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ABSTRACT Machine learning is a powerful technology for extracting information from data of diverse
nature and origin. As its deployment increasingly depends on data from multiple entities, ensuring privacy
for these contributors becomes paramount for the integrity and fairness of machine learning endeavors. This
review looks into the recent advancements in secure multi-party computation (SMPC) for machine learning,
a pivotal technology championing data privacy. We evaluate these applications from various aspects,
including security models, requirements, system types, and service models, aligning with the IEEE’s
recommended practices for SMPC. Broadly, SMPC systems are divided into two categories: homomorphic-
based systems, which facilitate computations on encrypted data, ensuring data remains confidential, and
secret sharing-based systems, which disseminate data across parties in fragmented shares. Our literature
analysis highlights certain gaps, such as security requisites, streamlined information exchange, incentive
structures, data authenticity, and operational efficiency. Recognizing these challenges lead to envisioning a
holistic SMPC protocol tailored for machine learning applications.

INDEX TERMS Multi-party computation, Machine learning, Federated learning, Data privacy, Cryptog-
raphy, Protocols

I. INTRODUCTION

IN an ever-advancing world increasingly saturated with
data, recent technological developments such as the In-

ternet of Things (IoT) [1], wireless sensor networks, cloud
computing, and machine learning provide different means
and methods to extract and process these data. Moreover, sen-
sitive information can be derived from the analysis of data.
Data and data analysis applications, collectively referred
to as machine learning, have significantly impacted many
different fields and industries [2]–[4]. The processing of data
could involve multiple parties from different backgrounds for
collaborative purposes. Organizations and individuals might
want their data, method or model to remain private during
collaborative operations. A recent 2022 report [5] from IBM
has revealed limited data security in many organisations. 83%
of these organisations had more than one data breach at an
average cost of USD 4.35 million - increasing by 12.7%
since 2020. The increasing cost reflects the importance of
data security [6].

Secure Multi-Party Computation (SMPC) has gathered
significant interest as a technological solution to data privacy
and security concerns. SMPC represents a privacy-preserving
approach that allows multiple parties to jointly compute the
function of (y1, y2, ..., yi) ← f(x1, x2, ..., xi), where each
party Pi provides input xi and computes yi. Leveraging the
power of cryptography, SMPC enables these parties to col-
lectively determine a result from their individual input data
without disclosing any of this data to the other participants.
Thus, each party’s data remains secure and private, yet a
meaningful, collective computation can still take place.

While several survey papers on Secure Multi-Party Com-
putation (SMPC) have been published [7]–[11], only a subset
offers a comprehensive overview of the field. Furthermore,
certain papers, such as [7], [8], fall short of providing a
detailed analysis on each topic encompassed within the
domain of SMPC. The discussion on future works is also
limited. In [8], the authors focused on a problem-oriented
approach of analysis. The authors reviewed and organized
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the research according to the different problems that can
be solved by SMPC. Specifically, the problems mentioned
are preserving privacy in cooperative scientific computa-
tions, database query, intrusion detection, data mining, ge-
ometric computation, statistical analysis, and other common
computing operations. Additionally, two-party examples are
provided for all of the problems. However, the authors did
not elaborate on the technical details of their solutions. In
[8], the authors describe their work as: “...a guideline for
the researchers in other computation areas to think about
their computation problem from this security perspective...”
Moreover, the discussion on future works is also general
and there are no specific recommendations for the SMPC
problems defined.

In a more recent work, [7], the authors provide a com-
prehensive overview on theoretical and practical aspects of
SMPC. They offer an overview of the fundamentals of SMPC
by defining threats and security requirements and models
such as semi-honest adversary model, malicious adversary
model, and cover adversary model. This work also outlines
the building blocks of SMPC, including garbled circuits,
oblivious transfer, and homomorphic encryption. It should be
noted, however, that while Secret Sharing, Zero-Knowledge
Proof, and Commitment Scheme are recognized as essential
components of SMPC, a thorough exploration of these top-
ics is absent. Additionally, the paper investigates machine
learning applications within the framework of application-
oriented SMPC. Yet, the scope of the review is relatively
limited, with only four works undergoing detailed examina-
tion, and technical discussions remain somewhat restricted.
The survey concludes with a general discussion on potential
future developments [7].

The research contributions of Wang et al. [9] and Feng
et al. [10] are noteworthy for their comprehensive review
on secure multi-party computation protocols and techniques.
Wang et al. [9] thoroughly discuss the classification of
adversaries within the context of SMPC, suggesting that
contemporary adversaries may be overestimated in their
capabilities. To this end, they introduce a more restrained
adversary model, one that is constrained by the prospective
benefits of the executed attacks. Considering the context of
rational parties, the paper introduces the concept of rational
SMPC. Additionally, with the lens of game theory, the paper
presents the works in rational secret sharing schemes, rational
multiple function calculation, and rational Byzantine proto-
col. This perspective offers an alternative interpretation of
SMPC where security measures need to account for strategic,
rational behavior as well as outright malicious acts.

In [10], a comprehensive review of the building block tech-
nologies for SMPC is presented. The paper also includes a
section on privacy-preserving machine learning methods and
various protocols with different numbers of parties are com-
pared. However, homomorphic encryption is only viewed as
a helper method to secret sharing and garbled circuit-based
SMPC systems. Systems utilizing homomorphic encryption
as a major method to preserve security are not reviewed.

Moreover, systems related to federated learning are not con-
sidered in [10].

This survey paper aims to provide a study of SMPC
applications in the field of machine learning under IEEE
recommended practice for secure multi-party computation
[12]. The major contributions of this paper are:

1) Outline of machine learning service settings under the
IEEE recommended practice for secure multi-party
computation.

2) Analysis of recent homomorphic encryption-based
SMPC application for machine learning.

3) Overview of recent usage of secret sharing for machine
learning.

4) Identifying research gaps and future directions of
SMPC for machine learning.

The rest of this paper is organized into: Section II provides
background information about SMPC. This includes security
models, security requirements, types of SMPC systems and
building block technologies for machine learning SMPC ap-
plications. Section IV is preliminary information on machine
learning, which includes the definition of user models and
knowledge of federated learning. Sections V and VI ana-
lyze SMPC applications based on homomorphic encryption
and secret sharing, respectively. Challenges and barriers of
SMPC adoption and implementation guidelines are discussed
in sections VIII and IX. Section VII outlines the potential
security vulnerabilities of SMPC systems. Section X presents
the limitations on the reviewed works followed by Section
XII, the conclusion.

II. SECURE MULTI-PARTY COMPUTATION (SMPC)
FUNDAMENTALS
This section delineates the fundamentals of SMPC systems,
emphasizing security models, pertinent requirements, and
core technologies which underpin these systems. The types
of SMPC systems that adhere to the specifications detailed
by the IEEE standard are highlighted. Each subsection pro-
vides a comprehensive exposition on the core components of
SMPC systems.

A. SECURITY MODELS AND REQUIREMENTS
Secure Multi-Party Computation (SMPC) protocols serve
to ensure the privacy and integrity of computations, which
involve multiple participants. These protocols are designed
to be robust against the intrusion of adversaries who aim to
breach the privacy of the participants or disrupt the compu-
tation process. Consequently, security models play a pivotal
role in defining the capabilities and intentions of potential
adversaries.

Security models are often presented as adversary models,
that define the behavior and potential threats posed by differ-
ent kinds of attackers [13]. These models act as the primary
foundation for developing security requirements that are
intended to protect the SMPC system against such attacks,
thereby preserving the privacy and ensuring the participation
of honest users.
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As presented in Table 1, adversaries can largely be catego-
rized into three primary models [7], [9], [10], [12].

Semi-honest adversaries: These adversaries operate within
the confines of the established protocol, ensuring a consistent
execution of their roles. However, they will seize any oppor-
tunity to glean private information from other participants,
given the chance. This model also allows for the possibility
of collusion between corrupted parties to extract sensitive
information.

Malicious adversaries: This model represents a more po-
tent threat, as these adversaries are not constrained by the
protocol’s rules. They possess the capability to launching ar-
bitrary attacks aimed at disrupting or breaching the protocol,
consequently creating a significant risk to the integrity and
privacy of the SMPC system.

Covert adversaries: Positioned as an intermediate model
between the semi-honest and malicious adversaries, covert
adversaries weigh the benefits and potential ramifications
of their actions before launching an attack. This typically
results in covert adversaries restricting themselves to less
overt forms of attacks. They are commonly found in com-
mercial and political settings, where the potential gain from
a successful attack is high, but so too are the consequences of
being caught.

The security requirements for an SMPC system are pri-
marily derived from these adversary models. They form the
basis of countermeasures designed to detect, prevent, and
mitigate potential attacks while ensuring the smooth and
secure operation of the SMPC system.

TABLE 1. Adversary Models. [7], [9], [10], [12]

Type of Adver-
sary

Description

Semi-honest Adversaries follow the execution of protocol.
However, they want to obtain private information
of other parties. Collusion between corrupted
parties are possible.

