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Abstract

Graph topologies have been detected in data captured in social networks, biological

networks, traffic networks, smart grids, and ecological networks. Graphs provide

effective means to represent the statistical dependence or similarity among signals

observed at different vertices. A critical challenge is to excavate graphs underlying

observed signals, because of non-convex problem structure and associated high com-

putational requirements. On the other hand, latent graph structure and stimulus of

graph data contain critical private information, such as brain disorders in functional

magnetic resonance imaging data, and can be exploited to identify individuals. It is

critical to perturb the latent information while maintaining the utility of the data,

which, unfortunately, has never been addressed.

In this thesis, a new alternating optimization (AO) based graph learning technique

is investigated to solve the challenge. However, the fidelity of the topologies inferred

from the graph signals was penalized due to the use of the AO-based approximation.

To surpass the limitations of the AO-based approximation, we propose a new graph

learning technique that is able to efficiently infer the graph structure underlying

observed graph signals by deriving a new closed-form analytic expression for the

graph Fourier transform (GFT) basis, which depends deterministically on the ob-

served signals. The new graph learning technique is applied to accurately infer the

graph structure of COVID-19 data, helping to reveal the correlation of pandemic

dynamics among different countries and identify influential countries for pandemic

response analysis.

To protect the latent privacy of the latent graph structures and stimuli of graph-

structured data, a novel approach has been proposed to obfuscate the latent infor-

mation and maximize its utility. We first analyze the GFT basis that captures the
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latent graph structures, and the latent stimuli that are the spectral-domain inputs to

the latent graphs. Then, we formulate and decouple a new multi-objective problem

to alternately obfuscate the GFT basis and stimuli. The difference-of-convex (DC)

programming and Stiefel manifold gradient descent are orchestrated to obfuscate the

GFT basis. The DC programming and gradient descent are employed to perturb the

spectral-domain stimuli. Experiments conducted on an attention-deficit hyperactiv-

ity disorder dataset demonstrate that our approach can substantially outperform

its differential privacy-based benchmark in the face of the latest graph inference

attacks.
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Chapter 1

Introduction

1.1 Background

An important type of data is graph data, which is the data with latent graph struc-

tures (or in other words, a set of concurrent time series with underlying correlations)

observed extensively in the areas of physics, biology, transportation, energy, engi-

neering, and social science [1]–[4]. An example of graph data is a brain signal, such

as electroencephalogram (EEG) signals [5] acquired by attaching electrodes to the

scalp of a patient to measure the electrical activities in its brain [6], as well as

blood-oxygen-level-dependent time series obtained by performing functional mag-

netic resonance imaging (fMRI) on the brain [7]. More examples include social

network data released by users on social platforms, such as Facebook, Twitter, and

WeChat, which may contain social graphs and large amounts of possibly sensitive

and private information on users and their interactions [8], [9].

Graph signal processing (GSP) [10] provides a new paradigm to process and analyze

these graph signals with network nature and extends signal processing techniques

to graph signal filtering [10], compressing [11], sampling [12], and recovers data

in irregular domains. GSP is a general tool to uncover the dependency, physical

proximity, or other properties underlying datasets captured in networks [13], [14]

and to analyze how the graph signals can impact the algebraic characteristics of

the underlying topology. The graph topology captures the instinct relationships of

unstructured data encoded on different entries of the graph and produces the graph

1



topology inference from observed signals [15]–[24]. The majority of GSP research

conducted so far assumes that the knowledge of the underlying topology is known.

In practice, the graph topologies are not always readily available, restricting the

use of GSP [25]. Therefore, graph learning from the underlying data and signals

in network systems, e.g., biological networks [26], traffic networks [27], [28], smart

grid networks [29], communication networks [30], ecological networks [31], and social

networks [32], have been attracting considerable raising interest.

Nowadays, privacy is a significant concern for some graph-structured data. For

example, the latent graph structures of the brain network data could expose personal

health conditions, such as attention-deficit hyperactivity disorder (ADHD) [33] and

Alzheimer’s disease (AD) [34], under graph interference attacks (based on graph

learning techniques [21], [35], [36]). The health conditions could be exploited to

reveal the identities of those whose brain network data is under the graph inference

attacks [37], [38]. On the other hand, the latent stimuli, which are the input to the

latent graphs and derive the output of the observed graph-structured data, are also

part of the private information [39]. The bandwidth and waveform shapes of the

stimuli can be used as the identifiers of individuals [40]. In this sense, it is critical

to preserve the privacy of the graph-structured data by obfuscating the latent graph

structures underlying the graph data and the stimulus to the latent graphs, while

restraining the changes to the graph data to best maintain its utility.

1.2 Motivations

The graph topology captures the instinct relationships of unstructured data encoded

on different entries of the graph and graph learning is an efficient technique used to

uncover the latent graph topologies of data [41]. Classical graph topology inference

methods, such as graph lasso [16] and covariance selection [15], estimated the co-

variance matrices of graph signals. More recent graph learning techniques enforced

smoothness to graph signals prior to topology inference [18]–[22], [42], [43]. In other

words, it has been typically assumed that the frequency-domain representations of

graph signals have unlimited bandwidths, e.g., for mathematical tractability.

With the latent graph topologies, the captured data can be transformed into the

2



frequency domain, where data can be effectively processed. This is critical to re-

cover missing data in part of a network [44], or verify the authenticity of data [45].

For the sake of generality, it is reasonable to consider band-limited graph signals,

i.e., the frequency-domain representation of the signals can have a finite bandwidth.

The band-limitedness is observed in practice, e.g., fMRI data in brain networks [46].

The widely studied smooth graph signals with unlimited frequency-domain band-

widths [18] can be viewed as a special case of band-limited graph signals. Existing

graph learning methods cannot accurately and efficiently infer the graph topology

(i.e., graph Laplacian [47]) of band-limited graph signals due to difficulties in joint

estimation of both the frequency-domain representation and the graph Fourier trans-

form (GFT) basis converting captured data to the frequency domain.

Since the outbreak of COVID-19, numerous studies have been explored to compre-

hend the spatio-temporal characteristics of the virus spread and control the spread

of the pandemic [48]. As of April 2022, the COVID-19 pandemic has led to escalat-

ing global health, economic, and social challenges [49], [50] and Europe had recorded

192.09 million confirmed cases and over two million deaths due to the COVID-19

pandemic 1. Unfortunately, it is difficult to implement evidence-based policies for

COVID-19 due to a lack of adequate evidence in policy-making and research [51].

While it is possible to estimate the growth rates of confirmed cases and deaths [52],

the relationships between pairs of countries are still unknown as far as the COVID-19

development is concerned. Datasets about ongoing situations in different countries

are likely to show spatial-temporal patterns since virus spread tends to follow geo-

graphic trends. A spatial-temporal analysis of confirmed COVID-19 cases may also

shed light on its evolution.

The record of pandemic evolution in Europe is known to be complex, variable, and

non-linear [53]. Consequently, it is essential to uncover hidden information about

SARS-CoV-2 as new virus variants emerge. To gain insights into the dynamic spread

of the pandemic, one approach is to generate and analyze diffusion graph topologies

of the COVID-19 pandemic using graph-theoretic metrics [54]–[57]. These graph-

based models help uncover the interconnectedness between different locations and

capture the temporal aspect of the spread [58]. Existing studies have examined the

1https://coronavirus.jhu.edu/data
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spread of epidemics as a complex system by assessing the degree of correlation or

synchronization between time-series data [59], [60]. While these approaches provide

valuable insights, the transmission dynamics of new variants of SARS-CoV-2 call for

additional methods that go beyond simple correlation or synchronization analyses.

A deeper understanding of the transmission dynamics of the new variants of SARS-

CoV-2 requires new methods beyond assessing correlation or synchronization. There

is a need to explore the underlying local structures in the data and reveal the

relationships between different countries to understand the spatio-temporal spread

of the virus.

Another research issue is the privacy of graph-structured data. Privacy is a sig-

nificant concern for some graph-structured data, for example, brain network data

obtained by fMRI [7]. The graph-structured brain data can be held by the Depart-

ment of Neurology in a hospital, and shared with and used by other departments or

clinics for big data analytics (e.g., detecting or modeling changes in blood flow that

occur with brain activity) or educational purposes. On the one hand, the latent

graph structures within brain network data could unveil personal health conditions,

such as ADHD and AD, when subjected to graph interference attacks employing

graph learning techniques [21], [35], [36]. These conditions could potentially expose

patient identities [37], [38]. The latent stimuli within graph-structured data, serving

as inputs to the latent graphs and contributing to the observed output, also con-

stitute private information [39]. Bandwidth and waveform characteristics of these

stimuli could serve as unique identifiers for individuals.

Preserving the privacy of the graph-structured data, more explicitly, the privacy of

the latent graph structures and stimuli underlying the data has never been addressed

in the literature. Existing studies have been dedicated to the privacy of graphs (as

opposed to the graph-structured data), e.g., through k-anonymity [61], node or edge

perturbation [62], and graph differential privacy (DP) [63]–[65]. The results of the

studies cannot apply to the graph-structured data, i.e., a set of time series with

correlations. In light of the notion of DP [66], a possible solution to obfuscating

graph data is to add random noises to the graph data. However, to what extent can

this DP-based obfuscation effectively preserve the privacy of the latent graphs and

stimuli is unclear. As a matter of fact, the latent graph structure is less susceptible
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to the added, typically Gaussian noises on the graph data, as revealed in this thesis.

1.3 Research Contributions

This thesis aims to investigate different graph learning methods and applications and

preserve the privacy of the latent graph structures and stimulus of graph-structured

data. The main contributions are summarized as follows.

• We propose a new graph learning technique to learn the graph Laplacian of

the band-limited, brain signals. The key idea is that we show the frequency-

domain signals depend deterministically on the graph Laplacian. The joint

estimation can be transferred to only concern the graph Laplacian. Alternating

optimization (AO) can be applied to learn the eigenvectors and eigenvalues of

the graph Laplacian in an iterative manner. Another important aspect is that

we reveal the feasible solution of the eigenvectors on a Stiefel manifold which

can be efficiently solved using Stiefel manifold dual gradient descent. Given the

eigenvectors, the eigenvalues can be obtained using the alternating direction

method of multipliers (ADMM). Experiments indicate that the new technique

can infer the graph topology of brain signals with substantially better accuracy

than the prior art. The technique draws findings validated by neuroanatomical

studies.

• We present a new graph learning technique that is able to efficiently infer the

graph structure underlying observed graph signals. The key idea is that we

reveal the intrinsic relation between the frequency-domain representation of

general band-limited graph signals and the GFT basis. Accordingly, we derive

a new closed-form analytic expression for the GFT basis, which depends de-

terministically on the observed signals (as opposed to being solved numerically

and approximately in the literature). Given the GFT basis, the estimation of

the graph Laplacian, more explicitly, its eigenvalues, is convex and efficiently

solved using the ADMM. Simulations based on synthetic data and experiments

based on public weather and brain signal datasets show that the new technique

outperforms the state of the art in accuracy and efficiency.
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• We apply the new graph-learning technique to accurately infer the graph

structure of COVID-19 data, helping to reveal the correlation of pandemic

dynamics among different countries and identify influential countries for pan-

demic response analysis. The new technique estimates the graph Laplacian

of the COVID-19 data by first deriving analytically its precise eigenvectors,

also known as the GFT basis. Given the eigenvectors, the eigenvalues of the

graph Laplacian are readily estimated using convex optimization. With the

graph Laplacian, we analyze the confirmed cases of different COVID-19 vari-

ants among European countries based on centrality measures and identify a

different set of the most influential and representative countries from the cur-

rent techniques. The accuracy of the new method is validated by repurposing

part of COVID-19 data to be the test data and gauging the capability of

the method to recover missing test data, showing 33.3% better in root mean

squared error (RMSE) and 11.11% better in the correlation of determina-

tion than existing techniques. The set of identified influential countries by

the method is anticipated to be meaningful and contribute to the study of

COVID-19 spread.

• We present a novel approach to obfuscating latent graph structure and stim-

ulus and maximizing the utility of graph-structure data, which can be ex-

ploited to identify individuals, such as brain disorders in functional magnetic

resonance imaging data. The problem of perturbing latent information while

maintaining the utility of the data, unfortunately, has never been addressed.

Specifically, we first analyze the GFT basis that captures the latent graph

structures, and the latent stimuli that are the spectral-domain inputs to the

latent graphs. Then, we formulate and decouple a new multi-objective problem

to alternately obfuscate the GFT basis and stimuli. The difference-of-convex

(DC) programming and Stiefel manifold gradient descent are orchestrated to

obfuscate the GFT basis. The DC programming and gradient descent are em-

ployed to perturb the spectral-domain stimuli. Experiments conducted on an

attention-deficit hyperactivity disorder dataset demonstrate that our approach

can substantially outperform its differential privacy-based benchmark in the

face of the latest graph inference attacks.
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1.4 Thesis Structure

The structure of the thesis is organized as follows.

Chapter 2 reviews the relevant works on the studies of graph learning techniques and

graph-structured data privacy-preserving techniques. The graph learning techniques

are reviewed first including the traditional graph learning method, graph learning

from smooth observations, and graph learning from ban-limited observations. Then

we introduce the techniques for preserving the privacy of graph data.

Chapter 3 proposes a new graph learning technique, which learns weighted and

undirected graph topologies, more specifically, the graph Laplacian matrices, from

fMRI-based, band-limited brain signals.

Chapter 4 presents a new graph learning technique for general band-limited graph

signals, which learns the graph topology (i.e., the graph Laplacian matrix) of ob-

served bandlimited graph signals to overcome the high computational complexity of

the graph learning method proposed in Chapter 3.

Chapter 5 presents a new graph-learning technique to accurately infer the graph

structure of COVID-19 data, helping to reveal the correlation of pandemic dynamics

among different countries and identify influential countries for pandemic response

analysis.

Chapter 6 presents a new approach to protect the privacy of the latent informa-

tion underlying graph-structured data (e.g., the graph structure and the stimulus

underlying the observed graph-structured data) while minimizing the perturbations

on the observed graph-structured data to maintain the utility of the data.

Chapter 7 provides the conclusion of the thesis and summarizes our future work.
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Chapter 2

Literature Review

2.1 Graph Signal Processing

Graph signal processing (GSP) [67], [68] provides a powerful framework for pro-

cessing and analyzing signals that are associated with graph structures. It extends

traditional signal processing techniques to signals that are defined on graphs, en-

abling the analysis of various data types and applications [69]. GSP encompasses

a range of methods and algorithms that operate on graph-structured data. These

include graph signal filtering [10], [70], which involves modifying or extracting spe-

cific components of graph signals based on their spectral properties. Graph signal

compression [11] aims to reduce the size of graph signals while preserving important

information. Graph signal sampling [12], [13] focuses on selecting a subset of graph

nodes to efficiently represent the entire signal. Furthermore, GSP encompasses tech-

niques for recovering data on irregular graph domains [71].

The main objective of GSP is to uncover the underlying dependencies, physical

proximity, or other properties within datasets that are indexed by vertices in a

graph [13]. By considering the graph structure, GSP enables the exploration and

analysis of relationships and patterns in the data, leading to insights and interpre-

tations that may not be apparent in traditional signal processing approaches [39],

[72], [73]. However, one challenge in applying GSP is that the graph structure is not

always readily available [25]. In earlier studies, the underlying graph topology was

assumed to be known, and GSP was used to analyze how graph signals can affect
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the algebraic characteristics of the underlying graphs [74]. More recently, efforts

have been made to reconstruct the network structure from the data itself, allowing

for the expression of complex relations in real systems [74]. GSP has gained increas-

ing interest and has been applied in various fields, including social networks [75],

neuroscience [26], image processing [76], [77], sensor networks [78]–[80], and com-

munication systems [81], [82]. It provides a powerful framework for understanding

and exploiting the rich information encoded in graph-structured data, enabling ad-

vancements in data analysis, pattern recognition, and decision-making processes.

2.2 Graph Learning

Traditional methods [15], [16] estimated the covariance matrix to capture the lin-

ear/nonlinear and symmetric pairwise or directional dependency among vertex-

indexed signals. Such methods only captured pairwise correlations and did not

reflect the causality of latent network structures [83].

Later, graph learning techniques were developed to infer the topology from ob-

servations, where graph signals were assumed to be smooth; in other words, their

frequency-domain representations have unlimited bandwidths. These techniques are

not suitable for band-limited signals. Dong et al. [41] outlined techniques to solve

graph learning problems for globally and locally smooth models, and summarized

the potential benefit of GSP-based graph inference methods in many theoretical

and practical applications, such as image coding, brain functional connectivity anal-

ysis, and meteorology analysis. Chepuri et al. [20] studied the learning of a sparse

graph to adequately explain observed data under a smoothness prior. They provided

an AO algorithm and a one-step convex relaxation-based solution by modeling the

learning problem as a sparse edge sampling function. Dong et al. [18] inferred the

graph Laplacian by minimizing the variations of the smooth signals based on the

a-priori information about the structure. This method was recently used in [45]

to reconstruct missing air pollution data and experimentally verified. Kalofolias et

al. [19] extended this idea by constructing graph learning as a weighted sparsity

problem, and learned a valid structure represented by the adjacent weighted matrix

using primal-dual optimization. The method of [19] was recently used in [42] to
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study the functional connectivity of brain networks from fMRI time series. Sabok-

sayr et al. [43] extended the method of [19] to support general multi-class smooth

signals. Egilmez et al. [84] proposed a block-coordinate descent-based algorithm to

learn the graph Laplacian. The original problem was decomposed into subproblems,

based on the structural constraints and optimality conditions of the Laplacian esti-

mation. The subproblems were solved in an alternating manner at each iteration.

Egilmez’s algorithm was applied in [85] for video compression with improvements

over the widely used Karhunen-Loeve transform.

Some recent works learned topologies generated by diffusion processes on graphs,

typically under the assumption of stationarity; i.e., the graph diffusion operator

(e.g., the adjacency or Laplacian matrix) has the same eigenvectors as the covari-

ance matrix of observed signals. Segarra et al. [21] estimated a new graph shift

operator by minimizing the ℓ1-norm of the operator based on the complete or par-

tial knowledge of the eigenvectors of the covariance. They used independent samples

of signals to evaluate the eigenvectors and then estimated the eigenvalues given the

eigenvectors. The obtained graph shift operator supported band-limited signals

when partial knowledge was available about the eigenvectors and the observed sig-

nal samples were band-limited. Pasdeloup et al. [22] studied the case where signals

were independent and identically distributed (i.i.d.) and observed after diffusion on

a graph. It was verified that the set of graphs has impacts on the eigenvectors of

the covariance matrix used to recover the graph topology.

A few existing studies [35], [36] have attempted to learn the latent graphs of band-

limited signals. Their accuracy and efficiency were penalized by their AO-based

approximate solvers. Specifically, Sardellitti et al. [35] discovered a block sparse

representation of band-limited graph signals and developed a strategy to associate

a graph with observed band-limited signals. The strategy started by learning an

orthonormal sparsifying transform based on the AO. The resulting problem of the

graph estimation became convex. The strategy recovered the graph Laplacian with

convex optimization techniques.
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2.3 Graph Learning for Brain Networks Analysis

Network neuroscience plays a crucial role in advancing our understanding of the

structure and function of the human brain. It adopts a network perspective by

considering the brain as a complex system composed of multiple regions of interest

(ROIs), often referred to as brain network nodes [86]. Graph theory [87] has been

a crucial tool to analyze complex brain networks, and revealed several non-trivial

features of brains, such as modularity and small-worldness, by studying the fMRI

time series (i.e., blood-oxygen-level dependent time series) amongst the ROIs in a

brain [86].

Traditional brain graph learning methods [15]–[17] estimated the covariance matrix

to capture the linear/nonlinear and symmetric pairwise or directional dependency

among vertex-indexed observed signals. Pearson’s correlation has been one of the

most common methods for measuring the pairwise functional relationships between

brain regions. However, Pearson’s correlation focuses on strong direct marginal cor-

relations of the fMRI time series between two brain regions, and overlooks the latent

network effects of other brain regions. Albert et al. [88] used partial correlations to

measure interactions between any two ROIs. The partial correlation quantifies the

dependency between two ROIs by regressing out the other ROIs, leading to diffi-

culties in the suppression of the confounding effect from the other ROIs. Those

methods only captured pairwise correlations and cannot reflect the accurate causal-

ity in the latent network structures of brains [83], [89], [90]. Sparse inverse covariance

estimation (SICE) [91] is another popular technique for measuring the intensity of

the most significant direct connection between ROIs. SICE is a principled partial

correlation algorithm. It tends to evaluate the sparsest reconstructive coefficient

of each ROI and capture only local structures, rather than a representation of the

global structure.

Recent graph learning techniques have attempted to address the limitations of SICE

by incorporating both local and global features to establish a representation of the

entire graph [92]. These techniques deal with specific properties of observed signals,

such as smoothness [18], [19] and stationarity [21], but are unsuited for band-limited

brain signals. On the other hand, fMRI-based brain data exhibit a distinct char-
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acteristic of band-limitedness and smoothness due to their underlying physiologi-

cal properties [36]. They are different from typically considered (band-unlimited)

smooth graph signals. In other words, the signals are sparse in the frequency domain.

As a result, existing graph learning algorithms developed under the assumptions of

smoothness and stationarity cannot readily apply to fMRI-based brain signals.

The band-limitedness is a widely observed property of fMRI-based brain data [35],

[46]. The observed signals can be sparse in the frequency-domain. With the in-

ferred graph topology, it is possible to recover the graph signals throughout the

entire brain network by only observing part of the signals. Sardellitti et al. [93]

discovered a block sparse representation of general graph data by enforcing the

band-limitedness of observed signals. Instead of assuming any diffusion process over

a graph, a strategy was developed to relate a graph to the received band-limited sig-

nals. The strategy started by estimating an orthonormal sparsifying transform based

on AO. The resulting problem of graph estimation was convex. The graph Lapla-

cian matrix was then recovered using convex optimization techniques. Humbert et

al. [94] considered graph learning from multivariate signals with both smoothness

and band-limitedness. A three-step AO-based algorithm was developed to leverage

manifold gradient descent and linear programming to learn the Laplacian of the

graph.

Graph Convolutional Networks (GCNs) [95] have also been employed in more re-

cent approaches for learning brain networks through various methods. Based on

Pearson’s correlation matrix as the node features, Zhao et al. [96] developed a novel

dynamic GCN to distinguish ADHD patients from health control for a better un-

derstanding the ADHD-associated brain dysfunctions. Li et al. [97] developed a

BrainGNN framework based on a graph neural network by using the topological

and functional information of fMRI for classification tasks. Zhou et al. [98] de-

signed an interpretable GCN model to identify and classify Alzheimer’s disease and

quantify the discriminative features of the brain connectivity patterns.

TABLE 2.1 collates the relevant studies to learn brain networks.
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Table 2.1: The state of the art in graph learning tech-

niques for brain signal analysis

Method Description

Pearson’s correlation This algorithm measures the pairwise func-

tional relationships between brain regions

with a focus on strong direct marginal corre-

lations of the fMRI time series between two

brain regions, and overlooks the latent net-

work effects of other brain regions.

Partial correlation This algorithm measures the dependency be-

tween two nodes by regressing out the re-

maining ones, leading to difficulties in remov-

ing the confounding effect from other nodes.

SICE [91] As the principled method for partial correla-

tion, SICE tends to evaluate the sparsest re-

constructive coefficient of each ROI and cap-

ture only local structures, rather than a rep-

resentation of the global structure.

Dong’s algorithm [18] This algorithm is an alternating minimiza-

tion algorithm that infers the assumption of

the smoothness of the signals.

Kalofolias’ algorithm [19] This algorithm is a scalable primal-dual algo-

rithm that learns the topological structures

represented by the adjacent weighted matrix

of graphs.
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Sardellitti’s Total

Variation (TV) algorithm [93]
This algorithm is a two-step strategy con-

sisting of (a) learning the orthonormal spar-

sifying transform from data via AO and (b)

then recovering the Laplacian matrix from

the sparsifying transform via convex opti-

mization.

Sardellitti’s Estimated-

Signal-Aid (ESA) algorithm [35]
Different from Sardellitti’s TV graph learn-

ing algorithm, this two-step strategy recov-

ers the Laplacian matrix from the sparsifying

transform and GFT coefficients by using con-

vex optimization in Step 2.

Humbert’s algorithm [94] This is an AO-based algorithm with three

alternating steps relying on standard min-

imization methods, i.e., manifold gradi-

ent descent and linear programming. It

learns graphs from multivariate signals with

smoothness and band-limitedness.

