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Abstract: This retrospective case-control study evaluated the diagnostic performance of a commer-
cially available chest radiography deep convolutional neural network (DCNN) in identifying the
presence and position of central venous catheters, enteric tubes, and endotracheal tubes, in addition
to a subgroup analysis of different types of lines/tubes. A held-out test dataset of 2568 studies
was sourced from community radiology clinics and hospitals in Australia and the USA, and was
then ground-truth labelled for the presence, position, and type of line or tube from the consensus
of a thoracic specialist radiologist and an intensive care clinician. DCNN model performance for
identifying and assessing the positioning of central venous catheters, enteric tubes, and endotracheal
tubes over the entire dataset, as well as within each subgroup, was evaluated. The area under
the receiver operating characteristic curve (AUC) was assessed. The DCNN algorithm displayed
high performance in detecting the presence of lines and tubes in the test dataset with AUCs > 0.99,
and good position classification performance over a subpopulation of ground truth positive cases
with AUCs of 0.86–0.91. The subgroup analysis showed that model performance was robust across
the various subtypes of lines or tubes, although position classification performance of peripherally
inserted central catheters was relatively lower. Our findings indicated that the DCNN algorithm
performed well in the detection and position classification of lines and tubes, supporting its use as an
assistant for clinicians. Further work is required to evaluate performance in rarer scenarios, as well as
in less common subgroups.

Keywords: machine learning; chest X-ray; deep learning; hidden stratification; lines and tubes

1. Introduction

The insertion of support devices, such as endotracheal tubes (ETTs), enteric tubes
(NGTs), and central venous catheters (CVCs), is a common procedure in hospitalised pa-
tients to facilitate provision of care in the acute setting. However, complications resulting
from malpositioning of such devices can lead to significant morbidity and mortality, due to
an inability to deliver treatment or through direct harm from the insertion procedure [1–3].
For example, it has been reported that, in England and Wales between 2005 and 2010,
there were 21 deaths and 79 cases of harm due to misplaced NGTs [4]. In many health
jurisdictions, the utilisation of inadvertently malpositioned devices is a reportable sentinel
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event [5–7]. To mitigate this risk, chest radiography is commonly used to evaluate posi-
tioning after insertion, due to its wide availability and low cost. However, reports suggest
that the accurate interpretation of device position on radiographs can be challenging [8–10],
with reports from the UK’s National Health Service (NHS) indicating that more than half
of serious incidents relating to malpositioned devices were related to the misinterpretation
of post-insertion X-rays [4].

Deep learning, a subdomain of artificial intelligence (AI), enables effective outcome
prediction and classification, and is influencing the optimisation and delivery of clinical
medicine across specialties [11–15]. Developments in AI have the potential to improve
clinician interpretation accuracy in radiology, as well as to automatically triage cases with
suspected malpositioned catheters, shortening radiologist reporting turnaround times and
improving the timeliness of patient care [11,16–19]. Historical solutions have relied on such
rule-based approaches as edge detection, template matching, and morphological processing
to detect the presence of ETTs and NGTs, or to classify their position [20,21]. More recently,
deep convolutional neural network (DCNN) models have been used to predict ETT-carina
distances, in order to recognise malpositioned ETT placement [22]. DCNNs that predict line
position through a segmentation-based approach have also found use in the assessment of
CVC tip positions and, by extension, the identification of malpositioned central lines [23,24].
Newer studies have examined DCNN algorithms capable of simultaneously assessing
multiple types of lines and tubes [16,25–28]. Use of DCNN-based clinical decision support
systems appears to improve chest X-ray (CXR) line detection accuracy and concordance
amongst clinicians [29].

However, reported DCNN summary performance metrics may not translate to clinical
practice. A recent systematic review identified recommended approaches for assessing
DCNN performance, including determining the presence of a support device first, and
subsequently the appropriateness of the device position [30]. As such, a more robust
assessment of DCNN model performance involves providing an overall area under the
receiver-operating characteristic curve (AUC) for the detection of the line/tube itself, and
position classification AUC for only those cases where a line/tube is present. DCNN per-
formance is usually summarised as a single metric (such as AUC) across an entire dataset,
which may be misleading for clinically distinct and meaningful subgroups of patients in
clinical practice, a phenomenon known as hidden stratification [31]. The classic example to
illustrate hidden stratification is as follows. Algorithms designed to identify pneumoth-
oraces with strong performance across an entire test dataset perform worse in subsets of
patients without an accompanying intercostal drain, due to correlation between intercostal
drains and pneumothoraces on CXR [32]. In the case of lines and tubes, performance
discrepancies of the model across different subtypes of lines and tubes (such as jugular vs.
subclavian central lines) may be hidden by the single summary metric.

