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A B S T R A C T   

In promoting transport electrification, addressing diverse stakeholder needs is vital for a balanced approach to 
placing and scheduling Electric Vehicle Charging Stations (EVCS). This paper highlights stakeholder-centric 
challenges for implementing and scheduling public charging infrastructures. To account for stakeholders’ per-
spectives, it investigates the significance of assigning variable weightage to different stakeholders in optimizing 
the placement and scheduling of charging stations. This paper examines stakeholder priorities by selecting 
various features and assessing each stakeholder’s contribution to those features in the context of placement and 
scheduling challenges. By analyzing relevant case studies focusing on stakeholder engagement, charger types, 
studied networks, and installation locations, this study presents multi-stakeholder-driven optimal allocation and 
scheduling strategies for charging infrastructures and practical implications. The findings reveal a predominant 
focus on distribution networks and EVCS owners in placement and scheduling strategies, with limited attention 
to other stakeholders. Also, around 80 percent of recent studies emphasize urban and highway networks, often 
validated in test networks, highlighting the need for real network validation, particularly in suburban and remote 
areas. Furthermore, the paper explores future perspectives on EVCS placement and scheduling, offering valuable 
insights to policymakers, industry professionals, and researchers addressing emerging research issues in transport 
decarbonization.   

1. Introduction 

Transport electrification is crucial in reaching net-zero emission 
goals, as the transportation sector contributes to around 15 percent of 
global greenhouse gas emissions (Victor-Gallardo et al., 2022). There 
has been a notable surge in global electric vehicle (EV) usage owing to 
techno-economic and environmental advantages compared to conven-
tional gasoline vehicles (Ghasemi-Marzbali, 2022). At the end of 2022, 
global sales, encompassing battery and plug-in hybrid EVs, attained a 13 
percent market share, resulting in a cumulative total of approximately 
10.52 million EVs in operation worldwide, as shown in Fig. 1(a) (EV 
Volumes, 2023; International Energy Agency, 2023). In response to the 
swiftly evolving EV demand, policymakers are strategizing and estab-
lishing charging infrastructures, including fast and slow charging op-
tions for users (Jayapalan et al., 2022). 

Presently, residential and workplace chargers meet a significant 
portion of charging needs, while the requirement for publicly accessible 

chargers is rising, particularly due to range anxiety concerns (Suhail 
et al., 2021). Also, in densely populated urban areas with limited access 
to residential and workplace charging, public charging infrastructure 
helps to build confidence among floating EV users. In 2022, the global 
public charging points reached 2.7 million, exhibiting a 55 percent rise 
compared to 2021 and totalling over 900,000 charging points (Inter-
national Energy Agency, 2023). Fig. 1(b) illustrates the ratio of EVs to 
charging points across various countries, reflecting transport electrifi-
cation efforts. Despite early adoption and limited charger installations, a 
strategic plan includes placing and scheduling charging facilities for 
widespread usage (Mastoi et al., 2022). During the initial stages of 
transport electrification, strategic placement of charging stations alle-
viates range anxiety, improves user convenience, and accelerates EV 
adoption (Gupta et al., 2021). Simultaneously, well-designed scheduling 
schemes are essential for balancing energy demand amid extensive EV 
uptake (Das et al., 2021). Addressing stakeholders’ engagement is 
needed for a seamless EV transition in both placement and scheduling 
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strategies. 
The stakeholders involved in placement and scheduling tasks can be 

categorized into two groups - primary and secondary. Primary stake-
holders are directly impacted entities, including local governments, 
distribution network operators, EVCS owners, transportation networks, 
and EV users. While indirectly influenced, secondary stakeholders 
include auto industries, community groups, and environmental and 
research institutions. Studies reported disparate outcomes in an energy 
transition process influenced by local contexts and stakeholder dy-
namics (Lopolito et al., 2022; Falcone et al., 2021). Another study un-
derscores the importance of emphasizing stakeholder’s perceptions and 
contexts in crafting effective and balanced policy interventions (Fal-
cone, 2018). 

Largs-scale EV integration with randomly installed chargers into 
distribution networks provides detrimental impacts, causing voltage 
violation, power loss, overloading, and voltage imbalances (Nour et al., 
2020; Karmaker et al., 2019). Studies claimed that random charger 
placement impacts transport networks through traffic congestion, 
limited EV user accessibility, and reduced system efficiency (Ahmad 
et al., 2022; Bilal and Rizwan, 2020). Several studies have focused on 
charging station placement within distribution networks, often over-
looking the integration of transport networks and EV users (Cadena 
Zarate et al., 2022; Datta and Sengupta, 2021). The government sets 
large-scale targets and initiatives, yet their role as key stakeholders in 
planning is overlooked in current studies (Torkey and Abdelgawad, 
2022). EVCS owners manage EV fleets, necessitating their inclusion in 
deployment and scheduling phases (Suhail et al., 2021). Optimal 
placement and scheduling involve optimization techniques and stake-
holder interaction, each with pros and cons dependent on data pre-
requisites, parameter calibration, computational efficiency, and the 
feasibility of attaining optimal solutions (Suhail et al., 2021; Islam et al., 
2015). Some studies have incorporated deployment and scheduling 
strategies in test networks; however, the feasibility of these strategies in 
real networks requires validation integrating stakeholder interaction 
(Cadena Zarate et al., 2022; Bilal et al., 2021; Pal et al., 2021). Also, 
users’ demographic profiles and acceptance vary across regions, neces-
sitating region-specific planning approaches (Luo et al., 2015). Priori-
tizing stakeholder concerns is essential as it guarantees an adapted and 
user-centric approach for EVCS deployment and scheduling, resulting in 
a more integrated and effective system. 

Once a widespread charging infrastructure is in place, scheduling 
becomes pivotal to effectively handle surging demand, alleviate grid 
congestion, and secure equitable stakeholder benefits. Existing studies 
on scheduling primarily deal with distribution networks where other 
stakeholder benefits and uncertainties are less prioritized (Wang et al., 
2019a; Lee et al., 2021a, 2021b). Several studies predominantly 
explored profit maximization and minimizing the detrimental impacts of 

distribution networks while developing day-ahead charging/discharg-
ing schedules (Javor et al., 2019; Wang et al., 2019b; Rabiee et al., 
2018). Other studies have employed dynamic pricing schemes to address 
scheduling challenges by reducing charging costs; however, these 
schemes can inadvertently elevate the probability of traffic congestion, 
impacting stakeholder convenience during off-peak hours, as high-
lighted in (Wang et al., 2019b; Amin et al., 2020). The stakeholder 
convenience can be improved by addressing stakeholder benefits linked 
with load profile, capacity constraints, traffic flow, and the availability 
of charging ports (Sah and Kumar, 2022). A study illustrates the ne-
cessity of demand-side management, including vehicle-to-grid (V2G) 
services and intermittent renewable integration in EVCS scheduling 
(Al-Ogaili et al., 2019). Unregulated power exports from prosumers to 
grids through solar photovoltaics (PV) and V2G systems reduce EV 
hosting capacity in distribution networks (Milford and Krause, 2021). As 
a result, distribution network operators are considering export limit 
restrictions, which could potentially limit customer advantages. There-
fore, integrating and prioritizing stakeholder benefits is essential to 
improve performance in large-scale EV scheduling. 

This paper delves into the current research on EVCS placement and 
scheduling approaches, shedding light on stakeholder engagement. 
Also, stakeholder priorities are evaluated and ranked according to their 
impacts and benefits concerning charging station deployment and 
scheduling. Furthermore, this paper examines the effects of EV sched-
uling strategies, proposing an integrated platform for monitoring and 
measuring the performance of the charging stations. Table 1 compares 
the present paper, and previous review works emphasizing stakeholder 
engagement, including topics, optimization methods, objective func-
tions, constraints, and impact analysis in EVCS placement and 
scheduling. 

The main focuses of this paper are as follows.  

a. Outline challenges and solutions for EVCS placement and scheduling 
strategies, considering diverse stakeholder benefits.  

b. Analyze recent studies depending on charger types, network studied, 
installation sites, and stakeholder engagement. 

c. Determine stakeholder priorities in EVCS deployment and sched-
uling based on necessities extracted from relevant studies.  

d. Propose multi-stakeholder-driven EVCS deployment and scheduling 
strategies and practical implications for large-scale penetration.  

e. Suggest future research directions for optimal EVCS placement and 
scheduling. 

The remaining content of this paper is divided into three sections. 
Section 2 describes methods, including overall research steps and the 
literature review process. Section 3 includes a detailed review of EVCS 
placement, focusing on stakeholder viewpoints. Section 4 explores 

Fig. 1. Statistics on global EV sales and charging points.  
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existing strategies and impacts, suggesting an integrated framework for 
EV scheduling. After that, Section 5 analyses relevant case studies and 
stakeholder priorities in EVCS placement and scheduling problems. 
Section 6 discusses proposed innovative strategies, practical implica-
tions, and future research perspectives. Finally, Section 7 summarizes 
findings with challenges and policy implications. 

