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Purpose: Neutron capture enhanced particle therapy (NCEPT) is a proposed augmentation of charged particle therapy that
exploits thermal neutrons generated internally, within the treatment volume via nuclear fragmentation, to deliver a biochemi-
cally targeted radiation dose to cancer cells. This work is the first experimental demonstration of NCEPT, performed using
both carbon and helium ion beams with 2 different targeted neutron capture agents (NCAs).
Methods and Materials: Human glioblastoma cells (T98G) were irradiated by carbon and helium ion beams in the presence
of NCAs [10B]-BPA and [157Gd]-DOTA-TPP. Cells were positioned within a polymethyl methacrylate phantom either laterally
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adjacent to or within a 100 £ 100 £ 60 mm spread out Bragg peak (SOBP). The effect of NCAs and location relative to the
SOBP on the cells was measured by cell growth and survival assays in 6 independent experiments. Neutron fluence within the
phantom was characterized by quantifying the neutron activation of gold foil.
Results: Cells placed inside the treatment volume reached 10% survival by 2 Gy of carbon or 2 to 3 Gy of helium in the pres-
ence of NCAs compared with 5 Gy of carbon and 7 Gy of helium with no NCA. Cells placed adjacent to the treatment volume
showed a dose-dependent decrease in cell growth when treated with NCAs, reaching 10% survival by 6 Gy of carbon or helium
(to the treatment volume), compared with no detectable effect on cells without NCA. The mean thermal neutron fluence at the
center of the SOBP was approximately 2.2 £ 109 n/cm2/Gy (relative biological effectiveness) for the carbon beam and
5.8 £ 109 n/cm2/Gy (relative biological effectiveness) for the helium beam and gradually decreased in all directions.
Conclusions: The addition of NCAs to cancer cells during carbon and helium beam irradiation has a measurable effect on cell
survival and growth in vitro. Through the capture of internally generated neutrons, NCEPT introduces the concept of a bio-
chemically targeted radiation dose to charged particle therapy. NCEPT enables the established pharmaceuticals and concepts
of neutron capture therapy to be applied to a wider range of deeply situated and diffuse tumors, by targeting this dose to micro-
infiltrates and cells outside of defined treatment regions. These results also demonstrate the potential for NCEPT to provide an
increased dose to tumor tissue within the treatment volume, with a reduction in radiation doses to off-target tissue. Crown
Copyright � 2024 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/)
Introduction
Radiation therapy aims to treat cancer by delivering a thera-
peutic dose to the entire tumor while minimizing radiation
exposure to healthy tissue. Of the various radiation therapy
methods, charged particle therapy (either proton or heavy
ion therapy1-4) is among the most effective at achieving this
goal. This is because charged particles can deliver a highly
conformal radiation dose with a small number of treatment
fractions, even to deep tumors, because of the physical char-
acteristics of an ion’s Bragg peak. The energy loss of a
charged particle is inversely proportional to the square of its
velocity, resulting in the majority of its kinetic energy being
deposited at the end of its track just before it comes to rest.

The effectiveness of charged particle therapy is limited by
the accuracy with which the tumor can be delineated during
preirradiation positron emission tomography/computed
tomography or positron emission tomography/magnetic
resonance imaging, because unresolvable microinfiltrates
and micrometastasis cannot be deliberately targeted for irra-
diation. Furthermore, although the entrance dose — the
dose received by tissue through which the beam passes
before reaching the tumor — is lower than for photon ther-
apy, it remains substantial and must be carefully limited
during treatment planning. Additionally, inelastic collisions
between accelerated charged particles and the target result
in a range of nuclear fragments, including lighter ions and
neutrons that deposit additional dose in surrounding tis-
sues.2 The neutron component of this radiation field extends
almost isotropically around the target volume, and because
of scattering within the patient, the neutrons rapidly lose
kinetic energy and approach thermal equilibrium with their
surroundings.4,5

An extension of charged particle therapy that utilizes the
neutron component of the radiation field within the patient
via neutron capture was proposed in 2018 (Fig. 1). Neutron
capture therapy (NCT) has been previously used for cancer
treatment by systemic administration of a neutron capture
agent (NCA) to the patient and irradiating the target tissue
with an external neutron source. In NCT, thermal neutrons
are captured by isotopes with high thermal neutron capture
cross-sections, releasing high-linear energy transfer (LET)
charged particles that damage cancer cells.6-9 However, the
use of an external neutron source limits the depth at which
sufficient neutrons can be delivered to the target without
causing excessive radiation-induced proximal tissue injury.

Neutron capture enhanced particle therapy (NCEPT)
aims to combine the spatial precision of charged particle
therapy with the precise biochemical targeting of NCT.
NCEPT offers 2 major benefits compared with conventional
charged particle therapy:

1. The dose to the target volume can be increased relative to
the surrounding tissue (including the entrance region)
because of the additional contribution of the neutron
capture dose.

2. Because the neutron field is generated internally and
extends beyond the primary treatment volume, a bio-
chemically targeted NCA that preferentially concentrates
in cancer cells can deliver a therapeutically useful dose
even to small satellite lesions beyond the primary target
volume.