Recently, a DCNN CXR tool capable of detecting 124 findings on frontal and lateral
CXRs was developed by Seah and colleagues [16]. The model outperformed radiologists on
94% of findings and improved their diagnostic accuracy when assisting their interpretation
for 80% of findings, including for lines and tubes. In the present study, which builds on the
previous model performance evaluation study [16], we aimed to comprehensively assess
the standalone performance of the DCNN algorithm for the identification of CVCs, ETTs,
and NGTs, as well as their relevant device subtypes, on CXR. Our primary research question
was: How does the algorithm perform when detecting clinically meaningful line and tube
subcategories, and is it resilient to hidden stratification? Detection performance across
the entire dedicated test set for CVCs, ETTs, and NGTs was calculated, as well as position
classification performance with a full confusion matrix across cases known to contain the
relevant device. Additionally, the performance of the DCNN across device subtypes was
explored to assess the extent of hidden stratification. We hypothesised that model detection
and positioning performance would not be degraded under this recharacterisation for
CVCs, ETTs, and NGTs, and that the model would be resilient to hidden stratification.
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2. Materials and Methods
2.1. Ethics Approval

This project was reviewed and approved by the Human Research Ethics Committee
at the University of Notre Dame Australia (2020-127S, 21 September 2020). Data were
deidentified prior to use in this study.

2.2. AI Model

The commercially available DCNN algorithm (Annalise CXR ver 2.0, Annalise-AI, Syd-
ney, Australia) was evaluated. The deep-learning tool, described by Seah et al. (2021) [16],
consisted of three DCNNs: an image projection classification model, a clinical finding
classification model, and a clinical finding segmentation model. The image projection
and classification models were based on the EfficientNet architecture [33]. The segmenta-
tion model was based on the U-Net [34] architecture with an EfficientNet backbone. For
lines and tubes, the algorithm outputs consisted of both ‘satisfactory’ and ‘unsatisfactory’
findings, to evaluate positioning. A demonstration version of this algorithm is publicly
accessible at https://cxrdemo.annalise.ai, accessed on 8 June 2023.

2.3. Study Data

The CXR test dataset was previously used to validate the DCNN algorithm and has
been fully described elsewhere [16]. This test dataset was retrospectively assembled at the
radiological study level from two sources: a large Australian private radiology company,
as well as the publicly available MIMIC-CXR dataset [35]. Radiographic data was collected
in a Digital Imaging and Communications in Medicine (DICOM) format with the original
resolution and bit-depth preserved, and protected health information was removed through
an automated deidentification process. Test dataset radiographs were selected only from
patients on which the DCNN had not been trained. Inclusion criteria for this dataset were
a patient age ≥ 16 years, and at least one frontal projection in the CXR study (PA or AP
projections), corresponding to the intended use of the DCNN. The test dataset consisted
of radiographs featuring the full spectrum of 124 findings that the DCNN algorithm was
designed to detect, including pathology unrelated to lines and tubes (e.g., lung nodules
and fractures).

2.4. Ground Truth Labelling

Three Australian subspecialist thoracic radiologists (from a pool of seven) indepen-
dently evaluated each case in the test dataset for the presence of any type of CVC, NGT, or
ETT [16]. If at least one identified such a device, it was further ground-truth labelled for
position and subtype, for the purposes of this study. Ground-truth labelling of line and
tube position and subtype was performed by a thoracic subspecialist radiologist and an
intensive care specialist. The ground truth was based on their consensus. The definitions for
position and subtype were determined prior to commencement of ground truth labelling
activities by a consensus discussion between the thoracic radiologist and intensivist, draw-
ing from academic literature, guidelines, and clinical experience (Supplementary Table S1).
Ground truth labelling activities were performed with access to the patient’s available past
and future imaging, CXR reports with clinical information, as well as CT chest reports,
if available.