2. Methods 

In this section, overall research steps and methodologies for the 
systematic literature review are illustrated for EVCS deployment and 
scheduling, as depicted in Fig. 2. It starts with identifying research 
problems by defining the scope and objectives, followed by an extensive 
literature review concerning stakeholder requirements in EVCS alloca-
tion and scheduling. 

After analyzing existing studies and stakeholder priorities, efficient 
strategies for optimal placement and scheduling are proposed in this 
paper, integrating multiple stakeholders. Then, challenges and oppor-
tunities inherent to implementing these strategies while highlighting 
gaps in existing solutions for EVCS planning are discussed in this study. 

2.1. Literature review process 

This section describes the systematic review process on EVCS 
placement and scheduling using Scopus and Google Scholar databases. 
The keywords “Electric Vehicle Charging Station Placement” and 
“Electric Vehicle Charging Scheduling” are utilized in selecting articles 
from 2012 to the date. This search includes peer-reviewed journal ar-
ticles and conference papers written in English from the energy systems 
field. Finally, the highly cited and more influential articles are selected 
only for this comprehensive review. After the screening phase, the 
bibliometric analysis was conducted to extract relevant data and in-
sights. Fig. 3 represents two steps: research paper selection and analyt-
ical process for EVCS placement and scheduling. This systematic 
approach enables critical analysis of selected literature, identifies 
trends, synthesizes the findings, and identifies challenges and solutions 

to understand EVCS placement and scheduling comprehensively. 
This review paper has several research questions as follows.  

a) What state-of-the-art methods are used in existing studies for EVCS 
placement and scheduling considering stakeholder benefits?  

b) What stakeholders are involved in the EVCS deployment process, and 
what are their prospective benefits & priorities?  

c) How can EVCS placement and scheduling be designed to maximize 
stakeholder benefits?  

d) What is the trade-off between different stakeholder benefits, and how 
can they be balanced to achieve optimal output?  

e) What are the key factors for EVCS placement and scheduling that can 
ensure sustainable and equitable transition to electric mobility?  

f) How can EVCS placement and scheduling contribute to achieving 
broader goals and promoting equity in stakeholder benefits? 

3. Placement of electric vehicle charging station 

Owing to several stakeholder-centric factors, such as the availability 
of EVs and charging facilities, government policies, price and incentives, 
and demographic profile, transport electrification phases vary in each 
region (Zhao et al., 2022; Mukherjee and Ryan, 2020). Thus, the recent 
EVCS placement studies are summarized in Table 2, highlighting 
stakeholder roles with location, type, objective function, optimization 
method, and studied network. 

Most studies in Table 2 concentrated on a single stakeholder in the 
EVCS placement problem, which might not yield optimal solutions for 
other stakeholders. The existing literature reports EVCS placement is 
conducted on test feeders (Cadena Zarate et al., 2022; Datta and Sen-
gupta, 2021; Bilal et al., 2021; Reddy and Selvajyothi, 2020; Sadhukhan 
et al., 2021; Gantayet et al., 2021; Jamatia et al., 2022; Deb et al., 2021; 
Hadian et al., 2020; El-Zonkoly and dos Santos Coelho, 2015; Pal et al., 
2021), and only a few cases are demonstrated on real distribution and 
transport networks (Luo et al., 2015; Hao et al., 2022; Mehouachi et al., 
2022; Bitencourt et al., 2021; Zhu et al., 2016). Minimizing power loss 
and the annual cost is the most common objective function in existing 

Table 1 
Comparison with existing review works addressing EVCS placement and scheduling.  

Features Unterluggauer 
et al. (2022) 

Mastoi 
et al. 
(2022) 

Gupta 
et al. 
(2021) 

Ahmad 
et al. 
(2022) 

Ding et al. 
(2020) 

Singh 
et al. 
(2023) 

Al-Ogaili 
et al. (2019) 

Das et al. 
(2021) 

Chen and 
Folly 
(2023) 

Current 
Paper 

Topic P P P P P P S S S P, S 
Optimization methods ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Objective functions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Constraints ✓ ✓ × ✓ × ✓ × ✓ × ✓ 
Stakeholder benefits 

and priorities 
Δ × × Δ × × × × × ✓ 

Impact of stakeholder- 
based EV scheduling 

× × × × × × × × × ✓ 

P- Placement S-Scheduling Δ- Partial. 

Fig. 2. Research procedure on EV charging station placement and scheduling concerning multiple stakeholders.  
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studies on charging station placement. Including distribution network 
impacts, EV uncertainties, traffic flow, and user satisfaction is essential 
in the EVCS allocation. Besides, a customer-oriented planning frame-
work for EVCS positioning is necessary to increase EV penetration, 
which needs further investigation. 

3.1. Problem formulation for EVCS placement 

In optimal placement problems, the objective function and con-
straints formulation typically relied on techno-economic and environ-
mental impacts where societal impacts such as residential charging, 
demographic profile, working hours, and traffic congestion may offer 
added advantages in EV adoption (Suhail et al., 2021). This research 
categorizes objective functions in terms of technical, economic, envi-
ronmental, and societal contexts shown in Fig. 4(a). Fig. 4(b) summa-
rizes stakeholder-centric constraints for solving optimal placement 
problems. Constraints for EV users and EVCS owners typically involve 
managing EV uncertainties and cost minimization, while DNOs focus on 
mitigating adverse impacts. Simultaneously, transportation network 
constraints incorporate traffic flow, vehicle count, and types. 

3.2. Optimization approaches in EVCS placement 

Selecting a proper optimization technique for EVCS placement is 
challenging due to the accuracy and complexities in convergence, 
execution time, and parameter tuning during implementation in 
different networks (Bilal and Rizwan, 2020). Current studies use diverse 
optimization approaches for EVCS placement based on problem state-
ments and limited stakeholder needs involving single and 
multi-objective functions. Table 3 demonstrates optimization ap-
proaches, convergence, execution time, and optimized solutions in 
existing studies. 

In several cases, Genetic Algorithm (Jordán et al., 2021) and Particle 
Swarm Optimization (Reddy and Selvajyothi, 2020) are used due to 
their easy implementation, although it has issues with early convergence 
and approximate solutions. Simulated annealing is easy to implement, 
although it has problems with complex tuning, long convergence, and 
sub-optimal solutions (Sousa et al., 2016). Ant Colony Optimization can 
adapt to continuous changes despite uncertain convergence speed and 
complex parameter tuning (Sharma et al., 2021). Also, Grey-Wolf 

(Shabbar et al., 2021), Teaching-Learning algorithm (Duan and Pour-
soleiman, 2021), and Integer Programming (Faridpak et al., 2019) have 
problems with slow convergence and significant execution time. Be-
sides, Artificial Bee Colony (Boonraksa and Marungsri, 2018), Greedy 
Algorithms (Jovanovic et al., 2022), and Fuzzy TOPSIS (Technique for 
Order Preference by Similarities to Ideal Solution) optimization (Guo 
and Zhao, 2015) have fast convergence and short execution times. A few 
studies conducted multi-objective optimization using hybrid approaches 
for higher accuracy and lessening computational time (Cadena Zarate 
et al., 2022; Sadhukhan et al., 2021; Gantayet et al., 2021) (see Table 3). 

3.3. Key insights from existing EVCS placement reviews 

Table 4 describes key insights from existing review papers, including 
challenges and research directions for EVCS placement problems (see 
Table 4). 

In most cases, EV users, EVCS owners, and distribution systems are 
considered where the transportation network and local authorities are 
absent. Considering economic aspects may violate performance con-
straints of distribution networks and plug-in congestion in charging 
stations. EVCS planning includes geographical location, objectives, 
optimization methods, technology, network, and stakeholder integra-
tion. Optimal placement should consider technical, economic, environ-
mental, and societal benefits. Policymakers must focus on distribution 
network impacts and cost reductions, while distribution planners should 
analyze existing networks for performance constraints (Ahmad et al., 
2022). Integrating transportation data, EV uncertainties, V2G technol-
ogy, renewables, and reliability indices must be considered in optimal 
placement solutions. 

4. EV charging scheduling strategies 

EV charging scheduling minimizes charging costs for users and 
maximizes profit for EVCS owners. EV charging scheduling using con-
ventional approaches is grouped in terms of methods, objective func-
tions, operational constraints, network type, outcomes, and future 
scopes, presented in Table 5. 

In most cases, the scheduling algorithm does not consider distribu-
tion network impacts. Also, navigation of charging station location is 
essential as it affects travel time and waiting time for EV charging (Qiang 

Fig. 3. Systematic literature review of EVCS placement and scheduling.  
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Table 2 
Summary of recent studies on EVCS placement.  