2.4 Graph Learning for COVID-19 Analysis

The COVID-19 pandemic is exacerbating global health, economic, and social chal-

lenges. As of April 2022, Europe recorded 192.09 million confirmed cases and more

than two million deaths. Since the pandemic outbreak, researchers from various

fields have extensively investigated the spread of the disease. The complex network

theory based on a pair-wise configuration has been widely utilized for modeling the

topological connectivity of the COVID-19 data on a global perspective [50], [99],

[100]. Azad et al. [99] tracked the spread of COVID-19 by utilizing the network
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analysis in India based on the travel history of infected patients and revealed that

international travel played a key role in the pandemic outbreak in a country. Jo

et al. [100] developed an infected network using the contact tracing information of

confirmed cases, and found that governmental measures had a strong impact on the

COVID-19 spread network in Seoul. Through modeling tourism mobility as a com-

plex network, Tsiotas et al. [50] created a multidimensional framework to understand

the COVID-19 spread across countries. Chu et al. [101] constructed an air travel

network structure to visualize the connectedness and evolution of the pandemic.

Travel subnetworks were formed by aggregating airport data at the national level

and adding it to a matrix capturing the flight recurrences between countries. Using

a similar conceptualization, they also developed a pandemic space approach [102]

that uses the historical correlation of confirmed cases to locate the connections

between different countries. By integrating Bayesian parameter inference with a

Watts–Strogatz small-world network epidemiological model, Syga et al. [103] in-

ferred a time-varying COVID-19 transmission network in Germany. It was shown

that government interventions reduced random contacts and transmission probabil-

ities.

Numerous methods have been designed to infer the pandemic’s time-dependent

transmission network, compared to previous works on network-based models. For

instance, the correlation coefficients were exploited to capture the linear/nonlinear

and symmetric pairwise matrix between different regions [57], [58], [104], [105]. So

et al. [57] constructed dynamic pandemic networks over time for 164 countries to

forecast and assess the risk of the pandemic using network statistics. The connec-

tions in the networks were established based on the relationships of changes in the

count of reported cases between the two regions. Pan et al. [105] used the Pearson

correlation coefficient, time-lagged cross-correlation, and dynamic time wrapping

to examine interactions in the evolution of pandemics across the different states of

the US. McMahon et al. [104] examined the spatial correlations of new active cases

across different states in the US and assessed their magnitude over time. Their

results showed stronger correlations between urban areas compared to rural areas,

revealing that the pandemic spread was largely driven by travel between cities. Us-

ing spatio-temporal correlation, Aral et al. [58] identified distinct spatial clusters
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and spatial associations among COVID-19 cases in Turkey, revealing that spatial

analysis helped explain the spread of the disease.

Alguliyev et al. [106] created a conceptual graph model by taking into account var-

ious epidemiological traits of COVID-19, such as social distance, the period of con-

tact with an infected individual, and demographic characteristics based on location,

thereby enabling a visual representation of virus propagation. This helps deter-

mine undetected cases of infection. Ieracitano et al. [107] adopted a deep learning

technique based on fuzzy logic to create a classification system for the early identi-

fication of COVID-19 cases utilizing portable chest X-ray (CXR) images. Absar et

al. [108] developed a computer-assisted system for the automatic classification of

CXR images of COVID-19 utilizing the Support Vector Machine (SVM) to enable

fast diagnosis of COVID-19.

2.5 Privacy Preserving for Graphs

Numerous privacy-preserving techniques for graph have been developed, e.g., k-

anonymity [61], node and edge perturbation [109], and graph DP [66]. These meth-

ods do not apply to graph data, that is, the three-dimensional data with latent

graph structures (or, in other words, a set of concurrent time series), such as the

brain signals. The methods would require the latent graphs to be extracted from

the data, and separately obfuscated. The usefulness or effectiveness of graph data

would degrade.

Yuan et al. [61] modeled a k-degree-l-diversity anonymity system and proposed an

anonymization method that adds noisy nodes into the original graph to protect struc-

tural information. k measures the number of vertices with the same degrees. l indi-

cates the distinct labels. Ding et al. [110] developed a privacy-preserving framework

to anonymize graphs, which defined an information loss matrix for graph datasets

based on a k-decomposition method. k-anonymity was performed on isomorphic

subgraphs to reduce computational overhead. The privacy-preserving capability of

these k-anonymity methods is heavily influenced by the magnitude of k. However,

a higher k value would inevitably lead to a lower data utility.
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Approaches based on the node or edge perturbation create rules for processing nodes

and edges, including edge modification, nodes clustering, and random walk. Node

and edge approaches are achieved by inserting or removing vertices and edges. Hay et

al. [109] developed a low-complexity random perturbation method by randomly

removing and inserting edges on the graph. Yu et al. [111] introduced a perturbation

scheme derived from local clustering, where edges were modified to mitigate the risk

of privacy compromise while minimizing the loss of network structures and data.

DP was proposed to quantify the privacy loss of individuals whose data undergoes

algorithmic processing [66]. Graph DP is a special case of DP. It is typically divided

into node-DP and edge-DP, built upon the concept of adding and removing a single

node or edge. In this sense, graph DP extends the node and edge perturbation ap-

proaches by quantifying their privacy loss. Day et al. [112] explored the graph degree

distribution under node DP by designing a projection technique that incorporates

aggregation and cumulative histogram to reduce the degree sensitivity. Huang et

al. [113] developed a privacy protection algorithm using the adjacency degrees of

a graph, which combined clustering and randomization. The privacy of the graph

was protected by clustering, reconstructing the graph based on ordered degrees, and

generating noisy nodes. Li et al. [114] proposed a general method for perturbing

subspace to achieve privacy preservation and distributed optimization, where noises

were injected into the non-convergent subspace using the dual variables to preserve

the privacy information. Compared with k-anonymity, DP can protect the statistics

of graph data, e.g., the degree distribution and edge weights.

Only a few studies have been dedicated to preserving the privacy of graph data with

latent graph structures, more explicitly, the latent graph structures [115], [116].

He et al. [115] developed a privacy analysis framework with a noise-adding pro-

cess for the average consensus algorithm, to limit the disclosure probability. Li et

al. [116] addressed the privacy issues using a distributed graph filtering technique,

which provides each node with the ability to compute its own desired output while

maintaining its privacy. However, these methods [115], [116] only considered the

privacy of graph data without taking into account the privacy of the latent graph

structure underlying the graph data.
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Chapter 3

Graph Extraction and Topology

Learning of Band-limited Brain

Signals

3.1 Introduction

Network neuroscience contributes to the comprehension of the architecture and func-

tionality of the human brain by viewing a brain to be a complex network compris-

ing many ROIs, also known as brain network nodes [86]. The connectivity and

functional interactions among the ROIs serve a key role in brain-related cognitive

function [117]. One example is ADHD, a widely observed and severely impairing

neurodevelopmental behavioral problem diagnosed with inattention, hyperactivity,

and impulsivity. ADHD affects school-age children and adolescents [33]. Latest

neuroanatomical and neuropsychological studies indicate that these behavioral dis-

turbances relate to atypical connectivity amongst brain functional area [118].

Graph theory has played a crucial role as a tool for analyzing intricate brain net-

works, and revealed several non-trivial features of brains, such as modularity and

small-worldness, by studying the fMRI time series (i.e., blood-oxygen-level depen-

dent time series) amongst the ROIs in a brain [86]. Pearson’s correlation has been

one of the most common methods for measuring the pairwise functional relation-
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ships between brain regions. However, Pearson’s correlation focuses on strong direct

marginal correlations in the fMRI data among two brain regions and overlooks the

latent effects of other brain regions. Albert et al. [88] used partial correlations to

measure interactions between any two ROIs. The partial correlation quantifies the

dependency between two ROIs by regressing out the other ROIs, leading to difficul-

ties in the suppression of the confounding effect from the other ROIs. SICE [91] has

been another popular technique for measuring the intensity of the most significant

direct connection between ROIs. SICE is a rigorous algorithm based on partial cor-

relation. It tends to evaluate the sparsest reconstructive coefficient of each ROI and

capture only local structures, rather than a representation of the global structure.

3.2 System Model

A whole brain network can be parcellated into a set of N nodes corresponding to

different brain regions. Each node represents a specific region containing a fMRI

time series. We assume that the i-th time series corresponding to N nodes refers to

a vector, denoted by yi ∈ RN×1. M is the number of time course of brain signals.

Let Y = [y1, . . . ,yM ] ∈ RN×M collect M observed signals of the brain network.

Brain networks describe the physical connectivity patterns between different brain

regions. As considered in [35], our objective is to deduce the graph topology of brains

from the time series Y. Specifically, we wish to characterize the brain network with a

weighted, undirected, and unidentified graph G = (V , E ,W) consisting of N vertices.

Every vertex corresponds to a brain network node. The edge between any two

vertices indicates the physical proximity or relationship of the corresponding brain

nodes. V = {1, · · · ,N} collects N vertices corresponding to specific brain regions.

E ⊆ V × V is the collection of edges of the brain connectivity. The adjacent matrix

W ∈ RN×N indicates to what extent two brain nodes are correlated. Wij = Wji ̸= 0

for any brain regions (i, j) ∈ E .

The combinatorial graph Laplacian L of the brain network G is defined as [72]:

L = D−W, (3.1)

where D ≜ diag (W1) defines the degree matrix containing the node degrees at its
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diagonal. 1 is an all-one vector. We assume that each brain region is connected to at

least one other brain region, ensuring no isolated regions are in the brain topology.

In other words, none of the diagonal elements is zero in D.

The graph Laplacian is a semi-definite matrix with positive elements along its main

diagonal and non-positive elements anywhere else [84]. By eigenvalue decomposition,

L is rewritten as:

L = UΛUT , (3.2)

where Λ denotes the diagonal matrix of non-negative Laplacian eigenvalues, and

U = [u1, · · · ,uN ] represents the orthonormal matrix collecting all the eigenvectors.

To infer the topological knowledge of G requires the Laplacian matrix L to be es-

timated. As done in [35] and [119], we enforce the signals Y to be band-limited

over graph G, e.g., the signals are sparse in the canonical domain [35], [119], [120].

GFT [22], [72] has been utilized to decompose a brain time series into orthonormal

components U in the Laplacian L [84]. For any m ∈ {1, · · · ,M}, the GFT of the

time series ym, denoted by sm, projects ym onto spectral-domain subspace spanned

by U, as given by

sm = UTym. (3.3)

With the band-limitedness of the observed signal ym, sm is a sparse vector and

captures the key characteristics of ym in the frequency domain. The band-limited

signal is written as

ym = Usm. (3.4)

Let S = [s1, · · · , sM ] ∈ RN×M collect all sm ∈ RN×1, m ∈ {1, · · · ,M}. From (3.4),

we have

Y = US. (3.5)

With the sparsity of sm,m ∈ {1, · · · ,M}, we set S ∈ BK as a K-block sparse matrix

with multiple all-zero row-vectors. K accounts for the bandwidth of the frequency-

domain representation of the observed band-limited graph signals Y, which can be

obtained empirically in prior, or enumerated to find its proper value. BK collects all
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K-block sparse matrices [121]:

BK ≜ {S ∈RN×M ,S(i, :) = 0, ∀i /∈ K ⊆ V , K = |K|}, (3.6)

where S(i, :) is the i-th row of S, and K ⊆ V has the cardinality of K.

Algorithm 1: AO-based joint optimization method for solving problem

(3.24)

1 Initialization: ϵ1, ϵ2, µ, β, ρ, ϵ;

2 while (3.24a) is yet to converge with the accuracy of ϵ do

3 Initialization: Randomly initialize V′
1,V

′
2 ∈M as orthogonal

matrices;

4 while ∥∇V1L(V1)∥F > ϵ1 and ∥∇V2L(V2)∥F > ϵ1 do

5 Update τ1 and τ2 and by (3.36) ;

6 Compute τ1 = max(min(τ1, τmax), τmin);

7 Compute τ2 = max(min(τ2, τmax), τmin);

8 Update V1 and V2 by (3.34);

9 V′
1 ← V1; V

′
2 ← V2;

10 end

11 Initialization: Initialize C′ and Z′ as identity matrices;

12 while ∥C−C′∥ / ∥C′∥ > ϵ2, and ∥Z− Z′∥ / ∥Z′∥ > ϵ2 do

13 Update Λ1 and Λ2, see (A.4);

14 Update C by (A.6);

15 Update Z by (A.7);

16 Λ′
1 ← Λ1; Λ

′
2 ← Λ2; C

′ ← C; Z′ ← Z;

17 end

18 end
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3.3 Proposed Alternating Optimization for Graph

Learning

We estimate the Laplacian matrix L and, in turn, the topological knowledge of graph

G substantiating the observation Y. Given the band-limitedness of Y, we cast the

problem as

min
L,U∈RN×N ,S∈RN×M

∥Y −US∥2F + βf(L,Y) (3.7a)

s.t. UUT = IN , (3.7b)

S ∈ BK , (3.7c)

L = UΛUT , L ∈ L, (3.7d)

u1 =
1√
N
1. (3.7e)

The first term of the objective (3.7a) accounts for data fidelity by incorporating a

quadratic loss that penalizes any disparity among US and Y. The second term of

(3.7a) is a regularization function [18], [35]. β is an adjustable weighting coefficient

of the regularizer.

Constraint (3.7b) ensures U to be a unitary matrix complying with (3.2). Constraint

(3.7c) impose the K-block sparsity of S in (3.6). Constraint (3.7d) guarantees that

L refers to a Laplacian matrix that satisfies the necessary conditions and properties,

and L collects all valid candidates to L [84], i.e.,

L = {L ⪰ 0|L1 = 0, Lij = Lji ≤ 0, i ̸= j}, (3.8)

where 0 refers to an all-zero vector. According to L1 = 0 in (3.8), we conclude that

0 is one eigenvalue of L corresponding to u1 = 1√
N
1, i.e., the first column of U; see

(3.7e).

Given the a-priori statistical knowledge of L, the regularizer f(L,Y) can effectively

capture and reflect the intended characteristics of the graph topology. Suppose

that L follows an exponential distribution [84]. The maximum a-posteriori (MAP)

estimate of L is written as [84]

min
L

tr(LYYT )− log |L|+ α ∥vec(L)∥1 , s.t. L ∈ L. (3.9)
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In this sense, f(L,Y) = tr(LYYT ) − log |L| + α ∥vec(L)∥1 provides a reasonable

regularization in (3.7a). Here, || · ||1 stands for the ℓ1-norm and α is a tunable

regularization parameter.

Based on the non-positivity and the structural constraint (i.e., L1 = 0) of L, we

obtain ∥vec(L)∥1 = 2tr(L). By using the linearity of trace, f(L,Y) can be rewritten

as

f(L,Y) = tr
(
LYYT + 2αL

)
− log |L| = tr (LT)− log |L|, (3.10)

where T = YYT + 2αI for notational simplicity.

As f(L,Y) = tr (LT)− log |L| is intractable due to the singular pseudo-determinant

of |L|, we exploit the equivalence of log |L| and log det(L + J) with J = u1u
T
1 =

1
N
11T [84, Prop. 1] and rewrite f(L,Y) as

f(L,Y) = tr (LT)− log det(L + J). (3.11)

By exploiting the orthonormality of U in (3.7b), we have ∥Y −US∥2F =
∥∥UTY − S

∥∥2
F

.

Then, we can rewrite (3.7) as

min
L,U∈RN×N ,S∈RN×M

∥∥UTY − S
∥∥2
F

+ βf(L,Y)

s.t. (3.7b)− (3.7e). (3.12)

Problem (3.12) is non-convex because of the non-convex nature of the objective

function f(L,Y) and the coupling of the variables in (3.7a), the orthonormality in

(3.7b), and the sparsity in (3.7c). Since both U and S are unknown, we reorganize

(3.12) as

min
L,U∈RN×N

(
min
S∈BK

N∑
i=1

∥∥uT
i Y − S(i, :)

∥∥2
2

+ βf(L,Y)

)
s.t. (3.7b)− (3.7e), (3.13)

which, based on the definition of S (i.e., S(i, :) = 0), can be further rewritten as

min
L,U∈RN×N ,K

(
min
S∈BK

∑
i∈K

∥∥uT
i Y− S(i, :)

∥∥2
2

+
∑
i/∈K

∥∥uT
i Y
∥∥2
2

)
+ βf(L,Y), (3.14)

s.t. (3.7b)− (3.7e).
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By closely assessing the objective of (3.14), we can find that the optimal index set,

K, collects the indices to the K largest entries of {
∥∥uT

i Y
∥∥}Ni , and satisfies

S(i, :) =

uT
i Y, if i ∈ K;

0, if i /∈ K.
(3.15)

As a result, only the N −K smallest entries of {||uT
i Y||}Ni remain in the objective

of (3.14). The first term of (3.7a) is rewritten as

∥Y −US∥2F = ∥Y −UKSK∥2F =
∥∥(I−UKU

T
K
)
Y
∥∥2
F
, (3.16)

where UK is the matrix collating the column-vectors of U indexed by K, and SK

is the matrix collating the row-vectors of S indexed by K. The second component

in the objective of problem (3.12), i.e., f(L,Y), can be reformulated by considering

the following two cases in regards to constraint (3.7e):

1. In the case of u1 /∈ UK, the eigenvectors of L, i.e., U, can be arranged as

[u1,UK,UKc\{1}]. By performing eigenvalue decomposition, L can be formu-

lated to

L=
[
u1,UK,UKc\{1}

]
Φ1

[
u1,UK,UKc\{1}

]T
=
[
UK,UKc\{1}

]
Φ2

[
UK,UKc\{1}

]T
. (3.17)

By plugging (3.17) and J = 1
N
11T , log det (L + J) can be rewritten as

log det (L + J)

= log det

([
1√
N
,UK,UKc\{1}

]1

Φ2

[ 1√
N
,UK,UKc\{1}

]T )

= log det
(
blkdiag

(
1,ΛK,ΛKc\{1}

))
= log det (ΛK) + log det

(
ΛKc\{1}

)
. (3.18)

Then, f(L,Y) can be formulated to

f(L,Y) = tr
(
UKΛKU

T
KT
)

+ tr
(
UKc\{1}ΛKc\{1}U

T
Kc\{1}T

)
− log det (ΛK)− log det

(
ΛKc\{1}

)
, (3.19)
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where Φ1 = blkdiag
(
0,ΛK,ΛKc\{1}

)
with ΛK ⪰ 0 and ΛK ∈ RK×K is a block-

diagonal matrix and collects all the eigenvalues associated with the eigenvec-

tors [u1,UK,UKc\{1}] of L; and Φ2 = blkdiag
(
ΛK,ΛKc\{1}

)
with ΛKc\{1} ⪰ 0

and ΛKc\{1} ∈ R(N−K−1)×(N−K−1).

2. In the case of u1 ∈ UK, U can be arranged as [u1,UK\{1},UKc ]. Then, (3.16)

is rewritten as

∥∥(I−UKU
T
K
)
Y
∥∥2
F

=
∥∥(I−UK\{1}U

T
K\{1} − u1u

T
1

)
Y
∥∥2
F

(a)
= tr

[(
I−UK\{1}U

T
K\{1}

)
YYT

(
I−UK\{1}U

T
K\{1}

)T
− u1u

T
1YYTu1u

T
1 + u1u

T
1UK\{1}U

T
K\{1}YYT

]
(b)
=
∥∥(I−UK\{1}U

T
K\{1}

)
Y
∥∥2
F
−
∥∥u1u

T
1Y
∥∥2
F
, (3.20)

where u1u
T
1UK\{1}U

T
K\{1}YYT = 0 in (a) since uT

1UK\{1} = 0, and u1u
T
1Y is

constant in (b).

Then, L can be rewritten as

L=
[
u1,UK\{1},UKc

]
Φ1

[
u1,UK\{1},UKc

]T
=
[
UK\{1},UKc

]
Φ2

[
UK\{1},UKc

]T
.

(3.21)

Likewise, f(L,Y) is rewritten as

f(L,Y) = tr
(
UK\{1}ΛK\{1}U

T
K\{1}T

)
+ tr

(
UKΛKU

T
KT
)

− log det
(
ΛK\{1}

)
− log det (ΛK) , (3.22)

where, with a slight abuse of notation, Φ1 = blkdiag
(
0,ΛK\{1},ΛKc

)
with

ΛK\{1} ⪰ 0 and ΛK\{1} ∈ R(K−1)×(K−1); and Φ2 = blkdiag
(
ΛK\{1},ΛKc

)
with

ΛKc ⪰ 0 with ΛKc ∈ R(N−K)×(N−K).

To unify the presentation and the follow-on discussions of the two cases, we define

1. If u1 /∈ UK, then V1 = UK, V2 = UKc\{1}, Λ1 = ΛK,Λ2 = ΛKc\{1}, I1 ∈

RK×K , and I2 ∈ R(N−K−1)×(N−K−1);

2. If u1 ∈ UK, then V1 = UK\{1}, V2 = UKc , Λ1 = ΛK\{1},Λ2 = ΛKc , I1 ∈

R(K−1)×(K−1), and I2 ∈ R(N−K)×(N−K).
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As a result, L can be represented as

L = [V1,V2]Φ2 [V1,V2]
T . (3.23)

Since [V1,V2]
Tu1 = 0, L1 = 0 in (3.8) is preserved in (3.23).

Finally, with the unified presentation (3.23) capturing both cases of u1 ∈ K and

u1 /∈ K, problem (3.7) is transformed equivalently to

min
V1,V2,Λ1,Λ2

∥∥(I−V1V
T
1

)
Y
∥∥2
F

+ β
[
tr
(
V1Λ1V

T
1 T
)

+

tr
(
V2Λ2V

T
2 T
)
− log det (Λ1)− log det (Λ2)

]
(3.24a)

s.t. VT
1 V1 = I1,V

T
2 V2 = I2,V

T
1 V2 = 0, (3.24b)

uT
1V1 = 0,uT

1V2 = 0, (3.24c)

Λ1 ⪰ 0,Λ2 ⪰ 0, (3.24d)

I⊙ [V1Λ1V
T
1 + V2Λ2V

T
2 ] ≥ 0, (3.24e)

A⊙ [V1Λ1V
T
1 + V2Λ2V

T
2 ] ≤ 0, (3.24f)

where (3.24b) is from (3.7b), and (3.24c) –(3.24f) correspond to (3.8).

Next, AO is carried out to iteratively solve problem (3.24) by optimizing [V1,V2]

and [Λ1,Λ2] in an alternating manner. Finally, given the convergent Λ1 and Λ2, we

infer the Laplacian matrix L using (3.23).

3.3.1 Estimation of V1 and V2

Given Λ1 and Λ2, problem (3.24) is reduced to

min
V1,V2

∥∥(I−V1V
T
1

)
Y
∥∥2
F

+ β
[
tr
(
V1Λ1V

T
1 T
)

+tr
(
V2Λ2V

T
2 T
)]

(3.25a)

s.t. VT
1 V1 = I1,V

T
2 V2 = I2,V

T
1 V2 = 0, (3.25b)

uT
1V1 = 0,uT

1V2 = 0, (3.25c)

which has orthonormal vector variables (or in other words, the feasible solution

region is on the Stiefel manifold) and therefore can be solved using Stiefel manifold

dual gradient descent [122], as described below.
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The Lagrangian function of (3.25) is defined as

L (V1,V2,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5)

=
∥∥(I−V1V

T
1

)
Y
∥∥2
F

+ βtr
(
V1Λ1V

T
1 T
)

+ βtr
(
V2Λ2V

T
2 T
)
− 1

2
tr(ΨT

1 (VT
1 V1 − I1))

− 1

2
tr(ΨT

2 (VT
2 V2 − I2))−

1

2
tr(ΨT

3V
T
1 V2)

− 1

2
tr(ΨT

4 u
T
1V1)−

1

2
tr(ΨT

5 u
T
1V2), (3.26)

where Ψ1, · · · ,Ψ5 are the Lagrange multipliers corresponding to the five conditions

in (3.24).

Considering the Karush–Kuhn–Tucker (KKT) conditions, we differentiate (3.26)

regarding V1 and then set the result to zero, as given by

∇V1L =∇F(V1)−V1Ψ1 −
1

2
V2Ψ3 −

1

2
u1Ψ4 = 0, (3.27)

where F(V1,V2) =
∥∥(I−V1V

T
1

)
Y
∥∥2
F

+ β tr
(
V1Λ1V

T
1 T
)

+ β tr
(
V2Λ2V

T
2 T
)
.

By left multiplying VT
1 to both sides of (3.27), we have

VT
1∇F(V1)−VT

1 V1Ψ1 −
1

2
VT

1 V2Ψ3 −
1

2
VT

1 u1Ψ4 = 0. (3.28)

Considering (3.24b), we obtain

Ψ1 = VT
1∇F(V1). (3.29)

By left multiplying VT
2 to both sides of (3.27) and applying (3.24b), we have

Ψ3 = 2∇F(V1)
TV2. (3.30)

By left multiplying uT
1 to both sides of (3.27) and applying (3.24b), we have

Ψ4 = 2uT
1∇F(V1). (3.31)

Since the constraint VT
1 V1 = I1 in (3.25) is symmetric, Ψ1 is symmetric and there-

fore Ψ1 = ∇F(V1)
TV1. The gradient in (3.27) can be reformulated to

∇V1L = ∇F(V1)−V1∇F(V1)
TV1 −

1

2
V2V

T
2∇F(V1)−

1

2
u1u

T
1∇F(V1). (3.32)
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Likewise,

Ψ2 = 2VT
2∇F(V2);Ψ5 =2uT

1∇F(V2). (3.33)

The gradient of the Lagrangian regarding V2 can be obtained by swapping V1 and

V2 in (3.32).