Malicious Adversaries are not bounded by the protocol and
will attempt to break the protocol.

Covert Adversaries consider the gain of cheating, prob-
ability and loss for being caught. This model
reflects most companies and institutions.

Other than the adversary models, security can also be
described by the number of corrupted parties in a scenario.
The honest majority setting assumes that over half of the par-
ticipants are honest. On the other hand, the dishonest majority
setting assumes a scenario with greater or equal to half of
the total participants being corrupted [10], [12]. The IEEE
recommended practice for secure multi-party computation
[12] further divides the honest majority setting into the Q2
condition with less than half of the participants corrupted and
the Q3 condition with less than one-third of the participants
corrupted.

B. SECURITY REQUIREMENTS BASED ON ADVERSARY
MODELS
In the context of the various adversary models, security
requirements for SMPC systems are designed to ensure the
integrity, confidentiality, and availability of data and com-
putation processes. These requirements, tailored to combat
the threats posed by semi-honest, malicious, and covert ad-
versaries, aim to foster a secure computation environment.
Here, we discuss these requirements with reference to each
adversary model.

Semi-honest: Security requirements for combating semi-
honest adversaries are mainly centered around privacy and
correctness. The privacy requirement ensures that each par-
ticipant learns nothing more than their designated output,
limiting the amount of information semi-honest adversaries
can extract from the computation process. Correctness re-
quires the protocol to produce a correct output as long as
honest participants are following the protocol, despite any
eavesdropping attempts by semi-honest adversaries.

Malicious: To protect against malicious adversaries, who
can deviate arbitrarily from the protocol, a more robust set
of security requirements is necessary. Beyond privacy and
correctness, security against malicious adversaries often ne-
cessitates a security property called robustness. This property
ensures that the computation process can resist any attempts
by malicious adversaries to alter the outcome or disrupt the
computation. In addition, the requirement of verifiability is
often imposed, enabling the system to detect if an adversary
is deviating from the protocol and take appropriate actions,
such as terminating the computation or excluding the adver-
sary.

Covert: Security requirements against covert adversaries
need to strike a balance between deterring unauthorized
behavior and maintaining computational efficiency. One crit-
ical requirement is accountability, which ensures that any
deviation from the protocol by a covert adversary can be
detected with a high probability. If caught, proof of their
misbehavior can be used to penalize them, creating a deter-
rent for such actions. Also, a fairness requirement may be
included, ensuring that no participant can obtain their output
before others, discouraging covert adversaries from gaining
an unfair advantage.

These security requirements, when properly implemented,
can provide a strong defense against adversaries in SMPC
systems. They ensure the system can operate as expected,
while preserving the privacy, integrity, and availability of
the computation process and the associated data. However,
achieving these security requirements often involves trade-
offs in terms of computational and communication efficiency,
which are critical considerations in the design of SMPC
systems.

C. TYPES OF SMPC SYSTEMS AS PER THE IEEE
STANDARD
Secure Multi-Party Computation (SMPC) systems are de-
fined by the IEEE standard [12] based on the level of se-
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curity provided, the number of participants, and the nature
of the computations involved. While there is a diverse range
of SMPC systems, we’ll focus on three common types in
this section: threshold SMPC, general SMPC, and special-
purpose SMPC.

Threshold SMPC: These systems allow a certain number
(threshold) of participants to jointly compute a function with-
out revealing their private inputs to each other. They provide
privacy, correctness, and a guarantee of output but may not
always meet fairness or independence of input requirements.
Threshold SMPC systems are often used in cryptographic
scenarios like key generation and management where a sub-
set of participants is enough to perform the operation.

General SMPC: In contrast to threshold SMPC, general
SMPC systems allow any number of participants to jointly
compute a function, ensuring that no participant gains addi-
tional knowledge beyond their own input and the computed
output. The security requirements include privacy, correct-
ness, and potentially fairness and a guarantee of output.
These systems are versatile and widely applicable, including
scenarios like private set intersection and distributed machine
learning.

Special-purpose SMPC: These systems are designed for
specific applications or computations. They offer privacy
and correctness but might vary in terms of other security
requirements based on the application they are designed
for. Examples include privacy-preserving data mining, secure
auctions, and voting systems.

As for the common security requirements, a framework
that ensures the correct functioning and security of SMPC
systems is provided:

Privacy: Ensures that each participant’s input is kept secret
from the other participants. Correctness: Guarantees that the
output of the computation is correct provided that the honest
participants follow the protocol.

Fairness: Assures that no participant can get their output
before others do. Guarantee of Output: Certifies that if the
protocol starts, an output will be generated despite the be-
havior of adversarial participants.

Independence of Inputs: Emphasizes the importance of
each participant’s ability to independently select their inputs
without interference from other participants. Probability to
Catch Deviation: An optional requirement that encourages
honest participants to identify those that violate the protocol.

Each of these security requirements plays a vital role in
defining the behavior of an SMPC system. They ensure the
system operates accurately and securely, providing robust
defenses against potential adversaries while preserving the
privacy and integrity of the computation process and the
associated data. However, the trade-offs between these re-
quirements, such as computational efficiency, communica-
tion overhead, and the level of provided security, are criti-
cal considerations when designing and implementing SMPC
systems.

The common security requirements of SMPC systems are
privacy, correctness, fairness, and guarantee of output [7],

[12]. In [7], independence of input is included to emphasize
the importance of private input information. In the IEEE
recommended practice [12], the probability to catch devi-
ation is a requirement that asks honest parties to identify
corrupted parties that violate the protocol. This requirement
is an optional requirement along with fairness and guarantee
of output in IEEE recommended practice [7]. Privacy and
correctness are instead fundamental requirements. Table 2
presents the definitions of the security requirements.

TABLE 2. Security Requirements. [7], [12]

Requirement Definition
Privacy Each party must only obtain its own

output and information formulated
from its own input and output.

Correctness The result received must be correct
or lossless compared to the result ob-
tained in plain-text computation.

Fairness If the result is received by corrupt
parties, then it should also be re-
ceived by honest parties.

Guarantee of Output Output delivery to honest parties
should not be interrupted by cor-
rupted parties.

Independence of Input The input from a corrupted party
should be independent from the input
of any honest parties.

Probability to Catch Deviation Honest parties should have a certain
probability to catch any corrupted
parties on violations of the protocol.

D. DEPLOYMENT MODES OF SMPC SYSTEMS
There are many ways to classify SMPC systems. This paper
follows the IEEE standards [12], which classifies SMPC
systems into three recommended deployment modes (Table
3). SMPC systems are classified according to the distribution
or location of computation tasks. The first type of SMPC
system is server-side systems. Server-side systems include
data providers with limited computational resources. Each of
the data providers shares its data with multiple non-colluding
servers for further computation. Server-side systems are as-
sumed to operate by the secret sharing scheme (described in
the next subsection) to preserve data privacy when sharing
data with computation servers. Peer-to-peer SMPC is the sec-
ond type of SMPC system. Every data provider has enough
computation resources for peer-to-peer systems to follow the
SMPC protocols. Computation is organized by each of the
data providers. Thus, the roles of each data provider could be
homogeneous. Finally, in server-aided SMPC systems, data
providers perform most of the computations. However, part
of the computations (e.g., generation of Beaver triples 1, and
weight aggregation in federated learning) is offloaded to a
third-party server.

1A Beaver triple is a set of three random values (a, b, c) such that the
relationship a * b = c holds. These values are generated by a trusted third
party and then distributed to the parties involved in the computation.
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TABLE 3. Types of SMPC Systems. [12]

SMPC Type Data Provider Operation External Server Op-
eration

Server-side Data sharing to multiple
non-colluding nodes.

Most of the SMPC
operations.

Peer-to-peer Most of the SMPC opera-
tions.

N/A

Server-aided Most of the SMPC opera-
tions.

Some SMPC opera-
tion (e.g. generating
Beaver triples) per-
formed by an aiding
server.

E. BUILDING BLOCKS
In [7], oblivious transfer, garbled circuit, commitment
scheme, zero-knowledge proof, homomorphic encryption
and secret sharing are considered as the building block tech-
nologies of SMPC. The works reviewed in this paper are
mainly based on homomorphic encryption and secret sharing.
Therefore, only information on homomorphic encryption and
secret sharing is provided in this section.

1) Homomorphic Encryption
Homomorphic encryption is a transformative cryptographic
method that facilitates computations on encrypted data with-
out requiring decryption [14]. This concept forms the back-
bone of many Secure Multi-Party Computation (SMPC) sys-
tems as it allows data to be manipulated in its encrypted
state, hence preserving privacy throughout the computational
process.

In this encryption paradigm, computations performed on
ciphertexts yield a result that, once decrypted, matches the
result of the same operations conducted on the plaintext.
In other words, the encrypted output of a computation is
essentially the encryption of the plaintext output. As such,
both the input and output remain shielded by encryption
throughout the process.