The theoretical feasibility of this method has previously
been established via Monte Carlo simulations, demonstrat-
ing that a representative proton or heavy ion therapy treat-
ment plan will generate a sufficient thermal neutron field to
deliver an additional dose of at least 10% with achievable tis-
sue concentrations of both 10B- and 157Gd-based NCAs.10

Although dose enhancement has previously been reported
experimentally during proton therapy in the presence of
natural boron by Cirrone et al11 and Bl�aha et al12 and attrib-
uted to proton-11B fusion, it now appears that the vast
majority of this effect is actually due to neutron capture by
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Fig. 1. Physics of neutron capture enhanced particle therapy. As ions in the beam traverse tissues proximal to the target,
some undergo nuclear interactions with target matter, creating a variety of nuclear fragmentation products, including neutrons,
which disperse in the body and thermalize. Target-specific agents deliver 10B or 157Gd payloads to cancer cells, where thermal
neutrons are captured, resulting in emission of short-range (4-8 mm for 10B, 10-20 nm for 157Gd), high-linear energy transfer
particles. Although the particle beam treats the bulk of the tumor, the neutrons released are captured anywhere that neutron
capture agents are present - inside and outside the primary treatment volume - that would have otherwise remained unirradi-
ated.
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10B,13,14 which has a natural isotopic abundance of 19.8%,15

rather than proton-11B fusion (with Jacobsen et al13 report-
ing that the number of high-LET particles produced by neu-
tron capture outnumber those produced via fusion by a
ratio of »4000 § 700:1). This hypothesis is especially sup-
ported strongly by the failure of the result to be reproduced
experimentally in the absence of a surrounding phantom
(which is necessary to generate a neutron field but should
not be necessary for proton-11B fusion).16,17 Therefore, if
neutron capture is the dominant cause of dose enhance-
ment, then the effect should also be observed during helium
or carbon ion therapy in the presence of enriched 10B (or
other high neutron capture cross-section isotopes such as
157Gd), where proton fusion plays no role whatsoever.

In this paper, the NCEPT principle is established in vitro
using 2 NCAs irradiated by helium and carbon ions. The
COOH
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Fig. 2. Neutron capture agents used in this work and their resp
borono-L-phenylalanine; (b) 157Gd-enriched 2,20,200-[10-{2-[(tri
decane-1,4,7-triyl]triacetatogadolinium(III) trifluoroacetate.34,42
first, 4-borono-L-phenylalanine ([10B]BPA; Fig. 2a) is an
unnatural amino acid that has been used clinically in con-
ventional neutron capture therapy for more than 2 deca-
des.18 BPA is transported primarily through amino acid
transporter LAT1, and, to a lesser extent, LAT2 and ATB(0
+).19 LAT1 is a plasma membrane amino acid transporter
that is expressed in a variety of cancer tissues, and high
expression is associated with poor prognosis.20 10B has a
high capture cross-section for thermal neutrons (»3800
barns). Upon capturing a thermal neutron, an excited 11B*
nucleus is formed, which immediately decays to release 2
high LET ions— an a particle and a + 7Li nucleus21 — with
ranges of approximately 4.1 and 7.7 mm in tissue, respec-
tively.

The second NCA is the novel compound 2,20,200-[10-
{2-[(triphenylphosphonio)methyl]benzyl}- 1,4,7,10-
O

O

O

O

O

N

N

GdN

P

d [158Gd]* 158Gd + + 7.94 Mev

[157Gd]DOTA-TPP

+nth

+

ective thermal neutron capture reactions. (a) 10B-enriched 4-
phenylphosphonio)methyl]benzyl}-1,4,7,10-tetraazacyclodo-



ARTICLE IN PRESS
4 Howell et al. International Journal of Radiation Oncology � Biology � Physics
tetraazacyclododecane-1,4,7-triyl]triacetatogadolinium(III) tri-
fluoroacetate ([157Gd]DOTA-TPP; Fig. 2b), which uses the
mitochondria-targeting moiety triphenylphosphonium (TPP)
to accumulate 157Gd in the inner mitochondrial membrane.
TPP is particularly efficient at accumulating in negatively
charged membrane compartments.22 This compound prefer-
entially accumulates in cancer cells because of the increased
mitochondrial function in many cancers.23-25 157Gd is a sta-
ble isotope of gadolinium with an extremely high thermal
neutron capture cross-section (»2.55 £ 105 barns). Neutron
capture by 157Gd results in the formation of an excited
158Gd* nucleus; its subsequent de-excitation results in the
emission of an average of 5 Auger and 0.69 internal conver-
sion electrons, plus an average of 1.8 high energy prompt g
photons and 1 recoil 158Gd nucleus.26-29 The high LET
Auger electrons have a range of the order of 10 to 20 nm;
accumulation of damage to the inner mitochondrial mem-
brane will, in most cases, lead to apoptosis.30

Demonstrated in the following sections is the effect of
NCEPT on human glioblastoma multiforme cell culture
when irradiated with helium and carbon ion beams, empha-
sizing the potential significance of including neutron cap-
ture to the treatment volume itself as well as the
surrounding area in the overall treatment plan.
Methods and Materials
The experiments described in the following sections have 3
primary objectives:

1. Confirming the magnitude and distribution of the pre-
dicted thermal neutron fluence in and around the pri-
mary radiation field (target volume)

2. Determining whether the results predicted via the previ-
ous simulation study would translate to effective attenua-
tion of cancer cell proliferation in vitro, using 4He and
12C ion beams and 2 neutron capture agents

3. Determining the effect of neutron capture on cancer cells
outside of the primary radiation field but still within the
thermal neutron field generated by the heavy ion
irradiation

The experimental configuration is shown in Figure 3. All
experimental measurements were performed using the
Heavy Ion Medical Accelerator in Chiba biologic beamline
at the National Institute for Quantum Science and Technol-
ogy in Japan.

Phantom and irradiation conditions

A multilayer cubic polymethyl methacrylate (PMMA) phan-
tom (r = 1.19 g/cm3) was assembled with total dimensions
of 300 £ 300 £ 300 mm3. PMMA slab inserts were con-
structed with either paired circular indentations for holding
gold foils or with single or double cut outs for holding T25
flasks filled with medium (Fig. 3). The cut outs for the T25
flasks were positioned so that the cell layer (at the bottom of
the flasks) was located at depth Z2 (100 mm) in PMMA,
perpendicular to the beam.

For both carbon and helium ion beams, a
100 £ 100 £ 60 mm3 spread-out Bragg peak (SOBP) was
used, corresponding to a depth range of 80 to 140 mm in
PMMA. The SOBPs were generated via passive scattering of
monoenergetic 150 and 290 MeV/u helium and carbon ion
beams, respectively, with the distal edges (ie, the maximum
depths) of the SOBPs corresponding to the energies of the
respective monoenergetic ion beams.
Thermal neutron fluence measurements

The differential neutron activation method for thermal neu-
tron fluence measurement was validated beforehand via
Monte Carlo simulations (as described in the Supplemen-
tary Materials Section 1; physics models are detailed in
Table E1 and the results obtained via simulation are com-
pared with ground truth in Tables E3 and E4).

The neutron detector consisted of pairs of thin disc
foils of pure 197Au (average mass = 12.075 mg;
r = 19.32 g.cm�3; nominal r = 3 mm; nominal
T = 0.02218 mm); 1 disc was bare and the other was
covered by a 1-mm layer of cadmium on both sides to
absorb thermal neutrons. Paired foils were placed at dif-
ferent positions in a 5-mm thick PMMA layer, which
was then inserted into the phantom at depths of 48 mm
(proximal to the SOBP), 100 and 133 mm (both inside
the SOBP), and 153 mm (distal to the SOBP). At each
depth, foil pairs were placed at lateral offsets of -12 mm
(rather than zero, so as to avoid overlap with successive
depths), +50 and +100 mm from the central axis of the
phantom. Additional foil pairs were placed on a radius
at a 45o offset in the transaxial plane, with the pairs cen-
tered at points 70.7 and 154 mm from the center of the
phantom. Therefore, each plate included a total of 5
pairs of foils. A schematic diagram of the plate outline is
shown in Figure 3 (specific locations are described in
Table E2). Successive plates were stacked and progres-
sively rotated by 90o to avoid attenuation of the primary
particle beam by preceding foils.

Total doses of 70 Gy(relative biological effectiveness
[RBE]) and 35 Gy(RBE) were used for irradiation with
helium and carbon, respectively. The resulting gold foil
activities were measured over a period of 1 h using a
high purity germanium detector (Canberra GC-2020),
and the number of photons detected within the 411 keV
g peak were converted to thermal neutron fluence using
(1):

Fu ¼ 2Affiffiffi
p

p
NAas0Gthm

¢ Teλt

1 � e�λT

ffiffiffiffiffi
Tn
T0

s �
AAu tð Þ

� ACd�Au tð Þ
�

ð1Þ
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Fig. 3. Experimental configuration. Irradiation positions for flask irradiation and neutron fluence measurements. Positions
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dimension), with a 100 £ 100-mm cross-sectional area. Gold activation measurements of thermal neutron fluence were made
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Abbreviation: SOBP = spread-out Bragg peak.
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where t is the time after irradiation that the measurements
are performed (zero if the activity is decay-corrected), AAu

(t) is the postirradiation activity of the bare gold foil (due to
all neutron captures) at t = t, ACd-Au(t) is the activity of the
cadmium-shielded foil at t = t, A is the mass number of
gold (assumed to be 196.9666), NA is Avogadro’s number, a
is the abundance of the target isotope 197Au (assumed to be
1), s0 is the thermal neutron cross-section of 197Au
(9.87 £ 10�23 cm2), Gth is the self-shielding ratio, m is the
mass of the sample, λ is the decay constant of 198Au, T is the
duration of irradiation, Tn is the sample temperature, and
T0 is the reference temperature (both are 293 K in this
case).31,32 The resulting fluence estimate is divided by the
biologic dose to provide the flux per unit dose (n/cm2/Gy
[RBE]).32,33 A full derivation of the self-shielding ratio for
the experimental configuration is provided in the Supple-
mentary Materials Section 2.
Cell cultures