With the Stiefel manifold dual gradient descent, problem (3.25) can be solved by

iteratively updating the Lagrange multipliers with (3.29)–(3.31) and (3.33) and the

variables V1 and V2 with the right-hand scaled gradient projection method [122]:

V1 ← π(V1 − τ1∇V1L(V1)A1(µ, τ1)), (3.34)

where π(·) is the projection operator, i.e., π(V1) = UI1V
T if V1 = UΣVT by

singular value decomposition (SVD) [122]; A1(µ, τ1) is a scaling matrix with µ ∈

(0, 1), i.e.,

A1(µ, τ1) = (I1 + µτ1V
T
1∇V1L(V1))

−1, (3.35)

and τ1 is the step size and given by

τ1 =


∥V1−V′

1∥2F
⟨V1−V′

1,∇V1
L(V1)−∇V1

L(V′
1)⟩

, in odd-numbered iterations,

⟨V1−V′
1,∇V1

L(V1)−∇V1
L(V′

1)⟩
∥∇V1

L(V1)−∇V1
L(V′

1)∥2F
, in even-numbered iterations.

(3.36)

Here, V′
1 is the counterpart of V1 at the previous iteration. τ1 ∈ [τmin, τmax] with

τmin = 10−5 and τmax = 105 being the minimum and maximum values of step-sizes,

respectively.

The right-hand scaled gradient projection of V2 can be obtained by replacing V1

and A1(µ, τ1) with V2 and A2(µ, τ2), respectively, in (3.34). Here, the scaling matrix

A2(µ, τ2) can be obtained by replacing I1 and V1 with I2 and V2, respectively, in

(3.35). The step-size τ2 ∈ [τmin, τmax] can be obtained by replacing V1 and V′
1 with

V2 and V′
2, respectively, in (3.36). V′

2 is the counterpart of V2 in the previous

iteration.
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3.3.2 Estimation of Λ1 and Λ2

Given [V1,V2], problem (3.24) is rewritten as

min
Λ1,Λ2

tr
(
V1Λ1V

T
1 T
)

+ tr
(
V2Λ2V

T
2 T
)
− log det (Λ1)− log det (Λ2)

s.t. Λ1 ⪰ 0,Λ2 ⪰ 0,

I⊙ [V1Λ1V
T
1 + V2Λ2V

T
2 ] ≥ 0,

A⊙ [V1Λ1V
T
1 + V2Λ2V

T
2 ] ≤ 0. (3.37)

Since both Λ1 and Λ2 may have zero diagonal elements, problem (3.37) is not

continually differentiable and cannot be solved using CVX toolbox. By referring

to [123], we introduce C = L and rewrite the problem (3.37) as

min
Λ1,Λ2

[
tr
(
Λ1T̃1

)
+ tr

(
Λ2T̃2

)
− log det (Λ1)− log det (Λ2)

]
s.t. Λ1 ⪰ 0,Λ2 ⪰ 0,

V1Λ1V
T
1 + V2Λ2V

T
2 −C = 0,

I⊙C ≥ 0,

A⊙C ≤ 0, (3.38)

which can be addressed by utilizing ADMM; see Appendix A.

Algorithm 1 summarizes the proposed AO-based algorithm that solves problem

(3.24). The algorithm runs until the objective of (3.24) converges with the ac-

curacy of ϵ. Each of the AO iterations starts by running the Stiefel manifold dual

gradient descent till convergence, followed by the ADMM with Λ′
1, Λ

′
2, C

′, and Z′

being the results of Λ1, Λ2, C, and Z in the previous iteration. Their respective

convergence criteria are

∥∇V1L(V1)∥F ≤ ϵ1 and ∥∇V2L(V2)∥F ≤ ϵ1; (3.39)

∥C−C′∥ / ∥C′∥ ≤ ϵ2 and ∥Z− Z′∥ / ∥Z′∥ ≤ ϵ2, (3.40)

where ϵ1 and ϵ2 are the predefined thresholds. For example, in our experiments, we

take ϵ = ϵ1 = ϵ2 = 10−4; see Section 3.4.

29



3.3.3 Complexity Analysis

In each iteration of the Stiefel manifold dual gradient descent, the computational

cost of evaluating V1 is governed by the evaluation of ∇L(V1) and A1(µ, τ), which

is O(N2K + K3). Likewise, the computational cost of evaluating V2 is governed

by the evaluation of ∇L(V2) and A2(µ, τ), which is O(NK2 + (N − K − 1)3).

The total computational complexity of the Stiefel manifold dual gradient descent is

O(log(1/ϵ1)(N
2K + NK2 + K3 + (N −K − 1)3)). In most cases, K < N and the

total complexity is O (log(1/ϵ1)N
3).

In each iteration of the ADMM, the computational cost of evaluating primal variable

Λ1 is governed by the matrix multiplication and eigenvalue decomposition with

O(K3). Likewise, the complexity of evaluating the primal variable Λ2 is O
(
(N −

K − 1)3
)
. The cost of evaluating the primal variable C is dominated by matrix

multiplication with a complexity of O
(
N2K + N2(N −K − 1)

)
. The derivation of

the dual variable Z incurs the complexity ofO
(
N2K+N2(N−K−1)

)
. Since K < N ,

the complexity of the ADMM is O(N3) per iteration. The total computational cost

of the ADMM is O
(

log(1/ϵ2)N
3
)
. As a result, the collective computational cost of

the joint optimization is O
(
N3 log(1/ϵ)

[
log(1/ϵ1) + log(1/ϵ2)

])
, where ϵ denotes

the desired level of convergence.

3.4 Numerical Results

This section conducts the experiments to gauge Algorithm 1. The experiments

are carried out on a laptop with an i7-8650U CPU and 16G RAM. Algorithm 1 is

initialized by setting C(0) and Z(0) as two symmetric unit matrices and the Lagrange

multiplier ρ to 1. We stop the algorithm after 104 iterations or when the difference

of the objective (3.24) is smaller than 10−5 between two consecutive iterations.

Apart from Algorithm 1, we assess the following advanced solutions in the literature:

Dong’s algorithm[18], Kalofolias’ algorithm [19], Sardellitti’s TV algorithm [35],

Sardellitti’s ESA algorithm [35], and Humbert’s algorithm [94].

With reference to [35], we consider the performance metrics, including F-measure,
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Recall, Precision scores, and the percentage of recovery errors. The ground-truth

graph set is denoted by Eg, while the set of recovered graphs is represented as

Er. Precision measures the proportion of edges correctly recovered in the graphs

compared to the total number of edges in the recovered graphs, i.e., Precision =

Eg∩Er/Er. Recall measures the proportion of edges correctly recovered in the ground-

truth graphs compared to the total number of edges in the ground-truth graphs, i.e.,

Recall = Eg ∩ Er/Eg.

F-measure is calculated as the harmonic mean of Recall and Precision, providing a

measure of the overall accuracy in recovering the edges:

F-measure = 2
Precision · Recall

Precision + Recall
. (3.41)

The correlation coefficient ρW(W0,W) (or ρW for brevity) between a connected

ground-truth graph and its corresponding recovered graph is defined as [35]

ρW (W0,W) =

∑
ij W0ijWij√∑

ij W
2
0ij

√∑
ij W

2
ij

, (3.42)

where W0 and W are generated from (3.1) and give the weighted adjacent matrices

of the ground-truth and recovered graphs, respectively. The coefficient correlation

measures the correlation between the ground-truth graph and its corresponding

recovered graph. The recovery accuracy can be enhanced with a higher coefficient

value of ρW.

The estimation error, or “Error” for short, is defined as [35]

Error =
∥A−A0∥F
N(N − 1)

, (3.43)

where A and A0 are the binary adjacency matrices of the recovered graphs and the

ground-truth graphs, respectively.

3.4.1 Results on Synthetic Data

We consider three synthetic random graphs generated separately from Random Ge-

ometric model [124], Erdős-Rènyi model [125], and Barábasi-Albert model [126]. We

generate the Random Geometric model with six connections per node. We set the
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connection probability to 0.3 to generate the Erdős-Rènyi graph. For the Barábasi-

Albert model, we generate the graph with two initial nodes and then add more nodes

with two edges for each of the nodes added. We generate over 100 independent ran-

dom graphs for each of the three graph models. The average results obtained from

these graphs are then plotted.
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Figure 3.1: The correlation coefficient with an increasing signal bandwidth K under

the Random Geometric model, where N = 30.

After generating a graph based on the above three models, we can obtain the

ground-truth Laplacian of the graph, denoted by L0. We take the SVD of L0 and
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obtain the ground-truth GFT, denoted by U0. Then, we generate the observed

band-limited graph signals Y = U0S0 + Γ with the frequency-domain signals S0 =

[s0,1, · · · , s0,M ] ∈ RN×M and the additive noises Γ = [γ1, · · · ,γM ] ∈ RN×M by fol-

lowing [119]. Specifically, s0,m ∼ N (0,Λ†
K), where diag(ΛK) = (λ1, · · · , λK , 0, · · · , 0).

The precision matrix of s0,m is defined to collect the eigenvalues with the largest

(N − K) values set to zero, as in [119]. γm ∼ N (0, σ2IN) is the zero-mean mul-

tivariate Gaussian noise and σ2 = 0.1 by default. The key difference between the

band-limited signals and smooth signals is the degenerate values in some dimensions

of the multivariate Gaussian signal S. The smooth signals can be considered as a

specific scenario of the band-limited signals with K = N . In this sense, our proposed

algorithm designed for band-limited signals can be applied to smooth signals.

Tables 3.1 and 3.2 provide the comparison studies of Algorithm 1 and the bench-

marks under the considered synthetic graph models, where each of the random

graphs consists of N = 30 nodes and observes M = 300 time series. We take K = 3

in TABLE 3.1 and K = 15 in TABLE 3.2; in other words, the algorithms assume

the number of significant components underlying the observed signals Y is 3 or 15.

The regularization parameter α is optimized by trying and testing for each of the

considered algorithms.

The tables show that Algorithm 1 is, in general, the best among all the considered

techniques, and achieves high scores in both F-measure and correlation coefficient

ρW under all random graph models. In particular, TABLE 3.1 shows that Algorithm

1 yields at least 20% improvement in F-measure under the Erdős-Rènyi model, as

compared to Sardellitti’s TV and ESA algorithms. By comparing Tables 3.1 and

3.2, we see that Algorithm 1 increasingly outperforms the benchmark techniques,

as K grows from 3 to 15. In this sense, the algorithm is responsive to the signal

bandwidth K, and increasingly improves with K.

Fig. 3.1 evaluates the average correlation coefficients of the considered algorithms

against the signal bandwidth K under the Random Geometric model, where N = 30,

M = 100 in Fig. 3.1(a) and M = 300 in Fig. 3.1(b). Our algorithm is shown to

achieve the largest correlation coefficient among all algorithms over the wide spec-

trum of K. We see in Fig. 3.1(a) that the correlation coefficient first increases with
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K, reaches its peak at K = 15, and then decreases. This is because, with a wider

signal bandwidth K, more use knowledge can be obtained from the observations.

However, when K > 15, the useful information extracted from the observed signals

decreases. We see that the correlation coefficient first increases with K and then

stabilizes after K = 15, when the number of observations is 300. This is because

the observed signals are sparse.

Fig. 3.2 shows the weighted adjacent matrix of the graphs learned by Algorithm 1

under different values of the coefficient β, where the Random Geometric model and

Erdős-Rènyi model are considered with K = 15, N = 30, and M = 300. We see

that the settings of β = 0.5 and β = 1 allow Algorithm 1 to achieve better results

than the setting of larger β values. No obvious difference can be observed between

the learned graphs under the settings of β = 0.5 and β = 1. For this reason, we set

β = 0.5 in the rest of this chapter.

3.4.2 Attention-Deficit Hyperactivity Disorder (ADHD) Data

We apply Algorithm 1 to analyze brain functional connectivity networks and demon-

strate the effectiveness of the algorithm to existing techniques with respect to relia-

bility and efficiency. The considered ADHD dataset contains 42 right-handed, boy

subjects aged between 11 and 16 years old1. To analyze the connectivity of the brain

functional networks, we divide a brain into 90 anatomical ROIs using an anatomical

automatic labeling template [127], where each node accounts for an ROI with 232

signals from the ADHD dataset. The observed brain signals yield Y ∈ R90×232.

By running Algorithm 1, we can find that the correlation coefficient ρW takes its

peak at K = 62. For this reason, we take K = 62 when executing Algorithm 1

to construct the brain network, i.e., the weighted adjacent coefficients. The brain

network is displayed by the BrainNet Viewer toolbox [128]. We consider that the

ROIs belong to eight anatomical regions, i.e., frontal lobe (dark blue), orbital surface

(blue-green), temporal lobe (green), parietal lobe (blue), occipital lobe (orange),

1The dataset is obtained from the ADHD-200 global competition database

(https://www.nitrc.org/projects/neurobureau/). The dataset contains 17 ADHD subjects

and 25 TD subjects that are analyzed and compared in this section.
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(b) β = 0.5
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(c) β = 1
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(e) β = 4
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(h) β = 1
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(i) β = 2
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Figure 3.2: The learned graphs with different coefficient β under the Random Geo-

metric model and Erdős-Rènyi model, where K = 15, and N = 30.

limbic lobe (yellow), insula (light green), and sub cortical gray nuclei (red); see

Fig. 3.3.
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(a) Sagittal View (b) Axial View (c) Coronal View

Figure 3.3: Colored nodes distribution from sagittal, axial, and coronal views. Dif-

ferent colors of nodes represent different blocks of ROIs.

Fig. 3.4 exhibits the differences in the brain functional networks between ADHD

subject 17 (ADHD-17) and typical developing (TD) subject 23 (TD-23), which are

visible from the sagittal, axial, and coronal views of the brain. We see that both

ADHD and TD subjects exhibit an efficient small-world brain network structures

and have highly similar hub distributions. Nevertheless, ADHD-17 exhibits consid-

erable asymmetry in the hemispheric brain anatomical network topology, as shown

in the sagittal, axial, and coronal views in Figs. 3.4. We also see that the ADHD-

17 exhibits decreased structural connectivity and connection strength within the

same anatomical regions, especially in the frontal lobe (dark blue nodes), temporal

lobe (green nodes), parietal lobe (blue nodes), and occipital lobe (orange nodes),

compared to TD-23. Moreover, ADHD-17 has fewer connections between different

anatomical regions than TD-23, which is consistent with existing neuroanatomical

studies [129].

To better display the difference in the connectivity of the brain networks between

the ADHD and TD subjects, we transform the brain functional network into the

weighted adjacent matrices of ADHD-17 and TD-23 in Fig. 3.5. We find that ADHD-

17 exhibits a considerably varying degree of decreased connectivity, compared to

TD-23. All changes in ADHD-17 confirm that the brain network topologies of

ADHD-17 are disrupted in their distributed neural networks, which is likely related

to inattention and hyperactivity. The observed decreased structural connectivity

between the local functional networks, and the increased asymmetry in ADHD-17

are consistent with existing neuroanatomical studies, e.g., [129]–[133].
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(a) ADHD-17

(b) TD-23

Figure 3.4: Connected brain networks from sagittal, axial, and coronal views de-

picted by BrainNet Viewer. The colored nodes represent different blocks of ROIs,

and the width of the red line is the intensity of the connectivity between two ROIs.

(a) The learned graphs are based on ADHD-17 with Algorithm 1. (b) The learned

graphs are based on TD-23.
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(b) TD-23

Figure 3.5: The weighted adjacent matrix of the learned graph based on the ADHD-

17 and TD-23.
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To further gauge the accuracy of our algorithm, we reconstruct the complete signals

of a brain functional network, i.e., Y, based on only part of the signals in the test

dataset and the graph Laplacian inferred from the training dataset. The time-series

brain signals are taken from a randomly selected ADHD subject, i.e., ADHD-17, in

the dataset. At the training stage, we learn the graph Laplacian of ADHD-17 using

Algorithm 1. At the testing stage, the amount of the observable brain signals, e.g.,

the amount of brain signal waveforms, is set to be the signal bandwidth, i.e., K.

We rely on the signals observed at 62 of the total 90 brain regions, and the learned

graph Laplacian, to recover the remaining brain signals of 28 ROIs.

As shown in Fig. 3.6, the brain signals at the red nodes are the observed signals, and

the signals at the dark blue nodes are unknown and to be reconstructed. We use a

greedy algorithm to reconstruct the signals[10]. Figs. 3.7 – 3.9 illustrate the ground-

truth brain signals of ADHD-7 at node 9, node 13, and node 23 using the blue line,

and the correspondingly reconstructed version using the orange line. Node 9, node

13, and node 23 are not among the 62 observable nodes. We also reconstruct the

brain signals at node 9 of ADHD-24 and ADHD-33, as shown in Figs. 3.10 and 3.11,

respectively. We see that the reconstructed signals are consistent with the ground-

truth signals, indicating the effectiveness of Algorithm 1. For comparison, we also

reconstruct the ADHD signals by running current advanced graph learning methods,

i.e., Sar-ESA [35], Sar-TV [35], and Humbert [94], under the same experimental

settings as in Figs. 3.7(b)–3.7(d). Their reconstructed signals are much less accurate

than Algorithm 1.

We adopt the coefficient of determination, denoted by R2, to quantify the reconstruc-

tion efficiency of the considered algorithms, i.e., R2 = 1 − ΣN
i=1Σ

M
j=1(Pij−Yij)

2

ΣN
i=1Σ

M
j=1(Pij−Ȳi)2

, where

Pij and Yij are the reconstructed and ground-truth brain signals, respectively; and

Ȳi is the mean ground-truth brain signals at the i-th node. Fig. 3.12 shows that

Algorithm 1 is superior to the state-of-the-art algorithms in the signal reconstruc-

tion accuracy, under all diverse values of K. As shown in Fig. 3.12, apart from the

scenario with K = 62 observable nodes, we also consider the scenarios with fewer

numbers of observable nodes, i.e., K = 22, 32, 42, and 52.
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(a) Sagittal View (b) Axial View (c) Coronal View

Figure 3.6: Nodes distribution from sagittal, axial, and coronal views. The brain

signals at the red nodes are the observed signals, and the signals at the dark blue

nodes are unknown and to be reconstructed.

3.5 Conclusion

This chapter developed a new AO-based graph learning technique to learn the graph

topology of band-limited, fMRI-based brain signals. To do this, we first revealed that

the frequency-domain representation of the band-limited signals is a function of the

graph Laplacian, thereby transforming the learning problem to only learn the graph

Laplacian by estimating its eigenvectors and eigenvalues in an alternating manner.

By unveiling that the feasible solution of the eigenvectors is on a Stiefel manifold,

we proposed to solve the eigenvectors using Stiefel manifold dual gradient descent

and the eigenvalues using the ADMM. Experiments corroborated that our technique

can improve substantially the learning accuracy of fMRI-based brain signals than

the state of the art, e.g., by over 30%.
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Figure 3.7: The reconstructed signals of the anatomical ROI 9 of ADHD-17 using

the different methods.
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Figure 3.8: The reconstructed signals of the anatomical ROI 13 of ADHD-17 using

the different methods.
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Figure 3.9: The reconstructed signals of the anatomical ROI 23 of ADHD-17 using

the different methods.
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Figure 3.10: The reconstructed signals of the anatomical ROI 9 of ADHD-23 using

the different methods.
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Figure 3.11: The reconstructed signals of the anatomical ROI 9 of ADHD-33 using

the different methods.
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Figure 3.12: Mean efficiency of reconstruction between different methods upon the
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Chapter 4

Graph Learning from

Band-Limited Data by Graph

Fourier Transform Analysis

4.1 Introduction

Graph learning is the technique used to uncover the latent graph topologies of

data [41]. Existing graph learning methods cannot accurately and efficiently in-

fer the graph topology (i.e., graph Laplacian [47]) of band-limited graph signals

due to difficulties in joint estimation of both the frequency-domain representation

and the GFT basis converting captured data to the frequency domain. In earlier

studies, underlying graph topologies were assumed to be known [13], [14]. Graph

learning was used to reconstruct the graphs underlying datasets. An overview of

graph learning methods from statistical approaches to GSP-based network inference

was provided in [39]. Classical graph topology inference methods, such as graph

lasso [16] and covariance selection [15], estimated the covariance matrices of graph

signals. More recent graph learning techniques enforced smoothness to graph signals

prior to topology inference [18]–[22], [42], [43]. In other words, it has been typically

assumed that the frequency-domain representations of graph signals have unlim-

ited bandwidths, e.g., for mathematical tractability. The more general band-limited
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graph signals were studied in [35], where a two-step strategy approximately esti-

mated an orthonormal sparsifying transform with AO and then recovered the graph

Laplacian matrix with convex optimization. However, the fidelity of the topologies

inferred from the band-limited graph signals was penalized due to the use of the

AO-based approximation. In [134], a different problem was considered to learn the

subspace clustering of graph signals by learning a similarity matrix, as opposed to

the graph Laplacian. The AO was used to estimate the similarity matrix and a

cluster/label matrix in an alternating manner.

This chapter presents a new graph learning technique that learns the graph topology

of observed band-limited graph signals. The graph Laplacian can be used to analyze

network properties or reconstruct missing data resulting from faulty measurements.

• We reveal analytically the intrinsic relation between the unknown frequency-

domain representation of general band-limited graph signals and the GFT

basis that can transform the signals to the frequency domain;

• A new analytical expression is derived to determine analytically the GFT

basis of observed band-limited signals (as opposed to being numerically and

approximately solved in [35]);

• Given the GFT basis and the statistical knowledge of the graph Laplacian, the

estimation of the eigenvalues of the graph Laplacian is convex and efficiently

derived using ADMM.

Numerical experiments show that, under three popular graph models, our new tech-

nique can efficiently infer the topology of graph signals and improve the estima-

tion precision. Experiments are executed on an actual temperature dataset and

an ADHD dataset. The new technique provides reasonable inference on real-world

datasets and superb capability of recovering corrupted data in the datasets in com-

parison to the current state of the art.
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4.2 System Model

The considered network comprises N nodes, at which a vector of signals, denoted by

ym ∈ RN×1, are observed at the m-th sample (m = 1, · · · ,M). M is the observed

sample size. Let Y = [y1, . . . ,yM ] ∈ RN×M collect M observations of the band-

limited signals of the network. As considered in [13] and [35], we aim to infer the

graph topology from Y. Specifically, we wish to characterize the network G(V , E)

captured by a weighted and undirected adjacency matrix W ∈ RN×N with N ver-

tices. V = {1, · · · ,N} is the set of N vertices, and E ⊆ V ×V is the set of edges.The

weighted adjacency matrix W collects all the edges with Wij = Wji ̸= 0 ∀(i, j) ∈ E .

Let D ≜ diag (W1) define the degree matrix containing the node degrees at its

diagonal. Also, suppose that each node is connected to at least one other node,

ensuring no isolated nodes are in the graph. In other words, none of the diagonal

elements is zero in D. Then, according to [84], the combinatorial graph Laplacian

of G is defined as

L = D−W. (4.1)

The graph Laplacian is a semi-definite matrix with positive elements along its main

diagonal and non-positive elements anywhere else [84]. By eigenvalue decomposition,

L is rewritten as:

L = UΛUT , (4.2)

where Λ = diag (λ1, · · · , λN) is the diagonal matrix containing the Laplacian eigen-

values. U = [u1, · · · ,uN ] is an orthonormal matrix collecting all eigenvectors.

To infer the topological knowledge of G, the Laplacian matrix L needs to be esti-

mated. As done in [13], [35], and [119], we enforce Y to be band-limited over graph

G, e.g., the observation signals are sparse in the canonical domain [13], [35], [119].

GFT [10] has been utilized to decompose Y into orthonormal components U in the

Laplacian L [84]. For any m ∈ {1, · · · ,M}, the GFT of the observed signal ym,

denoted by sm, projects ym onto the subspace spanned by U, i.e., sm = UTym.

With the band-limited property of ym, sm is a sparse vector and captures the key

characteristics of ym in the frequency domain. The band-limited signal is written
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as ym = Usm. Let S = [s1, · · · , sM ] ∈ RN×M collect all sm,m = 1, · · · ,M . We have

Y = US. (4.3)

The frequency-domain representation S depends on both Y and the graph topology,

or more explicitly, the GFT basis, U. It is not straightforward to determine S, given

Y. S and U need to be jointly estimated, as done in the existing literature [35]. With

the sparsity of sm (m ∈ {1, · · · ,M}), we set S ∈ BK as a K-block sparse matrix with

multiple all-zero row-vectors. K specifies the bandwidth of the frequency-domain

representation of the observed band-limited graph signal Y. BK collects all K-block

sparse matrices [10]:

BK ≜ {S ∈ RN×M ,S(i, :) = 0, i /∈ K ⊆ V , K = |K|}, (4.4)

where S(i, :) is the i-th row of S, and K ∈ V .