Ref. Siting Sizing Objective function Solution Technique Type of 
EVCS 

Stakeholder Network 

Reddy and Selvajyothi 
(2020) 

✓ ✓ Minimization of power loss Particle Swarm Optimization (PSO) FCS DNO IEEE 19 and 25 Bus DNs 

Sadhukhan et al. 
(2021) 

✓ ✓ Minimization of network loss and 
travel loss, maximizing EVCS 
utilization factor 

Genetic algorithm, non-dominated 
sorting genetic algorithm- II 
(NSGA-II) 

FCS DNO, TS IEEE 33 Bus DN 

Bilal et al. (2021) ✓ ✓ Minimization of power loss, 
improving voltage profile, and 
voltage stability index 

Hybrid Grey Wolf Optimization and 
PSO (HGWOPSO) approach 

FCS DNO, EV Users IEEE-33 and 69 Bus DNs 

Cadena Zarate et al. 
(2022) 

✓ ✓ Minimize the cost of energy 
losses and EVCS installation 

Genetic Algorithm FCS DNO IEEE-33 Bus DN 

Pal et al. (2021) ✓ ✓ Minimization of power loss, 
voltage deviation, and 
establishment cost 

Differential Evolution and Harris 
Hawks Optimization 

RCS and 
FCS 

DNO, CSO IEEE-33 node radial DN 

Yu et al. (2021) ✓ ✓ Minimization of the annual cost 
of EVCS 

PSO FCS DNO, EV Users 33 nodes TN and 33 
nodes DN 

Gantayet et al. (2021) ✓ ✓ Minimizing the total annual cost 
of EVCS 

Genetic algorithm and whale 
optimization algorithm 

FCS CSO, DNO IEEE - 33 bus radial DN 

Hao et al. (2022) ✓ ✓ Improving EV user satisfaction 
and load stability 

Improved Ant Colony Optimization FCS TS, DNO TN of Xian City, China 

Jamatia et al. (2022) ✓ ✓ Reducing power loss PSO and Symbiotic Organism 
Search (SOS) 

FCS DNO IEEE -33 Bus DN. 

Mehouachi et al. 
(2022) 

✓ ✓ Minimizing the establishment 
and charging cost 

Genetic Algorithm FCS TS TN of a city in Tunisia 

Faridpak et al. (2019) ✓ ✓ Minimization of EVCS owner’s 
costs 

Two-step linear programming FCS DNO CIGRE DN 

Erdoğan et al. (2022) ✓ ✓ Maximize traffic flow and vehicle 
mileage 

An optimization-based approach 
using designated EV corridors 

FCS TS Highway TN, Maryland 

Kadri et al. (2020) ✓ ✓ Maximizing the total number of 
EV recharging 

Multi-stage stochastic model using 
Bender’s decomposition and 
genetic algorithm 

FCS CSO NA 

Chen et al. (2021) ✓ ✓ Minimization of establishment 
cost, power loss, and voltage 
deviation 

Balanced Mayfly Algorithm FCS DNO, CSO. 30 bus DN in Allahabad, 
India 

Deb et al. (2021) ✓ ✓ Minimizing installation cost, 
penalty rate, and traveling cost 

Chicken Swarm Optimization and 
Teaching-learning-based 
optimization 

RCS and 
FCS 

DNO, CSO, and 
EV users 

IEEE - 33 nodes DN and 
25 nodes TN 

Tadayon-Roody et al. 
(2021) 

✓ ✓ Reducing installation cost and 
power loss 

Genetic Algorithm FCS DNO, CSO 20 Nodes TN 

Bitencourt et al. (2021) ✓ ✓ Minimizing power loss and 
charging zone center deviation 

Hierarchical clustering, Scenario 
Reduction method, and BAT 
algorithm 

Semi- 
FCS 

DNO, EV users DN with 654 customers, 
Costa Rica 

Li et al. (2021) ✓ ✓ Reducing installation, travel 
distance, and waiting time cost 

Multipopulational genetic 
algorithm (MPGA) and k-means 
algorithm 

RCS and 
FCS 

CSO and EV 
users 

DN and TN 

Datta and Sengupta 
(2021) 

✓ ✓ Lowering power loss and 
cumulative voltage fluctuation 

Improved New Binary Particle 
Swarm Optimization (INBPSO) 

FCS DNO IEEE -15 Bus DN 

Liu et al. (2020) ✓ ✓ Maximizing profit and user 
satisfaction, minimizing voltage 
deviation 

Improved Harmony Particle Swarm 
Optimization (IHPSO) 

FCS DNO, EV users IEEE-33 and the PG&E −
69 bus DNs 

Gampa et al. (2020) ✓ ✓ Minimizing power loss and 
voltage deviation 

Fuzzy Grasshopper Optimization 
Algorithm (GOA) 

FCS DNO 51 bus and 69 bus DNs 

Zeb et al. (2020) ✓ ✓ Lessening installation costs and 
power loss 

PSO SCS, 
RCS, and 
FCS 

DNO, CSO Domestic and industrial 
feeder 

Hadian et al. (2020) ✓ ✓ Reducing power loss and voltage 
variation and boosting reliability 

Multi-objective Particle Swarm 
Optimization (MOPSO) 

RCS DNO, CSO IEEE - 69 bus DN 

Hosseini and Sarder 
(2019) 

✓ ✓ Managing technical, socio- 
economic, and environmental 
criteria 

Bayesian Network (BN) model FCS DNO, CSO, and 
EV users 

NA 

Zhu et al. (2016) ✓ ✓ Minimizing ownership, traveling 
cost, and range anxiety for EV 
customers 

Mathematical model and genetic 
algorithm 

FCS CSO and EV 
users 

15 nodes TN and 23 links 
in China 

Huang et al. (2016) ✓ ✓ Minimizing installation cost and 
expanding coverage 

Geometric segmentation for solving 
partial coverage problem 

SCS, FCS TS, CSO The geographic location 
of Toronto and Hamilton 
in Canada 

Luo et al. (2015) ✓ ✓ Maximizing benefits among 
entities 

Bayesian game network SCS, 
RCS, and 
FCS 

TS, DNO, and 
EV users 

TN from Los Angeles, 
USA 

El-Zonkoly and dos 
Santos Coelho 
(2015) 

✓ ✓ Minimizing overall energy cost Artificial Bee Colony (ABC) and 
Firefly Algorithm 

SCS DNO, CSO, and 
EV users 

IEEE - 33 Bus DN 

DN – Distribution Network, TN – Transport Network, DNO – Distribution Network Operator, CSO – Charging Station Operator, TS – Transportation Sector, SCS- Slow 
Charging Station, RCS- Regular Charging Station, FCS- Fast Charging Station. 
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et al., 2020). The existing literature on EV charging scheduling reports 
minimizing cost and maximizing profit where EV uncertainties are 
absent. 

Artificial intelligence (AI) techniques have recently become popular 
in EV charging schedules. However, a lack of open-source EV data and 
uncertainties lead to inappropriate decisions and management for con-
nected EVs. Existing literature on AI-based EV charging scheduling is 
summarized in Table 6, considering objective function, constraints, data 
used, outcomes, and research gaps. Current research targets individual 
EVs, overlooking broader market dynamics. Also, minimizing energy 
cost is the common objective function where an effective scheduling 
technique should include distribution network impacts, user satisfac-
tion, and traffic volume. 

The charging/discharging scheduling algorithms can be divided into 
two groups, i.e., conventional stochastic and AI approaches. Usually, the 
optimization algorithms used in traditional stochastic EV charging 
scheduling are as follows-genetic algorithm (Yu et al., 2021), ant colony 
optimization (Gantayet et al., 2021), particle swarm optimization (Gong 
et al., 2017), mixed integer linear programming (Gupta et al., 2022), and 
some other hybrid approaches (Ren et al., 2021). In AI techniques, deep 
reinforcement learning algorithms are primarily used in the existing 

literature (Lee et al., 2021b; Dorokhova et al., 2021; Qian et al., 2019; 
Nair et al., 2018; Mhaisen et al., 2020). Most of the AI-based approach 
uses single EV battery capacity and historical data from the previous 
day, which leads to improper control of scheduling problems (Wang 
et al., 2019a; Wan et al., 2018; Li et al., 2019). In addition, the distri-
bution grid integrated with residential renewables via net metering 
needs to be considered in the scheduling algorithm. Conventional dy-
namic pricing scheme provides less charging cost for the EV users and 
maximizes the profitability index of the EVCS owner, although distri-
bution network impacts are ignored. Also, the adaptive operative stra-
tegies for EVCS connected with renewables and the distribution grid 
during critical situations should be analyzed (Wang et al., 2019a). The 
performance validation of a V2G-featured EV charging scheduling al-
gorithm considering stakeholder perspectives is absent in the existing 
literature (Amin et al., 2020). 