The human glioblastoma multiforme cell line, T98G, was
sourced from the Japan Cancer Research Resources Bank.
T98G was maintained as a subconfluent culture in a humid-
ified incubator at 37 °C with 5% CO2 grown in Eagles Modi-
fied Essential Media (EMEM; Gibco) supplemented with
10% fetal bovine serum plus penicillin and streptomycin
antibiotics.
NCAs

Two neutron capture agents were used in this study:
[10B]BPA and [157Gd]DOTA-TPP. The chemical struc-
ture of these compounds and the relevant neutron cap-
ture reactions are shown in Figure 2. [10B]BPA (>98.4%
10B) was purchased from Interpharma Praha. [157Gd]
DOTA-TPP (>88% 157Gd) was synthesized using a 2-
step procedure adapted from Morrison et al.34 In brief,
commercially available DO3A-tert-butyl ester (Macrocy-
clics) was alkylated with 4-(bromomethyl)benzyl)tri-
phenyl phosphonium bromide under basic conditions to
yield a solid, which was then reacted, without further
purification, with trifluoroacetic acid, which cleaved the
tert-butyl ester protecting groups. The excess trifluoro-
acetic acid was then removed by evaporation under
reduced pressure, and the resulting crude material was
purified by reverse-phase preparative high-performance
liquid chromatography to give the DOTA-TPP ligand as
white solid. The purified DOTA-TPP ligand was then
dissolved up in water and treated with Gd-157 enriched
(88%) gadolinium oxide. The final product was obtained,
after filtration and lyophilization, as white solid and gave
high-performance liquid chromatography (QC), elemen-
tal analysis, and mass spectrometry data consistent with
that expected for the gadolinium-157 enriched metal
complex ([157Gd]DOTA-TPP; see Supplementary Materi-
als Section 3 for full details).
Cell irradiation conditions

Irradiations of T98G cultures were conducted in 80% to 90%
confluent T25 tissue culture flasks. Approximately 24 h
before irradiation, the cultures were treated with either
500 mM [10B]BPA, 500 mM [157Gd]DOTA-TPP, or a vehicle
control.

Carbon and helium ion beams were configured to deliver
nominal dose rates of»1 Gy/min, with exact exposure times
adjusted based on nightly dose rate measurements at the
beginning of each experimental session. Total doses of 0, 2,
3, 4, 6, and 8 Gy were used for irradiation of the NCA-
treated and control flasks (control flasks received an addi-
tional dose of 10 Gy) for both ions. Immediately before irra-
diation, the flasks were topped up to the base of the neck
with either phosphate-buffered saline (PBS) or EMEM.
Flasks were irradiated at positions B and C, with the cell
layer at a depth of 100 mm within the PMMA phantom
(Fig. 3), at room temperature, either in pairs or alongside a
sham flask containing only water. After irradiation (5-
10 min from beam-off), the media was vacuum aspirated
and the T98G monolayer detached and processed as
described in the following sections for both cell growth
(resazurin) and/or clonogenic assays.

To evaluate the efficacy of neutron capture events occur-
ring outside of the primary beam field, flasks were prepared
as previously discussed, with either 500 mM [10B]BPA,
[157Gd]DOTA-TPP, or diluent control. The flasks were
placed at positions A and D within the phantom, and B and
C received a sham water flask. Total doses of 0, 1, 3, 6, and
10 Gy of carbon and helium ions were delivered by the pri-
mary beam to the 2 sham flasks.

The efficacy of [10B]BPA and [157Gd]DOTA-TPP as a
function of concentration was investigated by fixing the
physical dose at 3 Gy and irradiating T98G cultures under
progressively decreasing concentrations of NCA. Three Gy
was chosen as it is approximately equal to the LD30 for
T98G cells in response to direct irradiation with the carbon
or helium particle beam. A dilution series was created for
each compound in EMEM (500, 250, 100, 50, 25, 10, 5, 2.5,
and 1 mM) plus a vehicle control. Cells were incubated with
NCA for approximately 24 h and irradiated, as described
previously, with 3 Gy of carbon ions or helium ions at a
dose rate of »1 Gy/min and immediately processed as
described in the following sections. A 0 Gy (minimum
response) and 10 Gy (maximum response) control were also
included for each NCA treatment group and vehicle con-
trol.
Cell growth assay

The resazurin reduction-based cell proliferation assay was
the preferred method chosen for measuring the effect of
NCEPT in vitro. It has several advantages over clonogenic
assay under these conditions (especially extremely limited
beamtime), including increased throughput, straightforward
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data interpretation, and observability of growth kinetics
including lag and plateau phases. The use of a metabolic
reduction as the readout means that the assay takes into
account all viable cells within a population, including those
that have left the cell cycle because of radiation effect (eg,
senescence, quiescence). This distinguishes this approach
from the traditional clonogenic assay and leads to the pro-
duction of a more conservative, but overall representative,
view of the cellular effect in a nonuniform mixed radiation
field. This method was employed for quantifying in-beam
and out-of-beam dose response as well as the (in-beam)
NCA concentration response with a fixed ion dose.