4.3 Problem Statement

We estimate the Laplacian L and, in turn, the topological knowledge of graph G

substantiating the observation Y. Given the band-limitedness of Y, we cast the

problem as

min
L,U∈RN×N ,S∈RN×M

∥Y −US∥2F + f(L,Y) (4.5a)

s.t. UUT = IN , (4.5b)

S ∈ BK , (4.5c)

L = UΛUT , L ∈ L, (4.5d)

u1 =
1√
N
1, (4.5e)

where || · ||F stands for the Frobenius norm. The objective (4.5a) consists of two

terms. The first term of (4.5a) penalizes any discrepancy between US and Y. The

second term characterizes a regularized function [18], [35]. The details of f(L,Y)

are provided in Section 4.5. Constraint (4.5b) ensures U to be a unitary matrix

complying with (4.2). Constraint (4.5c) imposes the K-block sparsity of S in (4.4).

Constraint (4.5d) guarantees that L refers to a valid Laplacian matrix that satisfies

the necessary conditions and properties, and L collects all valid candidates to L [84],

i.e.,

L = {L ⪰ 0|L1 = 0, Lij ≤ 0, i ̸= j}, (4.6)
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where 0 stands for an all-zero vector. Since L1 = 0 in (4.6), 0 is an eigenvalue of

L, leading to u1 = 1√
N
1 in (4.5e). u1 is the first column of U.

Remark 1 Problem (4.5) is non-convex due to the orthonormal property in (4.5b)

and the sparse property in (4.5c). We decouple (4.5) into the two phases. The first

phase is that, given the observation Y, we estimate U, as described in Section 4.4.

Based on the estimated U, the second phase estimates the eigenvalues of L, Λ, as

delineated in Section 4.5.

4.4 Closed-form Expression for GFT Basis

Given the observed signal Y, we solve problem (4.5) by first estimating the GFT

basis U to minimize ∥Y −US∥2F subject to UUT = IN , S ∈ BK , and u1 = 1√
N
1

(and then estimating the eigenvalues Λ to minimize the regularizer f(Y,L) given

the obtained U, as will be discussed in Section 4.5). The reason for beginning with

the GFT basis, U, is the paramount importance of U in graph learning and of the

capability to recover U from Y in the absence of the a-priori knowledge about the

statistical distribution of L.

According to the definition Y = US and the orthonormality of the unitary matrix

U in (4.5b), we first solve [35, eq. (8)]

min
U∈RN×N ,S∈RN×M

∥Y −US∥2F =
∥∥UTY − S

∥∥2
F
, s.t. (4.5b), (4.5c), (4.5e). (4.7)

Despite its convex objective, problem (4.7) is non-convex due to the non-convexity

of (4.5b) and (4.5c). We reorganize (4.7) as

min
U∈RN×N ,

min
S∈BK

N∑
i=1

∥∥uT
i Y − S(i, :)

∥∥2
2
, s.t. (4.5b), (4.5e), (4.8)

which can be rewritten as

min
U∈RN×N ,K

(
min
S∈BK

∑
i∈K

∥∥uT
i Y − S(i, :)

∥∥2
2

+
∑
i/∈K

∥∥uT
i Y
∥∥2
2

)
, s.t. (4.5b), (4.5e). (4.9)

By assessing the objective of (4.9), we find that the optimal index set, K, collects

the indices to the K largest entries of {
∥∥uT

i Y
∥∥}Ni , and

S(i, :) =

uT
i Y, if i ∈ K;

0, if i /∈ K.
(4.10)
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Only the (N − K) smallest entries of {||uT
i Y||}Ni remain in the objective of (4.9)

after S is optimized to suppress
∑

i∈K

∥∥uT
i Y − S(i, :)

∥∥2
2

in (4.10). The objective is

minimized with respect to S. We proceed to find the optimal U, denoted by U∗, to

minimize the objective in (4.7).

By plugging (4.10) into the objective of (4.9), (4.7) becomes

U∗ = arg
U,K

min
∑
i/∈K

∥∥uT
i Y
∥∥2
2

= arg
U,K

min
∥∥UT

KcY
∥∥2
F

= arg
U,K

max
∥∥UT

KY
∥∥2
F
. (4.11)

Here, Kc is the complementary set of K, i.e., Kc = V \ K. UK and UKc are the

matrices collating the column-vectors of U indexed by K and Kc, respectively.

Despite the non-convexity of (4.11) in K, we notice that (4.11) is to find the K-

dimensional space on which Y has the largest orthogonal projection:

arg max
U,K

∥∥UT
KY
∥∥2
F

=arg max
U,K

tr
(
YTUKU

T
KY
)
=arg max

U,K
tr
(
PUKYYT

)
, (4.12)

where PUK = UKU
T
K is the orthogonal projection on the subspace spanned by the

column-vectors of UK.

Lemma 1 The use of the orthogonal projection, PUK = UKU
T
K, preserves the or-

thogonality constraint (4.5b) in (4.12).

Proof 1 See Appendix B.1.

By applying (4.12), problem (4.7) can be rewritten as

U∗ = arg maxU,K tr
(
PUKYYT

)
, s.t. (4.5e). (4.13)

Theorem 1 Considering both the cases of u1 /∈ UK and u1 ∈ UK, the closed-form

optimal solution U∗ = [U∗
K,U

∗
Kc ] to problem (4.7) is given by

U∗ = eigen
[(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T]
, (4.14)

where eigen[X] provides the eigenvectors of X.

Proof 2 The solution to (4.13) is derived in the two cases:

1. In the case of u1 /∈ UK: Let PUK\{1} represent the orthogonal projection of the

subspace of UK, where PUK\{1} = PUK

(
I− u1u

T
1

) (
I− u1u

T
1

)T
. The objective

of (4.13) is rewritten as

maxU,K tr(PUK

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T
). (4.15)
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Lemma 2 If u1 /∈ UK, the solution U∗
K comprises the eigenvectors corre-

sponding to the K largest eigenvalues of (I− u1u
T
1 )YYT (I− u1u

T
1 )T .

Proof 3 See Appendix B.2.

2. In the case of u1 ∈ UK: By writing UK =
[
u1,UK\{1}

]
, the objective of (4.13)

can be rewritten as

argmax
U,K

tr
(
PUKYYT

)
= argmaxU,Ktr(PUK\{1}YYT+u1u

T
1 YYT) (4.16a)

= argmaxU,Ktr(PUK

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T
), (4.16b)

where u1u
T
1YYT is a constant in (4.16a) and suppressed.Apparently, (4.16b) is

identical to (4.15). The solution U∗
K comprises the eigenvectors corresponding

to the (K − 1) largest eigenvalues of
(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T
, and u1,

which can be proved in the same way as Lemma 2.

Remark 2 (4.14) is derived analytically by solving exactly the challenging non-

convex problem (4.7). The computational cost of (4.14) is only O(MN2). The

closed-form solution is achieved by revealing unprecedentedly the relation between

the GFT coefficient S and the GFT basis U, as done in (4.10); then reformulating

losslessly the joint estimation of S and U in (4.7) to the estimation of U only in

(4.11); and finally solving U∗ with non-trivial analysis, as shown in the proof of

Theorem 1. In contrast, the existing techniques, e.g., the one developed in [35],

solved problem (4.7) numerically and approximately by using the AO. Given the non-

convexity of problem (4.7), the AO algorithm in [35] could only solve S and U in an

alternating manner. Specifically, at the k-th iteration of the algorithm, given U(k−1),

S(k) = arg minS∈RN×M∥(U(k−1))TY − S∥2F , s.t. S ∈ BK, and then given S(k), U(k) is

obtained by solving problem U(k) = arg minS∈RN×M∥UTY − S(k)∥2F , s.t. UUT = IN .

Not only does this provide a suboptimal solution to (4.7), but incurs a high compu-

tational cost of O(MN2) per iteration.

Remark 3 While the analysis of U and S depends on a given K, the result of the

analysis, i.e., U∗ = eigen[(I − u1u
T
1 )YYT (I − u1u

T
1 )T ] in (4.14), turns out to be

applicable to any K, 1 ≤ K ≤ N −1. To this end, we can set K = N −1 initially to

evaluate all frequency-domain components of the observed signal Y and analytically

derive U∗ and S = (U∗)TY. Then, we assess the norm of each row of S, i.e.,
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||S(i, :)||, and decide K either to be the number of rows with their norms (or the

total of their norms) exceeding a preconfigured threshold, or by sorting the norms in

descending order and identifying K with an elbow method.

4.5 Laplacian Eigenvalues Estimation

With the a-priori knowledge of statistics or distribution of L, the regularizer f(L,Y)

can capture the desired characteristics of the topology, e.g., the sparsity of L. Given

the GFT basis U∗ ∈ RN×N in (4.14) and the definition L = UΛUT , to estimate

the eigenvalues of L is in essence to estimate the N eigenvalues, Λ, as done in this

section. Typically, L follows an exponential distribution [84]. The MAP estimate of

L is written as [84]

min
L

tr(LYYT )−M log |L|+ α ∥vec(L)∥1 , s.t. L = UΛUT , L ∈ L. (4.17)

In this sense, f(L,Y) = tr(LYYT ) − log |L| + α ∥vec(L)∥1 provides a reasonable

regularizer for (4.5a). || · ||1 stands for ℓ1-norm, and | · | denotes pseudo-determinant.

α is a tunable regularization parameter. With the non-positivity of L and L1 = 0,

∥vec(L)∥1 = 2 tr(L). By using the linearity of trace, f(L,Y) is rewritten as

f(L,Y) = tr
(
LYYT + 2αL

)
−M log |L| = tr (LT)−M log |L|, (4.18)

where T = YYT + 2αI. We note that f(L,Y) = tr (LT) −M log |L| is still in-

tractable due to the singular pseudo-determinant of |L|. To circumvent this impasse,

we exploit the equivalence of tr (LT)−M log |L| and tr (LT)−M log det(L + J) with

J = u1u
T
1 = 1

N
11T [84, Prop. 1], and rewrite (4.17) as

min
L

tr (LT)−M log det(L + J)

s.t. L = UΛUT , L ⪰ 0,L1 = 0, I⊙ L ≥ 0, A⊙ L ≤ 0,

(4.19)

where the constraint is from (4.6) and A = 11T − I.

With the optimal U∗ obtained in (4.14), we rewrite L in the following two cases:

1. In the case of u1 /∈ U∗
K, the eigenvectors of L, i.e., U∗, is arranged as

[u1,U
∗
K,U

∗
Kc\{1}]. By taking eigenvalue decomposition, L is written as

L=
[
u1,U

∗
K,U

∗
Kc\{1}

]
Φ1

[
u1,U

∗
K,U

∗
Kc\{1}

]T
(4.20a)

=
[
U∗

K,U
∗
Kc\{1}

]
Φ2

[
U∗

K,U
∗
Kc\{1}

]T
, (4.20b)
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where Φ1 = blkdiag
(
0,ΛK,ΛKc\{1}

)
is a block-diagonal matrix with ΛK ⪰ 0

and ΛK ∈ RK×K and collects all the eigenvalues of L associated with the

eigenvectors [u1,U
∗
K,U

∗
Kc\{1}]; and Φ2 = blkdiag

(
ΛK,ΛKc\{1}

)
with ΛKc\{1} ⪰

0 and ΛKc\{1} ∈ R(N−K−1)×(N−K−1).

2. In the case of u1 ∈ U∗
K, U

∗ is arranged as [u1,U
∗
K\{1},U

∗
Kc ] and L is

L=
[
u1,U

∗
K\{1},U

∗
Kc

]
Φ1

[
u1,U

∗
K\{1},U

∗
Kc

]T
(4.21a)

=
[
U∗

K\{1},U
∗
Kc

]
Φ2

[
U∗

K\{1},U
∗
Kc

]T
, (4.21b)

where Φ1 = blkdiag
(
0,ΛK\{1},ΛKc

)
with ΛK\{1} ⪰ 0 and ΛK\{1} ∈ R(K−1)×(K−1)

collects all the eigenvalues of L associated with the eigenvectors [u1,U
∗
Kc\{1},U

∗
K];

and Φ2 = blkdiag
(
ΛK\{1},ΛKc

)
with ΛKc ⪰ 0 and ΛKc ∈ R(N−K)×(N−K).

To unify the presentation of the two cases, we define 1) If u1 /∈ U∗
K, then V1 = U∗

K,

V2 = U∗
Kc\{1}, Λ1 = ΛK, and Λ2 = UKc\{1}; 2) If u1 ∈ U∗

K, then V1 = U∗
Kc\{1},

V2 = U∗
K, Λ1 = ΛKc\{1}, and Λ2 = ΛK. As a result, the Laplacian matrix L =

UΛUT in (4.19) can be written as

L = [V1,V2]Φ2 [V1,V2]
T , (4.22)

where Φ2 = blkdiag(Λ1,Λ2). Since [V1,V2]
Tu1 = 0, L1 = 0 in (4.19) is preserved

in (4.22). By plugging (4.22), tr(LT) can be rewritten as

tr(LT) = tr(V1Λ1V
T
1 T) + tr(V2Λ2V

T
2 T) = tr(Λ1T̃1) + tr(Λ2T̃2), (4.23)

where T̃1 = VT
1 TV1 and T̃2 = VT

2 TV2. By plugging (4.22) and J = 1
N
11T ,

log det (L + J) can be rewritten as

log det
(
L + J

)
= log det

[ 1√
N
,V1,V2

]1

Φ2

[ 1√
N
,V1,V2

]T
= log det (blkdiag (1,Λ1,Λ2))

= log det (Λ1) + log det (Λ2) .

(4.24)

Constraint L1 = 0 in (4.19) is preserved in (4.22), and so is it in (4.23) and (4.24).

The equality constraint L = UΛUT in problem (4.19) is retained throughout the

analysis, i.e., in (4.22) and then (4.23) and (4.24). By substituting (4.23) and (4.24),
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problem (4.19) becomes

min
Λ1,Λ2

[
tr(Λ1T̃1) + tr(Λ2T̃2)−M log det (Λ1)−M log det (Λ2)

]
(4.25a)

s.t. Λ1 ⪰ 0,Λ2 ⪰ 0, (4.25b)

I⊙ [V1Λ1V
T
1 + V2Λ2V

T
2 ] ≥ 0, (4.25c)

A⊙ [V1Λ1V
T
1 + V2Λ2V

T
2 ] ≤ 0. (4.25d)

Here, Λ1 and Λ2 may not have full rank (since U∗
K and U∗

Kc are organized against

(I − u1u
T
1 )YYT (I − u1u

T
1 )T in (4.14), not against the Laplacian matrix L). Λ1

and Λ2 can have zero diagonal elements, if the graph G is not a connected graph.

Problem (4.25) is not continually differentiable, and cannot be solved using CVX.

By defining C = L, (4.25) is rewritten as

min
Λ1,Λ2

[
tr(Λ1T̃1) + tr(Λ2T̃2)−M log det (Λ1)−M log det (Λ2)

]
(4.26a)

s.t. Λ1 ⪰ 0,Λ2 ⪰ 0, (4.26b)

V1Λ1V
T
1 + V2Λ2V

T
2 −C = 0, (4.26c)

I⊙C ≥ 0, A⊙C ≤ 0, (4.26d)

which can be solved using the ADMM with details provided in Appendix B.3.

Convergence Analysis. The ADMM solves constrained optimization problems [135]

with the following structure: minx,yf(x)+g(y), s.t. Ax−By = E, where x ∈ RN×1

and y ∈ RN×1 denotes the variables being optimized; A ∈ RN×N , B ∈ RN×N and

E ∈ RN×N are known; f(·) and g(·) represent convex objectives. Therefore, the

convergence of the ADMM is guaranteed under the following two conditions: 1)

Both f(·) and g(·) are closed, proper and convex sets; hence, the subproblems aris-

ing from the updates of x and y are solvable; and 2) The Lagrangian has a saddle

point. Problem (4.26) satisfies the two conditions. First, tr(Λ1T̃1)−M log det (Λ1)

and tr(Λ2T̃2)−M log det (Λ2) in (4.26) correspond to f(·) and g(·), respectively. Λ1

and Λ2 are strictly convex with proper, closed, and convex sets. The first condition

is satisfied. The primary variables Λ1 and Λ2 are solvable. Second, the Lagrangian

of problem (4.25), i.e., L in (B.5), has a saddle point, since the Hessian of the La-

grangian is indefinite at the stationary point. The second condition is satisfied. As

a result, the use of ADMM to solve problem (4.26) is convergent.
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Complexity Analysis. For every iteration of ADMM, the complexity of evaluat-

ing the primal variable Λ1 is dominated by matrix multiplications and eigenvalue

decomposition with a cost of O(K3). Likewise, the cost of evaluating the primal

variable Λ2 is O((N−K−1)3). The complexity of evaluating the primal variable C

is dominated by matrix multiplications with a cost of O(N2K+N2(N−K−1)). The

update of the dual variable Z incurs the complexity of O(N2K + N2(N −K − 1)).

Due to K < N , the overall cost is O(N3) per iteration.

Remark 4 The proposed approach can be extended to the case with observation

noises. In this case, the observation signal, denoted by Ŷ, is Ŷ = Y + n, where

n ∼ N (0, σ2I) is the additive white Gaussian noise, and σ2 is the variance of the

additive white Gaussian noise. When the underlying signals Y are ergodic and M

is sufficiently large, the expectation of ŶŶT over the additive Gaussian observation

noises is given by

E(ŶŶT ) = YYT + Mσ2I, (4.27)

which indicates that E(ŶŶT ) and YYT have the same eigenvectors.

Without observation noises, the GFT basis U∗ in (4.14) only depends on the eigen-

vectors of YYT . With the observation noises, the GFT basis is

U∗ = eigen
[(
I− u1u

T
1

)
E(ŶŶT )

(
I− u1u

T
1

)T]
. (4.28)

Since E( 1
M
ŶŶT − σ2I) = 1

M
YYT (i.e., 1

M
ŶŶT − σ2I is an asymptotic unbiased

estimate of 1
M
YYT as M →∞) based on (4.27) and ŶŶT −Mσ2I and ŶŶT have

the same eigenvectors, U∗ can be approximated by

U∗ ≈ eigen
[(
I− u1u

T
1

)
ŶŶT

(
I− u1u

T
1

)T]
. (4.29)

Regarding the eigenvalues of L, i.e., Λ, the estimation with noise-free observations

is formulated in (4.17). With noisy observation Ŷ, an asymptotic unbiased es-

timate of the covariance matrix of Y, i.e., lim
M→∞

1
M
YYT , is 1

M
ŶŶT − σ2I, since

lim
M→∞

E
(

1
M
ŶŶT − σ2I

)
= lim

M→∞
E
(

1
M
YYT

)
[136]. We can replace YYT in (17)

with ŶŶT −Mσ2I. In turn, T in (4.19) is updated to T̂ = ŶŶT +(2α−Mσ2)I un-

der noisy observations and the rest of the estimation steps developed in this section

apply.
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It is worth mentioning that Remark 4 is based on the assumption that the ob-

servation noise follows a white Gaussian distribution. If the noise is colored with

an unknown and non-diagonal covariance matrix, according to matrix perturbation

theory [137], small perturbations on (the elements of) a matrix may result in con-

siderable changes in its eigenvalues and eigenvectors. In this sense, the proposed

algorithm could be sensitive to non-Gaussian observation noises.

4.6 Simulations and Experimental Results

Extensive experiments are performed to evaluate the new graph learning technique.

The ADMM algorithm is initialized by setting C(0) and Z(0) to two symmetric unit

matrices, and the step size ρ to 1. We stop the algorithm upon reaching a predefined

maximum number of iterations, i.e., 104, or the difference of the objective (4.26) is

smaller than ϵ = 10−5 between two consecutive iterations. For comparison purposes,

we consider the state of the art: Dong’s algorithm [18], Saboksayr’s algorithm [43],

Sardellitti’s Total Variation (TV) and Estimated-Signal-Aid (ESA) algorithms [35],

and Egilmez’s algorithm [84], [85].

4.6.1 Results on Synthetic Data

We consider three different random graphs generated separately from Random Geo-

metric model [124], Erdős-Rènyi model [125], and Barábasi-Alber model [126]. Re-

garding the Random Geometric model, we generate the graph with six connections

per node. For the Erdős-Rènyi model, we generate a graph by randomly connecting

labeled nodes. Each edge is included in the graph independently with a probability

of 0.3, regardless of any other edge. For the Barábasi-Albert model, we generate the

graph with two initial nodes and then add more nodes with two edges for each node

addition. For each of the three graph models, we generate over 100 independent

random graphs. We then compute the average results of these graphs and plot them

in this section.

After generating a graph from the graph models, we can obtain the ground-truth

Laplacian of the graph, denoted by L0. We take the singular value decomposition

of L0 and obtain the ground-truth GFT, denoted by U0. Then, we generate the
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observed band-limited graph signal Y = U0S0 with S0 = [s0,1, · · · , s0,M ] ∈ RN×M .

Specifically, s0,m ∼ N (0,Λ†), where diag(Λ) = (λ1, · · · , λK , 0, · · · , 0). The precision

matrix of s0,m is defined to be the eigenvalue matrix of L with the largest (N −

K) values set to 0, as considered in [119]. The key difference between the band-

limited signals and smooth signals is the degenerate values in some dimensions of the

multivariate Gaussian signal S. The smooth signals can be considered as a specific

scenario of the band-limited signals with K = N − 1. Our algorithm designed for

general band-limited signals can be applied to smooth signals.

With reference to [35], the performance metrics are F-measure, Recall, Precision

score, and the percentage of recovery errors. Let Eg and Er denote the sets of

ground-truth and recovered graphs, respectively. Precision measures the proportion

of the identified edges in the recovered graphs among the ground-truth graphs, i.e.,

Precision = Eg ∩ Er/Er. Recall evaluates the proportion of edges from the ground-

truth graphs that are correctly identified among the recovered graphs, i.e., Recall =

Eg ∩ Er/Eg. F-measure combines both Precision and Recall into a single metric

to evaluate the overall accuracy of the recovered edges. Specifically, F-measure =

2·Precision·Recall/(Precision + Recall). The correlation coefficient ρW(W0,W) (or

ρW) between a recovered graph and its ground-truth is defined as ρW (W0,W) =∑
ij W0ijWij√∑

ij W
2
0ij

√∑
ij W

2
ij

[35], where W0 and W are the weighted adjacency matrices of the

ground-truth and recovered graphs, respectively; and W0ij and Wij are the (i, j)-th

elements of W0 and W, respectively. The estimation error, or “Error”, is defined

as Error = ∥A−A0∥F / (N(N − 1)), where A and A0 are the binary adjacency

matrices of the recovered and ground-truth graphs, respectively.

Fig. 4.1(a) illustrates the convergence behaviors of the proposed algorithm under

three different models. Fig. 4.1(b) plots the correlation coefficient of the algorithm,

i.e., ρW, with different values of the regularization parameter α and signal bandwidth

K under the Random Geometric model. We see that ρW reaches its peak at α = 0.9

and K = 15; i.e., the optimal regularization parameter is α = 0.9 when the signal

bandwidth is K = 15. Likewise, we can obtain the optimal α under the Erdős-Rènyi

and Barábasi-Albert models.

Tables 4.1 and 4.2 compare the proposed algorithm and the benchmarks under the
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Table 4.1: Comparison of the considered algorithms, including the new algorithm,

Dong’s [18], Saboksayr’s (Sab.) [43], Sar-TV [35], Sar-ESA [35], and Egilmez’s [84],

[85], where K = 3, N = 30, and M = 300.

Dong Sab. TV ESA Egilmez Ours

RG

Fmeasure 0.5478 0.5499 0.5536 0.5255 0.4770 0.5597

Recall 0.4500 0.4476 0.4627 0.3913 0.3217 0.4213

Precision 0.7000 0.7129 0.6889 0.8000 0.9222 0.8333

ρW 0.6324 0.5357 0.5996 0.5600 0.6115 0.6471

Error 0.0189 0.0185 0.0220 0.0219 0.0261 0.0177

ER

Fmeasure 0.4632 0.4971 0.3784 0.3033 0.2876 0.5283

Recall 0.5000 0.5096 0.2612 0.2200 0.1725 0.3889

Precision 0.4314 0.4852 0.6863 0.6275 0.8627 0.8235

ρW 0.5611 0.5761 0.4623 0.4496 0.5670 0.6215

Error 0.0170 0.0199 0.0174 0.0197 0.0200 0.0189

BA

Fmeasure 0.5056 0.5014 0.3784 0.3474 0.3803 0.4808

Recall 0.3980 0.3999 0.2612 0.2357 0.2368 0.3289

Precision 0.6946 0.6717 0.6863 0.6607 0.9643 0.8929

ρW 0.4495 0.4486 0.4221 0.3054 0.4151 0.5135

Error 0.0142 0.0173 0.0177 0.0192 0.0216 0.0169

considered graph models, where each random graph consists of N = 30 vertices.