4.1. Key insights from existing EVCS scheduling reviews 

Based on the current literature on EV charging scheduling, an outline 
of contexts, challenges, and research gaps is presented in Table 7. Most 
of the scheduling algorithm reduces charging cost during off-peak hour, 

Fig. 4. Objective functions and constraints for EVCS placement.  
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which fosters traffic congestion and waiting time. Also, future research 
may be considered on long-term planning for the EV charging sched-
uling for various penetration levels. 

4.2. Impact of EV charging scheduling 

EV charging scheduling algorithm performs profit maximization and 
charging cost minimization. EV charging scheduling considering the 
interdependent stakeholders is necessary for better performance. The 
impacts of EV charging scheduling can be analyzed considering different 
stakeholders, i.e., distribution network, transport network, EVCS owner, 
and EV users, using the stakeholder engagement matrix shown in Fig. 5. 

The management plan in Fig. 5 includes a stakeholder engagement 
matrix and step-by-step ways to analyze and map stakeholder benefits 
and engagement. The stakeholder engagement matrix helps to identify 
the actions required to achieve a specific goal, monitoring the actual 
engagement and advantages of the stakeholders from EV charging 
schedules. 

Fig. 6 shows the integrated network performance monitoring and 
controlling mechanism in the EV charging/discharging schedule. The 
stakeholder benefits of EV scheduling drive the necessity of building an 
integrated network performance monitoring platform. This EV sched-
uling platform enables continuous coordination and communication, 
optimizing scheduling operations and efficient operation of resources 
among multiple stakeholders. The online visibility of this integrated 
platform will enhance reliability, accessibility, and user satisfaction 
while ensuring real-time monitoring of charging network performance. 

4.2.1. Distribution network 
The distribution network operator is pivotal in the EV charging 

ecosystem, overseeing infrastructure, deployment, and management. 
The study effectively optimizes generation and operating schedules by 
analyzing EV commuting behavior in tandem with distribution net-
works, as validated through simulations on IEEE-6 and IEEE-118 bus 
systems with EVs (Sun et al., 2018). Adaptive charging scheduling in 
research mitigates adverse effects from extensive EV integration in dis-
tribution networks (Hua et al., 2014). Active network management en-
hances power quality and voltage profiles in distribution networks, a 
technique applicable to scheduling EV charging/discharging in 
renewable-rich distribution systems (Dutta et al., 2022). 

4.2.2. Transportation network 
The transportation network is crucial for EV charging scheduling, 

aiding location planning, and providing EV routing and navigation. A 
study shows that optimizing for multiple vehicles in a real-world transit 
network in Daxing District, Beijing, can lower annual scheduling costs 
by 15.93 percent compared to traditional methods (Yao et al., 2020). 
Another study introduced an EV scheduling method employing a 
rule-based strategy incorporating user needs, traffic volume, and EV 
count, enhancing operational efficiency and alleviating traffic conges-
tion through balancing load and generation (Luo et al., 2020). A review 
highlights challenges in traditional scheduling strategies and proposes a 
collaborative approach utilizing smart charging technologies within 
transport and distribution networks to enhance scheduling performance 
(Jawad and Liu, 2020). 

4.2.3. EVCS owners 
EVCS owners are crucial for managing charging operations and 

pricing to enhance user convenience and profitability while meeting 
network constraints. Various studies have been conducted on EV 
scheduling to control EVCS and provide dynamic charging schemes 
(Wang et al., 2019b; Amin et al., 2020). Most charging scheduling al-
gorithms are considered EVCS with homogeneous capacity, number of 
ports, and charging levels, which is unrealistic. Also, investigation can 
be done for renewable-based EVCS scheduling to improve grid stability 
by reducing peak load. 

4.2.4. EV users 
EV users actively participate in charging scheduling, impacting 

charging station utilization and demand. Balancing user convenience 
and cost-effectiveness necessitates addressing uncertainties such as EV 
characteristics, plug-in habits, timing, and charging levels. A two-stage 
power charging schedule based on game theory demonstrates that 
charging costs are reduced by 8.59 percent, satisfying user demand and 
network constraints, as described in a study (Kim et al., 2022). In a smart 
charging scheme, the EV user gets control over charging with more 
flexibility in energy use. Assuming a fixed battery capacity instead of 
diverse models and neglecting uncertainties can lead to inaccurate 
charging power estimations in scheduling, which needs EV market 
analysis. 

Table 3 
Comparison among different optimization approaches used in EVCS placement.  

Optimization Approach and 
Application 

Method Implementation Convergence Execution 
time 

Solution 

Genetic Algorithm (Jordán et al., 
2021) 

Inspired by natural 
evolution 

Easy implementation Premature 
convergence 

Large It gives the approximate 
solution 

Particle Swarm Optimization ( 
Reddy and Selvajyothi, 2020) 

Based on the concept of 
social interaction 

Easy implementation Early convergence, low 
precision 

Less Determines sub-optimal 
solution 

Simulated annealing (Sousa 
et al., 2016) 

Based on the physical 
annealing process of a 
metal 

Easy implementation, however, 
makes it difficult to tune many 
parameters 

Long convergence Large Identifies a global solution 
rather than a local one 

Ant Colony Optimization ( 
Sharma et al., 2021) 

Inspired by the grouping 
behavior of ants 

Adaptable to continuous changes 
while parameter tuning is difficult 

Uncertain convergence 
speed 

Uncertain Provides optimal solution 
with changing environment 

Artificial Bee Colony Algorithm ( 
Boonraksa and Marungsri, 
2018) 

Inspired by the behavior of 
real bees 

Simple and easy implementation, 
Limited search space 

Fast convergence Fast Provides optimal solutions 
for large-scale practical 
problems 

Teaching-Learning base 
Optimization (Duan and 
Poursoleiman, 2021) 

Based on the effect of the 
influence of a teacher in a 
class 

Easy implementation due to no 
parameter tuning required 

Premature 
convergence 

small Offers optimal solutions 
through effective learning 

Grey-Wolf Optimization ( 
Shabbar et al., 2021) 

Based on the hunting 
strategy of grey wolves 

Easy to implement due to a few 
tunable parameters 

Slow convergence Long time Provides local optimal 
solutions 

Integer Programming (Faridpak 
et al., 2019) 

Based on the real-life cost 
analysis 

Simple, cannot be used for stochastic 
problems 

Slow High Provides multiple optimal 
solutions 

Greedy Algorithm (Jovanovic 
et al., 2022) 

Based on human behavior 
for immediate benefits 

Easy to implement Fast but accuracy and 
efficiency problems 

Small Occasionally lack optimal 
solutions due to data 
oversight  
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5. Analysis and discussion: case studies and stakeholder 
engagement 

In this section, real case studies on the placement and scheduling of 
EV charging stations are discussed, and alignment with the proposed 
strategies is indicated. Also, a multi-stakeholder analysis for EVCS 
placement and scheduling based on existing studies through relative 
weighting of different stakeholders is conducted in this section. 

5.1. Analyzing recent case studies on placement and scheduling 

Existing studies described mostly micro-level planning for placement 

and scheduling, especially for distribution networks at a small scale 
(Reddy and Selvajyothi, 2020; Gampa et al., 2020; Wirges, 2016). The 
large volume of real-EV parameters may constrain meso and macro-level 
planning computational efficiencies, leading researchers to work on 
micro-level planning for charging infrastructure (Torkey and Abdelga-
wad, 2022; Unterluggauer et al., 2022). As the network topology, ca-
pacity, customer demand, stakeholders involved, and other 
demographic profiles differ, scalable methods are needed. 

Fig. 7 contains subplots representing charger installation types, 
stakeholder engagement, studied networks, and placement in existing 
case studies. Fig. 7 (a) illustrates that fast charging was considered in 68 
percent of cases, followed by mixed (slow and fast) charging. Residential 
customers favor Level 1 (≤3.6 kW) and Level 2 (7.2–22 kW) chargers for 
convenience on low-voltage networks, underscoring the importance of 
analyzing such distribution systems (Australian Electric Vehicle Council, 
2022). Besides, Fig. 7 (b) shows stakeholders used in recent studies in 
placement and scheduling problems. The analysis reveals a lack of local 
authority involvement in EVCS placement optimization despite the 
importance of government support and initiatives in this context. Also, 
using stakeholders without prioritizing their contributions in the plan-
ning approach may fail to foster EV adoption (Ahmad et al., 2022). 

Fig. 7(c) shows that only 15 percent of cases involve real networks 
for validating placement and scheduling algorithms, with the majority 
focusing on test networks. Real networks have diverse uncertainties and 
complexities that require investigation considering multiple stake-
holders. Fig. 7(d) highlights that most planning problems pertain to 
urban and highway sectors, indicating a need for future studies to 
address suburban and rural areas (Jawad and Liu, 2020; Unterluggauer 
et al., 2022). 

Several attempts have been made in the last decade to solve charging 
station location problems for fostering transport electrification. In recent 
case studies, capacity constraint issues are prioritized problems in EVCS 
deployment and management for only users and distribution grids 
(Sharma et al., 2021; Asna et al., 2023). Other stakeholders, such as 
transportation networks and government support, are essential for 
rapidly growing EV demand (Zheng et al., 2019). 