After irradiation, the cell monolayer was detached with
trypsin and the resulting cell suspensions were adjusted to
2500 cells/mL; 200 mL of this suspension was pipetted into
the designated wells of 7 £ 96 well, black wall, clear bottom
plates to give 500 cells/well. Plates were incubated at 37 °C
with 5% CO2. One plate was assayed every 24 h for viable
cell mass using resazurin assay as follows.35 A 1% w/v stock
solution of resazurin sodium salt was prepared in water.
The stock was diluted 250 times in PBS and warmed to 37 °
C in a water bath. All media was removed from the plate,
replaced with resazurin-PBS, and incubated for 60 min at
37 °C. The resulting conversion of resazurin to resorufin
was measured by recording the fluorescence at excitation
wavelength 555 nm and emission wavelength 585 nm at
37 °C. The resulting relative fluorescence units were plotted
against time (days) to quantify the proliferation rates and
growth of T98G cultures after irradiation with and without
NCA36 (Figs. E2 and 3). A timepoint was selected from these
data in which all treatments were in as close to an exponen-
tial growth phase as possible (ie, 144 h) and the relative fluo-
rescence units replotted against log dose (Gy), with 95% CIs,
for each well of cells treated with either no NCA, [10B]BPA,
or [157Gd]DOTA-TPP and irradiated with both carbon and
helium ion beams. Lethal dose, 50% (LD50) was determined
by fitting a sigmoidal log-inhibitor versus response model to
these data, and percent response (F) was calculated from
this LD50 and the Hill-slope (H) using the relationship:

LDF ¼ F
100� F

� �1
H

¢ LD50
Clonogenic assay

Clonogenic assay was also employed as a secondary method
for evaluation of in-beam cell survival in response to ion
irradiation with and without the presence of NCAs.

After irradiation, flasks were trypsinized and T98G cells
were seeded into Petri dishes (Falcon 100-mm Cell Culture
Dish; Corning) with concentrations listed in Table E7. The
cells were then incubated at 37°C with 5% CO2 for 12 days
(approximately 10 doubling times37). The resulting cell cul-
tures were washed with 5 mL of PBS, fixed in 5 mL of 10%
neutral buffered formalin, washed with distilled water, and
stained with crystal violet to highlight the nucleus and aid
with colony identification. Each dish was then left to dry
and digitized using the ImageQuant LAS 4000 (GE) imaging
system.38 The number of colonies (>50 cells) in each dish
was estimated using the OpenCFU software39 (see Fig. E4).
Survival fraction was then calculated by dividing the num-
ber of colonies by the initial seeding density.

The mean survival fraction was plotted on a logarithmic
scale against dose, with 95% CIs, for each population of cells
treated with either no NCA, [10B]BPA, or [157Gd]DOTA-
TPP and irradiated with both carbon and helium ion beams.

The survival fraction of cells irradiated by photons or
charged particles generally follows a linear-quadratic func-
tion of dose, according to the relation

SF ¼ e�aD � bD2

The ɑ and b parameters were computed using a least-
squares error minimization algorithm for each case
(Table E8), and the 1% and 10% survival fractions were esti-
mated for each case.
Results
Thermal neutron fluence measurements

The thermal neutron fluences at each point of measurement
resulting from irradiation of the PMMA target with helium
ions are plotted in space relative to the SOBP in Figure 4a
and listed in Table E5; corresponding results for carbon are
shown in Figure 4b and Table E6. The mean thermal neu-
tron fluence at the center of the SOBP is approximately
2.2 £ 109 (§1.4 £ 108) n/cm2/Gy(RBE) for the carbon
beam and 5.8 £ 109 (§5.3 £ 107) n/cm2/Gy(RBE) for the
helium beam.
In vitro evaluation of in-beam NCEPT

The fractions of T98G cells that remain viable after in-beam
irradiation with helium and carbon ions are plotted as a
function of increasing dose in Figure 5. Three treatment
conditions were used for each ion: either no NCA, 500 mM
[10B]BPA, or 500 mM [157Gd]DOTA-TPP.

The corresponding LD50 and LD90 doses estimated from
the resazurin assay results and 10% and 1% survival fraction
doses obtained from the clonogenic assay results are shown
in Table 1.
In vitro evaluation of out-of-beam NCEPT

The fractions of T98G cells that remain viable after out-of-
beam irradiation with helium and carbon ions are plotted as
a function of increasing dose to the primary target in
Figure 6. Cells were positioned within the phantom, imme-
diately adjacent to the primary target volume and not in the
path of the primary beam (at positions A and D shown in
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Fig. 2). Again, 3 treatment conditions were used for each
ion: either no NCA, 500 mM [10B]BPA, or 500 mM [157Gd]
DOTA-TPP.
Effect of NCA concentration

The effect of NCA concentration on cell viability with a
fixed in-beam helium and carbon ion dose is illustrated in
Figure 7. half-maximal inhibitory concentration (IC50) val-
ues for [10B]BPA with 3 Gy of carbon and helium ions were
9.33 and 30.04 mM, respectively. IC50 values for [157Gd]
DOTA-TPP with 3 Gy of carbon and helium ions were
21.72 and 8.89 mM, respectively.