The extent of computation allowed on encrypted data
gives rise to three distinct types of homomorphic encryption
schemes [14]:

Partially Homomorphic Encryption (PHE): Supports un-
limited repetitions of a single operation (either addition or
multiplication) on ciphertexts.

Somewhat Homomorphic Encryption (SHE): Allows a
limited number of both addition and multiplication opera-
tions on ciphertexts.

Fully Homomorphic Encryption (FHE): Enables an unlim-
ited number of both addition and multiplication operations on
ciphertexts.

Among various homomorphic encryption schemes, this
paper discusses the ElGamal and Paillier schemes.

ElGamal encryption scheme
ElGamal encryption scheme, introduced by Taher Elgamal
in 1984, is a partially homomorphic encryption scheme that
supports unlimited multiplicative operations on ciphertexts

[14], [15]. ElGamal encryption consists of three fundamental
steps: key generation, encryption, and decryption. A unique
aspect of the ElGamal scheme is the concept of proxy re-
encryption [16], which enables the transformation of cipher-
text encrypted under one key to ciphertext encrypted under
a different key, using a proxy key. Key generation starts
with a cyclic group G of order n created with a generator
g. A random integer x is chosen to compute h = gx. In
the end, the public key is (G,n, g, h) and the private key
is x. During encryption, a message m is encrypted starting
by choosing a random number y from 1, 2, ..., n − 1. Then
a pair of ciphertext is produced as (c1, c2) = (gy,mhy).
The ciphertext pair can be decrypted by the private key x
and the original message can be obtained by m = c2c

−x
1 .

ElGamal is a partially homomorphic encryption scheme that
only supports multiplicative operations on encrypted pairs.
A variant of the ElGamal scheme is proxy re-encryption
[16]. It allows the conversion of an encrypted message to
the ciphertext of the same message encrypted by another key.
This conversion requires a proxy function and a proxy key
generated from the secret keys before and after the conver-
sion. Therefore, this algorithm assumes no collusion between
the users and the proxy converter to preserve privacy. As
a variant of the ElGamal scheme, proxy re-encryption also
allows homomorphic multiplicative operations [16].

Paillier cryptosystem
The Paillier cryptosystem, proposed by Pascal Paillier in
1999, is another notable homomorphic encryption scheme
[17]. Unlike ElGamal, the Paillier scheme is homomorphic
over addition, meaning it allows for unlimited additions
of ciphertexts. Similar to ElGamal, Paillier encryption also
consists of key generation, encryption, and decryption steps.
Large primes p and q are selected to fulfill the condition
that pq and (p − 1)(q − 1) are coprime. Calculate n = pq
and the least common multiple of (p − 1) and (q − 1)
as λ. Then, select a random integer g from multiplica-
tive subgroup of integers modulo n2 and ensure n and
L(gλ (mod n2)) are coprime where the function L(u) =
(u − 1)/n. (n, g) are the resulting public key and (p, q) are
the private key. The message m is encrypted to obtain the
ciphertext c = gmrn (mod n2). Decryption is performed by
m = L(cλ (mod n2))/L(gλ (mod n2)) (mod n). The Pail-
lier scheme is homomorphic over additive and multiplicative
operations [14].

In both schemes, the combination of these steps ensures
that the data remains encrypted at all times, preserving
privacy and preventing unauthorized access to sensitive in-
formation. Despite their distinct computational capabilities,
both ElGamal and Paillier cryptosystems contribute signif-
icantly to maintaining privacy in multi-party computation
environments.

2) Homomorphic Proxy Re-Encryption (HPRE)
With the advancement of cloud technologies and machine
learning, data privacy has become an increasingly significant
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concern. Homomorphic Proxy Re-Encryption that combines
the features of a homomorphic encryption scheme and proxy
re-encryption scheme, offer a solution for this challenge [18],
[19].

3) Secret Sharing
Secret sharing is a crucial cryptographic technique employed
in SMPC systems, enabling a secret to be divided amongst a
group of parties in such a way that only specific subsets or a
sufficient number of parties can reconstruct the original secret
[20]. The most commonly used secret sharing methodolo-
gies in machine learning applications of SMPC are additive,
Shamir’s, and replicated secret sharing.

Additive secret sharing is a relatively straightforward tech-
nique [10]. In this approach, a secret x is shared among n
parties by randomly assigning the first n − 1 shares from a
finite field F , having a field size of p [21]. The final share
is then calculated as sn = (x −

∑n−1
i=1 si) (mod p). The

original secret can be reconstructed if all shares are available:
x = (

∑n
i=1 si) (mod p).

Shamir’s secret sharing, proposed by Adi Shamir, adds a
threshold concept to secret sharing [20]. Here, only a thresh-
old number t of n shares is needed to reconstruct the secret.
The process involves creating a polynomial f of degree
k = t − 1 where f(0) = x. The remaining coefficients of
f are randomly selected from a finite field F , and each secret
share si is computed as f(ai), with ai ∈ F . To reconstruct
the original secret, Lagrange basis polynomials are computed
and polynomial interpolation is used to reconstruct f and
extract the original secret x from its constant portion.

Replicated secret sharing follows a slightly different
approach, where a secret x is additively split such that∑

Q∈T sQ = x [22]. Here, T comprises all possible combi-
nations of t−1 parties, assuming a t or more than t parties can
reconstruct the secret. Each party receives secret shares sQ,
where the party is not a member of Q. Every party has

(
n−1
t−1

)
shares from

(
n

t−1

)
shares. The secret reconstruction process

is similar to additive sharing [22]. Parties of a minimum
number t need to collude to complete the full set of shares
and calculate the sum.

As previously discussed, additive, Shamir’s, and replicated
secret sharing each have their particular methods of distribut-
ing and reconstructing secrets. While additive operations
on shared secrets can be computed locally with the shares
stored at each party, multiplicative operations often require
additional computation [10]. Mathematical illustrations are
provided in Appendix A.

A commonly used method to handle multiplication of
shared secrets is through the use of Beaver triples. Beaver
triples are precomputed sets of shared secrets (a, b, c), where
a and b are random numbers, and c is the product of a and
b. These triples allow for the multiplication of two shared
secrets without any interaction between the parties, which
significantly improves efficiency and privacy. However, the
generation and distribution of Beaver triples can be costly in
terms of computation and communication [23].

For Shamir’s secret sharing, the Damgård and Nielsen
protocol can be used for multiplicative operations [24]. More
complex operations, such as oblivious selection, division,
logarithm, inverse square root, and uniformly random factor
number, are detailed in [25].

The methodologies discussed here are fundamental for
enabling secure computation in SMPC systems, ensuring the
privacy of data while enabling collaborative computation.

III. COMPARISON OF DIFFERENT SMPC APPROACHES
AND OTHER PRIVACY-PRESERVING METHODS
This section provides a comparative analysis of different
SMPC techniques as well as alternate privacy preservation
strategies such as differential privacy, emphasizing their
strengths, limitations, and use-cases.

A. SMPC VIA HOMOMORPHIC ENCRYPTION

Homomorphic encryption-based SMPC offers a unique ca-
pability of enabling computations directly on encrypted
data, thereby providing high-level protection against data
breaches, as sensitive data remains encrypted throughout the
computational process. However, fully implementing homo-
morphic encryption comes at a significant computational
cost, often requiring substantial time and computational re-
sources. Hence, it may not be the most viable option for sce-
narios demanding real-time or near-real-time computational
requirements [14].

B. SMPC THROUGH SECRET SHARING

Secret sharing-based SMPC presents an alternative to homo-
morphic encryption. It involves dividing data into multiple
shares that are distributed among different parties. Computa-
tion is executed on these shares, ensuring the initial data re-
mains concealed. This method offers superior computational
speeds in contrast to homomorphic encryption but demands
increased communication bandwidth due to the necessity
of share exchanges between parties [26]. It also calls for
enhanced coordination and mutual trust among participating
parties.

C. DIFFERENTIAL PRIVACY: AN ALTERNATE
PRIVACY-PRESERVING METHOD

Although not an SMPC method, differential privacy repre-
sents another strategy for privacy-preserving computations.
It introduces statistical noise to data, thereby safeguarding
individual privacy. This technique permits aggregate statisti-
cal analyses without violating the privacy of individual data
points. While differential privacy offers solid mathematical
assurances of privacy and is often more efficient than SMPC
methods, it inherently introduces a level of uncertainty into
the results due to the added noise. Additionally, it does not
provide the same level of security for individual data points
as SMPC methods [27]–[29].
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IV. MACHINE LEARNING BACKGROUND
Machine learning is a technology that extracts patterns from
data, providing the basis for predictions and decision making
[30]. There are primarily three types of machine learning
methods: supervised learning, unsupervised learning, and
reinforcement learning. While reinforcement learning is a
vital part of the machine learning ecosystem, it hasn’t been
extensively incorporated into SMPC. Therefore, this paper
will focus on supervised and unsupervised learning as they
pertain to SMPC systems.