The ground truth labelling process of a line or tube position categorised its position
as “satisfactory”, “suboptimal”, or “malpositioned”. Additionally, if an NGT was deemed
to be incompletely/poorly imaged to the extent that position safety could not be reliably
determined, this was classified as “incompletely imaged” by the ground truth labellers and
was counted in the NGT detection metrics, but not counted in the position classification
performance assessment. “Suboptimal” and “malpositioned” ground truth labels were
combined into “Unsatisfactory” for this study, as the DCNN model was designed to group
these categories together.

https://cxrdemo.annalise.ai
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2.5. Analysis
2.5.1. Primary Outcome

For each of the categories of CVC, ETT, and NGT, the AUC for detection of the
presence of that device over the entire test dataset was calculated by bootstrap sampling
the model performance over the test dataset 100,000 times, to derive both a mean and a 95%
confidence interval (2.5th and 97.5th percentile). Then, for each of these three categories,
separate “satisfactory position” and “unsatisfactory position” AUC performance scores
were calculated over the subset of cases containing the relevant device as per the ground
truth. The AUC has been reported as a mean and a 95% confidence interval by bootstrap
sampling the test dataset 100,000 times over, before filtering that sample to retain only cases
positive for that category, and then calculating the AUC on only those filtered cases for
each iteration. Model outputs for position classifications were binarised using a previously
derived “default” threshold, chosen based on the validation folds of the training data, then
compared against the ground truth to derive the confusion matrix.

2.5.2. Secondary Outcome

The position performance in subgroups of types of lines or tubes was analysed. Cen-
tral lines were grouped into jugular, subclavian, dialysis, and peripherally inserted central
catheters (PICCs). Enteric tubes were grouped into double lumen, NGTs with guidewires,
and fine bore NGTs. Endotracheal tubes were grouped into true endotracheal tubes, and
tracheostomies. To obtain position performance within a subgroup, bootstrap sampling
the test dataset was again performed 100,000 times over, but each sample was filtered to
retain only cases positive for that subgroup, before then calculating AUC performance. The
obtained distribution of AUC values was analysed (as above) to obtain a mean and 95%
confidence interval. This process was repeated for each position/subgroup combination.
Again, model outputs were binarised using the predetermined threshold to derive a confu-
sion matrix for the studies in that subgroup. Analyses were conducted using Python, using
the SciPy [36], Scikit-learn [37], NumPy [38], and Tensorflow [39] packages. Results were
independently calculated and agreed upon by two investigators.

3. Results

The analysed dataset contained 2568 studies with 4568 images, representing 2286 patients.
Forty-three percent of cases from the test dataset originated from the MIMIC-CXR dataset and
57 percent originated from the private Australian radiology practice dataset. Table 1 presents
the demographic and imaging characteristics of the test dataset.

Table 1. Demographics of the overall test dataset. * MIMIC-CXR does not provide sex or age information.

Dataset Characteristic Statistics

Patients 2286

Studies 2568

Images 4568

Sex
29% male
28% female
43% unknown *

Age 74 years (SD 15 years) *

View Position

28% PA
33% AP
31% LAT
8% other

Eleven of the studies were deemed unsuitable for DCNN processing by the system for
technical reasons (e.g., where no frontal image was recognised using the model, no CXR
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image was found using the model, where a processing error occurred, or case data were
missing) and were excluded. Four excluded studies contained a line or tube. One contained
a satisfactory PICC, two contained a satisfactory subclavian line, and one contained both a
satisfactory jugular line and an unsatisfactory fine bore NGT.

In the remaining 2557 studies, there were 751 cases containing a line or tube of interest:
477 cases contained a CVC, 262 cases contained an ETT, and 206 cases contained an NGT
that were not incompletely imaged. Thirty-one NGTs were incompletely imaged, and a
position determination could not be confidently assigned by the ground truth labellers,
and were thus excluded from the position classification analysis. NGTs with wires in situ
were not analysed as a subgroup for position classification as there were too few cases.
Tracheostomies as a subgroup were not analysed for AUC as only one result (“satisfactory”)
was seen in that subgroup.

3.1. Primary Outcome

The DCNN model identified the presence of ETTs, NGTs, and CVC with AUCs greater
than 0.99 (Table 2). The mean satisfactory and unsatisfactory position determination AUC
performance of the DCNN over the relevant category of line or tube ranged from 0.86 to 0.91
for the six findings (Table 3), with the relatively wide 95% confidence intervals. The size of
the category over which performance was calculated ranged from 206 to 477 cases. The
confusion matrix for each of the findings has been shown using the default threshold
supplied with the model. AUC curves for position classification performance over ground
truth positive cases have been shown in Figure 1, with the operating point at the preselected
threshold indicated.
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Table 2. Detection performance of the model over the entire testing dataset of 2557 processed studies.
The mean AUC of the model and its nonparametric 95% confidence interval from 100,000 bootstrap
iterations are presented. Positives and negatives represent the number of cases with and without the
finding, respectively, in the dataset.