M = 300. We take K = 3 in Table 4.1 and K = 15 in Table 4.2. For the proposed

algorithm, different values of the regularized parameter α are tried and tested to

obtain the best one, as done in Fig. 4.1(b). For fair comparisons, α is also individ-

ually tested and optimized for each benchmark. The tables show that the proposed

algorithm consistently outperforms all the other techniques considered, indicating

its superiority in terms of performance. It achieves high scores in both Fmeasure

and correlation coefficient ρW under all random graph models. In particular, Table

4.1 shows that the proposed algorithm yields at least 20% improvement in terms

of Fmeasure under the Erdős-Rènyi model, compared to Sardellitti’s TV and ESA

algorithms. By comparing Tables 4.1 and 4.2, we see that the proposed algorithm

increasingly outperforms the benchmarks, as K grows.
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Table 4.2: Comparison of the considered algorithms, where K = 15, N = 30, and

M = 300.

Dong Sab. TV ESA Egilmez Ours

RG

Fmeasure 0.8517 0.9111 0.7946 0.6642 0.9301 0.9401

Recall 0.7479 0.8427 0.6666 0.4972 0.8693 0.8912

Precision 0.9889 0.9914 0.9889 0.9999 1.0000 1.0000

ρW 0.9156 0.9342 0.9299 0.9442 0.9641 0.9895

Error 0.0091 0.0102 0.0190 0.0179 0.0136 0.0075

ER

Fmeasure 0.8523 0.8671 0.5556 0.6221 0.8963 0.9254

Recall 0.8009 0.8183 0.4005 0.4728 0.8425 0.8907

Precision 0.9107 0.9221 0.9020 0.9092 0.9575 0.9610

ρW 0.8984 0.9207 0.9289 0.9221 0.9244 0.9840

Error 0.0064 0.0059 0.0145 0.0185 0.0115 0.0083

BA

Fmeasure 0.7257 0.7857 0.5368 0.4250 0.4576 0.8728

Recall 0.6164 0.6986 0.3806 0.2772 0.3000 0.8359

Precision 0.8836 0.8976 0.9107 0.9109 0.9643 0.9131

ρW 0.7198 0.7371 0.8076 0.8074 0.7962 0.9641

Error 0.0117 0.0153 0.0162 0.0191 0.0184 0.0105

Fig. 4.2(a) evaluates the average correlation coefficients of the considered algorithms

against K under the Random Geometric model, where N = 30 and M = 300. Our

algorithm achieves the largest correlation coefficient over the wide spectrum of K.

We see that the correlation coefficient first increases with K, reaches its peak at

K = 15, and then stabilizes. This is because a wider signal bandwidth K allows

for a broader range of frequencies to be captured in the observed signals. As a

result, more detailed and diverse information can be extracted. When K exceeds 15,

the information extracted from the observed signals no longer increases because the

observed signals are sparse and the setting of K ≥ 15 overkills. Fig. 4.2(b) compares

the correlation coefficients between different methods under the Erdős-Rènyi model,

as M increases. K = 15. We see that the correlation coefficients stabilize when

M > 250. Fig. 4.2(c) compares the computational complexities of the methods with

the increase of M , where the Random Geometric model is considered, K = 15, and

the average of 1,000 independent tests is plotted. We see that Saboksayr’s method
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Figure 4.1: (a) The convergence of the proposed algorithm. (b) The correlation

coefficient vs K and α under the Random Geometric model, where N = 30 and

M = 300.

is the fastest, followed by our algorithm. This indicates that our algorithm provides

superb detection accuracy with considerably low complexity. Fig. 4.2(d) illustrates

that the Error score consistently decreases as the value of K increases across all

three models.
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Figure 4.2: (a) The correlation coefficient with the increased signal bandwidth K

under the Random Geometric model, where N = 30 and M = 300. (b) The correla-

tion coefficient with the increase of M under the Erdős-Rènyi model, where K = 15

and N = 30. (c) Runtime (in seconds) with the increase of M under the Random

Geometric model, where K = 15 and N = 30. (d) The estimation error of the

proposed algorithm with the increased signal bandwidth K, where N = 30 and

M = 300.

4.6.2 Experiment on Temperature Measurement Data

We assess the performance of the proposed graph learning algorithm using a temper-

ature dataset collected from 32 weather stations in Brittany, France1. The dataset

collects hourly temperatures during a period of 31 days, resulting in a total of

24×31 = 744 observations. We take the 32 weather stations as the vertices of a graph

and the temperatures measured at the stations as the observation Y ∈ R32×744.

Given Y, we first analytically determine the GFT basis, U, using (4.14) in Section

4.4 and then recover the graph using the ADMM algorithm developed in Section

1https://github.com/BaolingShan/Temperature-datasset-in-Brittany-France
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(a) Ours (b) Saboksayr [43] (c) Sar-ESA [35]

(d) Sar-TV[35] (e) Egilmez [84], [85]

Figure 4.3: The learned graphs with different methods. The color of a node indi-

cates the average temperature in ◦C measured at the node during all the periods of

observation.

4.5. In the recovered graph, the vertices indicate the weather stations. The weight

of an edge can then indicate the degree of similarity between the temperatures of

two weather stations represented by the connected vertices.

Fig. 4.3 shows the graphs learned, where the average temperature of each weather

station is color-coded. Fig. 4.3(a) corresponds to the proposed algorithm, where

K = 17 is obtained as described in Remark 3, i.e., by first setting K = N − 1 to

generate and sort ∥S(i, :)∥, i.e., ∥S(1, :)∥ ≥ ∥S(2, :)∥ ≥ · · · ≥ ∥S(N, :)∥, and then

selecting the smallest K such that
∑K

i=1 ∥S(i,:)∥∑N
i=1 ∥S(i,:)∥

≥ 99%. The results of the existing

algorithms are plotted in Figs. 4.3(b)–4.3(d). For Sar-ESA and Sar-TV, K = 17 is

obtained in the same way as in our algorithm. Saboksayr’s and Egilmez’s do not

rely on the value of K. For a fair comparison, we configure all graphs to have con-

sistent sparsity, i.e., each graph has 90 edges, by fine-tuning the respective sparsity

hyperparameters of the considered algorithms. We see that our algorithm provides

more reasonable learning results, as it connects the weather stations with close av-
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Table 4.3: The reconstruction accuracy of Saboksayr’s (Sab.) [43], Sar-ESA [35],

Sar-TV [35], Egilmez’s [84], [85], and the proposed algorithm upon temperature

dataset.

Methods Sab. Sar-ESA Sar-TV Egilmez Ours

Accuracy 0.7227 0.8269 0.7343 0.7061 0.9301

Runtime (s) 15 203 156 37 23

erage temperatures and disconnects those with substantially different temperatures.

By contrast, the existing approaches connect the weather stations excessively with

substantially different average temperatures in Figs. 4.3(b), 4.3(d) and 4.3(e); or

fail to connect some nearby weather stations with similar average temperatures in

Fig. 4.3(c).

The reliability of the proposed algorithm is evaluated by using a greedy algo-

rithm [10] to reconstruct the temperature data of some of the stations over a random

period of time based on the learned Laplacian matrix and the observed signals of

the other stations. The number of observable temperature signals (or weather sta-

tions) is set to be equal to the signal bandwidth K. In other words, we select 17

nodes to recover the signal waveforms of the other 15 nodes. Fig. 4.4(a) shows

the ground-truth temperatures observed at Lorient station (the solid blue line) and

the reconstructed version (the orange dash line). The Lorient station is one of the

15 unobserved stations. We see that the reconstructed signals are consistent with

the ground-truth signals, indicating the reliability of the new graph-learning algo-

rithm. For comparison, we also reconstruct the temperature signals by running

Saboksayr’s [43], Sar-ESA [35], Sar-TV [35], and Egilmez’s [84], [85], as shown in

Figs. 4.4(b)-4.4(e), where the reconstructed signals are less accurate. We adopt

the coefficient of determination, denoted by R2, to quantify the reconstruction accu-

racy of the algorithms. R2 = 1−∥vec(ŶR)− vec(YR)∥22/∥vec(ŶR)− ȳR∥22. ŶR and

YR are the reconstructed signals and their ground-truths. ȳR is the average of the

ground-truths. vec(·) denotes vectorization. Table 4.3 shows our algorithm provides

the best reconstruction accuracy with the second shortest runtime.
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Figure 4.4: The reconstructed signals of temperatures at Louargat.

4.6.3 Attention-Deficit Hyperactivity Disorder (ADHD) Data

We apply the proposed algorithm to analyze brain functional networks. ADHD is

a prevalent behavioral problem diagnosed with inattention and hyperactivity [130].

Latest neuroanatomical and neuropsychological studies indicated these behavioral

disturbances are related to changes in functional connectivity among brain regions [132].

The considered ADHD dataset contains 42 right-handed, boy subjects with an av-

erage age of 13.2 years2. Without loss of generality, we randomly select subject 10

in this experiment. For comparison, typically developing (TD) subject 1 is selected

in this experiment. We divide a brain into 90 ROIs using AAL template [131],

where each ROI is represented by a node with 232 signals from the ADHD dataset.

Therefore, the observed graph signal yield Y ∈ R90×232. Following the proposed al-

2The ADHD dataset is available at https : //www.nitrc.org/frs/?group id = 383
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gorithm, we can determine K = 62. By executing the algorithm, the brain network

connecting the ROIs is constructed in the form of weighted adjacent coefficients.

The brain network is depicted by the BrainNet Viewer toolbox [128].

As shown in Fig. 4.5, the differences of the brain functional network between the

ADHD subject and the TD subject are visible from the sagittal, axial, and coronal

views of the brain. We see that the ADHD subject exhibits decreased structural

connectivity, compared to the TD subject. We also observe considerable asymmetry

in the hemispheric brain anatomical network topology in the ADHD subject, as

shown in Figs. 4.5(b), 4.5(c), 4.5(e), and 4.5(f). This confirms that the brain network

topologies of the ADHD subject are disrupted in their distributed neural networks,

which is likely related to inattention and hyperactivity. The observed decreased

connectivity and increased asymmetry in the ADHD subject are consistent with the

existing neuroanatomical studies [130]–[133].

We reconstruct the signals of a part of the brain network based on the learned Lapla-

cian matrix and the signals of the other part of the brain network. The number of

observable signals, i.e., the number of brain signal waveforms, is set as K. We select

K = 62 nodes to recover the signal waveforms of the other 28 nodes. Fig. 4.6(a)

plots the ground-truth ADHD brain signals at node 7 of subject 10 using the blue

line, and the reconstructed signals using the orange line. Node 7 is not among the

62 observable nodes. The reconstructed signals concur with the ground truth, con-

firming the accuracy of our algorithm. We also reconstruct the ADHD signals by

running the existing algorithms; see Figs. 4.6(b)-4.6(e). The existing algorithms are

much less accurate than the proposed algorithm.

Table 4.4 quantifies the reconstruction accuracy of all 28 unobserved nodes using

R2. Our algorithm provides a much finer accuracy than the existing algorithms.

Table 4.4 also compares the run time between the four algorithms. Our algorithm is

substantially faster than Sar-ESA, Sar-TV, and Egilmez. Despite our algorithm tak-

ing slightly longer time than Saboksayr’s, the latter provides much worse accuracy;

see Fig. 4.6.
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(a) Sagittal View (b) Axial View (c) Coronal View

(d) Sagittal View (e) Axial View (f) Coronal View

Figure 4.5: Connected brain networks from sagittal, axial and coronal views depicted

by BrainNet Viewer. The blue nodes represent the ROIs, and the thickness of the

red line is the strength of the connectivity between two ROIs. (a), (b), (c) The

learned graphs based on the ADHD subject 10 with the proposed algorithm. (d),

(e), (f) The learned graph based on the TD control subject 1.

Table 4.4: The reconstruction accuracy of Saboksayr’s (Sab.) [43], Sar-ESA [35], Sar-

TV [35], Egilmez’s [84], [85], and the proposed algorithm upon all ADHD subjects.

Methods Sab. Sar-ESA Sar-TV Egilmez Ours

Accuracy 0.7121 0.7981 0.7202 0.7004 0.9315

Runtime (s) 9 113 96 20 13

4.7 Conclusion

In this chapter, we developed a new graph learning technique to efficiently infer the

graph structure of observed band-limited graph signals. A closed-form derivation

was analytically derived for the graph GFT basis from the observed signals. With the

GFT basis, we further applied ADMM to solve the eigenvalues of the graph Laplacian

with substantially lower computational complexity. Simulations and experiments

showed that our method outperforms the status quo in accuracy and efficiency.

70



(�
�
�

�����!� �"�������!�#��
�!�$���#!$#���#����� �����"#!$�#���"�����"

(�
�
�

���������"�&!

(�
�
�

��
��
��
"

������!�
�	

(�
�
�

������!���

� �� ��� ��� ���
���������%

(�
�
�

����
�����'

Figure 4.6: The reconstructed signals of the anatomical ROI 7 of subject 10.
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Chapter 5

Novel Graph Topology Learning

for Spatio-Temporal Analysis of

COVID-19 Spread

5.1 Introduction

Global health, economic, and social challenges are escalating since the ongoing Coro-

navirus disease 2019 (COVID-19) pandemic. As of April 2022, Europe had 192.09

million confirmed cases and over two million deaths 1. The SARS-CoV-2 virus has

undergone numerous genetic changes since its discovery [138]. While some of these

changes do not affect the virus’s behavior, others may affect how easily it is trans-

mitted. Changes beneficial to the virus tend to spread more quickly, which means

that variants harboring them gradually replace other circulating variants [139]. In

November 2020, SARS-CoV-2 Alpha was first identified in the United Kingdom,

which was estimated to be 50% higher transmissibility than the original strain.

From July 2021 to October 2021, SARS-CoV-2 Delta prevailed in Europe. The

SARS-CoV-2 Omicron variant took over from the SARS-CoV-2 Delta variant in

Europe in November 2021. Earlier studies demonstrated that Omicron can, to a

degree, evade the protective effects of antibodies induced by vaccinations or natural

1https://coronavirus.jhu.edu/data
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infections. Large portions of the European population are susceptible to infection,

leading to sharp increases in COVID-19 cases and unprecedented community spread.

Comprehending the spatio-temporal characteristics of the virus transmission is the

key to controlling the transmission of the pandemic. Studies show that the global

spread of COVID-19 did not process uniformly [50], [140]. An outbreak’s size and

condition are influenced by the characteristics of virus spread [141]. Unfortunately,

it is difficult to implement evidence-based policies for COVID-19 due to a lack of

adequate evidence in policy-making and research [51]. While it is possible to esti-

mate the growth rates of confirmed cases and deaths [52], the relationships between

pairs of countries are still unknown as far as the COVID-19 development is con-

cerned. Datasets about ongoing situations in different countries are likely to show

spatial-temporal patterns since virus spread tends to follow geographic trends. A

spatial-temporal analysis of confirmed COVID-19 cases may also shed light on its

evolution. The record of pandemic evolution in Europe is known to be complex,

variable, and non-linear. Consequently, it is essential to uncover hidden information

about SARS-CoV-2 as new virus variants emerge.

One way to understand the spreading dynamic of the pandemic is to generate and

analyze COVID-19 pandemic diffusion graph topologies with the graph-theoretic

metrics [54]–[57]. In addition to illustrating spatial and temporal connections be-

tween places, spatio-temporal maps can potentially indicate changes in pandemic

risks [105].

Existing studies have examined the spread of epidemics as a complex system by

assessing the degree of correlation or synchronization between time-series data [59].

A deeper understanding of the spread dynamics of the new variants of SARS-CoV-2

requires new methods beyond assessing correlation or synchronization. There is a

need to explore the latent structures among the data and reveal the relationships

between different countries to understand the spatio-temporal spread of the virus.

This chapter aims to uncover the hidden knowledge that underpins the evolution of

the pandemic, examine the underlying relationship among countries, and understand

the spreading pattern of SARS-CoV-2 variants, e.g., by taking Europe as an example.
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A new effective graph learning method is proposed to infer the graph Laplacian

of the COVID-19 data, where we first obtain the closed-form expression of the

graph Laplacian eigenvector, also known as GFT basis. Given the eigenvectors, we

transform the inference of graph Laplacian to a readily solvable, convex problem

of estimating its eigenvalues. With the graph Laplacian estimated, we perform an

in-depth spatio-temporal exploration of COVID-19 data and shed insights into the

COVID-19 spread in Europe.

5.2 Materials and System Model

The analysis is based on the open-access dataset of daily identified COVID-19 cases

reported officially by different countries, territories, and regions, and published by

the WHO2. The daily data for COVID-19 in European countries are updated every

day. We collect the data from January 2020 to April 2022 and divide this period into

four based on the statistics from the WHO, as shown in Fig. 5.1. The first period is

the early stage of the pandemic outbreak, between March 2020 and October 2020,

when the original strain of the virus dominated the spread. The second period is

from November 2020 to May 2021, when the Alpha variant was dominant. The

third stage is from June 2021 to October 2021, when the Delta variant broke out.

The fourth stage is from November 2021 to April 2022, when the Omicron variant

rapidly replaced the Delta and became the dominating variant in most European

countries.

For each period, we analyze the SARS-CoV-2 time series data of the 44 European

countries published by the WHO, by extracting a graph with 44 nodes from the data.

The graph topology is defined as G = (V , E ,W), where V = 1, 2, . . . , N denotes the

set of N vertices, with N = 44 being the number of countries. The set of edges,

denoted by E , is a subset of V ×V . The weighted adjacency matrix of the graph G,

denoted by W ∈ RN×N , indicates the extent to which two countries are correlated

with respect to COVID-19 spread. Wij = Wji ̸= 0 for ∀(i, j) ∈ E . Each node in G

represents a European country and corresponds to the time series recording daily

confirmed cases per million people in the country.

2https://covid19.who.int/WHO-COVID-19-global-data.csv
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Figure 5.1: Weekly confirmed COVID-19 cases per million people.

For each of the periods, we use xp ∈ RN×1, ∀p ∈ {1, · · · , P} to denote the COVID-19

records of the N countries on the p-th day of the period, where P is the number of

days in the period. The COVID-19 data of the European countries during the period

are arranged in an N ×P matrix, denoted by X = [x1, . . . ,xP ] ∈ RN×P . Here, X is

band-limited and its frequency-domain representation has finite bandwidth; in other

words, the virus spreads across countries, rather than breaks out simultaneously in

all countries.

To derive information about the underlying structure of G, it is necessary to estimate

the graph Laplacian L. According to the definition in [84], graph Laplacian is a

semi-definite matrix with positive elements along its main diagonal and non-positive

elements anywhere else, which can be rewritten as:

L = UΛUT = Udiag(λ)UT . (5.1)

Here, Λ = diag(λ1, · · · , λN) is a diagonal matrix consisting of the non-negative

eigenvalues of the Laplacian, and U = [u1, · · · ,uN ] is an orthonormal matrix com-

prising the corresponding eigenvectors. According to [10], the GFT is the projection

of X on U. The GFT of the COVID-19 data xp, ∀p ∈ {1, · · · , P} on p-th day, de-

noted by sp, is given by

sp = UTxp. (5.2)
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Let S = [s1, · · · , sp] ∈ RN×P . Then,

X = US. (5.3)

With the sparsity of sp, ∀p, we define S as a K-block sparse matrix with rows consist-

ing of multiple all-zero vectors. Here, K indicates the frequency-domain bandwidth

of the COVID-19 data X. K is obtained empirically in prior or enumerated to find

its proper value [142]. The set BK contains all K-block sparse matrices, defined as

BK ≜ {S ∈ RN×P ,S(i, :) = 0, ∀i /∈ K ⊆ V , K = |K|}. Here, S(i, :) denotes the i-th

row of S, and the set K ⊆ V collates the indexes to the K most significant frequency

components of the X.

5.3 Proposed Graph inference for COVID-19 Spread

Analysis

COVID-19 data analysis plays a crucial role in identifying the most influential coun-

tries or regions in the spread of the virus and understanding how the virus spreads

among countries. In this section, we develop a new graph learning method, which

accurately and efficiently extracts the underlying graph topological information of

the COVID-19 data, reveals the fine-grained similarity (or correlation) between dif-

ferent countries in the virus spread process, and helps identify the most influential

countries that present strong representativeness. More specifically, the technique

extracts the graph Laplacian matrix L of the COVID-19 data in each period by first

deriving U and then solving Λ efficiently using convex optimization techniques. By

applying the graph extracted and centrality measures, we identify the influential

countries that it is significant in the study of the COVID-19 spread.

5.3.1 Graph Topology Extraction

First, we estimate L and hence, the graph struucture G substantiating the COVID-

19 data X. By taking into account the band-limitedness of X, we formulate the
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problem as

min
L,U∈RN×N ,S∈RN×P

∥X−US∥2F + f(L,X) (5.4a)

s.t. UTU = IN , (5.4b)

S ∈ BK , (5.4c)

L = UΛUT , L ∈ L, tr(L) = N, (5.4d)

u1 =
1√
N
1. (5.4e)

The objective (5.4a) is composed of two terms. The first accounts for data consis-

tency by penalizing any discrepancy between US and X using a quadratic loss. The

second term provides a regularization function. According to [18] and [35], we set

f(L,X) = tr(XTLX) + α ∥vec(L)∥1 .

Constraint (5.4b) guarantees that the matrix U is unitary, satisfying the decom-

position in (5.1); constraint (5.4c) enforces that the GFT coefficient matrix S is

K-block sparse; constraint (5.4d) ensures that L complies with the requirement of

a legitimate graph Laplacian, and L contains all legitimate candidates for L [84]:

L = {L ⪰ 0|L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j}. (5.5)

According to L1 = 0 in (5.5), we conclude that 0 is an eigenvalue of L and corre-

sponds to the eigenvector u1 = 1√
N
1, i.e., the first column of U; see (5.4e).

Remark 5 To address the non-convexity of (5.4) caused by the non-convex or-

thonormality constraint in (5.4b) and the sparsity constraint in (5.4c), we decou-

ple and solve (5.4) in two phases. Given the COVID-19 data X, we first estimate

the GFT basis U by minimizing ∥X−US∥2F subject to UTU = IN , S ∈ BK and

u1 = 1√
N
1. In the second step, we estimate the eigenvalues Λ by minimizing the

regularizer tr(XTLX) + α ∥vec(L)∥1 with the obtained U.

Extraction of Eigenvectors

Starting with the GFT basis, U, provides a way to identify the intrinsic structure

in the COVID-19 data that are related to the underlying pandemic network, even

without the a-priori information of graph Laplacian L. To estimate U from X

satisfies the definition of GFT, i.e., X = US.
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By utilizing the orthonormality property of U in (5.4b), we have ∥X−US∥2F =∥∥UTX− S
∥∥2
F

. We start with the first part of problem (5.4), as given by [35, eq. 8]

min
U∈RN×N ,S∈RN×P

∥∥UTX− S
∥∥2
F
, s.t. (5.4b), (5.4c), (5.4e). (5.6)

Despite the convex objective function, problem (5.6) is non-convex due to the or-

thonormality in (5.4b) and the sparsity in (5.4c). Since both U and S are unknown,

we reorganize (5.6) as

min
U∈RN×N ,

min
S∈BK

N∑
i=1

∥∥uT
i X− S(i, :)

∥∥2
2
, s.t. (5.4b), (5.4e), (5.7)

which can be rewritten as

min
U∈RN×N

(
min
S∈BK

∑
i∈K

∥∥uT
i X− S(i, :)

∥∥2
2

+
∑
i/∈K

∥∥uT
i X
∥∥2
2

)

s.t. (5.4b), (5.4e). (5.8)

By closely analyzing the objective function of (5.8), it can be noticed that the

optimal K comprises K most significant entries of {
∥∥uT

i X
∥∥}Ni , and satisfies

S(i, :) =

uT
i X, if i ∈ K;

0, otherwise.

(5.9)

Therefore, the objective of (5.8) is reduced to only include the (N − K) smallest

entries of {||uT
i X||}Ni , after optimizing S to suppress

∑
i∈K

∥∥uT
i X− S(i, :)

∥∥2
2

using

(5.9). To minimize this objective with respect to S, we aim to seek the optimal U,

represented as U∗, in (5.6).

Substitute (5.9) into the objective of (5.8). Then , problem (5.6) can be written as

U∗ = arg
U

min
∑
i/∈K

∥∥uT
i X
∥∥2
2

= arg
U

min
∥∥UT

KcX
∥∥2
F

= arg
U

max
∥∥UT

KX
∥∥2
F
, (5.10)

where Kc denotes the complementary set of K, i.e., Kc = V \ K; and the matrices

UK and UKc collate the column-vectors of U with indexes collected in K and Kc,

respectively.
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Table 5.1: Topological characteristics of the learned complex networks.

Metric Formula Description

Degree centrality Cd(ni) =
∑j

1 eij
N−1

The number of edges directed to-

wards node i.