The regional case studies on EVCS placement are distinguished into 
four regions – Asia-Pacific, Africa, the European Union, and the United 
States of America. According to published reports, the Asia-Pacific re-
gion is the leading area for accommodating EV chargers, closely fol-
lowed by the European Union (EV Volumes, 2023; International Energy 
Agency, 2023). However, despite China, Korea, Japan, and Australia 
having the highest number of chargers in the Asia-Pacific, individual 
country rankings remain relatively low. A study from the European 
context underscores the importance of Fast charging stations on high-
ways for increasing EV adoption (Jochem et al., 2019). Navigating 
challenges in scaling the infrastructure, workload distribution, profit-
ability, and policy formulation is crucial for deploying fast charging 
stations to support EV growth in European markets (Schäuble et al., 
2017). An Africa-based study for transforming electromobility indicates 
challenges such as a lack of electricity generation, government policies, 
and initiatives suggesting renewable-based EVCS installation (Longe, 
2022). Recent literature analyzing public Level 2 and fast charging 
station utilization indicates that 50 percent of chargers can address 
about 90 percent of the total charging demand in the USA, underscoring 
the necessity for expanded charging infrastructure aligned with stake-
holder needs (Borlaug et al., 2023). 

Several studies on placement and scheduling tasks argue that inap-
propriate stakeholder interaction may deteriorate decision-making 
performance if thorough EV uncertainty analysis, efficient and scal-
able models, and refueling demand are not done properly (Ahmad et al., 
2022; Chen and Folly, 2023; Asna et al., 2023). Limited access to EV user 
behavior and traffic data presents challenges when designing future flow 
models and energy demand structures (Visaria et al., 2022). Hence, 
many case studies rely on parametric assumptions to facilitate research, 
potentially impacting the scalability challenges in real networks. In 

Table 4 
Insights from existing EVCS placement review papers.  

Ref. And year Considered aspects Suggestions 

(Singh et al., 
2023), 2023 

Classification of planning 
models, problem 
formulations for combined 
transport and distribution 
networks 

⁃ Charging station planning 
needs government incentives 
and strategic support with 
specific charging 
requirements. 
⁃ V2G-enabled charging 
facilities need consideration. 
⁃ Location feasibility in the 
presence of renewable 
requires investigation. 

(Unterluggauer 
et al., 2022), 
2022 

EVCS planning objectives, 
optimization approaches for 
integrated transport and 
distribution networks 

⁃ Probabilistic approach and 
concerns related to major 
stakeholders must be 
incorporated to capture 
spatio-temporal 
uncertainties. 
⁃ Validation of the 
optimization approach in 
real networks is required. 
⁃ Sequential adaptive 
planning for EVCS placement 
can be added. 

(Ahmad et al., 
2022), 2022 

Placement strategies, 
objective functions, 
constraints, optimization 
techniques, and impact 
analysis 

⁃ Problem formulation 
should include EVCS owners, 
distribution networks, and 
EV users’ perspectives. 
⁃ EV demand and charging 
levels should be included in 
load modelling. 
⁃ Demand-side-management 
and V2G technologies may 
include. 
⁃ Integration of renewables 
and reliability indices 
⁃ Sensitivity analysis for the 
EVCS parameters needs to be 
investigated 

(Bilal and Rizwan, 
2020), 2020 

Placement studies based on 
objective functions, solution 
methods, geographic 
conditions, and demand-side 
management 

⁃ Multi-objective functions 
can be added During 
problem formulation, 
including operating and 
installation costs, reliability 
indices, and waiting time. 
⁃ Traffic and renewable 
uncertainties may be 
considered. 
⁃ Meta-heuristic combined 
with classical optimization 
may be used. 

(Suhail et al., 
2021), 2021 

Different constraints and 
optimization methods are 
used in the optimal location 
of EVCS 

⁃ Adaptive artificial 
intelligence technologies 
may be employed. 
⁃ Feasibility analysis of 
renewable-based charging 
stations can be used. 

(Islam et al., 
2015), 2015 

Survey on different 
optimization approaches 
applied in optimal placement 
problems 

⁃ Problem formulation 
should be based on economic 
benefits and distribution 
network impacts.  
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addition, export limits constrained by grid operators from renewable 
and V2G technologies are complex scheduling solutions needing stake-
holder acceptance (Azim et al., 2023). Although EVs promote less GHG 
emissions to the environment, indirect causes, including establishing 
charging infrastructure and end-of-life of batteries, should not be 

ignored during placement and scheduling problem formulations. Also, 
assessing the techno-economic and environmental feasibility of posi-
tioning charging stations for diverse vehicles is essential in placement 
and scheduling tasks. 

Table 5 
Conventional approaches for EV charging scheduling employed in existing studies.  

Ref. Solution Techniques Objective Functions Operational Constraints Network Future Scopes 

Gantayet 
et al. 
(2021) 

Genetic Algorithm and 
Whale Optimization 
Algorithm 

Minimize annual cost by 
integrating PV and BESS 

Power loss, voltage, and 
current limits, battery output 

IEEE-33 Bus System ⁃ EV uncertainties are not included. 

Hao et al. 
(2022) 

Improved Ant Colony 
Optimization 

EV user satisfaction, travel 
time and energy loss, 
charging rate 

Energy consumption of EV, 
traffic performance index, and 
grid load model 

Traffic Network with 
39 nodes in Xi’an, 
China 

⁃ No network performance criteria are 
considered. 
⁃ A fixed battery capacity of EVs is used, 
which is not feasible. 

Xiong et al. 
(2018) 

Unsupervised clustering 
algorithm and multilayer 
perceptron 

EV demand by predicting 
driver behavior 

NA UCLA SMERC smart 
charging system 

⁃ Techno-economic analysis is required 
for the charging schedule. 

Ren et al. 
(2021) 

Spatial-temporal 
distribution with bi-level 
optimization 

Profit maximization and cost 
minimization 

Network capacity, EVCS 
capacity, user satisfaction 

Transport network 
from China 

⁃ EV charging and discharging control 
strategy with distributed generation 
may be analyzed. 

Rabiee et al. 
(2018) 

Stochastic optimization 
technique 

Maximize Profit Number of EVs arrival and 
departure, energy price 

NA ⁃ Multiple EVs with different battery 
capacities need to be considered. 

Yu et al. 
(2021) 

Particle Swarm 
Optimization (PSO) 

Minimize annual cost Service range, charging 
demand, and power in the 
planning area 

33 nodes transport 
and distribution 
network 

⁃ EV uncertainties and distribution 
network performances are not 
considered. 

Gupta et al. 
(2022) 

Mixed Integer Linear 
Programming 

Reduction of operation costs 
and traffic congestion 

NA Modified IEEE-118 
bus system 

⁃ Economic analysis of transportation 
networks may be performed in the 
future. 
⁃ Demand response can be added. 

Wang et al. 
(2019a) 

Framework for adaptive 
operation strategies of 
EVCS 

Charging cost, PV 
curtailment, penalty cost, 
revenue for PV and EV 

EV battery dynamics, charging 
demand, PV curtailment, and 
power balance 

Modified IEEE-13 
Node Test Feeder 

⁃ Performance constraints for voltage 
profile, power loss, and thermal loading 
limits are not considered. 

Ren et al. 
(2020) 

Bayesian Network-based 
real-time EV charging 
scheduling 

Minimization of the 
electricity purchase cost 

Battery capacity, charging 
demand, PV output power 

NA ⁃ Daily EVCS demand and PV 
generation output can be included in 
the future.  

Table 6 
Summary of studies on AI-based EV charging scheduling.  

Ref. Methods and Network Objective 
Functions 

Considered 
Constraints 

Network Dataset Future Research Scopes 

Dorokhova 
et al. 
(2021) 

Reinforcement Learning 
Control 

Maximization of PV 
power consumption 
and SOC 

SOC limits, PV, and 
utility grid power 
limits 

EVCS in 
Switzerland 

EVCS with at least one 
EV provides datasets 
for two months 

⁃ V2G capability may add to 
demand response services. 
⁃ Pareto reinforcement learning 
for multi-objective EV charging 
may be explored. 

Alqahtani 
and Hu 
(2022) 

Deep Q-Network-based 
Reinforcement learning 

Minimization of 
energy cost 

Power and energy 
balance, PV power, 
energy storage, 
electricity 
transaction 

EV charging 
profile for 20 
users from 
Chicago, USA 

Daily load profile, 
energy consumption 
data from 2019 T 
Model X EV 

⁃ The multi-agent reinforcement 
learning algorithm can be 
developed to distribute decisions 
among EVs for mobility and 
energy transactions. 