Finding Positives Negatives Model AUC Mean over
Entire Dataset AUC Mean 95% CI

ETT 262 2295 0.9999 0.9997–1.0000
CVC 477 2080 0.9983 0.9970–0.9993
NGT 206 2351 0.9994 0.9984–1.0000

Table 3. Position classification performance of the model over the ground-truth positive cases of
the relevant line/tube (‘Subpopulation’). The mean AUC of the model and its nonparametric 95%
confidence interval from 100,000 bootstrap iterations are presented, along with a confusion matrix for
the classification of the cases based on the default threshold selected for the model. The subgroup
size =/= positive case in subgroup for CVC and NGT because they can have multiple lines/tubes per
patient. TN = True negative. FP = False positive. FN = False negative. TP = True positive.

Finding Category Size of
Category

Positive Cases
in Category

Model AUC Mean
(95% CI) TN FP FN TP

Satisfactory ETT ETT 262 209 0.8608 (0.8020–0.9128) 19 34 11 198
Unsatisfactory ETT ETT 262 53 0.9153 (0.8724–0.9519) 174 35 18 35
Satisfactory CVC CVC 477 423 0.8778 (0.8323–0.9186) 23 31 21 402
Unsatisfactory CVC CVC 477 65 0.8715 (0.8158–0.9200) 346 66 16 49
Satisfactory NGT NGT 206 179 0.9051 (0.8409–0.9574) 8 19 5 174
Unsatisfactory NGT NGT 206 29 0.8943 (0.8062–0.9620) 154 23 5 24

3.2. Secondary Outcome

Eighteen subgroup analyses over nine line/tube subtypes were performed for the
secondary outcome to define model position classification performance, with results shown
in Table 4. The size of the subpopulation over which performance was calculated ranged
from 37 to 243 (Table 4). A confusion matrix using the default threshold supplied with the
model is displayed in Table 4. The position classification performance across subgroups
ranged from 0.79 to 1.00, with notable variability between different CVC subtypes with
the lowest AUC performance in the PICC subgroup. Tracheostomy position performance
could not be calculated as the test dataset contained only satisfactory tracheostomies.

Table 4. Position classification performance of the model over ground truth cases containing a certain
subtype of line/tube (‘Subgroup). The number of cases in that subgroup and the number of positives
for the finding are shown. The mean AUC of the model and its nonparametric 95% confidence interval
from 100,000 bootstrap iterations are presented, along with a confusion matrix for the classification of
the cases based on the default threshold selected for the model. The subgroup size may not equal
positive cases in subgroup for CVC and NGT because they can have multiple lines/tubes per patient.
TN = True negative. FP = False positive. FN = False negative. TP = True positive. * No AUC could be
calculated as there were no unsatisfactory tracheostomies in the test dataset. † Too few cases were
present in the subgroup for meaningful AUC calculation.

Finding Subgroup Size of
Subgroup

Positive Cases
in Subgroup

Model AUC Mean (95%
CI) TN FP FN TP

Satisfactory CVC Dialysis Catheters 40 36 0.9304 (0.8222–1.0000) 1 3 2 34

Unsatisfactory CVC Dialysis Catheters 40 6 0.9019 (0.6989–1.0000) 24 10 1 5

Satisfactory CVC Jugular Lines 243 221 0.9139 (0.8509–0.9639) 10 12 6 215

Unsatisfactory CVC Jugular Lines 243 32 0.8700 (0.7890–0.9379) 176 35 7 25
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Table 4. Cont.