Closeness centrality Cc(ni) = N−1∑
i ̸=j dij

The average length of the shortest

paths from node i to the rest of

the nodes.

Betweenness centrality Cb(ni) =

∑
i,j ̸=v

σij(v)

σij

(N−1)(N−2)
The frequency of a node serves

as an intermediate relay along the

shortest paths.

Average path length
∑

i ̸=j dij

N(N−1)
The average length of all the

shortest paths in a graph.

Global efficiency N(N−1)∑
i ̸=j dij

The efficiency of information ex-

change between all node pairs.

Despite the non-convexity of (5.10), the goal of (5.10) is to identify the K-dimensional

subspace in which the COVID-19 data X has the largest orthogonal projection; i.e.,

arg max
U

∥∥UT
KX
∥∥2
F

=arg max
U

tr
(
PUKXXT

)
, (5.11)

where PUK = UKU
T
K is the orthogonal projector onto the subspace spanned by UK.

Using (5.11), we reformulate the problem (5.6) as

U∗ = arg max
U

tr
(
PUKXXT

)
, s.t. (5.4e). (5.12)

Theorem 2 By examining the two cases of u1 /∈ UK and u1 ∈ UK, the optimal

solution to problem (5.6), denoted by U∗ = [U∗
K,U

∗
Kc ], can be obtained as

U∗ = eigen
[(
I− u1u

T
1

)
XXT

(
I− u1u

T
1

)T]
. (5.13)
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Extraction of Eigenvalues

Given the K-band-limited COVID-19 data with the optimal U∗ gained from (5.13),

the graph Laplacian L is written as

L = [UK,UKc ]

ΛK

ΛKc

 [UK,UKc ]T . (5.14)

where Λ =

ΛK

ΛKc

. By plugging (5.14), tr(XTLX) is written as

tr(XTLX) = tr(XT (UKΛKU
T
K)X + XT (UKcΛKcUT

Kc)X)

= tr(ST
KΛKSK). (5.15)

Problem (5.4) becomes

min
ΛK,ΛKc ,L

tr(ST
KΛKSK) + α ∥vec(L)∥1

s.t. L = [UK,UKc ]

ΛK

ΛKc

 [UK,UKc ]T ,

ΛK ⪰ 0,ΛKc ⪰ 0,

L1 = 0,

tr(L) = N,

Lij = Lji ≤ 0, ∀i ̸= j. (5.16)

Since its objective and constraints are convex or affine, problem (5.16) is convex

and can be effectively addressed using by CVX toolboxes. With U and Λ obtained,

we can obtain the graph Laplacian L underlying the European COVID-19 data

using (5.1).

5.3.2 Influential Country Identify

Next, given the graph topology L underlying the COVID-19 data and indicating

the propagation of the virus, we proceed to estimate the spread pattern of the four

variants among the European countries. As shown in Table 5.1, three node-level

metrics, including degree centrality [143], closeness centrality [144], and betweenness

centrality [145], are used to measure the influence of individual countries in the
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COVID-19 spread, where dij represents the shortest distance between nodes i and

j in the extracted graph, σij is the total amount of shortest paths between nodes i

and j, and σij(v) denotes the number of these paths through node v.

• Degree centrality measures the number of connections a node has, helping

identify the most connected nodes to the rest of the pandemic networks [143].

• Closeness centrality measures the inverse of the sum of the distances between

a node and all other nodes in the network, which helps to identify nodes that

are central and easily reachable within the network [144].

• Betweenness centrality quatify the importance of a node in maintaining the

shortest paths between other nodes in the network, helping to identify nodes

that play a critical role in connecting different parts of the network [145].

The higher centrality a country has, the more influential it is and the more attention

it deserves. In other words, the countries ranked high in terms of the centrality

measures are likely to present the important COVID-19 spread patterns.

Many other existing methods, such as node embeddings [146], DeepWalk [147], spec-

tral clustering [148], and influence maximization [149], aimed to efficiently find in-

fluential nodes in large-scale graphs, e.g., social networks with thousands or even

millions of nodes, often still based on the above classical centrality measures. Nev-

ertheless, the graph considered consists of only N = 44 vertices (for 44 European

countries). Computational complexity is less of a concern.

We also take two network-level metrics in Table 5.1, i.e., average path length [150]

and global efficiency [151], to explore the spread of the pandemic.

• Average path length measures the average number of hops needed to get from

one node to another node in the network [150]. A short average path length

indicates a highly connected network, contributing to the fast spread of the

pandemic [152].

• Global efficiency measures the average inverse shortest path length between

all pairs of nodes, indicating how quickly the virus can spread [151]. A high
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global efficiency indicates a dense and well-connected network with fast virus

propagation, while a low global efficiency indicates a fragmented and poorly

connected network deterring the virus propagation.

5.4 Method Assessment and Results

In this section, we first experimentally validate the superiority of the proposed tech-

nique to existing approaches in graph learning accuracy of the COVID-19 data.

Then, we use the technique to conduct an in-depth analysis of COVID-19 data, and

shed different insights into pandemic spread from existing techniques. The analysis

is based on the open-access WHO dataset of daily identified COVID-19 cases in the

44 European countries.

Apart from the proposed method, we evaluate the state-of-the-art solutions: Sabok-

sayr’s algorithm [43], Sardellitti’s TV algorithm [35], Sardellitti’s ESA algorithm [35],

and Humbert’s algorithm [36].

• Saboksyr’ algorithm [19]: This is a scalable and time-efficient primal-dual

algorithm that learns the topological structures of time series represented by

the weighted adjacency matrices of graphs. However, this method has no

explicit generative model for the observations. In other words, the model’s

accuracy may not be adequate for numerous real-world datasets that exhibit

localized behaviors or exhibit piecewise smoothness.

• Sardellitti’s TV graph learning algorithm [35]: The approach involves a two-

step scheme: (a) learning the orthonormal and sparse transform of the data

using AO, and (b) inferring the Laplacian from the sparsifying transform using

convex optimization. The algorithm is reasonably computationally efficient by

exploiting convex optimization techniques. However, the effectiveness of the

overall process is compromised due to the AO-based approximation in the first

step, which penalizes the fidelity of the orthogonal sparsifying transform.

• Sardellitti’s ESA graph learning algorithm [35]: Different from Sardellitti’s

TV graph learning algorithm, this algorithm utilizes the information of the
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GFT coefficient matrix of the first step in the second step, where the graph

Laplacian is recovered from the sparsifying transform and the GFT coefficients

using convex optimization.

• Humbert’s algorithm [36]: This is another AO-based algorithm runs Rieman-

nian manifold gradient descent and linear cone programs in an alternating

fashion. However, only suboptimal solutions can be obtained using the AO

method. The computational cost is also high.

Apart from the aforementioned advanced graph learning techniques, we also evaluate

our proposed algorithm in comparison to the state-of-the-art graph neural network

(GNN) [153] when assessing the accuracy of the algorithm. The GNN consists of

multiple hidden layers with 50 hidden units per layer. In the training stage, the

input to the GNN includes the training data and the weighted correlation matrix

of the training set. By contrast, the training set serves as the input for the graph

learning algorithms.

5.4.1 Graph Learning-based Analysis of COVID-19 Data

Fig. 5.2 provides the pandemic spread networks of 44 European countries over the

four different periods obtained by the proposed algorithm, where the parameters of

the algorithm are K = 26 and α = 1 decided in the way delineated at the beginning

of Section 5.4.2. The thickness of an edge measures the similarity of the COVID-19

spread between two countries. The virus spreads in the two countries are more likely

to be related if the edge is thicker. The density of the edges indicates the extent

to which the COVID-19 spread among countries. It is observed in Fig. 5.2 that the

virus spreads are increasingly related among the European countries from Period 1

to Period 4. Not only did the spreads increase between the countries, but the virus

spread increasingly widely across more countries.

To better illustrate the correlation of the COVID-19 spread between the European

countries, Fig. 5.3 plots the weighted adjacency matrices of the graphs extracted

from the COVID-19 data by the proposed algorithm. In the figure, the 44 European

countries are sorted alphabetically from Albania to Ukraine along the x- and y-
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 5.2: The learned graph of the COVID-19 spread in the 44 European countries

during different periods.

axes. The intensity of the color at each pixel stands for the extent of the correlation

between the two countries associated with the pixel.

For example, the pixel corresponding to Greece and Norway is lighter than others

in Fig. 5.3(a), indicating that Greece and Norway are highly correlated in Period 1.

Likewise, Russia and Belarus are highly correlated in Period 2 in Fig. 5.3(b). Nev-

ertheless, the number of light-colored pixels increases overall in both Periods 3 and

4 in Figs. 5.3(c) and 5.3(d), indicating that the Delta and Omicron variants have

higher and stronger propagation characteristics in Europe, which is consistent with

the finding made in Fig. 5.2.
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(b) Period 2
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(c) Period 3
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Figure 5.3: The weighted matrix of the learned graph of the spread of COVID-19

in 44 European countries during different periods.

Figs. 5.4–5.7 visualize the top 5 countries that are identified to have been the most

influential in the process of the COVID-19 virus spread in Europe, using the pro-

posed approach based on the aforementioned three node-level metrics, i.e., degree

centrality, closeness centrality, and betweenness centrality. A darker color indicates

a country identified by more centrality measures to be among the top 5 most in-

fluential countries. For example, Czechia was influential during Period 1 in the

sense of all three centrality measures. This makes sense since the different centrality

measures are closely related in nature [105].
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(a) Proposed (b) Saboksayr (c) Sar-TV

(d) Sar-ESA (e) Humbert

Figure 5.4: Influential countries identified during Period 1.

(a) Proposed (b) Saboksayr (c) Sar-TV

(d) Sar-ESA (e) Humbert

Figure 5.5: Influential countries identified during Period 2.

It is obvious in Figs. 5.4–5.7 that the proposed algorithm identifies a different set of

the most influential European countries in the COVID-19 spread, compared to the
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(a) Proposed (b) Saboksayr (c) Sar-TV

(d) Sar-ESA (e) Humbert

Figure 5.6: Influential countries identified during Period 3.

(a) Proposed (b) Saboksayr (c) Sar-TV

(d) Sar-ESA (e) Humbert

Figure 5.7: Influential countries identified during Period 4.

current advenced graph learning methods. Particularly, our new algorithm helps

identify a small and concentrated set of influential countries in every period of
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COVID-19 spread; i.e., a country is more likely to be associated with multiple

centrality measures. In other words, the influence of a country is more likely to be

manifested through multiple measures. Here, the parameters of each method are

separately tested and optimized, according to their individual settings.

Fig. 5.8 quantitatively evaluates how different the top 5 most influential countries

are identified by the different algorithms. Specifically, we vectorize the 15 most

important countries identified using each of the considered algorithms based on the

three centrality measures. The similarity between the 15-element vectors produced

by any two of the considered graph learning algorithms, measured by the cosine

distance
VT

1 V2

|V1|·|V2| , quantifies the similarity between the algorithms, where V1 and V2

are the two 15-element column vectors, and | · | stands for the norm.

As shown in Fig. 5.8, our new graph learning algorithm yields the highest similarity

to Humbert’s [36] in terms of their identified important countries (under three cen-

trality measures), followed by Sar-ESA [35], Sar-TV [35], and Saboksayr’s [43]. The

similarities of the proposed algorithm to the existing algorithms are consistent with

the graph learning (and reconstruction) accuracy of the algorithms, as will be shown

in Fig. 5.12. Note that the ground truth regarding the most important countries

is unavailable in practice. Given the best graph learning accuracy of the proposed

algorithm and the consistent rankings between the accuracies and the similarities

of the existing algorithms, it is reasonable to conclude that the countries identified

by the proposed algorithm are more accurate and can contribute to more effective

study and response to the pandemic.

Fig. 5.9 plots the average path length and global efficiency of the graph recovered

by the proposed graph learning algorithm in the four periods of the COVID-19

pandemic. It is observed that the average path length decreases while the global

efficiency increases during the four periods. The Omicron variant (i.e., Period 4)

corresponds to the shortest average path length and the highest global efficiency,

indicating that the Omicron variant has a higher level of global reachability and

infectivity. In contrast, the original strains in the early stage of the pandemic, i.e.,

Period 1, have higher average path lengths and smaller global efficiencies. This is

consistent with the finding in Figs. 5.2 and 5.3. The reason can be that during
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Figure 5.8: The correlation of different algorithms.

Period 1, the countries responded to the outbreak with stay-at-home or workplace

closure, effectively slowing down the increase in confirmed cases.

5.4.2 Accuracy Validation of Proposed Graph Learning

Without the ground truth of the graphs underlying the COVID-19 data, we resort

to assessing the learning accuracy of the proposed algorithm by obfuscating part of

the data and assessing the reconstruction accuracy of this part of data based on the

learned graphs and the rest of the data.

Suppose that the number of observable countries is K (K ≤ N), i.e., the signal

bandwidth. Based on the inferred graphs, e.g., those in Fig. 5.3, and the COVID-19

data of K randomly selected European countries, we reconstruct the quantity of

identified cases per million population in the remaining (N − K) countries. The

recovered graph signals, denoted by x̂p, can be obtained as [44]

x̂P = UKU
T
KΨ

TΨD2ΨTyP , (5.17)

where yp ∈ RK is sampled K × 1-dimensional COVID-19 data on the p-th day,

which is chosen from xp randomly and independently [44]. Ψ ∈ RK×N stands for

a sampling operator. Ψij = 1 if j = Ki; and 0, otherwise. Here, Ki is the i-th

element of K, indicating the i-th of the K = |K| European countries with COVID-

19 data available. D ∈ RN×N is a diagonal rescaling matrix with Dii = 1/
√
Kπi
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Figure 5.9: Average path length and global efficiency corresponding to different

periods of COVID-19.

and πi being the probability of choosing the i-th K ×N -dimensional sample of the

K countries on the p-th day of the considered period. Since a uniform sampling

process is considered, the sampling metric for every node is πi = 1/N .

The RMSE and the R2 are adopted to quantify the accuracy of the recovered data

with respect to the ground-truth COVID-19 data, as given by

RMSE =

√√√√ N∑
i=1

(x̂pi − xpi)2/N ; (5.18)

R2 = 1− ∥x̂p − xp∥22
∥x̂p − x̄p∥22

. (5.19)

Here, x̂p and x̄p are the reconstructed signals and the average of the ground-truths

of xp.

Fig. 5.10 plots the correlations of determination, i.e., R2, of the proposed algorithm

with different regularizer α and data bandwidth K under the pandemic network

during Period 1. We see that R2 reaches its peak at α = 1 and K = 26; indicating

that the optimal regularizer is α = 1 for a data bandwidth of K = 26. We can sim-

ilarly determine the optimal values of α for Periods 2 to 4. Fig. 5.11 shows the R2

of the considered graph learning algorithms in four different periods, where K = 26.
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Figure 5.10: The accuracy vs. bandwidth K and α in Period 1.
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Figure 5.11: Efficiency of reconstruction of different methods upon four periods

when K = 26.

The proposed algorithm obtains the largest R2. For example, the improvements of

the algorithm are about 29.36%, 27.71%, 12.46%, and 11.11%, compared to Sabok-

sayr’s [43], Sar-TV [35], Sar-ESA [35], and Humbert’s [36], respectively. To ensure

a fair comparison, the parameters are individually tested and optimized for each

benchmark in these figures.
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Fig. 5.12(a) shows the RMSE of the considered algorithms with the increase in

the signal bandwidth K. We see that under all the considered algorithms, the

RMSEs decrease quickly with the growth of K and then converge to constant values.

Our proposed algorithm has the smallest RMSE under all values of K. It has the

minimum RMSE around 0.23 at K = 26 and achieves performance improvements

by about 60.87%, 43.48%, 34.78%, and 33.33%, compared to Saboksayr’s [43], Sar-

TV [35], Sar-ESA [35], and Humbert’s [36], respectively. Fig. 5.12(b) plots the

cumulative distribution function (CDF) of the errors undergone by the considered

algorithms. As depicted, our new algorithm exhibits significantly lower estimation

errors compared to the other algorithms. In particular, over 80% of the estimation

errors are smaller than 0.2 case per million population under our algorithm. By

contrast, 38.3%, 48.4%, 59.5%, and 64.6% of the estimation errors are smaller than

0.2 case per million population under Saboksayr’s [43], Sar-TV [35], Sar-ESA [35],

and Humbert’s [36], respectively.

Next, we proceed to assess the accuracy (R2) of the considered graph learning algo-

rithms when predicting future missing data based on the graph topologies extracted

in the past. In addition to the graph learning techniques, we also consider the

state-of-the-art GNN [153]. The COVID-19 dataset of each period is divided into

a training set (e.g., the first 80% of the dataset) and a test set (e.g., the remaining

20% of the dataset). In the training phase, the graph learning algorithms extract

the graph topology of the training set. In the test phase, the test data of Ukraine is

assumed to be missing and is predicted based on the graph topologies extracted from

the training set and the available test data of the other countries. By adjusting the

ratio between the training and test sets, we show the robustness of the algorithms

to the small training set.

As shown in Figs. 5.13(a)–5.13(d), the graph learning methods, including our pro-

posed algorithm, outperform the GNN under different ratios between the training

and test sets. When the training set is set to 80% and the testing set is 20%, our

algorithm achieves the highest R2 values with the improvements of about 70.49%,

75.85%, 70.99%, and 68.11% in the four periods, compared to the GNN. Notice that

the R2 value of the GNN can yield negative values, particularly in cases where the
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Figure 5.12: (a) The RMSE vs. the bandwidth K. (b) The CDFs of estimation

error under different graph learning methods.

training set is limited. This is the case when even the mean of the data can provide

a better fit to the data than the fitted function, e.g., the GNN, when the training

set is limited, i.e., 20%.

On the other hand, our new algorithm can enhance the state-of-the-art GNN by pro-

viding more accurate graph topologies, compared to a direct calculation of adjacency

93



20% 40% 60% 80%

Training percentage

-0.2

0

0.2

0.4

0.6

R
2

(a) Period1

20% 40% 60% 80%

Training percentage

-0.2

0

0.2

0.4

0.6

R
2

(b) Period2

20% 40% 60% 80%

Training percentage

-0.2

0

0.2

0.4

0.6

R
2

(c) Period3

20% 40% 60% 80%

Training percentage

0

0.2

0.4

0.6

R
2

GNN

GNN (enhanced)

Saboksayr

Sar-TV

Sar-ESA

Humbert

Proposed

(d) Period4

Figure 5.13: Efficiency of reconstruction of different methods of different periods.

matrices (as done in the GNN [153]). By inputting the weighted adjacency matrices

of the graphs learned by the algorithm, the GNN can be enhanced and consistently

outperform the original GNN in the experiments. Nevertheless, the enhanced GNN

still falls short compared to the state-of-the-art graph learning techniques, primarily

due to the limited size of the training set, i.e., the COVID-19 data set.

5.5 Conclusion

In this chapter, we proposed a new graph-learning technique to analyze the evolu-

tion of the COVID-19 pandemic and reveal the underlying relationship and spreading

pattern among different countries. The new technique estimates the graph Laplacian
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of the COVID-19 data by first deriving the closed-form expression for its eigenvectors

and then estimating its eigenvalues with convex optimization. Based on the COVID-

19 data, the accuracy of the estimated graph Laplacian was shown to outperform

the existing approaches by 33.3% in RMSE and 11.11% in correlation of determina-

tion. The new technique helped identify a different set of the most influential and

representative European countries, in contrast to the previous techniques. Given

the superior accuracy of the algorithm, the set of identified influential countries is

expected to be sensible and deserves dedicated research efforts to help understand

the COVID-19 spread.
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Chapter 6

Preserving the Privacy of Latent

Information for Graph-Structured

Data

6.1 Introduction

Graph data, characterized by latent graph structures, plays a crucial role in var-

ious fields, including physics, [154], [155], biology, transportation [156]–[159], en-

ergy [160], engineering [161]–[163], and social science [164], [165]. Illustrative in-

stances of such data encompass brain signals like EEG signals [6], and blood-oxygen-

level-dependent time series derived from fMRI on the brain [7]. Moreover, social

network data from platforms like Facebook, Twitter, and WeChat offer further ex-

amples, revealing social graphs and significant volumes of potentially sensitive and

private user information [8], [9].

Privacy is a significant concern for some graph-structured data [166], for example,

brain network data obtained by fMRI [7]. The graph-structured brain data can

be held by the Department of Neurology in a hospital, and shared with and used

by other departments or clinics for big data analytics (e.g., detecting or modeling

changes in blood flow that occur with brain activity) or educational purposes.
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On the one hand, the latent graph structures of brain network data could expose

personal health conditions, such as ADHD [33] and AD [34], under graph interference

attacks (based on graph learning techniques [21], [35], [36]). The health conditions

could be exploited to reveal the identities of the patients [37], [38]. The latent

stimuli of the graph-structured data, which are the input to the latent graphs and

derive the output of the graph-structured data observed, are also part of the private

information [39]. The bandwidth and waveform shapes of the stimuli can be used

as the identifiers of individuals.

On the other hand, minimizing the perturbation on the observed graph-structured

data, e.g., brain network data, helps retain the utility of the data, e.g., for measuring

and modeling blood flows during brain activities, evaluating the effects of stroke,

and examining functioning areas of the brain under different tasks. In this sense, it is

critical to protect the privacy of the graph-structured data by obfuscating the latent

graph structures and stimuli underlying the graph-structured data, while minimizing

changes or perturbations to the graph-structured data to best maintain its utility.

However, preserving the privacy of the graph data, more explicitly, the privacy of

the latent graph structures and stimulus underlying the graph data, has never been

addressed in the literature.

This chapter presents a new approach to preserving the privacy of the latent graph

structures and stimuli of graph data while maximizing the utility of the graph data.

The approach is important to defend against graph inference attacks, and can have

extensive applications to protect personal health records (e.g., brain data), finance

transactions, and many other graph-structured data.

• A new multi-objective problem is formulated to preserve the privacy of the

latent graph structures and stimuli of graph data and maintain the utility of

the data. The problem has never been addressed. The restrictiveness of DP

in solving the problem is revealed.

• We derive the analytical expressions for the GFT basis that captures the latent

graph structures, and the latent stimuli that are the spectral-domain inputs

to the latent graphs.
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• We decouple the new multi-objective problem to alternately obfuscate the

GFT basis and stimulus against the expressions derived. The difference-of-

convex (DC) programming and Stiefel manifold gradient descent are orches-

trated to efficiently perturb the GFT basis. The DC programming and gradi-

ent descent are employed to perturb the latent stimuli.

Extensive experiments are conducted on synthetic graph data generated under the

Random Geometric model, and the real-world ADHD dataset. The new approach

is demonstrated to effectively protect the privacy of the latent graph structures and

stimuli of graph data, while maintaining the utility of the data. The approach can

substantially outperform its DP-based benchmark in the face of graph inference

attacks based on the latest graph learning techniques.

6.2 System Model and Problem Statement

In this section, we describe the system model and provide the problem statement.

6.2.1 System Model

Let Y ∈ RN×M denote the observed data with a latent graph structure G(V , E).

N is the count of vertices on the latent graph. A 1 ×M -dimensional time series

is associated with each vertex in the observed data Y. V = {1, · · · ,N} is the set

of vertices, and E ⊆ V × V is the set of edges. The topological structure of G

can be captured by a weighted and undirected adjacency matrix W ∈ RN×N . The

adjacency matrix W collects all the edges with Wij = Wji ̸= 0, ∀(i, j) ∈ E .

Let D ≜ diag (W1) define the degree matrix containing the node degrees at its

diagonal. Also, suppose that each node is connected to at least one other node,

ensuring no isolated nodes are in the graph. In other words, none of the diagonal

elements is zero in D. Then, according to [84], the combinatorial graph Laplacian

of G is defined as

L = D−W, (6.1)

which is a semi-definite matrix with positive elements along its main diagonal

and non-positive elements anywhere else [84]. The eigenvectors of L, denoted by
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U∗ ∈ RN×N , make up the so-called GFT basis [10], which captures the latent graph

structure or topology of the graph-structured data Y [84].

Apart from the latent graph structure, the observed graph-structured data Y also

contains a latent stimulus in the spectral domain. The latent spectral-domain rep-

resentation (or, in other words, the latent spectral-domain stimulus) of Y is repre-

sented by S∗ ∈ RN×M . It projects Y on the spectral-domain subspace spanned by

U∗:

Y = U∗S∗, (6.2)

where S∗ can exhibit some level of sparsity. Clearly, S∗ relies on both Y and the

latent graph structure characterized by the GFT basis, U∗. Therefore, S∗ and U∗

need to be jointly estimated, which, however, is non-trivial [35].

As reported in [35], [167], and [119], the observed graph-structured data can often

be sparse in the canonical domain. Let K denote the bandwidth of S∗ in the spectral

domain, K ∈ {1, · · · , N}, and BK collect all K-block sparse matrices [142]; i.e.,

BK≜{S∗ ∈RN×M ,S∗(i, :)=0, ∀i /∈K∈V , |K|=K}, (6.3)

where S∗(i, :) stands for the i-th row of S∗, while K ∈ V has the cardinality of K.