Qian et al. 
(2019) 

Deep Reinforcement 
Learning 

Minimization of total 
travel and charging 
cost 

Travel time, waiting 
time, and charging 
rate 

Traffic network in 
Xian City 

Road velocity, 
charging prices, and 
waiting time 

⁃ The impact of multiple EVs with 
a smart grid can be explored in a 
real network in the future. 

Wan et al. 
(2018) 

Model-free deep 
learning algorithm 

Cost-efficient EV 
charging/discharging 
scheduling 

Real-time tariff, 
arrival and departure 
times, SOC 

NA Past electricity prices 
and battery SOC 

⁃ Multiple EV battery capacities 
may be considered in the real 
network. 

Wang et al. 
(2019b) 

Reinforcement learning Lessening charging 
costs and increasing 
profit for the EVCS 
owner 

Optimize charging 
cost 

NA Hourly EV data, day- 
ahead tariff, and 
number of EVs 

⁃ The scalability can be checked 
with the existing network 
considering large-scale EV 
penetration. 

Li et al. 
(2019) 

Constrained Markov 
chain Decision Process 
with deep neural 
network 

Minimize charging 
costs with fully 
charged EVs. 

NA NA Past 24-h electricity 
prices and current EV 
battery SOC 

⁃ Multiple EV battery capacities 
and traffic network parameters 
can include. 

Lee et al. 
(2021b) 

Multi-agent Rainbow 
DQN with imparting 
preference 

Minimize charging cost 
and charging time, 
maximize EV energy 

NA NA Tariff variations and 
availability of 
charging stations 

⁃ In other cases, multiple routes or 
traffic network nodes may be 
added to check effectiveness. 
⁃ V2G technology may add. 

Nair et al. 
(2018) 

Clustered load 
forecasting deep neural 
network and linear 
programming 

Forecasting residential 
EV load demand and 
charging cost 
optimization 

Charging demand, 
charger type, SOC, 
no. Of EVs, and 
customer 

EV profiles from 
NREL in the 
Midwest region, 
USA 

200 household 
demand profiles with 
348 EVs 

⁃ EV uncertainties and the V2G 
system are not considered here.  
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5.2. Multi-stakeholder benefits and priority analysis 

Stakeholder analysis in EVCS placement and scheduling involves 
identifying and assessing the various parties with benefits, influence, or 
roles. The requirements for charging infrastructure planning differ for 
multiple interrelated stakeholders, i.e., EV users, EVCS owners, DNOs, 
TNs, and regulatory bodies, as shown in Fig. 8. 

Fig. 9 specifies the targeted benefits for primary stakeholders in 
EVCS deployment and scheduling tasks. EV users want to minimize 
charging and traveling costs, waiting times, and charging duration. 
EVCS owners intend to reduce costs (establishment and operational) and 
maximize profits. Besides, DNOs want to place the EVCS to minimize the 
detrimental impacts on distribution systems. Transport network de-
mands minimizing traffic congestion and smooth traffic flow. EVCS 
planning consists of placement and scheduling where setting objective 
functions and constraints is vital for various stakeholders. 

This study gathers impactful features for developing placement and 
scheduling strategies from various published articles (Suhail et al., 2021; 
Ahmad et al., 2022; Islam et al., 2015; Luo et al., 2015; Chen and Folly, 
2023). Each of the twelve key factors for stakeholders is assigned a 
ranking using a color scale with four levels, spanning from 1 to 4, as 
shown in Fig. 10. Red represents the highest significance, while green 
signifies the lowest. The total number of features is denoted by ‘nf’ while 
‘αmax’ signifies the maximum weighting assigned to these features. 

For selected features, the weights are represented by α1, α2, α3, and 
α4, with values ranging from 1 to 4. These selected feature weights 
correspond to n1, n2, n3, and n4, indicating the number of weights for 
each feature. The stakeholder priority index for a given stakeholder is 
denoted as ωsp, and its calculation is based on Equation (1). 

Stakeholderpriorityindex,ωsp=
(∝1×n1)+(∝2×n2)+(∝3×n3)+(∝4×n4)

∝max×nf

(1) 

The bar chart in Fig. 11 illustrates the calculated priority indexing for 
different stakeholders, depicting their engagement in decision-making. 
The charging station owners and distribution companies are ranked as 
the most influential stakeholders for EVCS planning, followed by EV 
users and local authorities. The distinct placement and scheduling re-
quirements can lead to variations in priority indexing due to differences 
in selecting significant features and their relative weights, posing a po-
tential research gap for future studies. 

6. Proposed strategies and future perspectives 

In this section, proposals for stakeholder-driven placement and 
scheduling methods are described, along with their practical implica-
tions. Also, the future perspectives indicating stakeholder-centric 
placement and scheduling methods are included in this section. 

6.1. Proposal for multi-stakeholder-oriented framework for EVCS 
placement 

Based on the research trends and challenges identified during the 

Table 7 
Challenges and future research directions on EV charging scheduling.  

Ref., year Considered aspects Suggestions 

(Amin et al., 
2020), 2020 

Optimal EV charging 
scheduling under dynamic 
pricing schemes (Real-time 
pricing, time of use, critical 
peak charging, and peak time 
rebates) and different 
optimization methods 

⁃ It suggests establishing a 
relationship between dynamic 
pricing and charging demand, 
considering uncertainties are 
critical in the charging 
schedule. 
⁃ Evaluation of the 
performance of dynamic 
pricing schemes for different 
stakeholders 
⁃ Integration of renewables and 
battery storage in flexible EV 
charging demand 
⁃ The impact of V2G 
technology under a dynamic 
pricing scheme needs to be 
analyzed. 

(Mukherjee and 
Gupta, 2014), 
2015 

EV charging scheduling 
approaches and research 
directions 

⁃ Consideration of 
decentralized charging instead 
of centralized charging for 
significant EV penetration. 
⁃ The charging scheduling 
algorithm needs to consider 
the EV users’ profile. 
⁃ V2G impact may be 
considered in future work. 

(Shahriar et al., 
2020), 2020 

Machine learning approaches 
for EV charging patterns in 
the scheduling algorithm. 

⁃ EV scheduling for long-term 
and short-term predictions of 
charging behavior needs to be 
considered. 
⁃ High dimensional datasets 
such as traffic, weather, 
demographic profile, and EV 
clustering approach are 
required for training ML in a 
scheduling problem. 
⁃ Deep learning reinforcement 
learning applications for multi- 
objective problems in EV 
charging scheduling may 
perform. 

(Rong et al., 
2021), 2021 

Electric Bus charging 
schedule based on vehicle 
scheduling 

⁃ Dynamic charging intervals 
can be used in electric bus 
charging scheduling. 
⁃ Long-term planning is 
required for charging 
scheduling, considering 
optimal placement, 
operational, and establishment 
costs. 
⁃ Renewable integration for EV 
charging to mitigate storage 
and intermittent problems may 
include. 
⁃ Battery aging may be 
considered in the charging 
scheduling and V2G services. 

(Das et al., 
2021), 2021 

Optimization techniques used 
in EV charging scheduling 

⁃ Various approaches to 
optimization techniques, along 
with the dynamic pricing 
scheme, are reviewed in this 
paper. 
⁃ Renewable integration into 
EV charging stations needs to 
be investigated. 

(Zheng et al., 
2019), 2019 

Reviews V2G charging 
scheduling approaches and 
their impacts on the 
distribution grid 

⁃ The grid topology- 
independent model can be 
implemented for V2G 
scheduling in the future, 
reducing the computational 
cost. 
⁃ A decentralized charging 
scheduling, considering 
battery degradation, may be  

Table 7 (continued ) 

Ref., year Considered aspects Suggestions 

helpful for significant EV 
penetration. 

(Tang et al., 
2016), 2016 

Online charging scheduling 
considering uncertainties and 
randomness 

⁃ The integration of renewables 
needs to be investigated. 
⁃ Stochastic modelling with 
random EV data can be used in 
the scheduling approach. 
⁃ Economic incentive design 
for EV users may perform in 
the future.  
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literature survey, Fig. 12 depicts a conceptual framework for multi- 
stakeholder-oriented EVCS placement comprising four major stake-
holders, i.e., distribution network, charging station owner, EV user, and 
local authorities, identified using stakeholder analysis. The proposed 
framework involves three main steps-estimating hosting capacity, 
sensitivity analysis, and applying an optimization algorithm. EV hosting 
capacity is estimated using load flow analysis to understand network 
strength without violating performance constraints. Nodal strength can 
be computed by prioritizing performance constraints, including voltage 
and thermal limits, power loss, and voltage imbalance for every node in 
distribution networks. As the multi-stakeholder approach directs a 
complex problem with multiple objective functions and constraints, an 
optimization algorithm must be selected based on robustness, accuracy, 
and lower computational burden. Then, the quantity and scale of an 
EVCS can be determined using the number of EV users, charging levels, 
distance from the substation, traffic volume, and measured hosting ca-
pacity. The proposed multi-stakeholder strategies fosters cooperation, 
coordinated EVCS deployment, conflict reduction, market share 
expansion, and revenue growth. 