Supervised learning involves models that learn from la-
beled training data. Each input instance in the dataset comes
with the corresponding output label, allowing the model
to learn to predict outputs for given inputs [31]. Popular
algorithms in supervised learning, such as linear regression,
decision trees, and support vector machines, find various
applications in the context of SMPC, including predicting
customer behavior, credit scoring, and medical diagnosis.

Unsupervised learning uses unlabeled data, and the model
learns the inherent structure of the data through techniques
like clustering or dimensionality reduction. The derived clus-
ters or features often need further interpretation to provide
meaningful insights [32]. Common algorithms in unsuper-
vised learning, such as k-means clustering and principal
component analysis, are used in applications like market seg-
mentation, anomaly detection, and recommendation systems.

Reinforcement learning is a method where an agent learns
to make decisions by interacting with an environment and re-
ceiving rewards or punishments [33]. Due to the complexity
and large amounts of computation required, as well as privacy
concerns related to the iterative and interactive nature of the
learning process, it is not yet widely used in SMPC.

A. USER MODEL
Machine Learning as a Service (MLaaS) refers to a range
of services that offer machine learning tools as part of cloud
computing services. These include data preprocessing, model
training, visualization, and prediction [10].

In an MLaaS framework, according to [34], there are three
major roles: the data gatherer, the learner, and the predictor.
The data gatherer is responsible for collecting, preprocessing,
and sending data for further processing. The learner uses this
data to train the model, and the predictor uses the trained
model to provide predictions or inferences based on new data
queries. The MLaaS framework can be utilized in an SMPC
setting, where these roles are performed in a distributed man-
ner across multiple parties, ensuring privacy and reducing
computational load on individual parties.

Applications of MLaaS in SMPC include collaborative
learning, where multiple entities combine their data to train
a common model while preserving the privacy of individual
data, and inference services where a provider uses a pre-
trained model to provide predictions based on input data from
customers.

The roles and service styles of traditional machine learning
services are transformed when considering SMPC services,

TABLE 4. IEEE Defined Roles in an SMPC System. [12]

Role Description
Task Initiator Initiates the SMPC task and distributes roles.

Data Provider The data owner.

Algorithm
Provider

Provides task algorithm.

Coordinator Distributes task and algorithm to related roles.

Computing
Provider

Computes SMPC tasks.

Result Obtainer Receives the computation results and transforms
to final results.

enhancing data and model security. IEEE-defined roles in an
SMPC system (Table 4) are distributed according to relevant
services (Table 5). There are three primary service models.

1) Online Training: A customer sends a training dataset
to cloud computing providers to offload computation.
The trained model is returned to the customer. In an
SMPC setting, both the training dataset and the model’s
weights are considered private data of the customer or
data provider.

2) Online Inference: This service model involves a cus-
tomer sending a query to a model provider, who then
returns the inference result using their model. It’s
a common model for health monitoring applications
[35]. The privacy of the customer’s query data, which
might contain sensitive health information, must be en-
sured. Equally, the model used by the provider should
be kept private.

3) Multi-party Training: In this model, multiple parties
each possess a private dataset. The result of this col-
laborative effort is a shared machine learning model
that has been trained on all parties’ combined data.
Here, the privacy of each party’s local datasets must
be preserved.

A variant of the multi-party training model is federated
learning. In this scenario, each party trains a local model on
their dataset. The local model, along with the dataset, must be
kept private to prevent unauthorized extraction of the local
training dataset through model inversion attacks [36]. The
distinction between online training and multi-party training
lies in the different goals of the data providers. In online
training, the data provider aims to offload computation to
external servers, while in multi-party training, data providers
also strive for higher model accuracy by utilizing private
datasets from other data providers.

B. FEDERATED LEARNING
Federated Learning (FL) is a machine learning paradigm that
was introduced to address privacy and data locality issues
that arise during the training of machine learning models.
The concept was proposed by Google in 2016 [37] as a
solution to train machine learning models across multiple
decentralized devices or servers holding local data samples,
without exchanging their data [38]–[40]. In FL, the goal is
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TABLE 5. Machine Learning Service Models in SMPC Roles.

Service Task Initiator Data Provider Algorithm
Provider

Coordinator Computing
Provider

Result Obtainer

Online
Training

Same as the data
provider.

An entity with data
who requires exter-
nal computation re-
sources.

Same as the data
provider.

Same as the com-
puting provider.

External cloud
computing service
providers.

Same as the data
provider.

Online
Inference

Same as the data
provider.

An entity, with a
data query, seek-
ing model inference
services.

The machine learn-
ing model provider.

Same as the algo-
rithm provider.

External cloud
computing service
providers.

Same as the data
provider.

Multi-party
Training

One of the data
providers.

Multiple parties
each with their own
private dataset.

Agreed between the
data providers

One of the data
providers.

Could be the
data providers
or external cloud
computing service
providers.

Same as the Data
Providers.

to train a globally accurate model by aggregating locally
trained models from participants, ensuring all data remains
local. Nevertheless, vulnerabilities in the cloud server or
between participants may jeopardize the security of this pro-
cess. There are three types of federated learning: horizontal
federated learning, vertical federated learning, and federated
transfer learning [38], [41], [42]. SMPC can significantly
enhance the privacy and security aspects of these types of
federated learning.

Horizontal Federated Learning: This federated learning
approach applies when datasets from different parties have
the same features but different samples [43]. Parties collab-
oratively decide on a unified model structure. A collective
model is then built by merging locally trained models from
each participant. This approach facilitates data parallelism,
where multiple instances of the identical model are trained
on distinct portions of the training dataset [39]. In this setting,
SMPC provides secure aggregation methods that protect the
privacy of each party’s local model. These techniques ensure
that model aggregation is performed securely, thus preserv-
ing the privacy of each participant’s contributions.

Vertical Federated Learning: In vertical federated learn-
ing, participants may have data entries from similar sample
spaces, but the features of these samples differ [44]. This
scenario allows for an aggregated description of a data entry
with different features collected from multiple parties. A
supporting operation for vertical federated learning, designed
to identify intersections in the sample space, is private set
intersection [7]. Through this operation, parties can disclose
the intersection of their sets with other parties’ sets without
revealing additional data. SMPC can support this operation
by providing the necessary cryptographic techniques to carry
out the private set intersection [45].

Federated Transfer Learning: In a federated transfer learn-
ing setting, both feature and sample spaces have minimal
overlaps among the parties. Therefore, transfer learning tech-
niques are employed in this context to leverage the limited
commonality between datasets [38]. This approach allows
parties to improve their local models by learning from
datasets that are not identical but are relevant or share some

similarities. SMPC can mitigate the risk of model inversion
or membership inference attacks in this setting, which is pos-
sible when parties exchange their local models for transfer
learning. Furthermore, SMPC can maintain the privacy of
local models and data during the learning process.

SMPC provides a set of cryptographic techniques that
can enhance the security and privacy aspects of federated
learning. These techniques ensure that local models and data
remain private, mitigating potential threats and risks while
enabling parties to collaboratively train a machine learning
model [46]–[48].

V. HOMOMORPHIC ENCRYPTION-BASED SMPC IN
MACHINE LEARNING
Secure Multi-Party Computation (SMPC) applications in ma-
chine learning can be primarily categorized into two secure
data sharing methods: homomorphic encryption and secret
sharing. This section examines SMPC applications based on
homomorphic encryption.

Homomorphic encryption is a form of encryption tech-
nique allowing computations to be carried out on on en-
crypted data, or ciphertexts. when the computed result is
decrypted, it aligns perfectly with the outcome of the same
operations executed on the original, unencrypted data (plain-
text) [49]. In such scenarios, sensitive data often needs to
be disseminated among various stakeholders. Homomorphic
encryption ensures that while computations can be performed
on this data, its actual content remains concealed, thereby
safeguarding user privacy and data confidentiality [14].

Recent research has leveraged homomorphic encryption
for secure model aggregation in federated learning. Federated
learning involves training machine learning models on nu-
merous decentralized devices, keeping the training data local-
ized [50]–[53]. This collaborative approach allows multiple
parties to jointly train models without exposing their training
data, proving beneficial for industries handling sensitive data
such as healthcare or finance. However, challenges remain,
primarily related to computation offloading and security
against collusion.

To tackle these challenges, solutions have been proposed
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involving server-aided protocols, proxy re-encryption, and
the integration of blockchain with federated learning. For
instance, in [50], a server-aided protocol based on the El-
Gamal encryption scheme is developed to facilitate model
weight sharing in horizontal federated learning. An extension
of this work deploys proxy re-encryption to enable training
on Convolutional Neural Networks (CNNs) - a class of deep
learning models most commonly applied to analyzing visual
imagery [52]. However, these solutions also bring their own
challenges, such as potentially high computational cost and
susceptibility to collusion.