6.2.2 Problem Statement

In this chapter, our goal is to protect the privacy of the latent information underlying

graph-structured data (e.g., the graph structure and the stimulus underlying the

observed graph-structured data) while minimizing the perturbations on the observed

graph-structured data to maintain the utility of the data. Let U∗ and S∗ denote the

latent GFT basis and stimulus, respectively, and U and S denote their respective

obfuscated versions.

The utility is measured by the difference between the observed graph data and

their corresponding perturbed versions, i.e., ∥Y −US∥F . The privacy is measured

by the difference between the latent graph structures of the graph data and their

corresponding perturbed version, i.e., ∥U − U∗∥F ; and by the difference between

the latent stimuli of the graph data and their corresponding perturbed version, i.e.,

∥S− S∗∥F .
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The considered problem is formulated as

max
U∈RN×N ,S∈RN×M

∥U−U∗∥2F + β ∥S− S∗∥2F (6.4a)

and min
U∈RN×N ,S∈RN×M

∥US−Y∥2F , (6.4b)

s.t. UTU = IN , (6.4c)

S ∈ BK , (6.4d)

u1 = 1/
√
N 1. (6.4e)

Here, (6.4a) aims to prevent the leakage of the private information about the latent

graph structure U∗ and the latent stimulus S∗ by maximizing their difference from

their respective obfuscated versions. β is an adjustable hyper-parameter to fine-tune

the priority of the two terms in (6.4a). The second objective (6.4b) indicates the

perturbed version of Y needs to be close to the original observation Y to maintain

its utility.

Constraint (6.4c) is due to the orthonormal nature of U. Constraint (6.4d) specify

the sparsity of S. Constraint (6.4e) provides the necessary condition of a valid graph

Laplacian L; i.e., one eigenvalue of L must be 0, and the corresponding eigenvector

is u1, which is a column of U [35].

6.3 Proposed Obfuscation for Graph Data

Fig. 6.1 depicts the diagram of the proposed obfuscation algorithm for graph-structured

data, where there are two components: The extraction of the latent information of

graph-structured data, and the perturbation of the latent information.

6.3.1 Latent Information Extraction

To preserve the privacy of the latent information U∗ and S∗, we first estimate U∗

and S∗ based on the observed graph-structured data Y. Provided K ∈ [1, N ], we

cast the problem as

(U∗,S∗) = arg min
U,S

∥Y −US∥2F

s.t. (6.4c), (6.4d), (6.4e),

(6.5)
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Figure 6.1: The flow diagram of the proposed obfuscation algorithm to perturb the

latent information of graph-structured data.

where, with a little abuse of notations, we define U and S to be the estimation

variables. The closed-form solution to problem (6.5) can be given in the following

proposition.

Proposition 1 Given K ∈ [1, N ], the solution to problem (6.5), U∗ and S∗, is

uniquely given in a closed form by

U∗ = Eig
[(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T]
; (6.6)

S∗ = (U∗)TY, (6.7)

where Eig[Z] gives the eigenvectors of Z.

Remark 6 While the closed-form solution to problem (6.5), i.e., U∗ and S∗, re-

quires the knowledge of K, the solution given in (6.6) and (6.7) is suitable for any

K ∈ [1, N ]. For this reason, we first configure K = N to access the entire spectrum

of the stimulus of Y. Subsequently, the norms of all rows in S∗, i.e., ||S∗(i, :)||, are

evaluated. K is typically determined by counting rows yielding larger norms than a

predefined threshold.

6.3.2 Perturbation for Graph Privacy Preservation

Recall that U and S are the perturbed versions of U∗ and S∗ in (6.4), respectively.

As stated in (6.4), we maximize ||U−U∗||F and ||S−S∗||F , i.e., the perturbations of

the latent graph U∗ and stimulus S∗, while minimizing ||US−Y||F , i.e., the utility

loss of the observed graph-structured data Y.
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Given Y, U∗, and S∗, problem (6.4) can be recast to improve its mathematical

tractability, as given by

max
S∈RN×M ,U∈RN×N

∥U−U∗∥2F + β ∥S− S∗∥2F
∥US−Y∥2F

s.t. (6.4c), (6.4e).

(6.8)

Despite the conciseness of problem (6.8), it is challenging to obtain the optimal

solution due to the non-convexity of objective function and the non-convexity and

restrictive equality constraint in (6.4c). We propose to address problem (6.8) using

fractional programming [168]. By introducing an auxiliary variable α, problem (6.8)

can be reformulated as

max
U,S

∥U−U∗∥2F +β ∥S− S∗∥2F − α ∥US−Y∥2F

s.t. (6.4c), (6.4e).

(6.9)

In essence, the objective of problem (6.8) is to maximize α. Next, we solve prob-

lem (6.9) by optimizing α, U, and S in an alternating manner, as delineated in the

following.

Obfuscate Latent Graph Structure U

Given fixed α and S in the (i−1)-th AO iteration, i.e., α(i−1) and S(i−1) (i = 1, 2, · · · ),

in the i-th iteration, problem (6.9) is reduced to

min
U

α(i−1)
∥∥US(i−1) −Y

∥∥2
F
− ∥U−U∗∥2F

s.t. (6.4c), (6.4e).

(6.10)

Consider the constraint (6.4e), we rewrite U = [u1,V], where V ∈ RN×(N−1) collects

the rest of the columns-vectors of U except the first column u1. Likewise, S =

[s1,H]T , where s1 is the first row-vector of S and H ∈ R(N−1)×M collects the rest of

the row-vectors of S. Then, problem (6.10) can be rewritten as

min
V

α(i−1)
∥∥∥VH(i−1) −Y

∥∥∥2
F
− ∥V −V∗∥2F (6.11a)

s.t. VTV = IN−1, (6.11b)

uT
1V = 0, (6.11c)
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where U∗ = [u1,V
∗] with V∗ ∈ RN×(N−1) collecting the rest of the column-vectors

of U∗ apart from u1.

The objective function in (6.11) has the form of DC program:

min
V

g(V)− h(V), (6.12)

where g(V) = α(i−1)
∥∥VH(i−1) −Y

∥∥2
F

and h(V) = ∥V −V∗∥2F , both of which are

convex functions.

By using the difference of convex algorithm (DCA) [169], problem (6.11) can be

reformulated to a strongly convex optimization problem. At the l-th iteration of the

DCA (l = 1, 2, · · · ), we have

min
V

α(i−1)
∥∥VH(i−1) −Y

∥∥2
F
− ⟨V,∇h(Vl−1)⟩ (6.13a)

s.t. VTV = IN−1, (6.13b)

uT
1V = 0, (6.13c)

where ∇h(Vl−1) is a gradient of h(V) at Vl−1, the local point obtained in the

(l − 1)-th iteration of the DCA.

The objective function (6.13a) is convex. Consider the orthonormal vector variables

in constraint (6.13b); or in other words, the feasible solution region is on the Stiefel

manifold. Problem (6.13) is convex on the Stiefel manifold and can be uniquely

addressed utilizing the Stiefel manifold gradient descent [122] with the details below.

The Lagrangian of (6.13) is denoted as

L(V,Ψ,Φ) = α(i−1)
∥∥VH(i−1) −Y

∥∥2
F
− ⟨V,∇h(Vl−1)⟩

−1

2
tr
(
ΨT (VTV − IN−1)

)
− 1

2
tr
(
ΦT (uT

1V)
)
, (6.14)

where Ψ and Φ are the Lagrangian multipliers corresponding to (6.13b) and (6.13c),

respectively.

Applying the Karush-Kuhn-Tucker (KKT) conditions, we differentiate the Lagrangian

function regarding V and equate it to zero:

∇VL(V,Ψ,Φ) = ∇F(V)−VΨ− 1

2
u1Φ = 0, (6.15)
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where F(V) = α(i−1)
∥∥VH(i−1) −Y

∥∥2
F
−⟨U,∇h(Vl−1)⟩ is defined for the brevity of

notation, and ∇F(V) is the gradient of F(V).

By left multiplying VT on both sides of (6.15), we have

VT∇F(V)−VTVΨ = 0. (6.16)

We substitute (6.13b) into (6.16) and then reorganize (6.16), yielding

Ψ = VT∇F(V). (6.17)

By left multiplying uT
1 on both sides of (6.15), we have

uT
1∇F(V)− 1

2
uT
1 u1Φ = 0. (6.18)

We substitute (6.13c) into (6.18) and then reorganize (6.18), yielding

Φ = 2uT
1∇F(V). (6.19)

Since the constraint VTV is symmetric, Ψ is asymmetric and therefore Ψ = ∇F(V)TV.

By substituting (6.17) and (6.19) into (6.15), the gradient in (6.15) can be reformu-

lated to

∇VL(V,Ψ,Φ) = ∇VL(V) (6.20a)

= ∇F(V)−V∇F(V)TV − u1u
T
1∇F(V). (6.20b)

By running the Stiefel manifold gradient descent, problem (6.13) can be solved by

iteratively updating the gradient of the Lagrange function ∇VL(V) with (6.20) and

V with the right-hand scaled gradient projection method [122]:

V← π(V′ − τV∇VL(V)A(µ, τ)), (6.21)

where π(·) is the projection operator, i.e., π(X) = QIPT if X = QΣPT by singular

value decomposition (SVD) [122]; A(µ, τV) is a scaling matrix with µ ∈ (0, 1), i.e.,

A(µ, τV)) = (IN−1 + µτVV
T∇VL(V))−1, (6.22)
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and τV is the step size and is given by

τV =


∥V−V′∥2F

⟨V−V′,∇VL(V)−∇VL(V′)⟩ , in odd-numbered iterations,

⟨V−V′,∇UL(V)−∇VL(V′)⟩
∥∇VL(V)−∇VL(V′)∥2F

, in even-numbered iterations.
(6.23)

Here, V′ is the counterpart of V obtained at the previous Stiefel manifold gradi-

ent descent iteration, τV ∈ [τmin, τmax] with τmin and τmax being the minimum and

maximum step sizes, respectively.

Given the convexity of (6.13), the Stiefel manifold gradient descent can certainly

converge. Ul = [u1,V
l], the solution of U at the l-th iteration of the DCA, can be

obtained. Ul is taken as the local point in the following (l+ 1)-th iteration of DCA.

This process repeats until the convergence of the DCA, and U(i) is obtained.

Obfuscate Latent Spectral-Domain Stimulus S

Given U(i), problem (6.9) is reformulated to an unconstrained DC program:

min
S

g(S)− h(S), (6.24)

where g(S) = α(i−1)
∥∥U(i)S−Y

∥∥2
F

and h(S) = β ∥S− S∗∥2F , both of which are

convex functions. As a result, (6.24) can be solved by the DCA. More specifically,

at the l-th iteration of the DCA (l = 1, 2, · · · ), the optimization problem below is

addressed:

min
S
F(S) = g(S)− ⟨S,∇h(Sl−1)⟩, (6.25)

where ∇h(Sl−1) is a gradient of h(S) at Sl−1, the local point obtained in the (l− 1)-

th iteration of the DCA. Given its convexity, problem (6.25) is solved using the

gradient descent method. Specifically, S is updated by

S = S′ − τS∇F(S′), (6.26)

where S′ represent the matrix of S at the previous iteration of the gradient descent,

∇F(S) is the gradient of F(S), and τS is the step size. Upon the convergence of the

gradient descent method, Sl is obtained and used as the local point of the following

(l + 1)-th iteration of the DCA. Upon the convergence of the DCA, S(i) is obtained.
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Update α

Given U(i) and S(i), the value of α can be updated for the next AO iteration, i.e.,

α(i+1), as given by

α(i+1) =

∥∥U(i) −U∗
∥∥2
F

+ β
∥∥S(i) − S∗

∥∥2
F

∥U(i)S(i) −Y∥2F
. (6.27)

6.3.3 Complexity Analysis

Algorithm 2 summarizes the proposed AO-based algorithm that solves problem (6.9),

the above three parts are conducted in an alternating manner until the convergence

of α, i.e., ∥α(i+1) − α(i)∥ ≤ ϵAO with ϵAO → 0 being a preconfigured convergence

accuracy. Each AO iteration starts by running the DCA and the Stiefel manifold

gradient descent for U till convergence, followed by the DCA and the gradient

descent for S. Their respective convergence criteria are

∥∇VL(V)∥F ≤ ϵSM, ∥∇F(S)∥F ≤ ϵGD, (6.28)

∥Ul+1 −Ul∥ ≤ ϵDC, and ∥Sl+1 − Sl∥ ≤ ϵDC, (6.29)

where ϵSM, ϵGD, and ϵDC are the preconfigured accuracies for the Stiefel manifold

gradient descent, gradient descent, and DCA, respectively.

In each iteration of Algorithm 2, the cost of evaluating U is primarily influenced

by the SVD in (6.21) per Stiefel manifold gradient descent iteration, incurring a

cost of O(N3). The complexity of evaluating S is O(MN) per gradient descent

iteration, dominated by calculating the gradient of F(S). Therefore, the overall

cost of Algorithm 2 is O
((

MN log( 1
ϵGD

) + N3 log( 1
ϵSM

)
)

log( 1
ϵDC

) log( 1
ϵAO

)
)

, where

log( 1
ϵSM

), log( 1
ϵGD

), log( 1
ϵDC

), and log( 1
ϵAO

) give the numbers of iterations for the

Stiefel manifold gradient, gradient descent, DCA, and AO to converge, respectively.

6.4 Numerical Evaluation

Extensive simulations and experiments are carried out to gauge the proposed obfus-

cation technique for graph data, i.e., Algorithm 1, using a desktop computer with an

i7-8650U CPU and 16G RAM. By default, we set ϵAO = ϵSM = ϵGD = ϵDC = 10−5.
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Algorithm 2: The proposed AO-based obfuscation method for graph-

structured data

1 Initialization: Set ϵAO, ϵSM, ϵGD, ϵDC, µ, and l = 0; randomly initialize U0

and S0; calculate α0 by (6.27);

2 while α is yet to converge with accuracy of ϵAO do

3 for l = 0, 1, 2, · · · do

4 while ∥∇VL(V)∥F ≥ ϵSM do

5 Update τV by (6.23);

6 Compute τ = max(min(τV, τmax), τmin);

7 Update V by (6.21);

8 V′ ← V;

9 end

10 if Ul = Ul−1 then

11 Return to Ul;

12 else

13 Ul−1 ← Ul, l = l + 1;

14 end

15 end

16 for l = 0, 1, 2, · · · do

17 while ∥∇F(S)∥F ≥ ϵGD do

18 Update S by (6.26);

19 S′ ← S;

20 end

21 if Sl = Sl−1 then

22 Return to Sl;

23 else

24 Sl−1 ← Sl, l = l + 1;

25 end

26 end

27 Update α by (6.27);

28 end
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Graph Inference Attack: We assess the resistance of the new graph data obfus-

cation algorithm to graph interference attacks. Following is a list of the latest graph

inference techniques that can be used to launch graph interference attacks.

• Dong’s algorithm[18]: This is an alternating minimization algorithm that fixes

one variable and solves the others in an alternating manner to infer the optimal

Laplacian matrix under the assumption of smooth data.

• Kalofolias’ algorithm [19]: This primal-dual algorithm was designed to learn

the weighted adjacency matrix of graphs.

• Sardellitti’s TV graph learning algorithm [35]; This is a two-step strategy

consisting of (a) deriving the GFT basis out of data via AO, and (b) then

learning the graph Laplacian matrix using the sparsifying transform via convex

optimization technique, named “TV-based graph learning”.

• Sardellitti’s ESA graph learning algorithm [35]: Different from the TV-based

graph learning algorithm, this algorithm introduces a two-step strategy by

deriving the graph Laplacian using sparsifying transform, as well as the GFT

basis utilizing convex optimization, named “ESA graph learning” in the second

step.

• Humbert’s algorithm [36]: This method runs Riemannian manifold gradient

descent and linear cone programs in an alternating fashion. It learns graphs

from multivariate data with smoothness and band-limitedness.

Performance Metric: F-measure is used to measure the graph learning results

and is denoted as

F-measure = 2 · Precision · Recall

Precision + Recall
, (6.30)

where Precision = Eg ∩ Er/Er and Recall = Eg ∩ Er/Eg. Here, Eg and Er collect

ground-truth and detected graphs, respectively.

The correlation coefficient ρW(W0,W) (or ρW) between a graph detected by the
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graph leaning attacks and its corresponding ground-truth is expressed as [35]

ρW (W0,W) =

∑
ij W0ijWij√∑

ij W
2
0ij

√∑
ij W

2
ij

, (6.31)

where W is the weighted adjacency matrix of a detected graph with the (i, j)-th

element Wij, and W0 is the weighted adjacency matrix of the corresponding ground-

truth graph with the (i, j)-th element W0ij.

DP-based Benchmark: We consider the DP-based Gaussian mechanism as the

benchmark for the proposed Algorithm 2. In the DP-based mechanism, the DP

noise yields the Gaussian distribution with the variance of the noise given by [170]

σ2
DP =

2 ln (1.25/δ) ∆2

ϵ2
, (6.32)

where δ is the probability of information accidentally being leaked, ϵ is the privacy

budget, and ∆ is the global sensitivity.

As discussed in Section 6.1, no existing technique has been designed to protect the

latent information of graph-structured data in the existing literature. While DP is a

general approach to obfuscating data with a balance between privacy and utility, it is

unsuitable for graph-structured data, e.g., brain network data. Specifically, adding

DP noises to the GFT basis, U∗, is unacceptable and would breach the constraints,

e.g., the orthonormality of the GFT basis.

We apply DP to the observed graph-structured data Y. Here, ∆ =
∥U−U∗∥2F+β∥S−S∗∥2F

∥US−Y∥2F
.

However, the direct use of DP to perturb the graph-structured data can be ineffec-

tive in protecting the latent information, because the GFT basis characterizing the

latent graph structure is stringently constrained and less susceptible to the added

noises, as discussed below.

Remark 7 The latent graph structures of graph data are resistant to the Gaussian

DP noise. This is due to the fact that the GFT basis U∗ is solely determained by the

eigenvectors of YYT , while ŶŶT −Mσ2
DPI is an asymptotic unbiased estimator of

YYT and ŶŶT has the same eigenvectors as ŶŶT −Mσ2
DPI. Here, Ŷ = Y + n is

the perturbed version of Y with the DP noise added. n ∼ N (0, σ2
DPI) is the Gaussian

DP noise. Specifically, the expectation of ŶŶT over the Gaussian DP noise is given
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by

E(ŶŶT ) = YYT + Mσ2
DPI. (6.33)

Hence, the eigenvectors of E(ŶŶT ) and YYT are identical.

Without the DP noise, U∗ in (6.6) is solely determined by the eigenvectors of YYT .

In the presence of the DP noise, U∗ is given by

U∗ = Eig
[(
I− u1u

T
1

)
E(ŶŶT )

(
I− u1u

T
1

)T]
. (6.34)

Since E( 1
M
ŶŶT −σ2

DPI)= 1
M
YYT (i.e., 1

M
ŶŶT −σ2

DPI is an asymptotic unbiased

estimate of 1
M
YYT as M → ∞) based on (6.33) and the eigenvectors of ŶŶT −

Mσ2
DPI and ŶŶT are identical, U∗ is asymptotically approximately given by

U∗ ≈ Eig
[(
I− u1u

T
1

)
ŶŶT

(
I− u1u

T
1

)T]
. (6.35)

In this sense, perturbing the graph-structured data Y is less effective in perturbing

the latent graph structures of Y.

6.4.1 Performance Evaluation with Synthetic Data

We first generate random graphs using the widely adopted Random Geometric

model [124], and generate random graphs with six connections per node.

• Ground truth: With a graph created using the Random Geometric graph

model, we derive its ground-truth Laplacian, denoted by L0. We also obtain

the ground-truth GFT basis, denoted by U0, by taking the SVD of L0.

• Synthetic data: We produce the observed graph data Y = U0S0 with S0 =

[s0,1, · · · , s0,M ] ∈ RN×M randomly generated yielding s0,m ∼ N (0,Λ†
K), where

diag(ΛK) = (λ1, · · · , λK , 0, · · · , 0). We define the precision matrix of s0,m

as the eigenvalue matrix of L with the most significant (N −K) eigenvalues

replaced by 0, as done in [119].

• Obfuscated data (proposed Algorithm 2): The observable graph data Y is

obfuscated using Algorithm 2, where Y is the input to the algorithm to first

detect and then obfuscate U∗ and S∗. The obfuscated versions of U∗ and S∗

are U and S, respectively.

• Obfuscated data (DP-based benchmark): For a fair comparison with Algo-
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rithm 2, we start by gauging the variance of the convergent value of ||US−Y||F
under Algorithm 2. Then, we obfuscate Y by adding the DP noise to Y, i.e.,

Y+nDP, where nDP ∼ N (0, σ2I). In this way, the utility of Y can be consistent

between the proposed Algorithm 2 and the DP-based benchmark.

1)Convergence Analysis: Fig. 6.2 plots the convergence behaviors of Algorithm 2

with an increasing number of iterations, where K = 15, M = 300, and β = 0.1, 0.5,

1.0, 1.5, and 2.0. Fig. 6.2(a) plots the auxiliary variable, α, under different values of

β. Figs. 6.2(b)–6.2(d) plot the changes of ||U−U∗||F , ||S−S∗||F , and ||US−Y||F ,

respectively. It is observed in Figs. 6.2(a) and 6.2(c) that α and ||S − S∗||F grow

quickly at the beginning and then gradually converge at around the 20th and 50th

iterations, respectively. It is also observed that ||U−U∗||F first increases rapidly and

then drops slowly and converges. By contrast, ||US−Y||F first drops considerably,

and then increases slightly and converges, as shown in Figs. 6.2(b) and 6.2(d).

It is also shown in Fig. 6.2 that α, ||S−S∗||F , ||U−U∗||F , and ||US−Y||F change

differently with the value of β. Specifically, α increases, as β grows from 0.1 to 2.0.

||S−S∗||F increases as β grows from 0.1 to 1.5 and decreases slightly when β = 2.0.

However, ||U−U∗||F and ||US−Y||F show less clear dependence on β. Nevertheless,

we can choose a reasonable value for β, i.e., β = 1, that can achieve the smallest value

of ||US−Y||F and meanwhile maintain large ||U−U∗||F and ||S−S∗||F . Typically,

β is specified empirically, depending on the relative importance or preference of the

graph structure and stimulus. No additional experiments or computational overhead

is needed for specifying β.

Fig. 6.3 plots the changes of ||U − U∗||F , ||S − S∗||F and ||US − Y||F with an

increasing number of iterations under different values of K, where N = 30, and

β = 1. It is observed that ||U−U∗||F , ||S−S∗||F , and ||US−Y||F increase with K.

In other words, the bigger K can lead to better obfuscations of U and S, but the

utility of Y can be penalized as a cost. It is also observed that the growths rates of

||U−U∗||F , ||S− S∗||F , and ||US−Y||F decrease with the increase of K. This is

because when K is large enough, the graph learned from the observed data contains

almost all information, and a further increase of K has little impact on ||U−U∗||F ,

||S− S∗||F , and ||US−Y||F .
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Figure 6.2: The convergence performance of Algorithm 2 under different values of

β, where K = 15 and M = 300.

We note that K is the bandwidth of the observed graph-structured data Y, and

is not a parameter of the proposed obfuscation algorithm, i.e., Algorithm 2. The

correct identification of K is important to correctly extract the latent information,

especially in the presence of non-negligible observation noises. The value of K can

be experimentally specified at additional computational overhead, when extracting

the latent information U∗ and S∗ from Y. The additional overhead is negligible

due to the closed-form expressions derived, i.e., (6.6) and (6.7), that can be used

directly to specify K; see Remark 1. Nonetheless, the value of K can differ under

different detection criteria, e.g., different thresholds used to assess the significance

of each spectrum-domain component, as described in Remark 1. For generality,

we take multiple values for K to assess the proposed algorithm.
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Figure 6.3: The performance of Algorithm1 under different values of K, where

β = 1.0.

2)Comparisons with DP-based Method: For a fair comparison between Algorithm (2)

and the DP-based benchmark, we keep the utility consistent between the two algo-

rithms. Then, we evaluate the privacy budget ϵ required for the DP-based approach

to achieve the same perturbation variance as Algorithm 2, i.e., by using [170, Eq. (2)].

As shown in Fig. 6.4(c), the corresponding privacy budget ϵ of the DP-based method

is 0.5315 to achieve the same perturbation as Algorithm 2 under K = 15, or 0.4946

under K = 20. As the privacy budget decreases from 0.5315 to 0.4946, the per-

turbations of both methods on the graph data and their latent graph structures

and stimuli, i.e., ||US − Y||F , ||U − U∗||F , and ||S − S∗||F , increase. As shown

in Figs. 6.4(a) and 6.4(b), ||U − U∗||F and ||S − S∗||F are much larger under Al-

gorithm 2 than they are under the DP-based method, indicating the significantly

113



stronger perturbations of the latent graph structure U∗ and stimulus S∗ without

compromising the utility of the graph data Y under Algorithm 2.
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Figure 6.4: Comparison between Algorithm 1 and the DP-based method, where

β = 1 and K = 15, 20.