6.2. Proposal for EV charging scheduling framework 

To manage large-scale EV penetration, a charging scheduling algo-
rithm considering multiple stakeholder benefits is challenging. Also, 
including demand-side management for accelerating the transport 
electrification process, the scheduling strategy selection is necessary. 
Fig. 13 shows the proposed multi-stakeholder-focused EV charging 
scheduling mechanism is presented. A real-time pricing scheme and 
charging control strategy will be the outcomes of the proposed 
approach, applying data from stakeholders and renewable resources. 
The scheduling algorithm may develop integrating distribution network 
impacts, profit maximization, and user satisfaction as the objective 
function. The selection of objective functions and constraints can be 
based on Fig. 4. EV scheduling can be classified as day-ahead, user- 
centric, real-time, and fleet scheduling. In this process, stakeholder- 
centric multi-objective scheduling can be used for managing large- 
scale EV fleets. Enabling a demand response program with multi- 
stakeholder participation is possible with the help of the proposed 
scheduling schemes. 

6.3. Practical implications of proposed strategies 

The practical implications for proposed EVCS placement and 
scheduling strategies, considering multi-stakeholder benefits with socio- 
techno-economic and environmental aspects, are multifaceted in trans-
port electrification. These strategies promise a more balanced allocation 
and management of charging infrastructure across diverse regions, 
catering to urban, suburban, and rural areas. By incorporating inputs 
from various stakeholders, these strategies aim to optimize the location 
and scheduling of charging infrastructures, resulting in fair distribution 
of benefits among stakeholders. In EVCS placement, the processes 
intersect with the energy transition, requiring adjustments to accom-
modate increased electricity demand, promote renewable energy inte-
gration, and enhance grid resilience (Pal et al., 2021). The proposed 
scheduling scheme offers the potential for managing large-scale EV 
fleets by strategically scheduling charging sessions to curb strain on the 
distribution grid. 

Economically, these schemes will enable equitable monetary distri-
bution, and real-time pricing schemes incentivize prosumers to share 
self-generated solar and V2G power, driving participation in the energy 
transition. These strategies also prioritize environmental responsibility 
by encouraging renewable energy use in charging, aligning with sus-
tainability goals. The process may include data sharing and privacy 

Fig. 5. Stakeholder management technique for EV charging scheduling.  

Fig. 6. Integrated network performance monitoring and controlling method in 
EV scheduling. 
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mechanisms to boost transparency and stakeholder trust for seamless 
implementation. In the nascent stage of transport electrification, these 
strategies inform policy formulation for EVCS establishment and man-
agement in both the short and long terms, including micro, meso, and 
macro-level planning. 

6.4. Future research directions 

The growing global adoption of EVs emphasizes the need to establish 
charging stations to mitigate range anxiety and drive heightened market 
share. Future research should consider the techno-economic, environ-
mental, and societal impacts of establishing EVCSs while considering the 
perspectives of different stakeholders, as described in this section. 

6.4.1. Renewable integrated EVCS 
Integrating intermittent renewable energy sources like PV solar 

systems into EVCS offers several benefits, including reducing peak load 
demand, improving grid stability, and enhancing voltage profiles. While 
uncertainties exist in PV systems, hybrid renewables that combine 
different renewable sources can provide more effective solutions for 
EVCS. Previous studies have investigated optimal placement strategies 
and assessed the impact of PV solar systems on EV charging schedules, 
focusing on microgrid-based EVCS in future studies. 

6.4.2. Strategic approaches for growing EV demand 
The growing EV demand poses challenges in selecting effective 

placement and scheduling schemes for charging infrastructure devel-
opment. Enhancing hosting capacity for EVs and renewables while 
minimizing detrimental grid impacts and maximizing stakeholder 

Fig. 7. Case studies on EVCS placement and scheduling a) type of charger, b) stakeholder considered in existing studies, c) type of network studied, and d) placement 
of chargers in existing analysis. 

Fig. 8. Stakeholder’s interrelation in EVCS placement and scheduling.  
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benefits is essential. An adaptable strategy is required for developing 
charging infrastructure to overcome scalability and interoperability is-
sues and the need for equitable access. Addressing planning and 
scheduling challenges for widespread EV adoption involving multiple 
stakeholders is complex, as prior studies mostly focused on lower 
penetration levels and left gaps in understanding the intricacies of 
extensive electrification. 

6.4.3. Multi-objective optimization approaches 
Addressing complexities and involvement of multiple stakeholders in 

EVCS placement and scheduling is challenging for single-objective 
optimization approaches that foster researchers to use multi-objective 
optimization frameworks. Also, incorporating EV uncertainties and 
objective functions for each stakeholder will increase the reliability and 
effectiveness of the optimal placement and scheduling tasks for charging 
facilities. 

Fig. 9. Stakeholder targeted benefits for EVCS planning.  

Fig. 10. Stakeholder priorities in EVCS deployment and scheduling.  

Fig. 11. Priority indexes for different stakeholders involved in EVCS planning.  
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6.4.4. V2G/V2V/V2H technology integration 
Integrating energy-transferring technologies such as V2G, Vehicle- 

to-Home (V2H), and Vehicle-to-Vehicle (V2V) presents significant EV 
management and power exchange opportunities. These technologies 
provide techno-economic benefits to the stakeholders. Owing to several 
stakeholder benefits, energy-transferring technologies can be considered 
in designing optimal placement and scheduling of EVCS. 

6.4.5. Validation with real distribution feeder 
Optimal placement and scheduling are challenging when it deal with 

real-distribution feeders. Real-distribution feeders introduce 
stakeholder-centric uncertainties requiring consideration for real-time 
EV charging facility distribution. While existing studies often use 

standard test feeders, including real-distribution networks in EVCS 
deployment and scheduling is vital to offer meaningful insights to 
policymakers. 

6.4.6. Consideration of EV uncertainties 
Uncertainties related to EV variables such as arrival and departure 

time, charging duration, levels, type, charger efficiency, battery capac-
ity, driving range, battery aging, and demographic profile strongly in-
fluence charging load profiles. Accounting for these uncertainties is vital 
for effective EVCS planning. Leveraging clustering methods can reduce 
prediction errors, enhancing charging demand forecasting accuracy and 
resource allocation efficiency. 

Fig. 12. Multi-stakeholder-based framework for EVCS placement.  

Fig. 13. Proposed EV charging scheduling framework.  
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6.4.7. Dynamic charging scheme 
A dynamic pricing scheme facilitates EV users’ flexibility for time- 

varying charging and enables renewable generation potential. Due to 
the low price, it creates traffic congestion during off-peak hours; hence, 
it needs to consider EV charging scheduling (Li et al., 2019). EV charging 
schedules for dynamic pricing and a coordinated charging scheme may 
be viewed. 

6.4.8. Adaptive charging scheduling 
EV charging scheduling from typical datasets cannot clarify the re-

sults for different scenarios, such as weekdays and weekends. EV 
charging behavior differs, leading to scheduling problems (Lee et al., 
2021b). Also, the V2G services can strengthen the grid during peak 
hours, which must be investigated in the EV scheduling algorithm. Be-
sides, adaptive operation strategies for the EVCS under various pene-
tration levels and critical situations must be considered in EV charging 
scheduling (Wang et al., 2019a). 

6.4.9. Multi-stakeholder scheduling algorithm 
Due to rising EV adoption among various stakeholders, the research 

underscores the importance of a multi-stakeholder-oriented platform for 
large-scale deployment (Suhail et al., 2021). Integrated monitoring and 
control frameworks are vital for efficient scheduling, as depicted in 
Fig. 8, showcasing information and power exchange among stake-
holders. Efficient management minimizes adverse impacts compared to 
unregulated charging, making a multi-stakeholder-centric approach 
crucial for successful EV scheduling. 

6.4.10. Platform for transport modelling and forecasting 
Research directions for developing a platform for transport model-

ling and forecasting in the context of EVCS placement and scheduling, 
including data-driven models for real transport networks. Data-driven 
models utilize diverse data sources (real or synthetic) for enhanced ac-
curacy with multi-modal and multi-scale modelling to understand 
transportation dynamics (Ge et al., 2020; Loni and Asadi, 2023). The 
platform can incorporate real-time data from smart sensors and infra-
structure by focusing on data-driven models based on various data 
sources for EVCS placement and scheduling. 

6.4.11. EV deployment and visual platform 
A visual platform for large-scale EV deployment can focus on opti-

mizing EVCS placement strategies, developing user-friendly interfaces, 
integrating diverse data sources, employing predictive analytics for 
charging demand forecasting, ensuring scalability and interoperability, 
and prioritizing user-centric design. This platform enables informed 
decision-making, efficient EV deployment, and enhanced user 
experience. 