Finding Subgroup Size of
Subgroup

Positive Cases
in Subgroup

Model AUC Mean (95%
CI) TN FP FN TP

Satisfactory CVC PICCs 140 123 0.8227 (0.7220–0.9083) 7 10 13 110

Unsatisfactory CVC PICCs 140 23 0.7880 (0.6624–0.8947) 98 19 9 14

Satisfactory CVC Subclavian Lines 121 107 0.8879 (0.7943–0.9639) 5 9 2 105

Unsatisfactory CVC Subclavian Lines 121 16 0.8892 (0.7840–0.9675) 87 18 4 12

Satisfactory ETT Endotracheal Tubes 211 166 0.8709 (0.8130–0.9220) 19 26 8 158

Unsatisfactory ETT Endotracheal Tubes 211 45 0.8923 (0.8387–0.9384) 131 35 10 35

Satisfactory ETT Tracheostomies 51 51 N/A * 0 0 3 48

Unsatisfactory ETT Tracheostomies 51 0 N/A * 51 0 0 0

Satisfactory NGT Double Lumen NGTs 170 147 0.9091 (0.8388–0.9655) 7 16 3 144

Unsatisfactory NGT Double Lumen NGTs 170 25 0.8752 (0.7741–0.9538) 125 20 5 20

Satisfactory NGT NGTs with Guide Wire 2 1 N/A † 1 0 0 1

Unsatisfactory NGT NGTs with Guide Wire 2 1 N/A † 1 0 0 1

Satisfactory NGT Fine Bore NGTs 37 33 0.9091 (0.8000–1.0000) 1 3 2 31

Unsatisfactory NGT Fine Bore NGTs 37 4 1.0000 (1.0000–1.0000) 30 3 0 4

4. Discussion

This study involved a detailed performance analysis and substratification in the
context of an established CXR deep learning model reviewing a post-insertion CXR for the
satisfactory/unsatisfactory positioning of a line or tube. Existing research has tended to
describe model performance over entire mixed datasets (including cases with and without
devices). On such datasets, one DCNN algorithm was reported to achieve AUCs for NGT
position classification of 0.82 to 0.87, and another achieved AUCs for low vs. normal ETT
position of 0.74 to 0.81 [40,41]. A newer multifinding algorithm demonstrated an AUC
for detection of unsatisfactory ETT, CVC, and NGT of 0.919, 0.769, and 0.931, respectively,
across a mixed test dataset of 70,209 images [26]. In this study, model performance for
detection of lines and tubes over the entire test dataset was high. AUCs exceeded 0.99
for the three device categories, and position classification performance demonstrated
that the model still performed favourably with AUCs from 0.86 to 0.91 across the cases
containing that category of device. Position classification performance of the DCNN
only over the subset of cases that were ground-truth labelled as containing that device
was expected to be lower than position performance over the entire dataset (previously
presented in Seah et al., 2021 [16]), as whole dataset performance is inflated by the fact that
it correctly identifies the absence of the line/tube in the large number of the negative cases.
Overall, the DCNN algorithm analysed herein displays position classification performance
over ground truth positive cases comparable to published mixed dataset performance of
other algorithms.

Model performance was mostly resilient to hidden stratification across subtypes
of lines and tubes. However, PICC position classification performance appeared to be
degraded compared to other CVC subtypes, representing the majority of false negative
(FN) unsatisfactory CVCs, suggesting a potential subgroup subject to hidden stratification.
We hypothesise that this is because PICCs are thinner and more difficult to visualise
compared to the thicker jugular, subclavian, and dialysis lines, and that the model has
likely become attuned to tip positions centrally (both satisfactory and unsatisfactory)
due to the abundance of examples, resulting in a degraded performance for peripherally
located tips that are rarer and more variable in location. PICCs terminating near the axilla
represented the majority of FN unsatisfactory PICCs. Figure 2 provides a collection of
examples of FN malpositioned PICCs. Investigations using datasets enriched with these
examples are required to further characterise this behaviour.
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Figure 2. Representative examples of false negative malpositioned PICCs, with paths highlighted
by dashed lines: (A) A right-sided PICC terminating in the subclavian vein; (B) A left-sided PICC
terminating in the subclavian vein; (C) A right-sided PICC with the tip in the proximal right atrium;
and (D) A brachial Swan-Ganz catheter with tip in the right-ventricular outflow tract. These are some
examples of malpositioned lines that were not classified by the model as being malpositioned. Cases
are from a test dataset containing radiographs from a private Australian radiology practice and the
MIMIC-CXR dataset [35].