Moreover, some studies attempt to offload the compu-
tational burden from data providers through server-based
training on encrypted data [54], [55]. This involves training
Artificial Neural Networks (ANNs) and autoencoders using
data encrypted by the Paillier scheme - a partially homo-
morphic encryption system. The challenge lies in executing
complex operations such as division and exponentiation on
encrypted data, integral to compute certain machine learning
activation functions. To simplify the computation require-
ment on encrypted data, functional encryption is introduced -
an advanced cryptographic technique where decryption keys
enable the decryption of specific functions of the data rather
than the data itself [55].

Despite the progress in leveraging homomorphic encryp-
tion for SMPC in machine learning, the field still faces
challenges, as fundamental security requirements often con-
flict with computation offloading. Looking forward, explor-
ing new cryptographic techniques, machine learning models,
and computing paradigms that can balance these competing
needs will be pivotal. Furthermore, benchmarking homomor-
phic encryption against other secure data sharing techniques
such as secret sharing will help understand its relative merits
and demerits in different application scenarios.

VI. SECRET SHARING-BASED SMPC IN MACHINE
LEARNING
Table 7 highlights recent advancements in machine learning
where Secure Multi-Party Computation (SMPC) is utilized
through secret sharing. Secret sharing is a method of dis-
tributing parts of confidential data to multiple parties to
preserve privacy.

The pioneering works employing secret sharing primarily
focused on delivering online inference services. For instance,
the authors of [56] demonstrated a Sharemind-based addi-
tive sharing approach in a case study concerning maritime
cargo consolidation. A machine learning model was designed
utilizing an open distance table among all feasible ports,
effectively reducing the search time. Confidentiality was
maintained by secretly sharing the source and destination
ports.

In another work [57], basic functionalities such as com-
parison, equality, bit decomposition, and truncation were
implemented in the ring Z2k, enabling online inference. The
study proposed a two-party scenario consisting of a client,
with a data entry, and a server, equipped with a decision

tree or Support Vector Machine (SVM) model. Furthermore,
they incorporated active checks to guard against potential
malicious server activities.

An application in the domain of edge computing was
showcased in [64], where coded computation was utilized
to lower the computational requirements for running SMPC
on edge servers. The system ensured the protection of data
collected from end devices during specific computation tasks
dictated by a master node. Computation with shared data was
performed on multiple edge servers, with the final results
reconstructed at the master node.

A multitude of secret sharing-based federated learning
applications have been demonstrated in recent research [46],
[58], [60]. In studies [46], [60], an innovative approach was
undertaken to alleviate communication and computation bur-
dens for shared model weights in peer-to-peer configurations.
Rather than disseminating multiple shares to all peers, a
select group of peers is nominated to aggregate the model
using data shares [60], a method that leads to a reduction
in the number and size of messages, as well as the overall
execution time.

Researchers in [46] went a step further by curbing the com-
munication cost of secret sharing to a level akin to non-SMPC
systems. The technique they proposed involves sharing only
the initial layer weights of the neural network in two phases.
During the first phase, every participant disperses a share of
the weights to all other peers, followed by each participant
calculating a sum of the received shares. In the second phase,
the sums calculated in the initial stage are transferred to a
server for computation of the sum and averaged weights.
The weights following the first model layer are aggregated
in plain text on the server.

Apart from the notable applications in model aggregation,
secret sharing also offers a unique application in private
set intersection computations, essential for vertical feder-
ated learning. The authors in [58] implemented Shamir’s
secret sharing scheme to compute the private set intersection,
effectively simplifying complex private set interactions to
manageable AND operations on bit-vectors.

These applications underline the potential of federated
learning in scenarios where multiple parties contribute data
for training. An interesting use case can be found in [59]
where secret sharing is used for natural language processing
tasks involving multiple input data sources from various
parties. Utilizing a seq2seq model built on Long Short-Term
Memory (LSTM), which is known to all parties, the system
safeguards the raw input data from each individual source,
highlighting the wide array of applications secret sharing can
have in preserving data privacy.

Recent advancements have centered on server-side SMPC
that are capable of online training, online inference, and
multi-party training [25], [61], [62], [65], [66]. For in-
stance, CrypTen strives to facilitate multi-party training using
PyTorch’s Application Programming Interface (API) [61],
offering parallel computation support for communication
protocol computations via graphic processing units. While
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TABLE 6. Homomorphic Encryption-based SMPC.

Year Type of Service Encryption Protocol SMPC Type Security Model Machine Learning Model
2018 [50] Multi-party training ElGamal-based Server-aided Malicious Not mentioned

2019 [54] Online training,
Multi-party training

Paillier scheme Server-aided Semi-honest ANN, Autoencoders

2019 [51] Multi-party training SEAL-based Peer-to-peer Semi-honest Gradient boosting trees

2019 [55] Online training,
Online inference,
Multi-party training

Functional encryption Server-aided N/A CNN, General neural networks

2020 [52] Multi-party training Proxy re-encryption Server-aided Malicious CNN

2022 [53] Multi-party training Not mentioned Peer-to-peer Not mentioned Not mentioned

TABLE 7. Secret Sharing-based SMPC for Machine Learning.

Year Type of Service Sharing Method SMPC Type Security Model Machine Learning Model
2019 [56] Online inference Sharemind (Additive shar-

ing)
Server-side Semi-honest Polynomial regression

2019 [57] Online inference SPDZ-based additive and
binary sharing

Peer-to-peer Malicious Decision tree, SVM

2020 [58] Multi-party training Shamir’s secret sharing Server-aided Semi-honest Private set intersection for federated
learning

2020 [59] (Multi-party)
Online inference

Additive and multiplicative
sharing

Peer-to-peer Semi-honest LSTM-based seq2seq

2020 [60] Multi-party training Additive and Shamir’s shar-
ing

Peer-to-peer Semi-honest Horizontal federated learning

2021 [46] Multi-party training Additive sharing Server-aided Semi-honest CNN

2021 [61] Online training,
Online inference,
Multi-party training

Additive and binary sharing Server-side,
Server-aided

Semi-honest Linear model, Wav2Letter, Resid-
ual network, Vision transformer

2021 [62] Online training,
Online inference,
Multi-party training

Additive, replicated and bi-
nary sharing

Server-side,
Peer-to-peer

Semi-honest CNN

2021 [63] Multi-party training Replicated sharing Server-side Malicious Feature selection, Logistic regres-
sion

2022 [64] Online inference Shamir’s secret sharing Server-side Semi-honest Not mentioned

2022 [65] Online training,
Online inference,
Multi-party training

Additive sharing Server-side Semi-honest CNN

2022 [66] Online training,
Online inference,
Multi-party training

Additive sharing Server-side Semi-honest CNN

2022 [25] Online training,
Online inference,
Multi-party training

Additive, replicated and bi-
nary sharing

Server-side Malicious CNN

Beaver triples’ generation depends on a trusted third party,
this party can be substituted with solutions incorporating
homomorphic encryption or oblivious transfer. CrypTen has
implemented a variety of secret shared operations including
addition, multiplication, dot product, outer product, matrix
product, and convolution based on additive secret sharing.
Binary secret sharing safeguards comparators. Moreover,
CrypTen approximates exponential, logarithm, and recip-
rocal functions via limit approximation, Householder iter-
ations, and Newton-Raphson iterations respectively. These
approximations serve as the foundation for the private com-
putation of machine learning activation functions.

Building on CrypTen, a three-party system, CryptGPU,
has been proposed [62]. It employs a two-out-of-three repli-

cated sharing scheme. With a focus on the private computa-
tion of Convolutional Neural Networks (CNNs), the authors
of [65] approximate division and square root operations in
the batch normalization layer through multiple rounds of
addition and multiplication. They employ regression, Tay-
lor series, Chebyshev polynomial approximation, Lagrange
polynomial approximation, and parametric polynomials to
model the activation functions.

In another approach to compute activation functions, an
SMPC system consisting of three computation nodes is
employed in [66]. One node generates Beaver triples for
secure multiplication and computes non-linear element-wise
functions, such as sigmoid and hyperbolic tangent activation
functions. A common sequence between the two computing
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nodes is used to randomly permute elements within shared
inputs and the results of these activation functions are com-
puted on the third node following reconstruction.

The last work reviewed that satisfies all service models on
server-side systems is [25]. The study underscores quantizing
neural networks to boost computational speed and mini-
mize communication. The authors propose an exponential
algorithm aimed at adding support to negative values while
separately computing the integer and fraction parts. This
work is grounded in MP-SPDZ, which implements various
protocols for operations under a malicious adversary model.

In addition to machine learning’s training and inference
operations, an SMPC system dedicated to multi-party feature
selection has been proposed [63]. This proposition outlines a
scenario where multiple data providers share their data with
either three or four computing nodes for the purpose of fea-
ture selection. To provide a refined dataset for model training
at the computing providers, the Gini scores of the features
are computed. To safeguard against malicious adversaries,
information-theoretic message authentication codes are used
to validate the correctness of secret values.