In the absence of radiation, neither NCA is significantly
cytotoxic in concentrations of up to 500 mM, although
[natGd]DOTA-TPP shows mild cytotoxicity at higher con-
centrations (>500 mM; Supplementary Materials Section 5).
Discussion
This paper presents the first experimental evidence quanti-
fying the NCEPT effect in vitro.

Thermal neutron fluence was quantified at a range of posi-
tions inside and around the target volume via gold activation,
demonstrating the presence of a clinically relevant thermal
neutron field — the key enabling factor for NCEPT. The
shape of the neutron fluence distribution is similar to that
previously predicted via Monte Carlo simulations,10 where
the highest measured thermal neutron fluence is observed in
the vicinity of the SOBP region before gradually falling off in
all directions (Fig. 4). An estimation of the additional com-
pound biological effectiveness (CBE)-weighted dose resulting
from neutron capture can be derived from the estimated neu-
tron fluence, using D ¼ ’� sNCA � NNCA � CBE; where ’ is
the neutron fluence, sNCA denotes the fluence-to-kerma con-
version factor, NNCA represents the NCA concentration in
ppm, and CBE signifies the compound biologic effectiveness,
analogous to RBE for NCAs.10 For [10B]-BPA, with a CBE of
3.8, a sB of 8.86 £ 10�14, and a measured boron uptake of
202 ppm (refer to Table E10), alongside measured neutron
fluences at the center of the SOBP of 5.8 £ 109 n/cm2/Gy
(RBE) for helium ions and 2.2 £ 109 n/cm2/Gy(RBE) for car-
bon ions,10 and assuming a clinical RBE of 2 for helium ions
and 3 for carbon ions, the additional CBE-weighted dose
because of neutron capture is 77% for helium ions and 44%
for carbon ions, relative to the RBE-weighted dose from ion
irradiation alone. In a similar calculation for [157Gd]DOTA-
TPP, assuming a CBE of 40,40,41 sGd = 9.27 £ 10�15, and a
concentration of 419 ppm (see Table E10), the additional
CBE-weighted dose is estimated at 180% for helium ions and
103% for carbon ions.

Human glioblastoma cells were placed both inside and
immediately adjacent to a target volume inside a PMMA
phantom, with and without the presence of 2 low-toxicity
NCAs, [10B]BPA and [157Gd]DOTA-TPP34,42 (Figs. 5-8).
The target volume was irradiated with a 60- mm carbon or
helium ion SOBP, both at a range of radiation doses with a
fixed NCA dose, and second with a constant ion dose (cor-
responding to the ffiLD30 dose for cells not treated with
NCAs) and a serial dilution of NCA. Cells placed inside the
treatment volume reached 10% survival with the adminis-
tration of 1.46 Gy of carbon ions or 1.67 Gy of helium ions
with BPA and 1.37 Gy of carbon ions and 1.44 Gy of helium
ions with [157Gd]DOTA-TPP compared with 4.73 Gy of
carbon ions and 6.53 Gy of helium ions with no NCA. This
is a result of the combined effect of the dose delivered
directly by the primary ion irradiation and the dose due to
neutron capture by 10B or 157Gd. Therefore, dose enhance-
ment to the treatment volume could be incorporated into
treatment planning to either increase the effective dose to
the tumor per ion delivered to the target or, where entrance
dose is a concern, deliver an equivalent dose to the tumor
with fewer ions. NCEPT will thus provide a wide range of
potential options to the treating physician for either reduc-
ing off-target effects or increasing the dose that can be safely
delivered to the target.
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Cells placed outside and adjacent to the treatment vol-
ume only exhibit a decrease in growth in response to escalat-
ing dose to the target when treated with either of the
evaluated NCAs. The magnitude of the reduction in viability
of NCA-treated cells outside the SOBP is similar to that
observed after irradiation of NCA-treated cells within the
SOBP for both helium and carbon ions (Fig. 5). Helium and
carbon ions exhibit a lateral scattering of less than 2 mm at
11-cm depth in human tissue.43 This superior dose confor-
mity is demonstrated by the minimal response to escalating
ion dose to target in cells that are not treated with an NCA,
shown in Figure 6, while the neutron fluence at this location
remains at 80% to 90% of the peak value (Fig. 4), suggesting
that the dominant factor in the reduction in cell viability is
the neutron capture process.
Comparing the in-beam dose response, it is evident that
cells treated with 500-mM concentration of NCA show a
much stronger dose response compared with the no-NCA
control group. Obtaining a detailed cell survival response at
very low ion dose values (ie, multiple steps in the 0-2 Gy
dose range) presented experimental challenges. Modifying
too many parameters at once, such as altering the attenuator
to reduce dose rate, which also changes the beam quality, or
extending the irradiation intervals for high-dose regimes at
low-dose rates, would have compromised the experiment’s
integrity. Furthermore, varying the beam current wasn’t a
viable option because of limited beamtime at facilities like
Heavy Ion Medical Accelerator in Chiba.