7. Conclusion 

This paper provides an extensive literature review addressing 
stakeholder interaction in EVCS placement and scheduling for acceler-
ating transport electrification. After thoroughly reviewing recent 
studies, this study identified a noticeable gap in stakeholder-oriented 
placement and scheduling solutions. Stakeholder-centric objectives, 
constraints, and the pros and cons of currently employed optimization 
approaches are specified in this paper. Finally, the analysis in this paper 
shows stakeholder engagement accounting for the type and location of 
network and EV chargers in existing studies. The findings showed a 
predominant focus on distribution networks and EVCS owners within 
placement and scheduling strategies, while the involvement of other 
stakeholders remains comparatively limited. Approximately 80 percent 
of recent studies for urban and highway networks are often validated 
within test environments, indicating a need to validate real networks, 
especially in suburban and remote settings. Moreover, the investigation 
of conventional grid capacity and determining nodal strength must be 

known for the EVCS planning process. 
This paper bridges a gap in the current literature by prioritizing 

stakeholders in placement and scheduling, extending beyond profit and 
user satisfaction maximization. It is suggested that including the distri-
bution network impacts, EV uncertainties, and traffic flow may enhance 
the efficiency and effectiveness of EV scheduling. A multi-stakeholder- 
oriented platform is recommended in this paper to monitor and con-
trol EVCS operation that directs interoperability and coordinated load 
management schemes. The multi-stakeholder analysis considering spe-
cific features with assigned weights in the EVCS planning highlights the 
pronounced influence of charging station owners and distribution 
network operators. However, it’s worth noting that EV users and local 
authorities also have substantial impacts in this context. 

By prioritizing stakeholder engagement in the EVCS planning pro-
cess, this study lays the foundation for advancing cleaner production 
technologies and ensuring equitable benefits. The proposed integrated 
network monitoring and control mechanism for charging stations will 
improve network visibility and resilience as EVs and renewables become 
more widespread. The emphasis on real-world validation in EVCS 
planning across urban, suburban, and remote networks will enhance the 
practicality of the proposed stakeholder-focused solutions. Despite the 
popularity of AI-based approaches for EVCS planning, the scarcity of 
real-world data due to the early stages of development could result in 
inadequate scheduling strategies for managing large-scale EV penetra-
tion, analyzed in this study. Data sharing and privacy policies are also 
needed to boost transparency and stakeholder trust for seamless 
implementation. The importance of regulatory and standardization 
frameworks for demand response programs initiated through bi- 
directional power transfer is highlighted for efficient scheduling solu-
tions. Moreover, this review helps establish regulatory frameworks and 
region-specific planning strategies, further bolsters the growth of 
cleaner transportation technologies, and promises a more balanced and 
sustainable future. 

In future studies, multi-stakeholder-oriented EVCS allocation and 
scheduling can be investigated in renewable-rich distribution networks 
for various penetration levels. While existing research predominantly 
centers on public charging infrastructure, future planning efforts must 
integrate private-owned and residential charging systems to analyze EV 
charging operations. Further research must examine energy-transferring 
technologies and address prosumer-end uncertainties in real distribution 
networks for managing EV penetration. Additionally, future research 
should explore enhancing network visibility and resilience by inte-
grating stakeholder concerns within the suggested monitoring and 
control framework. Future studies must prioritize region-specific, meso- 
level planning, considering diverse objectives, infrastructure, and in-
centives of local authorities in tailoring transport electrification. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

References 

Ahmad, F., Iqbal, A., Ashraf, I., Marzband, M., Khan, I., 2022. Optimal location of electric 
vehicle charging station and its impact on distribution network: a review. Energy 
Rep. 8, 2314–2333. 

Al-Ogaili, A., Hashim, T., Rahmat, N., Ramasamy, A., Marsadek, M., Faisal, M., 
Hannan, M., 2019. Review on scheduling, clustering, and forecasting strategies for 
controlling electric vehicle charging: challenges and recommendations. IEEE Access 
7, 128353–128371. 

Alqahtani, M., Hu, M., 2022. Dynamic energy scheduling and routing of multiple electric 
vehicles using deep reinforcement learning. Energy 244, 122626. 

A.K. Karmaker et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0959-6526(23)03303-6/sref1
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref1
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref1
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref2
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref2
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref2
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref2
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref3
http://refhub.elsevier.com/S0959-6526(23)03303-6/sref3


Journal of Cleaner Production 427 (2023) 139145

16

Amin, A., Tareen, W.U.K., Usman, M., Ali, H., Bari, I., Horan, B., Mahmood, A., 2020. 
A review of optimal charging strategy for electric vehicles under dynamic pricing 
schemes in the distribution charging network. Sustainability 12 (23), 10160. 

Asna, M., Shareef, H., Prasanthi, A., 2023. Planning of fast charging stations with 
consideration of EV user, distribution network and station operation. Energy Rep. 9, 
455–462. 

Australian Electric Vehicle Council, 2022. State of EVs. Oct 2022 Available online: http 
s://electricvehiclecouncil.com.au/state-of-evs-october2022/. 

Azim, M.I., Lankeshwara, G., Tushar, W., Sharma, R., Alam, M.R., Saha, T.K., 
Razzaghi, R., 2023. Dynamic operating envelope-enabled P2P trading to maximise 
financial returns of prosumers. IEEE Trans. Smart Grid. 

Bilal, M., Rizwan, M., 2020. Electric vehicles in a smart grid: a comprehensive survey on 
optimal location of charging station. IET Smart Grid 3 (3), 267–279. 

Bilal, M., Rizwan, M., Alsaidan, I., Almasoudi, F.M., 2021. AI-based Approach for 
Optimal Placement of EVCS and DG with Reliability Analysis, 9. IEEE Access, 
pp. 154204–154224. 

Bitencourt, L., Abud, T.P., Dias, B.H., Borba, B.S., Maciel, R.S., Quirós-Tortós, J., 2021. 
Optimal location of EV charging stations in a neighborhood considering a multi- 
objective approach. Elec. Power Syst. Res. 199, 107391. 

Borlaug, B., Yang, F., Pritchard, E., Wood, E., Gonder, J., 2023. Public electric vehicle 
charging station utilization in the United States. Transport. Res. Transport Environ. 
114, 103564. 

Boonraksa, T., Marungsri, B., 2018. Optimal fast charging station location for public 
electric transportation in smart power distribution network. In: International 
Electrical Engineering Congress (iEECON). IEEE, pp. 1–4. 

Cadena Zarate, C., Caballero, J., Rojas Perez, H., Solano, J., Quiroga, O., 2022. Python- 
PowerFactory co-simulation for the optimal location of electric vehicle charging 
stations. Int. J. Ambient Energy 1–7. 

Chen, Q., Folly, K.A., 2023. Application of artificial intelligence for EV charging and 
discharging scheduling and dynamic pricing: a review. Energies 16 (1), 146. 

Chen, L., Xu, C., Song, H., Jermsittiparsert, K., 2021. Optimal sizing and sitting of EVCS 
in the distribution system using metaheuristics: a case study. Energy Rep. 7, 
208–217. 

Das, M.K., Jain, S.K., Jain, S.K., 2021. Review on optimization techniques used for 
scheduling of electric vehicle charging. In: 2021 International Conference on 
Control, Automation, Power and Signal Processing (CAPS). IEEE, pp. 1–6. 

Datta, A., Sengupta, D., 2021. Renewable Energy Supported Bi-directional Electric- 
Vehicle Charging Station Allocation in Distribution Network using INBPSO 
Technique. International Journal of Renewable Energy Research 11 (2), 750–761. 

Deb, S., Gao, X.Z., Tammi, K., Kalita, K., Mahanta, P., 2021. A novel chicken swarm and 
teaching learning based algorithm for electric vehicle charging station placement 
problem. Energy 220, 119645. 

Ding, Z., Teng, F., Sarikprueck, P., Hu, Z., 2020. Technical review on advanced 
approaches for electric vehicle charging demand management, part ii: applications 
in transportation system coordination and infrastructure planning. IEEE Trans. Ind. 
Appl. 56 (5), 5695–5703. 

Dorokhova, M., Martinson, Y., Ballif, C., Wyrsch, N., 2021. Deep reinforcement learning 
control of electric vehicle charging in the presence of photovoltaic generation. Appl. 
Energy 301, 117504. 

Duan, D., Poursoleiman, R., 2021. Modified teaching-learning-based optimization by 
orthogonal learning for optimal design of an electric vehicle charging station. Util. 
Pol. 72, 101253. 

Dutta, A., Ganguly, S., Kumar, C., 2022. Coordinated control scheme for ev charging and 
volt/var devices scheduling to regulate voltages of active distribution networks. 
Sustain Energy Grids Netw. 31, 100761. 

El-Zonkoly, A., dos Santos Coelho, L., 2015. Optimal allocation, sizing of PHEV parking 
lots in distribution system. Int. J. Electr. Power Energy Syst. 67, 472–477. 
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