VII. SECURITY VULNERABILITIES OF SMPC SYSTEMS
Since one major application of SMPC in machine learning is
to enhance the security of federated learning, some security
vulnerabilities of federated learning are common in SMPC
systems. On the other hand, as SMPC systems are distributed
systems operating on heterogeneous devices [7], it shares
some of the vulnerabilities of IoT systems [6]. Table 8
presents security vulnerabilities or attacks on SMPC systems.

The common attacks from the field of federated learning
are data poisoning, malicious server, man-in-the-middle at-
tacks, collusion attacks, and dropout of clients [67]. Data
poisoning in federated learning refers to the corruption of
training data by the clients or data providers. In the context
of SMPC, this corruption can be extended to any shared
data or computation results from the data providers by the
computing providers. In [25], [57], [63], this vulnerability
is mitigated using information-theoretic message authenti-
cation codes [68]. A special case of data poisoning is a
malicious server. This attack aims at server-aided SMPCs.
The compromised centralized aiding server could corrupt the
computation results. The authors of [50] and [52] adopted
the bilinear aggregate signature to ensure the server does not
modify computation results. However, their clients operate
with a shared set of public and private keys, and the server
could obtain the keys through man-in-the-middle attacks.
The server could intercept the shared keys and modify the
data in later stages. For other types of SMPCs, any party
could launch a man-in-the-middle attack to intercept commu-
nications between participants and modify the shared data or
computation results. Collusion attacks are another method for
the server to obtain the clients’ shared keys. A compromised
client, in the interest of the server, can directly share the keys
with the server. For other types of SMPCs, collusion between
multiple computing providers up to a threshold allows the

reconstruction of shared data in secret sharing-based SMPC
systems. Therefore, the choice of nodes is important, espe-
cially in dishonest majority settings. The final attack inspired
by federated learning vulnerabilities is the dropout of clients.
Participating parties could drop out for justifiable reasons,
such as power outages or network issues. However, this
unstable behavior should be recorded and reflected during
the node selection process of future SMPC operations. The
incorporation of blockchain could be a solution [53].

The attack identified by the IEEE standards is side-channel
attack [12]. Side-channel attacks involve gathering or modi-
fying information from a participating device through phys-
ical access. One mitigation method is to adopt other secure
computation methods such as trusted execution environments
[69]. Other countermeasures [70] were discussed at code,
operation system, and architectural levels. Common network-
related attacks are denial of service attacks, eavesdropping,
and endpoint security [6]. A denial of service attack could
be initiated by any internal or external parties to disrupt
the service of an SMPC participating node. Eavesdropping
is similar to man-in-the-middle attacks, but eavesdropping
only listens to the communication without the attempt of
modification. Finally, endpoint security concerns malicious
behaviors from physically compromised devices. The authors
of [71] have studied the detection of such compromised
devices.

The IEEE standards did not directly identify many vul-
nerabilities of SMPC systems. However, the IEEE standards
provided a list of recommended security requirements target-
ing network-related attacks [12]. For example, adopting se-
cure transmission protocols such as Transport Layer Security
(TLS) protects the system against man-in-the-middle attacks
and eavesdropping. Network attacks and counter-attacks are
a widely discussed topic. It has already been studied in other
literature [6].

VIII. CHALLENGES AND BARRIERS IN SMPC
ADOPTION
While SMPC holds significant potential for privacy-
preserving computations, several challenges remain in its
widespread adoption for real-world applications.

A. COMPUTATIONAL OVERHEAD
SMPC introduces significant computational overhead com-
pared to traditional machine learning due to the complex
cryptographic operations, like homomorphic encryption and
secret sharing, needed for data privacy. This results in ex-
tended training and inference duration, especially for real-
time applications such as autonomous driving or medical
diagnostics [72], [73]. Additionally, the increased computa-
tional demands can lead to higher costs, particularly in cloud-
based settings, due to prolonged resource usage [74].

B. LEGAL AND REGULATORY CONCERNS
One of the primary challenges pertains to legal and regulatory
issues. Different jurisdictions have different laws and regu-
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TABLE 8. Common Attacks on SMPC Systems [6], [12], [67].

Attacks Description Sources of Attack Types of
Adversery

Data Poisoning Corrupting the values of shared data or computation results. Data Provider, Computing Provider Malicious

Malicious Server The aggregating server in federated learning applications sends
malicious model parameters.

The Aiding Server of Server-aided
SMPC

Malicious

Man-in-the-Middle
Attacks

Intercept the shared data or computation results and replace them
with corrupted value.

Any Party Malicious

Collusion Attacks Collusion of parties beyond a threshold could reconstruct shared
data.

Computing Provider Malicious

Dropout of Clients Participating parties drop out due to various possible reasons. Any Participant Malicious,
Non-
Malicious

Side-channel
Attacks

Gathering or modifying information from a participating device
through physical access.

Any Participating Device Malicious

Denial of Service
Attacks

An external adversary could exhaust communication and computa-
tion resources by flooding the participating nodes with requests.

Any Party Malicious

Eavesdropping An adversary secretly listens to a data provider’s communication to
obtain all data shares and reconstruct the original data.

Any Party Semi-
honest

Endpoint Security SMPC does not ensure the security of the computation environment.
A compromised device potentially allows the attacker to directly
access the data and computation results of participants

Any Party Malicious

lations regarding data privacy, and navigating these can be
complex. For instance, while SMPC allows for computation
on encrypted data, it’s possible that some jurisdictions might
still consider this to be data processing under their laws,
potentially requiring consent or other legal bases. Addition-
ally, international data transfer regulations could also come
into play in multi-party computations involving parties from
different countries [75]. Therefore, organizations wishing to
utilize SMPC must ensure that they are compliant with all
relevant laws and regulations.

C. USABILITY CHALLENGES
Another challenge is the usability of SMPC solutions. Imple-
menting SMPC requires significant technical expertise and
understanding of cryptographic principles, which can be a
barrier for many organizations. Moreover, it can be challeng-
ing to integrate SMPC solutions with existing IT infrastruc-
ture and workflows, further complicating its adoption. There
is a need for more user-friendly and easily integrable SMPC
solutions to lower the entry barrier for non-expert users [75].

D. MODEL AND DATA CONSTRAINTS
SMPC offers a promising avenue for privacy-preserving
computations, but its application in machine learning is not
universal. Certain machine learning models and datasets pose
challenges when integrated with SMPC. For instance, deep
learning models with multiple layers and a large number
of parameters can be computationally intensive for SMPC
due to the cryptographic operations involved [72]. Similarly,
algorithms that rely heavily on floating-point arithmetic or
iterative processes might not be optimal for SMPC, as these
operations can be inefficient and slow when encrypted. Ad-
ditionally, datasets with high dimensions or those requiring
frequent updates can further complicate the integration with

SMPC, leading to increased computational overhead and
potential inaccuracies [73].

These challenges represent significant hurdles to the
widespread adoption of SMPC. However, with ongoing re-
search and development efforts, as well as increasing aware-
ness and understanding of privacy issues, it is anticipated that
these challenges will be progressively addressed, paving the
way for broader usage of SMPC in real-world applications.

IX. IMPLEMENTATION GUIDELINES FOR SMPC IN
MACHINE LEARNING SYSTEMS
When implementing SMPC in machine learning systems,
there are a few guidelines and best practices that can be
helpful in achieving a successful deployment.

A. CHOOSE THE RIGHT SMPC METHOD
One of the first considerations when implementing SMPC is
to choose the right method. Homomorphic encryption and se-
cret sharing-based SMPC each have their own strengths and
weaknesses, as discussed previously. Therefore, the choice
of method should depend on the specific requirements of the
use case, such as the level of privacy required, the amount
of computational resources available, and the nature of the
machine learning tasks to be performed.

B. CONSIDER EFFICIENCY
Efficiency is a crucial consideration when implementing
SMPC. As mentioned earlier, homomorphic encryption can
be computationally intensive, while secret sharing-based
methods often require significant communication bandwidth.
Therefore, steps should be taken to optimize the efficiency
of the SMPC process, such as using efficient cryptographic
protocols, minimizing the amount of data to be processed,
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and leveraging hardware accelerators or parallel computing
techniques when possible.

C. INCORPORATE SECURITY MEASURES
It is essential to incorporate appropriate security measures
when implementing SMPC. This includes measures such as
user authentication, authorization, and auditing, as recom-
mended by the IEEE. Ensuring secure storage and transmis-
sion of data, using multiple protocol encryption schemes, and
verifying the SMPC version are also important for maintain-
ing system security.

D. IMPLEMENT VERIFICATION MECHANISMS
To ensure the integrity of data and the correctness of com-
putation results, it’s important to have a verification plan in
place. This can involve techniques like bilinear signatures
for federated learning, morphism-based methods for compu-
tation verification, and even blockchain technology for data
integrity verification.