To navigate these constraints, we varied the neutron cap-
ture dose by titrating the NCA while keeping the ion dose



Table 1 Mean LD50 and LD90 of 6 independent experiments* and 10% and 1% survival fractions of 3 independent experimentsy

Metric Ion No treatment [10B]BPA [157Gd]DOTA-TPP

LD50 dose Helium 3.64 (0.41) 2.61 (0.07) 1.94 (0.13)

Carbon 2.42 (0.11) 1.80 (0.11) 1.52 (0.49)

LD90 dose Helium 13.09 (1.51) 8.92 (0.26) 5.22 (0.47)

Carbon 13.58 (0.48) 7.79 (0.47) 3.91 (2.13)

10% survival fraction dose Helium 6.53 1.67 1.44

Carbon 4.73 1.46 1.37

1% survival fraction dose Helium 9.88 3.36 2.89

Carbon 7.99 2.91 2.75

T98G cells were placed at a depth of 110 mm in a 300 mm cubic polymethyl methacrylate phantom and irradiated in-beam, at the center of the SOBP60
(Fig. 3) with helium or carbon ions, either with neutron capture agents present (control), 500 mM [10B]BPA or 500 mM [157Gd]DOTA-TPP.
* Resazurin cell growth assay; see Figures 5a and 5b.
y Clonogenic assay, with survival thresholds estimated based on the fitted linear quadratic model curves in Figure 6.
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constant (Fig. 7). Employing a dilution series of NCAs
allowed us to elucidate the relative contribution of the neu-
tron capture dose effectively, allowing us to evaluate cell via-
bility in response to varying neutron doses at a finer
resolution than would have been possible through coarse
adjustments of the primary ion beam. For example, an NCA
concentration of 10 mM used with a 3 Gy primary helium
or carbon ion beam dose induces a 60% reduction of the via-
ble cell mass, while a concentration of 100 mM with a 3-Gy
primary beam dose results in a neutron capture effect equiv-
alent to a 10-Gy dose of primary beam radiation (72% and
90% reduction in viable cell mass for helium and carbon ion
beams, respectively).
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Although the linear-quadratic model provides an excel-
lent fit for the no-NCA clonogenic cell survival results, it is
clearly unable to provide a satisfactory fit for the NCA-
treated cells. Because the a and b parameters of the linear-
quadratic model are constrained to be nonnegative, and the
curve of best fit for the NCA-treated cells is concave up, the
least-squares fit results in b = 0 in each case, such that the
linear-quadratic model becomes a simple linear model.
Because of the poor fit of this linear model across the full
evaluated range of doses, to compute the 1% and 10% sur-
vival fraction doses we only consider the first 4 dose values,
over which the logarithm of the survival fraction is approxi-
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poor, at least it allows an approximation of the 1% and 10%
survival doses to be obtained. Relaxing the nonnegativity
constraint results in a better fit but yields a nonsensical neg-
ative value for b.

Consider an absorbed helium ion dose of 3 Gy; the LQ
model fit for the control group without NCA indicates a sur-
vival fraction of approximately 0.5 (50%). Based on the esti-
mated dose enhancement factors obtained earlier, and
assuming that the biologic effects of NCEPT are exclusively
attributable to the additional neutron capture dose, the
additional absolute doses due to neutron capture with [10B]-
BPA and [157Gd]DOTA-TPP are estimated to be 2.31 and
5.41 Gy, respectively. These additional doses are expected to
correspond to survival fractions of about 0.15 (15%) and
0.025 (2.5%). However, the experimental survival fractions
obtained for the NCA-treated cells at 3 Gy are lower than
these values — approximately 0.02 (2%) for [10B]-BPA and
0.006 (0.6%) for [157Gd]DOTA-TPP. In the case of 3 Gy of
carbon ions, the extra doses are relatively lower: 1.32 Gy for
[10B]-BPA and 3.07 Gy for [157Gd]DOTA-TPP, with sur-
vival fractions decreasing from approximately 0.2 (20%) (at
3 Gy, ions only) to 0.1 (10%) and 0.045 (4.5%) for [10B]-
BPA and [157Gd]DOTA-TPP, respectively. Again, these fig-
ures are higher than the experimentally observed survival
fractions at 3 Gy, which are around 0.008 (0.8%) for [10B]-
BPA and 0.007 (0.7%) for [157Gd]DOTA-TPP. These find-
ings suggest the presence of an additional, unaccounted for
factor beyond the linear quadratic (LQ) model — poten-
tially a nonlinear, combined effect involving multiple
distinct biologic processes mediated by ions, neutrons, pho-
tons, and neutron-capture products. This complex interac-
tion could lead to increased rates of cell death, surpassing
what would be explained by a purely additive combination
of the dose contributions from these 4 factors. Notably, sim-
ilar results have been reported in the literature for certain
cell lines treated with BPA-based boron neutron capture
therapy (BNCT). For instance, Viegas et al44 observed a
dose response in UMR-106 osteosarcoma cells that is very
similar to that seen in Figure 8 (in particular, the concave-
up characteristic behavior that results in a straight-line fit
because b is constrained to be nonnegative). The poor LQ
model fitting for both BPA-BNCT and NCEPT experimen-
tal data suggests that both are incompletely described by the
biophysical assumptions underlying the LQ model, a finding
that supports previous criticism of the general validity of the
model in the literature.45,46