The finding of an unsatisfactory device being predicted as satisfactory (FN) by the
model is clinically more consequential than a satisfactory device predicted as unsatisfactory
(FP). As such, the occurrence of these was further defined. There were sixteen cases of FN
unsatisfactory CVCs: three malpositioned CVCs, and thirteen suboptimal CVCs. Of the
three FN malpositioned CVCs, one was misclassified by the model as “satisfactory”, namely,
a left-sided PICC terminating in the right subclavian. The two other FN malpositioned
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CVCs were not misclassified as “satisfactory” but were simply missed by the model; these
were a left-sided jugular line looping back up the ipsilateral internal jugular vein, and a left-
sided subclavian line deviating into the ipsilateral internal jugular vein. Such malpositioned
lines represent rare cases that are challenging for AI models to interpret due to their low
prevalence in training datasets. Rarer devices were also often misinterpreted, such as a
right-sided brachial Swan-Ganz catheter with the tip in the right ventricular outflow tract.
More common cases, such as suboptimal lines with tips in the right atrium, were better
identified, but still represented five of the FN unsatisfactory CVC cases.

There were ten cases of FN unsatisfactory ETTs, all meeting the ‘suboptimal’ definition,
and no cases of missed ETT malposition within a main bronchus. Of these ten cases, four
demonstrated tube tips between 20 and 30 mm from the carina, five were between 70 and
85 mm from the carina, and the remaining case contained a tube 100 mm from the carina
but also contained an endoscope located in the oesophagus. All ten cases had an enteral
device (nine NGTs and one endoscope), suggesting that the model may suffer from hidden
stratification of ETT position classification in cases containing such an accompanying device,
compared to cases without one. There was insufficient prevalence in the testing dataset of
rarer oesophageal devices, such as endoscopes or transoesophageal echocardiogram probes,
to investigate whether these negatively affected ETT position assessment performance.

There were five cases of FN unsatisfactory NGTs. None demonstrated the model
missing a malpositioned enteric tube in the airways. One study contained two images,
the first with an oesophageal malpositioned NGT, and the second with the tip adequately
in the stomach, presumably after advancement, which is what likely led to the misinter-
pretation by the model, which produces predictions on a per-study basis. Another study
demonstrated an ETT overlying a malpositioned oesophageal NGT on the radiograph,
resulting in the NGT being undetected by the model; this represents a clinically important
subpopulation of malpositioned NGTs with poor tip visibility that appears to be chal-
lenging for AI models. The remaining three cases demonstrated incompletely imaged
NGTs either due to acquisition parameters, or obscuration from additional devices. Two
malpositioned cases with subdiaphragmatic NGTs with the proximal hole residing above
the gastro-oesophageal junction were misclassified as satisfactory. AI models appear to
struggle in these subpopulations, especially if they have not been explicitly trained to inter-
pret incompletely imaged studies, as position assessment is often difficult or inconclusive
in these cases.

This study had several limitations. Firstly, datasets enriched with further examples
of rarer cases (such as malpositioned fine bore NGTs, malpositioned tracheostomies, and
malpositioned dialysis catheters, as well as identified subgroups of interest such as malpo-
sitioned NGTs with ETTs, oesophageal devices, and PICCs with axillary tips) are needed
to elucidate model performance in these scenarios. Secondly, although this analysis was
carried out on a held-out test dataset, this did not represent an external dataset, as the test
dataset (while exclusive at the patient level) was drawn from some of the same sources
as the training data. It has been widely reported that diagnostic accuracy of models may
decrease when applied to external datasets originating from sites that did not contribute to
the training dataset [42,43]. Finally, this study represents a retrospective in vitro analysis,
and studies (retrospective or prospective) to determine the clinical effects of critical care
clinicians using the AI device to assess line and tube positions are needed, to evaluate their
real-world performance [44].

5. Conclusions

There is a general need in the literature for a more comprehensive and detailed
approach to describing the performance of line/tube position classification algorithms.
Here, we presented the results of an indepth analysis investigating the performance of
the DCNN algorithm developed by Seah et al. [16]. This DCNN displayed high detection
performance and good position classification performance for CVCs, ETTs, and NGTs,
supporting its use as an AI-assistive device. There was a small number of misinterpreted
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cases. Subgroup analysis identified potential hidden stratification for PICC lines, as well as
in cases of ETT with an accompanying enteral device. This illustrates that, despite strong
DCNN performance overall, more detailed analysis of device performance is necessary
to evaluate for hidden stratification. Further work is recommended to investigate model
performance in clinically relevant line and tube subtypes, especially central lines, as well
as specific edge-case scenarios that are encountered in radiological practice. This study
highlights the continuing need for radiological studies to be reviewed by clinicians in
conjunction with DCNN models to achieve optimal interpretation outcomes.
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