E. ADDRESS USABILITY ISSUES
Usability is another crucial consideration when implement-
ing SMPC. Efforts should be made to make SMPC solutions
as user-friendly and easily integrable as possible to reduce the
barriers to adoption. Providing clear documentation, offering
user support, and building user-friendly interfaces can all
contribute to improving the usability of SMPC solutions.

F. STAY INFORMED ABOUT LEGAL AND REGULATORY
ISSUES
It is crucial to stay informed about relevant legal and regu-
latory issues. Given the potential complexity of navigating
data privacy laws and regulations, it may be beneficial to
seek legal advice when implementing SMPC, particularly in
scenarios involving international data transfers or sensitive
data types.

X. LIMITATIONS AND FUTURE WORK
This section presents a forward-looking view of SMPC appli-
cations in machine learning, highlighting current limitations
and potential future work related to IEEE recommended
security requirements, large-scale machine learning, infor-
mation exchange, incentive schemes, data verification, and
operational efficiency of SMPC.

A. ADDITIONAL IEEE RECOMMENDED SECURITY
REQUIREMENTS
Existing literature on SMPC applications often overlooks
certain security requirements recommended by the IEEE
[12]. These include authentication, which guarantees user
identity management; authorization, controlling user access
privileges; and auditing, a systematic process that logs sig-
nificant system activities. Future work could look into inte-
grating these security measures within the SMPC system to
further protect against malicious access.

B. LIMITATIONS OF SMPC FOR LARGE-SCALE
MACHINE LEARNING
The adoption of SMPC for large-scale machine learning is
limited by the general overheads of SMPC, and the nature of
the encryption methods. Large-scale machine learning opera-
tions are bounded by large data volumes and complex model
structures [76]. In the SMPC environment, large number of
participants should also be a feature of large-scale machine
learning operations. The increases in data volume, model
complexity, and participants significantly increase the com-
putational and communication overheads of SMPC systems
[77] and thus limit system scalability.

This article explored the application of homomorphic en-
cryption and secret sharing to share data between different
parties. Floating-point computation under these encryption
methods could affect the precision of the computation results.
Most secret sharing methods operate in a finite field, which
limits the machine learning data and model representation to
integers. One of the method is to perform model quantization
to convert the values to integers [25]. Other methods [78]
explore floating-point representation by multiple variables.
Inevitably, both types of methods involve rounding up the
values, which sacrifices precision. Homomorphic encryption
deal with floating-points by fixed-point arithmetic, approx-
imate arithmetic, and custom encodings [79]. Fixed-point
arithmetic has rounding errors, approximate arithmetic suf-
fers from approximation errors, and custom encodings from
encoding and further operations.

C. PREPROCESSING AND INFORMATION EXCHANGE
FOR SMPC
While a significant amount of work focuses on the com-
putational aspects of machine learning operations within
SMPC, less attention has been paid to necessary preprocess-
ing steps such as data cleaning, normalization, and feature
selection [80]. The development of secure implementations
of these preprocessing operations is a promising area for
future research [72]. Additionally, the exchange of dataset
and computation requirements prior to SMPC computation
is crucial. Blockchain technology offers a potential solution
for facilitating this information exchange [81], yet compre-
hensive blockchain systems that coordinate a wide range of
SMPC operations are currently underexplored.

D. INCENTIVE MECHANISMS IN SMPC SYSTEMS
The establishment of a cohesive group of computation con-
tributors for SMPC, especially in frameworks leveraging se-
cret sharing, involve a meticulous evaluation of the incentives
driving participant engagement [72]. While existing litera-
ture provides some insights, it often lacks comprehensive
strategies tailored for this context [73]. A well-structured
incentive mechanism should not only recognize and reward
the computational contributions but also acknowledge the
value brought in by data providers. Such a holistic approach
can potentially amplify participation rates in SMPC endeav-
ors. Furthermore, ensuring the authenticity and accuracy of
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the data and computational outputs is paramount, warranting
robust verification protocols within these incentive structures
[80].

E. VERIFICATION METHODS FOR DATA INTEGRITY
AND COMPUTATION RESULTS
As the input and output data in SMPC are encrypted, veri-
fying data integrity and computation results requires further
operations. There are some methods to ensure the integrity of
the shared data. In [50], [52], the authors used bilinear signa-
tures to ensure the aggregated weights in federated learning
are unchanged. There is also a low-overhead morphism-
based method to verify computation results [82]. There is
also the use of information-theoretic message authentication
codes [68]. However, these methods do not ensure the data
is computed through the desired process. On the other hand,
in the application of machine learning, it is more important
to verify the data quality of the original data from the data
providers. Methods such as differential privacy only verify
the possession of a dataset with certain quality [83]. However,
it does not ensure this data quality during operation as all data
are encrypted. Data quality verification during operation on
private datasets should be developed for SMPC applications
in machine learning.

F. OPTIMIZING OPERATIONAL EFFICIENCY IN SMPC
SYSTEMS
The current landscape of SMPC implementations often grap-
ples with substantial computational and communicative over-
heads, rendering them suboptimal for environments with lim-
ited resources or applications demanding real-time responses
[72]. A pivotal direction for upcoming research would be the
refinement of SMPC’s operational efficiency. This could be
achieved by minimizing the communication rounds or cur-
tailing the data volume exchanged during SMPC processes
[73].

Incorporating differential privacy methodologies can strike
a balance between ensuring rigorous privacy safeguards and
facilitating more streamlined computations. Moreover, the
advent of quantum computing, with its potential to revo-
lutionize computational paradigms, presents a captivating
prospect for augmenting SMPC’s capabilities. However, it’s
imperative to note that quantum-enhanced SMPC is still in
its formative phase and warrants extensive exploration.

G. EVALUATING COMPUTATION AND COMMUNICATION
EFFICIENCY OF SMPC
Homomorphic encryption and secret sharing, the two pri-
mary SMPC techniques used in machine learning, each have
inherent computational and communication challenges. Fu-
ture work should aim to benchmark the computation and
communication costs of these and other SMPC techniques,
with a focus on specific application scenarios. Such bench-
marking could illuminate the trade-offs between security, pri-
vacy, and efficiency, and help in identifying the most suitable
SMPC method for a given machine learning application [9].

In a broader perspective, the continued evolution of SMPC
applications in machine learning will require focused re-
search efforts in several areas, including security measures,
preprocessing and information exchange protocols, incentive
schemes, operational efficiency, and the evaluation of com-
putational and communication costs. These efforts will be
crucial for bridging the gap between the theoretical potential
of SMPC and its practical utility in real-world machine
learning applications.

XI. FUTURE TRENDS IN SMPC FOR MACHINE
LEARNING
Secure Multi-party Computation (SMPC) holds significant
potential for driving the future of privacy-preserving machine
learning. While current efforts focus on overcoming technical
challenges and expanding applications, the field is expected
to evolve towards more complex, efficient, and holistic so-
lutions in the long term. Here, we speculate on some of
the potential trends that might shape the future of SMPC in
machine learning.

A. INTEGRATION WITH OTHER PRIVACY-PRESERVING
TECHNIQUES
As the field matures, we might see more integration of SMPC
with other privacy-preserving techniques like Differential
Privacy (DP) and Federated Learning (FL). Combining these
techniques could lead to more robust solutions that offer a
better trade-off between privacy, utility, and performance. For
instance, SMPC can be used to securely aggregate model
updates in FL while DP can be applied to provide statistical
guarantees of privacy.

B. STANDARDIZATION AND INTEROPERABILITY
There will likely be a push towards standardization and
interoperability in SMPC protocols and implementations.
Standardization can streamline the design and deployment
of SMPC solutions, foster collaboration, and promote the
adoption of best practices. Meanwhile, interoperability can
facilitate the integration of different SMPC systems and
allow for more flexible and scalable privacy-preserving com-
putations.

C. HARDWARE-SPECIFIC OPTIMIZATIONS
Future research might explore hardware-specific optimiza-
tions for SMPC. By leveraging specialized hardware such
as Graphical Processing Units (GPUs), Tensor Processing
Units (TPUs), or even quantum processors, we might achieve
significant improvements in the computation and communi-
cation efficiency of SMPC operations.

D. AUTOMATED AND ADAPTIVE SMPC SYSTEMS
The development of automated and adaptive SMPC systems
could be another major trend. These systems could auto-
matically select the most appropriate SMPC method based
on the specific requirements and constraints of a given task.
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They might also adapt to changes in the computational en-
vironment, data characteristics, or privacy requirements to
maintain optimal performance and security.

E. LEGAL AND ETHICAL CONSIDERATIONS
As SMPC becomes more widely adopted, there will likely be
increased scrutiny of the legal and ethical implications of its
use. This could lead to the development of new regulations,
guidelines, and ethical frameworks for SMPC in machine
learning, with a particular emphasis on ensuring fairness,
transparency, and accountability.