Drawing on the principles of radionuclide therapy, we
can envision a new class of radiopharmaceutical where the
radiation emission within the biologic system is only trig-
gered by an external radiation source, at a time and location
determined by the treatment plan. NCEPT is fundamentally
different from traditional radiosensitization techniques, as it
introduces an entirely new radiation dose instead of merely
amplifying a pre-existing one. Such an approach could
deliver radiation more precisely to cellular targets while
drastically reducing the dose to excretory pathways in com-
parison to current radionuclide therapeutics (which is a
major limiting factor in such therapies). Future NCEPT
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agents should prioritize low inherent chemical toxicity and
the targeted delivery of either 10B to specific cellular or tissue
sites or 157Gd to specific organelle or cellular targets.

We note that the observed dose-enhancement effect
shown in our experiments is clearly not related to proton
fusion for several reasons. First, our radiation source is
either 12C or 4He ions, and in both cases, no known projec-
tile or target fragmentation reaction is able to generate pro-
tons in quantities sufficient to account for the observed
results. Second, our target neutron capture isotopes,
enriched 10B or 157Gd, are not conducive to beam-target
fusion (and this would be the case even if a high-energy pro-
ton beam were used). Lastly, our findings, both in beam and
out of beam, are entirely consistent with the measured neu-
tron fluence surrounding the target, corroborating the work
of Manandhar et al16 and Hosobuchi et al,17 who were
unable to reproduce the purported proton-boron fusion
dose-enhancement results, and the corresponding Monte
Carlo simulation results of Jacobsen et al13 and Khaledi et
al,14 which predict negligible dose enhancement during pro-
ton irradiation of a 11B-loaded target. We note that our
observed results further support the hypothesis that the pre-
viously observed proton-(natural)-boron dose enhancement
effect is likely due to neutron capture by 10B, which consti-
tutes approximately 19.8% of natural boron, because it is
expected that similar (or even greater) thermal neutron flu-
ences to those observed in these experiments would exist
around the target when irradiated at depth.

The results obtained to date provide strong justification for
proceeding to in vivo experimental exploration of NCEPT.
The data suggest the potential for ion doses administered dur-
ing particle therapies should be reduced, which will result in a
corresponding reduction in normal tissue complications and
unwanted side effects of radiation on sensitive organs.
Because the dose to target can be achieved with a lower ion
dose, NCEPT will enable treatment to be completed with
fewer fractions (analogous to hypofractionation). Because of
the short treatment time of particle therapy relative to NCT
(a few minutes as opposed to >1 hour), NCEPT treatment
can be performed without needing to maintain the NCA con-
centration in the patient for an extended period. However, it
would be necessary to study the possibility of administering
high doses of BPA in successive fractions, as BNCT is usually
carried out in 1 session only, requiring at least 350 mg/kg of
BPA with a 2-hour infusion before (and sometimes during)
neutron irradiation.47 Additionally, this work provides further
impetus to investigate the potential of NCEPT in proton ther-
apy. Previous simulation studies indicated that neutron flu-
ence during proton therapy should be even higher than for
carbon ion therapy, which would imply that the effect of
NCEPT may be even more significant there.10 The experi-
mental results presented in this work strongly support that
hypothesis; we have shown that helium ion beams generate a
substantially larger thermal neutron fluence for a given bio-
logic dose compared with carbon ions. Given the wider avail-
ability of proton therapy compared with heavy ion therapy,
this would also expand the availability of NCEPT to a much
wider range of potential patients and diseases.
Conclusion
NCEPT represents a new paradigm in charged particle ther-
apy. The combination of biochemically targeted neutron-
capturing pharmaceuticals with conformally targeted
charged particle therapy — in particular, through
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exploitation of an internally generated secondary/tertiary
radiation field — gives the possibility of attaining a remark-
ably high specificity of energy deposition within cells and
tissues. The utility of neutron capture has been shown to
extend beyond the margins of the conventional image-tar-
geted treatment volume and provides an opportunity to tar-
get undiagnosed cancer microinfiltrates that are otherwise
left untreated. NCEPT highlights the potential of low molec-
ular weight, high specificity small molecules, labeled with
10B, for a much broader range of radiotherapeutic and
radiosensitization applications — an area previously under-
explored in comparison with heavier elements and large
molecules or nanoparticles. We have demonstrated the
potential to repurpose existing pharmaceuticals ([10B]BPA),
as well as the potential for novel compounds ([157Gd]
DOTA-TPP), to increase the efficacy of existing charged
particle beams. The therapeutic exploitation of internally
generated neutrons by neutron capture agents is a process
hitherto entirely unexplored by medicinal chemists, biolo-
gists, and pharmacologists. We strongly feel that its poten-
tial for affecting clinical outcomes and improving quality of
life after treatment warrants further investigation.
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