Fig. 6.5 compares Algorithm 2 and the DP-based approach by plotting the cu-

mulative distribution functions (CDFs) of their normalized differences between the

ground truths and the corresponding perturbed versions, i.e., ||U−U∗||F
||U∗||F

, ||S−S∗||F
||S∗||F

, and

||US−Y||F
||Y||F

. To plot the CDFs of Algorithm 2, we obfuscate 100 independently ran-

domly generated graph-structured data using the algorithm, where K is empirically

specified and preconfigured. Under a given K, for each random graph-structured

data, the variance of the perturbations on the graph data, i.e., ||US − Y||F , is

evaluated.

114



To effectively compare Algorithm 2 with the latest DP-based method, we evaluate

the privacy budget ϵ required for the DP-based method to achieve the same per-

turbation variance as Algorithm 2, i.e., by using [170, eq. 2]. Then, we perturb

the random graph-structured data using the DP-based approach under the privacy

budget, and extract the latent information (i.e., graph structure and stimulus) from

the DP-perturbed graph-structured data using the five state-of-the-art graph learn-

ing techniques with the K value (if needed). As a result of the randomness of the

DP noise, the privacy budget ϵ is within [0.3523, 0.8673] when K = 15, and within

[0.3269, 0.6857] when K = 20. It is observed that ||U−U∗||F
||U∗||F

and ||S−S∗||F
||S∗||F

are consis-

tently better under Algorithm 2 than under the DP-based method, indicating the

better obfuscation effect under Algorithm 2 than under the DP-based benchmark.
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Figure 6.5: The CDFs of ||U−U∗||F
||U∗||F

, ||S−S∗||F
||S∗||F

, and ||US−Y||F
||Y||F

under Algorithm 2 and

the DP-based benchmark, where β = 1, and K = 15, 20.
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Fig. 6.6 plots ||U−U∗||F
||U∗||F

versus ||S−S∗||F
||S∗||F

under Algorithm 2 and the DP-based method,

where nDP is consistent with Fig. 6.4(c) and the DP-based method is repeated

independently for 50 times. It is observed that the DP-based benchmark gives less

reliable obfuscation results than Algorithm 2, as it undergoes the randomness of the

DP noise. For example, the normalized obfuscation level of U and S ranges from

1.3 to 1.8 under the DP-based benchmark, and it is around 1.7 under Algorithm 2,

when the benchmark is expected to achieve consistent utility with Algorithm 2. It

is also noticed that under Algorithm 1, ||S−S∗||F
||S∗||F

is small when β = 0.1. With the

growth of β, ||S−S∗||F
||S∗||F

increases and tends to stabilize at around 1.85.

We further compare Algorithm 2 with the DP-based benchmark under different

state-of-the-art graph learning techniques utilized for graph inference attacks, in-

cluding Dong’s algorithm [18], Kalofolias’ algorithm [19], Sardellitti’s TV algo-

rithm [35], Sardellitti’s ESA algorithm [35], and Humbert’s algorithm [36].

For a fair comparison, all regularization parameters of the graph learning techniques

are tested and optimized accordingly. Again, we keep consistent utilities between

Algorithm 2 and the DP-based approach, and evaluate their resistance to the latest

graph inference attacks. Without loss of generality, we set β = 1 for Algorithm 2.

As shown in TABLE 6.1, Algorithm 2 is lower by 31.16% and 30.18% than the

DP-based approach in F-measure and correlation coefficient ρW, respectively. In

other words, the graphs extracted from the perturbed graph-structured data using

the latest graph learning techniques are significantly more dissimilar to their ground

truths under Algorithm 2. As a result, the attack success rates of the graph inference

attacks can be reduced dramatically.

Fig. 6.7 plots the CDFs of the F-measure and ρW values of Algorithm 1 and the

DP-based approach under the five graph inference attacks. As shown in the figure,

Algorithm 1 is substantially more resistant to the graph inference attacks than the

DP-based method due to its significantly weaker similarity between the latent graph

structures learned by the graph inference attacks and the ground truths.

Fig. 6.8 plots the attack success rates of the five graph inference attacks on Al-

gorithm 2 and the DP-based approach, where the x-axis provides the threshold of
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Figure 6.6: ||U−U∗||F
||U∗||F

versus ||S−S∗||F
||S∗||F

, where Algorithm 2 and the DP-based method

are compared under different β values and K = 20.
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F-measure or ρW, above which a graph inference attack is treated as successful. As

shown in the figure, Algorithm 2 allows dramatically lower attack success rates for

the five attacks. Suppose that a graph inference attack is successful if the F-measure

is larger than 0.5; i.e., the F-measure threshold is 0.5. The attack success rates of all

five graph interference attacks are 100% under the DP-based approach. By contrast,

Algorithm 2 resists all five attacks with an attack success rate of zero.

6.4.2 Results on Attention-Deficit Hyperactivity Disorder

We employ the proposed Algorithm 2 to protect the privacy of a real-world dataset,

i.e., the brain functional dataset with ADHD. The studied ADHD dataset comprises

the data sample of 42 right-handed boys aged between 11 and 16 years old1. Each

brain is segmented into 90 ROIs, following an anatomical automatic labeling tem-

plate. Every node represents an ROI, and there are 232 samples per ROI in the

1The dataset is obtained from the ADHD-200 global competition database (https://www.

nitrc.org/projects/neurobureau/).
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Figure 6.8: Attack success rates of Algorithm 2 and the DP-based method. K = 15,

N = 30, M = 300, and β = 1.

time domain [127]. The observed graph-structured brain data yields Y ∈ R90×232.

Fig. 6.9 plots the convergence behaviors of α, ||U−U∗||F
||U∗||F

, ||S−S∗||F
||S∗||F

, and ||US−Y||F
||Y||F

regarding subject 10 in the ADHD dataset, where we set K = 55 and different

β values are tested. We also plot ||U−U∗||F
||U∗||F

versus ||S−S∗||F
||S∗||F

concerning subject 10

of the dataset in Fig. 6.10. Consistent observations are made here with synthetic

data (see Figs. 6.2 and 6.6), indicating the reliability of the Algorithm 2 in practical

scenarios.

We also plot the CDF of ||U−U∗||F
||U∗||F

, ||S−S∗||F
||S∗||F

, and ||US−Y||F
||Y||F

by considering all subjects

in the ADHD dataset in Fig. 6.11. We see that the Algorithm 2 consistently achieves

better performance than the DP-based method by providing more significant obfus-

cations on U and S in Figs. 6.11(a) and 6.11(b) while maintaining the consistent

utility Y in Fig. 6.11(c).

Using the graph learning algorithm developed in [35], namely, Sardellitti-TV [35],

we can learn the brain functional networks from the observed data Y. Then, we
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Figure 6.9: The convergence behavior of Algorithm 2 regarding subject 10 of the

ADHD dataset, where K = 55.

obfuscate the GFT basis U and the stimulus S, using Algorithm 2 and its DP-based

benchmark. Both the original and the obfuscated brain networks, connecting the

ROIs are constructed as weighted adjacent coefficients. We visualize the learned

brain networks by the BrainNet Viewer toolbox [128].

Fig. 6.12 visualizes the learned brain functional networks (from the ground truths,

and the obfuscated versions based on Algorithm 2 and the DP-based benchmark)

from three different views of a brain, i.e., the sagittal view, axial view, and coronal

view. To better display the differences between the brain functional networks learned

from the ground truth and its obfuscated versions, we transform the brain functional

networks into the weighted adjacency matrices and show them in Fig. 6.13. It is
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found that the weighted adjacency matrix learned from the obfuscated version based

on Algorithm 2 differs more substantially from that learned from the ground truth,

compared to the obfuscated version based on the DP-based benchmark. In other

words, Algorithm 2 can more effectively perturb the GFT basis and stimuli with

little impact on the utility of the observed data.

TABLE 6.2 compares Algorithm 2 and the DP-based method in their resistance

to the latest graph interference attacks on all subjects in the ADHD dataset. F-

measure and ρW are used to measure the resistance. For each graph inference

method considered, the learned graphs from the original observed data are taken

as the ground truths, and then obfuscated using Algorithm 2 and the DP-based

benchmark. As shown in the table, Algorithm 1 is more robust to all the considered

graph inference attacks than the DP-based method, achieving lower mean scores in

both F-measure and ρW. In particular, TABLE 6.2 shows that Algorithm 2 is at

least 36.39% and 36.55% better than the DP-based benchmark in F-measure and

ρW, respectively.

6.5 Concluding Remark

This chapter delivered a new privacy perturbation algorithm to protect the privacy

of the latent graph structures and stimuli of graph-structured data. Specifically, we

formulated a new multi-objective problem and revealed the limitation of DP. The

new algorithm was developed to decouple the multi-objective problem and obfuscate

the latent graph structures and stimuli in an alternating manner. Experiments

performed on synthetic graph data and the practical ADHD dataset demonstrated

that our approach can significantly outperform its DP-based benchmark under graph

inference attacks. The approach can have extensive applications to personal health

records, finance transactions, and other graph-structured data.
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Figure 6.10: ||U−U∗||F
||U∗||F

versus ||S−S∗||F
||S∗||F

for subject 10, where Algorithm 2 and the

DP-based method are compared under different values of β, and K = 55.
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Figure 6.11: The CDFs of ||U−U∗||F
||U∗||F

, ||S−S∗||F
||S∗||F

, and ||US−Y||F
||Y||F

regarding all subjects in

the ADHD dataset.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.12: Visualization of the brain network from the sagittal, axial, and coronal

views using BrainNet Viewer. The learned graphs from the data of (a)-(c) the

original observation, (d)-(f) the DP-based method, (g)-(i) the proposed Algorithm 1.
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Figure 6.13: The weighted adjacency matrices of the learned graphs from the data

of (a) the original observation, (b) the DP-based method, and (c) the proposed

Algorithm 1.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we introduced a new AO-based graph learning technique to excavate

the graphs underlying observed signals. To surpass the fidelity penalized by the

AO-based approximation, we proposed a new graph learning technique to efficiently

infer the graph structure underlying observed graph signals by deriving a new closed-

form analytic expression for the GFT basis. The new graph learning technique was

applied to analyze the evolution of the COVID-19 pandemic and reveal the underly-

ing relationship and spreading pattern among different countries. Furthermore, we

proposed a new algorithm to protect the privacy of the latent graph structure and

stimuli of graph-structured data.

Chapter 3 proposed a graph learning technique, which learned weighted and undi-

rected graph topologies, more specifically, the graph Laplacian matrices, from fMRI-

based, band-limited brain signals. Extensive experiments show that our new graph

learning technique can efficiently infer the graph of band-limited signals with im-

proved accuracy, compared to the state-of-the-art method. This chapter is supported

by the under-reviewed paper at TSIPN [167].

Chapter 4 developed a new graph learning technique to efficiently infer the graph

structure of observed band-limited graph signals. The graph Laplacian can be used
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to analyze network properties or reconstruct missing data resulting from faulty mea-

surements. Simulations and experiments showed that our method outperforms the

status quo in accuracy and efficiency. This chapter is supported by the journal

publication at SP [171].

Chapter 5 designed a graph learning technique to analyze the evolution of the

COVID-19 pandemic and reveal the underlying relationship and spreading pattern

among different countries. Extensive numerical tests are performed to assess the

graph learning reliability of the new method. Compared with the latest techniques,

the new algorithm has the minimum RMSE and the R2 with at least 33.3% and

11.11% improvements, respectively, thereby corroborating the results of our COVID-

19 analysis. This chapter is supported by the journal publication at JBHI [172].

Chapter 6 presented a new approach to preserving the privacy of the latent graph

structures and stimuli of graph data while maximizing the utility of the graph data.

Extensive experiments conducted on synthetic graph data and the real-world ADHD

dataset demonstrated that our approach can significantly outperform its DP-based

benchmark under graph inference attacks. This chapter is supported by the journal

publication at TIFS [173].

7.2 Future Work

Graph learning techniques for time-series data have been widely used in real ap-

plications while there are still issues that need to be solved. Moreover, preserving

the privacy of graph-structured data is an intricate and challenging undertaking.

Therefore, our future work will be focused on the following aspects:

• Dynamic or time-varying networks are of paramount importance in numerous

real-world applications, and research endeavors to acquire valuable insights

from such data form a crucial aspect of graph learning. In our future works, a

primary focus will be devoted to the development of graph learning techniques

that effectively capture and model the temporal dynamics inherent in graphs.

Specifically, our endeavors will involve the design of dynamic graph networks

capable of accurately representing and encapsulating the intricate changes in
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structure and evolving properties that characterize time-varying networks.

• In our current work, we focused solely on graph learning from time series data,

overlooking other important features that are relevant to graph clustering and

community detection. Another focus of our future work is to expand our scope

to explore graph learning techniques based on multi-feature data, such as the

location and air quality in temperature data. Apart from inferring the graph

topology, we will uncover underlying patterns, similarities, and relationships

among nodes based on their feature attributes to achieve graph clustering and

community detection.

• DP provides a systematic and measurable framework for preserving privacy in

data analysis. To preserve the privacy of latent graph structures and stimuli

of graph-structured data, we will undertake a thorough exploration and refine-

ment of advanced methodologies building upon our existing techniques. Our

upcoming endeavors involve conceptualizing and developing a novel method

that integrates DP, reinforcing the privacy foundations of graph-structured

data. Furthermore, we will extend our focus to the convergence of privacy and

federated learning. Here, we will explore innovative approaches to strike a del-

icate balance between safeguarding individual privacy within graph networks

and leveraging the potential of federated learning for holistic insights.
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Appendix A

Appendix for Chapter 3

The augmented Lagrangian of (3.37) is given by

L (Λ1,Λ2,C,Z) = tr
(
Λ1T̃1

)
+ tr

(
Λ2T̃2

)
− log det (Λ1)

− log det (Λ2) + tr
(
ZT
(
V1Λ1V

T
1 + V2Λ2V

T
2 −C

) )
+

ρ

2

∥∥V1Λ1V
T
1 + V2Λ2V

T
2 −C

∥∥2
F
, (A.1)

where ρ is the step size.

By following the standard ADMM framework, we can update the primal variables,

Λ1, Λ2, and C, and the dual variable Z in an alternating manner in the following

steps.

A.1 Update Λ1 and Λ2

Based on the primal variables Λ′
1, Λ

′
2, and Cl, and the dual variable Z′ obtained

in the last iteration, the primal variable in the current iteration, i.e., Λl+1
1 , can be

obtained by minimizing the augmented Lagrangian:

Λ1 = argmin
Λ1⪰0

L (Λ′
1,Λ

′
2,C

′,Z′) (A.2)

= argmin
Λ1⪰0

{
ρ

2

∥∥∥∥Λ′
1+

1

ρ
(T̃1 + Z̃1 − ρX̃1)

∥∥∥∥2
F

− log det (Λ′
1)

}
,

where Z̃1 = VT
1 (Z′)TV1 and X̃1 = VT

1 (C′ −V2Λ
′
2V

T
2 )V1.
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To solve (A.2), we set the first-order derivative of ρ
2

∥∥∥Λ′
1 + 1

ρ
(T̃1 + Z̃1 − ρX̃1)

∥∥∥2
F
−

log det (Λ′
1) to 0, i.e.,

ρΛ′
1 − (Λ′

1)
† = −

(
T̃1 + Z̃1 − ρX̃1

)
. (A.3)

Taking the orthogonal eigenvalue decomposition of the right-hand side (RHS) of

(A.3) yields ρΛ′
1−(Λ′

1)
† = −Q1Ξ1Q

T
1 , Then, we left multiply QT

1 and right multiply

Q1 on both sides and obtain ρΛ̃′
1− (Λ̃′

1)
† = −Ξ1 Λ̃′

1i =
−ρξ1i+

√
ρ2ξ21i+4ρ

2ρ
. The optimal

solution to (A.2) is given by

Λ1 = Q1Λ̃
′
1Q

T
1 , (A.4)

with the diagonal matrix Λ̃′
1 = diag(Λ̃′

11, . . . , Λ̃
′
1K). Given Λ1, the primal variable

in (l + 1)-th iteration, e.g., Λ2, can be obtained in the same way as Λ1.

A.2 Update C

We proceed to update the primal variable C. Given the updated primal variables

Λ1 and Λ2 in the current iteration, C is obtained as

C = argmin
C

L
(
Λ1,Λ2,C

′,Z′) (A.5)

= argmin
C

{
ρ

2

∥∥∥∥C′ −
(
1

ρ
(Z′)T +V1Λ

′
1V

T
1 + V2Λ

′
2V

T
2

)∥∥∥∥2
F

}
.

Consider the constraints I⊙C ≥ 0 and A⊙C ≤ 0 in (3.37); the diagonal elements

are non-negative and the off-diagonal elements are non-positive. We obtain the

solution to (A.5):

C= I⊙
[

1

ρ
(Z′)T + V1Λ1V

T
1 + V2Λ2V

T
2

]
+

+A⊙
[

1

ρ
(Z′)T + V1Λ1V

T
1 + V2Λ2V

T
2

]
−
. (A.6)

A.3 Update Z

Given the primary variables Λ1, Λ2 and C, the dual variable Z can be updated by

Z = Z′ + ρ
(
V1Λ1V

T
1 + V2Λ2V

T
2 −C

)
. (A.7)
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Appendix B

Appendix for Chapter 4

B.1

The equivalence is proved between the orthogonality requirement and the orthogonal

projection, as follows.

1) Proof of sufficiency condition: Suppose that PUK = UKU
T
K is the orthogo-

nal projection on the subspace spanned by the column-vectors of UK. PUKUK =

UKU
T
KUK = UK. By multiplying UT

K to the left of both sides of UKU
T
KUK = UK,

we obtain

UT
KUKU

T
KUK = UT

KUK. (B.1)

Since UK is a full column rank matrix, UT
KUK is a non-singular matrix. By multi-

plying (UT
KUK)−1 to the left of both sides of (B.1), we have

(UT
KUK)−1(UT

KUK)(UT
KUK) = (UT

KUK)−1UT
KUKI. (B.2)

As a result, we conclude that UT
KUK = I, i.e., UK is orthonormal.

2) Proof of necessary condition: Suppose that UT
KUK = I. Based on the definition of

orthogonal projection, we have PUK = UK(UT
KUK)−1UT

K = UKU
T
K. In other words,

PUK is the orthogonal projection on the subspace spanned by the column-vectors

of UK. In summary, the orthogonal requirement and the orthogonal projection

are equivalent. The orthogonality requirement is preserved in (4.12) by using the

orthogonal projection PUK .
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B.2

Problem (4.15) is an unconstrained optimization problem that can be converted to

a problem defined on a Grassmann manifold. The Grassmann manifold is a closed

set, the maximum or minimum of a continuous function defined on the closed set,

e.g., the optimal solution to (4.15), exists [174].

Suppose that the eigenvalues of
(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T
are σ1 ≥ σ2 ≥ · · · ≥

σN , corresponding to the eigenvectors {v1, · · · ,vN}. Let S1 = span {v1, · · · ,vK},

corresponding to the K largest eigenvalues {σ1, · · · , σK}. Let S2 (S2 ̸= S1) be any

other K-dimensional subspace. Let E0 = S1 ∩ S2 and suppose that S1 = E0 ⊕ E1

and S2 = E0 ⊕ E2, where E1 is the subset of S1 and E2 is the subset of S⊥
1 , i.e.,

E1 ⊂ span {v1, · · · ,vK} and E2 ⊂ span {vK+1, · · · ,vN}; and S⊥
1 is the orthogonal

complement of S1. Suppose that dim(E1) = dim(E2) = t. Based on the Minimax

theorem,

tr
(
PE1

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T) ≥ tσK ;

tr
(
PE2

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T) ≤ tσK+1.
(B.3)

As a result, we have

tr
(
PS1

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T )
=tr

(
PE0

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T)
+tr
(
PE1

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T)
≥tr

(
PE0

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T)
+tr
(
PE2

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T)
=tr

(
PS2

(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T)
, (B.4a)

where the two equations are based on S1 = E0 ⊕ E1 and S2 = E0 ⊕ E2. Hence, the

projection of
(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)
is the largest on the span associated with

the K largest eigenvalues. The solution to (4.15) is U∗
K = span {v1, · · · ,vK}, i.e.,

the K largest eigenvalues of
(
I− u1u

T
1

)
YYT

(
I− u1u

T
1

)T
.
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B.3

ADMM is an augmented Lagrangian method. With the step size ρ (e.g., ρ = 1 by

default in Section 4.6), the augmented Lagrangian of (4.26) is given by

L (Λ1,Λ2,C,Z) = tr
(
Λ1T̃1

)
+ tr

(
Λ2T̃2

)
−M log det (Λ1) (B.5a)

−M log det (Λ2) + tr
(
ZT
(
V1Λ1V

T
1 + V2Λ2V

T
2 −C

) )
(B.5b)

+
ρ

2

∥∥V1Λ1V
T
1 + V2Λ2V

T
2 −C

∥∥2
F
, (B.5c)

where Z is the dual variable associated with (4.26c).

Following the standard ADMM framework, we update the primal variables, Λ1, Λ2,

and C, and the dual variable Z in an alternating manner:

Update Λ1 and Λ2: Based on Λl
2, C

l, and Zl obtained in the l-th iteration, Λl+1
1

in the (l + 1)-th iteration can be obtained by

Λl+1
1 =arg minΛ1⪰0 L

(
Λ1,Λ

l
2,C

l,Zl
)

(B.6)

= arg minΛ1⪰0

{
ρ

2

∥∥∥∥Λ1 +
1

ρ
(T̃1 + Z̃1 − ρX̃1)

∥∥∥∥2
F

−M log det
(
Λl

1

)}
,

where Z̃1 = VT
1 (Zl)TV1 and X̃1 = VT

1 (Cl−V2Λ
l
2V

T
2 )V1. By setting the first-order

derivative of L
(
Λ1,Λ

l
2,C

l,Zl
)

with respect to Λ1 to 0, we have

ρΛ1 −M(Λ1)
† = −(T̃1 + Z̃1 − ρX̃1). (B.7)

Taking the orthogonal eigenvalue decomposition of the right-hand side of (B.7) yields

ρΛ1 − M(Λ1)
† = Q1Ξ1Q

T
1 . Then, we left multiply QT

1 and right multiply Q1

on both sides, yielding ρΛ̃1 − M(Λ̃1)
† = Ξ1. Λ̃1 = QT

1Λ1Q1. Here, Q1 is the

unitary matrix with Q1Q
T
1 = I. The diagonal matrix Ξ1 = diag(ξ11, · · · , ξ1K)

collects the eigenvalues of (T̃1 + Z̃1 − ρX̃1). Using the quadratic formula, the non-

negative solution to ρΛ̃1 −M(Λ̃1)
† = Ξ1 is Λ̃1i =

−ρξ1i+
√

ρ2ξ21i+4Mρ

2ρ
. With Λ̃1 =

diag(Λ̃11, · · · , Λ̃1K), the solution to (B.6) is

Λl+1
1 = Q1Λ̃1Q

T
1 , (B.8)

Given Λl+1
1 , the primal variable Λl+1

2 can be obtained in the same way.
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Update C: Given Λl+1
1 and Λl+1

2 in the (l + 1)-th iteration, we obtain

Cl+1 =arg min
C

L
(
Λl+1

1 ,Λl+1
2 ,Cl,Zl

)
=

arg min
C

{
ρ

2

∥∥∥∥Cl −
(

1

ρ
(Zl)T + V1Λ

l+1
1 VT

1 + V2Λ
l+1
2 VT

2

)∥∥∥∥2
F

}
.

(B.9)

Consider the constraints I⊙C ≥ 0 and A⊙C ≤ 0 in (4.26); the diagonal elements

are non-negative and the off-diagonal elements are non-positive. We obtain the

solution to (B.9):

Cl+1 = I⊙
[

1

ρ
(Zl)T + V1Λ

l+1
1 VT

1 + V2Λ
l+1
2 VT

2

]
+

+A⊙
[

1

ρ
(Zl)T + V1Λ

l+1
1 VT

1 + V2Λ
l+1
2 VT

2

]
−
.

(B.10)

Update Z: Given Λl+1
1 , Λl+1

2 and Cl+1, then Zl+1 can be obtained by

Zl+1 = Zl + ρ
(
V1Λ

l+1
1 VT

1 + V2Λ
l+1
2 VT

2 −Cl+1
)
. (B.11)

The convergence criterion of the ADMM is ∥Cl+1−Cl∥/∥Cl∥ < ϵ and
∥∥Zl+1 − Zl

∥∥ / ∥∥Zl
∥∥ <

ϵ, where ϵ is a predefined threshold.
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