The future of SMPC in machine learning is likely to
be exciting and dynamic, marked by continual innovation,
collaboration, and evolution. As we continue to push the
boundaries of what is possible, SMPC has the potential to be-
come an indispensable tool for enabling privacy-preserving
machine learning in a wide range of applications.

XII. CONCLUSION
Secure Multi-party Computation (SMPC) continues to gain
traction in machine learning, offering novel ways to safe-
guard data privacy during computations. Through a review of
various studies, this paper affirms the efficacy and versatility
of both homomorphic encryption-based and secret sharing-
based SMPC methods across different machine learning
tasks—ranging from model training and inference to feature
selection and private set intersection.

Nonetheless, present SMPC implementations confront
several constraints, primarily around the significant compu-
tational resources and communication bandwidth require-
ments. Additionally, there is a distinct lack of standardized
security measures and practices, alongside an inadequacy of
robust methods for verifying data integrity and computation
results. Current incentive structures within SMPC systems
are far from comprehensive, often neglecting key elements
such as data quality and sustained participation.

Despite these obstacles, the promise and potential of
SMPC in machine learning remain intact. Future research
is poised to address these limitations by refining crypto-
graphic techniques and computation strategies for enhanced
efficiency, standardizing security measures, and introducing
more robust incentive and verification mechanisms. With
such advancements on the horizon, SMPC is slated to play
an even more critical role in propelling secure, privacy-
preserving machine learning applications.

.

APPENDIX A MATHEMATICAL ILLUSTRATION OF
SECRET SHARING METHODS
A. ADDITIVE SECRET SHARING
In Additive Secret Sharing, a secret is divided into shares,
and each share is generated by adding a random value to
a specific portion of the secret. The shares are distributed
among the parties, and the secret can only be reconstructed
by combining a sufficient number of shares.

Here is a simplified example of Additive Secret Sharing
for three parties. Suppose we want to share a secret s:

1) Random values x, y, and z are generated by the dealer
(the one who shares the secret).

2) The dealer computes three shares as follows:
• The share for Party 1 is s1 = s+ x.
• The share for Party 2 is s2 = s+ y.
• The share for Party 3 is s3 = s+ z.

3) Each party now holds one share, which contains a
portion of the secret s plus a random value.

4) To reconstruct the secret, any subset of parties with
a sufficient number of shares can add their shares
together:

• If Party 1 and Party 2 collaborate, they can com-
pute s as s1+s2 = (s+x)+(s+y) = 2s+x+y.

• Similarly, Party 2 and Party 3 can compute s as
s2 + s3 = (s+ y)+ (s+ z) = 2s+ y+ z. Party 1
and Party 3 can compute s as s1 + s3 = (s+ x) +
(s+ z) = 2s+ x+ z.

5) The result of any of these computations is 2s plus the
sum of the random values (x+ y, y + z, or x+ z). By
subtracting the sum of the random values, the parties
can obtain the original secret s.

In practice, these computations are performed modulo a
prime number to ensure that the secret remains secure and
the operations are reversible. Additionally, techniques such
as Shamir’s Secret Sharing can be used to extend the scheme
to work with more than three parties and achieve the desired
threshold for secret reconstruction.

B. SHAMIR’S SECRET SHARING
Shamir’s Secret Sharing scheme is a type of polynomial
secret sharing. The basic concept of Shamir’s Secret Sharing
is that k points are sufficient to define a polynomial of degree
(k − 1). In a (k, n) threshold scheme, a secret s is shared
among n participants such that any k of these shares can
reconstruct the secret, but k − 1 or fewer shares reveal no
information about the secret.

Let’s illustrate this with a concrete example: Suppose you
want to share a secret s among n participants such that at
least k participants are needed to reconstruct the secret.

1) Choose a (k−1) degree polynomial f(x) = a0+a1x+
a2x

2 + ...+ ak−1x
k−1, where a0 = s (the secret), and

a1, ..., ak−1 are randomly chosen coefficients.
2) Generate the shares of the secret by evaluating the

polynomial at n distinct points x1, ..., xn. Each share
si is a pair (xi, f(xi)).

3) Any group of k or more participants can reconstruct
the polynomial (and thus the secret) using their shares
and the method of polynomial interpolation (such as
Lagrange interpolation).

4) If there are fewer than k shares, the secret s can’t be
reconstructed because there are infinitely many degree
(k − 1) polynomials that pass through any given set of
(k − 1) or fewer points.
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Remember to state clearly that the operations are usually
performed in a finite field to ensure the security of the scheme
and avoid real-number computation issues.

C. REPLICATED SECRET SHARING
In Replicated Secret Sharing, a secret is shared among n
parties in such a way that any subset of size less than half
of the parties learns nothing about the secret, but any subset
of size greater than or equal to half can recover the secret.

Here is a simplified example of Replicated Secret Sharing
for three parties. Suppose we want to share a secret s:

1) First, two random values x and y are generated by the
dealer (the one who shares the secret).

2) The dealer then computes three shares as follows:
• The share for Party 1 is (x, y).
• The share for Party 2 is (x, s− y).
• The share for Party 3 is (s− x, y).

3) Each party now has two values, one from the set
x, s− x and one from y, s− y. Note that any single
share reveals nothing about the secret, since it could be
created by any pair of random values x and y.

4) Any two parties can reconstruct the secret by adding
their shares together:

• Party 1 and Party 2 can compute s by adding their
shares component-wise: (x, y) + (x, s − y) =
(2x, s) = (s, s).

• Similarly, Party 2 and Party 3 can compute s as
(x, s− y) + (s− x, y) = (s, s).

• Party 1 and Party 3 can compute s as (x, y)+ (s−
x, y) = (s, s).

5) The result is (s, s). The first component is discarded,
and the second component s is the reconstructed secret.

Again, in practice, these operations are performed in a finite
field to ensure the security of the scheme and avoid issues
with real number computations.

APPENDIX B OPEN-SOURCE SOFTWARE AND TOOLS
FOR SMPC
There’s a growing assortment of open-source software, li-
braries, and tools available for the implementation of Secure
Multi-party Computation (SMPC). Developers now have a
variety of options tailored to their specific needs. Below, we
highlight several noteworthy options currently accessible.

1) Paillier Cryptosystem [17]
This encryption scheme is widely recognized for its partial
homomorphic properties. It enables the encryption of inte-
gers and performs addition operations on the encrypted inte-
gers, gaining popularity due to its simplicity and efficiency.

2) CrypTen [84]
Originating from Facebook’s AI Research lab (FAIR),
CrypTen aspires to provide a secure platform for machine
learning using PyTorch. Specifically engineered for multi-

party computation, CrypTen has implemented a number of
useful machine learning functions.

3) TF Encrypted [85]
TF Encrypted, an extension of TensorFlow, offers a set of
tools specifically designed for encrypted machine learning. It
accommodates secure computation primitives such as secret
sharing and multi-party computation, along with privacy-
preserving training and inference.

4) MP-SPDZ [86]
MP-SPDZ is a comprehensive framework for multi-party
computation. It supports a variety of secret sharing types and
fully homomorphic encryption. Equipped with implementa-
tions of numerous cryptographic protocols, it can be utilized
for a vast array of applications.

5) HElib [87]
HElib is a software library dedicated to implementing ho-
momorphic encryption, allowing for arithmetic operations to
be performed on encrypted data. This feature makes it an
advantageous tool for privacy-preserving computations.

6) Microsoft SEAL [88]
The Simple Encrypted Arithmetic Library (SEAL) by Mi-
crosoft is a user-friendly library designed for performing
homomorphic encryption. It offers a high-level API for ex-
ecuting arithmetic operations on encrypted data.

7) Obliv-C [89], [90]
Obliv-C enhances the C programming language, providing
benefits for developers well-versed in C. While it’s designed
for distributed systems, it may not be as feature-rich as some
other SMPC libraries.

8) Sharemind [91], [92]
Sharemind supports data processing between multiple parties
while ensuring privacy. Although it might lack flexibility for
non-standard computations, it makes up for it with a strong
focus on secure computation principles.

9) SCALE-MAMBA [93], [94]
SCALE-MAMBA stands out with its flexibility and user-
friendliness, supporting a wide array of computations. Addi-
tionally, it offers integration capabilities with other languages
such as C++ and Python, thus enhancing its versatility.

10) JIFF [95]
Uniquely focused on web-based SMPC, JIFF serves as an
excellent choice for developers creating secure web applica-
tions. It may, however, not be as suitable for non-web use
cases.

11) ABY [96], [97]
ABY concentrates on efficient two-party computation, lever-
aging a mix of cryptographic protocols. While it’s an ex-
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cellent fit for two-party computations, it might not be the
optimal choice for multi-party scenarios.

12) Fresco [98]
Fresco is a Java-based SMPC framework, an appealing
choice for developers with a background in Java. It provides
a high-level language for creating complex protocols from
simple building blocks.
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