percentage of nodes influenced
	Critical Difference Diagram for Generated Networks

	Results from Real Social Networks
	Percentage of influence gain by DDCB method over other methods in the social networks
	Percentage of nodes influenced
	Number of iterations needed to influence the network
	Critical Difference Diagram for Social Networks
	Time Complexity and Execution Times


	Discussion and Conclusion

	Influence Models, Communities and Driver Nodes
	Background
	Research Methodology and Experimental Design
	Influence spread using global driver nodes as seeds
	Influence spread using local driver nodes as seeds

	Results and Analysis
	Results From Generated Networks
	What is the speed and reach of the influence spread?
	How much advantage do community—level driver based seed selection methods give?

	Results From Social Networks
	What is the speed and reach of the influence spread?
	Time Complexity and Execution Time
	How much advantage do community-level driver based seed selection methods give?


	Discussion and Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work


